ECLPS®
User Manual

Release 4.2

Abderrahamane Aggoun (ECRC)
David Chan (ECRC)
Pierre Dufresne (ECRC)
Eamon Falvey (ICL-ITC)

Hugh Grant (ICL-ITC)
Alexander Herold (ECRC)
Geoffrey Macartney (ECRC)
Micha Meier (ECRC)

David Miller (ICL-ITC)

Shyam Mudambi (ECRC)
Stefano Novello (ECRC and 1C-Parc)
Bruno Perez (ECRC)
Emmanuel van Rossum (ECRC)
Joachim Schimpf (ECRC and 1C-Parc)
Kish Shen (IC-Parc)

Periklis Andreas Tsahageas (ECRC)
Dominique Henry de Villeneuve (ECRC)

August 6, 1999

Trademarks

UNIX is a trademark of AT&T Bell Laboratories.

Quintus and Quintus Prolog are trademarks of Quintus Computer Systems, Incorporated.
VAX is a trademark of Digital Equipment Corporation

SUN-3 and SUN-4 are trademarks of Sun Microsystems, Inc.

© International Computers Limited and ECRC GmbH 1992-1995
(© International Computers Limited and Imperial College London 1996-1999

Contents

1 Introduction 1
1.1 Whatis ECL'PS® 7. 1
1.2 Overview e 1
1.3 Further Information 1
1.4 Reporting Problems 2

2 Terminology 3

3 Getting started with ECL‘PS® 7
3.1 Entering the ECLIPS® System v oot v vt e e e 7
3.2 ECL'PS® Command Line Options v v v it 7
3.3 The .eclipsercfile 8
3.4 Interaction with the Toplevel Loop 8

3.4.1 Entering Goals 8
3.4.2 Exiting from the Toplevel o L. 9
3.4.3 Entering Programs from the Terminal 9
3.44 Querying Programs 9
.45 Syntax erTors v v v i e e e e e e e e e 10
3.4.6 Interrupting the execution oL 10
3.4.7 History Mechanism L 11
348 Getting Helpo o 11
3.4.9 Global Flags and Settings 11
3.5 More about compilation oL 12
3.5.1 Optimised Compilation 12
3.5.2 Compiling froma File oo o L 12
3.5.3 File Queries and Directiveso Lo 0o 13
3.5.4 Compiling Procedures as Dynamic or Static 14
3.5.5 Altering Programs 15
3.6 Using Libraries e 16
3.7 Redefining Built In Predicates oo oo 17

4 Tkeclipse Development Environment 19
4.1 Starting and obtaining help oL 19
4.2 Using tkeclipse e 19

4.2.1 The Tkeclipse tool suite 21
4.3 Using the Development tools in applications 25

5 Porting Applications to ECL'PS®

5.1

5.2
5.3

Using the compatibility packages
5.1.1

Compiler versus Interpreter

5.1.2 Name clashes with global ECL'PS® builtins

Porting Programs to plain ECL'PS®
Exploiting ECL'PS® Features

6 ECL'PS°-specific Language Features

6.1

6.2

6.3

6.4

6.5

7 The
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Structure Notation
6.1.1 Inheritance
6.1.2 Visibility

Loop/Iterator Constructs
6.2.1 Examples
Array Notation

6.3.1 Implementation Note
The String Data Type
6.4.1
6.4.2 Builtin Support for Strings
6.4.3 Entering Strings

6.4.4 Matching Clauses
Soft Cut

Compiler
Program Source

Procedure Types
Compiler Modes

Compiler Input
Libraries

Module Compilation
Mode Declarations

Inlining
Compiler Pragmas
Writing Efficient Code
Abstract Code Listing

8 Parallel Execution

8.1
8.2

8.3

8.4

Using the Parallel System
Parallel Programming Constructs
8.2.1 Parallel Annotation
8.2.2 Built-In
8.2.3 Utility Libraries
Controlling and Analysing the Execution
8.3.1

Which worker executes this code?

8.3.2 Measuring Runtimes
8.3.3 Amount of Parallelism
8.3.4 Adding and Removing Workers .
Parallelism and Side Effects

ii

Choosing The Appropriate Data Type

27
27
27
28
28
29

31
31
32
33
33
34
36
37
37
37
39
39
40
41

43
43
43
44
45
46
46
47
47
48
49
52

10

11

8.5 Parallel Cuts e e

8.6 Restrictions L
8.7 Troubleshooting e
8.71 NoSpace e e
8.7.2 Process structure L.
8.7.3 Crash recovery e
Module System
9.1 Terminology e e e
9.2 Basic Properties e e
9.3 Modules and the Top Level Loop,
9.4 Modules and Source Fileso Lo
9.4.1 The Module Interface o
9.5 Creating and Erasing Modules at Runtime
9.6 Visibility of Predicates L
9.6.1 Access rule for predicates as goal name oL
9.6.2 Access rules for predicates as arguments of built-ins
9.6.3 Defining and modifying the visibility
9.6.4 Tools e
9.6.5 System Tools
9.7 Libraries L L e e
9.8 Other Modular Items
9.9 Privacy e e
9.10 Dynamic Procedures
9.11 Event handlers
9.12 Debugger e
Arithmetic
10.1 Built-Ins to Evaluate Arithmetic Expressions
10.2 Numeric Types and Type Conversions
10.2.1 Integers e
10.2.2 Rationals L
10.2.3 Floating Point Numbers L
10.2.4 Type Conversions o v v v v vt v it e e
10.3 Arithmetic Functions L
10.3.1 Predefined Arithmetic Functions
10.3.2 Evaluation Mechanism o 0 o oo
10.3.3 User Defined Arithmetic Functions
10.3.4 Runtime Expressions o e
10.4 Low Level Arithmetic Builtins 0.
10.5 The Multi-Directional Predicates plus/3 and times/3
10.6 Arithmetic and Coroutining Lo
Arrays and Global Variables
11.1 Introduction o L oL e e e
11.2 Non-logical Variables
11.3 Non-logical Arrays o o

iii

59
59
60
61
61
62
63
64
64
64
65
66
67
67
68
69
69
70
70

71
71
71
71
72
72
72
72
72
74
74
75
75
75
76

11.4 Global References e e 80

12 Input and Output 83
12.1 Streams in ECL'PS® e 83
12.2 System Streams oL L e e e 85
12.3 Opening New Streams 0 o 86
12.4 Communication with Streams 0 o000 87

12.4.1 Character I/O 87
12.4.2 Token I/O o oo 88
1243 Term [/O . . . oL o oo 88
12.5 In-memory Streams L oL e e e e e e 90
12.5.1 String Streamso 90
12.5.2 Queue streams e e 91
12.6 Modifying the OQutput 92
12.6.1 The printf/2, 3 Predicate 92
12.6.2 The output_mode flag oo 93
12.6.3 The syntaxoption flag L o oo 93
12.6.4 The print/1, 2 Predicate o Lo 93

13 ECL'PS® Macros 95
13.1 Introduction oL oL e e 95
13.2 Using the macros o L 95
13.3 Definite Clause Grammars — DCGs o 0oL 98

13.3.1 Simple DCG example L 99
13.3.2 Mapping to Prolog Clauses 100
13.3.3 Parsing other Data Structures L. 100

14 Events and Interrupts 103

14.1 Events o o e e e e e e e 104
14.1.1 Event Identifiers o 104
14.1.2 Handling Events o 104
14.1.3 Raising FEvents 104
14.1.4 Timed Events (afterevents) 105

14.2 FITOTS . . . o o o e e e e e e e e 106
14.2.1 Error Handlers 107
14.2.2 Arguments of Error Handlers, 108
14.2.3 User Defined Errors 108

14.3 Interrupts Lo e 109
14.3.1 Interrupt Identifiers L o oL 109
14.3.2 Asynchronous handling 109
14.3.3 Exampleo e 110

15 Debugging 113
15.1 The Box Model o 113
15.2 Format of the Tracing Messages« i 116
15.3 Debugging-related Predicate Properties 117
15.4 Starting the Debugger Lo 118
15.5 Debugging Parts of Programs 0oL 119

v

15.5.1 Mixing debuggable and non-debuggable code 119

15.6 Using the Debugger via the Command Line Interface 120
15.6.1 Counters and Command Arguments 120
15.6.2 Commands to Continue Execution 121
15.6.3 Commands to Modify Execution 122
15.6.4 Display Commands 122
15.6.5 Navigating among Goals o 123
15.6.6 Inspecting Goals and Data, 124
15.6.7 Changing the Settings, 133
15.6.8 Environment Commands.o 0oL 134

15.7 Extending the Debuggero 134
15.7.1 User-defined Ports 134

15.8 Switching To Creep Mode With CTRL-C 135

16 Attributed Variables 137

16.1 Introduction o L oL e e e 137

16.2 Declaration oL e e e 137

16.3 Syntax o L L e e 138

16.4 Creating Attributed Variables o oo 138

16.5 Decomposing Attributed Variables 000 138

16.6 Attribute Modification L L o 139

16.7 Attributed Variable Handlers o 0oL 139
16.7.1 Printing Attributed Variables o L. 141

16.8 Built-Ins and Attributed Variables o o000 142

16.9 Examples of Using Attributed Variables 142
16.9.1 Variables with Enumerated Domains 142
16.9.2 Coroutining e 144

16.10Attribute Specification oL L Lo 144

17 Advanced Control Features 145

17.1 Introduction o L oL e e e 145

17.2 The Resolvent o . o e 145

17.3 Suspensionso e e e e 146
17.3.1 What’sin a Suspension? L o oo 146
17.3.2 Creating Suspended Goals o, 146
17.3.3 Operations on Suspensions o et 147
17.3.4 Examining the Resolvent 147

17.4 Waking conditions for suspensions L 0oL 147
17.4.1 Attaching Suspensions to Variables 148
17.4.2 Attaching Suspensions to Global Triggers, 149

17.5 The Waking Mechanism 149

17.6 Demon Predicates e 150

17.7 More about Priorities 151
17.7.1 Changing Priority Explicitly 151
17.7.2 Choice of Priorities L 151

17.8 Printing Suspensions 152

17.9 The Standard suspend Attribute o 0oL 152

18

19

20

17.9.1 The suspend/3,4 Predicates
17.9.2 Particularities of Waking by Unification
17.10The Top-Level Loop o
17.11The Cut and the Suspended Goals,
17.12Delaying of Built-In Predicates o oL
17.130bsolete Suspension Facilitieso oo o000
17.13.1Delay Clauses o0 e e
17.13.2Simulating other delay primitives with delay clauses

More About Suspension

18.1 Waiting for Instantiation L o
18.2 Waiting for Binding
18.3 Waiting for other Constraints

Memory Organisation And Garbage Collection

19.1 Introduction L oL e e
19.1.1 The Code Heap o o i
19.1.2 The General Heap
19.1.3 The Local Stack
19.1.4 The Control Stack
19.1.5 The Global Stack o
19.1.6 The Trail Stack

19.2 Garbage collection L

Operating System Interface

20.1 Introduction L

20.2 Environment Access oo e
20.2.1 Command Line Arguments
20.2.2 Environment Variables o o oo
20.2.3 Exiting ECLIPS®
20.2.4 Time and Date e
20.2.5 Host Computer e e
20.2.6 Calling C Functions

20.3 File System oL oL
20.3.1 Current Directory e
20.3.2 Looking at Directories
20.3.3 Checking Files
20.3.4 Renaming and Removing Files
20.3.5 Filenames

20.4 Creating Communicating Processes
20.4.1 Process creation
20.4.2 Process control e
20.4.3 Interprocess Signals
20.4.4 Internal Signals L

vi

161
161
163
170

173
173
174
174
175
175
175
175
176

21

22

Interprocess Communication

21.1 Socket Domains oL oL
21.2 Stream Connection on a Single Machine
21.3 Datagram Connection on a Single Machine
21.4 Stream Connection Between Two Machines
21.5 Datagram Connection with Multiple Machines

Profiling Prolog Execution
22.1 Introduction

Libraries
A.1 Calendar Library e
A1l Examples e
A2 CIO . . e
A.3 Crossreference Checking o
A.3.1 Checking of Loaded Predicates
A.3.2 Checking Files
A4 HTTP Library o o e e e e e e e e e e
A4l Client . . . 000 e e
A2 Server . ..o
A43 HTTP Grammar 00ttt e e e e e e
A4.4 File Structure L Lo Lo
A45 Authors L
A.5 ISO Standard Prolog Compatibility Package
A.6 C-Prolog Compatibility Package
A.6.1 Using the C-Prolog compatibility package
A.6.2 C-Prolog compatibility predicates
A.6.3 C-Prolog Predicates not available in ECLIPS®
A.6.4 Differences Between C-Prolog and ECL'PS®
A.6.5 Syntax differenceso Lo
A.7 T/O Redirection
A.8 The Mode Analyser e
A.9 Parallel Utilities o e
ATOPtags o e e e
A.11 Quintus Prolog Compatibility Package
A.11.1 Using the Quintus Prolog compatibility package
A.11.2 The Quintus compatibility predicates
A.11.3 Syntax differenceso
A2 Scattered L e
A.13 SICStus Prolog Compatibility Package
A.13.1 Using the SICStus Prolog compatibility package
A.13.2 The SICStus compatibility predicates
A.13.3 Sockets library Lo
A.13.4 Syntax differences oL oL
A.14 Utility Libraries 0 . 0 o
AT4.1 Ut oo
A14.2 Define . . . oL

vii

185
185
185
186
187
188

193
193

A 14.3 Numbervars e e e
A14.4 Apply . . . o e e
N T o
A14.6 Anti_unify . . L L Lo
A4.7 Spell . o
A.14.8 Rationals

Syntax

B.1 Introduction L

B.2 Notation e e e
B.2.1 Character Classes e
B.2.2 Groups of characters oL oo
B.2.3 Valid Tokens
B.2.4 Escape Sequences within Strings and Atoms

B.3 Formal definition of clause syntax L o Lo
B.3.1 Comments. e e e
B.3.2 Operators L e e
B.3.3 Ambiguity

B.4 Syntax Differences between ECL'PS® and other Prologs
B.4.1 Properties of ECLIPS®
B.4.2 Changing the Parser behaviour

C Operators

Events

D.1 Event Types. o o o o e e e e e e
D.1.1 Argument Types and Values
D.1.2 Arithmetic, Environment,
D.1.3 Data and Memory Areas, Predicates, Operators.
D.1.4 Modules, Visibility
D.1.5 Syntax Errors, Parsing o oo
D.1.6 Compilation, Run-Time System, Execution
D.1.7 Top-Level e
D.1.8 Macro Transformation Errors, Lexical Analyser
D.1.9 1/0, Operating System, External Interface
D.1.10 Advanced Features, Extensions, Debugging

D.2 ECLIPS® Fatal EXtors o . oo v e s e

D.3 User-Defined Events

D.4 System Event Handlers

D.5 System Interrupt Handlers L oo

Protected Procedures
Global Flags

Restrictions and Limits

viii

221
221
221
221
222
222
224
224
226
226
227
227
227
227

229

231
231
231
232
232
233
234
234
235
236
237
237
239
239
239
241

243

245

253

Chapter 1

Introduction

1.1 What is ECL'PS® ?

ECLPS® (ECL'PS® Common Logic Programming System) is a Prolog based system whose aim
is to serve as a platform for integrating various Logic Programming extensions, in particular
Constraint Logic Programming (CLP). The kernel of ECL'PS® is an efficient implementation
of standard (Edinburgh-like) Prolog as described in basic Prolog texts [2]. It is built around
an incremental compiler which compiles the ECL!PS® source into WAM-like code [14], and an
emulator of this abstract code.

1.2 Overview

The ECL'PS® logic programming system is (so far) an integration of ECRC’s SEPTA, Megal.og
and (parts of the) CHIP system and newly developed libraries. This combination is now the
default configuration of the system. The documentation is organised as follows:

The User Manual describes the functionality of the ECL'PS® kernel (this document).

The Library Manual describes the major ECL'PS® libraries, in particular the ones imple-
menting constraint solvers.

The Interfacing and Embedding Manual describes how to interface ECL‘PS® to other pro-
gramming languages, and in particular how to embed it into an application as a component.

Apart from these manuals, there are detailed descriptions of all built-in and most library pred-
icates. They can be obtained either from the development system via the help/1 command, or
with an html browser (refer to the eclipse installation directory under doc/index.html).

1.3 Further Information

ECL'PS® has initially been developed at the European Computer-Industry Research Centre
(ECRC) in Munich, and is now being further developed and maintained at IC-Parc (Centre for
Planning and Resource Control at the Imperial College in London) with the support of ICL and
the CHIC-2 ESPRIT project. Up-to-date information, including ordering information can be
obtained from the ECL'PS® web site

http://www.icparc.ic.ac.uk/eclipse

or by sending email to
eclipse-request@icparc.ic.ac.uk

There is also an ECL‘PS® user group mailing list. Contributions to this list can be sent to
eclipse-users@icparc.ic.ac.uk

and requests for being added to or removed from this list to majordomo@icparc.ic.ac.uk.

1.4 Reporting Problems

In order to make ECL'PS® as useful and reliable as possible, we would like to encourage users
to send problem reports by e-mail to

eclipse-bugs@icparc.ic.ac.uk

A bug report form can be found in the doc subdirectory of your ECL'PS® installation.

Chapter 2

Terminology

This chapter defines the terminology which is used throughout the manual and in related doc-
umentation.

+X This denotes an input argument. Such an argument must be instantiated before a built-in
is called.

—X This denotes an output argument. Such an argument must be not instantiated before a
built-in is called.

?X This denotes an input or an output argument. Such an argument may be either instantiated
or not when a built-in is called.

Arity Arity is the number of arguments to a term. Atoms are considered as functors with zero
arity. The notation Name/Arity is used to specify a functor of name Name with arity
Arity.

Atom An arbitrary name chosen by the user to represent objects from the problem domain. A
Prolog atom corresponds to an identifier in other languages.

Atomic An atom, string or a number. A terms which does not contain other terms.

Body A clause body can either be of the form
Goal_1, Goal_2, ..., Goal_k
or simply
Goal

Fach Goal_i must be a callable term.

Built-in Procedures These are predicates provided for the user by the ECL!PS® system, they
are either written in Prolog or in the implementation language (usually “C”).

Clause See program clause or goal.

Callable Term A callable term is either a compound term or an atom.

Compound Term Compound terms are of the form

f(t_1, t_.2, ..., t_n)

where fis the functor of the compound term and ¢_i are terms, n is its arity. Lists and
Pairs are also compound terms.

DID Each atom created within ECL‘PS® is assigned a unique identifier called the dictionary
identifier or DID.

Difference List A difference list is a special kind of a list. Instead of being ended by nil, a
difference list has an uninstantiated tail so that new elements can be appended to it in
constant time. A difference list is written as List - Tail where List is the beginning of the
list and Taelis its uninstantiated tail. Programs that use difference lists are usually more
efficient and always much less readable than programs without them.

Dynamic Procedures These are procedures which can be modified clause-wise, by adding or
removing one clause at a time. Note that this class of procedure is equivalent to interpreted
procedures in other Prolog systems. See also static procedures.

ElemSpec An FlemSpec specifies a global variable (an atom) or an array element (a ground
compound term with as much arguments (integers) as the number of dimensions of the
array).

External Procedures These are procedures which are defined in a language other than Prolog,
and explicitly connected to Prolog predicates by the user.

Fact A fact or unit clause is a term of the form:
Head.

where Head is a structure or an atom. A fact may be considered to be a rule whose body
is always true.

Functor A functor is characterised by its name which is an atom, and its arity which is its
number of arguments.

Goal Clause See query.
Ground A term is ground when it does not contain any uninstantiated variables.
Head A head is a structure or an atom.

Instantiated A variable is instantiated when it has been bound to an atomic or a compound
term as opposed to being uninstantiated or free. See also ground.

