ECLPS¢
Embedding and Interfacing Manual

Release 4.2

Stefano Novello (IC-Parc)
Joachim Schimpf (IC-Parc)

August 6, 1999

Trademarks

WindowsNT and Windows95 are trademarks of Microsoft Corp.
SunOS and Solaris are trademarks of Sun Microsystems, Inc.
© International Computers Limited and Imperial College London 1996-1999

Contents

1 Introduction

2 Calling ECL'PS® from *C+4’
2.1 To get started
2.1.1 Directories
2.1.2 Definitions

2.1.3 Compiling, linking and running on Unix/Linux

2.1.4 Static linking (Unix/Linux)

2.1.5 Compiling, linking and running on Windows

2.2 Creating an ECL'PS® context . . .
2.2.1 Initialisation
2.3 Controlflow
2.3.1 Control flow and search . .
2.3.2 Asynchronous events
2.3.3 The yield-resume model . .

2.3.4 Summary of EC_resume() arguments

3.1 Constructing ECL'PS® data
3.1.1 ECL'PS® atoms and functors
3.1.2 Building ECL'PS® terms . .

Managing Data and Memory in Mixed-Language Applications

3.1.3 Building atomic ECL'PS® terms v oo vt i

3.1.4 Building ECL'PS® lists . . .
3.1.5 Building ECL'PS® structures
3.2 Converting ECL'PS® data to C data

3.2.1 Converting simple ECL'PS® terms to C data types
3.2.2 Decomposing ECLIPS® termso o vv v ii i

3.3 Referring to ECL'PS® terms

3.4 Passing generic C or C++ data to ECLIPS®
3.4.1 Wrapping and unwrapping external data in an ECL'PS® term

3.4.2 The method table

4 External Predicates in C and C++
4.1 Coding External Predicates
4.2 Compiling and loading
4.3 Restrictions and Recommendations

[y

0 0 ~1I O UL OO R R WWW

o o O

10
10
10
11
11
11
12
12
13
13
14

17
17
18
19

5 Embedding into Tcl/Tk

5.1
5.2
5.3
5.4

5.5

5.6

Loading the interface
Initialising the ECL'PS® Subsystem
Passing Goals and Control to ECL‘PS® . . .
Communication via Queues
5.4.1 From ECL'PS® to Tel
5.4.2 From Tcl to ECL'PS®
Attaching Handlers to Queues
55.1 ECLPS®toTecl............
552 Tclto ECL'PS®.

Type conversion between Tcl and ECL'PS®

6 Embedding into Visual Basic

6.1
6.2
6.3
6.4
6.5

The EclipseThread Project
Public Enumerations
The EclipseClass class
The EclipseStreams Collection Class
The EclipseStream Class

7 EXDR Data Interchange Format
7.1 ECLPS® primitives to read/write EXDR terms

7.2

Serialized representation of EXDR terms . .

A Parameters for Initialising an ECL‘PS® engine

Summary of C++ Interface Functions

B.1

B.2
B.3
B4
B.5
B.6

Constructing ECL{PS® terms in C++ . . .
B.1.1 Class EC_atom and EC_functor . . .
B.1.2 Class ECcword
Decomposing ECL'PS® terms in C++ . . .
Referring to ECL‘PS® terms from C++ . .

Passing Data to and from External Predicatesin C++
Initialising and Shutting Down the ECL*PS® Subsystem
Passing Control and Data to ECLPSe from CH++ . « o o o v o i e s

C Summary of C Interface Functions

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8

Constructing ECL'PS® terms in C
Decomposing ECL*PS® terms in C
Referring to ECL'PS® terms from C

Passing Data to and from External Predicatesin C
Initialising and Shutting Down the ECL‘PS® Subsystem
Passing Control and Data to ECL'PS®* from C.

Communication via ECL‘PS® Streams . . .
Miscellaneous

D Foreign C Interface

ii

21
21
21
22
24
24
25
25
25
26
27

29
29
29
29
31
31

33
33
34

35

39
39
39
39
41
41
42
43
43

45
45
46
47
48
49
49
51
51

53

Chapter 1

Introduction

This manual contains the information needed to interface ECLIPS® code to C or C++ envi-
ronments, or to use it from within scripting languages. ECL!PS® is available in the form of
a linkable library, and a number of facilities are available to pass data between the different
environments, to make the integration as close as possible.

Example sources can be found in the ECLPS® installation directory under doc/examples.

Chapter 2

Calling ECL'‘PS? from C++’

This chapter describes how ECL'PS® can be included in an external program as a library,
how to start it, and how to communicate with it. Code examples are given in C++. For the
equivalent C functions, please refer to chapter C.

2.1 To get started

This section is about the pre-requisites for working with ECL!PS® in your development envi-
ronment. The directory structure, the libraries and the include files are described.

2.1.1 Directories

The libraries and include files needed to use ECL'PS® as an embedded component are available
under the ECL!PS® directory which was set-up during installation. If you have access to a
stand-alone ECL'PS® it can be found using the following query at the ECL*PS® prompt:

[eclipse 1]: get_flag(installation_directory,Dir).

Dir = "/usr/local/eclipse"
yes.
[eclipse 2]

We will assume from here that ECL'PS® was installed in ” /usr/local/eclipse”.

You would find the include files in ” /usr/local/eclipse/include/$ARCH” and the the libraries
in 7 /usr/local/eclipse/lib/SARCH” where "$ARCH” is a string naming the architecture of
your machine. This can be found using the following ECL'PS® query:

[eclipse 2]: get_flag(hostarch,Arch).

Arch = "sun4"
yes.
[eclipse 3]:

You will need to inform your C or C++ compiler and linker about these directories so that
these tools can include and link the appropriate files. A make file ”Makefile.external” can be

3

found together with the libraries. The definitions in that makefile may have to be updated
according to your operating system environment.

A set of example C and C++ programs can be found in 7 /usr/local/eclipse/doc/examples”.
When delivering an application you will have to include with it the contents of the directory
” Just /local /eclipse/lib” without which ECL!PS® cannot work. Normally this would be copied
into the directory structure of the delivered application. The interface can set different values
for this directory, enabling different applications to have different sets of libraries.

2.1.2 Definitions

To include the definitions needed for calling the ECL'PS® library in a C program use:
#include <eclipse.h>

For C4++ a more convenient calling convention can be used based on some classes wrapped
around these C definitions. To include these use:

#include <eclipseclass.h>

2.1.3 Compiling, linking and running on Unix/Linux

Assuming that the environment variable ECLIPSEDIR is set to the ECL'PS® installation
directory and the environment variable ARCH is set to the architecture/operating system
name, an application can be built as follows:

gcc -I$ECLIPSEDIR/include/$ARCH eg_c_basic.c -L$ECLIPSEDIR/1ib/$ARCH -leclipse

This will link your application with the shared library libeclipse.so.

At runtime, your application must be able to locate libeclipse.so. This can be achieved
by adding ECLIPSEDIR/lib/ARCH to your LD_LIBRARY_PATH environment variable.

The embedded ECL!PS® finds its own support files (e.g. ECL'PS® libraries) through the
ECLIPSEDIR environment variable. This must be set to the location where ECL'PS® is in-
stalled, e.g. /usr/local/eclipse. Alternatively, the application can invoke ec_set_option
to specify the ECLIPSEDIR location before initialising the embedded ECL‘PS® with ec_init.

2.1.4 Static linking (Unix/Linux)

If your operating system only supports static linking, or if you want to link statically for some
reason, you have to link explicitly with libeclipse.a and the necessary support libraries
must be specified, e.g.

gcc -I$ECLIPSEDIR/include/$ARCH eg_c_basic.c $ECLIPSEDIR/1ib/$ARCH/libeclipse.
-L$ECLIPSEDIR/1ib/$ARCH -1gmp -1lshm -ldummies -1d1 -1nsl -lsocket -1lm

The libraries gmp, shm and dummies are ECL'PS® support libraries and must be specified in
that order. The others are Unix libraries.

It is recommended that you copy the makefile ” Makefile.external” provided in your installation
directory under lib/$ARCH and adapt it for your purposes.

4

2.1.5 Compiling, linking and running on Windows

In the Link section of the compiler/development system’s settings, specify eclipse.lib as
an additional library, and the location of this library, e.g. C:/Eclipse/1ib/i386_nt as an
additional library path.

At runtime, your application must be able to locate eclipse.dll, i.e. you should either

e copy eclipse.dll into the folder where your application is located, or
e copy eclipse.dll into one of Windows’ standard library folders, or

e add the path to the folder where eclipse.d1l can be found to your PATH environment
variable.

The eclipse.dll finds its own support files (e.g. ECL'PS® libraries) through the ECLIPSEDIR
registry entry under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\IC-Parc\ECLiPSe\X.Y
(X.Y is the version number). This must be set to the location where ECL!PS is installed,
e.g. C:/Eclipse. Alternatively, the application can invoke ec_set_option to specify the
ECLIPSEDIR location before initialising the embedded ECLPS® with ec_init.

2.2 Creating an ECL'PS® context

ECLPS® runs as a special thread (we will call it ECL'PS® engine) within your application,
maintaining its own execution state. This section is about when and how to initialise it.
There are parameters to be applied before initialisation, but these are usually acceptable.
These parameters are described in Appendix A.

Although it is useful to think of ECL'PS® as a thread, it is not an operating system thread,
but is rather implemented as a set of C functions that maintain some state. This state is
the complete execution state of the ECL!PS® engine, its stack of goals, its success and failure
continuations and its global stack of all constructed data.

At particular points during its execution ECL‘PS® will yield control back to the C level. This
is implemented by returning from a function. ECL'PS® can then be restarted from the exact
point it left off. This is implemented by a function call.

2.2.1 Initialisation

You initialise ECL!PS® by calling the parameterless function
int ec_init();

A process should do this just once. ec_init returns 0 on success -1 if an error occurred. It is
possible to influence the initialisation of ECL'PS® by setting some fields in a structure called
ec_options. These fields and their purpose are described in Appendix A.

None of the functions of the interface work before this initialisation. In particular in C++, if
you use static variables which are constructed by calling ECL'PS® functions you must arrange
for the initialisation to occur before the constructors are called.

2.3 Control flow

ECLPS® and a C or C++ main program are like threads running in a single process. Each
maintains its state and methods for exchanging data and yielding control to the other thread.
The main method of sending data from C4++ to ECL'PSE is by posting goals for it to solve.
All posted goals are solved in conjunction with each other, and with any previously posted
goals that have succeeded.

