Autores

6661
2988,51
6662
2988,51

Informações:

Publicações do PESC

Título
Captura de Proveniência Assíncrona em Simulações Computacionais
Linha de pesquisa
Engenharia de Dados e Conhecimento
Tipo de publicação
Dissertação de Mestrado
Número de registro
Data da defesa
18/9/2018
Resumo

Simulações computacionais em larga escala são experimentos computacionais cada vez com mais processamento de dados. Usuários e desenvolvedores deste tipo de simulação geralmente realizam análises sobre dados científicos durante a execução da simulação. Esta não é uma tarefa trivial, já que as simulações em larga escala costumam ser executadas em ambientes de processamento de alto desempenho e produzir grande volume de dados. Soluções existentes, como o DfAnalyzer, fazem uso de dados de proveniência para auxiliar esta análise com muito sucesso. No entanto, esses sistemas possuem abordagens síncronas de coleta de dados, o que dificulta a sua instalação e, principalmente, interfere no desempenho da simulação computacional. Esta dissertação propõe uma abordagem assíncrona de coleta de dados de proveniência com o objetivo de disponibilizar dados científicos para consulta durante a execução da simulação sem muito impacto no seu tempo de execução. Para validar as estratégias propostas, foi desenvolvida a ferramenta Asynchronous Dataflow Analyzer. A implementação realizada estende o DfAnalyzer para adotar o assincronismo proposto e simplifica a configuração do sistema por meio da flexibilização da gerência da proveniência prospectiva. Os resultados experimentais, com uma simulação de processos de sedimentação de solos, mostram que a ferramenta é capaz de atender as necessidades de análises de dados dos usuários de simulações computacionais com sobrecargas inferiores a ferramentas existentes. 

Abstract

Large-scale computational simulations are computational experiments increasingly more processing intensive. Users and developers of this type of simulation generally analyze data during simulation execution. This is not a trivial task since large-scale simulations are often performed in high-performance processing environments and can produce a large volume of data. Existing solutions, as DfAnalyzer, use provenance data to assist analysis with success. However, these systems use synchronous approaches to gather data that makes difficult to set up it and, mainly, interferes in the performance of the computational simulation. This dissertation proposes an approach to asynchronously collect provenance data making it available for analysis during the execution of the simulation with the least possible delay. In order to evaluate the proposed strategies, a tool, Asynchronous Dataflow Analyzer. This implementation extends DfAnalyzer to use the proposed asynchronous approach and to simplify the configuration process by making the prospective provenance definition process more flexible. The experimental results, with a soils sedimentation simulation, show that the tool is able to meet the needs of users of large-scale computational simulations with lower overloads than similar tools.

Arquivo
Topo