List A list is a special type of term within Prolog. It is a recursive data structure consisting of
pairs (whose tails are lists). A list is either the atom [] called nil as in LISP, or a pair
whose tail is a list. The notation :

[a, b, c]

is shorthand for:

la | [| [c | [11]1]
Name/Arity The notation Name/Arity is used to specify a functor of name Name with arity
Arity.

Pair A pair is a compound term with the functor ./2 (dot) which is written as :
(HIT]

H is the head of the pair and T its tail.
Predicate A predicate is another term for a procedure.

PredSpec This is similar to the notation Name/Arity. Some built-ins allow the arity to be
omitted and to specify Name only. This stands for all (visible) predicates with that name
and any arity.

Program Clause A program clause or clause is either the term
Head :- Body.

i.e. a compound term with the functor :-/2, or only a fact.

Query A query has the same form as Body and is also called a goal. Such clauses occur mainly
as input to the top level Prolog loop and in files being compiled, then they have the form

:- Goal_1, ..., Goal_k.
or
?- Goal_1, ..., Goal_k.

Regular Prolog Procedure A regular (Prolog) procedure is a sequence of user clauses whose
heads have the same functor, which then identifies the user procedure.

Simple Procedures Apart from regular procedures ECL!PS® recognises simple procedures
which are written not in Prolog but in the implementation language, i.e. C and which
are deterministic. There is a functor associated with each simple procedure, so that any
procedure recognisable by ECL'PS® is identified by a functor, or a compound term with
this functor (or atom).

SpecList The Speclist notation means a sequence of terms of the form:
name_1/a_1, name_2/a_2, ..., name_k/a_k.

The SpecList notation is used in many built-ins, for example, to specify a list of procedures
in the global/1 predicate.

Static Procedures These are procedures which can only be changed as a whole unit, i.e.
removed or replaced.

Stream This is an 1/O channel identifier and can be a physical stream number, one of the
reserved stream identifiers or a user defined stream name (defined using set_stream/2 or
open/3). The reserved stream identifiers are:

input, output, error, toplevel_input, toplevel_output,
answer_output, debug_input, debug_output, user, null,
stdin, stdout, stderr.

Structures Compound terms which are not pairs are also called structures.

Term A term is the basic data type in Prolog. It is either a variable, a constant, i.e. an atom,
a number or a string, or a compound term.

The notation Pred /N1, N2 is often used in this documentation as a shorthand for Pred /N1,
Pred/N2.

Chapter 3

Getting started with ECL‘PS¢

3.1 Entering the ECL'PS® System

ECL'PS® can be installed in several configurations, according to the installation notes. Enter
one of the following commands after the operating system prompt:

e eclipse: The basic variant of ECL'PS® with a a command-line based user interface, as
described in this manual.

o tkeclipse: ECL‘PS® with a Graphical Development Interface. This is overviewed in chap-
ter 4, and comes with its own online help.

e peclipse: The parallel ECL'PS® variant as described in chapter 8.
When one of these commands is invoked, the ECL'PS® system will display the initial header:

% eclipse

ECLiPSe Constraint Logic Programming System [kernel]

Version X.Y.Z, Copyright IC-Parc and ICL, DAY MONTH DD HH:MM YYYY
[eclipse 1]:

The list in square brackets specifies the configuration of the running system, i.e. the language
extensions that are present. This is followed by the prompt [eclipse 1]:, which tells the user
that the top-level loop is waiting for a user query in the module eclipse. The predicate help/0
gives a general help and help/1 gives help about specific built-in predicates.

3.2 ECLPS° Command Line Options

The following command line options may be specified

—b bootfile Compile the file bootfile before starting the session or before saving the state using
the —s option.

—e goal Instead of starting an interactive toplevel-loop, the system will execute the goal goal.
goal is given in normal Prolog syntax, and has to be quoted if it contains any characters
that would normally be interpreted by the shell. The -e option can be used together with
the -b option and is executed afterwards.

The exit status of the ECL'PS® process reflects success or failure of the executed Prolog
goal (0 for success, 1 for failure).

—g size This option specifies to which limit the memory consumption of the ECL'PS® global /trail
stack can grow. The size is specified in kilobytes, or in megabytes when the number is
followed by the letter M. The default is 128M, ie. 128 Megabytes. (On machines that do
not support memory mapping, the stacks are pre-allocated and the default size is only

750K).

—1 size This option specifies to which limit the memory consumption of the ECL‘PS® lo-
cal/control stack can grow. The size is specified in kilobytes, or in megabytes when the
number is followed by the letter M. The default is 128M, ie. 128 Megabytes. (On machines
that do not support memory mapping, the stacks are pre-allocated and the default size is
only 200K).

—h size This option specifies to which limit the memory consumption of the ECL'PS® private
heap can grow. The size is specified in kilobytes, or in megabytes when the number is
followed by the letter M. The default is 32M, ie. 32 Megabytes.

—s size This option specifies to which limit the memory consumption of the ECL'PS® shared
heap can grow. The size is specified in kilobytes, or in megabytes when the number is
followed by the letter M. The default is 64M, ie. 64 Megabytes.

—p size The size of the page buffer area for the database handling is set to size kbytes. The
default value is 400 kbytes.

— — The ECLPS® system will ignore this argument and everything that follows on the comm-
mand line. The Prolog program will only see the part of the command line that follows
this argument.

More command line options are described in chapter 8.

3.3 The .eclipserc file

Before displaying the prompt, the system checks whether there is a file called .eclipserc in
the current directory and if not, in the user’s home directory and if this file is found, ECL!PS®
compiles it first. Thus it is possible to put various initialisation commands into this file. ECL'PS®
has many possibilities to change its default behaviour and setting up a .eclipserc file is a
convenient way to achieve this. A different name for the initialisation file can be specified in the
environment variable ECLIPSEINIT. If ECLIPSEINIT is set to an empty string, no initialisation
is done. If the system is started with a -e option, then the .eclipserc file is ignored.

3.4 Interaction with the Toplevel Loop

3.4.1 Entering Goals

The ECLIPS® prompt [eclipse 1]: indicates that ECL'PS® is at the top level and the opened
module is eclipse. The top level loop is a Prolog procedure which repetitively prompts the user
for a query, executes it and reports its result, i.e. either the answer variable bindings or the
failure message. There is always exactly one module opened in the top level and its name is
printed in the prompt. From this point it is possible to enter Prolog goals, e.g. to pose queries,
to enter a Prolog program from the keyboard or to compile a program from a file. Goals are
entered after the prompt and are terminated by fullstop and newline.

3.4.2 Exiting from the Toplevel

The ECL'PS® system may be exited by typing CTRL-D (UNIX) or CTRL-Z + RETURN
(Windows) at the top level prompt, or by calling the predicate halt/0 or exit/1.

3.4.3 Entering Programs from the Terminal

To enter Prolog code at the terminal, type [user]. or compile(user). in response to the top
level prompt. (The closing bracket must be followed by a “full stop” just like any other query.)
The system then displays the compiler prompt (which is a blank by default) and waits for a
sequence of Prolog clauses. Each of the clauses is terminated by a fullstop. (If the fullstop is
omitted the system just sits waiting, because it supposes the clause is not terminated. If you
omit the stop by accident simply type it in on the following line, and then proceed to type in
the program clauses, each followed by a full stop and carriage return.) To return to the top level
prompt, type CTRL-D (UNIX), CTRL-Z + RETURN (Windows) or enter the atom end_of_file
followed by fullstop and RETURN.

[eclipse 1]: [user].
father(abraham, isaac).
father(isaac, jacob).
father(jacob, joseph).
ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).

"D

user compiled traceable 516 bytes in 0.00 seconds
yes.

[eclipse 2]:

The two predicates father/2 and ancestor/2 are now compiled and can be used.

3.4.4 Querying Programs

Once a set of clauses has been compiled into the database, it may be queried in the usual Prolog
manner. If there are no uninstantiated variables in the query, the system replies ’'yes’ or 'no’
and prompts for another query, for example:

[eclipse 1]: father(jacob, joseph).
yes.
[eclipse 2]:

If there are uninstantiated variables in the query, the system will attempt to find an instantiation
of them which will satisfy the query, and if successful it will display one such instantiation. It
will then wait for a further instruction: either a <CR> (“newline” or “return”) or a semi-colon ’;’.
A return will end the query successfully. A semi-colon will initiate backtracking in an attempt
to find another solution to the query. Note that it is not necessary to type a new line after the
semicolon — one keystroke is enough. When the top level loop can detect that there are no
further solutions, it does not wait for the semicolon or newline, but it displays directly the next
prompt. For example in a query on a family database:

[eclipse 2]: father(X, Y).
X = abraham

Y = isaac More? (;) (’;? typed)
X = isaac

Y = jacob

yes.

[eclipse 3]:

Queries may be extended over more than one line. When this is done the prompt changes to a
tabulation character, ie. the input is indented to indicate that the query is not yet completed.
The fullstop marks the end of the input.

3.4.5 Syntax errors

If an error occurs while reading input from the terminal, the system prints an error message
after the next newline and waits for input of a correct Prolog term.

[eclipse 3]: a b <return>

syntax error: postfix/infix operator expected
| ab

| ~ here

[eclipse 3]:

During compilation, clauses with syntax errors cause an error message and are ignored, but all
other clauses are compiled normally.

3.4.6 Interrupting the execution

If a program is executing, it may be interrupted by typing CTRL-C (interrupt in the UNIX
environment). This will invoke the corresponding interrupt handler (see section 14.3). By
default, the system prints a menu offering some alternatives:

~C
interruption: type a, b, ¢, e, or h for help : ? help
a : abort
b : break level
c : continue
e : exit
h : help

interruption: type a, b, ¢, e, or h for help : ?

The a option returns to the toplevel, b starts a nested toplevel, ¢ continues the interrupted
execution, d switches the debugger to creep mode provided it is running, and e is an emergency
exit of the whole ECL'PS® session.

The execution of ECL'PS® may be suspended by typing CTRL-Z (suspend) or by calling
pause/0. This will suspend the ECL'PS® process and return the UNIX prompt. Entering the
BSD-UNIX C-shell command fg will return to ECL'PS® Note that this feature may not be
available on all systems

10

3.4.7 History Mechanism

The ECL!PS® toplevel loop provides a simple history mechanism which allows to examine and
to repeat previous queries. The history list is printed with command h. A previous query is
invoked by typing its absolute number or its relative negative offset from the current query
number (i.e. -1 will execute the previous query). The current query number is displayed in the
toplevel prompt.

The history is initialized from the file .eclipse_history in the current directory or in the home
directory. This file contains the history goals, each ended by a fullstop. The current history can
be written using the predicate write_history/0 from the util library.

3.4.8 Getting Help

The contents of the ECL'PS® BIP book, i.e. the detailed descriptions of all built-in predicates,
can be accessed with the help-facility. It has two modes of operation. First, when a fragment of
a built-in name is specified, a list of short descriptions of all built-ins whose name contains the
specified string is printed, .e.g.

:- help(urite).

will print one-line descriptions about write/1, writeclause/2 etc. When a unique specification is
given, the full description of the specified built-in is displayed, e.g. in

:- help(urite/1).

3.4.9 Global Flags and Settings

ECL!PS® has a number of flags to control options and modes of operation. They will be described
in detail in the appropriate places. To get an overview of the existing flags, call env/0 which

will print a list like

[eclipse 1]: env.

all_dynamic: off last_errno: 0
break_level: 0 macro_expansion: on
coroutine: off max_global _trail: 134217728
debug_compile: on max_local_control: 134217728
debugger_model: eclipse max_predicate_arity: 255
debugging: nodebug object_suffix: "so"
dfid_compile: off occur_check: off
enable_interrupts: on output_mode: "QPm"
float_precision: double pid: 21660

gc: on ppid: 14029
gc_interval: 1048576 prefer_rationals: off
gc_interval_dict: 960 print_depth: 20
goal_expansion: on toplevel_module: eclipse
hostarch: "sparc_sunosb" unix_time: 919720465
hostid: '9999999999" version: ’4.1°
hostname: "breeze" wm_window: off
ignore_eof: off worker: 0

11

cwd: "/homes/john/"

extension: development occur_check dfid

installation_directory: "/usr/local/eclipse"

library_path: ["/usr/local/eclipse/1ib", ...]

loaded_library: lists pdb idb tracer_tty environment array
development_support tracer setof suspend sorts io

prolog_suffix: (v, ".sd", ".ecl", ".pl"]

variable_names: on

workerids: "breeze" : [0] + []

workers: "breeze" : 1

The values of individual flags can be retrieved using get_flag/2. Some of these flags can be set
using set_flag/2. The built-in statistics/0 displays various figures about time and memory
usage. Refer to chapter 19 for details.

3.5 More about compilation

3.5.1 Optimised Compilation

Note that the code above was compiled as traceable, which means that it can be traced using the
built-in debugger or using the programmable debugger OPIUM. To obtain maximum efficiency,
the directive nodbgcomp should be used, which will set some flags to produce a more efficient
and shorter code

[eclipse 2]: nodbgcomp.

yes.
[eclipse 3]: [user].
father(abraham, isaac).
father(isaac, jacob).
father(jacob, joseph).
ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).
user compiled optimized 396 bytes in 0.02 seconds
yes.

[eclipse 4]:

3.5.2 Compiling from a File

The square brackets [...] or compile/1 are also used to compile Prolog source from a file. If
the goal

compile(myfile).
or the short-hand notation:

[myfile].

12

is called, either as a query at the top level or within another goal, the system looks for the file
myfile or for a file called myfile.pl and compiles it into the Prolog database. The short-hand
notation may also be used to compile several files in sequence

[file_1, file_2, ... file_n]

The compile/2 predicate may be used to compile a file or list of files into a module specified
in the second argument.

It is a recommended programming practice to give the Prolog source programs the suffix .pl
or .ecl if it contains ECL'PS® specific code. Tt is not enforced by the system, but it simplifies
managing the source programs. The compile/1 predicate automatically adds the suffix to the
filename, so that it does not need to be specified; only if the literal filename can not be found, the
system appends one of the valid suffixes and tries to find the resulting filename. The system’s
list of valid Prolog suffixes is in the global flag prolog_suffix and can be examined and modified
using get_flag/2 and set_flag/2. For example, to add the new suffix “.pro” use:

get_flag(prolog_suffix, 01d), set_flag(prolog_suffix, [".pro"|01ld]).

3.5.3 File Queries and Directives

A file being compiled may contain queries. These are goals preceded by either the symbol “?7-”
or the symbol “:-”. As soon as a query or command is encountered in the compilation of a
file, the ECL'PS® system will try to satisfy it. In this way, in particular, a file can contain a
directive to the system to compile another file, and so large programs can be split between files.
When this happens, ECL'PS® interprets the pathnames of the nested compiled files relative to
the directory of the parent compiled file; if e.g. the user calls

[eclipse 1]: compile(’src/pl/prog’).
and the file src/pl/prog.pl contains a query
:- [partl, part2].

then the system searches for the files parti.pl and part2.pl in the directory src/pl and not
in the current directory. Usually larger Prolog programs have one main file which contains only
commands to compile all the subfiles. In ECL'PS® it is possible to compile this main file from
any directory, whereas in other Prolog systems it might be necessary to make the directory of
the main file the current one, or to specify in the main file the full pathnames for all compiled
subfiles.

If the compile/1 predicate is called and the system is unable to find or open the required file,
it will issue an error:

[eclipse 1]: [file].

File does not exist in compile(’/user/lp/eclipse/src/file’)
yes.

[eclipse 2]:

If in compilation of a file file_a the compiler is directed to open or find a file file_b, but cannot
do so, it will raise an exception whose default action is to write an error message and continue
to compile file_a.

13

3.5.4 Compiling Procedures as Dynamic or Static

If it is intended that a procedure be altered through the use of assert/1 and retract/1,
the system should be informed that the procedure will be dynamic, since these predicates are
designed to work on dynamic procedures. If assert/1 is applied on a non-existing procedure,
an error is raised, however the default error handler for this error only declares the procedure
as dynamic and then makes the assertion.

A procedure is by default static unless it has been specifically declared as dynamic. Clauses of
static procedures must always be consecutive, they may not be separated in one or more source
files or by the user from the top level. If the static procedure clauses are not consecutive, each of
the consecutive parts is taken as a separate procedure which redefines the previous occurrence of
that procedure, and so only the last one will remain. However, whenever the compiler encounters
nonconsecutive clauses of a static procedure in one file, it raises an exception whose default
handler prints a warning but it continues to compile the rest of the file.

If a procedure is to be dynamic the ECL'PS® system should be given a specific dynamic decla-
ration A dynamic declaration takes the form

:- dynamic Speclist.

The predicate is_.dynamic/1 may be used to check if a procedure is dynamic:
is_dynamic(Name/Arity).

When the goal
compile(Somefile)

is executed and Somefile contains clauses for procedures that have already been defined in
the Prolog database, those procedures are treated in one of two ways: If such a procedure is
dynamic, its clauses compiled from Somefile are added to the database (just as would happen
if they were asserted), and the existing clauses are not affected. For example, if the following
clauses have already been compiled:

:- dynamic city/1.
city(london) .
city(paris).
and the file Somefile contains the following Prolog code:

city(munich).
city(tokyo).

then compiling Somefile will cause adding the clauses for city /1 to those already compiled, as
city /1 has been declared dynamic. Thus the query city(X) will give:

[eclipse 5]: city(X).

X = london More? (;)
X = paris More? (;)
X = munich More? (;)

14

X = tokyo
yes.

If, however, the compiled procedure is static, the new clauses in Somefile replace the old
procedure. Thus, if the following clauses have been compiled:

city(london).
city(paris).

and the file Somefile contains the following Prolog code:

city(munich).
city(tokyo).

when Somefile is compiled, then the procedure city/1 is redefined. Thus the query city(X)
will give:

[eclipse 5]: city(X).

X = munich More? (;)
X = tokyo
yes.

When the dynamic/1 declaration is used on a procedure that is already dynamic, which may
happen for instance by recompiling a file with this declaration inside, the system raises the error
64, 'procedure already dynamic’. The default handler for this error, however, will only erase
all existing clauses for the specified procedure, so that when such a file is recompiled several
times during its debugging, the system behaves as expected, the existing clauses are always
replaced. The handler for this error can of course be changed if required. If it is set to true/0,
for instance, the dynamic/1 declaration is be just silently accepted without erasing any clauses
and without printing an error message.

3.5.5 Altering Programs

The Prolog database can be updated during the execution of a program. ECL‘PS® allows the
user to modify procedures dynamically by adding new clauses via assert/1 and by removing
some clauses via retract/1. These predicates operate on dynamic procedures; if it is required
that the definition of a procedure be altered through assertion and retraction, the procedure
should therefore first be declared dynamic (see the previous section). The effect of assert/1
and retract/1 on static procedures is explained below.

The effect of the goal

assert(ProcClause)

1

where ProcClause- is a clause of the procedure Proc, is as follows.

1. If Proc has not been previously defined, the assertion raises an exception, however the
default handler for this exception just declares the given procedure silently as dynamic
and executes the assertion.

Tt should be remembered that because of the definition of the syntax of a term, to assert a procedure of the
form p :- q,r it is necessary to enclose it in parentheses: assert((p:-q,r)).

15

2. If Proc is already defined as a dynamic procedure, the assertion adds ProcClause to the
database after any clauses already existing for Proc.

3. If Proc is already defined as a static procedure, then the assertion raises an exception.
The goal
retract(Clause)

will unify Clause with a clause on the dynamic database and remove it. If Clause does not
specify a dynamic procedure, an exception is raised.

ECL'PS®’s dynamic database features the so-called logical update semantics. This means that
any change in the database that occurs as a result of executing one of the builtins of the abolish,
assert or retract family affects only those goals that start executing afterwards. For every call
to a dynamic procedure, the procedure is virtually frozen at call time.

3.6 Using Libraries

A number of files containing library predicates are issued with the ECL‘PS® system. These
predicates provide utility functions for general use. They are usually installed in a ECL‘PS®
library directory (or directories). These predicates are either loaded automatically by ECL'PS®
or may be loaded “by hand”.

