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Chapter 1

Introduction

This tutorial is under construction. It will eventually cover the most important aspects of
programming with ECL*PS® like modelling, search, hybrid solvers and general programming.






Chapter 2

Search Methods

In this chapter we will take a closer look at the principles and alternative methods of searching
for solutions in the presence of constraints. Let us first recall what we are talking about. We
assume we have the standard pattern of a constraint program:

solve(Data) :-
model (Data, Variables),
search(Variables),
print_solution(Variables).

The model part contains the logical model of our problem. It defines the variables and the
constraints. Every variable has a domain of values that it can take (in this context, we only
consider domains with a finite number of values).

Once the model is set up, we go into the search phase. Search is necessary since generally
the implementation of the constraints is not complete, i.e. not strong enough to logically infer
directly the solution to the problem. Also, there may be multiple solutions which have to be
located by search, e.g. in order to find the best one. In the following, we will use the following
terminology:

o If a variable is given a value (from its domain, of course), we call this an assignment. If
every problem variable is given a value, we call this a total assignment.

o A total assignment is a solution if it satisfies all the constraints.

e The search space is the set of all possible total assignments. The search space is usually
very large because it grows exponentially with the problem size:

SearchSpaceSize = Domain§izey wmberQfVariables

2.1 Introduction

2.1.1 Overview of Search Methods

Figure 2.1 shows a search space with N (here 16) possible total assignments, some of which are
solutions. Search methods now differ in the way in which these assignments are visited. We can
classify search methods according to different criteria:



Figure 2.1: A search space of size 16

Complete vs incomplete exploration complete search means that the search space is in-
vestigated in such a way that all solutions are guaranteed to be found. This is necessary
when the optimal solution is needed (one has to prove that no better solution exists).
Incomplete search may be sufficient when just some solution or a relatively good solution
is needed.

Constructive vs move-based this indicates whether the method advances by incrementally
constructing assignments (thereby reasoning about partial assignments which represent
subsets of the search space) or by moving between total assignments (usually by modifying
previously explored assignments).

Randomness some methods have a random element while others follow fixed rules.

Here is table of a selection of search methods together with their properties:

Method exploration assignments random
Full tree search complete constructive mno
Credit search incomplete  constructive no
Bounded backtrack | incomplete constructive no
Limited discrepancy | complete constructive mno
Hill climbing incomplete move-based possibly
Simulated annealing | incomplete move-based yes
Tabu search incomplete move-based possibly
Weak commitment complete hybrid no

The constructive search methods usually organise the search space by partitioning it system-
atically. This can be done naturally with a search tree (Figure 2.2). The nodes in this tree
represent choices which partition the remaining search space into two or more (usually mutually
exclusive) disjoint sub-spaces. Using such a tree structure, the search space can be traversed
systematically and completely (with as little as O(N) memory requirements).

Figure 2.4 shows a sample tree search, namely a depth-first incomplete traversal. As opposed
to that, figure 2.3 shows an example of an incomplete move-based search which does not follow
a fixed search space structure. Of course, it will have to take other precautions to avoid looping
and ensure termination.

A few further observations: Move-based methods are usually incomplete. This is not surprising
given typical sizes of search spaces. A complete exploration of a huge search space is only
possible if large sub-spaces can be excluded a priory, and this is only possible with constructive
methods which allow to reason about whole classes of similar assignments. Moreover, a complete
search method must remember which parts of the search space have already been visited. This
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Figure 2.2: Search space structured using a search tree

Figure 2.3: A move-based search

Figure 2.4: A tree search (depth-first)



can only be implemented with acceptable memory requirements if there is a simple structuring
of the space that allows compact encoding of sub-spaces.

2.1.2 Optimisation and Search

Many practical problems are in fact optimisation problems, ie. we are not just interested in some
solution or all solutions, but in the best solution.

Fortunately, there is a general method to find the optimal solution based on the ability to find
all solutions. The branch-and-bound technique works are follows:

1. Find a first solution

2. Add a constraint requiring a better solution than the best one we have so far (e.g. require
lower cost)

3. Find a solution which satisfies this new constraint. If one exists, we have a new best
solution and we repeat step 2. If not, the last solution found is the proven optimum.

The finite-domain library implement provides the primitives min_max/2-8 and minimize/2-8
which implement this strategy.

2.1.3 Heuristics

Since search space sizes grow exponentially with problem size, it is not possible to explore all
assignments except for the very smallest problems. The only way out is not to look at the whole
search space. There are only two ways to do this:

e Prove that certain areas of the space contain no solutions. This can be done with the
help of constraints. This is often referred to as pruning.

¢ Ignore parts of the search space that are unlikely to contain solutions (i.e. do incomplete
search), or at least postpone their exploration. This is done by using heuristics. A heuristic
is a particular traversal order of the search space which explores promising areas first.

In the following sections we will first investigate the considerable degrees of freedom that are
available for heuristics within the framework of systematic tree search, which is the traditional
search method in the Constraint Logic Programming world.

Subsequently, we will turn our attention to move-based methods which in ECL'PS® can be
implemented using the facilities of the repair-library.

2.2 Complete Tree Search with Heuristics

There is one form of tree search which is especially economic: depth-first, left-to-right search
by backtracking. It allows to traverse a search tree systematically while requiring only a stack
of maximum depth N for bookkeeping. Most other strategies of tree search (e.g. breadth-first)
have exponential memory requirements. This unique property is the reason why backtracking
is a built feature of ECL'PS®. Note that the main disadvantage of the depth-first strategy (the
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danger of going down an infinite branch) does not come into play here because we deal with
finite search trees.

Sometimes depth-first search and heuristic search are treated as antonyms. This is only justified
when the shape of the search tree is statically fixed. Our case is different: we have the freedom
of deciding on the shape of every sub-tree before we start to traverse it depth-first. While
this does not allow to arrange for any order of visiting the leaves of the search tree, it does
provide considerable flexibility. This flexibility can be exploited by variable and value selection
strategies.