Data is passed back by binding logical variables within the goals.

Control is explicit in C4++. After posting some goals, the C++ program calls the EC_resume ()
function and these goals are all solved. A return code says whether they were successfully
solved or whether a failure occurred.

In ECL‘PS® control is normally implicit. Control returns to C++ when all goals have been
solved.

#include "eclipseclass.h"

main()

{

ec_init();

/* writeln("hello world"), */
post_goal(term(EC_functor("writeln",1),"hello world"));
EC_resume();

ec_cleanup(0);

}

The above is an example program that posts a goal and executes it.

2.3.1 Control flow and search

Using this model of communication it is possible to construct programs where execution of
C++ code and search within the ECL‘PS® are interleaved.

If you post a number of goals (of which some are non-deterministic) and resume the ECL‘PS®
execution and the goals succeed, then control returns to the C++ level. By posting a goal
that fails, the ECL'PS® execution will fail back into the previous set of goals and these will
succeed with a different solution.

#include "eclipseclass.h"

main()

{
ec_init();
EC_ref Pred;

post_goal(term(EC_functor("current_built_in",1),Pred));
while (EC_succeed == EC_resume())

{
post_goal (term(EC_functor("writeln",1) ,Pred));

post_goal (EC_atom("fail"));
}

ec_cleanup(0);

}

The above example prints all the built ins available in ECL!PS®. When EC_resume() returns
EC_succeed there is a solution to a set of posted goals, and we print out the value of Pred.
otherwise EC_resume() returns EC_fail to indicate that no more solutions to any set of
posted goals is available.

It is possible also to cut such search. So for example one could modify the example above
to only print the 10th answer. Initially one simply fails, but at the tenth solution one cuts
further choices. Then one prints the value of 'Pred’.

#include "eclipseclass.h"

main()

{

ec_init();
EC_ref Pred,Choice;
int i = 0;

post_goal (term(EC_functor("current_built_in",1),Pred));

while (EC_succeed == EC_resume(Choice))
{
if (i++ == 10)
{
Choice.cut_to();
break;
}

post_goal(term(EC_atom("fail")));
}
post_goal (term(EC_functor("writeln",1),Pred));
EC_resume():
ec_cleanup(0);

}

When EC_resume() is called with an EC_ref argument, this is for data returned by the
EC_resume() If the return code is EC_succeed The EC_ref is set to a choicepoint identifier
which can be used for cutting further choices at that point.

2.3.2 Asynchronous events

The posting of goals and building of any ECL'PS® terms in general cannot be done asyn-
chronously to the ECLPS® execution. It has to be done after the EC_resume() function has
returned.

Sometimes it may be necessary to signal some asynchronous event to ECL'PS®, for example
to implement a time-out. To do this one posts a named event to ECL‘PS®. At the next
synchronous point within the eclipse execution, the handler for that event is invoked.

/* C++ code, possibly within a signal handler */
ec_post_event (EC_atom("timeout"));

/* ECLiPSe code */
handle_timeout(timeout) :-
<appropriate action>

:- set_event_handler(timeout, handle_timeout/1).

2.3.3 The yield-resume model

Although implicitly yielding control when a set of goals succeeds or fails is often enough, it is
possible to explicitly yield control to the C++ level. This is done with the yield /2 predicate.
This yields control to the calling C++ program. The arguments are used for passing data to
C++ and from C++.

When yield/2 is called within ECL'PS® code, the EC_resume() function returns the value
EC_yield so one can recognise this case. The data passed out via the first argument of
yield/2 can be accessed from C+4+4 via the EC_ref argument to EC_resume(). The data
received in the second argument of yield/2 is either the list of posted goals, or an EC_word
passed as an input argument to EC_resume().

yield(out(1,2),InData),

In this example the compound term out(1,2) is passed to C++. If we had previously called:

EC_ref FromEclipse;
result = EC_resume(FromEclipse);

then result would be EC_yield and FromEclipse would refer to out(1,2). If then we
resumed execution with:

result = EC_resume(EC_atom("ok") ,FromEclipse) ;

then the variable InData on the ECL'PS® side would be set to the atom ’ok’.

2.3.4 Summary of EC_resume() arguments

EC_resume() can be called with two optional arguments. An input argument that is an
EC_word and an output that is an EC_ref.

If the input argument is omitted, input is taken as the list of posted goals. Otherwise the
input to ECL'PS® is exactly that argument.

If the output argument is present, its content depends on the value returned by EC_resume().
If it returns EC_succeed it is the choicepoint identifier. If it returns EC_yield It is the first
argument to the yield/2 goal. If it returns EC_fail it is not modified.

Chapter 3

Managing Data and Memory in
Mixed-Language Applications

ECL!PS® is a software engine for constraint propagation and search tasks. As such, it rep-
resents its data in a form that is different from how it would be represented in a traditional
C/C++ program. In particular, the ECL'PS® data representation supports automatic mem-
ory management and garbage collection, modifications that can be undone in a search context,
referential transparency and dynamic typing.

In a mixed-language application, there are two basic ways of communicating information
between the components coded in the different languages:

Conversion: When data is needed for processing in another language, it can be converted to
the corresponding representation. This technique is appropriate for simple data types
(integers, strings), but can have a lot of overhead for complex structures.

Sharing: The bulk of the data is left in its original representation, referred to by a handle,
and interface functions (or methods) provide access to its components when required.

Both techniques are supported by the ECL'PS?/C and ECL'PS®/C++ interface.

3.1 Constructing ECL'PS® data

3.1.1 ECL‘PS® atoms and functors

/* ECLiPSe code */
S = book("Gulliver’s Tales","Swift",hardback,fiction),

In the above structure ’hardback’ and ’fiction’ are atoms. ’book’ is the functor of that
structure, and it has an arity (number of arguments) of 4.

Each functor and atom is entered into a dictionary, and is always referred to by its dictionary
entry. Two classes, EC_atom and EC_functor are used to access such dictionary entries.
The ’Name’ method applies to both, to get their string form. The ’Arity’ method can be used
to find out how many arguments a functor has.

/* C++ code */
EC_functor book("book",4);

EC_atom hardback('"hardback") ;

if (book.Arity()) == 4) .. /* evaluates to true */
if (book == hardback) .. /* evaluates to false */
s = hardback.Name(); /* like s = "hardback"; */

3.1.2 Building ECL'PS® terms

The pword C data type is used to store ECL'PS® terms. In C+4 the EC_word data type
is used. This is used for any C type as well as for ECL'PS® structures and lists. The size
remains fixed in all cases, since large terms are constructed on the ECL‘PS® global stack.
The consequences of this are that terms will be garbage collected or moved so terms do not
survive the execution of ECL‘PS®. In particular, one cannot build such terms asynchronously
while ECL!PS® is running, for example this precludes building terms from within a signal
handler unless it can make sure that ECL'PS® has yielded when it is running.

3.1.3 Building atomic ECL'PS® terms

It is possible to simply cast from a number of simple C++ types to build an EC_word In
addition, functions exist for creating new variables, and for the nil which terminates ECL*PS®
lists. In C++ you can just cast.

/* making simple terms in C++ */
EC_word w;

EC_atom hardback('hardback") ;

= (EC_word) "Swift";

= (EC_word) hardback;

= (EC_word) 1.002e-7;

= (EC_word) 12345;

= (EC_word) nil();

= (EC_word) newvar();

= =5 £ 8 5 5

/* ECLiPSe equivalent code */
P1 = "Swift",

P2 = hardback,
P3 = 1.002e-7,
P4 = 12345,
Ps = [1,

P6 =

-3

3.1.4 Building ECL'PS® lists

The 1ist(head,tail) function builds a list out of two terms. Well formed lists have lists as
their tail term and a nil (”[]”) at the end, or a variable at the end for difference lists.

/* making the list [1, "b", 3.0] in C++ */
EC_word w = list(1, list("b", 1ist(3.0, nil())));

The following example shows how you can write functions to build variable length lists.

10

/* function to build a list [n,n+1,n+2,..... ,m-1,m] */
EC_word fromto(int n, int m)

{
EC_word tail = nil();
for(int i =m ; i >= n ; i--)
tail = 1list(i,tail);
return tail;
}

The list is constructed starting from the end, so at all points during its construction you have
a valid term. The interface is designed to make it hard to construct terms with uninitialised
sub-terms, which is what you would need if you were to construct the list starting with the
first elements.

3.1.5 Building ECLPS® structures

The term(functor,args..) function is used to build ECL!PS® structures. A number of
different functions each with a different number of arguments is defined so as not to disable
C++ casting which would be the case if we defined a function with variable arguments.

/* making s(1,2,3) in C++ */
EC_functor s_3("s",3);
EC_word w = term(s_3,1,2,3);

The above interface is convenient for terms with small fixed arities, for much larger terms an
array based interface is provided.

/* making s(1,2,..,n-1,n) */
EC_word args[n];
for(int i=0 ; i<n ; i++)
args[i] = i+1;
EC_word w = term(EC_functor("s",n),args);

3.2 Converting ECL'PS° data to C data

There are several aspects to examining the contents of a term. These include decomposing
compound terms such as lists and structures, converting simple terms to C data types and
testing the types of terms.

The functions for decomposing and converting check that the type is appropriate. If it is they
return EC_succeed if not they return a negative error code.

3.2.1 Converting simple ECL'PS® terms to C data types

To convert from an ECL'PS® term to a C type you first have to declare a variable with that
type. For fixed size data types (you can convert to double, long and dident fixed size data
types) you are responsible for allocating the memory. For strings you declare a char* variable
and on conversion it will point to the internal ECL‘PS® string.

11

In the following example we see how one can try to convert to different types. Of course
normally you will know what type you are expecting so only one of these functions need be

called.

EC_word term;

double r;

long i;

EC_atom did;

char *s;

if (EC_succeed == term.is_double(&d))
cout << d << "\n";

else if (EC_succeed == term.is_long(&i))
cout << i << "\n";

else if (EC_succeed == term.is_atom(&did))
cout << did.Name() << "\n";

else if (EC_succeed == term.is_string(&s))
cout << s << "\n";

else
cout << '"not a simple type\n";

The term is converted by the function which returns EC_success. The functions that fail to
convert will return a negative error number.
Care has to be taken with strings, these pointers point to the internal ECL!PS® string which
may move or be garbage collected during an ECL'PS® execution. As a result if a string is to
be kept permanently one should copy it first.