During the execution of an ECL‘PS® program, the system may dynamically load files containing
library predicates. When this happens, the user is informed by a compilation or loading message.
It is possible to explicitly force this loading to occur by use of the lib/1 or use_module/1
predicates. E.g. to load the library called 1ists, use one of the following directives

:- lib(1lists)
:- use_module(library(lists))

will load the library file unless it has been already loaded. The library file is found by searching
the library path and by appending a suffix to the library name.

The search path used when loading libraries is specified by the global flag library_path using
the get_flag/2 and set_flag/2 predicates. This flag contains a list of strings containing the
pathnames of the directories to be searched when loading a library file. User libraries may be
be added to the system simply by copying the desired file into the ECL!PS® library directory.
Alternatively the library_path flag may be updated to point at a number of user specific
directories. The following example illustrates how a directive may be added to a file to add a
user-defined library in front of any existing system libraries.

?- get_flag(library_path,Path),
set_flag(library_path, ["/home/myuser/mylibs" | Path]).

The UNIX environment variable ECLIPSELIBRARYPATH may also be used to specify the
initial setting of the library path. The syntax is similar to the syntax of the UNIX PATH
variable, i.e. a list of directory names separated by colons. The directories will be prepended to
the standard library path in the given order.

16

3.7 Redefining Built In Predicates

Any ECL'PS® built-in predicate can be redefined (i.e. hidden by a local predicate of the same
name, cf. 9.6.3) by the user. To remind the user of what is happening, a warning is given if the
redefinition is done by just defining a new predicate of the same name. To avoid the warning
and to clarify the meaning, an explicit local/1 declaration should be provided for the builtin
that is to be redefined.

Some builtins are classified as protected (see Appendix E). Anyway, this does not mean that
they can not be redefined. They just require the explicit local/1 declaration to appear in the
source before any occurrence as a subgoal. The same is true for redefining existing predicates
with predicates that use a different calling convention (this is signaled by the ”inconsistent
redefinition” error). Different calling convention are used for normal Prolog predicates, for C
externals and for Prolog tool predicates.

17

18

Chapter 4

Tkeclipse Development Environment

Tkeclipse is a graphical user interface to ECL'PS®. Tt is an alternative to the traditional textual
line-based user interface, providing multiple windows, menus and buttons for the user to interact
with ECL‘PS®. It consists of two major components:

o A graphical top-level.
e A suite of development tools for aiding the development of ECL‘PS® code.

Tkeclipse is implemented in the Tcl/Tk scripting language/graphical toolkit [13], using the new
ECL'PS® Tcl/Tk interface [12]. The development tools are designed to be independent of the
top-level, so the user can develop their own applications with a graphical front end written in
Tcl/ Tk, replacing the tkeclipse top-level, but still using the developments tools.

This chapter will provide an overview of tkeclipse, but will not describe its functionality in
detail. More detailed information on the functionality of tkeclipse is available via tkeclipse’s
own on-line help.

4.1 Starting and obtaining help

To start tkeclipse, type the command tkeclipse after the operating system prompt, or click on
the tkeclipse icon in a window/icons based operating system. This will bring up the tkeclipse
top-level, which is shown in Figure 4.1.

Help for tkeclipse can be obtained from the Help menu — the user can obtain on-line documen-
tation on the development tools from this menu, along with turning the balloon help mode on.
When this mode is on, a pop-up text ‘balloon’ will appear when the cursor is left on an item
for a short while. The balloon will provide a brief explanation of the particular item, and it will
disappear when the cursor is moved off the item.

Help on a particular development tool can also be obtained when that tool is being used. The
on-line documentation for a tool can be obtained by typing Alt-H on the windows associated
with the tool In addition, if a menu bar is available for the tool, the documentation can be
obtained via the help menu.

4.2 Using tkeclipse

The user can interact with ECL‘PS® by entering a query at the Query entry window at the top-
level, or through the menus and buttons in the window. The query entry window acts similar to

19

Hle Tools

|eclipse é| : |length(L,40), writethello)

nn | more Yes

Results

"% 7~ Llength(L, 40), write(hello).
L = [633, 643, 647, 651, 685, 6589, 663, 667, 6Tl &T5, 679,
Tes (0.03s cpu)

£

Output and Error Messages

lists. pl compiled traceasble 6052 hytes in 0.00 seconds
hello

Figure 4.1: Tkeclipse top-level

the command line at the prompt of the tty interface, with the addition of a history mechanism.
Another difference from the tty interface is that output streams are sent to different windows —
the results of a query (top-level variable bindings, state after executing query, and time taken
to execute query) is presented in the Results window, and the output to standard output and
error are sent to the Qutput and Error Messages window. Outputs to the debug_output stream
is sent to the tracer’s trace log window. Reading from standard input will cause a window to
pop-up to read input from the user. Figure 4.1 illustrates this division of the outputs — the
bindings to the top-level variable L is shown in the Results window, whereas the write(hello)
to standard output is shown in the Qutput and Error Messages window.

All built-ins which are available in ECL'PS® are available under tkeclipse. Some commands from
the tty interface are not present in tkeclipse: trace/0 and debug/0 which invoke the debugger;
and [user], which allow the user to type in simple ECL‘PS® code. The equivalent functionality
is provided via the tkeclipse tracer and compile scratch-pad tools respectively.

The Tools menu allow the user to launch the tools of the development tools suite. The following
tools are available from the menu:

e Compile scratch-pad

e Source file manager

20

e Predicate browser
e Source viewer

e Delay goals

o Tracer

¢ Inspector

o Global settings

e Statistics

e Simple Query

o ECLiPSe help

Note that one tool, the display matrix tool, is not available from the menu. This tool is be
invoked from ECL‘PS® code, and is described in more detail in section 4.2.1.

The File menu provides some common file related operations such as compile, edit and make,
as well as exiting from tkeclipse. Note that the file browser defaults to the .ecl extension, so
that only files with such an extension are shown in the browser initially.

If the name of a menu button on the menu-bar has an underlined character (as in File), then the
pressing Alt with the underlined letter (either upper or lower case) will popup the associated
menu without using the mouse. The arrow keys can be used to navigate the menu, and return
to select.

4.2.1 The Tkeclipse tool suite

The tkeclipse tools will not be covered in detail here — they are best tried by hands-on experi-
mentation with the aid of the on-line help.

Compile scratch-pad

This tool replaces the [user] facility of the tty interface, and allows the user to type in short
program code and compile it. The code is sent to ECL'PS® as a string, and ECL'PS® will
respond that ‘string’ has been compiled. Note that the window’s content is forgotten when the
window is closed — larger programs should be written using a text editor, source files and the
source file manager.

Source File Manager

This tool provides an interface to the make facility of ECL'PS® — it displays the information
used by make to track file statuses. All files that have been compiled by ECL!PS® in the current
session would be listed, and the user can also use this to select files that needs editing or be
compiled individually. Files which have not yet been compiled can be added to this list, but
they must be compiled first before make will recompile them.

21

Predicate Browser

This tool allows the user to browse through the defined modules and predicates of the current
session, showing the user the properties associated with the selected predicate. The modifiable
properties can be changed.

Source Viewer

This tool tries to display the source of a selected predicate. A predicate is selected in other
tools, which will launch the source viewer window. The tool itself does not provide a selection
mechanism. Note that the tool may be unable to display the source, because it may not be
accessible to the user, and in addition, the tool uses a simple algorithm to try and find the
predicate, so it may be unable to locate the predicate even if it is accessible.

Delayed Goals

This tool displays the currently delayed goals. It is possible to filter out uninteresting goals, e.g.
by displaying only goals that are traceable or have a spy point set.

The user can select specific goals in the window and perform operations on the goals such as
viewing its source, inspecting it, and putting a spy-point on the goal.

Tracer

This tool is the debugger for tkeclipse, and replaces the tty-based tracer in functionality. One
difference from the tty tracer is the display of the Call Stack, which shows the ancestors of the
current goal. The user can select goals in this stack to perform operations such as viewing the
source and inspecting them. The trace log window shows output similar to the output from
the traditional tracer. Some of the most common debugger commands are available as buttons,
and their keystroke equivalent can also be used to invoke the commands. The ’Continue Until’
option provides a more sophisticated means of controlling which port the debugger should stop
at.

Note that the tracer can be invoked to start tracing at a particular predicate. This is done by
turning the ‘start_tracing’ and ‘spy’ predicate properties on for the predicate (this can be done
from the predicate browser).

Inspector

This tool provides a graphical browser for inspecting terms. Goals and data terms are displayed
as a tree structure. Sub-trees can be collapsed and expanded by double-clicking. A navigation
panel can be launched which provides arrow buttos as an alternative way to navigate the tree.
The Inspector tool can be invoked from within other tools such as the tracer and the delayed
goals viewer, but it can also be invoked on its own, in which case the term being inspected is
the current goal. Note that when the Inspector is active, interactions with the other tkeclipse
windows are disallowed. This prevents the term from changing while being inspected. To
continue tkeclipse, the inspector window must be closed.

22

Global Settings

This tool shows the settings of some global flags, which can be accessed via the set_flag/2 and
get_flag/2 predicates.

Statistics

The tool displays some of the statistics on the current memory usage and timings, information
which can also be obtained using statistics/0,2. However, the information is displayed in
a graphical form, and is also updated automatically at regular intervals, allowing the user to
monitor the changing statistics as a program is executing.

Simple Query

This tool allows the user to send a simple query to ECL‘PS® even while ECL‘PS® is running
some program and the Toplevel Query Entry window is unavailable. Note that the reply is
shown in EXDR format (see the ECLiPS® Embedding and Interfacing Manual).

ECL‘PS*® Help

This tool provides an interface to the help/1 facility of ECL'PS®. A simple form of ‘hypertext’
facility is provided in that the user can double click on any word in the window to select the
word in the entry window.

Display Matrix

This tool provides a method to display the values of terms in a matrix form. It is particularly
useful because it can display the attributes of an attributed variable’. The tool is invoked from
ECL'PS® code with just one predicate. This predicate is considered a no-op in the tty based
ECL!PS®, and so the same code can be run without modification in either environment.

|| _az28{[1 .. M} _ad{n .. 4} HE | [| _abi{[l .. 41}

Continue stop none stop all | | Update on ground Kill display

Figure 4.2: Display Matrix Tool for 4-Queens (Initial)

This tool must be invoked from ECL'PS® code, using the make_display_matrix/2,5 predicates.
Only this one predicate needs to be added, and no other changes need to be made to the code.
For example, in the following fragment of a N-queens program, only one extra line has been
added to invoke a display matrix:

!The display matrix tools is similar to the variable display of Grace. The main differences are: it can display
all attributes, not just the finite domain attribute; it only allows observation of the attributes, but cannot change
the attribute or the labelling strategy

23

_oH{[E, 4} _9aH[Z, 41} _96FH{[Z, 3}

Continue | stop none | stop all | | Update on ground Kill display

Figure 4.3: Display Matrix Tool for 4-Queens (During execution)

queens (N, List) :-
length(List, N),
List :: 1..N,
make_display_matrix(List/0, queens),
% sets up a matrix with all variables in 1 row. This is the only
h extra goal that has to be added to enable monitoring
alldistinct(List),
constrain_queens(List),
labeling(List).

Figures 4.2 and 4.3 show the tool invoked with the example N-Queens programs for 4 Queens,
at the start initially and during the execution of the program. The name of the display window
is specified by the second argument of make_display_matrix/2, along with the module it is
in. The values of the terms are shown in the matrix, which can be one dimensional (as in this
case), or two dimensional. Break-points can be set on each individual cell of the matrix so that
execution will stop when the cell is updated. The matrix can be killed using the ‘Kill display’
button. Left-clicking on a cell will bring up a menu which shows the current and previous value
of the term in the cell (the current value is shown because the space available in the cell may be
too small to fully display the term), and allow the user to inspect the term using the inspector.
Note the display matrix can be used independently of, or in conjunction with, the tracer. Mul-
tiple display matrices can be created to view different terms.

The following predicates are available in conjunction with the display matrix:

make_display_matrix(+Terms, +Name)

make_display _matrix(4+Terms, +Prio, +Type, +CondList, +Name) These predi-
cates create a display matrix of terms that can be monitored under tkeclipse. The two argument
form is a simplification of the five argument form, with defaults settings for the extra arguments.
Terms is a list or array of terms to be displayed. A List can be specified in the form List/N,
where N is the number of elements per row of the matrix. If N is 0, then the list will be displayed
in one row (it could also be omitted in this case). The extra arguments are used to control how
the display is updated.

The terms are monitored by placing a demon suspension on the variables in each term. When
a demon wakes, the new value of the term it is associated with is sent to the display matrix
(and possibly updated, depending on the interactive settings on the matrix). When the new
value is backtracked, the old value is sent to the display matrix. The other arguments in this
predicate is used to control when the demon wakes, and what sort of information is monitored.
Prio is the priority that the demon should be suspended at, Type is designed to specify the

24

attributes that is being monitored (currently all attributes are monitored, and Type is a dummy
argument), CondList is the suspension list that the demon should be added to. Depending
on these arguments, the level of monitoring can be controlled. Note that it is possible for the
display matrix to show values that are out of date because the change was not monitored.

The display matrix will be removed on backtracking. However, it will not be removed if
make_display_matrix has been cut — kill_display_matrix/1 can be used to explicitly remove
the matrix in this case.

kill_display_matrix(4+Name) This predicate destroys an existing display matrix. Name is
an atomic term which identifies the matrix.

Destroys an existing display matrix. The display matrix is removed from being displayed, and
from ECL'PS® so that the name can be reused. This is the only way to remove a display matrix
if it is not removed normally when the original make_display_matrix used to create the matrix
was unable to remove the matrix on backtracking because of cuts. It can also be used to remove
a display matrix at any other time, but there may be less need for this.

The Name can be specified as Name@Module, where Name was the original name given to the
display matrix, and Module the module in which the display matrix was created in (this is the
format that the name appears in the title bar of the display matrix). This allows the display
matrix to be killed from any module.

4.3 Using the Development tools in applications

The user can develop their own ECL'PS® application which uses the Tcl/Tk interface to provide
a graphical front end. The development tool suite was designed to be independent of the tkeclipse
top-level so that they can be used in a user’s application. In effect, the user can replace the
tkeclipse top-level with their own alternative top-level. Two simple examples in which this
is done is provided in the 1ib_tcl library as example.tcl and examplel.tcl. In addition,
tkeclipse itself, in the file tkeclipse.pl, can be seen as a more complex example usage of the
interface.

In order to use the Tcl/Tk interface, the system must be initialised as described in the Embed-
ding manual. In addition, the user’s Tcl code should probably also be provided as a package
using Tcl’s package facility, in order to allow the program to run in a different directory. See
the Embedding manual and the example programs for more details on the initialisation needed.
The user should most likely provide a connection for the output stream of ECL'PS so that out-
put from ECL*PS® will go somewhere in the GUI. In addition, especially during the development,
it is also useful to connect the error stream to some window so that errors (such as ECL‘PS®
compilation errors) are seen by the user. This can be done using the ec_queue_connect Tcl
command described in the embedding manual.

Output from ECL'PS® need not be sent to a Tk window directly. The Tecl/Tk code which
receives the output can operate on it before displaying it. It is intended that all such graphical
operations should be performed on the Tcl side, rather than having some primitives provided
on the ECL!PS® side.

The user can also provide balloon-help to his/her own application. The balloon help package is
part of the Megawidget developed by Jeffrey Hobbs and used in tkeclipse. In order to define a
balloon help for a particular widget, the following Tcl code is needed:

balloonhelp <path> <text>

25

where <path> is the pathname of the widget, and <text> is the text that the user wants to
display in the balloon.

26

Chapter 5

Porting Applications to ECL'PS¢

The ECL'PS® system is to a large extent compatible with Prolog systems of the Edinburgh
family, and one of the requirements during the development of ECL'PS® was to minimise the
effort required to port programs written in other dialects to ECL‘PS®. However, there are some
differences. When you want to run an existing Prolog application on the ECL'PS® system, you
have basically two choices: Using a compatibility package, or modifying your program.

5.1 Using the compatibility packages

The ECL!PS® compatibility packages are the fastest way to get a program running that was
originally written for a different system. The packages contain the necessary code to make
ECL*PS® emulate the behaviour of the other system to a large extent. Compatibility packages
exist for:

¢ [SO Standard Prolog, use use_module(library(iso)) (cf. appendix A.5)
e C-Prolog, use use_module(library(cprolog)) (cf. appendix A.6)

¢ Quintus Prolog, use use_module(library(quintus)) (cf. appendix A.11)
e SICStus Prolog, use use_module(library(sicstus)) (cf. appendix A.13)

Note that every package makes use of the preceding ones. To run SICStus applications, it
is often enough to use the quintus mode. The source code of the compatibility packages is
provided in the ECL‘PS® library directory. Using this as a guideline, it should be easy to write
similar packages for other systems, as long as their syntax does not deviate too much from the
Edinburgh tradition.

The following problems can occur despite the use of compatibility packages:

5.1.1 Compiler versus Interpreter

If your program was written for an interpreter, e.g. C-Prolog, you have to be aware that ECLPS®
is a compiling system. There is a distinction between static and dynamic predicates. By default,
a predicate is static. This means that its clauses have to be be compiled as a whole (they must
not be spread over multiple files), its source code is not stored in the system, and it can not be
modified (only recompiled as a whole). In contrast, a dynamic predicate may be modified by
compiling or asserting new clauses and by retracting clauses. Its source code can be accessed

27

using clause/1,2 or listing/0,1 A predicate is dynamic when it is explicitly declared as such
or when it was created using assert/1. Porting programs from an interpreter usually requires
the addition of some dynamic declarations. In the worst case, when (almost) all procedures
have to be dynamic, the flag all_ dynamie can be set instead.

5.1.2 Name clashes with global ECL‘PS® builtins

Suppose you want to define a predicate named date/1, which conflicts with the ECL!PS® builtin
called date/1. In this case the compiler will produce one of the following messages

warning: redefining a system predicate in date / 1
**%* trying to redefine a procedure with another type: date / 1

depending on whether the definition or a call to the predicate was encountered first by the
compiler. Both can be avoided by declaring the predicate as local. This declaration must be
given before the first call to the predicate:

:- local date/1.
p(Y) :- date(Y).
date(1999).

Note that the date/1 builtin is now hidden by your own definition, but only in the module
where you have redefined it'. In all other modules, the builtin is still visible.
The same holds for the redefinition of protected predicates, see also section 3.7 and appendix E.

5.2 Porting Programs to plain ECL'PS¢

If you want to use ECL'PS® to do further development of your application, it is probably
advantageous to modify it such that it runs under plain ECL*PS®. In the following we summarise
the main aspects that have to be considered when doing so.

e In general, it is almost always possible to add to your program a small routine that fixes
the problem, rather than to modify the source of the application in many places. E.g.
name clashes are easier fixed by using the local/1 declaration rather than to rename the
clashing predicate in the whole application program.

e Due to lack of standardisation, some subtle differences in the syntax exist between Prolog
systems. See B.4 for details. ECL*PS® has a number of options that make it possible to
configure its behaviour as desired.

e ECL'PS® has the string data type which is not present in Prolog of the Edinburgh family.
Double-quoted items are parsed as strings in ECL*PS®, while they are lists of integers in
other systems and when the compatibility packages are used (cf. chapter 6.4).

e 1/0 predicates of the see and tell group are not builtins in ECL'PS®, but they are provided
in the cio library. Call 1ib(cio) in order to have them available (cf. appendix A). Similarly
for numbervars/3.