2.2.1 Search Trees

In general, the nodes of a search tree represent choices. These choices should be mutually
exclusive and therefore partition the search space into two or more disjoint sub-spaces. In other
words, the original problem is reduced to a disjunction of simpler sub-problems.

In the case of finite-domain problems, the most common form of choice is to choose a particular
value for a problem variable (this technique is often called labeling). For a boolean variables,
this means setting the variable to 0 in one branch of the search tree and to 1 in the other. In
ECL'PS®, this can be written as a disjunction (which is implemented by backtracking):

( X1=0 ; X1=1)

Other forms of choices are possible. If X2 is a variable that can take integer values from 0 to 3
(assume it has been declared as X2::0..3), we can make a n-ary search tree node by writing

( X2=0 ; X2=1 ; X2=2 ; X2=3)
or more compactly
indomain(X2)

However, choices do not necessarily involve choosing a concrete value for a variable. Tt is also
possible to make disjoint choices by domain splitting, e.g.

(X2 #=< 1 ; X2 #>= 2 )
or by choosing a value in one branch and excluding it in the other:
(X2=0; X2#>=1)

In the following examples, we will mainly use simple labeling, which means that the search tree
nodes correspond to a variable and a node’s branches correspond to the different values that the
variable can take.

2.2.2 Variable Selection

Figure 2.5 shows how variable selection reshapes a search tree. If we decide to choose values for
X1 first (at the root of the search tree) and values for X2 second, then the search tree has one
particular shape. If we now assume a depth-first, left-to-right traversal by backtracking, this
corresponds to one particular order of visiting the leaves of the tree: (0,0), (0,1), (0,2), (0,3),

(1,0), (1,1), (1,2), (1,3).
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Figure 2.5: The effect of variable selection

If we decide to choose values for X2 first and X1 second, then the tree and consequently the
order of visiting the leaves is different: (0,0), (1,0), (0,1), (1,1), (0,2), (1,2), (0,3), (1,3).
While with 2 variables there are only 2 variable selection strategies, this number grows expo-

nentially with the number of variables. For 5 variables there are already 22°-1 = 2147483648
different variable selection strategies to choose from.

Note that the example shows something else: If the domains of the variables are different, then
the variable selection can change the number of internal nodes in the tree (but not the number
of leaves). To keep the number of nodes down, variables with small domains should be selected
first.

2.2.3 Value Selection

The other way to change the search tree is value selection, i.e. reordering the child nodes of
a node by choosing the values from the domain of a variable in a particular order. Figure 2.6
shows how this can change the order of visiting the leaves: (1,2), (1,1), (1,0), (1,3), (0,1), (0,3),
(0,0), (0,2).

By combining variable and value selection, a large number of different heuristics can be imple-
mented. To give an idea of the numbers involved, the following table shows the search space
sizes, the number of possible search space traversal orderings, and the number of orderings that
can be obtained by variable and value selection (assuming domain size 2).
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Figure 2.6: The effect of value selection

Variables | Search space | Visiting orders | Selection Strategies
1 2 2 2

2 4 24 16

3 8 40320 336

4 16 2.1+ 10" 1.8 % 107

5 32 2.6 % 10%° 3.5 % 101°

n 2" 2m 27 T (n — 1)

2.2.4 Example

We use the famous N-Queens problem to illustrate how heuristics can be applied to backtrack
search through variable and value selection. We model the problem with one variable per queen,
assuming that each queen occupies one colunm. The variables range from 1 to N and indicate
the row in which the queen is being placed. The constraints ensure that no two queens occupy
the same row or diagonal:

:- lib(£d).

queens (N, Board) :-
length(Board, N),
Board :: 1..N,
( fromto(Board, [Q1|Cols], Cols, []) do
( foreach(Q2, Cols), count(Dist,1,_), param(Q1) do
noattack(Q1, Q2, Dist)
)

noattack(Q1,Q2,Dist) :-
Q2 ## Q1,
Q2 - Q1 ## Dist,
Q1 - Q2 ## Dist.

We are looking for a first solution to the 16-queens problem by calling

?- queens(16, Vars), % model
labeling(Vars). % search



We start naively, using the pre-defined labeling-predicate that comes with the finite-domain
library. It is defined as follows:

labeling(AllVars) :-
( foreach(Var, AllVars) do
indomain(Var) % select value

).

The strategy here is simply to select the variables from left to right as they occur in the list,
and they are assigned values starting from the lowest to the numerically highest they can take
(this is the definition of indomain/1). A solution is found after 542 backtracks (see section 2.2.5
below for how to count backtracks).

A first improvement is to employ a general-purpose variable-selection heuristic, the so
called first-fail principle. It requires to label the variables with the smallest domain first. This
reduces the branching factor at the root of the search tree and the total number of internal
nodes. The deleteff/3 predicate implements this strategy for finite domains. Using deleteff/3,
we can redefine our labeling-routine as follows:

labeling(AllVars) :-
( fromto(AllVars, Vars, VarsRem, []) do
deleteff(Var, Vars, VarsRem), % dynamic var-select
indomain(Var) % select value
).

Indeed, for the 16-queens example, this leads to a dramatic improvement, the first solution
is found with only 3 backtracks now. But caution is necessary: The 256-queens instance for
example solves nicely with the naive strategy, but our improvement leads to a disappointment:
the time increases dramatically! This is not uncommmon with heuristics: one has to keep in
mind that the search space is not reduced, just re-shaped. Heuristics that yield good results
with some problems can be useless or counter-productive with others. Even different instances
of the same problem can exhibit widely different characteristics.

Let us try to employ a problem-specific heuristic: Chess players know that pieces in the
middle of the board are more useful because they can attack more fields. We could therefore
start placing queens in the middle of the board to reduce the number of unattacked fields earlier.
We can achieve that simply by pre-ordering the variables such that the middle ones are first in
the list:

labeling(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var-select
( foreach(Var, AllVarsPreOrdered) do
indomain(Var) % select value

).