3.2.2 Decomposing ECL'PS° terms

The function ec_get_arg(index,term,&subterm) is used to get the index’th subterm of a
structure. The index varies from 1 to arity of term. A list can also be decomposed this way,
where the head is at index 1 and the tail at index 2.

Below we see how we would write a function to find the nth element of a list.

int nth(const int n,const EC_word list, EC_word& el)

{
EC_word tail = list;
for (int i=1, i<n, i++)
if (EC_fail == tail.arg(2,tail))
return EC_fail;
return tail.arg(l,el);
}

The above function actually is not limited to lists but could work on any nested structure.

3.3 Referring to ECL'PS® terms

The terms constructed so far (as EC-words) have been volatile, that is they do not survive
an ECL'PS® execution (due to eg. garbage collection), It is possible to create safe terms that

12

have been registered with the ECL'PS® engine and which do survive execution. The EC_ref
and EC_refs classes are provided for this purpose. EC_refs are vectors of safe terms.
When you declare an EC_ref it will contain free variables.

EC_ref X; /% declare one free variable */
EC_refs Tasks(10); /* declare 10 free variables */

EC_refs work like logical variables. When ECL'PS® fails during search they are reset to old
values. They are always guaranteed to refer to something i.e. they never contain dangling
references. If ECL'PS® backtracks to a point in the execution older than the point at which
the references were created, they return to being free variables, or take on their initial values.
It is possible to declare references, giving them an initialiser but this must be an atomic type
that fits into a single word. That restricts you to atoms, integers and nil.

You can freely assign between an EC_ref and a EC_word.

One point to take care of is that assigning such a variable is not like unification since assign-
ment cannot fail. It just overwrites the old value. Assignment is very similar to the setarg/3
built-in in the ECL'PS® language.

3.4 Passing generic C or C++ data to ECLPS*

It is possible to include any C or C++ data in an ECL'PS® term. To do this it is wrapped into
a handle to tell ECLPS® that this is external data. You also have to supply a method table,
which is a set of functions that are called when ECL‘PS® wants to make common operations
that it assumes can be done on any data (eg. comparing, printing).

3.4.1 Wrapping and unwrapping external data in an ECL'PS® term

To create an ECL'PS® wrapper for a C/C++ object, the function handle() is used. It takes
a pointer to any C or C++ data, and a pointer to a suitable method table (t_ext_type
structure) and creates an ECL‘PS® handle term which refers to them. Method tables for the
common case of arrays of char, long or double are predefined. For example a handle for a
double array is made like this

double my_array[5] = {1.1, 2.2, 3.3, 4.4, 5.5};
EC_word w = handle(&ec_xt_double_arr, my_array);

where ec_xt_double_arr is a predefined method table for arrays of doubles. To convert
back from an ECL'PS® term is_handle() is used. The method table passed in indicates the
sort of data you expect to get. If the ECL*PS® handle contains the wrong sort, the function

returns .TYPE_ERROR:

if ((EC_succeed == w.is_handle(&ec_xt_double_arr, &obj))
obj->my_method();

else
cerr << '"unexpected type\n";

13

3.4.2 The method table

Apart from the predefined method tables ec_xt_double_arr, ec_xt_long_arr and ec_xt_char_arr,
new ones can easily be defined. The address of the table is used as a type identifier, so
when you get an external object back from ECL'PS® you can check its type to determine the
kinds of operations you can do on it. You can choose not to implement one or more of these
functions, by leaving a null pointer ((void*)O0) in its field.

typedef void *t_ext_ptr;

typedef struct {

void (xfree) (t_ext_ptr obj);

t_ext_ptr (*copy) (t_ext_ptr obj);

void (*mark_dids) (t_ext_ptr obj);

int (*string_size) (t_ext_ptr obj, int quoted);

int (*to_string) (t_ext_ptr obj, char *buf, int quoted);
int (*equal) (t_ext_ptr objl, t_ext_ptr obj2);
t_ext_ptr (*remote_copy) (t_ext_ptr obj);

EC_word (*get) (t_ext_ptr obj, int idx);

int (*set) (t_ext_ptr obj, int idx, EC_word data);

} t_ext_type;

free(t_ext_ptr obj) This is called by ECL‘PS® if it loses a reference to the external data.
This could happen if the ECL'PS® execution were to fail to a point before the external
object was created, or if a permanent copy was explicitly removed with built-ins like
erase_array/1 or abolish_record/1. Note that an invocation of this function only
means that one reference has been deleted (while the copy function indicates that a
reference is added).

copy(t_ext_ptr obj) This is called by ECL‘PS® when it wants to make a copy of an object.
This happens when calling ECL'PS® built-ins like setval/2 or recordz/2 which make
permanent copies of data. The return value is the copy. If no copy-method is specified,
these operations will not be possible with terms that contain an object of this type.
A possible implementation is to return a pointer to the original and e.g. increment a
reference counter (and decrement the counter in the free-method correspondingly).

mark_dids(t_ext_ptr obj) This is called during dictionary garbage collection. If an exter-
nal object contains references to the dictionary (dident) then it needs to mark these
as referenced.

string_size(t_ext_ptr obj, int quoted)

to_string(t_ext_ptr obj,char *buf, int quoted) When ECL‘PS® wants to print an exter-
nal object it calls string_size() to get an estimate of how large the string would be
that represents it. This is used by ECL‘PS® to allocate a buffer. The string representa-
tion must be guaranteed to fit in the buffer.

Finally the to_string() function is called. This should write the string representation
of the object into the buffer.

14

equal(t_ext_ptr objl, t_ext_ptr obj2) This is called when two external objects are unified
or compared. Prolog views the external object as a ground, atomic element.

remote_copy(t_ext_ptr obj) This is called by parallel ECL'PS® when it needs to make a
copy of an object in another worker. If the object is in shared memory, this method
can be the same as the copy method.

get(t_ext_ptr obj, int idx) Returns the value of a field of the C4++ object. This methods
gets invoked when the ECL'PS® predicate xget/3 is called. The mapping of index
values to fields is defined by the get/set-method pair.

set(t_ext_ptr obj, int idx, EC_word data) Set the value of a field of the C++ object.
This methods gets invoked when the ECL'PS® predicate xset /3 is called. The mapping
of index values to fields is defined by the get/set-method pair.

Example of the simplest possible user-defined method table:

t_ext_type my_type = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
my_struct data_in;

// creating a handle for data_in
EC_word w = handle(&my_type, &data_in);

// checking a handle and extracting the data pointer
my_struct *data_out;
if ((EC_succeed == w.is_handle(&my_type, &data_out))
data_out->my_method () ;
else
cerr << '"unexpected type\n";

15

16

Chapter 4

External Predicates in C and C++

4.1 Coding External Predicates

External Predicates are C/C++ functions that can be called like predicates from ECL/PSe.
Two following extra interface functions are provided for this purpose:

EC_word EC_arg(int i) returns the i’th argument of the predicate call.

pword ec_arg(int i)
same for C.

int unify(EC_word, EC_word)
unify two pwords. The return code indicates success or failure. Note however, that if
attributed variables are involved, their handlers have not been invoked yet (this happens
after the external predicate returns).

int EC_word::unify(EC_word)
same as method.

int ec_unify(pword, pword)
same for C.

Apart from that, all functions for constructing, testing and decomposing ECL'PS® data can
be used in writing the external predicate (see chapter 3). Here are two examples working
with lists, the first one constructing a list in C:

#include "eclipse.h"
int
p_string_to_list() /* string_to_list(+String, -List) */
{
pword 1list;
char *s;
long len;
int res;

res = ec_get_string length(ec_arg(l), &s, &len);
if (res != PSUCCEED) return res;

17

list = ec_nil(); /* build the list backwards */
while (len--)
list = ec_list(ec_long(s[len]), list);

return ec_unify(ec_arg(2), list);

}

The next example uses an input list of integers and sums up the numbers. It is written in

C++:

#include "eclipseclass.h"
extern "C" int
p_sumlist()
{
int res;
long x, sum = O;
EC_word list(EC_arg(1));
EC_word car,cdr;

for (; list.is_list(car,cdr) == EC_succeed; list = cdr)
{
res = car.is_long(&x);
if (res '= EC_succeed) return res;
sum += Xx;
¥
res = list.is_nil();
if (res != EC_succeed) return res;
return unify(EC_arg(2), EC_word(sum));
}

The source code of these examples can be found in directory doc/examples within the
ECL*PS® installation.

4.2 Compiling and loading

It is strongly recommended to copy the makefile ”Makefile.external” provided in your instal-
lation directory under lib/$ARCH and adapt it for your purposes. If the makefile is not used,
the command to compile a C source with ECL*PS® library calls looks something like this:

h cc -G -c -I/usr/local/eclipse/include/sparc_sunosb
-0 eg_externals.so eg_externals.c

If the external is to be used in a standalone ECL'PS®, it is possible to dynamically load it
using the load /1 predicate:

load("eg_externals.so")
On older UNIX platforms without dynamic loading, the following method may work. Compile

the source using

18

h cc -c -I/usr/local/eclipse/include/sparc_sunosb eg_externals.c
and load it with a command like
load("eg_externals.o -1g -1m")

The details may vary depending on what compiler and operating system you use. Refer to
the Makefile.external for details.

Once the object file containing the C function has been loaded into ECL!PS®, the link between
the function and a predicate name is made with external/2

external (sumlist/2, p_sumlist)

The new predicate can now be called like other predicates. Note that the external/2 decla-
ration must precede any call to the declared predicate, otherwise the ECL'PS® compiler will
issue an inconsistent redefinition error. Alternatively, the external/1 forward declaration
can be used to prevent this.

4.3 Restrictions and Recommendations

It is neither supported nor recommended practice to call ec_resume() from within an external
predicate, because this would invariably lead to programs which are hard to understand and
to get right.

Currently, it is also not possible to post goals from within an external predicate, but that is
a sensible programming style and will be supported in forthcoming releases. Posting events
however is already possible now.

19

20

Chapter 5

Embedding into Tcl/Tk

This chapter describes how to use ECL*PS® from within a Tcl host program. Tel/Tk is a cross-
platform toolkit for the development of graphical user interfaces. The facilities described here
make it possible to implement ECL!PS® applications with platform-independent graphical
user interfaces. The interface is similar in spirit to the ECL'PS® embedding interfaces for
other languages.