Yin case you don’t use modules this is the module eclipse

28

5.3

In ECL'PS®, some builtins raise events in cases where they just fail in other systems, e.g.
arg(1,2,X) fails in C-Prolog, but raises a type error in ECL*PS®. If some code relies on
such behaviour, it is best to modify it by adding an explicit check like

., compound(T), arg(N, T, X),

Another alternative is to redefine the arg/3 builtin, using call_explicit/2 to access the
original version:

:- local arg/3.
arg(N, T, X) :-
compound (X) ,
call_explicit(arg(N, T, X), sepia_kernel).

A third alternative, which is used in the compatibility packages, is to define an error
handler which will fail the predicate whenever the event is raised. In this case:

my_type_error(_, arg(_, _, _)) :- !, fail.
my_type_error(E, Goal) :- error(default(E), Goal).

:- set_error_handler(5, my_type_error/2).

As the ECL*PS® compiler does not accept procedures whose clauses are not consecutive in
a file, you have to load the library scattered.pl if you want to compile such procedures.

Exploiting ECL'PS® Features

When rewriting existing applications as well as when writing new programs, it is useful to bear
in mind important ECL'PS® features which can make programs easier to write and/or faster:

The maximum performance is obtained when calling nodbgcomp/0 at the beginning of
the session, before compiling any program and loading any libraries.

ECL'PS® arrays and global variables (setval/2, getval/2) are usually more suitable to
store permanent data than assert/1 is, and are usually faster.

ECLPS® has a number of language extensions which make programming easier, see chapter

6.

The predicates get_flag/2, get_flag/3, get_file_info/3, get_stream_info/3, get_var_in-
fo/3 give a lot of useful information about the system and the data.

The ECL'PS® macros often help to solve syntactic problems (see chapter 13).
It is worth familiarising oneself with the debugger’s features, see chapter 15.

ECL!PS® is highly customizable, even problems which seemingly require modification of
the ECL*PS® sources can very often be solved at the Prolog level.

29

30

Chapter 6

ECL'PS¢-specific Language Features

ECLIPS* is a logic programming language derived from Prolog. This chapter describes ECL'PS®-
specific language constructs that have been introduced to overcome some of the main deficiencies
of Prolog.

6.1 Structure Notation

ECL'PS® structure notation provides a way to use structures with field names. It is intended
to make programs more readable and easier to modify, without compromising efficiency (it is
implemented by macro expansion).

A structure is declared by specifying a template like this

:- local struct(book(author, title, year, publisher)).
Structures with the functor book/4 can then be written as

book with []
book with title:’tom sawyer’
book with [title:’tom sawyer’, year:1886, author:twain]

which translate to the corresponding forms

book(_, _, _,)
book(_, ’tom sawyer’, _, _)
book(twain, ’tom sawyer’, 1886, _)

This transformation is done by macro expansion, therefore it can be used in any context and is
as efficient as using the structures directly.
The argument index of a field in a structure can be obtained using a term of the form

FieldName of StructName

E.g. to access (ie. unify) a single argument of a structure, use arg/3 like this:
arg(year of book, B, Y)

which is translated into

arg(3, B, Y)

31

When structures are printed, they are not translated back into the with-syntax by default. The
reason this is not done is that this can be bulky if all fields are printed, and often it is desirable
to hide some of the fields anyway

A good way to control printing of big structures is to write special purpose write-transformations
for them, for instance

:- functor(book with [],N,4), define_macro(ll/A, tr_book_out/2, [writel).
tr_book_out(book with [author:A,title:T],
no_macro_expansion(book with [author:A,title:T])).

which will cause book/4 structures to be printed like
book with [author:twain, title:tom sawyer]

while the other two arguments remain hidden.

6.1.1 Inheritance

Structures can be declared to contain other structures, in which case they inherit the base
structure’s field names. Consider the following declarations:

:- local struct(person(name,address,age)).
:- local struct(employee(p:person,salary)).

The employee structure contains a field p which is a person structure. Field names of the
person structure can now be used as if they were field names of the employee structure:

[eclipse 1]: Emp = employee with [name:john,salary:2000] .
Emp = employee(person(john, _105, _106), 2000)
yes.

Note that, as long as the with and of syntax is used, the employee structure can be viewed either
as nested or as flat, depending on what is more convenient in a given situation. In particular,
the embedded structure can still be accessed as a whole:

[eclipse 1]:
Emp = employee with [name:john,age:30,salary:2000,address:here],
arg(name of employee, Emp, Name),
arg(age of employee, Emp, Age),
arg(salary of employee, Emp, Salary),
arg(address of employee, Emp, Address),
arg(p of employee, Emp, Person).

Emp = employee(person(john, here, 30), 2000)
Name = john

Age = 30

Salary = 2000

Address = here

Person = person(john, here, 30)

yes.

Implementation note: The indices of nested structures expand into lists of integers rather
than simple integers, e.g. age of employee expands into [1,3].

32

6.1.2 Visibility

Structure declaration can be local to a module (when declared as above) or exported when
declared as

1= export struct(...).
in the module interface part, or even global when declared as

:- global struct(...).

6.2 Loop/Iterator Constructs

Many types of simple iterations are inconvenient to write in the form of recursive predicates.
ECL'PS® therefore provides a logical iteration construct do/2, which can be understood either
by itself or by its translation to an equivalent recursion.

A simple example is the traversal of a list

main :-
write_list([1,2,3]).

write_list([]).

write_list([X|Xs]) :-
writeln(X),
write_list(Xs).

which can be written as follows without the need for an auxliliary predicate:

main :-
(foreach(X, [1,2,3]) do
writeln(X)
).

The general form of a do-loop is
(IterationSpecs do Goals)
and it corresponds to a call to an auxiliary recursive predicate of the form

do__n(...).
do__n(...) :- Goals, do__n(...).

IterationSpecs is one (or a comma-separated sequence) of the following:

fromto(First,In,Out,Last)
iterate Goals starting with In=First until Out=Last. In and Out are local variables in

Goals.

foreach(X,List)
iterate Goals with X ranging over all elements of List. X is a local variable in Goals. Can
also be used for constructing a list.

33

foreacharg(X,Struct)
iterate Goals with X ranging over all elements of Struct. X is a local variable in Goals.
Cannot be used for constructing a term.

for(I,MinExpr,MaxExpr)
iterate Goals with I ranging over integers from MinExpr to MaxExpr. I is a local variable
in Goals. MinExpr and MaxExpr can be arithmetic expressions. Can be used only for
controlling iteration, ie. MaxExpr cannot be uninstantiated.

for(I,MinExpr,MaxExpr,Increment)
same as before, but Increment can be specified (it defaults to 1).

count(I,Min,Max)
iterate Goals with I ranging over integers from Min up to Max. [is a local variable in
Goals. Can be used for controlling iteration as well as counting, ie. Max can be a variable.

param(Varl,Var2,...)
for declaring variables in Goals global, ie shared with the context. CAUTION: By default,
variables in Goals are local!

Note that fromto/4 is the most general specifier, but foreach/2, foreacharg/2, count/3, for/3
and param/N are convenient shorthands.
The do-operator binds like the semicolon, ie. less than comma. That means that the whole
do-construct should always be bracketed.
Unless you use :-pragma(noexpand) or :-dbgcomp, the do-construct is compiled into an efficient
auxiliary predicate named do__nnn, where nnn is a unique integer.
6.2.1 Examples
Iterate over list
foreach(X,[1,2,3]) do writeln(X).
Maplist (construct a new list from an existing list)
(foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3).
Sumlist
(foreach(X,[1,2,3]), fromto(0,In,0ut,Sum) do Out is In+X).

Reverse list

(foreach(X,[1,2,3]), fromto([],In,0ut, Rev) do Out=[X|In]). % or:
(foreach(X,[1,2,3]), fromto([],In,[X|In],Rev) do true).

Iterate over integers from 1 up to 5

for(I,1,5) do writeln(I). % or:
count(I,1,5) do writeln(I).

Make list of integers [1,2,3,4,5]

34

(for(1,1,5), foreach(I,List) do true). ¥ or:
(count(I,1,5), foreach(I,List) do true).

Make a list of length 3

(foreach(_,List), for(_,1,3) do true). ¥ or:
(foreach(_,List), count(_,1,3) do true).

Get the length of a list

(foreach(_,[a,b,c]), count(_,1,N) do true).
Actually, the length/2 builtin is (almost)

length(List, N) :- (foreach(_,List), count(_,1,N) do true).
Filter list elements

(foreach(X,[5,3,8,1,4,6]), fromto(List,0ut,In,[]) do
X>3 -> Out=[X|In] ; Out=In).

Tterate over structure arguments
(foreacharg(X,s(a,b,c,d,e)) do writeln(X)).
Collect args in list (bad example, use =.. if you really want to do that!)
(foreacharg(X,s(a,b,c,d,e)), foreach(X,List) do true).
Collect args reverse
(foreacharg(X,s(a,b,c,d,e)), fromto([],In,[X|In],List) do true).
or like this:

S = s(a,b,c,d,e), functor(S, _, N),
(for(I,N,1), foreach(A,List), param(S) do arg(I,S,A)).

The following two are equivalent

foreach(X,[1,2,3]) do writeln(X).
fromto([1,2,3],In,0ut,[]) do In=[X|0ut], writeln(X).

The following two are equivalent

count(I,1,5) do writeln(I).
fromto(0,I0,I,5) do I is IO+1, writeln(I).

Two examples for nested loops. Print all pairs of list elements:

Xs = [1,2,3,4],
(foreach(X, Xs), param(Xs) do
(foreach(Y,Xs), param(X) do
writeln(X-Y)
)

35

and the same without symmetries:

Xs = [1,2,3,4],
(fromto(Xs, [X|Xs1], Xs1, []) do
(foreach(Y,Xs1), param(X) do
writeln(X-Y)

6.3 Array Notation

Since our language has no type declarations, there is really no difference between a structure
and an array. In fact, a structure can always be used as an array, creating it with functor/3
and accessing elements with arg/3. However, this can look clumsy, especially in arithmetic
expressions.

ECL'PS® therefore provides array syntax which enables the programmer to write code like

[eclipse 1]: Prime = a(2,3,5,7,11), X is Prime[2] + Prime[4].
X =10

Prime = a(2, 3, 5, 7, 11)

yes.

Within expressions, array elements can be written as variable-indexlist or structure-indexlist
sequences, e.g.

X[3] + M[3,4] + s(4,5,6)[3]

Indices run from 1 up to the arity of the array-structure. The number of dimensions is not
limited.

To create multi-dimensional arrays conveniently, the built-in dim/2 is provided (it can also be
used backwards to access the array dimensions):

[eclipse]l: dim(M, [3,4]), dim(M,D).

M= [1([](_131, _132, _133, _134),
O(_126, _127, _128, _129),
(1(_121, _122, _123, _124))

D = [3, 4]

yes.

Although dim/2 creates all structures with the functor [], this has no significance other than
reminding the programmer that these structures are intended to represent arrays.

Array notation is especially useful within loops. Here is the code for a matrix multiplication
routine:

matmult (M1, M2, M3) :-
dim(M1, [MaxIJ,MaxK]),
dim(M2, [MaxK,MaxIJ]),
dim(M3, [MaxIJ,MaxIJ]),
(
for(I,1,MaxIJ),

36

param(M1,M2,M3,MaxIJ,MaxK)

do
(
for(J,1,MaxIJ),
param(M1,M2,M3,T,MaxK)
do
(
for(K,1,MaxK),
fromto(0,Sum0,Suml,Sum),
param(M1,M2,1,7)
do
Suml is SumO + M1[I,K] * M2[K,J]
),
subscript (M3, [I,J], Sum)
)
).

6.3.1 Implementation Note

Array syntax is implemented by parsing variable-list and structure-list sequences as terms with
the functor subscript/2. For example:

X[3] -—=> subscript(X, [3])
M[3,4] -—=> subscript(M, [3,4])
s(4,5,6)[3] -—=> subscript(s(4,5,6), [3])

If such a term is then used within an arithmetic expression, a result argument is added and the
built-in predicate subscript/3 is called, which is a generalised form of arg/3 and extracts the
indicated array element.

When printed, subscript/2 terms are again printed in array notation, unless the print-option to
suppress operator notation (70”) is used.

6.4 The String Data Type

In the Prolog community there have been ongoing discussions about the need to have a special
string data type. The main argument against strings is that everything that can be done with
strings can as well be done with atoms or with lists, depending on the application. Nevertheless,
in ECL'PS® it was decided to have the string data type, so that users that are aware of the
advantages and disadvantages of the different data types can always choose the most appropriate
one. The system provides efficient builtins for converting from one data type to another.

6.4.1 Choosing The Appropriate Data Type

Strings, atoms and character lists differ in space consumption and in the time needed for per-
forming operations on the data.

37

Strings vs. Character Lists

Let us first compare strings with character lists. The space consumption of a string is always
less than that of the corresponding list. For long strings, it is asymptotically 16 times more
compact. [tems of both types are allocated on the global stack, which means that the space is
reclaimed on failure and on garbage collection.

For the complexity of operations it must be kept in mind that the string type is essentially
an array representation, ie. every character in the string can be immediately accessed via its
index. The list representation allows only sequential access. The time complexity for extracting
a substring when the position is given is therefore only dependent on the size of the substring
for strings, while for lists it is also dependent on the position of the substring. Comparing two
strings is of the same order as comparing two lists, but faster by a constant factor. If a string
is to be processed character by character, this is easier to do using the list representation, since
using strings involves keeping index counters and calling the substring/4 predicate.

The higher memory consumption of lists is sometimes compensated by the property that when
two lists are concatenated, only the first one needs to be copied, while the list that makes up
the tail of the concatenated list can be shared. When two string are concatenated, both strings
must be copied to form the new one.

Strings vs. Atoms

At a first glance, an atom does not look too different from a string. In ECLPS®, many predicates
accept both strings and atoms (e.g. the file name in open/3) and some predicates are provided
in two versions, one for atoms and one for strings (e.g. concat_atoms/3 and concat_strings/3).
However, internally these data types are quite different. While a string is simply stored as a
character sequence, an atom is mapped into an internal constant. This mapping is done via a
table called the dictionary. A consequence of this representation is that copying and comparing
atoms is a unit time operation, while for strings both is proportional to the string length.
On the other hand, each time an atom is read into the system, it has to be looked up and
possibly entered into the dictionary, which implies some overhead. The dictionary is a much less
dynamic memory area than the global stack. That means that once an atom has been entered
there, this space will only be reclaimed by a relatively expensive dictionary garbage collection.
It is therefore in general not a good idea to have a program creating new atoms dynamically at
runtime.

Atoms should always be preferred when they are involved in unification and matching. As
opposed to strings, they can be used for indezing clauses of predicates. Consider the following
example:

[eclipse 1]: [user].
afather(mary, george).
afather(john, george).
afather(sue, harry).
afather(george, edward).

sfather("mary", "george").
sfather("john", "george").
sfather("sue", "harry").
sfather("george", "edward").

38

user compiled 676 bytes in 0.00 seconds

yes.
[eclipse 2]: afather(sue,X).

X = harry
yes.
[eclipse 3]: sfather('sue",X).

X = "harry" More? (;)

no (more) solution.

The predicate with atoms is indezed, that means that the matching clause is directly selected
and the determinacy of the call is recognised (the system does not prompt for more solutions).
When the names are instead written as strings, the system attempts to unify the call with the
first clause, then the second and so on until a match is found. This is much slower than the
indexed access. Moreover the call leaves a choicepoint behind (as shown by the more-prompt).

Conclusion

Atoms should be used for representing (naming) the items that a program reasons about, much
like enumeration constants in PASCAL. If used like this, an atom is in fact indivisible and there
should be no need to ever consider the atom name as a sequence of characters.

When a program deals with text processing, it should choose between string and list represen-
tation. When there is a lot of manipulation on the single character level, it is probably best to
use the character list representation, since this makes it very easy to write recursive predicates
walking through the text.

The string type can be viewed as being a compromise between atoms and lists. It should be
used when handling large amounts of input, when the extreme flexibility of lists is not needed,
when space is a problem or when handling very temporary data.

6.4.2 Builtin Support for Strings

Most ECL!PS® builtins that deliver text objects (like getewd/2, read _string/3,4 and many
others) return strings. Strings can be created and their contents may be read using the string
stream feature (cf. section 12.5.1). By means of the builtins atom_string/2, string_list/2
and term_string/2, strings can easily be converted to other data types.

6.4.3 Entering Strings

For input and output, ECL'PS® strings are by default designated by the surrounding double
quotes. Unfortunately, many Prologs use the double quotes as a notation for lists. In some of
the compatibility modes the meaning of the quotes is therefore different:

[eclipse 1]: X = "text", type_of(X, T).

X
T

“teXt n
string

39

yes.
[eclipse 2]: cprolog. % redefines the quotes (among other things)
yes.

[eclipse 3]: X = "text", type_of(X, T).

X = [116, 101, 120, 116]
T = compound
yes.

Note that although it is no longer possible to create a string by using double quotes, a builtin
like atom_string/2 will still deliver a true string rather than a list.

Even the user can manipulate the quotes by means of the set_chtab/2 predicate. A quote is
defined by setting the character class of the chosen character to string _quote, 1ist_quote or
atom_quote respectively. To create a list quote (which is not available by default) one may use:

[eclipse 1]: set_chtab(0’‘, list_quote).

yes.
[eclipse 2]: X = ‘text®, Y = "text", type_of(X, TX), type_of(Y, TY).

X = [116, 101, 120, 116]
TX = compound

Y = "text"
TY = string
yes.

6.4.4 Matching Clauses

When Prolog systems look for clauses that match a given call, they use full unification of the goal
with the clause head (but usually without the occur check). Sometimes it is useful or necessary
to use pattern matching instead of full unification, i.e. during the matching only variables in
the clause head can be bound, the call variables must not be changed. This means that the call
must be an instance of the clause head.

The operator -7-> at the beginning of the clause body specifies that one-way matching should
be used instead of full unification:

p(£(X)) :-

-7->

q(X).
Pattern matching can be used for several purposes:

e Generic pattern matching when looking for clauses whose heads are more general than the
call.

e Decomposing atiributed variables [4]. When an attributed variable occurs in the head
of a matching clause, it is not unified with the call argument (which would trigger the
unification handlers) but instead, the call argument is decomposed into the variable and
its attribute(s):

40

get_attr(X{A}, Attr) :-
-7->

A = Attr.

This predicate can be used to return the attribute of a given attributed variable and fail
if it is not one.

e Replacing other metalogical operations, e.g. var/1 test. Since a nonvariable in the head
of a matching clause matches only a nonvariable, explicit variable tests and/or cuts may
become obsolete.

If some argument positions of a matching clause are declared as output in a mode declaration,
then they are not unified using pattern matching but normal unification, in this case then the
variable is normally bound. The above example can thus be also written as

:- mode get_attr(?, -).
get_attr(X{A}, 4) :-
-7->

true.

but in this case it must not be called with its second argument already instantiated.

6.5 Soft Cut

Sometimes it is useful to be able to remove a choice point which is not the last one and to keep
the following ones, for example when defining an if-then-else construct which backtracks also
into the condition. This functionality is usually called soft cut in the Prolog folklore.

When you define the operator op(1050, xfx, x— >) and import *— >/2 from sepia_kernel, then
the expression

Ax—>B;C

is evaluated as a soft cut: if A succeeds, B is executed and on backtracking subsequent solutions
of A are returned, but C is never executed. If A fails, C is executed. It is similar to — >/2,
with the exception that — >/2 cuts both A and the disjunction if A succeeds, whereas x— > /2
cuts only the disjunction.

41

42

Chapter 7

The Compiler

ECL'PS® has an efficient incremental compiler which compiles Prolog source into the instructions
of an abstract machine and they are then executed by an emulator. The compiler is very fast, it
compiles about 1000 lines/sec. on a Sun-4, and this makes the usual debugging cycle acceptably
short. Unlike other Prolog systems, the ECL!PS® compiler generates code that can be used for
debugging, so that no separate interpreter is necessary, and also the debugged code runs faster.
The ECL'PS® compiler is interactive and incremental, which means that Prolog programs are
compiled during a ECL'PS® session directly into the Prolog database. ECL'PS® has no means
to compile Prolog programs off-line, store the abstract code into a file and load the file during
the Prolog session, however compiling a file in ECL'PS® is as fast as loading the abstract code
in other systems and so it makes it obsolete.

