ECL!PS¢ Library Manual

Release 4.2

Pascal Brisset Hani El Sakkout Thom Friuhwirth Carmen Gervet
Micha Meier Stefano Novello Thierry Le Provost Joachim Schimpf
Kish Shen Mark Wallace

August 6, 1999

(© International Computers Limited and ECRC GmbH 1990-1995
© International Computers Limited and Imperial College London 1996-1999

Contents

1 Introduction

2 The Finite Domains Library

2.1 Terminology e
2.2 Constraint Predicates
2.3 Arithmetic Constraint Predicates
2.4 Logical Constraint Predicates
2.5 Evaluation Constraint Predicates
2.6 CHIP Compatibility Constraints Predicates
2.7 Utility Constraints Predicates
2.8 Domain Qutput e
2.9 Debugging Constraint Programs
2.10 Debugger Support L
2.11 Examples e e
2.12 General Guidelines to the Use of Domains
2.13 User-Defined Constraints
2.13.1 The fd Attribute
2.13.2 Domain Access Lo e
2.13.3 Domain Operations
2.13.4 Accessing Domain Variables o o000
2.13.5 Modifying Domain Variables,
2.14 EXtensions Lo e e e e e e e e e e
2.15 Example of Defining a New Constraint
2.16 Program Examples
2.16.1 Constraining Variable Pairs 0.
2.16.2 Puzzles L
2.16.3 Bin Packing
2.17 Current Known Restrictions and Bugs

3 Additional Finite Domain Constraints

3.1 Various Constraints on Lists e
3.2 Cumulative Constraint and Resource Profiles
3.3 Edgefinder e

© W W~ O W W

W N DN = e e e e e e e e e e s e
N = DN O O~ -1 OO U W wNn o oo

33
33
34
34

4 The Set Domain Library 35

4.1 Terminology e 35
4.2 Syntax e e e e e e 36
4.3 Thesolver e 36
4.4 Constraint predicateso e 36
4.5 Exampleso e 38
4.5.1 Set domains and interval reasoning 38
4.5.2 Subset-sum computation with convergent weight 39
4.5.3 The ternary Steiner system ofordern 41

4.6 When to use Set Variables and Constraints... 42
4.7 User-defined constraints L oo 43
4.7.1 The abstract set data structure L. 43
4.7.2 Set Domain access oL 44
4.7.3 Set variable modification00 0oL 45

4.8 Example of defining a new constraint 46
4.9 Set Domain outputo 48
4.10 Debugger e 49
5 Propia - A Library Supporting Generalised Propagation 51
Bl Overviewo e e e 51
5.2 Invoking and Using Propia. oL 51
5.3 Approximate Generalised Propagation 56
6 The Constraint Handling Rules Library 61
6.1 Introduction L 61
6.2 Using Constraint Handling Rules 62
6.3 Example Constraint Handlers 62
6.4 The CHR Language i 63
6.4.1 Constraint Handling Rules, 63
6.4.2 How CHRs Work 65

6.5 More on the CHR Language 66
6.5.1 Declarations o 66
6.5.2 ECL'PS® Clauses v v v vt v et it et e 67
6.5.3 Options e 67
6.5.4 CHR Built-In Predicates, 68

6.6 Labeling 69
6.7 Writing Good CHR Programs 70
6.7.1 Choosing CHRs 70
6.7.2 Optimizations e 71

6.8 Debugging CHR Programs 72
6.8.1 Using the Debugger 72

6.9 The Extended CHR Implementation 73
6.9.1 Invoking the extended CHR library 74
6.9.2 Syntactic Differences oo oo oo 74
6.9.3 Compiling 74
6.9.4 Semantics oL 75
6.9.5 Options and Built-In Predicates 76

ii

6.9.6 Compiler generated predicates 77

7 RANGE: A Basis For Numeric Solvers 79
7.1 Introduction oL e 79
7.2 Usage e 79
7.3 Library Predicates 79

7.3.1 Constraints e e 79
7.3.2 Retrieving Domain Information 81
7.3.3 Auxliliary Predicates oo 81
7.3.4 Handlers. 81
7.4 Attribute Structureo 82
7.5 Writing Higher Level Constraints 82

8 EPLEX: The ECL‘PS°/CPLEX Interface 85
8.1 Usage o o e 85
8.2 Versions and Licences L 85
8.3 Ranged and Typed Variables 86
8.4 Black-Box Interface o o 86

8.4.1 Linear Comstraints o 86
8.4.2 Linear ExXpressions oo 87
8.4.3 Optimization 87
8.4.4 Examples oL 87
8.5 Interface for CLP-Integration 88
8.5.1 Simplex Demons 88
8.5.2 Example. L 90
8.6 Low-Level Solver Interface 91
8.6.1 Setting up Solvers Manually 91
8.6.2 Running a Solver Explicitly 94
8.6.3 Accessing Solutions and other Solver State 94
8.6.4 Accessing Variable-Related Information 95
8.6.5 Collecting Linear Constraints 96
8.6.6 Low-Level Interface Examples 96
8.6.7 Access to Global Solver Parameters 97
8.7 External Solver Output and Log 98
8.8 FError Handling 98

9 FDPLEX: A Hybrid Finite Domain / Simplex Solver 99
9.1 Motivation 99
9.2 Usage o i i 99
9.3 Functionality L 99
9.4 FDPLEX Predicates e 100

10 REPAIR: Constraint-Based Repair 103
10.1 Introduction L e e e 103

10.1.1 Using the Library 103
10.2 Tentative Values 103
10.2.1 Attaching and Retrieving Tentative Values 103

iii

10.2.2 Tenability o 104

10.2.3 The Tentative Assignment 104
10.2.4 Variables with No Tentative Value 105
10.2.5 Unification e 105

10.3 Repair Constraints oL e e e 105
10.4 Conflict Sets L 106
10.5 Invariants oL e e e 107
10.6 Exampleso e 108
10.6.1 Interaction with Propagation 108
10.6.2 Repair Labeling 109

11 RIA: ECL'PS® Real Number Interval Arithmetic 111
11.1 Introduction L L e e e 111
11.1.1 What Riadoes 111
11.1.2 Usage o o o o 111
11.1.3 History o o e e e e e e e 112

11.2 Library Predicates 112
11.2.1 Ranged and Typed Variables 112
11.2.2 Constraints oo oo e e e 112
11.2.3 Arithmetic Expressions 00 112
11.2.4 Solving by Interval Propagation. 114
11.2.5 Reducing Ranges Further 114
11.2.6 Setting the Arc-Propagation Threshold 115
11.2.7 Obtaining Solver Statistics, 115

11.3 The Ria library algorithms 116
11.3.1 Arccomsistency e 116
11.3.2 Arc consistency threshold o000 116
11.3.3 Squash algorithm 117

v

Chapter 1

Introduction

This manual documents the major ECL!PS® libraries in particular the constaint solver li-
braries developed at ECRC and IC-Parc. They are enabling tools for the development and
delivery of planning and scheduling applications. Since this is an area of active research and
new developments, these libaries are subject to technical improvements, addition of new fea-
tures and redesign as part of our ongoing work. Most of this software is now being developed
and maintained in the context of the ICL-sponsored ECL'PS®-II project, but incorporates
contributions from other projects at IC-Parc, in particular the Furopean-funded CHIC-II
project.

Chapter 2

The Finite Domains Library

The library fd.pl implements constraints over finite domains that can contain integer as well
as atomic (i.e. atoms, strings, floats, etc.) and ground compound (e.g. f(a, b)) elements.
Modules that use the library must start with the directive

:- use_module(library(fd)).

2.1 Terminology

Some of the terms frequently used in this chapter are explained below.

domain variable A domain variable is a variable which can be instantiated only to a value
from a given finite set. Unification with a term outside of this domain fails. The domain
can be associated with the variable using the predicate ::/2. Built-in predicates that
expect domain variables treat atomic and other ground terms as variables with singleton
domains.

integer domain variable An integer domain variable is a domain variable whose domain
contains only integer numbers. Only such variables are accepted in inequality con-
straints and in rational terms. Note that a non-integer domain variable can become an
integer domain variable when the non-integer values are removed from its domain.

integer interval An integer interval is written as
Min .. Max
with integer expressions Min < Maxz and it represents the set
{Min, Min + 1, ..., Max}.
linear term A linear term is a linear integer combination of integer domain variables. The
constraint predicates accept linear terms even in a non-canonical form, containing func-
tors +, - and *, e.g.
5434+ (4—-6)+Y — X *3).

3

If the constraint predicates encounter a variable without a domain, they give it a de-
fault domain -10000000..10000000. Note that arithmetic operations on linear terms are
performed with single precision integers without any overflow checks. If the domain
ranges or coefficients are too large, the operation will not yield correct results. Both
the maximum and minimum value of a linear term must be representable as a single
precision integer, and so must be the maximum and minimum value of every c;z; term.

rational term A rational term is a term constructed from integers and integer domain vari-
ables using the arithmetic operations +,—,*, /. Besides that, every subexpression
of the form VarA/VarB must have an integer value in the solution. The system re-
places such a subexpression by a new variable X and adds a new constraint VarA #=
VarB * X. Similarly, all subexpressions of the form VarA *VarB are replaced by a new
variable X and a new constraint X #= VarA * VarB is added, so that in the internal
representation, the term is converted to a linear term.

constraint expression A constraint expression is either an arithmetic constraint or a com-
bination of constraint expressions using the logical FD connectives #/\/2, #\//2,

#H=>/2, #<=>/2, #\+/1.

2.2 Constraint Predicates

?Vars :: ?Domain
Vars is a variable or a list of variables with the associated domain Domain. Domain
can be a closed integer interval denoted as Min .. Maz, or a list of intervals and/or
atomic or ground elements. Although the domain can contain any compound terms
that contain no variable, the functor ../2 is reserved to denote integer intervals and
thus 1..10 always means an interval and a..b is not accepted as a compound domain
element.

If Varsis already a domain variable, its domain will be updated according to the new
domain; if it is instantiated, the predicate checks if the value lies in the domain. Other-
wise, if Vars is a free variable, it is converted to a domain variable. If Varsis a domain
variable and Domain is free, it is bound to the list of elements and integer intervals
representing the domain of the variable (see also dvar_domain/2 which returns the
actual domain).

When a free variable obtains a finite domain or when the domain of a domain variable
is updated, the constrained list of its suspend attribute is woken, if it has any.

::(?Var, ?Domain, ?B)
Bis equal to 1 iff the domain of the finite domain variable Var is a subset of Domain
and 0 otherwise.

atmost(+Number, ?List, +Val)
At most Number elements of the list List of domain variables and ground terms are
equal to the ground value Val.

constraints_number(+DVar, -Number)
Number is the number of constraints and suspended goals currently attached to the
variable DVar. Note that this number may not correspond to the exact number of

4

different constraints attached to DVar, as goals in different suspending lists are counted
separately. This predicate is often used when looking for the most or least constrained
variable from a set of domain variables (see also deleteffc/3).

element(?Index, +List, ?Value)
The Indez’th element of the ground list List is equal to Value. Index and Value can be
either plain variables, then a domain will be associated to them, or domain variables.
Whenever the domain of Index or Value is updated, the predicate is woken and the
domains are updated accordingly.

fd_eval(+E)

The constraint expression F is evaluated on runtime and no compile-time processing
is performed. This might be necessary in the situations where the default compile-time
transformation of the given expression is not suitable, e.g. because it would require type
or mode information.

indomain(+DVar)

This predicate instantiates the domain variable DVar to elements of its domain, on
backtracking the subsequent value is taken. It is used e.g. to find a value of DVar
which is consistent with all currently imposed constraints. If DVaris a ground term, it
succeeds. Otherwise, if it is not a domain variable, an error is raised.

is_domain(?Term)
Succeeds if Term is a domain variable.

is_integer_domain(?Term)
Succeeds if Term is an integer domain variable.

min_max(+Goal, 7C)

If Cis a linear term, a solution of the goal Goalis found that minimises the value of
C. If C'is a list of linear terms, the returned solution minimises the maximum value of
terms in the list. The solution is found using the branch and bound method; as soon as a
partial solution is found that is worse than a previously found solution, failure is forced
an a new solution is searched for. When a new better solution is found, the bound is
updated and the search restarts from the beginning. Each time a new better solution is
found, the event 280 is raised. If a solution does not make ' ground, an error is raised,
unless exactly one variable in the list C remains free, in which case the system tries to
instantiate it to its minimum.

minimize(+Goal, ?Term)

Similar to min_max/2, but Term must be an integer domain variable. When a new
better solution is found, the search does not restart from the beginning, but a failure
is forced and the search continues. Each time a new better solution is found, the event
280 is raised. Often minimize/2 is faster than min_max/2, sometimes min_max/2
might run faster, but it is difficult to predict which one is more appropriate for a given
problem.

min_max(+Goal, ?Template, ?Solution, ?7C)

minimize(+Goal, ?Template, ?Solution, ?Term)

Similar to min_max/2 and minimize/2, but the variables in Goal do not get in-
stantiated to their optimum solutions. Instead, Solutions will be unified with a copy of
Template where the variables are replaced with their minimized values. Typically, the
template will contain all or a subset of Goal’s variables.

min_max(+Goal, 7C, +Low, +High, +Percent)

minimize(+Goal, ?Term, +Low, +High, +Percent)

Similar to min_max/2 and minimize/2, however the branch and bound method
starts with the assumption that the value to be minimised is less than or equal to High.
Moreover, as soon as a solution is found whose minimised value is less than Low, this
solution is returned. Solutions within the range of Percent % are considered equivalent
and so the search for next better solution starts with a minimised value Percent % less
than the previously found one. Low, High and Percent must be integers.

min_max(+Goal, 7C, +Low, +High, +Percent, +Timeout)
minimize(+Goal, ?Term, +Low, +High, +Percent, +Timeout)
Similar to min_max/5 and minimize/5, but after 7Timeout seconds the search is

aborted and the best solution found so far is returned.

min_max(+Goal, ?Template, ?Solution, ?C, +Low, +High, +Percent, +Timeout)

minimize(+Goal, ?Template, ?Solution, ?Term, +Low, +High, +Percent, +Timeout)

The most general variants of the above, with all the optinal parameters.

2.3 Arithmetic Constraint Predicates

?T1 #\= ?T2 The value of the rational term 77 is not equal to the value of the rational
term T2.

?T1 #< ?T2 The value of the rational term 77 is less than the value of the rational term
T2.

?T1 #<= ?T2 The value of the rational term 77 is less than or equal to the value of the
rational term T2.

?T1 #= ?7T2 The value of the rational term 771 is equal to the value of the rational term
T2.

?T1 #> ?T2 The value of the rational term 77 is greater than the value of the rational
term T2.

?T1 #>= ?T2 The value of the rational term 7! is greater than or equal to the value of the
rational term T2.

2.4 Logical Constraint Predicates

The logical constraints can be used to combine simpler constraints and to build complex logical
constraint expressions. These constraints are preprocessed by the system and transformed
into a sequence of evaluation constraints and arithmetic constraints. The logical operators
are declared with the following precedences:

:- op(750, fy, #\+).

:- op(760, yfx, #/\).
:- op(770, yfx, #\/).
:- op(780, yfx, #=>).
:- op(790, yfx, #<=>).

#\+ +E1 FE1is false, i.e. the logical negation of the constraint expression F1 is imposed.

+E1 #/\+E2 Both constraint expressions F1 and F2 are true. This is equivalent to normal
conjunction (E1, E2).

+E1 #\/+E2 At least one of constraint expressions 7 and E2is true. As soon as one of
FE1 or E2 becomes false, the other constraint is imposed.

+E1 #=> +E2 The constraint expression FI implies the constraint expression F2. If F1
becomes true, then F2is imposed. If F2 becomes false, then the negation of E7 will be
imposed.

+E1 #<=> +E2 The constraint expression FI is equivalent to the constraint expression
FE2. If one expression becomes true, the other one will be imposed. If one expression
becomes false, the negation of the other one will be imposed.

2.5 Evaluation Constraint Predicates

These constraint predicates evaluate given constraint expression(s) and associate its truth
value with a boolean variable. They can be very useful to define more complex constraints.
They can be used both to test entailment of a constraint and to impose a constraint or its
negation on the current constraint store.

?B isd +Expr B is equal to 1 iff the constraint expression Fzpr is true, 0 otherwise. This
predicate is the constraint counterpart of is/2 - it takes a constraint expression, trans-
forms all its subexpressions into calls to predicates with arity one higher and combines
the resulting boolean values to yield B. For instance,

Bisd X #=Y
is equivalent to
#=(X, Y, B)

#<(?T1, ?T2, ?B) Bis equal to 1 iff the value of the rational term 77 is less than the value
of the rational term T2, 0 otherwise.

#<=(?T1, 7T2, ?B) Bisequal to 1 iff the value of the rational term 7' is less than or equal
to the value of the rational term T2, 0 otherwise.

#=(?T1, ?T2, ?B) Bis equal to 1 iff the value of the rational term 71 is equal to the value
of the rational term T2, 0 otherwise.

#\=(?T1, ?T2, ?B) Bis equal to 1 iff the value of the rational term 77 is different from
the value of the rational term T2, 0 otherwise.

#>(?T1, ?T2, ?B) Bis equal to 1 iff the value of the rational term 7 is greater than the
value of the rational term T2, 0 otherwise.

#>=(7T1, 7T2, ?B) Bis equal to 1 iff the value of the rational term 71 is greater than or
equal to the value of the rational term T2, 0 otherwise.

#/\(+E1, +E2, ?B) B is equal to 1 iff both constraint expressions £ and FE2 are true, 0
otherwise.

#(+E1, +E2, ?B) Bis equal to 1 iff at least one of the constraint expressions FI and F2
is true, 0 otherwise.

#<=>(4+E1, +E2, ?B) B is equal to 1 iff the constraint expression E! is equivalent to the
constraint expression F2, 0 otherwise.

#=>(+E1, +E2, ?B) Bis equal to 1iff the constraint expression E1implies the constraint
expression 2, 0 otherwise.

#\+(+E1, ?B) Bis equal to 1 iff £ is false, 0 otherwise.

2.6 CHIP Compatibility Constraints Predicates

These constraints, defined in the module fd_chip, are provided for CHIP v.3 compatibility
and they are defined using native ECL‘PS® constraints. Their source is available in the file

fd_chip.pl.

?T1 ## ?T2 The value of the rational term 77 is not equal to the value of the rational
term T2.

alldistinct(?List) All elements of List (domain variables and ground terms) are pairwise
different.

deleteff(?Var, +List, -Rest) This predicate is used to select a variable from a list of do-
main variables which has the smallest domain. Var is the selected variable from List,
Rest is the rest of the list without Var.

deleteffe(?Var, +List, -Rest) This predicate is used to select the most constrained vari-
able from a list of domain variables. Var is the selected variable from List which has
the least domain and which has the most constraints attached to it. Rest is the rest of
the list without Var.

deletemin(?Var, +List, -Rest) This predicate is used to select the domain variable with
the smallest lower domain bound from a list of domain variables. Var is the selected
variable from List, Rest is the rest of the list without Var.

Listis a list of domain variables or integers. Integers are treated as if they were variables
with singleton domains.

dom(+DVar, -List) Listis the list of elements in the domain of the domain variable DVar.
The predicate ::/2 can also be used to query the domain of a domain variable, however
it yields a list of intervals.

NOTE: This predicate should not be used in ECL'PS® programs, because all intervals
in the domain will be expanded into element lists which causes unnecessary space and
time overhead. Unless an explicit list representation is required, finite domains should
be processed by the family of the dom_* predicates in sections 2.13.2 and 2.13.3.

maxdomain(+DVar, -Max) Maz is the maximum value in the domain of the integer do-
main variable DVar.

mindomain(+DVar, -Min) Minis the minimum value in the domain of the integer domain
variable DVar.

2.7 Utility Constraints Predicates

These constraints are defined in the module fd_util and they consist of useful predicates that
are often needed in constraint programs. Their source code is available in the file fd_util.pl.

#(?Min, ?CstList, ?Max) The cardinality operator, as described e.g. in [?]. CstList is
a list of constraint expressions and this operator states that at least Min and at most
Maz out of them are valid.

dvar_domain_list(?Var, ?List) List is the list of elements in the domain of the domain
variable or ground term DVar. The predicate ::/2 can also be used to query the domain
of a domain variable, however it yields a list of intervals.

outof(?Var, +List) The domain variable Var is different from all elements of the list List.

labeling(+List) The elements of the List are instantiated using the indomain/1 predicate.

2.8 Domain Output

The library fd_domain.pl contains output macros which cause an fd attribute as well as
a domain to be printed as lists that represent the domain values. A domain variable is an
attributed variable whose fd attribute has a print handler which prints it in the same format.
For instance,

[eclipse 4]: X::1..10, dvar_attribute(X, A), A = fd with domain:D.

X
D

X{[1..10]}
[1..10]

A = [1..10]

yes.

leclipse 5]: A::1..10, printf("/mw", A).
A{[1..10]%}

A = A{[1..10]}

yes.

2.9 Debugging Constraint Programs

The ECL'PS® debugger is a low-level debugger which is suitable only to debug small constraint
programs or to debug small parts of larger programs. Typically, one would use this debugger
to debug user-defined constraints and Prolog data processing. When they are known to work
properly, this debugger may not be helpful enough to find bugs (correctness debugging) or to
speed up a working program (performance debugging). For this, Grace (Graphical Constraint
Environment) [?] is the appropriate tool. Refer to the separate Grace documentation for
instructions how to use it.

2.10 Debugger Support

The ECLPS® debugger supports debugging and tracing of finite domain programs in various
ways. First of all, the debugger commands that handle suspended goals can be used to display
suspended constraints (d, =, u) or to skip to a particular constraint (w, i). Note that most
of the constraints are displayed using a write macro, their internal form is different.
Successive updates of a domain variable can be traced using the debug event Hd. When
used, the debugger prompts for a variable name and then it skips to the port at which the
domain of this variable was reduced. When a newline is typed instead of a variable name, it
skips to the update of the previously entered variable.

A sequence of woken goals can be skipped using the debug event Hw.

2.11 Examples

A very simple example of using the finite domains is the send more money puzzle:

:- use_module(library(£fd)).

send(List) :-

List = [S, E, N, D, M, 0, R, Y],

List :: 0..9,

alldistinct(List),

1000*S+100*xE+10*N+D + 1000%M+100*%0+10*R+E #=
10000*%M+1000*%0+100*N+10*E+Y

M ## O,

labeling(List).

The problem is stated very simply, one just writes down the conditions that must hold for
the involved variables and then uses the default a labeling procedure, i.e. the order in which

10

the variables will be instantiated. When executing send/1, the variables S, M and O are
instantiated even before the labeling procedure starts. When a consistent value for the variable
F is found (5), and this value is propagated to the other variables, all variables become
instantiated and thus the rest of the labeling procedure only checks groundness of the list.
A slightly more elaborate example is the eight queens puzzle. Let us show a solution for this
problem generalised to N queens and also enhanced by a cost function that evaluates every
solution. The cost can be for example col; — row; for the i-th queen. We are now looking
for the solution with the smallest cost, i.e. one for which the maximum of all col; — row; is
minimal:

:- use_module(library(£fd)).

% Find the minimal solution for the N-queens problem
cqueens (N, List) :-

make_list(N, List),

List :: 1..N,

constrain_queens(List),

make_cost(1l, List, C),

min_max(labeling(List), C).

% Set up the constraints for the queens
constrain_queens([]).
constrain_queens([X|Y]) :-

safe(X, Y, 1),

constrain_queens(Y).

safe(_, [1,).

safe(X, [YIT], K) :-
noattack(X, Y, K) ,
Ki is K + 1 ,
safe(X, T, K1).

% Queens in rows X and Y cannot attack each other
noattack(X, Y, K) :-

X ## Y,

X+ K ## Y,

X -K ## Y.

% Create a list with N variables
make_list(0, []) :- !'.
make_list(N, [_|Rest]) :-

N1 is N - 1,

make_list(N1, Rest).

% Set up the cost expression
make_cost(_, [1, [1).
make_cost(N, [Var|L], [N-Var|Term]) :-

11

N1 is N + 1,
make_cost(N1, L, Term).

labeling([]1) :- !.

labeling(L) :-
deleteff(Var, L, Rest),
indomain(Var),
labeling(Rest).

The approach is similar to the previous example: first we create the domain variables, one
for each column of the board, whose values will be the rows. We state constraints which
must hold between every pair of queens and finally we make the cost term in the format
required for the min_max/2 predicate. The labeling predicate selects the most constrained
variable for instantiation using the deleteff/3 predicate. When running the example, we get
the following result:

[eclipse 19]: cqueens(8, X).
Found a solution with cost 5
Found a solution with cost 4

Xx=1[5,3,1,7, 2, 8, 6, 4]
yes.

The time needed to find the minimal solution is about five times shorter than the time to
generate all solutions. This shows the advantage of the branch and bound method. Note also
that the board for this 'minimal’ solution looks very nice.

2.12 General Guidelines to the Use of Domains

The send more money example already shows the general principle of solving problems using
finite domain constraints:

e First the variables are defined and their domains are specified.

e Then the constraints are imposed on these variables. In the above example the con-
straints are simply built-in predicates. For more complicated problems it is often nec-
essary to define Prolog predicates that process the variables are impose constraints on
them.

o Ifstating the constraints alone did not solve the problem, one tries to assign values to the
variables. Since every instantiation immediately wakes all constraints associated to the
variable, and changes are propagated to the other variables, the search space is usually
quickly reduced and either an early failure occurs or the domains of other variables
are reduced or directly instantiated. This labeling procedure is therefore incomparably
more efficient than the simple generate and test algorithm.