The tkeclipse development environment is entirely implemented using the facilities described
in this chapter.

5.1 Loading the interface

The ECL'PS® interface is provided as a Tcl-package called eclipse, and can be loaded as
follows:

lappend auto_path "/location/of/my/eclipse/lib_tcl"
package require eclipse

It might also be necessary to provide information about where the DLLs or shared library files
can be found. On Unix systems this is done by setting the LD_LIBRARY _PATH environment
variable, e.g.

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/location/of/my/eclipse/lib/sparc_sunosb

5.2 Initialising the ECL'PS® Subsystem

These are the Tcl commands needed to initialize an embedded ECL{PSE.

ec_set_option option_name option_value
Set the value of an initialisation option for ECL'PS®. This must be done before invoking
ec_init. The available option_names are: localsize, globalsize, privatesize, sharedsize,
default_module, eclipsedir, io. See Chapter A for their meaning.

ec_init

Initialise the ECLPS® engine. This is required before any other commands of this
interface (except ec_set_option) can be used.

21

Example Tel code for initialising ECL'PS®:

lappend auto_path "/location/of/my/eclipse/lib_tcl"
package require eclipse

#ec_set_option io 0; # input/output/error via tty (for testing)
ec_set_option io 2; # input/output/error via queues (default)
ec_init

Apart from the basic functionality in package eclipse which takes care of linking Tcl to
ECL!PS®, there is a package eclipse_tools containing Tk interfaces to ECL!PS® facilities
like debugging and development support. This package should be used when developing
Tcl/Tk/ECL'PS® applications. To add these tools to your application, load the package and
add the tools menu to your application’s menu bar. Your code should then follow contain the
following pattern:

package require eclipse
package require eclipse_tools

menu .mbar
ec_init

ec_tools_init .mbar.tools

See also the examples in the lib_tcl directory of the ECL'PS® installation.

5.3 Passing Goals and Control to ECL'PS¢

The control flow between Tcl and ECL'PS® is conceptually thread-based. An ECL'PS® goal
is executed by first posting it and then transferring control via the ec_resume command.
The related commands are the following:

ec_post_goal goal ?format?
post a goal that will be executed when ECL'PS® is resumed. If no format argument
is given, the goal is taken to be a string in ECL‘PS® syntax. Note that (unlike with
the C/C++ interface) it is not possible to retrieve any variable bindings from ECL'PS®
after successful execution of the goal. To pass information from ECL'PS® to Tcl, use
queue streams as described later on. Example:

ec_post_goal {go("hello",27)}

If a format argument is provided, the ECL!PS® goal is constructed from goal data and
format, according to the conversion rules explained in section 5.6. Example:

ec_post_goal {go hello 27} (SI)

Posting several goals is the same as posting the conjunction of these goals. Note that
simple, deterministic goals can be executed independently of the posted goals using the
ec_rpc command (see below).

22

ec_post_event eveni_name
Post an event to the ECL'PS® engine. This will lead to the execution of the correspond-
ing event handler once the ECL'PS® execution is resumed. See also event/1 and the
User Manual chapter on event handling for more information. This mechanism is mainly
recommended for asynchronous posting of events, e.g. from within signal handlers or
to abort execution. Otherwise it is more convenient to raise an event by writing into
an event-raising queue stream (see section 5.5.2).

ec_resume “async?
resume execution of the ECL'PS® engine: All posted events and goals will be executed.
The return value will be "success” if the posted goals succeed, "fail” if the goals fail, and
”yield” if control was transferred because of a yield/2 predicate call in the ECL'PS®
code. No parameters can be passed.

If the async parameter is 1 (default 0), the ECL'PS® execution is resumed in a separate
thread, provided this is supported by the operating system. The effect of this is that
Tecl/Tk events can still be handled while ECL'PS® is running, so the GUI does not freeze
during computation. However, only one ECL'PS® thread can be running at any time,
so before doing another call to ec_resume, ec_handle_events or ec_rpc one should
use ec_running to check whether there is not a thread still running.

ec_handle_events
resume execution of the ECL'PS® engine for the purpose of event handling only. All
events that have been posted via ec_post_event or raised by writing into event-raising
queues will be handled (in an unspecified order). The return value will always be
success”, except when an asynchronous ECL'PS® thread is still running, in which case
the return value is "running” and it is undefined whether the events may have been
handled by that thread or not.

ec_running
checks whether an asynchronous ECL*PS® thread is still running. If that is the case,
the only interface function that can be invoked realiably is ec_post_event.

ec_rpc goal ?format?
Remote ECL!PS® predicate call. It calls goal in the default module. The goal should
be simple in the sense that it can only succeed, fail or throw. It must not call yield /2.
Any choicepoints the goal leaves will be discarded.

Unlike ec_resume, calls to ec_rpc can be nested and can be used from within Tcl
queue event handlers.

If no format argument is given, the goal is assumed to be in ECL‘PS® syntax. If a
format argument is provided, the ECL'PS® goal is constructed from goal and format,
according to the conversion rules explained in section 5.6.

On success, ec_rpe returns the (possibly more instantiated) goal as a Tcl data structure,
otherwise "fail” or "throw” respectively.

23

5.4 Communication via Queues

The most flexible way of passing data between ECL'PS® and Tcl is via the I/O facilities of
the two languages, ie. via ECL'PS® queue streams which can be connected to Tel channels.
To create a communication channel between ECL!PS® and Tecl, first create an ECL!PS® queue
stream using ECL'PS®’s open/3 or open/4 predicate, then connect that stream to a Tecl
channel by invoking the ec_queue_connect command from within Tecl code.

ec_queue_connect eclipse_stream_name mode ?command?

Creates a Tcl channel and connects it to the given ECL'PS® stream (eclipse_stream_name
can be a symbolic name or the ECL'PS® stream number). The mode argument is either
r or w, indicating a read or write channel. The procedure returns a channel identifier
for use in commands like puts, read, ec_read_exdr, ec_write_exdr or close. The
channel identifier is of the form ec_queueX, where X is the ECL'PS® stream number of
the queue. This identifier can either be stored in a variable or reconstructed using the
Tcl expression

ec_queue[ec_stream_nr eclipse_stream_name]

If a command argument is provided, this command is set as the handler to be called
when data needs to be flushed or read from the channel (see ec_set_queue_handler).

ec_stream_nr eclipse_stream_name
This command returns the ECL'PS® stream number given a symbolic stream name (this
is the same operation that the ECL'PS® built-in get_stream/2 performs).

ec_set_queue_handler eclipse_stream_name mode command

Sets command as the Tcl-handler to be called when the specified queue needs to be
serviced from the Tcl side. Unlike ec_queue_connect, this command does not create
a Tcl channel. The mode argument is either r or w, indicating whether the Tcl end of
the queue is readable or writable. For readable queues, the handler is invoked when the
ECL'PS® side flushes the queue. The Tcl-handler is expected to read and empty the
quene. For writable queues, the handler is invoked when the ECL!PS® side reads from
the empty queue. The Tcl-handler is expected to write data into the queue. In any
case, the handler command will be invoked with the ECLPS® stream number appended
as an extra argument.

5.4.1 From ECLPS® to Tcl

To create a queue from ECL‘PS® to Tecl, first create a write-queue in ECL‘PS®, then use the
queue name to open this queue as a Tcl channel in read mode, e.g.

ECLiPSe: open(queue(""), write, my_out_queue).
Tcl: set my_in_channel [ec_queue_connect my_out_queue r]

Now the queue can be used, e.g. by writing into it with ECL'PS®’s write/2 builtin, and
reading using Tcl’s read command:

24

ECLiPSe: write(my_out_queue, hello).
Tcl: set result [read $my_in_channel 5]

The disadvantage of using these low-level primitives is that for reading one must know exactly
how many bytes to read. It is therefore recommended to use the EXDR (ECL'PS® external
data representation, see section 5.6) format for communication. This allows to send and

receive structured and typed data. The primitives to do that are write_exdr/2 on the
ECL*PS® side and ec_read_exdr (section 5.6) on the Tcl side:

ECLiPSe: write_exdr(my_out_queue, foo(bar,3)).
Tcl: set result [ec_read_exdr $my_in_channell]

In the example, the Tcl result will be the list {foo bar 3}. For details about the mapping
see section 5.6.

5.4.2 From Tcl to ECL'PS®

To create a queue from Tcl to ECL!PS®, first create a read-queue in ECL'PS®, then use the
queue name to open this queue as a Tcl channel in write mode:

ECLiPSe: open(queue(""), read, my_in_queue)
Tcl: set my_out_channel [ec_queue_connect my_in_queue w]

Now the queue can be used, e.g. by writing into it with Tcl’s puts command and by reading
using ECL*PS®’s read_string/4 builtin:

Tel: puts $my_out_channel hello
ECLiPSe: read_string(my_in_queue, "", 5, Result).

The disadvantage of using these low-level primitives is that for reading one must know exactly
how many bytes to read, or define a delimiter character. It is therefore recommended to use
the EXDR (ECL'PS® external data representation, see section 5.6) format for communication.
This allows to send and receive structured and typed data. The primitives to do that are
ec_read_exdr (section 5.6) on the Tcl side and read_exdr/2 on the ECL‘PS® side:

Tcl: ec_write_exdr $my_out_channel {foo bar 3} (SI)
ECLiPSe: read_exdr(my_in_queue, Result).

In the example, the ECL'PS® result will be the term foo("bar",3). For details about the
mapping see section 5.6.

5.5 Attaching Handlers to Queues

5.5.1 ECLPS® to Tcl

In order to handle ECL'PS® I/0 on queues more conveniently, it is possible to associate a Tcl
handler with every queue. These handlers can be invoked automatically whenever ECL!PS®
flushes a write-queue or reads from an empty read-queue.

For that purpose, the queue must be created using open/4 with the yield-option. The
following example creates a queue that can be written from the ECL!PS® side, and whose
contents, if flushed, is automatically displayed in a text widget:

25

ECLiPSe: open(queue(""), write, my_out_queue, [yield(on)]).
Tcl: pack [text .tout]
ec_queue_connect my_out_queue r {ec_stream_to_window "" .tout}

Assume that ECLPS® is then resumed, writes to the queue and flushes it. This will briefly
pass control back to Tcl, the ec_stream_to_window-handler will be executed (with the
stream number added to its arguments), afterwards control is passed back to ECL'PS®. Note
that ec_stream_to_window is a predefined handler which reads the whole queue contents
and displays it in the given text widget.