7.1 Program Source

When reading the input source, the compiler distinguishes clauses and directives. Directives
are terms with main functor :-/1 or ?-/1. When the compiler encounters them, it executes
immediately their first argument as a Prolog goal. If this goal succeeds, the compiler continues
to the next input term without reporting the answer to the user. If the directive fails, an event
is raised.

All other input terms are interpreted as clauses to be compiled. A sequence of consecutive
clauses whose heads have the same functor is interpreted as one procedure, and so e.g. if the
clauses of one procedure are mixed with directives or with clauses for another procedure, the
compiler takes them as several different procedures. To allow the user to write non-consecutive
procedures, the compiler raises an event whenever it encounters several procedures with the
same name and arity in one file, or when a procedure defined in one file is being redefined in
another file. Default action for the former is to emit a warning, for the latter the new procedure
just replaces the old one. The library scattered redefines the former handler so that procedures
which are scattered in one file are accepted as normal static procedures.

7.2 Procedure Types

Procedures can be static and dynamic and this feature can be queried with the stability
flag of get_flag/3.

43

Static procedures are compiled as one unit, they are thus executed more efficiently, and they can
be modified only by replacing them by another procedure. By contrast, dynamic procedures are
compiled clause-wise, they are executed slightly less efficiently, but their source form can also be
retrieved, and they can be modified by adding or removing single clauses or clause sequences.
By default all procedures are static, dynamic procedures must be declared by the dynamic/1
declaration, except that undefined procedures for which assert/1,2 is called are silently declared
as dynamic by the event handler, and so no declaration is needed.

When compiling static procedures, the compiler remembers their position in the file, which can
be then queried by get_flag/3. The library scattered actually uses this feature to retrieve
predicates whose clauses are not consecutive.

7.3 Compiler Modes

The compiler has several modes of operation, each mode generating code with different proper-
ties. The operating mode is controlled by a set of global flags, which may be modified at any
time, even during the compilation so that a part of the program is compiled in a different mode.
These flags and the associated modes are listed below.

debug_compile When this flag is on, the compiler generates code which can be traced with
the debugger. This code can sometimes be significantly less efficient than the untraceable
one, and the generated code size is always significantly larger. To generate optimised code,
this flag must be switched off. To achieve this, the predicate

:- nodbgcomp.

can also be called, and it also switches off the variable_names flag.

occur_check When this flag is on, the compiled code will perform the occur check if necessary.
This means that every time a variable will be unified with a compound term that might
already contain a reference to this variable, the compound term will be scanned for this
occurrence and if it is found, the unification fails. In this way, the creation of infinite
(cyclic) terms is impossible and thus the behaviour of the system is closer to the first order
logic theory. Unifications with the occur check may sometimes be very slow, and most
Prolog programs do not need it, because no cyclic terms are created. Note that this flag
must be set both at compile time and at runtime in order to actually perform the checks.

dfid_compile When this flag is on, the compiler will generate code that keeps track of the
number of ancestors of the current goal, which is used by the library dfid to execute the
bounded depth-first search, either as iterative deepening or plain depth limiting.

float_precision This flag specifies if the compiler generates code for single or double preci-
sion floating point arithmetic. It is recommended not to mix code compiled in different
modes, because single and double precision numbers do not unify and therefore may cause
unexpected failures.

variable_names ECL!PS® can remember the source variable names of the input variables.
When this flag is on, the compiled predicates will keep the names of the source variables
and will display them whenever the variables are printed. In this case the usage of the

44

global stack and code space is slightly higher (to store the name), and the efficiency of the
code is marginally lower. Setting this flag to check_singletons has the same effect as on,
but additionally, the compiler will issue warnings about variables which occur only once
in a clause and whose names do not start with an underscore character.

all_dynamic When this flag is on, all procedures are compiled as dynamic ones (and there is no
equivalent static/1 declaration). It can be used to port programs from older interpreters
which rely heavily on the fact that all predicates in these interpreters were dynamic.
Another possible use is to switch it on at the beginning of a file that contains many
dynamic predicates and switch it off at its end.

macro_expansion This is in fact a parser flag, is enables or disables the macro transformation
(see Chapter 13) for the input source.

goal_expansion Specifies whether to apply goal-macros or not (see Chapter 13).

7.4 Compiler Input

The compiler normally reads a file up to its end. The file end can also be simulated with a
clause

end_of_file.

The file is normally read consecutively, however the compiler uses the normal ECL'PS® I/0
streams, and so if during the compilation the stream pointer is modified (e.g. by seek/2 or
read/2), the compiler continues at the specified place!.

There are several built-in predicates which invoke the compiler:

compile(File) This is the standard compiler predicate. The contents of the file is compiled
according to the current state of the global flags.

compile(File, Module) This predicate is used to compile the contents of a file into a specified
module, without having to use the module declaration in the file itself.

compile_stream(Stream) This predicate compiles a given stream up to its end or to the
end of file clause. It can be used when the input file is already open, e.g. when the
beginning of the file does not contain compiler input, or when the input has to be processed
in a non-consecutive way.

compile_term(Clauses) This predicate is used to compile a given term, usually a list of
clauses and directives. Unlike assert/1 it compiles a static procedure, and so it can be
used to compile a procedure which is dynamically created and then used as a static one.
For more information please refer to [11].

dump(File) This predicate stores the precompiled form of the given file into a file with the
suffix sd (Sepia Dump). It can be used to speed up the compilation or to deliver program
modules whose source should not be readable.

! An example of using this feature is the library ifdef.

45

ensure_loaded(File) This predicate compiles the specified file if it has not been compiled yet
or if it has been modified since the last compilation.

make This predicate recompiles all files that have been modified since their last compilation.

lib(File) This predicate is used to ensure that a specified library file is loaded. If this library
is not yet compiled, the system will look in all directories in the 1ibrary path flag for a
file with this name. When the file is found, it is compiled and the system remembers it.

current_compiled_file(File, Time, Module) This predicate returns on backtracking all
files that have been compiled in this session, together with the module from where the
compilation was done and the modification time stamp of the file at the time it was
compiled.

compiled_file(File, Line) This predicate allows to access the compiled file during the compi-
lation. If it is called during the compilation, it returns the name of the file being compiled
and the current line in it2. If some I/O operations are performed on the compiler stream,
it influences the compiler, e.g. some procedures can be omitted and some compiled several
times. An example of its use is the library ifdef which implements a C-like conditional
compilation.

assert(Clause) This predicate compiles the given clause of a dynamic predicate.

7.5 Libraries

There is a number of libraries that support or complement the compiler:

check This library will check all code currently compiled inside the ECL'PS® session, and print
warnings for missing predicates. We recommend its use for program development and for
checking finished programs.

ifdef Conditional compilation similar to the C preprocessor.
ptags Creates vi tags of specified Prolog source files.
scattered Allows to compile procedures whose clauses are not consecutive.

xref Prints a list of predicates defined and not defined in given files.

7.6 Module Compilation

One source file can contain several modules and one module may spread over several files®. The
module structure is controlled by the module/1 or module_interface/1 directive which tells
the compiler that all subsequent input up to the end of file or another module directive will be
part of the given module.

2This is in fact ambiguous; the system predicate compiled stream/1 which is exported from the module
sepia_kernel is more precise.
3This style is not recommended.

46

When it encounters the module_interface/1 directive, the compiler first erases previous con-
tents of this module, if there was any, before starting to compile predicates into it. This means
that if the contents of a module has to be generated incrementally, the module directive can-
not be used because the previous contents of the module would be destroyed. In this case the
predicate compile(File, Module) should be used.

7.7 Mode Declarations

Mode declarations are a way for the user to give some additional information to the compiler,
thus enabling it to do a better job. The ECL‘PS® compiler makes use of the mode information
mainly to improve indexing and to reduce code size.

Mode declarations are optional. They specify the argument instantiation patterns that a predi-
cate will be called with at runtime, for example:

:- mode p(+), q(=), r(++, 7).
The possible argument modes and their meaning are:
+ - The argument is instantiated, i.e. it is not a variable.
++4 - The argument is ground.

— - The argument is not instantiated, it must be a free variable without any constraints, espe-
cially it must not occur in any other argument and it cannot be a suspending variable.

? - The mode is not known or it is neither of the above ones.

Note that, if the actual instantiation of a predicate call violates its mode declaration, the be-
haviour is undefined. Usually, an unexpected failure occurs in this case.

7.8 Inlining

To improve efficiency, calls to user-defined predicates can be preprocessed and transformed at
compile time. The directive inline/2, e.g.

:- inline(mypred/1, mytranspred/2).

arranges for mytranspred/2 to be invoked at compile time for each call to the predicate mypred/1
before this call is being compiled.

The transformation predicate receives the original call to mypred/1 as its first argument, and is
expected to return a replacement goal in its second argument. This replacement goal replaces
the original call in the compiled code. Usually, the replacement goal would be sematically
equivalent, but more efficient than the original goal. When the transformation predicate fails,
the original goal is not replaced.

Typically, a predicate would be defined together with the corresponding inlining transformation
predicate, e.g.

:- inline(double/2, trans_double/2).
double(X, Y) :-

47

Y is 2xX.

trans_double(double(X, Y), Y=Result) :-
not nonground(X), % if X already known at compile time:
Result is 2x*X. % do calculation at compile time!

All compiled calls to double/2 will now be preprocessed by being passed to trans_double/2. E.g.
if we now compile the following predicate involving double/2

sample :-
double(12,Y), ..., double(Y,Z).

the first call to double will be replaced by Y=24 while the second one will be unaffected. The
code that the compiler sees and compiles is therefore

sample :-
Y=24, ..., double(Y,Z).

Note that meta-calls (e.g. via call/1) are never preprocessed, they always go directly to the
definition of double/2.
Transformation can be disabled for debugging purposes by adding

:- pragma(noexpand) .
to the compiled file, or by setting the gobal flag

:- set_flag(goal_expansion, off).

7.9 Compiler Pragmas

Compiler pragmas are compiler directives which instruct the compiler to emit a particular code
type. Their syntax is similar to directives:

:- pragma(Option).

It is not possible to have several pragmas grouped together and separated by commas like goals,
every pragma must be specified separately. Option can be one of the following;:

e debug - generate code which can be inspected with the debugger. This overrides the
global setting of the debug_compile flag.

¢ nodebug - generate optimized code with no debugger support. This overrides the global
setting of the debug_compile flag.

¢ silent_debug - generate code which cannot be inspected by the debugger, but which allows
to debug predicates called by it. This is similar to setting the leash flag of all subgoals
in the following clauses to notrace. This option is useful e.g. for library predicates which
call other Prolog predicates: the user wants to see in the debugger the call to the library
predicate and to the invoked predicate, but no internal calls in the library predicates.

e expand - do in-line expansion of some subgoals, like =/2, is/2 and others. This code can
still be inspected with the debugger but the expanded subgoals look differently than in
the normal debugged code, or their arguments cannot be seen. This pragma overrides the
global setting of the goal_expansion flag.

48

¢ noexpand - inhibit the in-line goal expansion. This pragma overrides the global setting
of the goal_expansion flag.

e skip - set the skip flag of all following predicates to on.
¢ noskip - set the skip flag of all following predicates to off.

e system - set the type flag of all following predicates to built_in. Moreover, all following
predicates will have unspecified source file and source line flags.

By default, the compiler works as if the pragmas debug, expand and noskip were specified.
The pragma is active from its specification in the file until the file end or until it is disabled by
another pragma. Recursive compilations or calls to other compiling predicates are not affected
by the pragma. Pragmas which have the same effect as global flags override the global flags if
they specify more optimized code. For instance, the pragma debug has no effect if the global
flag debug_compile is off, but the pragma nodebug overrides the global flag debug_compile
being on.

The pragmas are useful mainly for libraries and other programs that should be always compiled
in a particular mode independently of the global flags setting.

7.10 Writing Efficient Code

The ECL'PS® compiler tries its best, however there are some constructs which can be compiled
more efficiently than others. On the other hand, many Prolog programmers overemphasise the
importance of efficient code and write completely unreadable programs which can be only hardly
maintained and which are only marginally faster than simple, straightforward and readable
programs. The advice is therefore Try the simple and straightforward solution first! The
second rule is to keep this original program even if you try to optimise it. You may find out
that the optimisation was not worth the effort.

To achieve the maximum speed of your programs, you must produce the optimised code with
the flag debug_compile being off, e.g. by calling nodbgcomp/0 or set_flag(debug_compile,
off), or using the pragma nodebug. Setting the flag variable names can also cause slight
performance degradations and it is thus better to have it off, unless variable names have to be
kept. Unlike in the previous releases, the flag coroutine has now no influence on the execution
speed. Some programs spend a lot of time in the garbage collection, collecting the stacks and/or
the dictionary. If the space is known to be deallocated anyway, e.g. on failure, the programs
can be often speeded up considerably by switching the garbage collector off or by increasing
the gc_interval flag. As the global stack expands automatically, this does not cause any stack
overflow, but it may of course exhaust the machine memory.

When the program is running and its speed is still not satisfactory, use the profiling tools. The
profiler can tell you which predicates are the most expensive ones, and the statistics tool tells
you why. A program may spend its time in a predicate because the predicate itself is very time
consuming, or because it was frequently executed. The statistics tool gives you this information.
It can also tell whether the predicate was slow because it has created a choice point or because
there was too much backtracking due to bad indexing.

One of the very important points is the selection of the clause that matches the current call. If
there is only one clause that can potentially match, the compiler is expected to recognise this
and generate code that will directly execute the right clause instead of trying several subsequent

49

clauses until the matching one is found. Unlike most of the current Prolog compilers, the
ECL‘PS® compiler tries to base this selection (indezing) on the most suitable argument of the
predicate®. It is therefore not necessary to reorder the predicate arguments so that the first one
is the crucial argument for indexing. However, the decision is still based only on one argument.
If it is necessary to look at two arguments in order to select the matching clause, e.g. in

pla, a) :- a.
p(b, a) :- b.
pla, b) :- c.
p(d, b) :- 4.
p(b, c) :- e.

and if it is crucial that this procedure is executed as fast as possible, it is necessary to define an
auxiliary procedure which can be indexed on the other argument:

p(X, a) :- pa(X).
p(X, b) :- pb(X).
p(b, c) :- e.

pa(a) :- a. pa(b) :- b.

pb(a) :- c. pb(d) :- d.

The compiler also tries to use for indexing all type-testing information that appears at the
beginning of the clause body:

e Type testing predicates free/1, var/1, meta/1, atom/1, integer/1, real/1, num-
ber/1, string/1, atomic/1, compound/1, nonvar/1 and nonground/1.

e Explicit unification and value testing =/2, ==/2, \ ==/2 and \ =/2.
e Combinations of tests with ,/2, ;/2, not/1, — >/2.

e Arithmetic testing predicates </2, =</2, >/2, >=/2 if one argument is an integer
constant and the other one known to be of the integer type.

e A cut after the type tests.

If the compiler can decide about the clause selection at compile time, the type tests are never
executed and thus they incur no overhead. When the clauses are not disjoint because of the
type tests, either a cut after the test or more tests into the other clauses can be added. For
example, the following procedure will be recognised as deterministic and all tests are optimised
away:

% a procedure without cuts

p(X) :- var(X),

p(X) :- (atom(X); integer(X)), X \= [],
p(X) :- nonvar(X), X = [_|_],

p(X) :- nonvar(X), X = [1,

*The standard approach is to index only on the first argument

50

Another example:

% A procedure with cuts
pX{_.}) 7- 1,

p(X) :- var(X), !,

p(X) :- integer(X),
p(X) :- real(X),
p(HIT]) :-

p(ll) - ...

Integers less than or greater than a constant can also be recognised by the compiler:

p(X) :- integer(X), X < 5,
p(7) - ...

p(9) - ...

p(X) :- integer(X), X >= 15,

If the clause contains tests of several head arguments, only the first one is taken into account

for indexing.
Here are some more hints for efficient coding with ECL'PS®:

Arguments which are repeated in the clause head and in the first regular goal in the body
do not require any data moving and thus they do not cost anything. For example,

pX, Y, 2, T, 0 :-qX, Y, Z, T, U).

is as expensive as
p:-q.

On the other hand, switching arguments requires data moves and so
p(4, B, C) :- q(B, C, A).

is significantly more expensive.

When accessing an argument of a structure whose functor is known, unification is better
than arg/3. Note, however, that for better maintainability the library structures should
be used to define the structures.

Tests are generally rather slow unless they can be compiled away (see indezing).

When processing all arguments of a structure, using =../2 and list predicates is always
faster, more readable and easier analyzable by automated tools than using functor/3 and
arg/3 loops.

Similarly, when adding one new element to a structure, using =../2 and append/3 is
faster than functor/arg.

Waking is less expensive than metacalling and more expensive than direct calling. Meta-
calls, although generally slow, are still a lot faster than in some other Prolog systems.

51

e Sorting using sort/2 is very efficient and it does not use much space. Using setof/3,
findall/3 etc. is also efficient enough to be used every time a list of all solutions is
needed.

¢ using not not Goal is optimised in the compiler to use only one choice point.
e —=/2, when expanded by the compiler, is faster than ==/2 or =:=/2.
o call_explicit/2 is optimised away by the compiler if both argument are known.

e Using several clauses is much more efficient than using a disjunction if the clause heads
contain nonvariables which can be used for indexing. If no indexing can be made anyway,
using a disjunction is slightly faster.

e Conditionals with — >; are compiled more efficiently if the condition is a simple built-in
test. However, using several clauses can be faster if the compiler optimises the test away.

7.11 Abstract Code Listing

The built-in predicate als/1 lists the abstract code of the given predicate and it can thus be
used by experts to check if the predicate was compiled as expected.

52

Chapter 8

Parallel Execution

ECL‘PS® implements Or-Parallelism. This means that (on parallel hardware) the alterna-
tives of non-deterministic choices can be explored in parallel rather than through sequential
backtracking.

Note that this feature is currently not actively supported!

8.1 Using the Parallel System

A parallel ECL‘PS® session consists of a number of processes that jointly execute your program
in parallel. They are called workers. On a multi-processor machine, the number of workers
should match the number of physical processors available on the machine. When there are more
workers than processors, then several workers must share a processor which is slower than having
just one worker per processor. When there are more processors than workers the power of the
machine cannot be fully exploited since some processors may be left idle. Note that ECL‘PS®
allows you to add and remove workers during program execution.

A parallel session is started as follows:

% peclipse
ECRC Common Logic Programming System [sepia opium megalog parallel]
Version 3.5.0, Copyright ECRC GmbH, Wed Nov 31 10:13 1994

[eclipse 1]:
Parallel ECL'PS® takes the following additional command line options:

—w <number of workers> The initial number of workers. The default is 1. The space be-
tween w and the number is optional.

—wmi This option pops up an interactive worker manager window which allows you to dynam-
ically control worker configuration during the session.

—wv Be verbose while starting up the workers.

—wx <worker executable> Use the specified sequential eclipse for the workers rather than
the default one.

Apart from that, parallel ECL‘PS® behaves much like the sequential version, in particular, all
sequential command line options apply.

53

8.2 Parallel Programming Constructs

8.2.1 Parallel Annotation

The basic language construct for parallelising a program is the parallel/1 annotation, for ex-
ample

:- parallel colour/1.
colour(red) .
colour(green) .
colour(blue).

Without the annotation, the system would backtrack sequentially through the alternative solu-
tions of colour(X), and X would successively take the values red, green and blue. When using the
parallel annotation, all three solutions are (potentially) explored in parallel by different workers,
so one worker continues with X=blue, another with X=red and a third one with X=green. Note
that for a parallel predicate

e the order of the clauses is not relevant
e there is no programmer control over which worker takes which alternative'.

