Generalized Proximal Point Algorithms for Quasiconvex Programming
Autores
4845 |
Arnaldo Silva Brito
|
2165,303,925,304
|
4846 |
2165,303,925,304
|
|
4847 |
2165,303,925,304
|
|
4848 |
2165,303,925,304
|
Informações:
Publicações do PESC
Título
Generalized Proximal Point Algorithms for Quasiconvex Programming
Linha de pesquisa
Otimização
Tipo de publicação
Relatório Técnico
Número de registro
ES-736/10
Data
8/2010
Resumo
Abstract
In this paper, we proposed algorithms interior proximal methods based on entropy-like distance for the minimization of the quasiconvex function subjected to nonnegativity constraints. Under the assumptions that the objective function is bounded below and continuously di erentiable, we established the well de nedness of the sequence generated by the algorithms and obtained two important convergence results, the principal one is a sufficient conditionfor the convergence point of the sequence generated by the algorithms is apoint of solution of the problem.
Arquivo