Similarly, an ECL'PS® input queue could be configured as follows:

ECLiPSe: open(queue(""), read, my_in_queue, [yield(on)]).
Tcl: ec_queue_connect my_in_queue w \
{ec_stream_input_popup "Type here:"}

Assume that ECL‘PS® is then resumed and reads from my_in_queue. This will briefly yield
control back to Tcl, the ec_stream_input_popup-handler will be executed, afterwards con-

trol is passed back to ECL!PS®.
Three predefined handlers are provided:

ec_stream_to_window tag text_widget stream_nr
Inserts all the current contents of the specified queue stream at the end of the existing
text_widget, using tag.

ec_stream_output_popup label_text stream_nr
Pops up a window displaying the label_text, a text field displaying the contents of the
specified queue stream, and an ok-button for closing.

ec_stream_input_popup label_text stream_nr
Pops up a window displaying the label_text, an input field and an ok-button. The text
typed into the input field will be written into the specified queue stream.

When ECL!PS® is initialised with the default options, its output and error streams are
queues and have the ec_stream_output_popup handler associated. Similarly, the input
stream is a queue with the ec_stream_input_popup handler attached. These handler set-
tings may be changed by the user’s Tcl code.

5.5.2 Tcl to ECL'PS®

A queue whose read-end is on the ECL!PS®-side can be configured to raise an ECL'PS®-event
(see event/1 and the User Manual chapter on event handling) whenever the Tcl program
writes something into the previously empty queue. To allow that, the queue must have been
created using open/4 with the event-option, e.g.!

open(queue(""), read, my_queue, [event(my_queue_event)])

Assuming something was written into the queue from within Tcl code, the ECL!PS® event
will be handled as soon as ECL'PS® is resumed or ec_handle_events (a restricted form of
ec_resume) is invoked.

Note that it is also possible to raise ECL'PS® events which are not linked to queues, using
ec_post_event.

1t is possible to use the same name for both the queue stream itself and the event. This simplifies the
event handler code because it receives that name as an argument.

26

5.6 Type conversion between Tcl and ECL'PS¢

EXDR (ECLiPSe External Data Representation, see also chapter 7) is a data encoding that
allows to represent a significant subset of the ECLPS® data types. The following Tcl primi-
tives are provided to handle EXDR-format:

ec_write_exdr channel data ?format?
write an EXDR-term onto the given channel. The term is constructed using the data
argument and the additional type information provided in the format argument. If no
format is specified, it defaults to S (string).

ec_read_exdr channel
reads an EXDR-term from the given channel and returns it as a Tcl data structure,
according to its type. Note that, since Tcl does not have a strong type system, some
typing information can get lost in this process (e.g. string vs. atom).

ec_tcl2exdr data ?format?
This is the low-level primitive to encode the given data and type information in format
to an EXDR-string which is suitable for sending over communication links to ECL'PS®
or other agents which can decode EXDR-format. If no format is specified, it defaults
to S (string).

ec_exdr2tcl exdr_string
This is the low-level primitive to decode an EXDR-string. It returns a Tcl data struc-
ture, according to the type information encoded in the EXDR-string. Note that, since
Tecl does not have a strong type system, some typing information can get lost in this
process (e.g. string vs. atom).

Since Tcl is an untyped language, all commands which create EXDR terms accept, in addition
to the data, an optional format argument which allows all EXDR data types to be specified.
The syntax is as follows:

To create EXDR type wuse <format> data required

String S string

Integer I integer

Double D double

List [<formats>] fixed length list

List [<formats>*] list

Struct (<formats>) fixed list, first elem functor name
Struct (<formats>*) list, first elem functor name
Anonymous Variable - string 77

Here are some examples that show which Tcl data/format pair corresponds to which ECL!PS®
term (the curly brackets are just Tcl quotes and not part of the format string):

Tcl data Tcl format Eclipse term
hello S "hello"
hello O hello

27

123
123

123

123

{a 3 4.5}

{a 3 4.5}

{1 2 3 4}

{f 1 2 3}

{is _ {- 1 2}}

S
I

D

O
{[sID]}

S

{[I%]}
{(I*)}
{C_aIny

" 123“
123
123.0
1123?
["a", 3, 4.5]
"a 3 4.5"
[1, 2, 3, 4]
£(1,2,3)
is 1-2

28

Chapter 6

Embedding into Visual Basic

This is a set of Visual Basic classes built around the scripting language interface of ECL'PS®.
They are provided in source form in directory doc/examples/vb within the installation. The
interface is similar in spirit to the ECL'PS® embedding interfaces for other languages.

6.1 The EclipseThread Project

This contains the classes which form the interface to eclipse.

class EclipseClass
An object of this class is a thread running eclipse code. Only one such object may exist
in a process.

class EclipseStreams
A collection of queue streams for communicating with ECL'PS°®.

class EclipseStream
A stream of on which data can be sent to or from ECL*PS°®.

6.2 Public Enumerations

Enum EC_Status
Symbolic names for the status values returned by goal execution.

Enum EclipseStreamMode
Symbolic names for the direction in which data flows within an EclipseStream.

Enum EC_ERROR
Symbolic names for error conditions in the interface.

6.3 The EclipseClass class

An object of this class is an entity running eclipse code. Only one such object may exist in a
process.

The class provides methods to execute goals and to access queue streams to communicate
with the running goal.

29

Function Init() As Long
Initialise the ECL'PS® engine. This is required before any other functions of this inter-
face can be used.

Sub Send(EventName As String)
Post an event to the ECL'PS® engine. This will lead to the execution of the correspond-
ing event handler See also event/1 and the User Manual chapter on event handling for
more information. The event name is given as a string. Note that if ECL‘PS® was not
running, the event stays in its queue until it is resumed.

Function Post(Goal As String) As EC_Status
Post a goal (constraint) that will be executed when ECL'PS®is resumed. The goal is
given as a string in ECL'PS® syntax.

Function ResumeAsync() As EC_Status
Resume execution of the ECLPS® engine: All posted goals will be executed. The return
value will be *Success’ if the goals succeed ’Fail’ is returned if the goals fail, and ’Yield’
if control was yielded because of a yield/2 predicate call in the ECL'PS® code. No
parameters can be passed.

The function returns when the posted goals have finished executing. Since a separate
thread is actually executing the goals though, events may be received by the Visual
Basic program during the execution of this function. It is an error to call this function
recursively while handling one of these events.

Function HandleEvents() As EC_Status
Resume execution of the ECL'PS® engine, but do not let it execute any posted goals.
Only ECL'PS® events will be handled. Sources of such events are the Post() Function
or writing to an event-raising ECL'PS® queue stream. The function returns when the
events have all been handled by ECL‘PS® and the return value is ’Success’. It is an
error to call this function while a ResumeAsync() is still active.

Sub RPC(Goal As Variant, Response As Variant)
ECL'PS® Remote Predicate Call. An ECL'PS® goal is constructed from Goal according
to the conversion rules explained in chapter 7. Goal is called in the default module.
The Goal should be simple in the sense that it can only succeed, fail or throw. It must
not call yield/2. Any choicepoints the goal leaves will be discarded. On success, the
(possibly more instantiated) Goal is returned as Response, otherwise ”fail” or ”throw”
respectively.

Unlike ResumeAsync, calls to RPC can be nested and can be used from within VB
Stream event handlers.

Property Let EclipseDir(Dir As String)
The directory where ECL*PS® is installed. See Chapter A.

Property Let Module(Mod As String)
The default module for calling goals. See Chapter A.

Property Let GlobalSize(Size As Long)
The maximum size of the ECL'PS® global/trail stack in bytes. See Chapter A.

30

Property Let LocalSize(Size As Long)
The maximum size of the ECL'PS® local/control stack in bytes. See Chapter A.

Property Let SharedSize(Size As Long)
The maximum size of the ECL'PS® shared heap. See Chapter A.

Property Let PrivateSize(Size As Long)
The maximum size of the ECL'PS® private heap. See Chapter A.

Property Get Streams
The EclipseStreams collection associated with this EclipseClass.

6.4 The EclipseStreams Collection Class

This is a collection of EclipseStream objects. The keys to this collection are the symbolic
name of ECL*PS® streams. Initially it will contain the ’input’ ’output’ and ’error’ streams.

Function Add(Key As String, Mode As EclipseStreamMode) As EclipseStream
Create a new EclipseStream. ’Key’ must be the symbolic name of an existing ECL'PS®
queue stream. These are created using the open/3 or open/4 built-in. If 'Mode’ is
"FromEclipse’ the ECL‘PS® stream must have been opened in ’write’ mode. If it is
'ToEclipse’ the ECL'PS®stream must have been opened in read mode.

Property Get Item(vntIndexKey As Variant) As EclipseStream
Used to retrieve streams from the collection. ’vntIndexKey’ can be either the symbolic
steam name or an integer index into the collection.

Property Get Count() As Long
The number of items in the collection

Sub Remove(vntIndexKey As Variant)
Remove an EclipseStream from the collection. (This does not close the corresponding
ECL'PS® stream though).

6.5 The EclipseStream Class
This class allows exchanging data with an embedded ECL'PS® via queue streams created by
the ECL'PS® code.

Event Flush
Raised whenever the ECL'PS® program flushes this stream.

Property Get Key() As String
The symbolic name of this stream

Property Get Mode() As EclipseStreamMode
The direction in which data is sent over this EclipseStream

Property Get/Let Prompt() As String
A prompt string. This appears in an input box that pops up when the ECL*PS® program
attempts to read from a queue stream if no data is available.

31

Sub StreamWrite(Data As String)
Send ’Data’ over this stream.

Function Read(l As Long) As String
Receives at most ’I’ characters from the EclipseStream. No flushing is necessary.

Function NewData() As String
Receives all available characters from the EclipseStream that has been written on the
stream since the last flush.

Sub WriteExdr(Data As Variant)
Writes the given data structure onto the stream in EXDR-encoded form. See chapter 7
for details about EXDR format.

Sub ReadExdr(Data As Variant)
Reads one EXDR-encoded term from the stream and returns its VB-representation in
Data. See chapter 7 for details about EXDR format.