Note that not only is colour/1 executed in parallel, but also the resulting alternative continua-
tions, e.g. if a program contains the sequence

., colour(X), work(X),

then the goals work(red), work(blue) and work(green) will also be executed in parallel, as a
consequence of the nondeterminism in colour/1.

For many applications, it is enough to add parallel annotations to a small number of central
points in a program in order to achieve parallel speedup.

8.2.2 Built-In

A parallel primitive that is useful to build upon is fork/2. It behaves as if defined by

:- parallel fork/2.
fork(N, N).

fork(N, 2).
fork(N, 1).

i.e. a call of fork (100, X) generates the numbers between 1 and 100 in parallel, where the limit
does not have to be fixed at compile time.

8.2.3 Utility Libraries

The library par_util (see appendix A.9) contains some predicates that are frequently used
and are built on top of the above mentioned primitives. par_member/2, par_delete/3,

1this is controlled by an automatic scheduler.

54

par_between/3, par_maplist/3 etc. are parallel versions of the corresponding sequential pred-
icates. It also contains & /2 which implements a restricted form of AND-parallelism. The finite
domain solver library library(fd) provides par_indomain/1, a parallel version of indomain/1.
The finite set solver library(conjunto) provides par_refine/1, a parallel version of refine/1.
The library elipsys provides compatibility with the ElipSys system and uses the par util
library.

8.3 Controlling and Analysing the Execution

8.3.1 Which worker executes this code?

Although the parallelism is controlled automatically, during program development it is useful to
find out how the system actually behaves. In the following example we use get_flag/2 to find
out which worker finds which solution:

[eclipse 1]: fork(10,X), get_flag(worker,W).

X =6
W=4 More? (;)
X=17
W=2 More? (;)

The solution X=6 has been found on worker 4 and X=7 on worker 2. In a parallel session, the
number identifying the worker is greater or equal to 1, in a sequential session it is 0.

8.3.2 Measuring Runtimes

Measuring runtimes of parallel executions is especially tricky, since the processes involved have
their own local timers, e.g. for measuring cputime. The simplest way is to measure true elapsed
time instead of cputimes, and use an otherwise unloaded machine. The primitive that should
be used to read the clock is

statistics(session_time, T)

where T is the number of seconds elapsed since the start of the parallel session.

8.3.3 Amount of Parallelism

On hardware that provides a high-precision low-overhead timer, the predicate par_statistics/0
from the par_util library can be used. It prints a compact summary information about where
the different workers spent their time, together with some other data about the parallel execu-
tion. For example:

[eclipse 7]: par_statistics_reset, queens(10), par_statistics.

Wrkr Jobs Prun Published Copy Copied Idling Working Copying Scheduling
ID # # cpts alts # bytes ms ms ms ms
1 24 0 34 34 11 30208 50 7591 10 157
24 0 16 16 15 29088 147 7638 8 18

55

3 35 0 38 38 18 39656 134 7604 38 35
4 30 0 25 25 13 36668 192 7519 34 24

8.3.4 Adding and Removing Workers

Workers in a parallel ECL'PS® session can be in one of two states: active (awake) or asleep. As
one would expect, only active workers take part in any computation. A newly created worker’s
default state is active. New workers can be added and the number of active workers can be
altered using the worker manager interface. These actions are performed asynchronously, thus
the configuration can be altered even during parallel execution: a newly added worker will join
the computation and when a worker is sent to sleep, it will stop working at an appropriate
point of the execution. Note that the worker manager interface be started either using the -wmi
command-line option or via the wm_set /2 builtin.

Worker management is also possible under program control. Use the builtins wm_get/2 to
inquire about, and wm_set /2 to affect the worker configuration. For example, to enquire about
the number of workers currently active:

[eclipse 1]: wm_get(workers(Host), Awake+Asleep).

Host = "turing"
Awake = 2
Asleep =1

yes.

This means that the there are a total of 3 workers on the machine “turing”, out of which 2 are
active. In the above example, if one wanted to have only one worker active:

[eclipse 2]: wm_set(workers(turing),1), wm_get(workers(turing),Status).

Status =1 + 2
yes.

8.4 Parallelism and Side Effects

In the current version, all side effect builtins like assert, record, setval and the I/O predicates
work on resources that are shared between the workers and are accessed in a mutually exclusive
way. For example, when two workers write onto a stream at the same time, the access will be
sequentialised such that one of them writes first, and then the other. The order is unspecified. It
is however, expected that the internal database builtins (such as assert and retract) will not be
fully supported in the next major release (which will allow the system to execute on distributed
memory platforms).

The current version also provides an explicit mutual exclusion primitive mutex/2. It can be
used to make a sequence of several goals atomic, ie. to make sure that the execution of a piece
of code is not interleaved with the execution of similarly protected code on other workers. For
example, the following code will make sure that every list is printed in one chunk, even when
several workers execute different instances of atomic_write_list/1 in parallel:

:- mutex_init(my_lock).

56

atomic_write_list(List) :-

mutex(my_lock, write_list(List)).
write_list([]) :- nl.
write_list([X|Xs]) :- writeln(X), write_list(Xs).

8.5 Parallel Cuts

The semantics of cut follows the philosophy that the order of clauses in a parallel predicate is
not relevant. E.g. a predicate like

:- parallel p/O0.
p :- writeln(a).
p :- !, writeln(b).
p :- !, writeln(c).

may print ’a’ and ’b’, ’a’ and ’c’, only b’ or only ’c¢’. It depends on which cut is executed first,
and whether it is executed before or after ’a’ has been printed.

8.6 Restrictions

Some features of sequential ECL!PS® are not fully supported or make no sense in the parallel
version. These include:

e The Debugger: The prolog debugger cannot be used to trace parallel sessions i.e. programs
in which more than one worker is active.

e lile queries: When a compiled file contains queries (i.e. lines of the form :- <goal>.
or 7- <goal>., then these goals will not be executed in parallel. To start a parallel
computation, either start it from the toplevel, or use the -e command line option.

e Dynamic predicates can currently not be declared parallel.

¢ Dynamic loading: This feature is not currently available in the parallel version, but should
be available in subsequent releases.

e Unix process related primitives: Currently most primitives such as socket, accept, listen,
exec, wait which depend on private data structures created by the operating system are
not fully supported. For example, it is currently up to the user to guarantee that some
operations on a socket (such as accept/3) are only performed on the worker on which
the socket in question was created. In future releases most of these restrictions will be
removed, however, it is likely that some complex builtins (e.g. select/3) will not be
completely supported.

e Timing statistics: The values returned by the statistics(times,_) builtin do not make
sense in a parallel session, since they only refer to timers local to the worker on which
the call is executed. As noted earlier, elapsed time for a parallel session should be mea-
sured using the statistics(session time,Time) builtin. It is envisaged that the the
wm_get /2 builtin will be expanded in the future in order to allow the user to query total
cpu usage of all active workers.

57

8.7 Troubleshooting

8.7.1 No Space

When the system complains about lack of swap space, then it is likely that there is no space in
your /tmp filesystem. In this case set the environment variable ECLIPSETMP to a directory
that has enough space to hold the temporary files that the system uses at runtime. It is
recommended to use a different directory for different hosts, e.g.

setenv ECLIPSETMP ~/tmp/‘hostname

8.7.2 Process structure

A parallel ECL'PS® session consists of

e The worker manager process peclipse. This is usually the parent process of the whole
parallel session. Its process id is used to identify a parallel session. All temporary files
belonging to a parallel session contain this process id in their name.

o A number of worker processes eclipse.exec. They are normal sequential ECL'PS® pro-
cesses that do the actual work in parallel.

¢ A name server process nsrv. The name server is a support process and is not really part
of a parallel ECL'PS® session. A name server process is launched when a parallel session
is started on a machine for the first time. It stays in existence even after the session is
finished and is reused by concurrent or future parallel sessions on the same machine. The
name server puts some data files into the SECLIPSETMP (or /tmp) directory. Their
names start with nsrv.

8.7.3 Crash recovery

After a machine crash or after an abnormal termination of a parallel session, it may be necessary
to kill some processes and to remove files in the temporary directory (if ECLIPSETMP is not
set, this defaults to /tmp):

1. When you still have a worker manager window, try exiting using the EXIT button. If
that does not help:

2. Kill the peclipse process and then any remaining workers (eclipse.exec). This will most
likely require a hard kill (-9).

3. Remove temporary files $ECLIPSETMP /session_id.*.map where session_id is the process
number of the peclipse process.

If it is not possible to restart a parallel session after this cleanup, then the name server may be
corrupted as well. In this case:

1. Kill the nsrv process. Use kill -9 only if the process does not go away after a soft kill.

2. Remove $ECLIPSETMP /nsrv* if these files still exist.

58

Chapter 9

Module System

The ECL'PS® module system has been designed to meet the following criteria:
1. Be a structuring tool allowing to develop and maintain large applications.
2. Awoid name clashes by having a separate name space for each module.

3. Support privacy by allowing restrictions on the access to certain information of a module.

4. Be incremental by giving as much freedom as possible in the order in which the predicate
are defined and re-defined and the visibility declared and changed and by allowing the
changes to be done dynamically.

5. Be transparent to non-modular applications. A Prolog program written in a non-modular
system should run without changes when put into a unique module.

These requirements make it clear that the main function of the module system must be to
regulate the access to certain (or all) Prolog items. For instance, requirement 2 states that the
module system must be able to recognise that there are two items with the same name, but used
independently, and provide the means to restrict their accessibility so that no conflict arises.
The module system is therefore concerned with the access to certain items. The main task of
the ECL!PS® module system is to control the access in such a way that the above requirements

can be fulfilled.

9.1 Terminology

Modular Item: a modular item is a Prolog item that is affected by the module system. In
ECL*PS® the different types of modular items are e.g. predicate, operator, record, array
and global variable.

Visibility: the visibility of a modular item specifies under what conditions the item is visible
from a given module. The visibility of a modular item is defined by Prolog predicates
called wisibility declarations.

Module Interface: the module interface is the set of declarations and definitions that defines
the connection of a module to the others. Parts of the interface can be dynamically

modified.

59

Module Body: the module body is the set of modular items that are defined in a module.

Definition Module: the definition module of a modular item is the module where this item is
defined. The definition module is a static notion.

Caller Module: the caller module of a goal is the definition module of the predicate that calls
that goal. The caller module is a dynamic notion.

9.2 Basic Properties

The module system of ECL'PS® has the following properties:

e The module system is flat, no module is part of another module and module names must
be unique.

e The modular items are predicates, operators, macros, records, arrays, global variables, syn-
tax classes, syntax option flags and metaterm attributes. In particular, the syntax recog-
nised by the parser is completely module-dependent and can be independently changed in
different modules. Only predicates can be exported and imported.

e The module system is procedure based, that is the visibility of the procedure is module
dependent, but the functors and the syntax are global. However it is possible to have local
properties for functors (i.e. operators, records, arrays and global variables may be defined
locally).

e The module is a completely dynamic object, its body part and the visibility of its pred-
icates can be changed during the session or execution of a goal. The module interface is
syntactically separated from the module body and it can be modified only by recompiling
the whole module.

e In any particular module, at most one among all items with the same name and type is
visible.

However items with the same name but different types are accessed independently. This
property is not a necessary conclusion of our requirements, it is more a question of philos-
ophy: we do believe that e.g. the procedure p/0 and the term recorded under the key p/0
do not necessarily have to have the same visibility.

e The module system affects the runtime system and the compiler, but has no effect on the
underlying abstract machine. This means that the pure Prolog execution does not suffer
from an overhead when modules are extensively used.

o ECL‘PS® module system can be described as a set of access rules that defines what modular
item is visible from what module (according to the current module interfaces) when a goal
is executed.

Those rules consist in finding a definition module for a modular item that occurs in a goal
called from a given caller module.

The access rules of ECL{PS® are based on the caller module.

60

9.3 Modules and the Top Level Loop

Everything that is typed to the top level prompt happens in a module called the top level module.
This module name is displayed in the prompt and the default is eclipse. Note that this module
is in no way special. It is just the default for typing in queries, and it is initially empty. When
a predicate is compiled from the toplevel, then it is defined in the top level module, e.g.:

[eclipse 1]: [user].
p(hello).
user compiled traceable 40 bytes in 0.00 seconds

yes.
[eclipse 2]: get_flag(p/1, definition_module, M).

M = eclipse
yes.

The call to get_flag/3 tells us that p/1 is defined in module eclipse. The top level module
can be changed by using module/1:

[eclipse 3]: module(mymodule).

warning: creating a new module in module(mymodule)
[mymodule 4]: p(X).

calling an undefined procedure p(X) in module mymodule

Since mymodule did not exist previously, it is automatically created. The predicate p/1 that was
defined in module eclipse is not visible in mymodule, the attempt to call it results in an error
message.

Similarly, when a file is compiled from the toplevel, and the file does not contain any module
directives, then its content is compiled into the top level module.

9.4 Modules and Source Files

When a source file contains no module directives, it is compiled into the module from which the
compilation was invoked. This makes it possible to write small programs without caring about
modules. However, serious applications should be structured into modules.

A proper module definition consists of

module interface starting with a module_interface/1 directive
module body starting with a begin_module/1 directive

Both parts of the module can be in a single file where the interface part is followed by the body
part. Alternatively, the interface can be in one file and the body can be spread over one or more
additional files, each beginning with a begin_module/1 directive. In this case, the interface
file has to be compiled first.

The directive module_interface/1 will first erase the module if it already exists, i.e. remove
all items and interfaces contained in the module and then create a new empty module. This
is necessary to maintain the integrity of the data and perform a complete recompilation of the

61

module. The module interface contains the declarations and definitions of all modular items
which this module shares with other modules that use it. As long as no further module directive
occurs, all clauses and queries of the file have this module as definition module. The effect
of module_interface/1 ends at the next module_interface/1 or begin_module/1 directive
or a the end of the file. If the file contains queries to compile another file containing module
directives, this is done and then the module of the current file is resumed.

module/1 in a file is an obsolete shorthand for a module with an empty interface (and it may
not be available in future releases).

9.4.1 The Module Interface

The module interface is a set of goals and procedure definitions which are made available to
other modules. Moreover, the module interface may contain the definition of the syntax which
is needed to read its body part. The notion of the module interface serves several purposes:

e It specifies which items are to be shared with other modules.
e It makes possible to share modular items that cannot be directly exported and imported.

e It specifies the part of the module, which has to be compiled and executed even if the
module is only processed by source-level tools. For instance, if the module body contains
terms with an associated macro, the corresponding macro transformation predicate has to
be compiled even if the module body is only being read in.

If the module is used by another module via the predicate use_module/1, all queries that
appear in the module interface part will be executed in the other module, except for export/1
and global/1 predicates. Therefore, declarations of local operators, macros, records etc. will
be executed in the caller module and these items will become available there. The macro
transformation predicates must be exported to be visible in the using module. The export/1
queries in the module interface are conceptually replaced by import_from/2 and thus the
exported predicates are imported in the caller module. Predicate definitions which appear in
the module interface will not be repeated when the module is used; if they have to be accessible
in another module, they should be exported instead.

Here is an sample module that can serve as a guideline of which declarations to place where:

:- module_interface(mod).

% syntax directives for this and for importing modules
1= op(300, xfx, >>>).

:- set_chtab(0’$, lower_case).

:- define_macro((|)/2, trans_bar/2, [1).

% libraries to use here and in the importing modules
:- use_module(library(cio)).

% predicates to import here and in importing modules
1= import current_predicate_body/2 from sepia_kernel

% predicates defined globally by this module

62

:- global g/1.

% predicates exported from this module
:- export p/1, t/1, e/1.
:- export trans_bar/2. % needed for the macro above

% type declarations for exported tools and externals
1= tool(t/1).
:- external(e/1).

% definition of macro transformation predicates
trans_bar(no_macro_expansion(’ |’ (X,Y)), (X;Y)).

1= begin_module(mod) . % the module body

% syntax directives for this module only
:- op(300, xfx, <<<).

% predicates to import only here
:- import setof_body/4 from sepia_kernel.

% special type predicate definitions
1= tool(t/1, t_body/2).
:- external(e/1, my_c_function).

% normal predicate definitions
g(hello).
p(world).

When calling use_module(mod), all queries in the interface will be executed and the macro
transformation correctly defined. The module interface may also contains goals not directly
related to the definition module, like e.g. the import from in the above example.

The module body can also contain declaration of local modular items, however they remain local
in the definition module. The definition of the module body starts with the begin_module/1 di-
rective and it can be used only if the module already exists, either created by create_module/1,
compile/2 or by defining the module interface. There may be several begin_module/1 di-
rectives for the same module. When they are compiled, their contents is added to the module

body.

9.5 Creating and Erasing Modules at Runtime

A module can also be created explicitly by a running program with create_module/1 and
erased with erase_module/1. The latter should be used with care, erasing a module while a
predicate defined in that module is being executed can provoke unpredictable results.

63

9.6 Visibility of Predicates

In ECL'PS®, a predicate can have different levels of visibility. In a given module, a predicate
has one and only one of the following visibilities:

local: a procedure declared as local is only visible from its definition module.

export: a procedure declared as exported is visible from its definition module and from all
modules that import it.

import: a procedure declared as imported is visible from the module it is imported to. An
imported procedure is always equal to the exported procedure it imports (if any).

global: a procedure declared as global is visible from all modules where no local, exported
or imported procedure with the same name is visible. There can be only one global
procedure of a given name at any time. Global procedures should be used with care, the
normal module interface mechanism is to be preferred.

A procedure whose visibility is not declared is local by default. Therefore, if a predicate shall
be visible from outside of its definition module, it must be explicitly declared exported.
Moreover, a procedure may be visible but not defined since it can be declared before it is
compiled or asserted.

9.6.1 Access rule for predicates as goal name

Considering the goal Pred(A1, ... AN)invoked from module Caller_module:

If there is a local, exported, imported or global predicate named Pred/N defined in Caller_module,
this predicate is the visible one. Else if there is a global predicate declared in any module, this
one is visible, else there is no visible predicate Pred/N.

It is also possible to call a non-visible predicate, provided it is global or exported from its
definition module. This is done using the :/2 primitive, e.g.

def_module:p(X,Y)

9.6.2 Access rules for predicates as arguments of built-ins

Not all built-ins access their predicate arguments with the same access rule. Some built-ins
access the predicate wvisible from the caller module, others access the predicate defined in the
caller module. E.g. spy/1 can be used to set spy points on imported predicates or predicates
defined as global in another module than the caller module, whereas abolish/1 can only be
used to abolish predicates defined in the caller module or import links (only the link, not the
corresponding exported predicate) declared in the caller module. Most of the time, the rule to
apply can be found intuitively.

Considering the goal Pred(Al, ..., Pred_arg, ..., AN) called from module Caller_module where
Pred_arg specifies a predicate (e.g. like in spy(p/1) or in assert(p(a))). The visibility rule
applied for Pred_arg depends on the predicate Pred/N:

o if Pred/N is one of the following, the accessed predicate is the predicate specified by
Pred_arg and defined (as local, exported or global) in Caller_module.

64

— built-ins that declare and change the visibilities: abolish/1, export/1, global/1,
import_from/2, local/1;

— built-ins that compile or define predicates (those predicates create local procedures
in the caller module): b_external/2, compile/1,2,./2, compile_stream/1, com-
pile_term/1, external/2, lib/1,2, mode/1, tool/2;

— built-ins that compile, access and modify dynamic procedures: assert/1, asserta/1,
clause/1,2, dynamic/1, listing/0,1, retract/1, retract_all/1.

Those predicates will raise errors when used on imported predicates (since imported
predicates are always defined as exported in an other module). The import link must
be cut explicitly with abolish/1.

e if Pred/N is one of the following, the accessed predicate is the predicate specified by
Pred_arg visible from Caller_module.