The complexity of the program and the efficiency of the solving depends very much on the way
these three points are performed. Quite frequently it is possible to state the same problem
using different sets of variables with different domains. A guideline is that the search space

12

should be as small as possible, and thus e.g. five variables with domain 1..10 (i.e. search
space size is 10°) are likely to be better than twenty variables with domain 0..1 (space size
920),

The choice of constraints is also very important. Sometimes a redundant constraint, i.e. one
that follows from the other constraints, can speed up the search considerably. This is because
the system does not propagate all information it has to all concerned variables, because most
of the time this would not bring anything, and thus it would slow down the search. Another
reason is that the library performs no meta-level reasoning on constraints themselves (unlike
the CHR library). For example, the constraints

X+ Y #= 10, X + Y + Z #= 14

allow only the value 4 for Z, however the system is not able to deduce this and thus it has to
be provided as a redundant constraint.

The constraints should be stated in such a way that allows the system to propagate all
important domain updates to the appropriate variables.

Another rule of thumb is that creation of choice points should be delayed as long as possible,
disjunctive constraints, if there are any, should be postponed as much as possible. Labeling,
i.e. value choosing, should be done after all deterministic operations are carried out.

The choice of the labeling procedure is perhaps the most sensitive one. It is quite common
that only a very minor change in the order of instantiated variables can speed up or slow
down the search by several orders of magnitude. There are only very few common rules
available. If the search space is large, it usually pays off to spend more time in selecting the
next variable to instantiate. The provided predicates deleteff/3 and deleteffc/3 can be
used to select the most constrained variable, but in many problems it is possible to extract
even more information about which variable to instantiate next.

Often it is necessary to try out several approaches and see how they work, if they do. The
profiler and the statistics package can be of a great help here, it can point to predicates which
are executed too often, or choice points unnecessarily backtracked over.

2.13 User-Defined Constraints

The fd.pl library defines a set of low-level predicates which allow the user to process domain
variables and their domains, modify them and write new constraints predicates.

2.13.1 The fd Attribute
A domain variable is a metaterm. The fd.pl library defines a metaterm attribute
fd with [domain : D, min : Mi, max : Ma,any : A]

which stores the domain information together with several suspension lists. The attribute
arguments have the following meaning;:

¢ domain - the representation of the domain itself. Domains are treated as abstract data
types, the users should not access them directly, but only using access and modification
predicates listed below.

e min - a suspension list that should be woken when the minimum of the domain is
updated

13

e max - a suspension list that should be woken when the maximum of the domain is
updated

e any - a suspension list that should be woken when the domain is reduced no matter
how.

The suspension list names can be used in the predicate suspend/3 to denote an appropriate
waking condition.

The attribute of a domain variable can be accessed with the predicate dvar_attribute/2 or
by unification in a matching clause:

get_attribute(_{fd:Attr}, A) :-
-7->

Attr = A.

Note however, that this matching clause succeeds even if the first argument is a metaterm
but its fd attribute is empty. To succeed only for domain variables, the clause must be

get_attribute(_{fd:Attr}, A) :-

-7->
nonvar (Attr),
Attr = A.

or to access directly attribute arguments, e.g. the domain

get_domain(_{fd:fd with domain:D}, Dom) :-
-7->

D = Dom.

The dvar_attribute/2 has the advantage that it returns an attribute-like structure even if
its argument is already instantiated, which is quite useful when coding fd constraints.

The attribute arguments can be accessed by macros from the structures.pl library, if e.g.
Attr is the attribute of a domain variable, the max list can be obtained as

arg(max of fd, Attr, Max)

or, using a unification

Attr = fd with max:Max

2.13.2 Domain Access

The domains are represented as abstract data types, the users are not supposed to access
them directly, instead a number of predicates and macros are available to allow operations
on domains.

dom_check_in(+Element, +Dom) Succeed if the integer Flement is in the domain Dom.

dom_compare(?Res, +Doml, +Dom2) Works like compare/3 for terms. Resis unified
with

e = iff Dom1 is equal to Dom?2,

14

o < iff Doml! is a proper subset of Dom2,
o > iff Dom2is a proper subset of Doml.

Fails if neither domain is a subset of the other one.

dom_member(?Element, +Dom) Successively instantiate Element to the values in the
domain Dom (similar to indomain/1).

dom_range(+Dom, ?Min, ?Max) Return the minimum and maximum value in the in-
teger domain Dom. Fails if Dom is a domain containing non-integer elements. This
predicate can also be used to test if a given domain is integer or not.

dom_size(4+Dom, ?Size) Size is the number of elements in the domain Dom.

2.13.3 Domain Operations

The following predicates operate on domains alone, without modifying domain variables. Most
of them return the size of the resulting domain which can be used to test if any modification
was done.

dom_copy(+Doml, -Dom2) Dom2 is a copy of the domain Dom1. Since the updates are
done in-place, two domain variables must not share the same physical domain and so
when defining a new variable with an existing domain, the domain has to be copied
first.

dom _difference(+Dom1l, +Dom2, -DomDiff, ?Size) The domain DomDifferenceis Dom1
\ Dom2 and Size is the number of its elements. Fails if Dom1 is a subset of Dom2.

dom_intersection(+Dom1l, +Dom?2, -DomlInt, ?Size) The domain Domlint is the in-
tersection of domains Dom?! and Dom?2 and Size is the number of its elements. Fails if
the intersection is empty.

dom_union(+Doml, +Dom?2, -DomUnion, ?Size) The domain Dom Union is the union
of domains Dom1 and Dom?2 and Size is the number of its elements. Note that the main
use of the predicate is to yield the most specific generalisation of two domains, in the
usual cases the domains become smaller, not bigger.

list_to_dom(+List, -Dom) Convert a list of ground terms and integer intervals into a do-
main Dom. It does not have to be sorted and integers and intervals may overlap.

integer _list_to_dom(+List, -Dom) Similar to list_to_.dom/2 , but the input list should
contain only integers and integer intervals and it should be sorted. This predicate will
merge adjacent integers and intervals into larges intervals whenever possible. typically,
this predicate should be used to convert a sorted list of integers into a finite domain. If
the list is known to already contain proper intervals, sorted_list_to_.dom/2 could be
used instead.

sorted_list_to_dom(+List, -Dom) Similar to list_to_.dom/2 , but the input list is as-
sumed to be already in the correct format, i.e. sorted and with correct integer and
interval values. No checking on the list contents is performed.

15

2.13.4 Accessing Domain Variables

The following predicates perform various operations:

dvar_attribute(+DVar, -Attrib) Atirib is the attribute of the domain variable DVar. If
DVaris instantiated, Attribis bound to an attribute with a singleton domain and empty
suspension lists.

dvar_domain(+DVar, -Dom) Dom is the domain of the domain variable DVar. If DVar
is instantiated, Dom is bound to a singleton domain.

var_fd(4+Var, +Dom) If Var is a free variable, is becomes a domain variable with the
domain Dom and with empty suspension lists. The domain Dom is copied to make
in-place updates logically sound. If Var is already a domain variable, its domain is
intersected with the domain Dom. Fails if Varis not a variable.

dvar_msg(+DVarl, +DVar2, -MsgDVar) MsgVaris a domain variable which is the most
specific generalisation of domain variables or ground values Vari and Var2.

2.13.5 Modifying Domain Variables

When the domain of a domain variable is reduced, some suspension lists stored in the attribute
have to be scheduled and woken.

NOTE: In the fd.pl library the suspension lists are woken precisely when the event associated
with the list occurs. Thus e.g. the min list is woken if and only if the minimum value of
the variable’s domain is changed, but it is not woken when the variable is instantiated to this
minimum or when another element from the domain is removed. In this way, user-defined
constraints can rely on the fact that when they are executed, the domain was updated in the
expected way. On the other hand, user-defined constraints should also comply with this rule
and they should take care not to wake lists when their waking condition did not occur. Most
predicates in this section actually do all the work themselves so that the user predicates may
ignore scheduling and waking completely.

dvar_remove_element(+DVar, +El) The element Flis removed from the domain of DVar
and all concerned lists are woken. If the resulting domain is empty, this predicate fails.
If it is a singleton, DVar is instantiated. If the domain does not contain the element,
no updates are made.

dvar_remove_smaller(+DVar, +E]) Remove all elements in the domain of DVar which
are smaller than the integer El and wake all concerned lists. If the resulting domain is
empty, this predicate fails, if it is a singleton, DVar is instantiated.

dvar_remove_greater(+DVar, +EI) Remove all elements in the domain of DVar which
are greater than the integer Fl and wake all concerned lists. If the resulting domain is
empty, this predicate fails, if it is a singleton, DVar is instantiated.

dvar_update(+DVar, +NewDom) If the size of the domain NewDom is 0, the predicate
fails. If it is 1, the domain variable DVar is instantiated to the value in the domain.
Otherwise, if the size of the new domain is smaller than the size of the domain variable’s
domain, the domain of DVar is replaced by NewDom, the appropriate suspension lists

16

in its attribute are passed to the waking scheduler and so is the constrained list in
the suspend attribute of the domain variable. If the size of the new domain is equal
to the old one, no updates and no waking is done, i.e. this predicate does not check an
explicit equality of both domains. If the size of the new domain is greater than the old
one, an error is raised.

dvar_replace(+DVar, +NewDom) This predicate is similar to dvar_update/2, but it
does not propagate the changes, i.e. no waking is done. If the size of the new domain
is 1, DVar is not instantiated, but it is given this singleton domain. This predicate is
useful for local consistency checks.

2.14 Extensions

The fd.pl library can be used as a basis for further extensions. There are several hooks that
make the interfacing easier:

e Each time a new domain variable is created, either in the ::/2 predicate or by giving it a
default domain in a rational arithmetic expression, the predicate new_domain_var/1
is called with the variable as argument. Its default definition does nothing. To use it, it
is necessary to redefine it, i.e. to recompile it in the fd module, e.g. using compile/2
or the tool body of compile_term/1.

e Default domains are created in the predicate default_domain/1 in the fd module, its
default definition is

default_domain(Var) :- Var :: -10000000..10000000.

It is possible to change default domains by redefining this predicate in the fd module.

2.15 Example of Defining a New Constraint

We will demonstrate creation of new constraints on the following example. To show that the
constraints are not restricted to linear terms, we can take the constraint

X24+Y2<C.

Assuming that X and Y are domain variables, we would like to define such a predicate that will
be woken as soon as one or both variables’ domains are updated in such a way that would
require updating the other variable’s domain, i.e. updates that would propagate via this
constraint. We will define the predicate sq(X, Y, C) which will implement this constraint:

:- use_module(library(£fd)).

% AxA + B*B <= C

sq(A, B, C) :-
dvar_domain(A, Domi),
dvar_domain(B, DomB),
dom_range(DomA, MinA, MaxA),

17

dom_range(DomB, MinB, MaxB),

MiA2 is MinA*MinA,

MaB2 is MaxB*MaxB,

(MiA2 + MaB2 > C ->
NewMaxB is fix(sqrt(C - MiA2)),
dvar_remove_greater(B, NewMaxB)

NewMaxB = MaxB

),

MaA2 is MaxA*MaxA,

MiB2 is MinB*MinB,

(MaA2 + MiB2 > C ->
NewMaxA is fix(sqrt(C - MiB2)),
dvar_remove_greater(A, NewMaxA)

NewMaxA = MaxA

),

(NewMaxA*NewMaxA + NewMaxB*NewMaxB =< C ->
true
suspend(sq(A, B, C), 3, (A, B)->min)

),

wake. h Trigger the propagation

The steps to be executed when this constraint becomes active, i.e. when the predicate sq/3
is called or woken are the following;:

1.

We access the domains of the two variables using the predicate dvar_domain/2 and
and obtain their bounds using dom_range/3. Note that it may happen that one of the
two variables is already instantiated, but these predicates still work as if the variable
had a singleton domain.

. We check if the maximum of one or the other variable is still consistent with this

constraint, i.e. if there is a value in the other variable’s domain that satisfies the
constraint together with this maximum.

. If the maximum value is no longer consistent, we compute the new maximum of the

domain, and then update the domain so that all values greater than this value are
removed using the predicate dvar_remove_greater/2. This predicate also wakes all
concerned suspension lists and instantiates the variable if its new domain is a singleton.

After checking the updates for both variables we test if the constraint is now satisfied for
all values in the new domains. If this is not the case, we have to suspend the predicate
so that it is woken as soon as the minimum of either domain is changed. This is done
using the predicate suspend/3.

. The last action is to trigger the execution of all goals that are waiting for the updates

we have made. It is necessary to wake these goals after inserting the new suspen-
sion, otherwise updates made in the woken goals would not be propagated back to this
constraint.

18

Here is what we get:

[eclipse 20]: [X,Y]::1..10, sq(X, Y, 50).

X
Y

X{[1..71}
Y{[1..71}

Delayed goals:

sq(X{[1..71}, Y{[1..7]1}, 50)

yes.

[eclipse 21]: [X,Y]::1..10, sq(X, Y, 50), X #> 5.

Y
X

v{[1..3]1}
x{[6, 71}

Delayed goals:

sq(x{[6, 71}, Y{[1..3]1}, 50)

yes.

leclipse 22]: [X,Y]::1..10, sq(X, Y, 50), X #> 5, Y #> 1.

X=6
Y = Y{[2, 3]}
yes.

[eclipse 23]: [X,Y]::1..10, sq(X, Y, 50), X #> 5, Y #> 2.

X=6
Y =3
yes.

2.16 Program Examples

In this section we present some FD programs that show various aspects of the library usage.
If you want to try out the code and experiment with it, the source of most programs is in
demo/extensions/fd.

2.16.1 Constraining Variable Pairs

The finite domain library gives the user the possibility to impose constraints on the value of
a variable. How, in general, is it possible to impose constraints on two or more variables? For
example, let us assume that we have a set of colours and we want to define that some colours
fit to each other and other do not. This should work in such a way as to propagate possible
changes in the domains as soon as this becomes possible.

Let us assume we have a symmetric relation that defines which colours fit to each other:

% The basic relation
fit(yellow, blue).
fit(yellow, red).

19

fit(blue, yellow).
fit(red, yellow).

fit(green, orange).
fit(orange, green).

The predicate nice_pair(X, Y) is a constraint and any change of the possible values of X
or Y is propagated to the other variable. There are many ways in which this pairing can be
defined in ECL‘PS®. They are different solutions with different properties, but they yield the
same results.

2.16.1.1 User-Defined Constraints

We use more or less directly the low-level primitives to handle finite domain variables. We
collect all consistent values for the two variables, remove all other values from their domains
and then suspend the predicate until one of its arguments is updated:

nice_pair(A, B) :-
% get the domains of both variables
dvar_domain(A, DA),
dvar_domain(B, DB),
% make a list of respective matching colours
setof (Y, X~ (dom_member (X, DA), fit(X, Y)), BL),
setof (X, Y (dom_member(Y, DB), fit(X, Y)), AL),
% convert the lists to domains
sorted_list_to_dom(AL, DA1),
sorted_list_to_dom(BL, DB1),
% intersect the lists with the original domains
dom_intersection(DA, DA1, DA_New, _),
dom_intersection(DB, DB1, DB_New, _),
% and impose the result on the variables
dvar_update(A, DA_New),
dvar_update(B, DB_New),
% unless one variable is already instantiated, suspend
% and wake as soon as any element of the domain is removed
(var(4), var(B) ->
suspend(nice_pair3(A, B), 2, [A,B]->any)

true
).
% Declare the domains
colour(A) :-
findall(X, fit(X, _), L),
A :: L.

After defining the domains, we can state the constraints:

[eclipse 5]: colour([A,B,C]), nice_pair(4, B), nice_pair(B, C), A ## green.

20

B = B{[blue, green, red, yellow]}
C = C{[blue, orange, red, yellow]}
A = A{[blue, orange, red, yellow]}

Delayed goals:
nice_pair(A{[blue, orange, red, yellow]}, B{[blue, green, red, yellow]})
nice_pair(B{[blue, green, red, yellowl}, C{[blue, orange, red, yellow]})

This way of defining new constraints is often the most efficient one, but usually also the most
tedious one.

2.16.1.2 Using the element Constraint

In this case we use the available primitive in the fd library. Whenever it is necessary to
associate a fd variable with some other fd variable, the element/3 constraint is a likely
candidate. Sometimes it is rather awkward to use, because additional variables must be used,
but it gives enough power:

nice_pair(A, B) :-
element (I, [yellow, yellow, blue, red, green, orangel, A),
element(I, [blue, red, yellow, yellow, orange, green], B).

We define a new variable I which is a sort of index into the clauses of the b_nice_pair predicate.
The first colour list contains colours in the first argument of b_nice_pair/2 and the second list
contains colours from the second argument. The propagation is similar to the previous one.
When element/3 can be used, it is usually faster than the previous approach, because
element /3 is partly hardcoded in C.

2.16.1.3 Using Evaluation Constraints

We can also ancode directly the relations between elements in the domains of the two variables:

nice_pair(A, B) :-
np(A, B),
np(B, A4).

np(4A, B) :-
[A,B] :: [yellow, blue, red, orange, green],
A #= yellow #=> B :: [blue, red],
A #= blue #=> B #= yellow,
A #= red #=> B #= yellow,
A #= green #=> B #= orange,
A #= orange #=> B #= green.

This method is quite simple and does not need any special analysis, on the other hand it
potentially creates a huge number of auxiliary constraints and variables.

21

2.16.1.4 Using Generalised Propagation

Propia is the first candidate to convert an existing relation into a constraint. One can simply
use infers most to achieve the propagation:

nice_pair(A, B) :-
fit(A, B) infers most.

Using Propia is usually very easy and the programs are short and readable, so that this style
of constraints writing is quite useful e.g. for teaching. It is not as efficient as with user-
defined constraints, but if the amount of propagation is more important that the efficiency of
the constraint itself, it can yield good results, too.

2.16.1.5 Using Constraint Handling Rules

The domain solver in CHR can be used directly with the element/3 constraint as well,
however it is also possible to define directly domains consisting of pairs:

:- 1lib(chr).
:- chr(1lib(domain)).

nice_pair(A, B) :-
setof (X-Y, fit(X, Y), L),
A-B :: L.

The pairs are then constrained accordingly:

[eclipse 2]: nice_pair(A, B), nice_pair(B, C), A ne orange.

B =B
Cc=2¢
A=A
Constraints:

(9) A_g1484 - B_g1516 :: [blue - yellow, green - orange, red - yellow,
yellow - blue, yellow - red]

(10) A_g1484 :: [blue, green, red, yellow]

(12) B_g1516 - C_g3730 :: [blue - yellow, orange - green, red - yellow,
yellow - blue, yellow - red]

(13) B_g1516 :: [blue, orange, red, yellow]

(14) C_g3730 :: [blue, green, red, yellow]

2.16.2 Puzzles

Various kinds of puzzles can be easily solved using finite domains. We show here the classical
Lewis Carrol’s puzzle with five houses and a zebra:

Five men with different nationalities live in the first five houses
of a street. They practise five distinct professions, and each of

22

them has a favourite animal and a favourite drink, all of them
different. The five houses are painted in different colours.

The Englishman lives in a red house.

The Spaniard owns a dog.

The Japanese is a painter.

Thw Italian drinks tea.

The Norwegian lives in the first house on the left.
The owner of the green house drinks coffee.

The green house is on the right of the white one.
The sculptor breeds snails.

The diplomat lives in the yellow house.

Milk is drunk in the middle house.

The Norwegian’s house is next to the blue one.

The violinist drinks fruit juice.

The fox is in a house next to that of the doctor.
The horse is in a house next to that of the diplomat.

Who owns a Zebra, and who drinks water?

One may be tempted to define five variables Nationality, Profession, Colour, etc. with atomic
domains to represent the problem. Then, however, it is quite difficult to express equalities
over these different domains. A much simpler solution is to define 5x5 integer variables for
each mentioned item, to number the houses from one to five and to represent the fact that
e.g. Italian drinks tea by equating Italian = Tea. The value of both variables represents then
the number of their house. In this way, no special constraints are needed and the problem is
very easily described:

:- lib(£d).

zebra([zebra(Zebra), water(Water)]) :-
Sol = [Nat, Color, Profession, Pet, Drink],
Nat = [English, Spaniard, Japanese, Italian, Norwegian],
Color = [Red, Green, White, Yellow, Blue],
Profession = [Painter, Sculptor, Diplomat, Violinist, Doctor],
Pet = [Dog, Snails, Fox, Horse, Zebral],
Drink = [Tea, Coffee, Milk, Juice, Water],

% we specify the domains and the fact
% that the values are exclusive

Nat :: 1..5,

Color :: 1..5,
Profession :: 1..5,
Pet :: 1..5,

Drink :: 1..5,
alldifferent(Nat),
alldifferent(Color),
alldifferent(Profession),

23

alldifferent(Pet),
alldifferent(Drink),

% and here follow the actual constraints
English = Red,

Spaniard = Dog,

Japanese = Painter,

Italian = Tea,

Norwegian = 1,

Green = Coffee,

Green #= White + 1,

Sculptor = Snails,

Diplomat = Yellow,

Milk = 3,

Distl #= Norwegian - Blue, Distl :: [-1, 1],
Violinist = Juice,

Dist2 #= Fox - Doctor, Dist2 :: [-1, 1],
Dist3 #= Horse - Diplomat, Dist3 :: [-1, 1],

flatten(Sol, List),
labeling(List).

2.16.3 Bin Packing

In this type of problems the goal is to pack a certain amount of different things into the

minimal number of bins under specific constraints. Let us solve an example given by Andre

Vellino in the Usenet group comp.lang.prolog, June 93:

e There are 5 types of components:

glass, plastic, steel, wood, copper

e There are three types of bins:

red, blue, green

e whose capacity constraints are:

— red has capacity 3
— blue has capacity 1

— green has capacity 4

e containment constraints are:

— red can contain glass, wood, copper
— blue can contain glass, steel, copper

— green can contain plastic, wood, copper

e and requirement constraints are (for all bin types):

wood requires plastic

24

e Certain component types cannot coexist:

— glass exclusive copper

— copper exclusive plastic
e and certain bin types have capacity constraint for certain components

— red contains at most 1 of wood

— green contains at most 2 of wood

e Given an initial supply of: 1 of glass, 2 of plastic, 1 of steel, 3 of wood, 2 of copper,
what is the minimum total number of bins required to contain the components?

To solve this problem, it is not enough to state constraints on some variables and to start a
labeling procedure on them. The variables are namely not known, because we don’t know how
many bins we should take. One possibility would be to take a large enough number of bins
and to try to find a minimum number. However, usually it is better to generate constraints
for an increasing fixed number of bins until a solution is found.

The predicate solve/1 returns the solution for this particular problem, solve_bin/2 is the
general predicate that takes an amount of components packed into a cont/5 structure and it
returns the solution.

solve(Bins) :-
solve_bin(cont(1, 2, 1, 3, 2), Bins).

solve_bin/2 computes the sum of all components which is necessary as a limit value for
various domains, calls bins/4 to generate a list Bins with an increasing number of elements
and finally it labels all variables in the list:

solve_bin(Demand, Bins) :-
Demand = cont(G, P, S, W, C),
Sum is G+ P + S + W + C,
bins(Demand, Sum, [Sum, Sum, Sum, Sum, Sum, Sum], Bins),
label(Bins).

The predicate to generate a list of bins with appropriate constraints works as follows: first it
tries to match the amount of remaining components with zero and the list with nil. If this
fails, a new bin represented by a list

[Colour, Glass, Plastic, Steel, Wood, Copper]|

is added to the bin list, appropriate constraints are imposed on all the new bin’s variables,
its contents is subtracted from the remaining number of components, and the predicate calls
itself recursively:

bins(cont (0, 0, 0, 0, 0), O, _, [1).

bins(cont (GO, PO, SO, WO, CO), SumO, LastBin, [Bin|Bins]) :-
Bin = [_Col, G, P, S, W, C],
bin(Bin, Sum),
G2 #= GO - G,

25

P2 #= PO - P,
S2 #= S0 - S,
W2 #= WO - W,
C2 #= CO0 - C

Sum2 #= SumO - Sum,
ordering(Bin, LastBin),
bins(cont (G2, P2, S2, W2, C2), Sum2, Bin, Bins).

The ordering/2 constraints are strictly necessary because this problem has a huge number
of symmetric solutions.
The constraints imposed on a single bin correspond exactly to the problem statement:

bin([Col, G, P, S, W, C], Sum) :-
Col :: [red, blue, green],
[Capacity, G, P, S, W, C] :: 0..4,
G+P+S + W+ C #= Sum,
Sum #> O, % no empty bins
Sum #<= Capacity,
capacity(Col, Capacity),
contents(Col, G, P, S, W, C),
requires(W, P),
exclusive(G, C),
exclusive(C, P),
at_most(1, red, Col, W),
at_most(2, green, Col, W).

We will code all of the special constraints with the maximum amount of propagation to show
how this can be achieved. In most programs, however, it is not necessary to propagate all
values everywhere which simplifies the code quite considerably. Often it is also possible to
use some of the built-in symbolic constraints of ECLIPS®, e.g. element/3 or atmost /3.

2.16.3.1 Capacity Constraints

capacity(Color, Capacity) should instantiate the capacity if the colour is known, and
reduce the colour values if the capacity is known to be greater than some values. If we use
evaluation constraints, we can code the constraint directly, using equivalences:

capacity(Color, Capacity) :-
Color #= blue #<=> Capacity #= 1,
Color #= green #<=> Capacity #= 4,
Color #= red #<=> Capacity #= 3.