The implementation of middle_first/2 requries a bit of list manipulation and uses primitives from
the lists-library:

:- 1ib(1lists).
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middle_first(List, Ordered) :-
halve(List, Front, Back),
reverse(Front, RevFront),
splice(Back, RevFront, Ordered).

This strategy also improves things for the 16-queens instance, the first solution requires 17
backtracks.

We can now improve things further by combining the two variable-selection strategies: When
we pre-order the variables such that the middle ones are first, the deleteff/3 predicate will prefer
middle variables when several have the same domain size:

labeling(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var-select
( fromto(AllVarsPreOrdered, Vars, VarsRem, []) do
deleteff(Var, Vars, VarsRem), % dynamic var-select
indomain(Var) % select value

).

The result is positive: for the 16-queens instance, the number of backtracks goes down to zero,
and more difficult instances become solvable!

Actually, we have not yet implemented our intuitive heuristics properly. We start placing queens
in the middle columns, but not on the middle rows. With our model, that can only be achieved
by changing the value selection, ie. setting the variables to values in the middle of their
domain. We therefore invent a variant of indomain/1 called middle_first.indomain/1 and the
resulting labeling routine then looks as follows:

labeling(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var-select
( fromto(AllVarsPreOrdered, Vars, VarsRem, []) do
deleteff(Var, Vars, VarsRem), % dynamic var-select
middle_first_indomain(Var) % select value

).
The implementation of middle_first_indomain/2 simply relies on middle_first/2:

middle_first_indomain(X) :-
nonvar(X) .
middle_first_indomain(X) :-
var (X),
dom(X, List), % the list of values in X’s domain
middle_first(List, Ordered),
member (X, Ordered).

Surprisingly, this improvement again increases the backtrack count for 16-queens again to 3.
However, when looking at a number of different instances of the problem, we can observe that
the overall behaviour has improved and the performance has become more predicatable than
with the initial more naive strategies.
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2.2.5 Counting Backtracks

An interesting piece of information during program development is the number of backtracks.
It is a good measure for the quality of both constraint propagation and search heuristics. We
can instrument our labeling routine as follows:

labeling(AllVars) :-

init_backtracks,

( foreach(Var, AllVars) do
count_backtracks, % insert this before choice!
indomain(Var)

),

get_backtracks(B),

printf ("Solution found after J%d backtracksyn", [B]).

The backtrack counter itself can be implemented by the code below. It uses a non-logical
counter variable (backtracks) and an additional flag (deep_fail) which ensures that backtracking
to exhausted choices does not increment the count.

:- local variable(backtracks), variable(deep_fail).

init_backtracks :-
setval (backtracks,0).

get_backtracks(B) :-
getval (backtracks,B).

count_backtracks :-
setval(deep_fail,false).
count_backtracks :-
getval(deep_fail,false), % may fail
setval(deep_fail,true),
incval (backtracks),
fail.

Note that there are other possible ways of defining the number of backtracks. However, the one
suggested here has the following useful properties:

¢ Shallow backtracking (an attempt to instantiate a variable which causes immediate failure
due to constraint propagation) is not counted. If constraint propagation works well, the
count is therefore zero.

e With a perfect heuristic, the first solution is found with zero backtracks.

o If there are N solutions, the best achievable value is N (one backtrack per solution). Higher
values indicate an opportunity to improve pruning by constraints

12



2.3 Incomplete Tree Search

2.3.1 Bounded Backtrack Search

One way to limit the scope of backtrack search is to keep a record of the number of backtracks,
and curtail the search when this limit is exceeded.

You can find an implementation of Bounded Backtrack Search (BBS) in the file 1ds.ecl in
the doc/examples directory of your ECL‘PS® installation. The predicate defining bounded
backtrack search is bounded_backtrack_search, and it takes two arguments, a list of variables
and an integer (the limit on the number of backtracks). An example invocation is:

?- [X,Y,Z]::1..3, X+Y+Z#=6, bounded_backtrack_search([X,Y,Z],4).
The answers are returned on backtracking in the following order
e X=1Y=272=3
e X=1Y=3%72=2
e X=2Y=1%72=3
e X=2Y=27=2

After which the procedure fails outputting Backtrack limit exceeded.
The implementation uses several facilities of ECL*PS®, including non-logical variables and catch
and throw:

:- local variable(backtracks), variable(deep_fail).

bounded_backtrack_search(List,Limit) :-
setval (backtracks,Limit),
block(bbs_label(List),
exceed_limit,
(writeln(’Backtrack limit exceeded’), fail)

).

bbs_label([]).

bbs_label([Var|Vars]) :-
limit_backtracks,
indomain(Var),
bbs_label(Vars).

limit_backtracks :-
setval(deep_fail,false).
limit_backtracks :-
getval(deep_fail,false), % may fail
setval(deep_fail,true),
decval(backtracks),
(getval(backtracks,0) -> exit_block(exceed_limit) ; fail).

13



2.3.2 Credit Search

Credit search is a tree search method where the number of nondeterministic choices is limited a
priori. This is achieved by starting the search at the tree root with a certain integral amount of
credit. This credit is split between the child nodes, their credit between their child nodes, and
so on. A single unit of credit cannot be split any further: subtrees provided with only a single
credit unit are not allowed any nondeterministics choices, only one path though these subtrees
can be explored, i.e. only one leaf in the subtree can be visited. Subtrees for which no credit is
left are pruned, i.e. not visited.

The following code (a replacement for labeling/1) implements credit search. For ease of under-
standing, it is limited to boolean variables:

% Credit search (for boolean variables only)
credit_search(Credit, Xs) :-

(
foreach(X, Xs),
fromto(Credit, ParentCredit, ChildCredit, _)
do
( var(X) =->
ParentCredit > 0, % possibly cut-off search here
( % Choice
X = 0, ChildCredit is (ParentCredit+1)//2
X = 1, ChildCredit is ParentCredit//2
)
ChildCredit = ParentCredit
)
).