32

Chapter 7

EXDR Data Interchange Format

We have defined a data interchange format called EXDR for the communication between
ECL!PS® and other languages. The data types available in this format are integer, double,
string, list, nil, structure and anonymous variable. This is intended to be the subset of
ECL!PS® types that has a meaningful mapping to many other languages’ data types. The
mapping onto different languages is as follows:

EXDR type ECLiPSe type TCL type VB type

Integer integer int Long

e.g. 123 123 123

Double real double Double

e.g. 12.3 12.3 12.3

String string string String

e.g. ”abc” abc ”abc”

List /2 list Collection of Variant
e.g. [a,b,c] {abc}

Nil []/0 empty string Empty Collection of Variant
g [] 0

Struct compound list Array of Variant

e.g. foo(bar,3) {foo bar 3}

Variable variable string Empty Variant

e.g. _ _ Empty

The EXDR Integer data type is a 32-bit integer, therefore bigger ECL'PS® integers cannot
be represented. The EXDR Variable type only allows singleton, anonymous variables, which
means that it is not possible to construct a term where a variable occurs in several places
simultaneously. The main use of these variables is as placeholders for result arguments in
remote procedure calls.

7.1 ECLPS° primitives to read/write EXDR terms

The ECL‘PS® predicates to create and interpret EXDR-representation read from and write
directly to ECL*PS® streams. This means that EXDR-format can be used readily to commu-
nicate via files, pipes, sockets, queues etc.

33

write_exdr(+Stream, +Term)
This predicate writes terms in exdr format. The type of the generated EXDR-term is
the type resulting from the "natural” mapping of the Eclipse terms. Atoms are written
as structures of arity 0 (not as strings). Note that all information about variable sharing,
variable names and variable attributes is lost in the EXDR representation.

read_exdr(+4Stream, -Term)
This predicate reads exdr format and constructs a corresponding Eclipse term.

Please refer to chapter 5 for the Tcl primitives, and to chapter 6 for the VB primitives for
manipulating EXDR terms.

7.2 Serialized representation of EXDR terms

The following is the specification of what is actually send over the communication channels.

This is all the information needed to create new language mappings for EXDR terms. This
definition corresponds to EXDR_VERION 1:

Term 1= >V’ Version (Integer|Double|String|List
INil|Struct|Variable)

Integer 1= ’I’ XDR_int

Double 1i= ’D’ XDR_double

String 1i= ’S’ Length <byte>*

List 1= ’[’ Term (List|Nil)

Nil 1=]

Struct 1= ’F’ Arity String Termk

Variable 1i= ’_?

Length 1= XDR_int // >=0

Arity L XDR_int // >=0

Version 1= <byte>

XDR_int 1= <4 bytes, msb first>

XDR_double 1= <8 bytes, ieee double, exponent first>

34

Appendix A

Parameters for Initialising an

ECL'PS¢ engine

It is possible to parametrise the initialisation of the ECL‘PS®engine by calling the functions
ec_set_option_int() and ec_set_option_ptr(). This must be done before initialisation.

Installation directory

ec_set_option_ptr(EC_OPTION_ECLIPSEDIR, "/usr/tom/eclipse");

This can be used to tell an embedded ECL‘PS® where to find it support files. The
default setting is NULL, which means that the location is taken from the registry entry
or from the ECLIPSEDIR environment variable.

Stack Memory Allocation

ec_set_option_int(EC_OPTION_LOCALSIZE, 128%1024%1024);
ec_set_option_int(EC_OPTION_GLOBALSIZE, 128%1024%1024);

The sizes in bytes of the stacks can be varied. They will be rounded to system specific
pagesizes. On machines where initially only virtual memory is reserved rather than allo-
cating real memory (WindowsNT /95, Solaris) they default to very large sizes (128MB),
where real memory or space in the operating system swap file is taken immediately
(SunOS), their default is very small (750KB,250KB).

Heap Memory Allocation

ec_set_option_int(EC_OPTION_PRIVATESIZE, 32%1024%1024);
ec_set_option_int(EC_OPTION_SHAREDSIZE, 64*1024%1024);

The sizes in bytes of the private and shared heaps. Normally these are ignored as the

heaps grow as required.

They are used in the parallel ECL'PS®, since there allocation is done at fixed addresses
and in that case these sizes determine the maximum amount of memory per heap.

35

Panic Function

void my_panic(char * what, char * where);
ec_set_option_ptr(EC_OPTION_PANIC, my_panic);

When ECL'PS® experiences an unrecoverable error, this function is called. By default
a function that prints the panic message and exits is called. After such an error, one
should not call any of the functions in this interface.

Startup Arguments

char *args[] = {“a","b“,“c“}

ec_set_option_int(EC_OPTION_ARGC, 3);
ec_set_option_ptr(EC_OPTION_ARGV, args);

ECL!PS® has two built-in predicates (argc/1 and argv/2) for looking at its command
line arguments. These look at the Argc and Argv fields of the ec_options structure so
this provides a way of passing some initial data to the ECL'PS® engine.

Default Module

ec_set_option_ptr(EC_OPTION_DEFAULT_MODULE, "my_module");

The default module is the module in which goals called from the top-level execute. It
is also the module that goals called from C or C++ execute in. The default setting is

“eclipse”.

I/0O Initialisation

ec_set_option_int(EC_OPTION_IO, MEMORY_IO);

This option controls whether the default I/O streams of ECL'PS® are connected to
stdin/stdout/stderr or to memory queues. The default setting of this option is SHARED _10,
which means the ECL'PS® streams 0,1,2 are connected to stdin/stdout/stderr. In an
embedded application, stdin/stdout/stderr may not be available, or the host application
may want to capture all [/O from ECL'PS®. In this case, use the MEMORY _IO setting,
which creates queue streams for streams 0,1 and 2. These can then be read and written
using ec_queue_read() and ec_queue_write().

Parallel system parameters

36

ec_set_option_int(EC_OPTION_PARALLEL_WORKER, 0);
ec_set_option_int(EC_OPTION_ALLOCATION, ALLOC_PRE);
ec_set_option_ptr(EC_OPTION_MAPFILE, NULL);

The above options are set differently in ECLPS® when it is a worker in a parallel system.
They should not be altered.

37

38

Appendix B

Summary of C+-+ Interface
Functions

Note that apart from the methods and functions described here, all functions from the C
interface which operate on simple types (int, long, char*) can also be used from C++ code.

B.1 Constructing ECL'PS‘ terms in C++

B.1.1 Class EC_atom and EC_functor

The ECL'PS® dictionary provides unique identifiers for name/arity pairs. EC_atoms are
dictionary identifiers with zero arity, EC_functors are dictionary identifiers with non-zero
arity.

EC_atom(char*)
looks up or enters the given string into the ECL*PS® dictionary and returns a unique
atom identifier for it.

char* EC_atom::name()
returns the name string of the given atom identifier.

EC _functor(char*,int)
looks up or enters the given string with arity into the ECL*PS® dictionary and returns
a unique functor identifier for it.

char* EC_functor::name()
returns the name string of the given functor identifier.

int EC_functor::arity()
returns the arity of the given functor identifier.

B.1.2 Class EC_word

The EC_word is the basic type that all ECL'PS® data structures are built from (because within
ECL'PS® typing is dynamic). The following are the functions for constructing ECL*PS® terms
from the fundamental C++ types:

39

EC_word(const char *)
converts a C++ string to an ECL*PS® string. The string is copied.

EC_word(const int, const char *)
converts a C++4 string of given length to an ECL'PS® string. The string is copied and
can contain NUL bytes.

EC_word(const EC_atom)
creates an ECL‘PS® atom from an atom identifier.

EC_word(const long)
converts a C++ long to an ECL/PS® integer.

EC_word(const double)
converts a C++ double to an ECL‘PS® double float.

EC_word(const EC_ref&)
retrieves the ECL'PS® term referenced by the EC_tef (see below).

EC_word term(const EC_functor,const EC_word args| |)

EC_word term(const EC_functor,const EC_word argl, ...)
creates an ECL*PS® compound term from the given components.

EC_word list(const EC_word hd, const EC_word tl)
Construct a single ECL'PS® list cell.

EC_word list(int n, const long*)
Construct an ECL'PS® list of length n from an array of long integers.

EC_word list(int n, const char*)

Construct an ECL'PS® list of length n from an array of chars.

EC_word list(int n, const double*)
Construct an ECL'PS® list of length n from an array of doubles.

EC_word array(int, const double*)
creates an ECL'PS® array (a structure with functor [Jof appropriate arity) of doubles
from the given C++ array. The data is copied.

EC_word matrix(int rows, int cols, const double*)
creates an ECL'PS® array (size rows) of arrays (size cols) of doubles from the given
C++ array. The data is copied.

EC_word handle(const t_ext_type *cl, const t_ext_ptr data)
Construct an ECL’PS® handle for external data, attaching the given method table.

EC_word newvar()
Construct a fresh ECL‘PS® variable.

EC_word nil()
Construct the empty list [].

40

B.2 Decomposing ECL'PS® terms in C++

The following methods type-check an ECL'PS® term and retrieve its contents if it is of the
correct type. The return code is EC_succeed for successful conversion, an error code otherwise.

int

int

int

int

int

int

int

int

int

int

int

EC_word::is_atom(EC_atom *)
checks whether the ECL'PS® pword is an atom, and if so, return its atom identifier.

EC_word::is_string(char **)
checks whether the EC_word is a string (or atom) and converts it to a C++ string.
This string is volatile, ie. it should be copied when it is required to survive resuming of

ECL'PSe.

EC_word::is_string(char **, long *)
checks whether the EC_word is a string (or atom) and converts it to a C++ string.
This string is volatile, ie. it should be copied when it is required to survive resuming of
ECL'PS®. The string’s length is returned in the second argument.

EC_word::is_long(long *)
checks whether the EC_word is a word-sized integer, and if so, returns it as a C++ long.

EC_word::is_double(double *)
checks whether the EC_word is a floating point number, and if so, returns it as an C++

double.

EC_word::is list(EC_word & ,EC_word &)
checks whether the EC_word is a list and if so, returns its head and tail.

EC_word::is list(EC_word& ,EC_word &)
checks whether the EC_word is nil, the empty list.

EC_word::functor(EC_functor *)
checks whether the EC_word is a compound term and if so, returns its functor.

EC_word::arg(const int,EC_word&)
checks whether the EC_word is a compound term and if so, returns its nth argument.

EC_word::arity()
returns the arity of an EC_word if it is a compound term, zero otherwise.

EC_word::is_handle(const t_ext_type *, t_ext_ptr *)
checks whether the EC_word is a handle whose method table matches the given one,
and if so, the data pointer is returned.