A more efficient code would take into account the ordering on the capacities. Concretely, if
the capacity is greater than 1, the colour cannot be blue and if it is greater than 3, it must
be green:

capacity(Color, Capacity) :-

var (Color),

[}
B

26

dvar_domain(Capacity, DC),
dom_range(DC, MinC, _),

(MinC > 1 ->
Color ## blue,
(MinC > 3 ->

Color = green

suspend (capacity(Color, Capacity), 3, (Color, Capacity)->inst)

suspend(capacity(Color, Capacity), 3, [Color->inst, Capacity->min])
).
capacity(blue, 1).
capacity(green, 4).
capacity(red, 3).

Note that when suspended, the predicate waits for colour instantiation or for minimum of
the capacity to be updated (except that 3 is one less than the maximum capacity and thus
waiting for its instantiation is equivalent).

2.16.3.2 Containment Constraints

The containment constraints are stated as logical expressions and this is also the easiest way
to medel them. The important point to remember is that a condition like red can contain
glass, wood, copper actually means red cannot contain plastic or steel which can be written as

contents(Col, G, P, S, W, _) :-
Col #= red #=> P #= 0 #/\ S #= 0,
Col #= blue #=> P #= 0 #/\ W #= 0,
Col #= green #=> G #= 0 #/\ S #= 0.

If we want to model the containment with low-level domain predicates, it is easier to state
them in the equivalent conjugate form:

e glass can be contained in red or blue
e plastic can be contained in green

steel can be contained in blue

wood can be contained in red, green
e copper can be contained in red, blue, green

or in a further equivalent form that uses at most one bin colour:
e glass can not be contained in green
e plastic can be contained in green

e steel can be contained in blue

27

e wood can not be contained in blue

e copper can be contained in anything

contents(Col, G, P, S, W, _) :-
not_contained_in(Col, G, green),
contained_in(Col, P, green),
contained_in(Col, S, blue),
not_contained_in(Col, W, blue).

contained_in(Color, Component, In) states that if Color is different from In, there can
be no such component in it, i.e. Component is zero:

contained_in(Col, Comp, In) :-
nonvar(Col),
]
(Col \== In ->
Comp = 0

true
).
contained_in(Col, Comp, In) :-
dvar_domain(Comp, DM),
dom_range(DM, MinD, _),
(MinD > 0 ->
Col = In

suspend(contained_in(Col, Comp, In), 1, [Comp->min, Col->inst])

).

not_contained_in/3 states that if the bin is of the given colour, the component cannot be
contained in it:

not_contained_in(Col, Comp, In) :-
nonvar (Col),
]
(Col == In ->
Comp = O

true
).
not_contained_in(Col, Comp, In) :-
dvar_domain(Comp, DM),
dom_range(DM, MinD, _),
(MinD > 0 ->
Col ## In

suspend (not_contained_in(Col, Comp, In), 1, [Comp->min, Col->any])

28

As you can see again, modeling with the low-level domain predicates might give a faster and
more precise programs, but it is much more difficult than using constraint expressions and
evaluation constraints. A good approach is thus to start with constraint expressions and only
if they are not efficient enough, to (stepwise) recode some or all constraints with the low-level
predicates.

2.16.3.3 Requirement Constraints

The constraint A requires B’ is written as

requires(A, B) :-
A #> 0 #=> B #> 0.

With low-level predicates, the constraint A requires B’ is woken as soon as some A is present
or B is known:

requires(A, B) :-
suspend(req(A, B), 1, [A->min, B->inst]).

% woken when A > 0O or B = 0

req(A, B) :-
(var(B) ->
B #> 0
B=0->
A=0
true
).

2.16.3.4 Exclusive Constraints

The exclusive constraint can be written as

exclusive(A, B) :-
A #> 0 #=> B #= 0,
B #> 0 #=> A #= 0.

however a simple form with one disjunction is enough:

exclusive(A, B) :-
A #= 0 #\/ B #= 0.

With low-level domain predicates, the exclusive constraint defines a suspension which is woken
as soon as one of the two components is present. We also have to take care of the case when
both are zero, though:

exclusive(A, B) :-
suspend(excl(4, B), 3, (A,B)->min).

29

% woken when A > O or B > 0

excl(4, B) :-
dvar_domain(A, DA),
dom_range(DA, MinA, _),

(MinA > 0 =->
B=0
; % A did not change its minimum
B==20 ->
true
A=0
).

2.16.3.5 Atmost Constraints

at_most(IN, In, Colour, Components) states that if Colour is equal to In, then there can
be at most N Components and vice versa, if there are more than N Components, the colour
cannot be In. With constraint expressions, this can be simply coded as

at_most (N, In, Col, Comp) :-
Col #= In #=> Comp #<= N.

A low-level solution looks as follows:

at_most (N, In, Col, Comp) :-

nonvar(Col),

[}
B

(In = Col ->
Comp #<= N
true

).

at_most (N, In, Col, Comp) :-
dvar_domain(Comp, DM),
dom_range(DM, MinM, _),
(MinM > N ->
Col ## In

suspend(at_most (N, In, Col, Comp), 2, [In->inst, Comp->min])

2.16.3.6 Ordering Constraints

To filter out symmetric solutions we can e.g. impose a lexicographic ordering on the bins
in the list, i.e. the second bin must be lexicographically greater or equal than the first one
etc. As long as the corresponding most significant variables in two consecutive bins are not
instantiated, we cannot constrain the following ones and thus we suspend the ordering on the
inst lists:

30

ordering([], [1).
ordering([Vall|Bin1], [Val2|Bin2]) :-
Vall #<= Val2,
(integer(Vall) ->
(integer(Val2) ->
(Vall = Val2 ->
ordering(Binl, Bin2)

true

suspend (ordering([Vall|Bin1], [Val2|Bin2]), 1, Val2->inst)

suspend(ordering([Vall|Bini], [Val2|Bin2]), 1, Vali->inst)
).

There is a problem with the representation of the colour: If the colour is represented by an
atom, we cannot apply the #<=/2 predicate on it. To keep the ordering predicate simple
and still to have a symbolic representation of the colour in the program, we can define input
macros that transform the colour atoms into integers:

:- define_macro(no_macro_expansion(blue)/0, tr_col/2, [1).
:- define_macro(no_macro_expansion(green)/0, tr_col/2, []1).
:- define_macro(no_macro_expansion(red)/0, tr_col/2, []).

tr_col(no_macro_expansion(red), 1).
tr_col(no_macro_expansion(green), 2).
tr_col(no_macro_expansion(blue), 3).

2.16.3.7 Labeling

A straightforward labeling would be to flatten the list with the bins and use e.g. deleteff/3
to label a variable out of it. However, for this very examples not all variables have the same
weight — the colour variables propagate much more data when instantiated. Therefore, we
first filter out the colours and label them before all the component variables:

label(Bins) :-
colours(Bins, Colors, Things),
labeleff(Colors),
flatten(Things, List),
labeleff(List).

colours([], [1, [1).
colours([[Col|Rest] |Bins], [Col|Cols], [Rest|Things]) :-
colours(Bins, Cols, Things).

labeleff([]).

31

labeleff (L) :-
deleteff(V, L, Rest),
indomain(V),
labeleff(Rest).

Note also that we need a special version of flatten/3 that works with nonground lists.

2.17 Current Known Restrictions and Bugs

1. The default domain for integer finite domain variables is -10000000..10000000. Larger
domains must be stated explicitly using the ::/2 predicate, however neither bound can
be outside the long integer range (usually 32 bits).

2. Linear integer terms are processed using long integers and thus if the maximum or
minimum value of a linear term overflows this range (usually 32 bits), incorrect results
are reported. This may occur if large coefficients are used, if domains are too large or
a combination of the two.

32

Chapter 3

Additional Finite Domain
Constraints

3.1 Various Constraints on Lists

The library fd_global implements a number of constraints over lists of finite domain variables.
It is loaded using one of

:- use_module(library(fd_global)).
:- 1lib(fd_global).

The following predicates are provided

minlist(+4List, ?Min)
Min is the minimum of the values in List. Operationally: Min gets updated to reflect
the current range of the minimum of variables and values in List. Likewise, the list
elements get constrained to the minimum given.

maxlist(+4List, ?Max)
Max is the maximum of the values in List. Operationally: Max gets updated to reflect
the current range of the maximum of variables and values in List. Likewise, the list
elements get constrained to the maximum given.

ordered(++Relation, +List)
Constrains List to be ordered according to Relation. Relation is one of the atoms <,
=<, >, >=, =.

occurrences(+-+Value, +List, ?IN)
The value Value occurs in List N times. Operationally: N gets updated to reflect the
number of possible occurrences in the List. List elements may get instantiated to Value,
or Value may be removed from their domain if required by N.

sumlist(+List, ?Sum)
The sum of the list elements is Sum. This constraint is more efficient than the general
fd-arithmetic constraint if the list is long and Sum is not constrained frequently.

33

3.2 Cumulative Constraint and Resource Profiles

The library cumulative implements the cumulative scheduling constraint. It is based on the
finite domain library and is loaded using one of

:- use_module(library(cumulative)).
:- lib(cumulative).

cumulative(4StartTimes, +Durations, +Resources, ++ResourceLimit)
A cumulative scheduling constraint. StartTimes, Durations and Resources are lists
of equal length N of finite domain variable or integers. ResourceLimit is an integer.
The declarative meaning is: If there are N tasks, each starting at a certain start time,
having a certain duration and consuming a certain (constant) amount of resource, then
the sum of resource usage of all the tasks does not exceed ResourceLimit at any time.

profile(+StartTimes, +Durations, +Resources, -Profile)
StartTimes, Durations, Resources and Profile are lists of equal length N of finite domain
variable or integers with the same meaning as in cumulative/4. The list Profile indicates
the level of resource usage at the starting point of each task.

3.3 Edge-finder

The libraries edge_finder and edge_finder3 implement stronger versions of the disjunctive
and cumulative scheduling constraints. They employ a technique known as edge-finding to
derive stronger bounds on the starting times of the tasks. The library is loaded using either

:- use_module(library(edge_finder)).
to get a weaker variant with quadratic complexity, or
:- use_module(library(edge_finder3)).

to get a stronger variant with cubic complexity.

disjunctive(+StartTimes,+Durations)
A disjunctive scheduling constraint. StartTimes and Durations are lists of equal length
N of finite domain variable or integers. The declarative meaning is that the N tasks
with certain start times and duration do not overlap at any point in time.

cumulative(4StartTimes,+Durations,+Resources,++ResourceLimit)
A cumulative scheduling constraint. StartTimes, Durations and Resources are lists of
equal length N of finite domain variable or integers. Resourcelimit is an integer. The
declarative meaning is: If there are N tasks, each starting at a certain start time, having
a certain duration and consuming a certain (constant) amount of resource, then the sum
of resource usage of all the tasks does not exceed Resourcelimit at any time. This con-
straint can propagate more information than the implementation in library(cumulative).

cumulative(+4StartTimes,+Durations,+Resources,+Area,+-+ResourceLimit)
In this variant, an area (the product of duration and resource usage of a task) can be
specified, e.g. if duration or reource usage are not known in advance. The edge-finder
algorithm can make use of this information to derive bound updates.

34

Chapter 4

The Set Domain Library

Conjunto is a system to solve set constraints over finite set domain terms. It has been
developed using the kernel of ECL'PS® based on metaterms. It contains the finite domain
library of ECL‘PS®. The library conjunto.pl implements constraints over set domain terms
that contain herbrand terms as well as ground sets. Modules that use the library must start
with the directive

:- use_module(library(conjunto))

For those who are already familiar with the ECL*PS® extension manual this manual follows
the finite domain library structure.
Note: for any question or information request, please send an email to c.gervet@icparc.ic.ac.uk.

4.1 Terminology

The computation domain of Conjunto is finite so set domain and set term will stand respec-
tively for finite set domain and finite set term in the following. Here are defined some of the
terms mainly used in the predicate description.

Ground set

A known finite set containing only atoms from the Herbrand Universe or its pow-
erset but without any variable.

Set domain

A discrete lattice or powerset D attached to a set variable S. D is defined by
{5 € 2Mbs | glb, € S} under inclusion specified by the notation Glb..Lub,.
Glbs and Lub, represent respectively the intersection and union of elements of D.
Thus they are both ground sets. S is then called a set domain variable.

Weighted set domain

A specific set domain WD attached to a set variable S where each element of WD
is of the form e(s,w). sis a ground set representing a possible value of the set
variable and w is the weight or cost associated to this value. e.g.

WD = {e(1,50),e({1,3},200}..{e(1,50),e({1,3},20),e(£f(a),100)}.

35

D would have been:
{1,{1,3}}. .{1,{1,3},f(a)}.
Set expression

A composition of set domain variables or ground sets together with set operator
symbols which are the standard ones coming from set theory. S = 57N 9% |

S1US |51\ 52
Set term

Any term of the followings: (1) a ground set, (2) a set domain variable or (3) a
set expression. All set built-in predicates deal with set terms thus with any of the
three cases.

4.2 Syntax

e A ground set is written using the characters { and }, e.g. S = {1,3,{a,g}, £(2)}
e A domain D attached to a set variable is specified by two ground sets : Glb,.. Lub;

e Set expressions: Unfortunately the characters representing the usual set operators are
not available on our monitors so we use a specific syntax making the connection with
arithmetic operators:

— U is represented by \/
— N is represented by /\
— \ is represented by \

4.3 The solver

The Conjunto solver acts in a data driven way using a relation between states. The transfor-
mation performs interval reduction over the set domain bounds. The set expression domains
are approximated in terms of the domains of the set variables involved. From a constraint
propagation viewpoint this means that constraints over set expressions can be approximated
in terms of constraints over set variables. A failure is detected in the constraint propagation
phase as soon as one domain lower bound ¢l/b, is not included in its associated upper bound
lubs. Once a solved form has been reached all the constraints which are not definitely solved
are delayed and attached to the concerned set variables.

4.4 Constraint predicates

?Svar ‘:: ++Glb..4++Lub

attaches a domain to the set variable or to a list of set variables Svar. If GIb ¢ Lub
it fails. If Svaris already a domain variable its domain will be updated according
to the new domain; if Svar is instantiated it fails. Otherwise if Svar is free it
becomes a set variable.

36

set(?Term)

succeeds if Term is a ground set.
7S ‘=781

The value of the set term S'is equal to the value of the set term S7.
?E in 7S

The element F is an element of S. If F is ground it is added to the lower bound
of the domain of 5, otherwise the constraint is delayed. If F is ground and does
not belong to the upper bound of S domain, it fails.

?E notin 7S

The element F does not belong to S. If F'is ground it is removed from the upper
bound of S5, otherwise the constraint is delayed. If F is ground and belongs to
the upper bound of the domain of 5, it is removed from the upper bound and the
constraint is solved. If F'is ground and belongs to the lower bound of S domain,
it fails.

7S ‘< 781

The value of the set term S is a subset of the value of the set term S1. If the
two terms are ground sets it just checks the inclusion and succeeds or fails. If the
lower bound of the domain of 5'is not included in the upper bound of S7 domain,
it fails. Otherwise it checks the inclusion over the bounds. The constraint is then

delayed.
7S ‘<> 781

The domains of S and S1 are disjoint (intersection empty).
all_union(?Lsets, ?S)

Lsets is a list of set variables or ground sets. S'is a set term which is the union
of all these sets. If S'is a free variable, it becomes a set variable and its attached
domain is defined from the union of the domains or ground sets in Lsets.

all_disjoint(?Lsets)
Lsets is a list of set variables of ground sets. All the sets are pairwise disjoint.
#(7S,70)

S'is a set term and C'its cardinality. C can be a free variable, a finite domain
variable or an integer. If C is free, this predicate is a mean to access the set
cardinality and attach it to C. If not, the cardinality of S is constrained to be C.

sum_weight(?S,7W)

S'is a set variable whose domain is a weighted domain. W is the weight of S. If W
is a free variable, this predicate is a mean to access the set weight and attach it
to W. If not, the weight of S is constrained to be W. e.g.

37

S ‘:: {e(2,3)F..{e(2,3), e(1,4)}, sum_weight(S, W)

returns W 1 3..7.
refine(?Svar) and par_refine(?Svar)

If Svar is a set variable, it labels Svar to its first possible domain value. If there
are several instances of Swar, it creates choice points. If Svar is a ground set,
nothing happens. Otherwise it fails. par_refine/1 is the or-parallel variant.

4.5 Examples

4.5.1 Set domains and interval reasoning

First we give a very simple example to demonstrate the expressiveness of set constraints and
the propagation mechanism.

:- use_module(library(conjunto)).

[eclipse 2]: Car ‘:: {renault} .. {renault, bmw, mercedes, peugeot},
Type_french = {renault, peugeot} , Choice ‘= Car /\ Type_french.

Choice = Choice{{renault} .. {peugeot, renaultl}}
Car = Car{{renault} .. {bmw, mercedes, peugeot, renaultl}}
Type_french = {peugeot, renault}

Delayed goals:
inter_s({peugeot, renault}, Car{{renault}..{bmw, mercedes,
peugeot, renault}}, Choice{{renault} .. {peugeot, renaultl}})
yes.

If now we add one cardinality constraint:

[eclipse 3]: Car ‘:: {renault} .. {renault, bmw, mercedes, peugeot},
Type_french = {renault, peugeot} , Choice ‘= Car /\ Type_french,
#(Choice, 2).

Car = Car{{peugeot, renault} .. {bmw, mercedes, peugeot, renaultl}}
Type_french = {peugeot, renault}

Choice = {peugeot, renault}

yes.

The first example gives a set of cars from which we know renault belongs to. The other labels
{renault, bmw, mercedes, peugeot} are possible elements of this set. The Type_french
set is ground and Choice is the set term resulting from the intersection of the first two sets.
The first execution tells us that renault is element of Choice and peugeot might be one. The
intersection constraint is partially satisfied and might be reconsidered if one of the domain of
the set terms involved changes. The cosntraint is delayed.

38

In the second example an additional constraint restricts the cardinality of Choice to 2. Sat-
isfying this constraint implies setting the Choice set to {peugeot, renault}. The domain
of this set has been modified so is the intersection constraint activated and solved again. The
final result adds peugeot to the Car set variable. The intersection constraint is now satisfied
and removed from the constraint store.

4.5.2 Subset-sum computation with convergent weight

A more elaborate example is a small decision problem. We are given a finite weighted set
and a target t € N. We ask whether there is a subset s’ of S whose weight is ¢. This also
corresponds to having a single weighted set domain and to look for its value such that its
weight is t.

This problem is NP-complete. It is approximated in Integer Programming using a procedure
which 7trims” a list according to a given parameter. For example, the set variable

S “:: {}..{e(a,104), e(b,102), e(c,201) ,e(d,101)}
is approximated by the set variable

s ‘i {}..{e(c,201) ,e(d, 101)}
if the parameter delta is 0.04 (0.04 = 0.2 + n where n = #5).

:- use_module(library(conjunto)).

% Find the optimal solution to the subset-sum problem
solve(S1, Sum) :-

getset(S),

st “:: {}.. s,

trim(S, S1),

constrain_weight(S1, Sum),

sum_weight(S1, W),

Cost = Sum - W,

min_max(labeling(S1), Cost).

% The set weight has to be less than Sum
constrain_weight(S1, Sum) :-
sum_weight(S1, W),
W #<= Sum.

% Get rid of a set of elements of the set according to a given delta
trim(S, S1) :-

set2list (S, LS),

trim1 (LS, S1).

trim1 (LS, S1) :-
sort(2, =<, LS, [E | LSorted]),
getdelta(D),
testsubsumed(D, E, LSorted, S1).

39

testsubsumed(_, _, [1, _).
testsubsumed(D, E, [F | LS], S1) :-
el_weight(E, We),
el_weight(F, Wf),
(We =< (1 - D) *x WE ->
testsubsumed(D, F, LS, S1)

F notin Si,
testsubsumed(D, E, LS, S1)

% Instantiation procedure
labeling(Sub) :-
set(Sub),!.
labeling(Sub) :-
max_weight (Sub, X),
(X in Sub ; X notin Sub),
labeling(Sub).

% Some sample data

getset(S) :- S = {e(a,104), e(b,102), e(c,201), e(d,101), e(e,305),
e(£,50), e(g,70),e(h,102)}.

getdelta(0.05).

The approach is is the following: first create the set domain variable(s), here there is only
one which is the set we want to find. We state constraints which limit the weight of the
set. We apply the “trim” heuristics which removes possible elements of the set domain. And
finally we define the cost term as a finite domain used in the min_max/2 predicate. The
cost term is an integer. The conjunto.pl library makes sure that any modification of an
fd term involved with a set term is propagated on the set domain. The labeling procedure
refines a set domain by selecting the element of the set domain which has the biggest weight
using max_weight(Sub, X), and by adding it to the lower bound of the set domain. When
running the example, we get the following result:

[eclipse 3]: solve(S, 550).
Found a solution with cost 44
Found a solution with cost 24

S = {e(d, 101), e(e, 305), e(f, 50), e(g, 700}
yes.

An interesting point is that in set based problems, the optimization criteria mainly concern
the cardinality or the weight of a set term. So in practice we just need to label the set term
while applying the fd optimization predicates upon the set cardinality or the set weight.
There is no need to define additional optimization predicates.

40

4.5.3 The ternary Steiner system of order n

A ternary Steiner system of order nis a set of nx(n— 1)\ 6 triplets of distinct elements
taking their values between I and n, such that all the pairs included in two different triplets
are different.

This problem is very well dedicated to be solved using set constraints: (i) no order is required
in the triplet elements and (ii) the constraint of the problem can be easily written with set
constraints saying that any intersection of two set terms contains at most one element. With
a finite domain approach, the list of domain variables which should be distinct requires to be
given explicitely, thus the problem modelling is would be bit ad-hoc and not valid for any n.

:- use_module(library(conjunto)).

% Gives one solution to the ternary steiner problem.
% n has to be congruent to 1 or 3 modulo 6.

steiner(N, LS) :-
make_nbsets(N,NB),
make_domain(N, Domain),
init_sets(NB, Domain, LS),
card_all (LS, 3),
labeling(Ls, [1).

labeling([]1, _).

labeling([S | Ls], L) :-
refine(S),
(Ls =[] ; Ls = [L2 | _Rest],
all_distincts([S | L], L2),
labeling(LS, [S | L1)).

% the labeled sets are distinct from the set to be labeled
% this constraint is a disjonction so it is useless to put it
% before the labeling as no information would be deduced anyway
all_distincts([], _).
all_distincts([S1 |L], L2) :-
distinctsfrom(S1, L2),
all_distincts(L, L2).

distinctsfrom(S, S1) :-

#(s /\ s1,0),

C #<= 1.
% creates the required number of set variables according to n
make_nbsets(N,NB) :-

NB is N * (N-1) // 6.

% initializes the domain of the variables according to n

41

make_domain(N, Domain) :-
D ::1.. N,
dom(D, L),
list2set (L, Domain).

init_sets(0, _Domain, []) :- !'.
init_sets(NB, Domain, Sol) :-
NB1 is NB-1,
init_sets(NB1, Domain, Soll),
S ‘:: {} .. Domain,
Sol = [S | Solil].

% constrains the cardinality of each set variable to be equal to V (=3)
card_all([1, _V).
card_all([Set1|LSets], V) :-

#(Set1, V),

card_all(LSets, V).

The approach with sets is the following: first we create the number of set variables required
according to the initial problem definition such that each set variable is a triplet. Then to
initialize the domain of these set variables we use the fd predicates which allow to define a
domain by an implicit enumeration approach 1..n. This process is cleaner than enumerating
a list of integer between 1 and n. Once all the domain variables are created, we constrain
their cardinality to be equal to three. Then starts the labeling procedure where all the sets
are labeled one after the other. Each time one set is labeled, constraints are stated between
the labeled set and the next one to be labeled. This constraint states that two sets have
at most one element in common. The semantics of #(5 N 51,C),C <1 is equivalent to
a disjunction between set values. This implies that in the contraint propagation phase, no
information can be deduced until one of the set is ground and some element has been added
to the second one. No additional heuristics or tricks have been added to this simple example
so it works well for n = 7, 9 but with the value 13 it becomes quite long. When running the
example, we get the following result:

[eclipse 4]: steiner(7, S).
6 backtracks
0.75

s =[{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}]
yes.

4.6 When to use Set Variables and Constraints...

The subset-sum example shows that the general principle of solving problems using set domain
constraints works just like finite domains:

e Stating the variables and assigning an initial set domain to them.

e Constraining the variables. In the above example the constraint is just a built-in con-
straint but usually one needs to define additional constraints.

42

e Labeling the variables, i.e., assigning values to them. In the set case it would not
be very efficient to select one value for a set variable for the size of a set domain is
exponential in the upper bound cardinality and thus the number of backtracks could
be exponential too. A second reason is that no specific information can be deduced
from a failure (backtrack) whereas if (like in the refine predicate) we add one by one
elements to the set till it becomes ground or some failure is detected, we benefit much
more from the constraint propagation mechanism. Every domain modification activates
some constraints associated to the variable (depending on the modified bound) and
modifications are propagated to the other variables involved in the constraints. The
search space is then reduced and either the goal succeeds or it fails. In case of failure
the labeling procedure backtracks and removes the last element added to the set variable
and tries to instanciate the variable by adding another element to its lower bound. In
the subset-sum example the labeling only concerns a single set, but it can deal with a
list of set terms like in the steiner example. Although the choice for the element to
be added can be done without specific criterion like in the steiner example, some user
defined heuristics can be embedded in the labeling procedure like in the subset-sum
example. Then the user needs to define his own refine procedure.