Note that the leftmost alternative (here X=0) gets slightly more credit than the rightmost one
(here X=1) by rounding the child node’s credit up rather than down. This is especially relevant
when the leftover credit is down to 1: from then on, only the leftmost alternatives will be taken
until a leaf of the search tree is reached. The leftmost alternative should therefore be the one
favoured by the search heuristics.

What is a reasonable amount of credit to give to a search? In an unconstrained search tree, the
credit is equivalent to the number of leaf nodes that will be reached. The number of leaf nodes
grows exponentially with the number of labelled variables, while tractable computations should
have polynomial runtimes. A good rule of thumb could therefore be to use as credit the number
of variables squared or cubed, thus enforcing polynomial runtime.

Note that this method in its pure form allow choices only close to the root of the search tree
and disallows choices completely below a certain tree depth. This is too restrictive when the
value selection strategy is not good enough. A possible remedy is to combine credit search with
bounded backtrack search.
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2.3.3 Timeout

Another form of incomplete tree search is simply to use time-outs. The branch-and-bound
primitives min_max/6,8 and minimize/6,8 allow to specify a maximal runtime. If a timeout
occurs, the best solution found so far is returned instead of the proven optimum.

A general timeout can be implemented as follows. When Goal has run for more than Seconds
seconds, it is aborted and TimeOutGoal is called instead.

:- set_event_handler(timeout, exit_block/1).

timeout (Goal, Seconds, TimeOutGoal) :-

block(
timeout_once(Goal, Seconds),
timeout,
call(TimeOutGoal)

).

timeout_once(Goal, Seconds) :-
event_after(timeout, Seconds),
( call(Goal) ->
cancel _after_event (timeout)

cancel_after_event(timeout),
fail

2.3.4 Limited Discrepancy Search
Introduction

Limited discrepancy search (LDS)is a search method that assumes the user has a good heuristic
for directing the search. A perfect heuristic would, of course, not require any search. However
most heuristics are occasionally misleading. Limited Discrepancy Search follows the heuristic on
almost every decision. The “discrepancy” is a measure of the degree to which it fails to follow
the heuristic. LDS starts searching with a discrepancy of 0 (which means it follows the heuristic
exactly). Each time LDS fails to find a solution with a given discrepancy, the discrepancy is
increased and search restarts. In theory the search is complete, as eventually the discrepancy will
become large enough to admit a solution, or cover the whole search space. In practice, however,
it is only beneficial to apply LDS with small discrepancies. Subsequently, if no solution is found,
other search methods should be tried.

The definitive reference to LDS is:

Limited Discrepancy Search, Harvey and Ginsberg, pp.607-613, Proc. IJCAT’95

This reference also suggests that combining LDS with Bounded Backtrack Search ( BBS) yields
good behaviour. Accordingly the ECL‘PS® LDS module also supports BBS and its combination
with LDS.
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Limited Discrepancy Search using a Static Heuristic

We start by assuming a static heuristic, which is a complete assignment to the problem variables
specified in advance of the search. The predicate supporting static LDS takes a list of variables
(those which are to be labelled) and a list of values (one heuristic value for each variable,
respectively). Each variable has a finite domain, and its heuristic value should belong to its
domain (though the LDS search can still succeed even if this is not the case).

The measure of discrepancy, in this case, is simply the number of variables labelled differently
to the heuristic. Thus the maximum discrepancy is just the number of variables to be labelled.
LDS search is implemented in the file 1ds.ecl in the doc/examples directory of your ECL!PS®
installation. You can copy this file and load it with

:- use_module(lds).

Static LDS search is then available via the predicate static_lds(Var, Vals, Discrepancy)
whose arguments are

Vars the list of problem variables. Some of the variables may already be instantiated. The
others must have associated finite domains.

Vals the list of values according to the heuristic. It must be the same length as Vars, and the
heuristic must match the value, in case the variable is already instantiated.

Discrepancy the discrepancy of the solution returned. Typically this is an output of the search
(an integer between 0 and the number of variables), but it can also be used as an input.

The finite domain library must be loaded, and the variables must have finite domains. An
example invocation is:

?- [X,Y,Z2]::1..3, X+Y+Z#=5, static_1lds([X,Y,2],[1,2,3],D).
The answers are returned on backtracking in the following order:
e X=1Y=272=2D=1
e X=1Y=172=3D=1
e X=1Y=37Z=1D=2
e X=2Y=272=1D=2
e X=2Y=172=2D=3

e X=3Y=172=1D=3

Limited Discrepancy Search using a Dynamic Heuristic

Often the heuristic value is calculated on the fly, during search. To cope with this we use the
ECL'PS® “tentative value” facility in ECL*PS®’s repair library. The heuristic is stored with the
variable as its tentative value.

16



The tentative value may be changed during search. For example if a variable is instantiated
as a consequence of constraint propagation during search, its tentative value is automatically
changed to its actual value.

Dynamic LDS search is available in ECL'PS® via the predicate dynamic_lds(Vars, Discrep-
ancy). Each variable in the list of variables Vars must have a tentative value.

An example invocation is:

?- [X,Y,Z]::1..3, [X,Y,Z] tent_set [1,2,3], X+Y+Z#=5,
dynamic_1ds([X,Y,Z],D).

The answers are returned on backtracking in the following order. Notice that the first solution
has a discrepancy of 0, because constraint propagation instantiates the third variable to 2, thus
changing its tentative value from 3 to 2.

e X=1Y=272=2D=0
e X=1Y=172=3D=1
e X=1Y=372=1D=1
e X=2Y=27=1D=1
e X=3Y=172=1D=1

e X=2Y=172=2D=2

LDS and BBS Combined

The two search techniques, BBS and LDS, can be merged quite simply in ECL'PS¢, so that for
each discrepancy level only a limited number of backtracks are allowed.
An example invocation is:

?- Vars=[X,Y,Z], Vars::1..3, Vars tent_set [1,2,3], X+Y+Z#=6,
bbs_dynamic_lds(Vars,4,D).