— built-ins that access predicates flags: get_flag/3, set_flag/3, is_built_in/1, is_dy-
namic/1, is_predicate/1, spy/1, traceable/1, skipped/1, untraceable/1, un-
skipped/1;

— built-ins that declare procedure types: b_external/1, external/1, tool/1;

— built-ins that call their goals arguments: ->/2, ;/2,,/2, </2, <=/2, =/2, >/2,
>=/2, =:=/2, bagof/3, block/3, call/1, coverof/3, fail_if/1, not/1, findall/3,
forall/2, is/2, once/1, phrase/2,3, setof/3;

— other built-ins that access visible predicates: pred/1, current_built_in/1, cur-
rent_predicate/1, set_error_handler/2, set_interrupt_handler/2.

9.6.3 Defining and modifying the visibility

There are 5 visibility declaration predicates:

local PredList declares the predicates in PredList (maybe not yet defined) as local in the caller
module.

export PredList declares the predicates in PredList (maybe not yet defined) as exported in
the caller module.

global PredList declares the predicates in PredList (maybe not yet defined) as global in the
caller module.

import PredList from Module declares the predicates in PredList to be imported predicates
in the caller module. Each of them are linked to their corresponding exported predicates (maybe
not yet) defined in Module.

abolish PredList removes the declaration and the definition of the predicates in Predlist de-
clared or defined in the caller module. As the visibility declaration predicates act on the caller
module only, abolishing an imported predicate does not affect the exported predicate itself but
only the import link.

The predicate visibility may be changed at any time.

With respect to requirement 2, some visibility changes are restricted: import links (created with
import_from/2) must be cut down explicitly (with abolish/1) before defining a new visibility.
Vice-versa a local, exported or global declaration or definition must be abolished before an
import link is created with import_from/2.

Warnings are raised when redundant declarations occur (e.g. declaring twice the same predicate
as local).

65

9.6.4 Tools

There are predicates in a modular Prolog system that need to work in the space of other modules
rather than in the module where they are defined. The most common case is when a predicate
is a meta-predicate, i.e. when a predicate has a goal as argument. Other cases are predicates
that have other module-dependent arguments (e.g. a record key) or I/O predicates that need to
be executed in a certain module context in order to obey the syntax of this module. We call
these predicates tool predicates.

Consider the case of a predicate pred/! which has a goal argument: If the argument goal is
called from that predicate, it will be executed in the module space of the definition module of
the predicate pred/! and not in the one of the caller module.

pred(Goal) :-

call(Goal), % Goal is called from the definition module of pred/1

When the goal argument of a goal must be used in the module space of the caller of that
predicate, we need an additional module argument.

pred(Goal, CallerModule) :-

call(Goal)@CallerModule, % Goal is called from CallerModule

To prevent the user having to supply the caller module argument to such predicates (which is
likely to cause problem when the predicate that must supply the module argument is recompiled
in another module) and to fulfill requirement 3 concerning the privacy (refer to section 9.9), the
concept of tool interface has been developed.

The tool interface is a predicate (defined with tool/2) that is connected to a tool body (whose
arity is one more than the arity of its tool interface). Its functionality is to automatically supply
the caller module of the interface to the last argument of the body procedure and to call that
body procedure. Let us assume we have compiled the following tool in the module eclipse

:- global current_def/1.
:- tool(current_def/1, current_def/2).

current_def (Pred, Module) :-
% get the predicates visible from Module
current_predicate(Pred)@Module,
h get the flag of Pred visible from Module
get_flag(Pred, definition_module, Module)@Module.

Using the debugger we can easily see how the tool interface supplies the caller module to its tool

body.

[eclipse 2]: trace(current_def(X)).

Start debugging - creep mode
(1) 0 CALL current_def(X) (dbg)?- creep h type c
(2) 1 CALL current_def(X, eclipse) (dbg)?- no debug % type n

66

B
[}

current_def / 2 More? (;)

X

current_def / 1 More? (;)
no (more) solution.

And from a new empty module we have:

[eclipse 3]: module(new_module).
[new_module] : assert(p), trace(current_def(X)).
Start debugging - creep mode
(1) 0 CALL current_def(X) (dbg)?- creep
(2) 1 CALL current_def(X, new_module) (dbg)?- no debug

X=p/0 More? (;)
no (more) solution.

When a call to a tool interface is compiled, an additional module argument is supplied by the
compiler. Therefore, the compiler must be informed that a predicate is a tool interface before
any call is compiled to it. An error is raised when this rule is not respected.

However, it is sometimes not convenient to have the tool definition before compiling any call
to it (e.g. when a tool is actually defined in a library that is not yet compiled). This can be
solved by using the declaration predicate tool/1. This predicate only informs the system that
the predicate specified in its argument is (or will be) a tool interface.

Note that when changing the visibility of a predicate, tools may become visible in modules that
already compiled a call to that predicate but not as a tool call. This is for example the case when
abolishing a local (non tool) predicate making therefore a global tool visible or when exporting
a tool after other modules have imported the predicate. Such visibility changes will raise errors
(“inconsistent procedure redefinition”).

9.6.5 System Tools

Many of the system built-in predicates are in fact tools, e.g. read/1, write/1, record/2,
compile/1, etc. All predicates which handle modular items must be tools so that they know
from which module they have been called. In case that the built-in predicate has to be executed
in a different module (this is very often the case when writing user tool predicates), the @/2
construct must be used. It simulates a call of the tool predicate from within a different module
context:

current_predicate(P) @ SomeModule

9.7 Libraries

A library is usually implemented in a module so that its implementation details are hidden to
the outside. Its access is done through its module interface.

67

The library is made available using use_module(library(...)) or lib/1 which will search for
the file (specified as argument) in the library path (see get_flag/2), compile it and make its
interface available in the caller module.

Name clashes are reported when two predicates of the same name exist in two different imported
libraries. This event is a warning; the predicate defined in the last imported library is imported.
It is possible to prevent the name clash by explicitly importing the predicate that causes the name
clash with import_from/2 and then import the library, or to cancel the link using abolish/1.
A useful predicate when writing a library that must redefine an existing predicate using its
previous definition is :/2. This predicate calls the goal in its first argument like with call/1
except that the predicate called (it must be global or exported) is the one defined in the module
specified in the second argument. For example, to redefine the built-in at/2 switching the 2
arguments we can do:

at(Pointer, Stream) :-
sepia_kernel:at(Stream, Pointer).

Note that the caller module of the goal argument will be the same as the caller module of :/2.
The purpose of :/2. is to specify another predicate than the visible one whereas the purpose of
@/2 is to call the goal in its first argument with the second argument as caller module.

9.8 Other Modular Items

Operators, records, macros, arrays and global variables have only two visibility levels: global
(visible from all modules that do not define a local one) or local (only visible from its definition
module).

Operators can be defined globally or locally using global/1 or local/1 respectively, e.g.

:= local op(500, xfy, before).
:- global op(500, xfy, before).
:- op(500, xfy, before). % defaults to local

A local operator only affects reading and writing in the module where it is defined. A local
operator always hides a global one. Moreover, a local operator of precedence 0 can be used to
hide a global operator definition of the same associativity class. It can be removed (and the
global one made visible again) with abolish_op/2.

Records are global by default. A local record is declared with

:- local record(keyl).

All predicates that access records work on the visible record. A local record can be abolished
(and therefore a global be made visible if there is one) with abolish_record/1. Please note
that erase_all/1 is different to abolish_record /1 since it only removes all the values recorded
under a key but does not remove the local declaration of that record (i.e. an existing global
record is not made visible).

Non-logical variables and arrays are global or local depending on whether they are defined using

local/1 like

:- local variable(name).
:- local array(arr(3,4)).

68

or global/1 like

:- global variable(name).
:- global array(arr(3,4)).

All built-ins that access arrays or global variables access the visible one. Any array can be
removed using erase_array/1.

Macros are local by default, they can be made global if the flag global is specified in the flag
list.

Character classes and syntax options are only local, they cannot be made global. If two or
modules have to share them, they have to be defined in a module interface.

Metaterm attributes are accessed by a name which is usually the name of a module. Attribute
names are global, they cannot be made local.

9.9 Privacy

In an incremental Prolog system like ECL!PS® the privacy requirement can sometimes be ob-
structive with regard to program development. The internals of modules which are developed
incrementally should be accessible from outside, e.g. for debugging purposes. Therefore, the
module system of ECLPS® provides therefore a way of switching on the privacy of a module,
called locking a module. Once an application or a part of it is stable, the respective modules
will be locked and gain complete privacy.

Once a module has been locked (with lock/1,2), it is not possible to access the information
contained in it from the outside of the locked module. Its contents is hidden to the outside.
However, it can be normally used through its interface. Only modular items which are global
or exported can be accessed.

Moreover, if a tool (no matter whether it belongs to a locked module or not) is not called
through its interface, it will not be possible to execute any predicate in the module space of the
module passed as argument if that module is locked (an error will be raised in this case). This
is necessary to prevent calling a tool body with a locked module M as argument from another
module than the module M itself, otherwise privacy would not be respected. However, when
the tool is called through its interface, the system certifies the “authenticity” of the module
argument and the tool body will be able to use the module argument safely.

Note also that predicates like listing /0 work only on the predicates defined in the caller module
(not on the visible ones). It means that the tool body of listing/0 must be called to list proce-
dure defined in other modules. If that module is locked, the access will be refused. Therefore,
the only way to list procedures defined in a locked module is to call the listing predicate (through
its interface procedure) from that module.

ECL'PS® provides two locking mechanisms: one which is not reversible (lock/1), the other one
which allows the module to be unlocked providing a given key (lock/2 and unlock/2).

9.10 Dynamic Procedures

Most built-ins that access dynamic predicates work on the predicates defined in the caller module.
Therefore, if the source module of a dynamic procedure is locked, but the procedure has to be
modified from outside, some interface must be provided by the locked module. For instance :

69

:- module_interface(mod).
:- global assert_in_mod/1.
:- begin_module(mod) .
assert_in_mod(X) :-
assert(X). % mod is the caller module

Then, calling assert_in mod(P) from any module will assert P in mod.

9.11 Event handlers

The caller module of event handlers is the module from where the handler has been set (using
set_error_handler/2 or set_interrupt_handler/2). This allows to set event handlers that
are local to a module and still be able to call it no matter from what module the event occurred.
The caller module of the culprit of an error can however be obtained in the third argument of
the error handler (if it is provided).

9.12 Debugger

If it is possible to trace the execution of a predicate in a locked module with the debugger,
privacy might not be respected. Therefore, the predicates in a locked module must be set to
skipped if they have to be hidden (they are not skipped by default). It is not allowed to reset
the skipped flag of procedures defined in a locked module.

Note also that the debugger provides an option (m) to output the definition and caller module
of a goal in the trace line.

70

Chapter 10

Arithmetic

10.1 Built-Ins to Evaluate Arithmetic Expressions

Unlike other languages, Prolog usually interprets an arithmetic expression like 3 + 4 as a
compound term with functor 4+ and two arguments. Therefore a query like 3 + 4 = 7 fails
because a compound term does not unify with a number. The evaluation of an arithmetic
expression has to be explicitly requested by using one of the built-ins described below.

The basic predicate for evaluating an arithmetic expression is is/2. Apart from that only the 6
arithmetic comparison predicates evaluate arithmetic expressions automatically.

Result is Expression Expressionis a valid arithmetic expression and Result is an uninstan-
tiated variable or a number. The system evaluates Expression which yields a numeric
result. This result is then unified with Result. An error occurs if Expression is not a
valid arithmetic expression or if the evaluated value and Result are of different types.

Exprl < Expr2 succeeds if (after evaluation and type coercion) Exprl is less than Expr2.

Exprl >= Expr2 succeeds if (after evaluation and type coercion) Exprl is greater or equal to
FExpr2.

Exprl > Expr2 succeeds if (after evaluation and type coercion) Exprl is greater than Expr2.

Exprl =< Expr2 succeeds if (after evaluation and type coercion) Exprl is less or equal to
Expr2.

Exprl =:= Expr2 succeeds if (after evaluation and type coercion) Exprl is equal to Expr2.

succeeds if (after evaluation and type coercion) Exprl is not equal to Expr2.

10.2 Numeric Types and Type Conversions
ECL'PS distinguishes three types of numbers: integers, rationals and floats.

10.2.1 Integers

The magnitude of integers is only limited by your available memory. However, integers that fit
into the word size of your computer are represented more efficiently (this distinction is invisible
to the user). Integers are written in decimal notation or in base notation, e.g.:

71

Exprl =\ = Expr2 0 3 -5 1024 16°f3ae 0’a 15511210043330985984000000

10.2.2 Rationals

Rational numbers implement the corresponding mathematical domain, i.e. ratios of two integers
(numerator and denominator). ECL'PS® represents rationals in a canonical form where the
greatest common divisor of numerator and denominator is 1 and the denominator is positive.
Rational constants are written as numerator and denominator separated by an underscore’, e.g.

1.3 -30517578125_32768 0_1

Rational arithmetic is arbitrarily precise. When the global flag prefer rationals is set, the
system uses rational arithmetic wherever possible. In particular, dividing two integers then
yields a precise rational rather than a float result.

10.2.3 Floating Point Numbers

Floating point numbers conceptually correspond to the mathematical domain of real numbers,
but are not precisely represented. Floats are written with decimal point and/or an exponent,

e.g.
0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf

ECL!PS® can handle both single and double precision floats. Which precision is used depends
on the setting of the global flag float_precision®. The default is double precision.

10.2.4 Type Conversions

Note that numbers of different types never unify, e.g. 3, 3_1 and 3.0 are all different. Use the
arithmetic comparison predicates when you want to compare numeric values. When numbers
of different types occur as arguments of an arithmetic operation or comparison, the types are
first made equal by converting to the more general of the two types, i.e. the rightmost one in
the sequence

integer — rational — single float — double float

The operation or comparison is then carried out with this type and the result is of this type as
well, unless otherwise specified. Beware of the potential loss of precision in the rational — float
conversion! Note that the system never does automatic conversions in the opposite direction.
Such conversion must be programmed explicitly using the fix, rational and float functions.

10.3 Arithmetic Functions

10.3.1 Predefined Arithmetic Functions

The following predefined arithmetic functions are available. E, E1 and E2 stand for arbitrary
arithmetic expressions.

"When the library rationals is loaded, rationals are printed and accepted in the more familiar form of e.g.
1/3. For compatibility reasons, this syntax is not the default one.

2Since single and double floats do not unify, the float_precisionflag should not be switched during execution
to avoid confusing behaviour.

72

Function Description Argument Types Result Type
+ E unary plus number number
-E unary minus number number
abs(E) absolute value number number
sgn(E) sign value number integer
floor(E) round down to integral value number number
round(E) round to nearest integral value number number
El 4+ E2 addition number X number number
E1 - E2 subtraction number X number number
E1 * E2 multiplication number X number number
El1/ E2 division number X number see below
E1// E2 integer division integer x integer integer
E1 mod E2 modulus operation integer X integer integer
E1 " E2 power operation number X number number
min(E1,E2) minimum of 2 values number X number number
max(E1,E2) maximum of 2 values number X number number
\ E bitwise complement integer integer
E1 /\ E2 bitwise conjunction integer X integer integer
E1\/ E2 bitwise disjunction integer X integer integer
xor(E1,E2) bitwise exclusive disjunction integer X integer integer
El >> E2 shift E1 right by E2 bits integer X integer integer
El << E2 shift k1 left by E2 bits integer X integer integer
sin(E) trigonometric function number float
cos(E) trigonometric function number float
tan(E) trigonometric function number float
asin(E) trigonometric function number float
acos(E) trigonometric function number float
atan(E) trigonometric function number float
exp(E) exponential function e” number float
In(E) natural logarithm number float
sqrt(E) square Toot number float

pi the constant pi = 3.1415926... — float

e the constant e = 2.7182818... — float
fix(E) convert to integer (truncate) number integer
float(E) convert to float number float
rational(E) convert to rational number rational
numerator(E) extract numerator of a rational integer or rational integer
denominator(E) extract denominator of a rational integer or rational integer
sum(L) sum up list elements list number
eval(E) evaluate runtime expression term number

Argument types other than specified yield a type error. As an argument type, number stands for
integer, rational or float with the type conversions as specified above. As a result type, number
stands for the more general of the arqgument types. float stands for single or double precision
The division operator / yields

float, depending on the value of the float precision flag.

either a rational or a float result, depending on the value of the global flag prefer rationals.

The same is true for the result of * if an integer is raised to a negative integral power.

73

The relation between integer division // and modulus operation mod is as follows:

X=:= Xmod Y) + X //Y) *xY

10.3.2 Evaluation Mechanism

An arithmetic expression is a Prolog term that is made up of variables, numbers, atoms and
compound terms, e.g.

3% 1.5 +Y / sqrt(pi)

Compound terms are evaluated by first evaluating their arguments and then calling the cor-
responding evaluation predicate. The evaluation predicate associated with a compound term
func(a_1,..,a_n) is the predicate func/(n+1). It receives a_l,..,amn as its first n arguments
and returns a numeric result as its last argument. This result is then used in the arithmetic
computation. For instance, the expression above would be evaluated by the goal sequence

*(3,1.5,T1), sqrt(3.14159,T2), /(Y,T2,T3), +(T1,T3,T4)

where T are auxiliary variables created by the system to hold intermediate results.
Although this evaluation mechanism is usually transparent to the user, it becomes visible when
errors occur, when subgoals are delayed, or when inline-expanded code is traced.

10.3.3 User Defined Arithmetic Functions

This evaluation mechanism outlined above is not restricted to the predefined arithmetic functions
shown in the table. In fact it works for all atoms and compound terms. It is therefore possible
to define a new arithmetic operation by just defining an evaluating predicate:

[eclipse 1]: [user].

1= op(200, yf, 1). % let’s have some syntaxtic sugar
'(N, F) :- fac(N, 1, F).

fac(0, FO, F) :- !, F=FO.

fac(N, FO, F) :- N1 is N-1, F1 is FOxN, fac(N1, F1, F).

user compiled traceable 504 bytes in 0.00 seconds
yes.

[eclipse 2]: X is 23!. % calls !'/2

X = 25852016738884976640000
yes.

Note that this mechanism is not only useful for user-defined predicates, but can also be used to
call ECL*PS® built-ins inside arithmetic expressions, eg.

T is cputime - TO.
L is string_length("abcde") - 1.

which call cputime/1 and string_length /2 respectively. Any predicate that returns a number
as its last argument can be used in a similar manner.

74

However there is a difference compared to the evaluation of the predefined arithmetic functions
(as listed in the table above): The arguments of the user-defined arithmetic expression are not
evaluated but passed unchanged to the evaluating predicate. E.g. the expression twice(3+4)
is transformed into the goal twice(3+4, Result) rather than twice(7, Result). This makes
sense because otherwise it would not be possible to pass any compound term to the predicate.
If evaluation is wanted, the user-defined predicate can explicitly call is/2 or use eval/1.

10.3.4 Runtime Expressions

In order to enable efficient compilation of arithmetic expressions, ECL'PS® requires that vari-
ables in compiled arithmetic expressions must be bound to numbers at runtime, not symbolic
expressions. E.g. in the following code p/1 will only work when called with a numerical argu-
ment, else it will raise error 24:

p(Number) :- Res is 1 + Number,

To make it work even when the argument gets bound to a symbolic expression at runtime, use
eval/1 as in the following example:

p(Expr) :- Res is 1 + eval(Expr),

If the expression is the only argument of is/2, the eval/1 may be omitted.

10.4 Low Level Arithmetic Builtins

The low level builtins (like +/3, sin/2 etc.) which are used to evaluate the predefined arith-
metic functions can also be called directly, but this is not recommended for portability reasons.
Moreover, there is no need to use them directly since the ECL*PS® compiler will transform all

arithmetic expressions into calls to the corresponding low level builtins 3.