Set constraints propose a new modelling of already solved problems or allows (like for the
subset-sum example) to solve new problems using CLP. Therefore, one should take into ac-
count the problem semantics in order to define the initial search space as small as possible
and to make a powerful use of set constraints. The objective of this library is to bring CLP
to bear on graph-theorical problems like the steiner problem which is a hypergraph computa-
tion problem, thus leading to a better specification and solving of problems as, packing and
partitioning which find their application in many real life problems. A partial list includes:
railroad crew scheduling, truck deliveries, airline crew scheduling, tanker-routing, information
retrieval,time tabling problems, location problems, assembly line balancing, political district-
ing,etc.

Sets seem adequate for problems where one is not interested in each element as a specific
individual but in a collection of elements where no specific distinction is made and thus where
symmetries among the element values need to be avoided (eg. steiner problem). They are
also useful when heterogeneous constraints are involved in the problem like weight constraints
combined with some disjointness constraints.

4.7 User-defined constraints

To define constraints based on set domains one needs to access the properties of a set term
like its domain, its cardinality, its possible weight. As the set variable is a metaterm i.e. an
abstract data structure, some built-in predicates allow the user to process the set variables
and their domains, modify them and write new constraint predicates.

4.7.1 The abstract set data structure

A set domain variable is a metaterm. The conjunto.pl library defines a metaterm attribute
set with [setdom : [Glb,Lub], card: C, weight: W, del_inst: Dinst, del_glb: Dglb,
del_lub: Dlub, del_any: Dany]

43

This attribute stores information regarding the set domain, its cardinality, and weight (null
if undefined) and together with four suspension lists. The attribute arguments have the
following meaning:

setdom The representation of the domain itself. As set domains are treated as abstract
data types, the users should not access them directly, but only using built-in access and
modification predicates presented hereafter.

card The representation of the set cardinality. The cardinality is initialized as soon as
a set domain is attached to a set variable. It is either a finite domain or an integer. It
can be accessed and modified in the same way as set domains (using specific built-in
predicates).

weight The representation of the set weight. The weight is intialized to zero if the
domain is not a weighted set domain, otherwise it is computed as soon as a weighted
set domain is attached to a set variable. it can be accessed and modified in the same
way as set domains (using specific built-in predicates).

del_inst A suspension list that should be woken when the domain is reduced to a single
set value.

del_glb A suspension list that should be woken when the lower bound of the set domain
is updated.

del_lub a suspension list that should be woken when the upper bound of the set domain
is updated.

del_any a suspension list that should be woken when any reduction of the domain is
inferred.

The attribute of a set domain variable can be accessed with the predicate svar_attribute/2

or by unification in a matching clause:

get_attribute(_{set: Attr}, A) :- -7-> nonvar(Attr), Attr = A.

The attribute arguments can be accessed by macros from the ECL'PS®structures.pl library,
if e.g. Attr is the attribute of a set domain variable, the del_inst list can be obtained by:

arg(del_inst of set, Attr, Dinst)

or by using a unification:

Attr = set with del_inst: Dinst

4.7.2 Set Domain access

The domains are represented as abstract data types, and the users are not supposed to access

them directly. So we provide a number of predicates to allow operations on set domains.
set_range(?Svar,?Glb,?Lub)

If Svar is a set domain variable, it returns the lower and upper bounds of its
domain. Otherwise it fails.

44

glb(?Svar,?Glb)

If Svaris a set domain variable, it returns the lower bound of its domain. Other-
wise it fails.

lub(?Svar, ?Lub)

If Svar is a set domain variable, it returns the upper bound of its domain. Oth-
erwise it fails.

el_weight(4++E, ?We)

If F'is element of a weighted domain, it returns the weight associated to F. Oth-
erwise it fails.

max_weight(?Svar,?E)

If Svar is a set variable, it returns the element of its domain which belongs to
the set resulting from the difference of the upper bound and the lower bound and
which has the greatest weight. If Svaris a ground set, it returns the element with
the biggest weight. Otherwise it fails.

Two specific predicates make a link between a ground set and a list.

set2list(++S, ?L)

If Sis a ground set, it returns the corresponding list. If L is also ground it checks
if it is the corresponding list. If not, or if S'is not ground, it fails.

list2set(++L, ?S)

If Lis a ground list, it returns the corresponding set. If S'is also ground it checks
if it is the corresponding set. If not, or if L is not ground, it fails.

4.7.3 Set variable modification

A specific predicate operate on the set domain variables. When a set domain is reduced, some

suspension lists have to be scheduled and woken depending on the bound modified.

NOTE: Their are 4 suspension lists in the conjunto.pl library, which are woken precisely
when the event associated with each list occurs. For example, if the lower bound of a set
variable is modified, two suspension lists will be woken: the one associated to a glb modifi-
cation and the one associated to any modification. This allows user-defined constraints to be

handled efficiently.
modify_bound(Ind, ?S, ++Newbound)

Ind is a flag which should take the value lub or glb, otherwise it fails ! If S'is a
ground set, it succeeds if we have Newbound equal to S. If §'is a set variable, its
new lower or upper bound will be updated. For monotonicity reasons, domains
can only get reduced. So a new upper bound has to be contained in the old one
and a new lower bound has to contain the old one. Otherwise it fails.

45

4.8 Example of defining a new constraint

The following example demonstrates how to create a new set constraint. To show that set
inclusion is not restricted to ground herbrand terms we can take the following constraint
which defines lattice inclusion over lattice domains:

S_1 incl S
Assuming that S and 57 are specific set variables of the form
s “:: {} ..{{a,b,c},{d,e,f}}, ..., S_1 “:: {} ..{{c},{d,f},{g,f}}

we would like to define such a predicate that will be woken as soon as one or both set variables’
domains are updated in such a way that would require updating the other variable’s domain
by propagating the constraint. This constraint definition also shows that if one wants to
iterate over a ground set (set of known elements) the transformation to a list is convenient.
In fact iterations do not suit sets and benefit much more from a list structure. We define the
predicate inc1(S,S1) which corresponds to this constraint:

:- use_module(library(conjunto)).
incl(S,S1) :-

set(S),set(S1),

]

check_incl(S, S1).
incl(S, S1) :-

set(S),

set_range(S1, Glbl, Lubl),

[}

check_incl(S, Lub1l),

S + Glbl ‘= SiNewGlb,

modify_bound(glb, S1, SiNewGlb).
incl(S, S1) :-

set(S1),

set_range(S, Glb, Lub),

[}

check_incl(Glb, S1),

large_inter(S1, Lub, SNewLub),

modify_bound(lub, S, SNewLub).
incl(S,S1) :-

set_range(S, Glb, Lub),

set_range(S1, Glbl, Lubl),

check_incl(Glb, Lubl),

Glb \/ Glbl ‘= SiNewGlb,

large_inter(Lub, Lubl, SNewLub),

modify_bound(glb, S1, SiNewGlb),

modify_bound(lub, S, SNewLub),

((set(S) ; set(S1)) ->

true

46

make_suspension(incl(S, S1),2, Susp),
insert_suspension([S,S1], Susp, del_any of set, set)

),

wake.

large_inter(Lub, Lubl, NewLub) :-
set2list(Lub, Llub),
set2list(Lubil, Llubl),
largeinter(Llub, Llubl, LNewLub),
list2set(LNewLub, NewLub).

largeinter([1, _, [1).
largeinter([S | List_set], Lubl, Snew) :-
largeinter(List_set, Lubl, Snewl),
(contained(S, Lubl) ->
Snew = [S | Snewil]

Snew = Snewl

check_incl({}, _S) :-!'.
check_incl(Glb, Lubl) :-
set21ist(Glb, Lsets),
set2list(Lubl, Lsetsl),
all_union(Lsets, Union),
all_union(Lsets1l, Unionl),
Union ‘< Unioni,!,
checkincl(Lsets,Lsetsl).
checkincl([], _Lsetsl).
checkincl([S | Lsets],Lsetsl):-
contained(S, Lsetsl),
checkincl(Lsets,Lsetsl).

contained(_S, []) :- fail,!.
contained(S, [Ss | Lsetsl]) :-
(S ‘< S8 ->
true

contained(S, Lsetsl)
).

The execution of this constraint is dynamic, i.e., the predicate incl/2 is called and woken
following the following steps:

o We check if the two set variables are ground set. If so we just check deterministically if
the first one is included (lattice inclusion) in the second one check_incl. This predicate
checks that any element of a ground set (which is a set itself in this case) is a subset of
at least one element of the second set. If not it fails.

47

o We check if the first set is ground and the second is a set domain variable. If so,

check_incl is called over the first ground set and the upper bound of the second set. If
it succeeds then the lower bound of the set variable might not be consistent any more,
we compute the new lower bound (i.e., adding elements from the ground set in it (by
using the union predicate) and we modify the bound modify_bound. This predicate
also wakes all concerned suspension lists and instantiates the set variable if its domain
is reduced to a single set (upper bound = lower bound).

We check if the second set is ground and the first one is a set variable. If so, check_incl
is called over the lower bound of the first set and the second ground set. If it succeeds
then the upper bound of the set variable might not be consistent any more. The new
upper bound is computed by intersecting the first set with the upper bound of the set
variable in the lattice acceptation large_inter and is updated modify_bound.

we check if both set variables are domain variables. If so the lower bound of the first set
should be included in the lattice sense in the upper bound of the second one check/incl.
If it succeeds, then if the lower bound the second set is no more consistent we compute
the new one by making the union with first sec lower bound. In the same way, the
upper bound of the first set might not be consistent any more. If so, we compute the
new one by intersecting (in the lattice acceptation) the both upper bounds to compute
the new upper bound of the first set large_inter. The upper bound of the first set
variable is updated as well as the lower bound of the second set modify_bound.

After checking all these updates, we test if the constraint implies an instanciation of
one of the two sets. If this is not the case, we have to suspend the predicate so that
it is woken as soon as any bound of either set domain is changed. The predicate
make_suspension/3 can be used for any ECL!PS® module based on a meta-term struc-
ture. It creates a suspension, and then the predicate insert_suspension/4, puts this
suspension into the appropriate lists (woken when any bound is updated) of both set
variables.

the last action wake triggers the execution of all goals that are waiting for the updates we
have made. These goals should be woken after inserting the new suspension, otherwise

the new updates coming from these woken goals won’t be propagated on this constraint
|

4.9 Set Domain output

The library conjunto.pl contains output macros which print a set variable as well as a ground
set respectively as an interval of sets or a set. The setdom attribute of a set domain variable
(metaterm) is printed in the simplified form of just the glb..lub interval, e.g.

[eclipse 2]: S “:: {}..{a,v,c}, svar_attribute(S,A), A = set with setdom : D.

S
A
D

yes.

S{{} .. {a, c, v}}
.. {a, ¢, v}
({3, {a, c, v}]

48

4.10 Debugger

The ECL'PS® debugger which supports debugging and tracing of finite domain programs in
various ways, can just be used the same way for set domain programs. No specific set domain
debugger has been implemented for this release.

49

50

Chapter 5

Propia - A Library Supporting
Generalised Propagation

5.1 Overview

Propia is the name for the implementation of Generalised Propagation in ECL'PS®.
Generalised propagation is not restricted to finite domains, but can be applied to any goal
the user cares to specify even if the variables don’t have domains.

Effectively the system looks ahead to determine if an approximation to the possible answers
has a non-trivial generalization. It is non-trivial if it enables any variables in the goal to
become further instantiated, thus reducing search.

The background and motivation for Generalised Propagation is given in references [6, 5, 7].
This section focusses on how to use it. Further examples of the use of Propia are distributed
with ECL‘PS®. A simple demonstration of Propia in action on Lewis Carroll’s Zebra prob-
lem can be run by invoking 1ib(’propia/zebra’). An application of Propia to crossword
generation can be run by invoking 1ib(’propia/crossword’).

Using Propia it is easy to take a standard Prolog program and, with minimal syntactic change,
to turn it into a constraint logic program. Any goal Goal in the Prolog program, can be trans-
formed into a constraint by annotating it thus Goal infers most. The resulting constraint
admits just the same answers as the original goal, but its behaviour is quite different. Instead
of evaluating the goal by non-deterministically selecting a clause in its definition and evaluat-
ing the clause body, Propia evaluates the resulting constraint by extracting information from
it deterministically. Propia extracts as much information as possible from the constraints
before selecting an ordinary Prolog goal and evaluating it. In this way Propia reduces the
number of choices that need to be explored and thus makes programs more efficient.

5.2 Invoking and Using Propia
Propia is an ECLPS¢library, loaded by calling

[eclipse]: 1lib(propia).

A goal, such as member (X, [a,b,c]), is turned into a constraint by annotating it using the
infers operator. The second argument of infers defines how much propagation should be
attempted on the constraint and will be described in section 5.3 below. In this section we

51

shall use Goal infers most, which infers as much information as possible, given the loaded
constraint solvers. If the finite domain solver is loaded, then finite domain information is
extracted, and Propia reduces the domains to achieve arc-consistency.

We first show the behaviour of the original goal:

[eclipse]: member(X,[a,b,c]).

X =a More? (;)
X=5» More? (;)
X c More? (;)
no (more) solution.

Constraint propagation is invoked by infers most:
[eclipse]l: 1ib(£d).

[eclipse]: member(X,[a,b,c]) infers most.

X = X{[a,b,c]}
yes.

Note that the information produced by the constraint solves the corresponding goal as well.

The constraint can thus be dropped.
In case there remains information not yet extracted, the constraint must delay so that com-

pleteness is preserved:

[eclipse]: member(X,Y) infers most.

X X
Y [H3]T3]
Delayed goals:
member (X, [H3|T3]) infers most

yes.

Propia copes correctly with built-in predicates, such as #£>and #<:

[eclipse]l: [user].
notin3to6(X) :- X#<3.
notin3to6(X) :- X#>6.

user compiled
[eclipse]: X::1..10, notin3to6(X) infers most.

X =Xx{[1, 2, 7 .. 101}
yes.

In this example there are no “delayed” constraints since all valuations for X satisfying the
above conditions are solutions. Propia detects this and therefore avoids delaying the constraint

again.

52

In scheduling applications it is necessary to constrain two tasks that require the same machine
not to be performed at the same time. Specifically one must end before the other begins, or
vice versa. If one task starting at time S7'7 has duration DI and another task starting at
time ST2 has duration D2, the above “disjunctive” constraint is expressed as follows:

[eclipse]l: [user].

noclash(ST1,D1,ST2,D2) :- ST1 #>= ST2+D2.
noclash(ST1,D1,ST2,D2) :- ST2 #>= ST1+D1.
user compiled

Generalised Propagation on this constraint allows useful information to be extracted even
before it is decided in which order the tasks should be run:

[eclipse]l: 1ib(£d).

leclipse]: [ST1,ST2] :: 1..10, noclash(ST1,5,ST2,7) infers most.

ST1 = ST1{[1 .. 5, 8 .. 10]}
ST2 = ST2{[1 .. 3, 6 .. 10]}

Delayed goals:
noclash(ST1{[1..5, 8..10]1}, 5, ST2{[1..3, 6..10]}, 7) infers most

yes.

The values 6 and 7are removed from the domain of ST because the goal nocl1ash(ST1,5,ST2,7)
cannot be satisfied if ST is either 6 or 7. For example if ST is 6, then either 6 > ST2+7 (to
satisfy the first clause defining noclash) or else 572 > 6 4 5 (to satisfy the second clause).
There is no value for S72in{1...10} that makes either inequality true, and so 6 is removed
from the domain of ST1. By a similar reasoning 4 and § are removed from the domain of
ST2.

We next take a simple example from propositional logic. In this example the result of con-
straint propagation is reflected not only in the variable domains, but also in the unification
of problem variables. We first define logical conjunction by its truth table:

[eclipse]l: [user].
and(true,true,true).
and(true,false,false).
and(false,true,false).
and(false,false,false).
user compiled

Now we ask for an X,Y, 7 satisfying and(X,Y,Z)A X =Y. . Both solutions have
X =Y = Z, and this information is produced solely by propagating on the and constraint:

[eclipse]l: and(X,Y,Z) infers most, X=Y.

Z =X
X=X
Y =X
yes

53

We now illustrate the potential efficiency benefits of Generalised Propagation with a simple
resource allocation problem. A company makes 9 products, each of which require two kinds
of components in their manufacture, and yields a certain profit. This information is held in
the following table.

[eclipse]l: [user].
/*** product(Name,#Component1,#Component2,Profit). *x*/
product(pl,1,19,1).
product(p2,2,17,2).
product(p3,3,15,3).
product(p4,4,13,4).
product(p5,10,8,5).
product(p6,16,4,4).
product(p7,17,3,3).
product(p8,18,2,2).
product(p9,19,1,1).
user compiled

We wish to find which products to manufacture in order to make a certain profit without
using more than a certain number of either kind of component.!

We first define a predicate sum(Products,Comp1l,Comp2,Profit) which relates a list of prod-
ucts (eg Products=[p1,p5,p1]), to the number of each component required to build all the
products in the list and the profit (for [p1,p5,p1], Comp1=12 and Comp2=46 and Profit=7).

[eclipse]: user.

sum([]1,0,0,0).

sum([Name |Products] ,Countl,Count2,Profit) :-
[Countl,Count2,Profit]::0..100,
product(Name,Ctla,Ct2a,Profita),
Countl #= Ctla+Ctilb,
Count2 #= Ct2a+Ct2b,
Profit #= Profita+Profitb,
sum(Products,Ct1b,Ct2b,Profithb).

user compiled

If sum is invoked with a list of variables as its first argument, eg [V1,V2,V3], then the only
choice made during execution is at the call to product. In short, for each variable in the
input list there are 9 alternative products that could be chosen. For a list of three variables
there are consequently 93 = 729 alternatives.

If we assume a production batch of 9 units, then the number of alternative ways of solving sum
is 92, or nearly 400 million. To avoid exploring so many possibilities, we simply annotate the
call to product (Name,Ctla,Ct2a,Profita) as a Generalised Propagation constraint. Thus
the new definition of sum is:

[eclipse]: user.
sum([],0,0,0).
sum([Name |Products] ,Countl,Count2,Profit) :-

1To keep the example simple there is no optimisation.

54

[Countl,Count2,Profit]::0..100,
product(Name,Ctla,Ct2a,Profita) infers most,
Countl #= Ctla+Ctilb,
Count2 #= Ct2a+Ct2b,
Profit #= Profita+Profitb,
sum(Products,Ct1b,Ct2b,Profithb).

user compiled

Now sum refuses to make any choices:

Leclipse]: sum([V1,V2,V3],Compl,Comp2,Profit).
Compl = Comp1{[3..57]}

Comp2 = Comp2{[3..57]1}

Profit = Profit{[3..15]}

V3 = v3{[pl, p2, p3, p4, p5, p6, p7, P8, p9l}
V2 = v2{[p1l, p2, p3, p4, p5, p6, p7, P8, p9l}
Vi = Vi{[pl, p2, p3, p4, p5, p6, p7, P8, p9l}

Delayed goals:

Using the second version of sum, it is simple to write a program which produces lists of
products which use less than a given number Max1 and Max2 of each component, and yields
more than a given profit MinProfit:

[eclipse]l: [user].
solve(Products,Batch,Max1,Max2,MinProfit) :-
length(Products,Batch),
Compl #<= Max1,
Comp2 #<= Max2,
Profit #>= MinProfit,
sum(Products,Compl,Comp2,Profit),
labeling(Products) .
user compiled

The following query finds which products to manufacture in order to make a profit of 40
without using more than 95 of either kind of component.

[eclipse]l: solve(P, 9, 95, 95, 40).

P = [p1, p4, p5, p5, p5, p5, p5, p5, p5l More? (;)
yes.

Constraints can be dropped as soon as they became redundant (i.e. as soon as they were
entailed by the current partial solution). The check for entailment can be expensive, so
Propia only drops constraints if a simple syntactic check allows it. For infers most, this check
succeeds if the finite domain library is loaded, and the constraint has only one remaining
variable.

55

5.3 Approximate Generalised Propagation

The syntax Goal infers most can also be varied to invoke different levels of Generalised
Propagation. Other alternatives are Goal infers fd, Goal infers range, Goal infers unique, and
Goal infers consistent. The strongest constraint is generated by Goal infers most, but it can
be expensive to compute. The other alternatives may be evaluated more efficiently, and may
yield a better overall performance on different applications. We call them “approximations”,
since the information they produce during propagation is a (weaker) approximation of the
information produced by the strongest constraint.

We illustrate the different approximations supported by the current version of Propia on a
single small example. The results for Goal infers most reflect the problem that structured
terms cannot appear in finite domains.

[eclipse]: [user].
p(l,a).

p(2,£(2)).

p(3,3).

user compiled

[eclipse]l: p(X,Y) infers most.

X = X{[1..3]%}
Y=Y
Delayed goals:
p(X{[1..3]1}, ¥Y) infers most
yes.

[eclipse]l: X::[1, 3], p(X, Y) infers most.

X = X{[1, 3]}
Y = Y{[3, al}
Delayed goals:
p(X{[1, 31}, Y{[3, al}) infers most
yes.

[eclipsel: p(2,Y) infers most.

Y = £(Z)
yes.

The first approximation we will introduce in this section is one that searches for the unique
answer to the query. It is written Goal infers unique. This is cheap because as soon as two
different answers to the query have been found, the constraint evaluation terminates and the
constraint is delayed again until new information becomes available. Here are two examples
of this approximation. In the first example notice that no domain is produced for X.

[eclipse]l: p(X,Y) infers unique.

56

X=X
Y=Y
Delayed goals:
p(X, Y) infers unique
yes.

In the second example, by contrast, infers unique yields the same result as infers most:

[eclipse]: p(X,X) infers unique.
X =3
yes.

The next example shows that unique can even capture nonground answers:

[eclipse]l: p(2,X) infers unique.

X=X
Delayed goals:

p(2, X) infers unique
yes.

The next approximation we shall describe is even weaker: it tests if there is an answer and if
not it fails. If there is an answer it checks to see if the constraint is already true.

[eclipsel: p(1,Y) infers consistent.
Y=Y
Delayed goals:
p(1l, Y) infers consistent
yes.

[eclipse]l: p(1,a) infers consistent.
yes.

leclipse]l: p(1,X) infers consistent, X=b.
no (more) solution.

The strongest language infers most extracts any information possible from the loaded con-
straint solvers. The solvers currently handled by Propia are unification (which is the built-in
solver of Prolog), finite domains and range. The finite domain library is loaded by 1ib(fd)
and the range library by 1ib(range). These libraries are described elsewhere. If both li-
braries are loaded, then infers most extracts information from unification, finite domains
and ranges. For example:

[eclipse]l: [user].

p(f(X),a) :- X *>=0, X *=< 10.
p(£(X),b) :- X=12.

yes.

[eclipse 14]: p(X,Y) infers most.

57

= £(X{0.0..12.0})
Y{[a, b1}

< b
] |

Delayed goals:
p(f(X{0.0 .. 12.0}), Y{[a, b]}) infers most
yes.

The approximations infers fd and infers range are similar to infers most. However,
while infers most extracts information based on whatever constraint solvers are loaded, the
others only infers information derived from the specified constraint solver. Here’s the same
example using infers fd:

[eclipse 14]: p(X,Y) infers fd.

X
Y

f(X)
Y{[a, b]}

Delayed goals:
p(£(X), Y{[a, b]}) infers fd
yes.

Here’s the same example using infers range:

[eclipse 14]: p(X,Y) infers range.

X
Y

£(X{0.0..12.0})
Y

Delayed goals:
p(£(X{0.0 .. 12.0}), Y) infers range
yes.

One rather special approximation langue is infers ac, where ac stands for arc-consistency.
This has similar semantics to infers fd, but is implemented very efficiently using the built-
in element constraint of the finite domain solver. The limitation is that Goal infers ac is
implemented by executing the goal repeatedly to find all the solutions, and then manipulating
the complete set of solutions. It will only work in case there are finitely many solutions and
they are all ground.

Finally it is possible to invoke Propia in such a way as to influence its waking conditions. To do
this, use the standard suspend syntax. For example “forward checking” can be implemented
as follows:

propagate(Goal,fc) :- !,
suspend (Goal,4,Goal->inst) infers most.

58

In this case the Propia constraint wakes up each time a variable in the goal is instantiated.
The default priority for Propia constraints is 3. However, in the above example, the priority
of the Propia constraint has been set to 4.

59

60

Chapter 6

The Constraint Handling Rules
Library

The chr library implements constraint handling rules (CHRs). It includes a compiler, which
translates CHR programs into ECL‘PS® programs, and a runtime system. Several constraint
handlers and a color graphic demo program are provided in example files in the directory chr.
The current chr library has now been modified to function correctly without the Opium
debugger, which is no longer supported. In addition, the Prolog code produced by the chr
command is now more readable.

In addition, there is now an experimental extended implementation of CHRs. This extended
implementation is faster than the existing chr library, and contains some extensions and
changes. This is described in section 6.9.

6.1 Introduction

Constraint handling rules (CHRs, CHR home page http://www.pst.informatik.uni-muenchen.de/-
fruehwir/chr-intro.html) [2] are a high-level language extension to write user-defined con-
straints. CHRs are essentially a committed-choice language consisting of guarded rules with
multiple heads.

The high-level CHRs are an excellent tool for rapid prototyping and implementation of con-
straint handlers. The usual abstract formalism to describe a constraint system, i.e. inference
rules, rewrite rules, sequents, formulas expressing axioms and theorems, can be written as
CHRs in a straightforward way. Starting from this executable specification, the rules can be
refined and adapted to the specifics of the application.