The answers are returned on backtracking in the following order:
e X=1Y=272=3D=0
e X=1Y=372=2D=1
e X=2Y=272=2D=1

e X=3Y=27Z=1D=1
Backtrack limit exceeded

e X=2Y=17Z=3D=2
Backtrack limit exceeded

17



2.4 Local Search Methods

In the following we discuss several examples of move-based (as opposed to constructive search)
methods. These methods have originally been developed for unconstrained problems, but they
work for certain classes of constrained problems as well.

From a technical point of view, the main difference between tree search and move-based search
is that tree search is monotonic in the sense that constraints get tightened when going down the
tree, and this is undone in reverse order when backing up the tree to a parent node. This fits
well with the idea of constraint propagation. In a move-based search, the main characteristics
is that a move produces a small change, but it is not clear what effect this will have on the
constraints. They may become more or less satisfied. We therefore need implementations of
the constraints that monitor changes rather than propagate instantiations. This functionality
is provided by the ECL*PS® repair library which is used in the following examples. The repair
library is decribed in more detail in the ECLPS® Library Manual.

The ECL'PS® code for all the examples in this section is available in the file knapsack_1s.ecl
in the doc/examples directory of your ECL!PS® installation.

2.4.1 The Knapsack Example

We will demonstrate the local search methods using the well-known knapsack problem. The
problem is the following: given a container of a given capacity and a set of items with given
weights and profit values, find out which items have to be packed into the container such that
their weights do not exceed the container’s capacity and the sum of their profits is maximal.
The model for this problem involves N boolean variables, a single inequality constraint to ensure
the capacity restriction, and an equality to define the objective function.

The tree search program for this problem looks as follows:

:= lib(£d).

knapsack(N, Profits, Weights, Capacity, Profit) :-
length(Vars, N), % N boolean variables
Vars :: 0..1,
Capacity #>= Weightsx*Vars, % the single constraint
Profit #= Profits*Vars, % the objective
min_max(labeling(Vars), -Profit). J branch-and-bound search

At the end of the problem modelling code, a standard branch-and-bound tree search (min_max)
is invoked in the last line of the code. The parameters mean

e N - the number of items (integer)

e Profits - a list of N integers (profit per item)

Weights - a list of N integers (weight per item)

Capacity - the capacity of the knapsack (integer)

Opt - the optimal result (output)
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To be able to use local search, we load the repair library and change the problem setup slightly.
At the end, we invoke a local search routine instead of tree search:

1= 1ib(fd).
:= lib(repair).
knapsack(N, Profits, Weights, Capacity, Opt) :-
length(Vars, N),
Vars :: 0..1,
Capacity #>= Weights*Vars r_conflict cap,
Profit tent_is Profits*Vars,
local_search(<extra parameters>, Vars, Profit, Opt).

We are now using 3 features from the repair-library:

Constraint annotation r_conflict: Constraints annotated in this way are constantly being
monitored for satifying the global assignment, i.e. it is checked whether they would be
satisfied if all variables were instantiated to their tentative values. Constraints that are
not satisfied in this way appear in the specified conflict set. In the example, the single
capacity constraint has been annotated with r_conflict and it will appear in the conflict
set called cap when violated.

Result tent_is ArithExpression: This is similar to the is/2 built-in predicate, but it works
on the variable’s tentative values rather than requiring the variables to be instantiated.
The result is delivered as the tentative value of Result. Any change of tentative value inside
the ArithExpression leads to an update of the Result. In the example, the computation
of the objective function has been changed to use tent_is because we want to have the
objective value recomputed efficiently after every move.

Tentative values: Every variable has, apart from its domain, a tentative value which can be
changed using tent_set/2 and queried using tent_get/2. We will use these inside the local
search routine to implement the moves.
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2.4.2 Search Code Schema

In the literature, e.g. in

Localizer: A Modeling Language for Local Search, L.. Michel and P. Van Hentenryck,
Proceeding CP97, LNCS 1330, Springer 1997.

local search methods are often characterised by the the following nested-loop program schema:

local_search:
set starting state
while global_condition
while local_condition
select a move
if acceptable
do the move
if new optimum
remember it
endwhile
set restart state
endwhile

The actual program codes in the following sections all follow this schema, except that some
methods (random walk and the tabu search) are even simpler and use only a single loop with a
single termination condition.
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2.4.3 Random walk

As a simple example of local search, let us look at a random walk strategy. The idea is to
start from a random tentative assignment of variables to 0 (item not in knapsack) or 1 (item
in knapsack), then to remove random items (changing 1 to 0) if the knapsack’s capacity is
exceeded and to add random items (changing 0 to 1) if there is capacity left. We do a fixed
number (MaxlIter) of such steps and keep track of the best solution encountered.

Each step consists of

e Changing the tentative value of some variable, which in turn causes the automatic recom-
putation of the conflict constraint set and the tentative objective value.

¢ Checking whether the move lead to a solution and whether this solution is better than the
best one so far.

Here is the ECL‘PS® program. We assume that the problem has been set up as explained above.
The violation of the capacity constraint is checked by looking at the conflict constraints. If
there are no conflict constraints, the constraints are all tentatively satisfied and the current
tentative values form a solution to the problem. The associated profit is obtained by looking at
the tentative value of the Profit variable (which is being constantly updated by tent_is).

random_walk(MaxIter, VarArr, Profit, Opt) :-

init_tent_values(VarArr, random), % starting point
( for(_,1,MaxIter), % do MaxIter steps
fromto(0, Best, NewBest, Opt), % track the optimum
param(Profit,VarArr)
do
( conflict_constraints(cap,[]) -> % it’s a solution!
Profit tent_get CurrentProfit, ¥ what is its profit?
(
CurrentProfit > Best % new optimum?
->
printf ("Found solution with profit %w/n", [CurrentProfit]),
NewBest=CurrentProfit % yes, remember it
NewBest=Best % no, ignore
),
change_random(VarArr, 0, 1) % add another item
NewBest=Best,
change_random(VarArr, 1, 0) % remove an item
)
).