B.3 Referring to ECL'PS¢ terms from C++

The data types EC_refs and EC_ref provide a means to have non-volatile references to
ECL'PS® data from within C++ data structures. However, it must be kept in mind that
ECL'PS® data structures are nevertheless subject to backtracking, which means they may
be reset to an earlier status when the search engine requires it. Creating a reference to a

41

data structure does not change that in any way. In particular, when the search engine fails
beyond the state where the reference was set up, the reference disappears and is also reset to
its earlier value.

EC _refs(int n)
create a data structure capable of holding n non-volatile references to ECL'PS® data
items. They are each initialised with a freshly created ECL*PS® variable.

EC _refs(int n,EC_word pw)
create a data structure capable of holding n non-volatile references to ECL'PS® data
items. They are all initialised with the value pw, which must be of a simple type.

~EC _refs()
destroy the ECL'PS® references. It is important that this is done, otherwise the
ECLPS® garbage collector will not be able to free the references data structures, which
may eventually lead to memory overflow.

EC_word EC_refs::operator| |(int 1)
return the ECL*PS® term referred to by the i’th reference.

void EC _refs::set(int i, EC_word new)
assign the term new to the i’th reference. This is a backtrackable operation very similar
to setarg/3.

EC_word list(EC_refs&)

creates an ECL'PS® list containing all the elements of the EC_refs.

EC _ref()
EC_ref(EC_word pw)

~EC_ref()

analogous to the corresponding EC_refs constructors/destructor.

EC _ref& operator=(const EC_word)
assign a value to the EC_ref.

EC_word(const EC_ref&)
retrieves the ECL'PS® term referenced by the EC _ref.

B.4 Passing Data to and from External Predicates in C++

These two functions are only meaningful inside C++ functions that have been called from
ECL*PS® as external predicates.

EC_word EC_arg(int i)
If inside a C4++4 function called from ECLiPSe, this returns the i’th argument of the
call.

42

int unify(EC_word,EC_word)
Unify the two given pwords. Note that, if attributed variables are involved in the
unification, the associated unification handlers as well as subsequent waking will only
happen once control is returned to ECL!PS®.

int EC_word::unify(EC_word)
Similar, but a method of EC_word.

int EC_word::schedule_suspensions(int)
Similar to the schedule_suspensions/2 built-in predicate. Waking will only happen
once control is returned to ECL*PS® and the wake/0 predicate is invoked.

B.5 Initialising and Shutting Down the ECL'PS¢ Subsystem

These are the functions needed to embed ECL!PS® into a C++ main program.

int ec_init()
Initialise the ECL'PS® engine. This is required before any other functions of this inter-
face can be used.

int ec_cleanup()
Shutdown the ECL'PS® engine.

B.6 Passing Control and Data to ECL'PS¢ from C++

These are the functions needed to embed ECLIPS® into C++ code.

void post_goal(const EC_word)

void post_goal(const char *)
post a goal (constraint) that will be executed when ECL'PS®is resumed.

int EC_resume(EC_word FromC, EC_ref& ToC)
int EC_resume(EC_word FromC)

int EC_resume()
resume execution of the ECL‘PS® engine: All posted goals will be executed. The return
value will be EC_succeed if the goals succeed (in this case the ToC argument returns
a cut value that can be used to discard alternative solutions). EC_fail is returned if
the goals fail, and EC_yield if control was yielded because of a yield/2 predicate call in
the ECLIPS® code (in this case, ToC contains the data passed by the first argument of
yield/2). If a writable queue stream with yield-option (see open/4) was flushed, the
return value is PFLUSHIO and ToC contains the associated stream number. If there
was an attempt to read from an empty queue stream with yield-option, the return value
is PWAITIO and ToC contains the associated stream number. Moreover, if the previous

43

EC_resume yielded due to a yield/2 predicate call, The term FromC is passed as input
into the second argument of yield/2 on resuming.

void EC _ref::cut_to()
Should be applied to the ToC cut return value of an EC_resume(). Cut all choicepoints
created by the batch of goals whose execution succeeded.

int post_event(EC_word Name)
Post an event to the ECL’PS® engine. This will lead to the execution of the corre-
sponding event handler once the ECL'PS®execution is resumed. See also event/1 and

the User Manual chapter on event handling for more information. Name should be an
ECL*PS® atom.

44

Appendix C

Summary of C Interface Functions

Note that a self-contained subset of the functions described here uses only integer and string
arguments and is therefore suitable to be used in situations where no complex types can be
passed, e.g. when interfacing to scripting languages.

C.1 Constructing ECL'PS¢ terms in C

All these functions return (volatile) pwords, which can be used as input to other constructor
functions, or which can be stored in (non-volatile) ec_refs.

pword ec_string(const char*)
converts a C string to an ECL*PS® string. The string is copied.

pword ec_length_string(int, const char®)
converts a C string of given length to an ECL*PS® string. The string is copied and can
contain NUL bytes.

pword ec_atom(const dident)
creates an ECL'PS® atom. A dident (dictionary identifier) can be obtained either via
ec_did() or ec_get_atom().

pword ec_long(const long)
converts a C long to an ECL'PS® integer.

pword ec_double(const double)
converts a C double to an ECL!PS® float.

pword ec_term(dident,pword,pword,...)
creates an ECL'PS® term from the given components.

pword ec_term_array(const dident,const pword]| |)
creates an ECL*PS® term from the arguments given in the array.

pword ec_list(const pword,const pword)
creates a single ECL'PS® list cell with the given head (car) and tail (cdr).

pword ec_listofrefs(ec_refs)
creates an ECL'PS® list containing the elements of the ec_refs array.

45

pword ec_listoflong(int, const long*)
creates an ECL*PS® list of integers containing the longs in the given array. The data is
copied.

pword ec_listofchar(int, const char®)
creates an ECL*PS® list of integers containing the chars in the given array. The data is
copied.

pword ec_listofdouble(int, const double*)
creates an ECL‘PS*® list of doubles containing the doubles in the given array. The data
is copied.

pword ec_arrayofdouble(int, const double*)
creates an ECL'PS® array (a structure with functor [Jof appropriate arity) of doubles
from the given C array. The data is copied.

pword ec_matrixofdouble(int rows, int cols, const double*)
creates an ECL'PS® array (size rows) of arrays (size cols) of doubles from the given C
array. The data is copied.

pword ec_handle(const t_ext_type*,const t_ext_ptr)
creates an ECL'PS® handle that refers to the given C data and its method table.

pword ec_newvar()
creates a fresh ECT/PS® variable.

pword ec_nil()
creates an ECL'PS® nil ie. the empty list [].

Auxiliary functions to access the ECL'PS® dictionary.

dident ec_did(char*,int)
looks up or enters the given string with arity into the ECL*PS® dictionary and returns
a unique identifier for it.

char* DidName(dident)
returns the name string of the given dictionary identifier.

int DidArity(dident)
returns the arity of the given dictionary identifier.

C.2 Decomposing ECL'PS‘ terms in C

The following group of functions type-check an ECL'PS® term and retrieve its contents if
it is of the correct type. The return code is PSUCCEED for successful conversion. If a
variable was encountered instead INSTANTIATION_FAULT is returned. Other unexpected
types yield a TYPE_ERROR. Special cases are explained below.

int ec_get_string(const pword,char**)
checks whether the ECL'PS® pword is a string (or atom) and converts it to a C string.
This string is volatile, ie. it should be copied when it is required to survive resuming of

ECL'PSe.

46

int

int

int

int

int

int

int

int

int

int

ec_get_string_length(const pword,char**,long*)
the same as ec_get_string(), but returns also the string’s length. Note that ECL'PS®
strings may contain null characters!

ec_get_atom(const pword,dident*)
checks whether the ECL*PS® pword is an atom, and if so, return its dictionary identifier.

ec_get_long(const pword,long*)
checks whether the ECL*PS® pword is a word-sized integer, and if so, returns it as a C
long.

ec_get_double(const pword,double*)
checks whether the ECL*PS® pword is a floating point number, and if so, returns it as

an C double.

ec_get_nil(const pword)
checks whether the ECL*PS® pword is nil, the empty list.

ec_get_list(const pword,pword*,pword*)
checks whether the ECL*PS® pword is a list, and if so, returns its head and tail. If it is
nil, the return code is PFAIL.

ec_get_functor(pword,dident*)
checks whether the ECL'PS® pword is a structure, and if so, returns the functor.

ec_get_arg(const int n,pword,pword*)
checks whether the ECL*PS® pword is a structure, and if so, returns the n’th argument.
The return code is RANGE_ERROR if the argument index is out of range.

ec_arity(pword)
returns the arity (number of arguments) of an ECL'PS® pword if it is a structure,
otherwise zero.

ec_get_handle(const pword,const t_ext_type*,t_ext_ptr*)
checks whether the ECL'PS® pword is a handle whose method table matches the given
one, and if so, the data pointer is returned.

C.3 Referring to ECL'PS‘ terms from C

The data types ec_refs and ec_ref provide a means to have non-volatile references to ECL'PS®
data from within C data structures. However, it must be kept in mind that ECL'PS® data

structures are nevertheless subject to backtracking, which means they may be reset to an

earlier status when the search engine requires it. Creating a reference to a data structure

does not change that in any way. In particular, when the search engine fails beyond the state

where the reference was set up, the reference disappears and is also reset to its earlier value.

ec_refs ec_refs_create(int n,const pword pw)

create a data structure capable of holding n non-volatile references to ECL'PS® data
items. They are initialised with the value pw, which must be of a simple type.

47

ec_refs ec_refs_create_newvars(int)
like ec_refs_create(), but each item is initialised to a freshly created ECL'PS® variable.

void ec_refs_destroy(ec_refs)
destroy the ECL'PS® references. It is important that this is done, otherwise the
ECL'PS® garbage collector will not be able to free the references data structures, which
may eventually lead to memory overflow.

void ec_refs_set(ec_refs,int i,const pword pw)
set the i’th reference to the ECL‘PS® term pw. This setting is subject to the ECL'PS*®
engine’s undo-mechanism on backtracking.

pword ec_refs_get(const ec_refs,int i)
return the ECL'PS® term referred to by the i’th reference.

int ec_refs_size(const ec_refs)
return the capacity of the ec_refs data structure.

ec_ref ec_ref_create(pword)
like ec_refs_create() for a single reference.

ec_ref ec_ref_create_newvar()
analogous to ec_refs_create_newvars().

void ec_ref_destroy(ec_ref)
analogous to ec_refs_destroy().

void ec_ref_set(ec_ref,const pword)
analogous to ec_refs_set().

pword ec_ref_get(const ec_ref)
analogous to ec_refs_get().