CHRs define simplification of, and propagation over, user-defined constraints. Simplification
replaces constraints by simpler constraints while preserving logical equivalence (e.g. X>Y,Y>X
<=> fail). Propagation adds new constraints which are logically redundant but may cause
further simplification (e.g. X>Y,Y>Z ==> X>Z). Repeatedly applying CHRs incrementally sim-
plifies and finally solves user-defined constraints (e.g. A>B,B>C,C>A leads to fail).

With multiple heads and propagation rules, CHRs provide two features which are essential
for non-trivial constraint handling. The declarative reading of CHRs as formulas of first
order logic allows one to reason about their correctness. On the other hand, regarding CHRs
as a rewrite system on logical formulas allows one to reason about their termination and
confluence.

61

In the next section it is explained how to use CHRs. Then, example constraint handlers and
the color graphic demo are listed. The next section introduces the basics of the CHR language
and how it works. The next section describes more of the CHR language, the section after the
built-in labeling feature. Then there is a section on how to write gopod CHR programs. Next
the debuggers for CHRs are introduced.

6.2 Using Constraint Handling Rules

Here are the steps to be taken from writing to using CHRs:
e Write a CHR program in a file File.chr.

e In ECL'PS®, load the chr library with the query 1ib(chr). It contains both the com-
piler and runtime system for CHRs. Now ECIL'PS€ is in coroutining mode.

e Compile your chr file into a pl file with the query chr2pl(File) .

e In any ECL'PS® session, you can load a compiled constraint handler ([File].). The CHR
library is automatically loaded to provide the necessary runtime environment. ECL*PS®
is in coroutining mode.

You can compile your chr file and load the resulting pl file at once using the query chr (File) .

6.3 Example Constraint Handlers

All example files are in the subdirectory 1ib/chr of the installation-directory of ECL!PS®
(which can be found using get_flag(installation directory,Dir). The files (.chr, .pl,
examples) relevant to a particular constraint system can be found by looking at all files that
match the pattern given in the following listing with each example handler. The examples
include a color graphic demo about optimal sender placement for wire-less devices in buildings
and company sites, small constraint handlers for

e minimum, maximum of and inequalities between terms (*minmax*),
e terms (functor/3, arg/3, =.. as constraints) (*termx),
e lists (similar to Prolog III) (*1istx*),
e rational trees (*¥treex),
¢ sound if-then-else, negation and checking, lazy conjunction and disjunction (*controlx),
e geometric reasoning about rectangles (*demo*),
and larger constraint handlers for
e booleans for propositional logic (¥*boolx),
e finite and infinite domains (inspired by CHIP) (*domain*),

o sets (*¥setx*),

62

e terminological reasoning (similar to KL-ONE) [4] (*kl-one*),
e temporal reasoning (over time points and intervals) [3] (*timex),
e equation solving over real numbers (similar to CLP(R)) or rational numbers (*mathx).

CHRs have also been used as a committed choice programming language on their own (*primex).
The example handlers can be loaded using chr(1ib(File)). For instance the finite domain
handler can be made available as follows (the current directory must have write permission
so that the pl file can be created):

[eclipse 1]: 1lib(chr), chr(lib(domain)).
domain.pl compiled traceable 241028 bytes in 1.22 seconds

yes.
[eclipse 2]: X::1..10, X ne 5.

X=X

Constraints:
(4) X_gi165 :: [1, 2, 3, 4, 6, 7, 8, 9, 10]

yes.

6.4 The CHR Language

User-defined constraints are defined by constraint handling rules - and optional ECL‘PS®
clauses for the built-in labeling feature. The constraints must be declared before they are
defined. A CHR program (file extension chr) may also include other declarations, options
and arbitrary ECL'PS® clauses.

Program ::= Statement [Program]
Statement ::= Declaration | Option | Rule | Clause

Constraint handling rules involving the same constraint can be scattered across a file as long
as they are in the same module and compiled together. For readability declarations and
options should precede rules and clauses.

In the following subsections, we introduce constraint handling rules and explain how they
work. The next section describes declarations, clauses, options and built-in predicates for

CHRs.

6.4.1 Constraint Handling Rules

A constraint handling rule has one or two heads, an optional guard, a body and an optional
name. A “Head” is a “Constraint”. A “Constraint” is an ECL'PS® callable term (i.e. atom or
structure) whose functor is a declared constraint. A “Guard” is an ECL‘PS® goal. The guard
is a test on the applicability of a rule. The “Body” of a rule is an ECL'PS® goal (including
constraints). The execution of the guard and the body should not involve side-effects (like

63

assert/1, write/1) (for more information see the section on writing CHR programs). A rule
can be named with a “RuleName” which can be any ECL'PS® term (including variables from
the rule). During debugging (see section 6.8), this name will be displayed instead of the whole
rule.

There are three kinds of constraint handling rules.

Rule ::= SimplificationRule | PropagationRule | SimpagationRule
SimplificationRule ::= [RuleName @ | Head [, Head | <=> [Guard |] Body.
PropagationRule ::= [RuleName @ | Head [, Head | ==> [Guard |] Body.
SimpagationRule ::= [RuleName @ | Head \ Head <=> [Guard |] Body.

Declaratively, a rule relates heads and body provided the guard is true. A simplification rule
means that the heads are true if and only if the body is true. A propagation rule means that
the body is true if the heads are true. A simpagation rule is a combination of a simplification
and propagation rule. The rule “Head1l \ Head2 <=> Body” is equivalent to the simplification
rule “Headl , Head2 <=> Body, Headl.” However, the simpagation rule is more compact to
write, more efficient to execute and has better termination behavior than the corresponding
simplification rule.

Example: Assume you want to write a constraint handler for minimum and maximum based
on inequality constraints. The complete code can be found in the handler file minmax.chr.

handler minmax.

constraints leq/2, neq/2, minimum/3, maximum/3.

built_in @ X leq Y <=> \+nonground(X),\+nonground(Y) | X @=< Y.
reflexivity @ X

antisymmetry @ X leq Y, Y leq X <=> X =
transitivity @ X leq Y, Y leq Z ==> X \=

leq X <=> true.
Y.
=Y, Y\==Z, X\==272 | X leq Z.

built_in @ X neq Y <=> X \==Y | true.
irreflexivity@ X neq X <=> fail.

subsumption @ X 1ss Y \ X neq Y <=> true.
simplification @ X neq Y, X leq Y <=> X 1ss Y.

min_eq @ minimum(X, X, Y) <=> X = V.
min_eq @ minimum(X, Y, X) <=> X leq Y.
min_eq @ minimum(X, Y, Y) <=> Y leq X.

propagation @ minimum(X, Y, Z) ==> Z leq X, Z leq Y.

Procedurally, a rule can fire only if its guard succeeds. A firing simplification rule replaces the
head constraints by the body constraints, a firing propagation rule keeps the head constraints
and adds the body. A firing simpagation rule keeps the first head and replaces the second
head by the body. See the next subsection for more details.

64

6.4.2 How CHRs Work

ECL!PS® will first solve the built-in constraints, then user-defined constraints by CHRs then
the other goals.
Example, contd.:

[eclipse]: chr(minmax).

minmax.chr compiled traceable 106874 bytes in 3.37 seconds
minmax.pl compiled traceable 124980 bytes in 1.83 seconds
yes.

[eclipse]l: minimum(X,Y,Z), maximum(X,Y,Z).

X=Y=172= _g496

yes.

Each user-defined constraint is associated with all rules in whose heads it occurs by the CHR
compiler. Every time a user-defined constraint goal is added or re-activated, it checks itself
the applicability of its associated CHRs by trying each CHR. To try a CHR, one of its heads is
matched against the constraint goal. If a CHR has two heads, the constraint store is searched
for a “partner” constraint that matches the other head. If the matching succeeded, the guard
is executed as a test. Otherwise the rule delays and the next rule is tried.

The guard either succeeds, fails or delays. If the guard succeeds, the rule fires. Otherwise
the rule delays and the next rule is tried. In the current implementation, a guard succeeds if
its execution succeeds without delayed goals and attempts to “touch” a global variable (one
that occurs in the heads). A variable is touched if it is unified with a term (including other
variables), if it gets more constrained by built-in constraints (e.g. finite domains or equations
over rationals) or if a goal delays on it (see also the check_guard bindings option). Currently,
built-in constraints used in a guard act as tests only (see also the section on writing good
CHR programs).

If the firing CHR is a simplification rule, the matched constraint goals are removed and the
body of the CHR is executed. Similarly for a firing simpagation rule, except that the first
head is kept. If the firing CHR is a propagation rule the body of the CHR is executed and the
next rule is tried. It is remembered that the propagation rule fired, so it will not fire again
(with the same partner constraint) if the constraint goal is re-activated.

If the constraint goal has not been removed and all rules have been tried, it delays until a
variable occurring in the constraint is touched. Then the constraint is re-activated and all its
rules are tried again.

Example, contd.: The following trace is edited, rules that are tried in vain and redelay have
been removed.

[eclipse]: chr_trace.

yes.
Debugger switched on - creep mode

[eclipse]: notrace. % trace only constraints
Debugger switched off

yes.

[eclipse]l: minimum(X,Y,Z), maximum(X,Y,Z).
ADD (1) minimum(X, Y, Z)

65

TRY (1) minimum(_g218, _g220, _g222) with propagation
RULE ’propagation’ FIRED

ADD (2) leq(_g665, _g601)

ADD (3) leq(_g665, Var)

ADD (4) maximum(_g601, Var, _g665)

TRY (4) maximum(_g601, Var, _g665) with propagation
RULE ’propagation’ FIRED

ADD (5) leq(_g601, _g665)

TRY (5) leq(_g601, _g665) (2) leq(_g665, _g601) with antisymmetry
RULE ’antisymmetry’ FIRED

TRY (4) maximum(_g601, Var, _g601) with max_eq
RULE ’max_eq’ FIRED

ADD (6) leq(Var, _g601)
TRY (3) leq(_g601, Var) (6) leq(Var, _g601) with antisymmetry
RULE ’antisymmetry’ FIRED

TRY (1) minimum(_g601, _g601, _g601) with min_eq
RULE ’min_eq’ FIRED

ADD (7) leq(_g601, _g601)
TRY (7) leq(_g601, _g601) with reflexivity
RULE ’reflexivity’ FIRED

X=Y=2-= _g558

6.5 More on the CHR Language

The following subsections describe declarations, clauses, options and built-in predicates of the

CHR language.

6.5.1 Declarations

Declarations name the constraint handler, its constraints, specify their syntax and use in
built-in labeling.

Declaration ::= handler Name.
::= constraints Speclist.
::= operator (Precedence, Associativity , Name) .
::= label_with Constraint if Guard.

66

The optional handler declaration documents the name of the constraint handler. Currently
it can be omitted, but will be useful in future releases for combining handlers.

The mandatory constraints declaration lists the constraints defined in the handler. A
“SpecList” is a list of Name/Arity pairs for the constraints. The declaration of a constraint
must appear before the constraint handling rules and ECL'PS® clauses which define it, other-
wise a syntax error is raised. There can be several constraints declarations.

The optional operator declaration declares an operator, with the same arguments as op/3
in ECL*PS®. However, while the usual operator declarations are ignored during compilation
from chr to pl files, the CHR operator declarations are taken into account (see also the
subsection on clauses).

The optional 1abel_with declaration specifies when the ECL!PS® clauses of a constraint can
be used for built-in labeling (see subsection on labeling).

Example, contd.: The first lines of the minmax handler are declarations:

handler minmax.
constraints leq/2, neq/2, minimum/3, maximum/3.

operator (700, xfx, leq).
operator (700, xfx, neq).

6.5.2 ECL‘PS® Clauses

A constraint handler program may also include arbitrary ECL'PS® code (written with the
four operators :- /[1,2] and ?- /[1,2]).

Clause ::= Head :- Body.
::= Head 7- Body.
::= :- Body.
::= 7- Body.

Note that :-/1 and ?-/1 behave different from each otherin CHR programs. Clauses starting
with :- are copied into the pl file by the CHR compiler, clauses with ?- are ezecuted by the
compiler. As the op declaration needs both copying and execution, we have introduced the
special operator declaration (see previous subsection on declarations). A "Head” can be a
”Constraint”, such clauses are used for built-in labeling only (see section on labeling).

6.5.3 Options

The option command allows the user to set options in the CHR compiler.

‘ Option ::= option(Option, On_or_off). ‘

Options can be switched on or off. Default is on. Advanced users may switch an option off
to improve the efficiency of the handler at the cost of safety. Options are:

e check_guard_bindings: When executing a guard, it is checked that no global variables
(variables of the rule heads) are touched (see subsection on how CHRs work). If the
option is on, guards involving cut, if-then-else or negation may not work correctly if

67

a global variable has been touched before. If switched off, guard checking may be
significantly faster, but only safe if the user makes sure that global variables are not
touched. To ensure that the variables are sufficiently bound, tests like nonvar/1 or
delays can be added to the predicates used in the guards.

already_in_store: Before adding a user-defined constraint to the constraint store, it
is checked if there is an identical one already in the store. If there is, the new constraint
needs not to be added. The handling of the duplicate constraint is avoided. This option
can be set to off, because the checking may be too expensive if duplicate constraints
rarely occur. Specific duplicate constraints can still be removed by a simpagation rule
of the form Constraint \ Constraint <=> true.

already_in_heads: In two-headed simplification rules, the intention is often to simplify
the two head constraints into a stronger version of one of the constraints. However, a
straightforward encoding of the rule may include the case where the new constraint
is identical to the corresponding head constraint. Removing the head constraint and
adding it again in the body is inefficient and may cause termination problems. If the
already_in_heads option is on, in such a case the head constraint is kept and the
body constraint ignored. Note however, that this optimization currently only works if
the body constraint is the only goal of the body or the first goal in the conjunction
comprising the body of the rule (see the example handler for domains). The option
may be too expensive if identical head-body constraints rarely occur.

Note that the ECL!PS® environment flag debug_compile (set and unset with dbgcomp
and nodbgcomp) is also taken into account by the CHR compiler. The default is on. If
switched off, the resulting code is more efficient, but cannot be debugged anymore (see
section 6.8).

6.5.4 CHR Built-In Predicates

There are some built-in predicates to compile chr files, for debugging, built-in labeling and
to inspect the constraint store and remove its constraints:

chr2pl(File) compiles “File” from a chr to pl file.

chr(File) compiles “File” from a chr to pl file and loads the pl file.
chr_trace activates the standard debugger and shows constraint handling,.
chr_notrace stops either debugger.

chr_labeling provides built-in labeling (see corresponding subsection).

chr_label with(Constraint) checks if “Constraint” satisfies a label with declaration
(used for built-in labeling).

chr_resolve(Constraint) uses the ECL'PS® clauses to solve a constraint (used for built-
in labeling).

chr_get_constraint (Constraint) gets a constraint unifying with “Constraint” from the
constraint store and removes it, gets another constraint on backtracking.

68

e chr_get_constraint(Variable,Constraint) is the same as chr_get_constraint/1 ex-
cept that the constraint constrains the variable “Variable”.

6.6 Labeling

In a constraint logic program, constraint handling is interleaved with making choices. Typi-
cally, without making choices, constraint problems cannot be solved completely. Labelingis a
controlled way to make choices. Usually, a labeling predicate is called at the end of the pro-
gram which chooses values for the variables constrained in the program. We will understand
labeling in the most general sense as a procedure introducing arbitrary choices (additional
constraints on constrained variables) in a systematic way.

The CHR run-time system provides built-in labeling for user-defined constraints. The idea is
to write clauses for user-defined constraints that are used for labeling the variables in the
constraint. These clauses are not used during constraint handling, but only during built-
in labeling. Therefore the “Head” of a clause may be a user-defined “Constraint”. The
label _with declaration restricts the use of the clauses for built-in labeling (see subsection on
declarations). There can be several label with declarations for a constraint.

Example, contd.:

label_with minimum(X, Y, Z) if true.
minimum(X, Y, Z):- X leq Y, Z = X.
minimum(X, Y, Z):- Y 1ss X, Z = Y.

The built-in labeling is invoked by calling the CHR built-in predicate chr_labeling/0 (no
arguments). Once called, whenever no more constraint handling is possible, the built-in
labeling will choose a constraint goal whose 1label with declaration is satisfied for labeling.
It will introduce choices using the clauses of the constraint.

Example, contd.: A query without and with built-in labeling;:

[eclipse]l: minimum(X,Y,Z), maximum(X,Y,W), Z neq W.

X = _g357

Y = _g389

Z = _g421
W= _gl227
Constraints:

(1) minimum(_g357, _g389, _g421)
(2) _g421 leq _g357

(3) _g421 leq _g389

(4) maximum(_g357, _g389, _gl1227)
(5) _g357 leq _g1227

(7) _g389 leq _g1227

(10) _g421 1ss _g1227

yes.
[eclipse]: minimum(X,Y,Z), maximum(X,Y,W), Z neq W, chr_labeling.

69

X=1272Z= _g363
Y =W= _g395
Constraints:

(10) _g363 lss _g395

More? (;)
X=W-= _g363
Y =272 = _g395
Constraints:

(17) _g395 lss _g363

yes.

Advanced users can write their own labeling procedure taking into account the constraints in
the constraint store (see next subsection for CHR built-in predicates to inspect and manipulate
the constraint store).

Example The predicate chr_1abeling/0 can be defined as:

labeling :-
chr_get_constraint(C),

chr_label_with(C),
]

chr_resolve(C),
labeling.

labeling.

6.7 Writing Good CHR Programs

This section gives some programming hints. For maximum efficiency of your constraint
handler, see also the subsection on options, especially on check_guard bindings and the
debug_compile flag.

6.7.1 Choosing CHRs

Constraint handling rules for a given constraint system can often be derived from its definition
in formalisms such as inference rules, rewrite rules, sequents, formulas expressing axioms and
theorems. CHRs can also be found by first considering special cases of each constraint and
then looking at interactions of pairs of constraints sharing a variable. Cases that don’t occur
in the application can be ignored. CHRs can also improve application programs by turning
certain predicates into constraints to provide “short-cuts” (lemmas). For example, to the
predicate append/3 one can add append(L1,[],L2) <=> L1=L2 together with label with
append(L1,L2,13) if true.

Starting from an executable specification, the rules can then be refined and adapted to the
specifics of the application. Ffficiency can be improved by strengthening or weakening the

70

guards to perform simplification as early as needed and to do the “just right” amount of
propagation. Propagation rules can be expensive, because no constraints are removed. If the
speed of the final handler is not satisfactory, it can be rewritten using meta-terms or auxiliary
C functions.

The rules for a constraint can be scattered across the chr file as long as they are in the
same module. The rules are tried in some order determined by the CHR compiler. Due to
optimizations this order is not necessarily the textual order in which the rules where written.
In addition, the incremental addition of constraints at run-time causes constraints to be tried
for application of rules in some dynamically determined order.

6.7.2 Optimizations

Single-headed rules should be preferred to two-headed rules which involve the expensive search
for a partner constraint. Rules with two heads can be avoided by changing the “granularity” of
the constraints. For example, assume one wants to express that n variables are different from
each other. It is more efficient to have a single constraint all different(List_of n Vars)
than n? inequality constraints (see handler domain.chr). However, the extreme case of having
a single constraint modeling the whole constraint store will usually be inefficient.

Rules with two heads are more efficient, if the two heads of the rule share a variable (which
is usually the case). Then the search for a partner constraint has to consider less candidates.
Moreover, two rules with identical (or sufficiently similar) heads can be merged into one rule
so that the search for a partner constraint is only performed once instead of twice.

Rules with more than two heads are not allowed for efficiency reasons. If needed, they can
usually be written as several rules with two heads. For example, in the handler for set
constraints set.chr, the propagation rule:

set_union(S1, S2, S), set(S1, S1Glb, SiLub), set(S2, S2Glb, S2Lub) ==
s_union(S1G1lb, S2Glb, SGlb),
s_union(S1Lub, S2Lub, SLub),
set(S, SGlb, SLub).

is translated into:

set_union(S1, S2, S), set(S1, S1Glb, SiLub) ==
’$set_union’(S2, S1, S1Glb, SiLub, S).
set(S2, S2Glb, S2Lub) \ ’$set_union’(S2, S1, S1Glb, SiLub, S) <=>
s_union(S1G1lb, S2Glb, SGlb),
s_union(S1Lub, S2Lub, SLub),
set (S, SGlb, SLub).

As guards are tried frequently, they should be simple tests not involving side-effects. For
efficiency and clarity reasons, one should also avoid using user-defined constraints in guards.
Currently, besides conjunctions, disjunctions are allowed in the guard, but they should be used
with care. The use of other control built-in predicates of ECL'PS® is discouraged. Negation
and if-then-else can be used if their first arguments are either simple goals (see ECL'PS® user
manual) or goals that don’t touch global variables. Similarly, goals preceding a cut must
fulfill this condition. Built-in constraints (e.g. finite domains, rational arithmetic) work as
tests only in the current implementation. Head matching is more efficient than explicitly
checking equalities in the guard (which requires the check guard bindings flag to be on).

71

In the current implementation, local variables (those that do not occur in the heads) can be
shared between the guard and the body.

Several handlers can be used simultaneously if they don’t share user-defined constraints. The
current implementation will not work correctly if the same constraint is defined in rules of
different handlers that have been compiled separately. In such a case, the handlers must be
merged “by hand”. This means that the source code has to be edited so that the rules for the
shared constraint are together (in one module). Changes may be necessary (like strengthening
guards) to avoid divergence or loops in the computation.

Constraint handlers can be tightly integrated with constraints defined with other extensions of
ECL'PS* (e.g. meta-terms) by using the ECL'PS® built-in predicate notify_constrained(Var)
to notify ECL‘PS® each time a variable becomes more constrained. This happens if a user-
defined constraint is called for the first time or if a user-defined constraint is rewritten by a
CHR into a stronger constraint with the same functor.

For pretty printing of the user-defined constraints in the answer at the top-level and debuggers,
ECL'PS® macro transformation (for write mode) can be used. This is especially useful when
the constraints have some not so readable notation inside the handler. For an example, see
the constraint handler bool bool.chr.

6.8 Debugging CHR Programs

User-defined constraints including application of CHRs can be traced with the standard de-
bugger. Debugging of the ECL*PS® code is done in the standard way. See the corresponding
user manual for more information.

6.8.1 Using the Debugger

In order to use the debugging tool, the debug_compile flag must have been on (default)
during compilation (chr to pl) and loading of the produced ECL'PS® code.

e The query trace. activates the standard debugger (tracing user-defined constraints like
predicates).

e The query chr_trace. activates the standard debugger showing more information about
the handling of constraints. (application of CHRs).

e The query chr_notrace. stops either debugger.

The debugger displays user-defined constraints and application of CHRs. User-defined con-
straints are treated as predicates and the information about application of CHRs is displayed
without stopping. See the subsection on how CHRs work for an example trace. The additional
ports are:

e add: A new constraint is added to the constraint store.
e already_in: A constraint to be added was already present.
The ports related to application of rules are:

o try_rule: A rule is tried.

72

e delay_rule: The last tried rule cannot fire because the guard did not succeed.
o fire_rule: The last tried rule fires.
The ports related to labeling are:
e try_label: A label_with declaration is checked.
e delay_label: The last label_with declaration delays because the guard did not succeed.

e fire_label: The last tried label_with declaration succeeds, so the clauses of the asso-
ciated constraint will be used for built-in labeling.

When displayed, each constraint is labeled with a unique integer identifier. Fach rule is
labeled with its name as given in the chr source using the @ operator. If a rule does not have
a name, it is displayed together with a unique integer identifier.

6.9 The Extended CHR Implementation

A new, extended, chr library has been developed, with the intention of providing the basis
for a system that will allow more optimisations than the previous implementation. At the
same time, some of the syntax of the CHR has been changed to conform better to standard
Prolog.

The system is still experimental, and provides no special support for debugging CHR code.
Please report any problems encountered while using this system.

The main user visible differences from the original chr library are as follows:

o The extended library produces code that generally runs about twice as fast as the old
non-debugging code. It is expected that further improvements should be possible.

¢ CHR code is no longer compiled with a special command — the normal compile command
will now recognise and compile CHR code when the extended chr library is loaded.
No intermediate Prolog file is produced. The .chr extension is no longer supported
implicitly.

e Syntax of some operators have been changed to conform better to standard Prolog.

e A framework for supporting more than two head constraints has been introduced. How-
ever, support for propagation rules with more than two heads have not yet been added.
Simplification and simpagation rules with more than two heads are currently supported.

e The compiler does not try to reorder the CHR any more. Instead, they are ordered in
the way they are written by the user.

e label with is no longer supported. It can be replaced with user defined labelling.
e The operational semantics of rules have been clarified.

e There is no special support for debugging yet. The CHR code would be seen by the
debugger as the transformed Prolog code that is generated by the compiler.

73

6.9.1 Invoking the extended CHR library

The extended library is invoked by 1lib(ech). Given that it is now integrated into the
compiler. It can be invoked from a file that contains CHR code, as :- 1ib(ech)., as long
as this occurs before the CHR code.

6.9.2 Syntactic Differences

As programs containing CHRs are no longer compiled by a separate process, the . chr extension
is no longer implicitly supported. Files with the .chr extension can still be compiled by
explicitly specifying the extension in the compile command, as in [’file.chr’]. Associated
with this change, there are some changes to the declarations of the .chr format:

e operator/3 does not exist. It is not needed because the standard Prolog op/3 dec-
laration can now handle all operator declarations. Replace all operator/3 with op/3
declarations.

e The other declarations handler constraints option are now handled as normal Pro-
log declarations, i.e. they must be preceded with :-. This is to conform with standard
Prolog syntax.