The auxiliary predicate init_tent_values sets the tentative values of all variables in the array
randomly to 0 or 1: The change random predicate changes a randomly selected variable with
a tentative value of 0 to 1, or vice versa. Note that we are using an array, rather than a list
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of variables, to provide more convenient random access. The complete code and the auxiliary
predicate definitions can be found in the file knapsack 1s.ecl in the doc/examples directory
of your ECL'PS® installation.

2.4.4 Hill Climbing

The following hill-climbing implementation is an instance of the nested loop program schema
introduced above. The idea is to start from a configuration which is certainly a solution (the
empty knapsack) and do random uphill moves for at most MaxlIter times. Then we restart and
try again:

hill_climb(MaxTries, MaxIter, VarArr, Profit, Opt) :-
init_tent_values(VarArr, 0), % starting solution
(
for(I,1,MaxTries),
fromto(O, Optl, Opt4, Opt),
param(MaxIter,Profit,VarArr)

do
(
for(J,1,MaxIter),
fromto(Optl, Opt2, Opt3, Opt4),
param(I,VarArr,Profit)
do
Profit tent_get PrevProfit,
(
flip_random(VarArr), % try a move
Profit tent_get CurrentProfit,
CurrentProfit > PrevProfit, % is it uphill?
conflict_constraints(cap,[]) % is it a solution?
->
( CurrentProfit > Opt2 -> ¥ is it new optimum?
printf ("Found solution with profit %w/n",
[CurrentProfit]),
Opt3=CurrentProfit % accept and remember
Opt3=0pt2 % accept
)
Opt3=0pt2 % reject (move undone)
)
),
init_tent_values(VarArr, 0) % restart
).

The move operator is implemented as follows. It chooses a random variable X from the array of
variables and changes its tentative value from 0 to 1 or from 1 to 0 respectively:
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flip_random(VarArr) :-
functor (VarArr, _, N),
X is VarArr[random mod N + 1],
X tent_get 01d,
New is 1-01d,
X tent_set New.

Some further points are worth noticing;:

e The move operation and the acceptance test are within the condition part of the if-then-else
construct. As a consequence, if the acceptance test fails (the move either yields no solution
or does not improve the objective) the move is automatically undone by backtracking.

e To check whether the move is uphill, we retrieve the tentative value of the Profit-variable
before and after the move is done. Remember that, since the move operator changes the
tentative values of some variable, the tent_is/2 primitive will automatically update the
Profit variable.

e As in the random walk example, constraint satisfaction is checked by checking whether
the conflict constraint set is empty.
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2.4.5 Simulated Annealing

Simulated Annealing is a slightly more complex variant of local search. It follows the schema in
figure 7?7 and uses the same move operator as the hill-climbing example. The differences are in the
termination conditions and in the acceptance criterion for a move. The outer loop simulates the
cooling process by reducing the temperature variable T, the inner loop does random moves until
MaxIter steps have been done without improvement of the objective. The acceptance criterion
is the classical one for simulated annealing: Uphill moves are always accepted, downhill moves
with a probability that decreases with the temperature. The search routine must be invoked
with appropriate start and end temperatures, they should roughly correspond to the maximum
and minimum profit changes that a move can incur.

sim_anneal(Tinit, Tend, MaxIter, VarArr, Profit, Opt) :-
starting_solution(VarArr), % starting solution
( fromto(Tinit, T, Tnext, Tend),
fromto(0, Optl, Opt4, Opt),
param(MaxIter,Profit,VarArr,Tend)

do
printf("Temperature is %din", [T]),
( fromto(MaxIter, JO, J1, 0),
fromto(Optl, Opt2, Opt3, Opt4),
param(VarArr ,Profit,T)
do
Profit tent_get PrevProfit,
(  flip_random(VarArr), % try a move
Profit tent_get CurrentProfit,
exp ((CurrentProfit-PrevProfit)/T) > frandom,
conflict_constraints(cap,[]) % is it a solution?
->
( CurrentProfit > Opt2 -> ¥ is it new optimum?
printf ("Found solution with profit %w/n",
[CurrentProfit]),
Opt3=CurrentProfit, % accept and remember
J1=J0
; CurrentProfit > PrevProfit ->
Opt3=0pt2, J1=J0 % accept
Opt3=0pt2, J1 is JO-1 % accept
)
Opt3=0pt2, J1 is JO-1 %h reject
)
),
Tnext is max(fix(0.8%T),Tend)
).
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2.4.6 Tabu Search

Another variant of local search is tabu search. Here, a number of moves (usually the recent
moves) are remembered (the tabu list) to direct the search. Moves are selected by an acceptance
criterion, with a different (generally stronger) acceptance crtierion for moves in the tabu list.
As in most local search methods there are many possible variants and concrete instances of this
basic idea. For example, how a move would be added to or removed from the tabu list has to
be specified, along with the different acceptance criteria.

In the following simple example, the tabu list has a length determined by the parameter Tabu-
Size. The local moves consist of either adding the item with the best relative profit into the
knapsack, or removing the worst one from the knapsack. In both cases, the move gets rememe-
bered in the fixed-size tabu list, and the complementary move is forbidden for the next TabuSize
moves.

tabu_search(TabuSize, MaxIter, VarArr, Profit, Opt) :-
starting_solution(VarArr), % starting solution
tabu_init(TabuSize, none, Tabul),
( fromto(MaxIter, I0, I1, 0),
fromto(TabuO, Tabul, Tabu2, _),
fromto(0, Optl, Opt2, Opt),
param(VarArr,Profit)

do
(  try_set_best(VarArr, MovelId), 7 try uphill move
conflict_constraints(cap,[]), % is it a solution?
tabu_add(MoveId, Tabul, Tabu2) % is it allowed?
->

Profit tent_get CurrentProfit,

( CurrentProfit > Optl -> % is it new optimum?
printf ("Found solution with profit %wi/n", [CurrentProfit]),
Opt2=CurrentProfit % accept and remember
Opt2=0pt1 % accept

),

I1 is IO-1

(  try_clear_worst(VarArr, MoveId), % try downhill move
tabu_add(MoveId, Tabul, Tabu2) % is it allowed?