C.4 Passing Data to and from External Predicates in C

These two functions are only meaningful inside C functions that have been called from
ECL*PS® as external predicates.

pword ec_arg(int i)
If inside a C function called from ECL’PS®, this returns the i’th argument of the call.

int ec_unify(pword,pword)
Unify the two given pwords. Note that, if attributed variables are involved in the
unification, the associated unification handlers as well as subsequent waking will only
happen once control is returned to ECL'PS®.

int ec_schedule_suspensions(pword,int)
Similar to the schedule_suspensions/2 built-in predicate. Waking will only happen
once control is returned to ECL'PS® and the wake/0 predicate is invoked.

48

C.5 Initialising and Shutting Down the ECL'PS° Subsystem

These are the functions needed to embed ECL'PS® into a C main program.

int ec_set_option_int(int, int)
Set the value of a numerical option (see appendix A).

int ec_set_option_ptr(int, char *)
Set the value of a string-valued option (see appendix A).

int ec_init()
Initialise the ECL'PS® engine. This is required before any other functions of this inter-
face (except option setting) can be used.

int ec_cleanup()
Shutdown the ECLIPS® engine.

C.6 Passing Control and Data to ECL'PS® from C

These are the functions needed to embed ECL{PSE into C code.

void ec_post_goal(const pword)
post a goal (constraint) that will be executed when ECL'PS®is resumed.

void ec_post_string(const char *)
same as ec_post_goal(), but the goal is given in ECL'PS® syntax in a string. This should
only be used if speed is not critical and if the goal does not contain variables whose
values may be needed later. This function is part of the simplified interface.

void ec_post_exdr(int len, const char *exdr)
same as ec_post_goal(), but the goal is given in EXDR format (see chapter 7). This
function is part of the simplified interface.

int ec_resume()
resume execution of the ECL'PS® engine: All posted goals will be executed and all
posted events will be handled. The return value will be PSUCCEED if the goals suc-
ceed PFAIL is returned if the goals fail, and PYIELD if control was yielded because
of a yield/2 predicate call in the ECL'PS® code. If a writable queue stream with
yield-option (see open/4) was flushed, the return value is PFLUSHIO. If there was
an attempt to read from an empty queue stream with yield-option, the return value
is PWAITIO. If an asynchronous ECL‘PS® thread is already running, PRUNNING is
returned. No parameters can be passed. This function is part of the simplified interface.

int ec_resumel(ec_ref ToC)
Similar to ec_resume(), but if the return value is PSUCCED, the ToC argument re-
turns a cut value that can be used to discard alternative solutions by passing it to
ec_cut_to_chp(). If the return value is PYIELD, control was yielded because of a yield /2
predicate call in the ECL*PS® code, and ToC contains the data passed by the first ar-
gument of yield/2. If the return value is PFLUSHIO or PWAITIO, ToC contains the
associated stream number.

49

int ec_resume2(const pword FromC,ec_ref ToC)
Similar to ec_resumel(), but it allows to pass an argument to the resumed execution.
This is only useful if the execution had yielded due to a yield/2 predicate call. The
term FromC is passed as input into the second argument of yield/2.

int ec_resume _long(long *ToC)
Similar to ec_resumel(), but allows only integer values to be passed from ECL'PS® to C
(otherwise TYPE_ERROR is returned). This function is part of the simplified interface.

int ec_resume_async()

Similar to ec_resume(), but ECL!PS® is resumed in a separate thread in case this is
supported by the operating system. The return value is PSUCCED if the thread started
successfully, SYS_ERROR if there was a problem creating the thread, and PRUNNING
if there was already an ECL‘PS® thread running (only one ECL'PS® thread is allowed
to run at any time). If threads are not supported, the call does nothing and return
PSUCCED. Use ec_resume_status() to wait for termination and to retrieve the results
of the execution.

int ec_resume status()
This function is supposed to be called after a call to ec_resume_async(). It returns
PRUNNING as long as the ECL‘PS® thread is still running. If the thread has stopped,
the return values are the same as for ec_resume(). If threads are not supported, the pair
of ec_resume_async() and ec_resume_status() is equivalent to an ec_resume().

int ec_resume status_long(long *ToC)
Similar to ec_resume_long(), but allows an integer to be returned to the caller, as done
by ec_resume_long().

int ec_handle_events(long *ToC)
Similar to ec_resume_long(), but posted goals are not executed, only events are handled.

void ec_cut_to_chp(ec_ref)
Cut all choicepoints created by the batch of goals whose execution succeeded. The
argument should have been obtained by a call to ec_resume2().

int ec_post_event(pword Name)
Post an event to the ECL'PS® engine. This will lead to the execution of the corre-
sponding event handler once the ECL!PS®execution is resumed. See also event/1 and
the User Manual chapter on event handling for more information. Name should be an
ECL'PS® atom.

int ec_post_event_string(const char *)
Post an event to the ECL'PS® engine. This will lead to the execution of the correspond-
ing event handler once the ECL!PS®execution is resumed. See also event/1 and the
User Manual chapter on event handling for more information. The event name is given
as a string. This function is part of the simplified interface.

50

C.7 Communication via ECL'PS¢ Streams

These functions allow exchanging data with an embedded ECL'PS® via queue streams created
by the ECL'PS® code. Queue streams can be created either by using open/3 and open/4
from within ECL'PS® code, or by initializing ECL‘PS® with the MEMORY IO option. In the
latter case, the streams 0, 1 and 2 are queues corresponding to ECL{PS®’s input, output and
error streams.

int ec_queue_write(int stream, char *data, int size)
Write string data into the specified ECL‘PS® queue stream. Data points to the data
and size is the number of bytes to write. The return value is 0 for success, or a negative
error number.

int ec_queue_read(int stream, char *buf, int size)
Read string data into the specified ECL'PS® queue stream. Buf points to a data buffer
and size is the buffer size. The return value is either a negative error code, or the
number of bytes read into buffer.

int ec_stream_nr(char *name)
Get the stream number of the named stream. If the return value is negative then there
is no open stream with the specified name. This is the same operation that the ECL!PS®
built-in get_stream/2 performs).

C.8 Miscellaneous

These two functions provide an alternative method for posting goals and retrieving results.
They are intended for applications with a simple structure that require only infrequent call-
return style control transfers and little information passing between ECL'PS® and C. It is less
powerful and less efficient that the primitives described above.

int ec_exec_string(char*,ec_ref Vars)
let ECLIPS® execute a goal given in a string ECL'PS® syntax. Return value is PSUC-
CEED or PFAIL, depending on the result of the execution. If successful, Vars holds a
list mapping the variables names within the string to their values after execution.

int ec_var_lookup(ec_ref Vars,char*,pword* pw)
Lookup the value of the variable with the given name. Vars is a list as returned by
ec_exec_string().

51

52

Appendix D

Foreign C Interface

This library (loaded with := 1ib(foreign)) allows to use external functions written for Quin-
tus or SICStus Prolog, or to interface C functions which are independent of ECL'PS®. It ac-
cepts the syntax and semantics of the predicates foreign /3, foreign_file/2 and load _foreign _files /2
of Quintus/SICStus. Since their external interface is incompatible with the ECL!PS® one, this
library generates a C source file which converts the ECL‘PS¢interface into the foreign one,
by defining a new C function for every C function defined in the foreign interface. Note that
this approach uses more C code, but it is still more efficient than using a generic procedure
to check the argument of every external function.

After compiling definitions of the foreign/3 predicate, (the predicate foreign_file/2 is ig-
nored), the predicate make_simple_interface has to be called. This predicate generates a
file interface.c, which contains the auxiliary C definitions. This file has to be compiled to
obtain the interface.o file, it might also have to be edited to include other .h files. After the
file interface.o has been generated, the system is fully compatible with the Quintus/SICStus
foreign interface, and calling load_foreign files/2 will connect the external functions with
ECL'PS®.

Although it is possible to use this library to interface existing independent C functions, its
main use is to port foreign interface from Quintus or SICStus. Please refer to their manuals
for the description of the foreign interface.

53

Index

abolish_record/1, 14
ARCH, 3
architecture, 3
array, 13
asynchronous, 7
atom, 9

backtracking, 6

choicepoint, 7, 8
compound term, 11
cut, 7

directories, 3
doc/examples, 1

ec_exdr2tcl, 27
ec_handle_events, 23
ec_init, 21
ec_post_event, 23
ec_post_goal, 22
ec_queue_connect, 24
ec_read_exdr, 27
ec_resume, 23

ec_tpc, 23

ec_running, 23
ec_set_option, 21
ec_set_queue_handler, 24
ec_stream_input_popup, 26
ec_stream_nr, 24
ec_stream_output_popup, 26
ec_stream_to_window, 26
ec_tcl2exdr, 27
ec_write_exdr, 27
EC_word, 10
EclipseClass, 29
EclipseStream, 31
EclipseStreams, 31
EclipseThread, 29
erase_array/1, 14

54

event/1, 23, 26, 30, 44, 50
events, 7

external/1, 19
external/2, 19

failure, 6

foreign (library), 53
foreign/3, 53
foreign file/2, 53
functor, 9

garbage collection, 9, 10, 12
get_stream/2, 24, 51

include files, 4
initialisation, 5
installation directory, 3

list, 10, 12

load/1, 18

load _foreign files/2, 53
logical variable, 6, 10
logical variables, 13

Makefile, 4, 18
memory management, 9
method table, 14

open/3, 24, 31, 51
open/4, 24-26, 31, 43, 49, 51

package eclipse, 21
package eclipse_tools, 22
passing data, 8, 9
posting events, 7
posting goals, 6

pword, 10

read_exdr/2, 25, 34
read string/4, 25
recordz/2, 14

references, 13, 14
resume, 6, 8

schedule_suspensions/2, 43, 48
search, 9

setarg/3, 13, 42

setval/2, 14

state, 6

string, 11, 12

structure, 11, 12

term, 10, 11
thread, 5, 6
type testing, 11

write/2, 24
write_exdr/2, 25, 34

xget/3, 15
xset/3, 15

yield, 8
yield/2, 8, 23, 30, 49, 50

55