The syntax for naming a rule has been changed, because the old method (using @ clashes
with the use of @ in modules. The new operator for naming rules is : :=. Here is part of the
minmax handler in the new syntax:

:- handler minmax.
:- constraints leq/2, neq/2, minimum/3, maximum/3.
:- op(700, xfx, leq).

built_in
reflexivity ::

X leq Y <=> \+nonground(X), \+nonground(Y) | X @=< Y.
X leq X <=> true.

6.9.3 Compiling

After loading the extended chr library, programs containing CHR code can be compiled
directly. Thus, CHR code can be freely mixed with normal Prolog code in any file. In
particular, a compilation may now compile code from different files in different modules which
may all contain CHR codes. This was not a problem with the old library because CHR code
had to be compile separately.

In the extended library, CHR code can occur anywhere in a particular module, and for each
module, all the CHR code (which may reside in different files) will all be compiled into one unit
(handler declarations are ignored by the system, they are present for compatibility purposes
only), with the same constraint store. CHR code in different modules are entirely separate
and independent from each other.

In order to allow CHR code to occur anywhere inside a module, and also because it is diffi-
cult to define a meaning for replacing multi-heads rules, compilation of CHR code is always
incremental, i.e. any existing CHR code in a module is not replaced by a new compilation.
Instead, the rules from the new compilation is added to the old ones.

74

It is possible to clear out old CHR code before compiling a file. This is done with the chr/1
predicate. This first remove any existing CHR code in any module before the compilation
starts. It thus approximates the semantics of chr/1 of the old library, but no Prolog file is
generated.

6.9.4 Semantics
6.9.4.1 Addition and removal of constraints

In the old chr library, it was not clearly defined when a constraint will be added to or removed
from the constraint store during the execution of a rule. In the extended chr library, all head
constraints that occur in the head of a rule are mutually exclusive, i.e. they cannot refer to
the same constraint. This ensures that similar heads in a rule will match different constraints
in the constraint store. Beyond this, the state of a constraint — if it is in the constraint store
or not — that has been matched in the head is not defined during the execution of the rest of
the head and guard. As soon as the guard is satisfied, any constraints removed by a rule will
no longer be in the constraint store, and any constraint that is not removed by the rule will
be present in the constraint store.

This can have an effect on execution. For example, in the finite domain example in the old
chr directory (domain.chr), there is the following rule:

X1t Y, X::[A|L] <=>
\+nonground(Y), remove_higher(Y,[A|L],L1), remove(Y,L1,L2) |
X::L2.

Unfortunately this rule is not sufficiently specified in the extended CHR, and can lead to
looping under certain circumstances. The two remove predicate in the guard removes elements
from the domain, but if no elements are removed (because X 1t Y is redundant, e.g. X 1t 5
with X::[1..2]), then in the old CHR execution, the body goal, the constraint X: :L2 would
not be actually executed, because the older constraint in the head (the one that matched
X::[A|L]) has not yet been removed when the new constraint is imposed. With the extended
CHR, the old constraint is removed after the guard, so the X::L2 is executed, and this can
lead to looping. The rule should thus be written as:

X1t v, X::[AIL] <=>
\+nonground(Y), remove_higher(Y,[A|L],L1), remove(Y,L1,L2),
L2\==[A|L] |
X::L2.

6.9.4.2 Executing Propagation and simpagation rules

Consider the following propagation rule:

p(X), q(Y) ==> <Body>.
- p(X).

75

The execution of this rule, started by calling p(X), will try to match all q(Y¥) in the constraint
store, and thus it can be satisfied, with <Body> executed, multiple number of times with
different q(Y). <Body> for a particular q(Y) will be executed first, before trying to match the
next q(Y). The execution of <Body> may however cause the removal of p(X). In this case, no
further matching with q(Y) will be performed.

Note that there is no commitment with propagation and simpagation rule if the constraint
being matched is not removed:

p(X), q(¥) ==> <Body1>.
p(X), r(Y) ==> <Body2>.

- p(X).

Both rules will always be executed.

The body of a rule is executed as soon as its guard succeeds. In the case of propagation rules,
this means that the other propagation rules for this constraint will not be tried until the body
goals have all been executed. This is unlike the old CHR, where for propagation rules, the
body is not executed until all the propagation rules have been tried, and if more than one
propagation rule has fired (successful in its guard execution), then the most recently fired
rule’s body is executed first. For properly written, mutually exclusive propagation rule, this
should not make a difference (modulo the effect of the removal of constraints in the body).

6.9.5 Options and Built-In Predicates

The check_guard_bindings and already_in_store options from the old chr library are
supported. Note that the extended compiler can actually detect some cases where guard
bindings cannot constrain any global variables (for example, var/1), and will in such cases
no check guard bindings.

New options, intended to control the way the compiler tries to optimise code, are introduced.
These are intended for the developers of the compiler, and will not be discussed in detail here.
The only currently supported option in this category is single_symmetric_simpagation.
The old CHR built-ins, chr_get_constraint/1 and chr_get_constraint/2 are both im-
plemented in this library.

A new built-in predicate, in_chrstore/1, is used to inspect the constraint store:

in_chrstore(+Constraint)

is used to test if Constraint is in the constraint store or not. It can be used to prevent the
addition of redundant constraints:

X leq Y, Y leq Z ==> \+in_chrstore(X leq Z)| X leq Z.
The above usage is only useful if the already_in_store option is off. Note that as the state

of a constraint that appears in the head is not defined in the guard, it is strongly suggested
that the user does not perform this test in the guard for such constraints,

76

6.9.6 Compiler generated predicates

A source to source transformation is performed on CHR code by the compiler, and the resulting
code is compiled in the same module as the CHR code. These transformed predicates all begin
with "CHR’, so the user should avoid using such predicates.

7

78

Chapter 7

RANGE: A Basis For Numeric

Solvers

7.1 Introduction

This library implements variables that range over integer or real intervals. It is meant to be
used as a common basis for arithmetic constraint solvers, and it can serve as a mechanism to
make such solvers communicate.

7.2 Usage

Load the library by using
:= lib(range) .
You will need ECL!PS® version 3.5.1 or higher.

7.3 Library Predicates

7.3.1 Constraints

Important hint: All constraints in this libary may trigger waking when applied to existing
variables. In this case, schedule_suspensions/1 will be executed by the predicate, so the
goals will be scheduled for waking, but not actually executed. The caller therefore has to call
wake/0 (the woken goal scheduler) at an appropriate point in the subsequent execution.

7.3.1.1 Vars :: Lo..Hi

Logically: Constrain a variable (or all variables in a list) to take only integer or real values in
a given range. The type of the bounds determines the type of the variable (real or integer).
Also allowed are the (untyped) symbolic bound values inf, +inf and -inf. For instance

X ::0..1 % boolean

X :: -1..5 % integer between -1 and 5
X :: 1..inf h strictly positive integer
X ::0.0..10.0 h real between 0.0 and 10.0

79

X ::1.5..3.7 % real between 1.5 and 3.7
X :: 0.0..inf % positive real
X ::0.0..5 % TYPE ERROR

Operationally, the range and type information is immediately stored into the variable’s at-
tribute.

7.3.1.2 reals(Vars)

The domain of the variables is the real numbers. This is the default, so the declaration
is optional. real(X) is equivalent to X :: -inf..inf. Mathematical Programming style
nonnegative variables are best declared as X :: 0.0..inf.

Note that the notion of real numbers is used here in the pure mathematical sense, where real
numbers subsume the integers. A variable of type real can therefore be instantated to either
a floating point or an integer number.

7.3.1.3 integers(Vars)

Constrain the variables to integer values. Note that this declaration is implicit when speci-
fiying an integer range, e.g. in Y :: 0..99.

7.3.1.4 lwb(+Var, +Bound)

Constrain the variable to be greater or equal to the specified lower bound. A bound update
on a variable may fail (when the update empties the domain), succeed (possibly updating
the variable’s bounds), or instantiate the variable (in case the domain get restricted to a
singleton value). Note that if the variable’s type is integer, its bounds will always be adjusted
to integral values.

7.3.1.5 upb(+Var, +Bound)

Constrain the variable to be less or equal to the specified upper bound.

7.3.1.6 Examples

Every new constraint on a variable is immediately reflected in the range:

[eclipse 2]: X::0.0..9.5, 1lwb(X,4.5).

X =X{4.5 .. 9.5}

yes.

[eclipse 3]: X::0.0..9.5, 1lwb(X,4.5), integers([X]).
X =3Xx{56 .. 9}

yes.

[eclipse 4]: X::0.0..9.5, 1wb(X,4.5), integers([X]), upb(X,5.9).
X =25

yes.

[eclipse 5]: X::0.0..9.5, 1wb(X,4.5), upb(X,4.3).
no (more) solution.

80

7.3.2 Retrieving Domain Information
7.3.2.1 var_range(+Var, -Lo, -Hi)

Retrieve the current range of a variable (or number). Lo and Hi return the minimum and
maximum (respectively) of the variable’s range in floating point format (regardless of the
variable’s type). If Var has not been declared before, it will be turned into an unrestricted
real variable. If Var is a number, that number will be returned as both Lo and Hi.

7.3.2.2 var_type(+Var, -Type)

Retrieve the type (’real’ or ’integer’) of a variable (or number).

7.3.3 Auxliliary Predicates
7.3.3.1 range_msg(+Varl, +Var2, ?Var3)

The most specific generalisation of two ranges is computed and returned as Var3. Var3 will
range over the smallest interval enclosing the input ranges, and have the more general type
of the inpout types.

7.3.3.2 print_range(+Var, -Range)

Returns the variable’s range in a form that would be acceptable to ::/2, ie. as a Lo..Hi
structure, encoding the variable’s type in the type of the bounds.

7.3.4 Handlers

The library installs the following handlers (cf. ECL{PS¢User Manual) in order to implement
the semantics of ranged variables:

unify Unification between two variables amounts to intersecting their ranges and taking the
more restrictive type as the result type. If the intersection is empty, the unification
fails. Unifying a variable with a number involves a check whether the number is within
the variable’s range and of the proper type, otherwise failure occurs.

test_unify like unify.

compare_instances A range variable is an instance of another when its range is subsumed
by the other range.

copy_term Range and type are copied, delayed goals are not.

delayed_goals, delayed_goals_number Considers the goals in the two attached suspension
lists.

print Ranges are printed using print_range/2.

Due to the handlers, Unification and instance test take the ranges into account:

81

[eclipse 6]: X::0.0..5.5, Y::3..8, X=Y.

X =3x{3 .. 5}
Y =X{3 .. 5}
yes.

[eclipse 8]: X::0.0..5.5, Y::3..8, instance(X,Y).
no (more) solution.

[eclipse 9]: X::0.0..5.5, Y::3..5, instance(Y,X).
Y =Y{3 .. 5}

X X{0.0 .. 5.5}

yes.

7.4 Attribute Structure

Ranged variables are implemented as attributed variables. The attribute contains the

following fields:

type specifies the variable type, either integer or real.

lo the smallest value the variable can assume

hi the largest value the variable can assume

wake_lo list of goals to be woken on lower bound change
wake_hi list of goals to be woken on upper bound change

Type and bounds are accessed through the predicates described above. Goals can be delayed
on the waking lists using the suspend/3 predicate, for example:

[eclipse 13]: X::0.0..5.5, suspend(writeln(change), 3, X->wake_lo), lwb(X,1).
change

X =X{1.0 .. 5.5}
yes.

7.5 Writing Higher Level Constraints

The following example can be taken as a scheme for how to write constraints on top of the
facilities of this library. It is a greater-equal constraint for two variables:

ge(X, Y) :- / woken on change of bounds
var_range(X, _, XH),
var_range(Y, YL, _),
(var(X),var(Y) ->
suspend(ge(X,Y), 3, [X->wake_hi, Y->wake_lo])

true),
lwb(X, YL), upb(Y, XH), 7 impose new bounds

wake. h execute woken goals here

82

The constraint wakes when either the upper bound of X or the lower bound of Y changes, and
imposes the consequences onto the other variable. When lwb/2 and upb/2 cause further bound
changes, that may wake other goals (ie. they have the effect of schedule_suspensions/1)
and we therefore have to invoke the waking scheduler wake/0 afterwards.

83

84

Chapter 8

EPLEX: The ECL'PS?/CPLEX

Interface

8.1 Usage

This library lets you use an external Simplex or MIP solver like CPLEX! or XPRESS-MP?
from within ECL*PS®. Load the library by using either of

:= 1lib(eplex_cplex).
:- lib(eplex_xpress).
:- lib(eplex).

The first line explicitly requests the CPLEX solver, the second line explicitly requests the
XPRESS-MP solver, and the third line will try to load whatever licenced solver is available
on the computer. Note that the eplex-library provides a largely solver-independent API to
the programmer, so many programs will run with either external solver.

8.2 Versions and Licences

Note that the ECLPS® library described here is just an interface to CPLEX or XPRESS-
MP. In order to be able to use it, you need to have a licence for one of these solvers on your
machine.

Depending on whether you have CPLEX or XPRESS-MP, which version of it, and which
hardware and operating system, you need to use the matching version of this interface. Be-
cause an ECLPS® installation can be shared between several computers on a network, we
have provided you with the possibility to tell the system which licence you have on which
machine. To configure your local installation, simply add one line for each computer with a
CPLEX or XPRESS-MP licence to the file <eclipsedir>/lib/eplex_lic_info.ecl, where
<eclipsedir> is the directory or folder where your ECLPS® installation resides. For exam-
ple, if you have CPLEX version 6.5 on machine workhorse, you would add the line

licence(workhorse, cplex, ’65°, ’’, 0).

Note that the set of supported solver versions may vary between different releases of ECL'PS®.

'CPLEX is a registered trademark of CPLEX Optimization Inc.
2XPRESS-MP is a product from Dash Associates Ltd.

85

8.3 Ranged and Typed Variables

Ranged variables are provided by the range-library. The relevant predicate are:

Vars :: Lo..Hi Define the inital bounds of variables. Note that if both bounds are specified
as integers, the variable will be an integer one. E.g. X::1..9 declares an integer variable
while X::1.0..9.0 declares a continuous one. The symbolic bounds -inf and inf can be
used. The default range is -inf..inf. Mathematical Programming style nonnegative
variables should be declared as X :: 0.0..inf.

reals(Vars) Equivalent to X :: -inf..inf.
integers(Vars) Constrain the variables to integer values.
var_range(+Var, -Lo, -Hi) Retrieve a variable’s range.

var_type(+Var, -Type) Retrieve a variable’s type (integer or real).

8.4 Black-Box Interface

One possible use of this library is to use ECL'PS¢just as a modeling language and let the
external solver do all the solving. For that purpose, a high-level interface is provided. It
consists of primitives for setting up linear constraints and a single optimization primitive to
invoke the external solver on these constraints.

8.4.1 Linear Constraints

The constraints provided are equalities and inequalities over linear expressions. Their opera-
tional behaviour is as follows:

e When they contain no variables, they simply succeed or fail.

e When they contain exactly one variable, they are translated into a bound update on
that variable, which may in turn fail, succeed, or even instantiate the variable. Note
that if the variable’s type is integer, the bound will be adjusted to the next suitable
integral value.

e Otherwise, the constraint delays until it is later transferred to the external solver. This
mechanism makes it possible to interface to a non-incremental black-box solver that
requires all constraints at once, or to send constraints to the solver in batches

8.4.1.1 X $=Y

X is equal to Y. X and Y are linear expressions.

8.4.1.2 X $=Y

X is greater or equal to Y. X and Y are linear expressions.

86

8.4.1.3 X $=<Y

X is less or equal to Y. X and Y are linear expressions.

8.4.2 Linear Expressions

The following arithmetic expression can be used inside the constraints:

X Variables. If X is not yet a ranged variable, it is turned into one via an implicit declaration
X :: -inf..inf.

123, 3.4 Integer or floating point constants.

+Expr Identity.

-Expr Sign change.

E1+4+E2 Addition.

sum(ListOfExpr) Equivalent to the sum of all list elements.
E1-E2 Subtraction.

E1*E2 Multiplication.

ListOfExpr1*ListOfExpr2 Scalar product: The sum of the products of the corresponding
elements in the two lists. The lists must be of equal length.

8.4.3 Optimization

After setting up the constraints with the primitives described above, the external solver’s
MIP optimizer can be invoked as a black box using

8.4.3.1 optimize(+Objective, -Cost)

Objective is either min(Expr) or max(Expr) where Expr is a linear expression. This calls
the external solver’s optimizer and succeeds if it finds an optimum. In this case the problem
variables get instantiated to the solution values, and Cost gets bound to the cost of this
solution. Note that this will find at most one solution, ie. you won’t get alternative optima
on backtracking.

In section 8.6.6 we will later show how optimize/2 is built on top of the lower level function-
ality.

8.4.4 Examples

Here is a simple linear program. As long as the optimizer is not invoked, the constraints just
delay:

[eclipse 2]: X+Y $>= 3, X-Y $= 0.
X=X

Y=Y

Delayed goals:

87

X + Y$>=3
X - Y$§=0
yes.

Now a call to optimize/2 is added in order to trigger the solver:

[eclipse 3]: X+Y $>= 3, X-Y $= 0, optimize(min(X), C).

Y=1.5
X=1.5
c=1.5

(Note that X and Y have not been explicitly declared. They default to reals ranging from
-infinity to +infinity.)
By declaring one variable as integer, we obtain a Mixed Integer Problem:

[eclipse 4]: integers([X]), X+Y $>= 3, X-Y $= 0, optimize(min(X), C).

Y =2.0
X=2
c=2.0
yes

8.5 Interface for CLP-Integration

8.5.1 Simplex Demons

To implement hybrid algorithms where a run of a simplex solver is only a part of the global
solving process, the black-box model presented above is not appropriate any more. As a more
convenient model, we introduce the concept of a simplex demon. A simplex demon collects
linear constraints and re-solves the problem whenever bounds change or new constraints
appear.

8.5.1.1 Ip_demon_setup(+Objective, -Cost, +ListOfOptions, +Priority, +Trig-
gerModes, -Handle)

Declaratively, this can be seen as a compound constraint representing all the individual linear
constraints that have been set so far and are going to be set up later. Operationally, the
delayed constraints are collected and an external solver is set up (as with Ip_setup/4). Then
the problem is solved once initially (as with Ip_solve/2) and a delayed goal Ip_demon/7 is set
up which will re-trigger the solver when certain conditions are met.

Handle refers to the created solver state (as in Ip_setup/4 or Ip_read/3 described below). It
can be used to access and modify the state of the solver, retrieve solution information etc.
Unlike with Ip_solve/2, Cost will not be instantiated to a solution’s cost, but only be bounded
by it: For a minimization problem, each solution’s cost becomes a lower bound, for maxi-
mization an upper bound on Cost. This technique allows for repeated re-solving with reduced
bounds or added constraints.

List0fOptions is a list of solver options as described is section 8.6.1.1 for Ip_setup/4.

88

Priority is the scheduling priority with which the solver gets woken up. This priority
determines whether the solver is run before or after other constraints. It is recommended to
choose a priority that lies below the priority of more efficient propagation constraints, e.g. 5.
TriggerModes specifies under which conditions the solver demon will be re-triggered. It can
be a list of the following specifiers

inst: re-trigger if a problem variable gets instantiated.

deviating_inst: re-trigger if a problem variable gets instantiated to a value that differs
from its Ip-solution more than a tolerance.

bounds: re-trigger each time a variable bound changes.

deviating bounds: re-trigger each time a variable bound changes such that its Ip-solution
gets excluded more than a tolerance.

new_constraint: re-trigger each time a new constraint appears.

trigger(Atom) : re-trigger each time the symbolic trigger Atom is pulled by invoking sched-
ule_suspensions/1.

pre(Goal): an additional condition to be used together with other triggers. When the demon
is triggered, it first executes PreGoal. Only if that succeeds, does the appropriate
external solver get invoked. This provides a way of reducing the number of (possibly
expensive) solver invocations when given preconditions are not met.

post(Goal): this is not a trigger condition, but specifies a goal to be executed after solver
success, but before the Cost variable gets constrained. It is intended as a hook for
exporting solution information, e.g. copying solutions from the solver state into variable
attributes (eg. tentative value), or computing weights for labeling heuristics from the
solver state.

The tolerances mentioned can be specified in Ip_setup/2 or Ip_set/3 as demon_tolerance.
Some common invocations patterns for this predicate are the following. The first triggers the
solver only on instantiation of variables to values that don’t fit with the simplex solution:

lp_demon_setup(min(Expr), C, [1, 5, [deviating_inst], H)

The next one is more eager and triggers on significant bound changes or whenever new
constraints arrive:

lp_demon_setup(max(Expr), C, [1, 5, [new_constraint,deviating_bounds], H)
The solver can also be triggered explicitly by setting it up with
lp_demon_setup(min(Expr), C, [1, 5, [trigger(run_simplex)], H)
and then issuing the command
schedule_suspensions(run_simplex) ,wake

If several trigger conditions are specified, then any of them will trigger the solver.
When a solver demon runs frequently on relatively small problems, it can be important for
efficieny to switch the external solver’s presolving off (Ip_set(presolve,0)) to reduce overheads.

89

8.5.1.2 solution_out_of range(+Handle)

This is intended as a useful pre(Goal) for Ip_demon_setup/6 in connection with the bounds
trigger mode. It succeeds if any of the solutions (computed by the most recent successful
solving) of Handle are more than a tolerance outside the range of the corresponding vari-
ables, ie. couldn’t be instantiated to this value. The admissible tolerances can be specified in
Ip_setup/2 or Ip_set/3 as demon_tolerance.

8.5.1.3 instantiation_deviates(+Handle)

This is intended as a useful pre(Goal) for lp_demon_setup/6 in connection with the inst
trigger mode. It succeeds if any of the variables originally involved in Handle have been
instantiated to a value that is not within +/— tolerance from the latest simplex solution
for that variable. The admissible tolerances can be specified in lp_setup/2 or Ip_set/3 as
demon_tolerance.

8.5.2 Example

The simplest case of having a simplex solver automatically cooperating with a CLP program,
is to set up a solver demon which will repeatedly check whether the continuous relaxation of
a set of constraints is still feasible. The code could look as follows:

simplex :-
1p_demon_setup(min(0), C, [solution(no)], 5, [bounds], _).

First, the constraints are normalised and checked for linearity. Then a solver with a dummy
objective function is set up. The option solution(no) indicates that we are not interested in
solution values. Then we start a solver demon which will re-examine the problem whenever
a change of variable bounds occurs. The demon can be regarded as a compound constraint
implementing the conjunction of the individual constraints. It is able to detect some infeasi-
bilities that for instance could not be detected by the finite domains solver, e.g.

[eclipse]l: X+Y+Z $>= K, X+Y+Z $=< 1,
lp_demon_setup(min(0), C, [solution(no)], 5, [bounds], _),
K= 2.

no (more) solution.

In the example, the initial simplex is successful, but instantiating K wakes the demon again,
and the simplex fails this time.

A further step is to take advantage of the cost bound that the simplex procedure provides.
The setup is similar to above, but we accept an objective function and add a cost variable.
The bounds of the cost variable will be updated whenever a simplex invocation finds a better
cost bound on the problem. In the example below, an upper bound for the cost of 1.5 is found
initially:

[eclipse 14]: X+Y $=< 1, Y+Z $=< 1, X+Z $=< 1,
1p_demon_setup(max(X+Y+Z), Cost, [solution(no)], 5, [bounds], _).

X = X{-1e+20 .. 1e+20}

90

Y Y{-1e+20 .. 1e+20}
Z Z{-1e+20 .. 1e+20}
Cost = Cost{-1e+20 .. 1.500001}

Delayed goals:
lp_demon(prob(...), ...)
yes.

If the variable bounds change subsequently, the solver will be re-triggered, possibly improving
the cost bound to 1.3:

[eclipse 16]: X+Y $=< 1, Y+Z $=< 1, X+Z $=< 1,
1p_demon_setup(max(X+Y+Z), Cost, [solution(no)], 5, [bounds], _),

Y $=< 0.3.
X = X{-1e+20 .. 1e+20}
Z = Z{-1e+20 .. 1le+20}

Cost = Cost{-1e+20 .. 1.300001}
Y = Y{-1e+20 .. 0.3}

Delayed goals:
lp_demon(prob(...), ...)
yes.

A further example is the implementation of a MIP-style branch-and-bound procedure. Source
code is provided in the library file mip.pl.

8.6 Low-Level Solver Interface

For many applications, the facilities presented so far should be appropriate for using Sim-
plex/MIP through ECL*PS®. This section describes lower level operations like how to set up
solvers manually and the primitives available to access and modify a solver’s state.

8.6.1 Setting up Solvers Manually

This basic interface allows the user to deal with several independent solvers, to set them up,
solve and re-solve, extract information about a solver’s state and modify various parameters.
Each such solver is referred to by a handle representing the solver’s state.

8.6.1.1 Ip_setup(+NormConstraints, +Objective, +ListOfOptions, -Handle)

Create a new solver state for the set of constraints NormConstraints (see below for how
to obtain a set of normalised constraints). Apart from the explicitly listed constraints, the
variable’s ranges will be taken into account as the variable bounds for the simplex algorithm.
Undeclared variables are implicitly declared as reals/1.