->
I1 is I0-1,

Opt2=0pt1 h reject
I1=0, % no moves possible, stop
Opt2=0pt1 %h reject
)
)
).
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In practice, the tabu search forms only a skeleton around which a complex search algorithm
is built. An example of this is applying tabu search to the job-shop problem, as described by
Nowicki and Smutnicki (A Fast Taboo Search Algorithm for the Job Shop Problem, Management
Science/Vol. 42, No. 6, June 1996).

2.5 Hybrid Search Methods

2.5.1 Weak-commitment Search
Introduction

Weak-commitment Search (WCS) can be seen as one of the simplest form of nogood learning.
It was proposed by Yokoo, and the main reference is:

Makoto Yokoo, Weak-commitment Search for Solving Constraint Satisfaction Prob-
lems, in AAAT'94, pg. 313-318.

WCS starts by giving tentative assignments to the variables of the problem. Labelling of the
variables are then performed, guided by a heuristic that considers the tentative values. If a dead-
end is reached, where no value can be assigned to a variable without violating some constraint,
then the current search is abandoned, and a new search restarted from scratch with an extra
‘nogood’ constraint. This ‘nogood’ constraint remembers the previously assigned values to the
already labelled variables in the just abandoned search. This combination of values lead to a
dead-end, and will not be tried again in the new search. This is in contrast to a conventional
backtracking search, where the search would not be entirely abandoned, but will try assigning
new alternative values to one (generally the last assigned) variable. The ‘weak-commitment’
refers to this feature of the search technique, wherein it is not ‘strongly committed’ to the
current branch in the search-space as in conventional backtracking search. The aim is that the
search would not be ‘stuck’ exhaustively exploring a particular region of a search-space that
might not lead to a solution. The search is instead guided by the ‘nogood’ constraints, which
are added (‘learned’) after each step.

The min-conflict heuristic of Minton et al. is the heuristic used to label variables. In this heuris-
tics, a ‘probe’ is performed when assigning a value to a variable, in which all the values in the
remaining domain of the variable (i.e. values which causes no constraint violations with exist-
ing assigned variables) are considered. The value chosen is the value that causes the minimum
conflict (constraint violation) with the tentative values of the still unlabelled variables.

Using the WCS

The code for the facilities described below is available in the file wcs.ecl in the doc/examples
directory of your ECL*PS® installation.

:- compile(wcs).
The WCS is invoked by calling the wes/2 predicate:

wes(+Vars, ++Initial)
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where Vars is a list of variables that are to be labelled by the search, and Initial is a list of
the initial tentative values that are assigned to the variables. Before calling the procedure, the
user must already have set up the initial constraints so that the search can proceed. During the
search process, additional nogood constraints would be added to direct the search.

Two example usage of the search are given: 1) a search for potentially all the solutions to the
N-Queens problem, and 2) a search for the first solution to the 3SAT problems, when given the
constraints on the variables in the form of Prolog facts.

The 3SAT example is simpler in that it involves only nogood constraints: the initial constraints
on the variables are simply translated into nogood constraints before wcs/2 is called. In the
N-Queens example, additional constraints on the placement of the queens have to be specified
before wecs/2 is called.

The constraints that are specified for the WCS have to apply to both the tentative and actual
values of the variables. Tentative values are implemented in this predicate using the repair
library, and thus the constraints have to be made known to the repair library. This is done
using the r_prop annotation provided by the library. With this annotation, the repair library
would apply the constraint to the tentative values as well as to the normal values.

Implementation of WCS

The WCS implementation presented here is a simple and straight-forward implementation in
ECL'PSE of the basic algorithm presented by Yokoo. The finite domains and the repair libraries
were used. The finite domain library was used to allow for the probing step, where all valid
values for a variable are tried. The repair library was used to allow for tentative values to be
associated with variables, as specified in the algorithm.

The repair library is used in the following way:

e Setting up the nogood constraints to apply to both the actual and tentative values of the
variables. This is done via the r_prop annotation.

e Setting the tentative value of a variable, either initially, or updating it at each restart.
This is done using tent_set/2.

e Counting the number of constraint violations on the tentative values for remaining unla-
belled variables as a variable is labelled to a particular value. This is done via conflict_constraints/1.

The predicate also has to implement the probing and restart steps of the WCS which replace
the usual tree search strategy. The probing step tries out all the possible valid values for a
variable, and picks the value which leads to the least number of conflicts (constraint violations)
with the tentative values in the unlabelled variables. This is done with minimize/2 from the
finite domains library:

label(Var) :-
minimize ((
indomain(Var),
conflict_constraints(Constraints),
length(Constraints, L) ), L).
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The above tries out the available values of Var, collect the constraints violations on the tentative
variables using conflict_constraints from the repair library, and counts the number of such
constraints using length/2. The value with the minimum number of constraint violation is
selected as the binding to Var by this procedure.

The search restart itself is quite easy to implement in ECL'PS®, as the just described labelling
procedure, label/1, does not leave behind a choice-point. Thus, when a dead-end is reached in
labelling values, a simple failure will cause the procedure to fail back to the beginning, i.e. before
any variable is labelled. The restart is then implemented by specifically creating a choice-point
at the start of the search, in the do_search/2 predicate:

do_search(Vars, _) :-
try_one_step(Vars, Vars),
/ remember solution as a nogood so it would not be tried again
remember_nogood(Vars) .
do_search(Vars, N) :-
% hit dead-end and failed, try again from start after recording nogoods
add_nogood(Vars), % put in most recent nogood
getval(nlabels, NL),
printf ("Restart %w - labelled %w/n",[N,NL]),
N1 is N + 1,
do_search(Vars, N1).

try_one_step/2 tries out one search, with the first argument containing the variables remaining
to be labelled (initially all the variables), and the second argument being all the variables.
This would fail if the labelling hits a dead-end and fails. In this case, the second clause of
do_search/2 will be tried, in which a new search is started. The only difference is that a new
nogood constraint will be remembered. Note that if try_one_step succeeds, then a solution
will have been generated. To allow for the search of more solutions, this solution is remembered
as a nogood in the first clause of do_search/2.

The main difficulty with implementing restart is to remember the values of labelled variables so
that it can be added as a nogood. The addition of the nogood must be done after the failure
and backtracking from the dead-end, so that it will not be removed by the backtracking. The
problem is that the backtracking process will also remove the bindings on the labelled variables.
Thus, some means is required to remember the nogood values from the point just before the
failure, which can then be retrieved after the failure to produce a new nogood constraint. Not
only do the values themselves have to be remembered, but which variable a particular value is
associated with has also to be remembered. This is done using the non-logical variable feature of
ECL'PS®, which allows copies of terms to be stored across backtracking. A non-logical variable
is declared by a variable/1 declaration:

:- local variable(varbindings).

which associates the name varbindings with a non-logical value. The value of this variable
can then be set via setval/2 and accessed via getval/2 built-ins. In order to remember which
variable is associated with which value, all the variables being labelled, which is organised as a
list, are copied using setval/2!:

'The call to copy_term/3 is used to strip attributes (domains etc) from any remaining variables in Vars.
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remember_nogood(Vars) :-
copy_term(Vars, NVars, _),
setval(varbindings,NVars) .

To remember the current labellings when a dead-end is reached, so that a new nogood constraint
can be added for the restarted search, remember_nogood/1 is called before the actual failure is
allow to occur:

label_next(Cons, Left0, Vars) :-
pick_var(Cons, LeftO, Var, Leftl),
incval(nlabels),
( label(Var) ->
try_one_step(Leftl, Vars)

remember_nogood(Vars) ,
fail
).

The routine first picks an unlabelled variable to label next, and if it is successful, the routine
recursively tries to label the remaining unlabelled variables. If not, label(Var) fails, and the
else case of the if-then-else is called to remember the nogoods before failing.

As already described, a new nogood constraint is added by the add_nogood/1 predicate, as
shown below:

add_nogood (NewConfig) :-
getval(varbindings, Partial),
(foreach(P, Partial), foreach(V,NewConfig),
fromto(NoGoods,NGO, NG1, []), fromto(NGVars,NGVO,NGV1,[]) do
(nonvar(P) ->
V tent_set P,
NGO = [P|NG1],
NGVO = [V|NGV1]
; NGO = NG1, % keep old tentative value
NGVO = NGV1

),
NoGoods “= NGVars r_prop. % no good

If a variable had been labelled in the previous search, the labelled value becomes the tentative
value. Otherwise, the variable retains the original tentative value.

The nogood constraints are implemented via the built-in sound difference operator, “=/2. For
example,

(4,B,C] "= [1,2,3]

states that the variables A, B and C cannot take on the values of 1, 2 and 3 respectively at the
same time. The operator will fail when [A,B,C] becomes ground and take on the values [1,2,3].

29



If any of the variables take on a value different from what is specified, “=/2 will (eventually)
succeed. The operator thus acts passively, waiting for the variables to be instantiated and then
check if they are taking on the ‘nogood’ values, and does not propagate or deduce any further
information.

The algorithm described by Yokoo does not specify how the next variable is selected for labelling.
In this routine, it is done by the pick_var/4 predicate:

pick_var(Cons, LeftO, Var, Left) :-
term_variables(Cons, VarsO),
deleteffc(Var0, Vars0, Varsi),
(is_validvar(Var0O, Left0O, Left) ->
Var = Var0 ; pick_varil(Varsi, LeftO, Var, Left)

The next variable to be labelled is chosen from the set of variables whose tentative values are
causing conflict. The repair library maintains the (repair) constraints which are causing conflict,
and any variable which are causing conflict will occur in these constraints. The set of conflicting
repair constraints is passed to pick_var/4 in the first argument: Cons. term_variables is used
to obtain all the variables that occur in these constraints. The fd predicate deleteffc is then
used to select a variable (picking the one with the smallest domain and most constraints), and
then this variable is checked to make sure that it is valid variable to be labelled, i.e. that it is
one of the variables to be labelled. The reason for this check is that it is expected that the WCS
routine will be used as part of a larger program, and the program may use the repair library
itself, and thus Cons may contain constraints unrelated to the WCS labelling.

Improving Implementation of Nogoods

As already stated, the built-in “=/2 used for nogood constraints is passive. More powerful
propagation can be added to the nogood constraint if the constraint is defined by the user. To
try this out, a somewhat more powerful constraint was tried out. This constraint does forward
checking, in that when only one variable specified in a nogood remains unlabelled, and the
labelled variables are labelled to the values specified by the nogood, the constraint that this last
variable cannot take on its nogood value can be propagated. This increase the efficiency of the
search in many cases, although at the price of a slightly more complex implementation of the
nogood constraint.

The nogood constraint is implemented as shown:

nogood([X|Xs], [VIVs]) :-
( X==V -> nogood(Xs, Vs)
; var(X) -> nogood(Xs, Vs, X, V)
; true

).
nogood([], [1, X1, V1) :- X1 ## V1.
nogood([X|Xs], [V|Vs], X1, V1) :-

( X==V -> nogood(Xs, Vs, X1, V1)
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; var(X) -> suspend(nogood([X1,X|Xs], [V1,V|Vs]), 3, X-X1->inst)
; true

).
The nogood-constraint is set up by
nogood(NGVars, NoGoods) r_prop.

The implementation checks whether NGVars matches NoGoods and causes failure if this is
the case. If a non-matching variable-value pair is encountered, the constraint disappears. If a
variable is encountered, nogood /4 continues checking, and if the variable turns out to be the only
one, the corresponding values gets removed from its domain. If a second variable is encountered,
the constraint re-suspends until at least one of them gets instantiated.

Obviously, this is still a relatively naive implementation of the nogood-technique. As the number
of nogoods grows, implementing them via indivudual constraints will become more and more
infeasible, and optimisation techniques like merging and indexing of the nogoods will be needed.
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