However, when variables have been declared integers (using ::/2 or integers/1), that is not
taken into account by the solver by default. This means that the solver will only work on
the relazed problem (ie. ignoring the integrality constraints), unless specified otherwise in

91

the options. Objective is either min(Expr) or max (Expr) where Expr is a linear expression.
Options is a list of options (see below). A solver-handle is returned which is used to refer to
the solver subsequently.
The solver Options are:

integers(all) Advises the solver to take all integrality constraints into account, ie. to con-
sider all variables integers that have been declared such. This option will instruct the
external solver to use its own MIP solver (ie. branch-and-bound search happens within
the external solver) instead of just the Simplex.

integers(+List0fVars) Consider the specified variables to be integers (whether or not they
have been declared such). This option will instruct the external solver to use its own
MIP solver (ie. branch-and-bound search happens within the external solver) instead of
just the Simplex.

method(+Method) Use the specified method (primal, dual, netprimal, netdual, barrier)
to solve the problem. The default is primal. See th external solver’s manual for a de-
scription of these methods.

solution(+YesNo) Make the solutions available each time the problem has been (re-)solved
successfully. YesNo is one of the atoms yes or no, the default is yes.

dual_solution(+YesNo) Make the dual solutions available each time the problem has been
(re-)solved successfully. YesNo is one of the atoms yes or no, the default is no.

slack(+YesNo) Make the constraint slacks available each time the problem has been (re-
)solved successfully. YesNo is one of the atoms yes or no, the default is no.

reduced_cost (+YesNo) Make the reduced costs available each time the problem has been
(re-)solved successfully. YesNo is one of the atoms yes or no, the default is no.

keep basis(+YesNo) Store the basis each time the problem has been solved successfully,
and use this basis as a starting point for re-solving next time. This option only affects
performance. YesNo is one of the atoms yes or no, the default is no.

demon_tolerance(RealTol, IntTol) Specify how far outside a variable’s range an Ip-solution
can fall before Ip_demon _setup/6 re-triggers. RealTol and IntTol are floats and default
to 0.00001 and 0.5 respectively.

simplify(+YesNo) Simplify the constraints before sending them to the external solver. The
simplification consists of eliminating trivial constraints and turning simple constraints
into bound updates. It is solver-dependent whether this step is needed or whether it is
covered by the external solvers’s preprocessing. YesNo is one of the atoms yes or no,
the default is no.

space(+Rows,+Cols,+NonZeros) This option is needed with solvers that require a-priory
memory allocation (currently only XPRESS-MP). The arguments are integers specifying
how many extra rows, columns and nonzero coefficients can be added to the solver after
it has been set up.

92

8.6.1.2 Ip_set(+Handle, + What, +Value)

This primitive can be used to change some of the initial options even after setup. Handle
refers to an existing solver state, What can be one of the following:

method Set the method that will be used to solve the problem. Value is one of primal,
dual, netprimal, netdual, barrier.

solution Make the solutions available each time the problem has been (re-)solved success-
fully. Value is one of the atoms yes or no.

reduced_cost Make the reduced costs available each time the problem has been (re-)solved
successfully. Value is one of the atoms yes or no.

slack Make the constraint slacks available each time the problem has been (re-)solved suc-
cessfully. Value is one of the atoms yes or no.

dual_solution Make the dual solutions available each time the problem has been (re-)solved
successfully. Value is one of the atoms yes or no.

keep_basis Store the basis each time the problem has been solved successfully, and use this
basis as a starting point for re-solving next time. Value is one of the atoms yes or no.

demon_tolerance Specify how far outside a variable’s range an Ip-solution can fall before
Ip_demon _setup/6 re-triggers. Value is a comma-separated pair (RealTol,IntTol) of
floating-point values (default (0.00001,0.5)).

simplify Simplify the constraints before sending them to the external solver. The simplifica-
tion consists of eliminating trivial constraints and turning simple constraints into bound
updates. It is solver-dependent whether this step is needed or whether it is covered by
the external solvers’s preprocessing. Value is one of the atoms yes or no.

Making solutions available means that they can be retrieved using lp_get/3 or Ip_var_get/3
after the solver has been run successfully.
8.6.1.3 Ip_add(4+Handle, +NewNormConstraints, +NewIntegers)

Add new constraints (with possibly new variables) to a solver. The new constraints will
be taken into account the next time the solver is run. The constraints will be removed on
backtracking.

8.6.1.4 Ip_cleanup(+Handle)

Destroy the specified solver, free all memory, etc. Note that ECL!PS®will normally do the
cleanup automatically, for instance when execution fails across the solver setup, or when a
solver handle gets garbage collected. However, calling Ip_cleanup/1 explicitly does not hurt
and may cause resources (memory and licence) to be freed earlier.

8.6.1.5 Ip_read(+File, +Format, -Handle)

Read a problem from a file and setup a solver for it. Format is 1p or mps. The result is a
handle similar to the one obtained by lp_setup/4.

93

8.6.1.6 lp_write(+Handle, +Format, +File)

Write the specified solver’s problem to a file. Format is 1p or mps.

8.6.2 Running a Solver Explicitly

A solver needs to be triggered to actually solve the Linear Programming or Mixed Inte-
ger Programming problem that it represents. While solvers created by optimize/2 and
Ip_demon _setup/6 are triggered automatically, solvers that have been set up manually with
Ip_solve/2 need to be run explicitly.

8.6.2.1 Ip_solve(+Handle, -Cost)

Apply the external solver’s LP or MIP solver to the problem represented by Handle. Precisely
which method is used depends on the options given to Ip_setup/4. Ip_solve/2 fails if there is
no solution or succeeds if an optimal solution is found, returning the solution’s cost in Cost
(unlike with lp_demon_setup/6, Cost gets instantiated to a number). After a success, various
solution and status information can be retrieved using Ip_get/3,4.

If there was an error condition, or limits were exceeded, Ip_solve/2 raises the error 'CPLEX_ABORT".
Even in that case, the external solver return status can be obtained using 1p_get(Handle,
status, ...).

When a solver is triggered repeatedly, each invocation will automatically take into account the
current variable bounds. The set of constraints considered by the solver is the one given when
the solver was created plus any new constraints that were added (Ip_add/3) in the meantime.

8.6.2.2 lp_probe(+Handle, +Objective, -Cost)

Similar to Ip_solve/2, but optimize for a different objective function rather than the one that
was specified during solver setup.

8.6.3 Accessing Solutions and other Solver State
8.6.3.1 Ip_get(+Handle, +What, -Value)

Retrieve information about solver state and results:

vars Returns a term ”(X1,...,Xn) whose arity is the number of variables involved in the
solver’s constraint set, and whose arguments are these variables.

ints Returns a list [Xil,...,Xik] which is the subset of the problem variables that the solver
considers to be integers.

constraints norm Returns a list of the problem constraints in normalised form. They may
be simplified with respect to the original set that was passed to lp_setup/4.

constraints Returns alist of the problem constraints in denormalised (readable) form. They
may be simplified with respect to the original set that was passed to Ip_setup/4.

objective Returns a term min(E) or max(E), representing objective function and optimisa-
tion direction. E is a linear expression.

94

method Returns the method (primal, dual, netprimal, netdual, barrier) that is used
to solve the problem.

status Status that was returned by the most recent invocation of the external solver.
cost Cost of the current solution. Fails if no solution has been computed yet.

typed_solution Returns a term ”(X1,...,Xn) whose arguments are the properly typed (inte-
ger or float) solution values for the corresponding problem variables (vars). The float-
ing point solutions are the same as returned by solution, the integers are obtained by
rounding the corresponding floating-point solution to the nearest integer. To instantiate
the problem variables to their solutions, unify this term with the corresponding term
containing the variables:

instantiate_solution(Handle) :-
lp_get(Handle, vars, Vars),
lp_get(Handle, typed_solution, Values),
Vars = Values.

slack Returns a list of floating-point values representing the constraint slacks. The order
corresponds to the list order in constraints. Fails if no solution has been computed
yet.

dual_solution Returns a list of floating-point values representing the dual solutions. The or-
der corresponds to the list order in constraints. Fails if no solution has been computed
yet.

demon_tolerance Returns a comma-separated pair (RealTol,IntTol) of floating-point val-
ues which specify how far outside a variable’s range an lp-solution can fall before
Ip_demon_setup/6 re-triggers. The tolerances differ for real (default 0.00001) and integer
(default 0.5) variables.

simplex_iterations Returns the external solver’s count of simplex iterations.
node_count Returns the external MIP solver’s node count.

statistics Returns a list of counter values [Successes, Failures, Aborts], indicating
how often Ip_solve/2 was invoked on the Handle, and how many invocations succeeded,
failed and aborted respectively.

Note that reduced_cost, slack, dual_solution can only be retrieved when previously requested
in the option list of Ip_setup/4 or with lp_set/3.

8.6.4 Accessing Variable-Related Information

Variable-related information can be retrieved individually for every variable without referring
to a solver handle:

95

8.6.4.1 Ip_var_get(+4Var, +What, -Value)

Retrieve information about solver state and results related to a particular variable or con-
straint. Fails if no solution has been computed yet. What can take one of the following
values:

solution Returns the floating-point solution for variable Var.

typed_solution Returns the properly typed (integer or float) solution for variable Var. For
continuous variables, this is the same floating-point value as returned by solution, for
integers the value is obtained by rounding the corresponding floating-point solution to
the nearest integer.

reduced_cost Returns the reduced cost for variable Var.

Note that solution or reduced_cost can only be retrieved when previously requested in the
option list of Ip_setup/4 or with lp_set/3.

8.6.5 Collecting Linear Constraints

There are several ways to obtain a list of normalised constraints as input to Ip_setup/4:

8.6.5.1 collect_lp_constraints_norm(-NormConstraints)

Collect all currently delayed linear constraints of the form X $=Y, X $>=Y or X $=< Y, and
return them in normalised form. The corresponding delayed goals are removed (killed), but
nonlinear constraints are ignored and remain delayed.

8.6.5.2 normalise_cstrs(+Constraints, -NormConstraints, -NonlinConstr)

where Constraints is a list of terms of the form X =Y, X >= Y or X =< Y (no dollar-signs!)
where X and Y are arithmetic expressions. The linear constraints are returned in normalised
form in NormConstraints, the nonlinear ones are returned unchanged in NonlinConstr.

8.6.5.3 Constraints from other solvers

For example, lib(fdplex) can extract the linear constraints from a set of finite-domain con-
straints.

8.6.6 Low-Level Interface Examples
8.6.6.1 Definition of optimize/2

The high-level predicate optimize/2 can be defined as:

optimize (OptExpr, 0bjVal) :-
collect_lp_constraints_norm(NormCstr),
lp_setup(NormCstr, OptExpr, [integers(all)], Handle),
lp_solve(Handle, 0bjVal),
lp_get(Handle, vars, VarVector),
lp_get(Handle, typed_solution, SolutionVector),

96

VarVector = SolutionVector,
lp_cleanup(Handle) .

First, all delayed goals of the form X $=Y, X $>= Y or X $=< Y are collected and normalised.
Then a solver is set up, taking into account all integrality constraints. This solver is then
invoked once, the solution vector obtained, and the variables instantiated to those solutions.

8.6.7 Access to Global Solver Parameters

The external Simplex solver has a number of global (i.e. not specific to a particular problem)
parameters that affect the way it works. These can be queried and modified using the following
predicates.

8.6.7.1 Ip_get(optimizer, -Value)

Returns the name of the external optimizer, currently ’cplex’ or ’xpress’.

8.6.7.2 Ip_get(space, -Value)

This option only applies to solvers that require a-priory memory allocation (currently only
XPRESS-MP). The value is a term of the form space(Rows,Cols,NonZeros) whose argu-
ments are integers specifying how many extra rows, columns and nonzero coefficients can be
added to a solver after it has been set up. The default is space(0,0,0). It can be changed
globally using Ip_set/2 or on a per-solver basis using the space-option in Ip_setup/4.

8.6.7.3 Ip_get(+ParamName, -Value)

Retrieve the value of a global parameter for the external solver. The Value is either a float
or an integer number, depending on the parameter. Refer to the solver documentation for
details. The names of the parameters are as follows:

timelimit, time_limit, perturbation const, lowerobj limit, upperobj_limit,
feasibility_tol, markowitz tol, optimality_tol, backtrack, treememory,
lowercutoff, uppercutoff, absmipgap, mipgap, integrality, objdifference,
relobjdifference, crash, dgradient, pricing, iisfind, netfind,
perturbation_ind, pgradient, refactor, iteration limit, singularity limit,
simplex_display, basisinterval, branch, cliques, covers, heuristic,
nodeselect, order, sosscan, startalgorithm, subalgorithm, variableselect,
solution_limit, node limit, minsossize, mip.display, mip_interval, advance,
aggregator, coeffreduce, dependency, presolve, scale, xxxstart, reducecostfix

8.6.7.4 Ip_set(+ParamName, +Value)

Set a global parameter for the external solver. The parameters are as in Ip_get/2.

8.6.7.5 Ip_set(space, +Value)

This setting only applies to solvers that require a-priory memory allocation (currently only
XPRESS-MP). The value is a term of the form space(+Rows,+Cols,+NonZeros) whose ar-
guments are integers specifying how many extra rows, columns and nonzero coefficients can

97

be added to a solver after it has been set up. The default is space(0,0,0). The setting can
be overwritten using the space-option in lp_setup/4.

8.6.7.6 int_tolerance(-Value)

The same as Ip_get(integrality, Value): The solver’s idea of an integer value, i.e. numbers
within this tolerance from an integer are considered integers.

8.7 External Solver Output and Log

The external solver’s output can be controlled using:

1p_set(SolverChannel, +(Stream)) Send output from SolverChannel to the ECL'PS® 1/0
stream Stream.

lp_set(SolverChannel, -(Stream)) Stop sending output from SolverChannel to the ECLIPS®
I/O stream Stream.

SolverChannel is one of result_channel, error_channel, warning channel, log._channel,
and Stream is an ECLPS® stream identifier (e.g. output, or the result of an open/3 oper-
ation). By default, error_channel and warning channel are directed to ECL'PS®’s error
stream, while result_channel and log_channel are suppressed. To see the output on these
channels, do

:- lp_set(result_channel, +output), lp_set(log_channel, +output).
Similarly, to create a log file:

:- open("mylog.log", write, logstream), lp_set(log_channel, +logstream).
and to stop logging;:

:- lp_set(log_channel, -logstream), close(logstream).

8.8 Error Handling

If the external solver’s optimization aborts with an error condition, or if limits are exceeded,
the event "CPLEX_ABORT’ is raised. The default event handler is cplex_abort_handler/2,
which prints a message and aborts. However, the handler is user-definable, so a more sophis-
ticated handler could for instance change parameter settings and call lp_solve again.

98

Chapter 9

FDPLEX: A Hybrid Finite Domain
/ Simplex Solver

9.1 Motivation

Finite Domain Constraint Propagation and Integer Programming are two methods to solve
and optimize systems of linear inequations over discrete domains. Experiments show that no
one method has a general advantage over the other. Is seems rather that there are problems
that are particularly well suited to either one or the other approach, owing to their different
characteristics. But even different instances of the same problem can exhibit very different
behaviours, which can make it impossible to chose the “most suitable” solver for a particular
application.

These observations prompted the development of this library: It implements a hybrid solver
based on cooperation between the ECL!PS® finite domain solver lib(fd) and the ECL{PS®/CPLEX
interface lib(eplex). The basic idea is to have the programmable control provided within
ECL!PS®, the incremental bound propagation achieved by the finite domain solver, and the
global reasoning that is done by the simplex solver.

9.2 Usage

Many programs written for lib(fd) should run unchanged with lib(fdplex). The library is
loaded using

:- 1ib(fdplex).

This will automatically load both the fd and the eplex library as well.

Note that this library is provided as source code. It really implements only one example of a
solver cooperation. It is expected that users will modify the library to suit the special needs
of the particular application.

9.3 Functionality

The library redefines minimize/2, min_max/2, indomain/1 and labeling/1 with versions that
setup and trigger the simplex solver (on the relaxed floating-point problem) in appropriate
places. In more detail:

99

1. At the beginning of minimize/2 or min_max/2, the finite-domain constraint store is
scanned, an LP-relaxation is extracted, a corresponding LP-solver is set up and the
relaxation is solved once.

2. Then the normal FD branch-and-bound procedure is started, using the user-supplied
labeling routine.

3. The modified version of indomain/1 employs a value-selection strategy based on the
solution of the LP-relaxation: The variable is first labeled with the integer which is
closest to the floating-point solution. On backtracking, the rest of the domain is tried.

4. Variable instantiation (or, optionally, interval narrowing) can trigger the LP-solver:
When a variable takes a value that is not close enough to the solution of the relaxation
(or, optionally, when the narrowed interval excludes the solution of the relaxation), the
solver is re-invoked. It computes a new solution, taking into account the current variable
values and bounds.

The benefits from solver cooperation are:
e Infeasibility of the relaxed problem can prune the search.

e The cost of the relaxed solution is a lower bound to the cost of every integer solu-
tion. This cost bound is imposed as an additional constraint, and can thus cause
FD-propagation and prune the search.

e The solution to the relaxed problem can be used as a labeling heuristics, hopefully
leading to solution earlier.

9.4 FDPLEX Predicates

9.4.0.7 minimize(+Goal, +Expr) and min_max(+Goal, +Expr)

These are variants of the minimize/2 and min_max/2 predicates from the fd-library. They
differ in that they set up a cooperating simplex solver prior to entering the branch-and-bound
search.

9.4.0.8 indomain(+Var)

A variant of indomain/1 with modified value order: The integer that is closest to the relaxed-
problem solution is chosen first.

9.4.0.9 labeling(+VarList)

A labeling routine using the modified indomain/1.

9.4.0.10 split_domain(+Var)

An alternative labeling primitive. It splits the variable’s domain at the value suggested by
the relaxed solution.

100

9.4.0.11 split_labeling(+4VarList)

A labeling routine using split_domain/1 instead of indomain/1.

9.4.0.12 extract_lp_from _fd(-Constraints)

Extract a relaxed LP-problem from the finite-domain constraints (this is done implicitly in
minimize and min_max). A list of =, >= and =< constraints is returned, and the variables
involved are given the correct bounds and integer-type.

9.4.0.13 extract_lp_from_fd norm(-NormConstraints)

Same as above, but the result is in normalised form, acceptable to Ip_setup/4.

9.4.0.14 fdplex_statistics([Backtracks, SolverCalls, SolverFails, SolverBound])

Returns a list of counters giving information about the most recent invocation of mini-
mize/min_max. Backtracks is the number of times indomain/1. has generated an alter-
native value. SolverCalls is the number of times the simplex solver was invoked. SolverIFails
counts how often the simplex detected infeasibility and SolverBound is the number of sim-
plex solutions that were able to increase the lower cost bound. The difference SolverCalls-
(SolverFails+SolverBound) represents the number of "useless’ simplex invocations, in the sense
that these invocations didn’t affect the search space. However, they might still have improved
the labeling heuristics.

101

102

Chapter 10

REPAIR: Constraint-Based Repair

10.1 Introduction

The Repair library provides two simple, fundamental features which are the basis for the
development of repair algorithms and non-monotonic search methods in ECL*PS®:

e The maintenance of tentative values for the problem variables. These tentative values
may together form a partial or even inconsistent tentative assignment. Modifications
to, or extensions of this assignment may be applied until a correct solution is found.

¢ The monitoring of constraints (the so called repair constraints) for being either satisfied
or violated under the current tentative assignment. Search algorithms can then access
the set of constraints that are violated at any point in the search, and perform repairs
by changing the tentative assignment of the problem variables.

This functionality allows the implementation of classical local search methods within a CLP
environment (see Tutorial on Search Methods). However, the central aim of the Repair library
is to provide a framework for the integration of repair-based search with the consistency
techniques available in ECL'PS®, such as the domains and constraints of the FD library.

A more detailed description of the theory and methods that are the basis of the Repair library
is available [1].

10.1.1 Using the Library
To use the repair library you need to load it using

:- 1lib(repair).

Normally, you will also want to load one more of the ’fd’, ’ria’, 'range’ or ’conjunto’ solvers.
This is because of the notion of tenability, i.e. whether a tentative value is in a domain is
checked by communicating with a different solver that keeps that domain.

10.2 Tentative Values

10.2.1 Attaching and Retrieving Tentative Values

A problem variable may be associated with a tentative value. Typically this tentative value
is used to record preferred or previous assignments to this variable.

103

10.2.1.1 ?Vars tent_set +-+Values

Assigns tentative values for the variables in a term. These are typically used to register
values the variables are given in a partial or initially inconsistent solution. These values may
be changed through later calls to the same predicate. Vars can be a variable, a list of variables
or any nonground term. Values must be a corresponding ground term. The tentative values
of the variables in Vars are set to the corresponding ground values in Values.

10.2.1.2 ?Vars tent_get ?Values

Query the variable’s tentative values. Values is a copy of the term Vars with the tentative
values filled in place of the variables. If a variable has no tentative value a variable is returned
in its place.

10.2.2 Tenability

A problem variable is tenable when it does not have a tentative value or when it has a tentative
value that is consistent e.g. with its finite domain. For example

[eclipse 3]: X::1..5, X tent_set 3.
X = X{fd:[1..5], repair:3}

produces a tenable variable (note how the tentative value is printed as the variable’s repair-
attribute), while on the other hand

[eclipse 3]: X::1..5, X tent_set 7.
X = X{fd:[1..5], repair:7}

produces an untenable variable. Note that, unlike logical assignments, the tentative value can
be changed:

[eclipse 3]: X::1..5, X tent_set 7, X tent_set 3.
X = X{fd:[1..5], repair:3}

10.2.2.1 tenable(?Var)

Succeeds if the given variable is tenable. This predicate is the link between repair and any
underlying solver that maintains a domain for a variable!.

10.2.3 The Tentative Assignment

The notion of a tentative assignment is the means of integration with the consistency methods
of ECL'PS®. The tentative assignment is used for identifying whether a repair constraint is
being violated.

The tentative assignment is a function of the groundness and tenability of problem variables
according to the following table

'f you wish to write your own solver and have it cooperate with repair you have to define a test_unify

handler

104

Variable Groundness | Variable Tenability | Value in Tentative Assignment
Ground Tenable Ground Value

Ground Not Tenable Ground Value

Not Ground Tenable Tentative Value

Not Ground Not Tenable Undefined

A repair constraint is violated under two conditions:
e The tentative assignment is undefined for any of its variables.

e The constraint fails under the tentative assignment.

10.2.4 Variables with No Tentative Value

It has been noted above that variables with no associated tentative value are considered to
be tenable. Since no single value has been selected as a tentative value, the Repair library
checks constraints for consistency with respect to the domain of that variable. A temporary
variable with identical domains is substituted in the constraint check.

10.2.5 Unification

If two variables with distinct tentative values are unified only one is kept for the unified
variable. Preference is given to a tentative value that would result in a tenable unified
variable.

10.3 Repair Constraints

Once a constraint has been declared to be a repair constraint it is monitored for violation.
Whether a repair constraint is considered to be violated depends on the states of its variables.
A temporary assignment of the variables is used for checking constraints. This assignment is
called the tentative assignment and is described above. A constraint which is violated in this
way is called a conflict constraint.

Normal constraints are turned into repair constraints by giving them one of the following
annotations:

10.3.0.1 Constraint r_conflict ConflictSet

This is the simplest form of annotation. It makes a constraint known to the repair library, i.e.
it will initiate monitoring of Constraint for conflicts. When the constraint goes into conflict,
it will show up in the conflict set denoted by ConflictSet, from where it can be retrieved
using conflict_constraints/2. Constraint can be any goal that works logically, it should
be useable as a ground check, and work on any instantiation pattern. Typically, it will be a
constraint from some solver library. ConflictSet can be a user-defined name (an atom) or
it can be a variable in which case the system returns a conflict set handle that can later be
passed to conflict_constraints/2. Example constraint with annotation:

Capacity #>= sum(Weights) r_conflict cap_cstr

105

Note that using different conflict seta for different groups of constraints will often make the
search algorithm easier and more efficient. A second allowed form of the r_conflict annotation
is Constraint r_conflict ConflictSet-ConflictData. If this is used, ConflictData will
appear in the conflict set instead of the Constraint itself. This feature can be used to pass
additional information to the search algorithm.

10.3.0.2 Constraint r_conflict_prop ConflictSet

In addition to what r_conflict does, this annotation causes the Constraint to be activated
as a goal as soon as it goes into conflict for the first time. If Constraint is a finite-domain
constraint for example, this means that domain-based propagation on Constraint will start
at that point in time.

Note that if you want constraint propagation from the very beginning, you should simply
write the constraint twice, once without and once with annotation.

10.4 Conflict Sets

Given a tentative assignment, there are two kinds of conflicts that can occur:
e Untenable variables
e Violated constraints

To obtain a tentative assignment which is a solution to the given problem, both kinds of
conflicts must be repaired. The repair library supports this task by dynamically maintaining
conflict sets. Typically, a search algorithm examines the conflict set(s) and attempts to repair
the tentative assignment such that the conflicts disappear. When all conflict sets are empty,
a solution is found.

10.4.0.3 conflict_vars(-Vars)

When a variable becomes untenable, it appears in the set of conflict variable, when it becomes
tenable, is disappears. This primitive returns the list of all currently untenable variables. Note
that all these variables must be reassigned in any solution (there is no other way to repair un-
tenability). Variable reassignment can be achieved by changing the variable’s tentative value
with tent_set/2, or by instantiating the variable. Care should be taken whilst implementing
repairs through tentative value changes since this is a non-monotonic operation: conflicting
repairs may lead to cycles and the computation may not terminate.

10.4.0.4 conflict_constraints(+ConflictSet, -Constraints)

When a repair constraint goes into conflict (i.e. when it does not satisfy the tentative assign-
ment of its variables), it appears in a conflict set, once it satisfies the tentative assignment,
it disappears. This primitive returns the list of all current conflict constraints in the given
conflict set. ConflictSet is the conflict set name (or handle) which has been used in the
corresponding constraint annotation. For example

conflict_constraints(cap_cstr, Conflicts)

106

would retrieve all constraints that were annotated with cap_cstr and are currently in conflict.
At least one variable within a conflict constraint must be reassigned to get a repaired solu-
tion. Variable reassignment can be achieved by changing the variable’s tentative value with
tent_set/2, or by instantiating the variable. Care should be taken whilst implementing repairs
through tentative value changes since this is a non-monotonic operation: conflicting repairs
may lead to cycles and the computation may not terminate.

Note that any repair action can change the conflict set, therefore conflict_constraints/2
should be called again after a change has been made, in order to obtain an up-to-date conflict
set.

10.4.0.5 poss_conflict_vars(+ConflictSet, -Vars)

The set of variables within the conflict constraints. This is generally a mixture of tenable and
untenable variables.

10.5 Invariants

For writing sophisticated search algorithms it is useful to be able not only to detect conflicts
caused by tentative value changes, but also to compute consequences of these changes. For
example, it is possible to repair certain constraints automatically by (re)computing one or
more of their variable’s tentative values based on the others (e.g. a sum constraint can be
repaired by updating the tentative value of the sum variable whenever the tentative value of
one of the other variables changes). We provide two predicates for this purpose:

10.5.0.6 -Result tent_is +Expression

This is similar to the normal arithmetic is/2 predicate, but evaluates the expression based
on the tentative assignment of its variables. The result is delivered as (an update to) the
tentative value of the Result variable. Once initiated, tent_is will stay active and keep
updating Result’s tentative value eagerly whenever the tentative assignment of any variable
in Expression changes.

10.5.0.7 tent_call(In, Out, Goal)

This is a completely general meta-predicate to support computations with tentative values.
Goal is a general goal, and In and Out are lists (or other terms) containing subsets of Goal’s
variables. A copy of Goal is called, with the In-variables replaced by their tentative values
and the Out-variables replaced by fresh variables. Goal is expected to return values for the
Out variables. These values are then used to update the tentative values of the original Out
variables. This process repeats whenever the tentative value of any In-variable changes.

10.5.0.8 Waking on Tentative Assignment Change

The predicates tent_is/2 and tent_call/3 are implemented using the ga_chg suspension list
which is attached to every repair variable. The programmer has therefore all the tools to
write specialised, efficient versions of tent_call/3. Follow the following pattern:

107

my_invariant(In, Out) :-
In tent_get TentIn,
. compute TentOut from TentIn ...
suspend (my_invariant(In,Out,Susp), 3, [In->ga_chg]),
Out tent_set TentOut.

This can be made more efficient by using a demon (demon/1).

10.6 Examples

More examples of repair library use, in particular in the area of local search, can be found in
the Tutorial on Search Methods.

10.6.1 Interaction with Propagation

In the following example, we set up three constraints as both repair and fd-constraints (using
the r_conflict_prop annotation) and install an initial tentative assignment (using tent_set).
We then observe the result by retrieving the conflict sets:

[eclipse 1]: lib(repair), 1ib(fd). % libraries needed here
yes.
[eclipse 2]:
[X,Y,Z]::1..3, % the problem variables
Y #\= X r_conflict_prop confset, % state the constraints

Y #\= Z r_conflict_prop confset,
Y #= 3 r_conflict_prop confset,

[X,Y,Z] tent_set [1,2,3], h set initial assignment
[X,Y,Z] tent_get [NewX,NewY,NewZ], h get repaired solution
conflict_constraints(confset, Cs), % see the conflicts

conflict_vars(Vs).

X = X{fd:[1..3], repair:1}
Y =3

Z = Z{fd:[1, 2], repair:3}
NewX = 1

NewY = 3

NewZ = 3

Cs = [3 #\= Z{fd:[1, 2], repair:3}]
Vs = [Z{fd:[1, 2], repair:3}]

Delayed goals:

yes.

Initially only the third constraint Y #= 3 is inconsistent with the tentative assignment. Ac-
cording to the definition of r_conflict_prop this leads to the constraint Y #= 3 being propa-
gated, which causes Y to be intantiated to 3 thus rendering the tentative value (2) irrelevant.

108

Now the constraint Y #\= Z, is in conflict since Y is now 3 and Z has the tentative value 3
as well. The constraint starts to propagate and removes 3 from the domain of Z [1..2].

As a result Z becomes a conflict variable since its tentative value (3) is no longer in its domain.
The Y #\= Z constraint remains in the conflict constraint set because Z has no valid tentative
assignment.

The constraint Y #\= X is not affected, it neither goes into conflict nor is its fd-version ever
activated.

To repair the remaining conflicts and to find actual solutions, the repair/0 predicate de-
scribed below could be used.

10.6.2 Repair Labeling

This is an example for how to use the information provided by the repair library to improve
finite domain labeling. You can find the repair/0 predicate in the 'repairfd’ library file.

repair :-

(conflict_vars([C|_]) -> % label conflict
indomain(C), % variables first
repair

; conflict_constraints([C|_]) ->
term_variables(C, Vars), % choose one variable in
deleteffc(Var,Vars, _), % the conflict constraint
Var tent_get Val,

(Var = Val ; Var #\= Val),
repair

; % no more conflicts:
true % a solution is found.

).

The predicate is recursive and terminates when there are no more variables or constraints in
conflict.

Repair search often finishes without labeling all variables, a solution has been found and a
set of tenable variables are still uninstantiated. Thus even after the search is finished, Repair
library delayed goals used for monitoring constraints will be present in anticipation of further
changes.

To remove them one has to ground these tenable variables to their tentative values.

Note that the example code never changes tentative values. This has the advantage that
this is still a complete, monotonic and cycle-free algorithm. However, it is not very realistic
when the problem is difficult and the solution is not close enough to the initial tentative
assignment. In that case, one would like to exploit the observation that it is often possible
to repair some conflict constraints by changing tentative values. During search one would
update the tentative values to be as near as pssible to what one wants while maintaining
consistency. If the search leads to a failure these changes are of course undone.

109

110

Chapter 11

RIA: ECL'PS® Real Number

Interval Arithmetic

11.1 Introduction

11.1.1 What Ria does

The Ria library solves constraint problems over the reals. It is not limited to linear constraints.
So it can be used to solve general problems like:

[eclipse 2]: 1n(X) *>= sin(X).

X = X{0.36787944117144233 .. Infinity}
yes.

The Ria library has two different algorithms built in. The default one is arc-consistency and
is quite cheap, the other provides a stronger consistency but is slower.

Both algorithms work on the same data representation. That is real numbers in a closed
range between (and including) two floats. The library will reduce this range if possible. It
never gets as far as reducing a variable to a single float.

11.1.2 Usage

Load the library by using
1= 1lib(ria).

You will need ECL!PS® version 3.5.2 or higher.

Note that version 3.5.2 does not treat floating point infinities properly, in particular, they
are printed in a strange way and the normal arithmetic predicates like is/2 cannot cope with
them. However, the ria-library still works fine. Use inf to denote infinity in version 3.5.2.
Later versions of ECL!PS® fully support computation with infinities and allow the syntax
[+-]1.0Inf.

111

11.1.3 History

This work was triggered by the work of Slava Zilberfaine on an interface between ECL'PS®
and Unicalc. Several shortcomings of this interface prompted us to develop lib(ria), which
does not share any code with Unicalc.

11.2 Library Predicates

11.2.1 Ranged and Typed Variables

Vars :: Lo..Hi Logically: Constrain a variable (or all variables in a list) to take values
between and including Lo and Hi. The type of the bounds determines the type of the
variable (real or integer). It is possible to use the bounds -inf (or -1.0Inf) and -inf
(or 1.0Inf) to represent infinities. This is the default range used for variables where
no range has been declared.

Operationally: This information is immediately stored into the variable’s attribute. The
bounds are also widened by one float below and above to ensure the bounds are included
in the range.

reals(Vars) Equivalent to Vars :: -inf..inf

integers(Vars) The given variables can only take integer values.

11.2.2 Constraints

ExprX *= ExprY ExprX is equal to ExprY. ExprX and ExprY are general expressions.

ExprX *>= ExprY ExprX is greater or equal to ExprY. ExprX and ExprY are general
expressions.

ExprX *=< ExprY ExprX is less or equal to ExprY. ExprX and ExprY are general ex-
pressions.

Var iis SimpleExpr This is the simple, uni-directional constraint that is used by the solver
to rewrite all other constraints. It is not meant for use inside a program, but it shows
up among the delayed goals.

11.2.3 Arithmetic Expressions

The following arithmetic expression can be used inside the constraints:

X Variables. If X is not yet a ranged variable, it is turned into one via an implicit declaration
X :: -inf..inf.

123 Integer constants. They are assumed to be exact and are used as is.

0.1 Floating point constants. They are assumed to be inexact and are widened into a narrow
interval that is guaranteed to contain the true value.

exact(0.5) Sometimes the programmer knows that a floating point constant is exact or
meant to be taken literally. In that case, use this form.

112

pi, e Intervals enclosing the constants pi and e respectively.
inf Floating point infinity.

+Expr Identity.

-Expr Sign change.

+-Expr Expr or -Expr. The result is an interval enclosing both.
abs(Expr) The absolute value of Expr.

E1+4+E2 Addition.

E1-E2 Subtraction.

E1*E2 Multiplication.

E1/E2 Division.

E1 AE2 Exponentiation.

min(E1,E2) Minimum.

max(E1,E2) Maximum.

sqr(Expr) Square. Logically equivalent to Expr*Expr, but with better operational be-
haviour.

sqrt(Expr) Square root (always positive).

exp(Expr) Same as e AExpr.

In(Expr) Natural logarithm, the reverse of the exp function.

sin(Expr) Sine.

cos(Expr) Cosine.

atan(Expr) Arcus tangens.

rsqr(Expr) Reverse of the sqr function. The same as +-sqrt(Expr).
rpow(Expr,N) Reverse of Expr AN, where N is an integer constant.
(E1;E2) E1 or E2. Operationally, this computes the union of two intervals.

sub(Expr) A subinterval of Expr.

113

11.2.4 Solving by Interval Propagation

Some problems can be solved just by interval propagation, for example:

[eclipse 9]: X :: 0.0..100.0, sqr(X) *= 7-X.
X = X{2.1925824014821349 .. 2.1925824127108311}
Delayed goals:

yes.
There are two things to note here:
e The solver never instantiates real-variables. They only get reduced to narrow ranges.

e In general, many delayed goals remain at the end of propagation. This reflects the
fact that the variable’s ranges could possibly be further reduced later on during the
computation. It also reflects he fact that

e the solver does not guarantee the existence of solutions in the computed ranges. How-
ever, it guarantees that there are no solutions outside these ranges.

Note that, since variables by default range from minus to plus infinity, we could have written
the above example as:

[eclipse 2]: sqr(X) *= 7-X, X #>= 0.
X = X{2.1925824014821349 .. 2.1925824127108311}
Delayed goals:

yes.

If too little information is given, the interval propagation may not be able to infer any inter-
esting bounds:

[eclipse 2]: sqr(X) *= 7-X.
X = X{-1.0Inf .. 7.0000000000000009%}
Delayed goals:

yes.

11.2.5 Reducing Ranges Further

There are two methods for further domain reduction. They both rely on search and splitting
the domains. There are 2 parameters to specify how domains are to be split.

The Precision parameter is used to specify the minimum required precision, i.e. the maximum
size of the resulting intervals. Note that the arc-propagation threshold needs to be one or

114

several orders of magnitude smaller than precision, otherwise the solver may not be able to
achieve the required precision.

The lin/log parameter guides the way domains are split. If it is set to lin then the split is
in the arithmetic middle. If it is set to log, the split is such as to have the same number of
floats to either side of the split. This is to take the logarithmic distribution of the floats into
account.

If the ranges of variables at the start of the squashing algorithm are known not to span several
orders of magnitude (|maz| < 10 |min|) the somewhat cheaper linear splitting may be used.
In general, log splitting is recommended.

locate(+4Vars, +Precision)

locate(+Vars, +Precision, +lin/log) Locate solution intervals for the given variables
with the required precision. This works well if the problem has a finite number of
solutions. locate/2,3 work by nondeterministically splitting the ranges of the variables
until they are narrower than Precision.

squash(+Vars, +Precision, +lin/log) Use the squash algorithm (section 11.3.3) on these
variables. This is a deterministic reduction of the ranges of variables, done by searching
for domain restrictions which cause failure, and then reducing the domain to the comple-
ment of that which caused the failure. This algorithm is appropriate when the problem
has continuous solution ranges (where locate would return many adjacent solutions).

locate(+LocateVars,+SquashVars,+Precision,+lin/log) A variant of locate/2,3 with
interleaved squashing: The squash algorithm (section 11.3.3) is once applied to the
SquashVars initially, and then again after each splitting step, ie. each time one of the
LocateVars has been split nondeterministically. A variable may occur both in Locate-
Vars and SquashVars.

11.2.6 Setting the Arc-Propagation Threshold

Limiting the amount of propagation is important for efficiency. A higher threshold speeds up
computations, but reduces precision and may in the extreme case prevent the system from
being able to locate individual solutions.

set_threshold(+4Threshold) Set the threshold to Threshold which is a small floating-point
number. This means any propagation which results in a domain reduction smaller than
Threshold will not be executed. The default is le-8.

get_threshold(-Threshold) Read the current threshold.

11.2.7 Obtaining Solver Statistics

Often it is difficult to know where the solver spends its time. The library has built-in counters
which keep track of

¢ Propagation steps (prop)
¢ Domain splits in locate/2,3,4 (split)

e Attempts to bound reduction in squash/3 or locate/4 (squash)

115

The counters are controlled using the primitive

ria_stat(on)

ria_stat(off) Enables/disable collection of statistics. Default is off.
ria_stat(reset) Reset statistics counters.

ria_stat(-Stat) Returns a list of CounterName=CounterValue pairs, summarising the com-
putation since the last reset.

ria_stat(print) Print statistics counters.

11.3 The Ria library algorithms

11.3.1 Arc consistency

Ria uses an arc consistency propagation algorithm. This terminates when all arcs are consis-
tent, i.e. when for each variable, setting it to a value outside it’s range would violate at least
one constraint.

In a preprocessing step complex constraints are broken up into simple directed constraints.
If necessary, auxiliary variables are introduced. For example:

X x (Y+Z) = 1
rewrites into

Aux 1iis Y + Z,
Z iis Aux - Y,
Y iis Aux - Z,
X iis 1 / Aux,
Aux iis 1/ X

Changes in the ranges of the input variables (right hand side) trigger the constraints to
recompute the range for the output variable (left hand side).

At any time several constraints may be triggered. A heuristic favouring constraints that
have been succesful at trimming variable ranges in the past is used for selection of the next
constraint to compute.

11.3.2 Arc consistency threshold

If the execution of a constraint, restricts the range of a variable by a quantity less than the
propagation threshold, this restriction is simply not applied. This terminates propagation
early and prevents almost infinite loops of ever tinier propagations on ill-behaved problems.
For example:

[eclipse 17]: set_threshold(le-3).

yes.
[eclipse 18]: sin(X) *= X.

116

y>X
+3

+2

7M Squashing solution

s T ~— Arc-propagation
solution

Figure 11.1: Propagation with Squash algorithm (example)

X = X{-0.18143335721992979 .. 0.18143335721992984}
yes.
[eclipse 19]: Y is 0.18143335721992981 - sin(0.18143335721992981).

Y = 0.00099376872589851394
yes.
[eclipse 20]:

For small X X and sin(X) are almost identical, the library in this case will have made two
variables and two directed constraints out of the above example.
These are:

sin(X) -> S
arcsin(S) -> X

Since each propagation only makes tiny differences to the domains of S and X the algorithm
stops.

Intuitively this slowly convergent behaviour happens when the solution is a point where two
curves meet at a tangent.

11.3.3 Squash algorithm

A stronger propagation algorithm is also included. This is built upon the normal arc consis-
tency. It guarantees that, if you take any variable and restrict its range to a small domain near
one of its bounds, the original arc consistency solver will not find any constraint unsatisfied.
All points (X,Y) Y >= X, lying within the intersection of 2 circles with radius 2, one centred
at (0,0) the other at (1,1).

117

[eclipse 29]: 4 *>= X"2 + Y~2, 4 *>= (X-1)"2+(¥Y-1)"2, Y *>= X.

Y{-1.0000000000000016 .. 2.0000000000000013}

Y
X{-1.0000000000000016 .. 2.0000000000000013}

X
yes.
[eclipse 30]:

The arc-consistency solution does not take into account the X >=Y constraint. Intuitively
this is because it passes through the corners of the box denoting the solution to the problem

of simply intersecting the two circles.
[eclipse 29]: 4 *>= X"2 + Y"2, 4 *>= (X-1)"2+(Y-1)"2, Y *>= X,
squash([X,Y],1e-5,1in).

X = X{-1.0000000000000016 .. 1.4142135999632603}
Y = Y{-0.41421359996326074 .. 2.0000000000000013%}
yes.

118

Index

* 113 ‘</2, 37

*>/2, 112 “<>/2, 37

*=>/2, 112 in/2, 37

*=/2,112 notin/2, 37

+, 113 ‘=/2, 37

- 113

-, 113 abs, 113

/,113 all_disjoint/2, 37

::/2, 4, 79, 86, 112 all_union /2, 37

/3,4 alldistinct/1, 8

£</2,6 already_in_heads option, 68
#</3,7 already_in_store option, 68
H#<=/2,6 annotation, 105
H#<=/3,8 approximate generalised propagation, 56
Hc=>/2,7 arc consistency, 116
H#<=>/3,8 arc propagation, 115
#>/2, 6 arithmetic constraints, 63
#>/3, 8 atan, 113

£>=/2,6 atmost/3, 4, 26

4>=/3,8 attribute, 82

#/3, 9 boolean constraints, 62
#:>/27 7

#=>/3,8 check_guard_bindings option, 65, 67, 70, 71
#=/2,6 CHIP, 8

#=/3,8 CHR, 61

##/2,8 chr/1, 68

#/\/2, 7 chr2pl/1, 68

#/\/3,8 chr_get_constraint/1, 68
#\+/1,7 chr_get_constraint/2, 69
#\+/2, 8 chr_label_with/1, 68
#\=/3,8 chr_labeling/0, 68
#\//2,7 chr_notrace/0, 68
#\//3,8 chr_resolve/1, 68
#\=/2,6 chr_trace/0, 68

/\, 36 committed choice, 63

\, 36 compare/3, 14

\/, 36 compile/2, 17

A, 113 compile_term/1, 17

#/2, 37 conflict constraint, 105

119

conflict constraints, 106
conflict variables, 106
conflict_constraints/2, 105, 107
conflict_constraints/2, 106
conflict_vars/1, 106
consistent, 56
constraint annotation, 105
constraint handling rules, 61
constraint solvers, 62
constraints

disjunctive, 52
constraints declaration, 67
constraints_number/2, 4
control

sound, 62
cos, 113
CPLEX, 85
cumulative/4, 34
cumulative/5, 34

dbgcomp, 68, 70, 72
debug events, 10
debug_compile flag, 68, 70, 72
declarations

CHR, 66
default range, 114
default_domain/1, 17
default_domain/1, 17
delayed goals, 114
deleteff/3, 8, 12, 13, 31
deleteffc/3, 5, 8, 13
deletemin/3, 9
demon/1, 108
disjunctive constraints, 52
disjunctive/2, 34
dom/2,9
dom_range/3, 18
dom_check_in/2, 14
dom_compare/3, 14
dom_copy/2, 15
dom _difference/4, 15
dom_intersection/4, 15
dom_member/2, 15
dom_range/3, 15
dom size/2, 15
dom_union/4, 15
domain

120

default, 4, 17
domain constraints, 62
domain splitting, 114
domain variable

creation, 4

definition, 3

implementation, 13

integer, 3
dvar_attribute/2, 14
dvar_domain/2, 4, 18
dvar_domain_list /2, 9
dvar_remove_greater/2, 18
dvar_update/2, 17
dvar_attribute/2, 16
dvar_domain/2, 16
dvar_msg/3, 16
dvar_remove_element /2, 16
dvar_remove_greater/2, 16
dvar_remove_smaller/2, 16
dvar_replace/2, 17
dvar_update/2, 16

e, 113

el_weight/2, 45
element/3, 5, 21, 22, 26
eplex, 85

eplex_cplex, 85
eplex_xpress, 85

equation solving, 63
exact, 112

existence of solutions, 114
exp, 113

fd_eval/1, 5

geometric constraints, 62
get_threshold/1, 115
glb/2, 45

ground set, 35-37
guard, 63, 65, 67, 71

handler declaration, 67
handlers, 81

iis, 112

indomain/1, 5, 9, 15
inf, 113

infers, 51

infinity, 111 min_max/2, 5

instance, 81 min_max/4, 6
integer_list_to_dom /2, 15 min_max/5, 6
integers/1, 80, 86 min_max/6, 6
integers/2, 112 min_max/8, 6
is/2, 7,107, 111 mindomain/2, 9
is_.domain/1, 5 minimize/2, 5, 6
is_integer_domain/1, 5 minimize/4, 6
isd/2, 7 minimize/5, 6
minimize/6, 6
label_with declaration, 67, 69, 70 minimize/8, 6
labeling, 12, 13 minlist/3, 33
CHR, 69 minmax constraints, 62
built-in, 69 modify_bound/3, 45
fd, 9, 11 most, 52
labeling/1, 9
library new_domain_var/1, 17
chr.pl, 61-77 nodbgcomp, 68, 70, 72

conjunto.pl, 35-49 occurrences/3, 33

fd.pl, 3-32 operator declaration, 67
range, 79-83 options
ria, 111-118
)) chr, 67
1}11’ 15 . ordered /2, 33
list constraints, 62 /9.9
list2set /2, 45 outof/2,
list_to_dom/2, 15 pi, 113
list_to.dom/2, 15 poss_conflict_vars/2, 107
In, 113 Precision, 114
local search, 103 presolve, 89
locate/2, 115 print_range/2, 81
locate/3, 115 profile/4, 34
locate/4, 115 propagation, 108, 114
log, 115 propagation rule, 64
lub/2, 45 Propia, 51
Iwb/2, 80 propositional logic, 53, 62
macro r_conflict/2, 105
write, 10 r_conflict_prop/2, 106
matching clause, 14 range, 79
max, 113 range_msg/3, 81
max_weight/2, 45 reals/1, 80, 86
maxdomain/2, 9 reals/2, 112
maxlist/3, 33 refine/1, 38
metaterm, 13, 43 repair, 103
min, 113 repair/0, 109
min_max/2, 5, 6, 12 resource allocation, 54
min_max/5, 6 ria, 111

121

ria_stat/1, 116
rpow, 113
rsqr, 113

schedule_suspensions/1, 79, 83, 89
scheduling, 52
set constraints, 62
set domain, 35-37, 44
set expression, 36
set term, 36
set variable, 36, 42, 45
set2list/2, 45
set_range/3, 44
set_threshold/1, 115
simpagation rule, 64
simplification rule, 64
sin, 113
sorted_list_to_.dom/2, 15
sorted_list_to_.dom/2, 15
sqr, 113
sqrt, 113
squash, 115, 117
squash/3, 115
statistics/1, 116
sub, 113
sum_weight/2, 37
sumlist/2, 33
suspend/3, 14, 18
suspension list, 45
constrained, 4
ga_chg, 107
wake_hi, 82
wake_lo, 82
svar_attribute/2, 44

temporal constraints, 63
tenable, 104

tent_call/3, 107
tent_is/2, 107
tent_call/3, 107
tent_s/2, 107

tentative assignment, 104
Tentative Values, 103
term constraints, 62
terminological constraints, 63
threshold, 115, 116

tree constraints, 62

122

unification, 44
unique, 56
uphb/2, 80

var_fd/2, 16
var_range/3, 81, 86
var_type/2, 81, 86
violation, 105

wake/0, 79, 83
weighted set, 36

XPRESS-MP, 85

Bibliography

[1]

2]

Hani El Sakkout. Improving Backtrack Search: Three Case Studies of Localized Dynamic
Hybridization. PhD thesis, Imperial College, London, June 1999.

T. Fruehwirth. Constraint simplification rules. Technical Report ECRC-92-18, ECRC
Munich, Germany, July 1992. presented at CLP workshop at ICLP 92, Washington,
USA, November 1992.

T. Fruehwirth. Temporal reasoning with constraint handling rules. Technical Report
Core-93-8, ECRC Munich, Germany, January 1993.

T. Fruehwirth and Ph. Hanschke. Terminological reasoning with constraint handling rules.
In First Workshop on the Principles and Practice of Constraint Programming, Newport,

RI, USA, April 1993.

T. Le Provost. Approximate Generalised Propagation. ESPRIT Project Deliverable
CORE-93-7, also as CHIC-WP5-D.5.2.3.3, ECRC GmbH, January 1993.

T. Le Provost and M. Wallace. Domain-independent propagation (or Generalised Prop-
agation). In Proceedings of the International Conference on Fifth Generation Computer
Systems (FGCS’92), pages 1004-1011, June 1992.

T. Le Provost and M. Wallace. Constraint satisfaction over the CLP Scheme. .Journal
of Logic Programming, 16(3-4):319-359, July 1993. Special Issue on Constraint Logic
Programming.

123