10.5 The Multi-Directional Predicates plus/3 and times/3

A drawback of arithmetic using is/2 is that the right hand side must be fully instantiated at
evaluation time. Often it is desirable to have predicates that define true logic relationships
between their arguments like “Z is the sum of X and Y”. For integer addition and multiplication
this is provided as:

plus(X, Y, Z) True if the sum of X and Y is Z. At most one of X, Y, Z can be a variable.
times(X, Y, Z) True if the product of X and Y is Z. At most one of X, Y, Z can be a variable.

They work only with integer arguments but any single argument can be a variable which is
then instantiated so that the relation holds. If more than one argument is uninstantiated, an
instantiation fault is produced.

Note that if one of the first two arguments is a variable, a solution doesn’t necessarily exist. For
example, the following goal has no integer solution :

#Note that this optimisation is only done in :- nodbgcomp mode

75

[eclipse 1]: times(2, X, 3).

no (more) solution.

Since any one of the arguments of these two predicates can be a variable, it does not make much
sense to use them in arithmetic expressions where always the first arguments are taken as input
and the last one as output. Their most convenient use is in the coroutining mode, where they
delay until their arguments are sufficiently instantiated. This is described in section 10.6.

10.6 Arithmetic and Coroutining

The behaviour of the arithmetic predicates is slightly different when the system operates in
coroutining mode. This applies to all the predicates that evaluate their arguments (ie. is/2
and the arithmetic comparisons) as well as to plus/3, times/3 and the low level evaluation
predicates like 4+/3 etc. Every condition which yields an instantiation fault in non-coroutining
mode now causes the predicates to delay until their arguments are sufficiently instantiated. For
example:

Xis 1+ 3 *x Y.

where Y is an uninstantiated variable will generate an instantiation fault in non-coroutining
mode. In coroutining mode the goal will delay and will be woken as soon as Y is bound. Refer
to page 156 on how to switch on the coroutining mode.

Note that the predicates that delay are the low level evaluation predicates. In the above ex-
ample the free variable Y causes the multiplication to delay and the unavailable result of the
multiplication causes the addition to delay:

[eclipse 1]: X is 1 + 3 * Y.

X=X
Y=Y

Delayed goals:
*(3, Y, _d142)
+(1, _d142, X)
yes.

The comparison predicates behave in a similar way:

[eclipse 1]: 3 > Y + 1.
Y=Y
Delayed goals:

+(Y, 1, _d138)

3 > _d138
yes.

76

Chapter 11

Arrays and (Global Variables

11.1 Introduction

This chapter describes the features provided by ECL‘PS® for the declaration and use of arrays
and non-logical variables. These provide a mechanism to maintain information across backtrack-
ing, in a more procedural programming manner.

Arrays and non-logical variables are handled by a single set of builtins, where a non-logical vari-
able is just considered as an array with no dimensions. Builtins that accept array specifications
in the form Name/Arity also accept Name/0 or just Name to denote a non-logical variable.

11.2 Non-logical Variables

Non-logical variables in ECLPS® are a means of storing a copy of a Prolog term under a name
(an atom). The atom is the name and the associated term is the value of the non-logical variable.
This term may be of any form, whether an integer or a huge compound structure. Note that
the associated term is being copied and so if it is not ground, the retrieved term is not strictly
identical to the stored one but is a variant of it'. There are two fundamental operations that can
be performed on a non-logical variable: setting the variable (giving it a value), and referencing
the variable (finding the value currently associated with it).

The value of a non-logical variable is set using the setval/2 predicate. This has the format

setval(Name, Value)
For instance, the goal
setval(firm, 3)

gives the non-logical variable firm the value 3. The value of a non-logical variable is retrieved
using the getval/2 predicate. The goal

getval(firm, X)

will unify X to the value of the non-logical variable firm, which has been previously set by
setval/2. If no value has been previously set, the call raises an exception. If the value of a non-
logical variable is an integer, the predicates incval/1 and decval/1 may be used to increment

!Though this feature could be used to make a copy of a term with new variables, it is cleaner and more efficient
to use copy_term/2 for that purpose

77

and decrement the value of the variable, respectively. The predicates incval/1 and decval/1
may be used e.g. in a failure-driven loop to provide an incremental count across failures as in
the example:

count_solutions(Goal, _) :-
setval(count, 0),
call(Goal),
incval (count),
fail.
count_solutions(_, N) :-
getval(count, N).

However, code like this should be used carefully. Apart from being a non-logical feature, it also
causes the code to be not reentrant. ILe. if count_solutions/2 would be called recursively from
inside Goal, this would smash the counter and yield incorrect results?.

The visibility of a non-logical variable can be controlled using global/1 or local/1 declarations.
E.g. in the above example one could use one of

:- local variable(count).
:- global variable(count).

If local, the variable is only accessible from within the module where it was declared.

11.3 Non-logical Arrays

Non-logical arrays are a generalisation of the non-logical variable, capable of storing multiple
values. Arrays have to be declared in advance. They have a fixed number of dimensions and a
fixed size in each dimension. Arrays in ECL'PS® are managed solely by special predicates. In
these predicates, arrays are represented by compound terms, e.g. matrix(5, 8) where matrix
is the name of the array, the arity of 2 specifies the number of dimensions, and the integers 5
and 8 specify the size in each dimension. The number of elements this array can hold is thus
5*8 = 40. The elements of this array can be addressed from matrix(0,0) up to matrix(4,7).
An array must be explicitly created using a global/1 or local/1 declaration, e.g.

:- local array(matrix(5, 8)).
:- global array(matrix(5, 8)).

If local, the array is only accessible from within the module where it was declared. The decla-
ration will create a two-dimensional, 5-by-8 array with 40 elements matrix(0,0) to matrix(4, 7).
Arrays can be erased using the predicate erase_array/1, e.g.

erase_array(matrix/2).

The value of an element of the array is set using the setval/2 predicate. The first argument of
setval/2 specifies the element which is to be set, the second specifies the value to assign to it.
The goal

setval(matrix(3, 2), plato)

2A similar problem can occur when the counter is used by an interrupt handler

78

sets the value of element (3, 2) of array matrix to the atom plato. Similarly, values of array
elements are retrieved by use of the getval/2 predicate. The first argument of getval/2 specifies
the element to be referenced, the second is unified with the value of that element. Thus if the
value of matrix(3, 2) had been set as above, the goal

getval(matrix(3, 2), Val)

would unify Val with the atom plato. Similarly to non-logical variables, the value of integer
array elements can be updated using incval/1 and decval/1.

It is possible to declare arrays whose elements are constrained to belong to certain types. This
allows ECL*PS® to increase time and space efficiency of array element manipulation. Such an
array is created for instance by the predicate

:- local array(primes(100),integer).

The second argument specifies the type of the elements of the array. It takes as value an atom
from the list real (for real numbers), integer (for integers), byte (an integer modulo 256), or
prolog (any Prolog term - the resulting array is the same as if no type was specified). When
a typed array is created, the value of each element is initialised to zero in the case of byte,
integer and real, and to an uninstantiated variable in the case of prolog. Whenever a typed
array element is set, type checking is carried out.

As an example of the use of a typed array, consider the following goal, which creates a 3-by-3
matrix describing a 90 degree rotation about the x-axis of a Cartesian coordinate system.

:- local array(rotate(3, 3), integer).

:- setval(rotate(0, 0), 1),
setval(rotate(l, 2), -1),
setval(rotate(2, 1), 1).

(The other elements of the above array are automatically initialised to zero).
The predicate current_array/2 is provided to find the size, type and visibility of defined arrays.
of the array and its type to be found:

current_array(Array, Props)

where Array is the array specification as in the declaration (but it may be uninstantiated or
partially instantiated), and Props is a list indicating the array’s type and visibility. Non-logical
variables are also returned, with Array being an atom and their type is prolog.

[eclipse 1]: local(array(pair(2))),
setval(count, 3),
global(array(count(3,4,5), integer)).

yes.
[eclipse 2]: current_array(Array, Props).

Array = pair(2)
Props = [prolog, locall More? (;)

Array = count

79

Props = [prolog, globall More? (;)

Array = count(3, 4, 5)
Props = [integer, global] More? (;)

no (more) solution.
[eclipse 3]: current_array(count(X,Y,Z), _).

X=3
Y=4
Z=5
yes

11.4 Global References

Terms stored in non-logical variables and arrays are copies of the setval/2 arguments, and the
terms obtained by getval/2 are thus not identical to the original terms, in particular their
variables are different. Sometimes it is more convenient or even necessary to be able to access
the original term with its variables, i.e. to have global variables in the meaning of conventional
programming languages. A typical example is the use of graphical interface: if we want to
modify the value of a Prolog variable through a graphical user interface, this mechanism has to
be used because the user interface has no means to access Prolog terms directly. Another use
is global state that a set of predicates wants to share without having to pass an argument pair
through all the predicate invocations.

ECL'PSE offers the possibility to store references to general terms and to access them even inside
predicates that have no common variables with the predicate that has stored them. They are
stored in so-called references. For example,

:- local reference(p).

creates a named reference p which can be used to store references to terms. This reference is
accessed and modified in the same way as non-logical variables, with setval/2 and getval/2,
but the following points are different for references:

e the accessed term is identical to the stored term (with its current substitutions):

[eclipse 1]: local reference(a), variable(b).

yes.
[eclipse 2]: Term = p(X), setval(a, Term), getval(a, Y), Y == Term.
X=X

Y = p(X)

Term = p(X)

yes.

[eclipse 3]: Term = p(X), setval(b, Term), getval(b, Y), Y == Term.
no (more) solution.

80

e the modifications are backtrackable, when the execution fails over the setval/2 call, the
previous value of the global variable is restored

[eclipse 4]: setval(a, 1), (setval(a, 2), getval(a, X); getval(a, Y)).

X=2
Y=Y More? (;)
X=X
Y=1

o there are no arrays of references, but the same effect can be achieved by storing a structure
in a reference and using the structure’s arguments. The arguments can then be accessed
and modified using arg/3 and setarg/3 respectively.

There is only a limited number of references available and their use should be considered very
carefully. Their misuse can lead to very bad programs which are difficult to understand and

difficult to optimize.

81

82

Chapter 12

Input and Output

12.1 Streams in ECL'PS¢

To provide input to and output from a Prolog program the ECL‘PS® system can communicate
with files in the host machine environment. (The user’s terminal is regarded as a file for this
purpose.) This is done by opening communication channels, known as streams, to the files. The
streams may be opened for input only (read mode), output only (write mode), or for both input
and output (update mode). Fach stream is associated with a file or a virtual file (a pipe or a
terminal). The number of files that can be open at one time depends on the operating system
limitations, but the number of ECL‘PS® streams is not limited. When the system is entered, a
small number of standard streams are available, the exact number depending on the operating
system. Until instructed otherwise by the user, the system uses these streams for all input and
output.

A stream defines a logical I/O channel which is used by built-in predicates to perform input and
output on. A stream is identified by its name, which is an atom. Fach logical stream is assigned
to a physical stream. The physical streams, denoted by small integers, are directly connected
to files, pipes etc. (the physical stream, however, has no relation to the UNIX file descriptor).
Most of the built-in predicates that handle streams explicitly have the stream argument at the
first position, e.g. write(Stream, Term).

NOTE: Although physical streams can be directly accessed and used, the ECL'PS® programs
should not contain explicit references to physical streams, because the correspondence of logical
and physical streams may not be maintained in various releases. In future ECL'PS® versions it
might even not be possible to access physical streams directly.

It is possible to find the physical stream to which a logical stream is assigned. This is done by
a call of the predicate get_stream/2:

get_stream(Logical_Stream, Stream)

This call will return in Stream the physical stream to which the Logical Stream is assigned, but
it will also succeed if Stream is another logical stream associated to the same physical stream as
Logical _Stream.

New physical streams are created by predicates open/3, pipe/2 (see also section 12.3). These
predicates return the newly created stream(s) in their argument(s). If this argument is a free
variable, the number of the new physical stream is returned, for instance

[eclipse 1]: open(new_file, write, Stream).

83

Stream = 6
yes.

If the stream argument is a stream name, new logical stream with that name is created if
necessary, and the new physical stream is associated to it:

[eclipse 1]: open(new_file, write, new_stream).

yes.

It is also possible to assign a logical stream to an existing physical or logical stream using the
predicate set_stream/2:

set_stream(New_Stream, Existing_Stream)

Here the logical stream New_Stream has been assigned to the physical stream that is currently
associated with Fzisting_Stream. A logical stream is always connected only to a physical stream,
it is not possible to associate a logical stream to another logical stream so that changing one
would change the other as well:

[eclipse 1]: set_stream(a, 0), set_stream(b, a), set_stream(a, 1).

yes.
[eclipse 2]: get_stream(a, A), get_stream(b, B).

A=1
B=20
yes.

The predicate
close(Stream)

is used to close a stream. If the specified stream is a logical one, it is closed and if its associated
physical stream is still open, it is closed as well. When a physical stream is closed and there
are some logical streams associated to it, they are not closed, but they still refer to the closed
physical stream and this physical stream cannot be used for another channel until all logical
streams associated to it are redirected to other physical streams or closed.

The predicate

current_stream(?Stream)

can be used to backtrack over all the currently opened streams. A stream’s properties can be
accessed using

get_stream_info(+Stream, +Property, -Value)
e.g. its mode, line number, file name etc.

84

12.2 System Streams

Apart from stream names defined by the user, there are a number of predefined system stream
names. At the beginning of a session they are assigned to the process’s standard I/O streams,
but they can be changed by the user. The system streams are:

input Used by the input predicates that do not have the stream as an explicit argument, e.g.
read/1.

output Used by the output predicates that do not have the stream as an explicit argument,
e.g. write/1.

error Qutput for error messages and warnings and all messages about exceptional states.

null A dummy stream, output to it is discarded, on input it always gives end of file. It can be
used to ignore part of a program’s output without having to remove the output predicates.
Note that this stream is similar to the UNIX file ’/dev/null’ but works much faster. This
stream cannot be redirected to any other physical stream.

In development environments, there are a few more system streams:

toplevel input The input for the top-level Prolog loop, it reads the user query and the semi-
colon or newline typed to indicate whether other solutions are required.

toplevel output The messages from the top-level loop, e.g. the yes/no answer, delayed goals,
messages about loaded libraries.

answer_output Outputs the top-level loop answer bindings for the user query.
debug_ input Input to the debugger.
debug_output Output from the debugger

Each of the physical input streams has its own prompt which is printed on the specified output
stream whenever new input is required. The goal

set_prompt (InputStream, Prompt, OutputStream)

sets the prompt for InputStream to be Prompt printed on the output stream QutputStream. The
predicate get_prompt/3 can be used to query the prompt of an input stream.

Apart from these system streams there are other logical stream identifiers provided by the
system:

stdin The UNIX standard input stream when the ECL'PS® session is started.
stdout The UNIX standard output stream when the ECL'PS® session is started.
stderr The UNIX standard error output stream when the ECL'PS® session is started.

user This identifier is provided for compatibility with other Prolog systems and it is identical
with stdin and stdout depending on the context where it is used. When it is not possible
for the system to decide whether the input or output stream was meant by user, an
exception is raised. This stream cannot be redirected to another physical stream.

85

The streams stdin, stdout and stderr are used to initialize all other system streams and also to
reset them when the current system stream is closed. To allow greater flexibility of the system,
these streams can be modified by the user.

When an attempt is made to close a system stream, the exception 196 is raised. The default
handler for this exception resets all system streams connected with this physical streams to their
defaults and then the physical stream is closed.

When set_stream(Logical Stream, Stream) is used to redirect a system stream, Stream must
have a mode compatible with that of Logical Stream. That is, if Logical_Stream specifies a
stream with read mode, Stream must have either read or update mode; if Logical_Stream has
write mode, Stream must have either write, append or update mode; and if Logical_Stream has
update mode, Stream must have update mode.

12.3 Opening New Streams

A stream is opened for input or output by means of the open/3 or open/4 predicate. The
goals

open(SourceSink, Mode, Stream)
open(SourceSink, Mode, Stream, Options)

open a communication channel with SourceSink.

If SourceSinkis an atom or a string, a file is being opened and SourceSink takes the form of a file
name in the host machine environment. ECL‘PS® uses an operating system independent path
name syntax, where the components are separated by forward slashes. The following forms are
possible:

e abolute path name, e.g. /usr/peter/prolog/file.pl

e relative to the current directory, e.g. prolog/file.pl

e relative to the own home directory, e.g. ~/prolog/file.pl

e start with an environment variable, e.g. $HOME /prolog /file.pl

e relative to a user’s home directory, e.g. “peter/prolog/file.pl (UNIX only)
e specifying a drive name, e.g. //C/prolog/file.pl (Windows only)

Note that path names usually have to be quoted (in single or double quotes) because they
contain non-alphanumeric characters.

If SourceSink is of the form string(InitString) a pseudo-file in memory is opened, see section
12.5.1.

If SourceSinkis of the form queue(InitString) a pseudo-pipe in memory is opened, see section
12.5.2.

Mode must be one of the atoms read, write, append or update, which means that the stream
is to be opened for input, output, output at the end of the existing stream, or both input and
output, respectively. Opening a file in write mode will create it if it does not exist, and erase the
previous contents if it does exist. Opening a file in append mode will keep the current contents
of the file and start writing at its end.

86

Stream is a logical stream identifier or an uninstantiated variable. If it is uninstantiated, the
system will create an identifier. This stream identifier may then be used in predicates which
have a named stream as one of their arguments. For example

open(‘foo’, update, stream), write(stream, subject)

will write the atom subject to the file ‘foo’. A stream Stream opened by the open/3 predicate
may be subsequently closed by the call

close(Stream)
The predicate pipe/2 is used like
pipe(In, Out)

and opens a pipe, i.e. two streams, In for reading and Qut for writing, which are connected
together using the pipe(2) system call. This mechanism is normally used to communicate with
other processes which were forked by the main process.

Sockets streams are opened with the primitives socket/3 and accept/3, more details are in
chapter 21.

On most devices, output is buffered, i.e. any output does not appear immediately on the file,
pipe or socket, but goes into a buffer first. To make sure the data is actually written to the
device, the stream usually has to be flushed using flush/1. If this is forgotten, the receiving
end of a pipe or socket may hang in a blocking read operation.

12.4 Communication with Streams

The contents of a stream may be interpreted in one of the three basic ways. The first one is to
consider it as a sequence of characters, so that the basic unit to be read or written is a character.
The second one interprets the stream as a sequence of tokens, thus providing an interface to the
Prolog lexical analyzer and the third one is to consider a stream as a sequence of Prolog terms.

12.4.1 Character I/0

The get/1, 2 and put/1, 2 predicates corresponds to the first way of looking at streams. The
call

get(Char)

takes the next character from the current input stream and matches it as a single character
with Char. Note that a character in ECL*PS® is represented as an integer corresponding to the
ASCII code of the character. If the end of file has been reached then an exception is raised. The
call

put(Char)

puts the char Char on to the current output stream. The predicates
get(Stream, Char)

and
put(Stream, Char)

work similarly on the specified stream.
The input and output is normally buffered by ECL*PS®. To make I/O in raw mode, without
buffering, the predicates tyi/1, 2 and tyo/1, 2 are provided.

87

12.4.2 Token I/0

The predicate
read_token(Token, Class)

represents the second way of interpreting stream contents. It reads the next token from the
current input stream, unifies it with Token, and its token class is unified with Class. A token
is either a sequence of characters with the same or compatible character class, e.g. ab_1A, then
it is a Prolog constant or variable, or a single character, e.g. ’)’. The token class represents the
type of the token and its special meaning, e.g. fullstop, comma, open_par, etc.

read_token(Stream, Token, Class)

reads a token from the specified stream. A further, very flexible possibility to read a sequence
of characters is provided by the built-ins

read_string(Stream, Delimiters, Length, String)
read_string(Delimiters, Length, String)

Here, the input is read up to a specified delimiter or up to a specified length, and returned as
an ECL'PS® string.

12.4.3 Term I/O

The read/1, 2 and write/1, 2 predicates correspond to the third way of looking at streams.
The goal

read(Term)

reads the next term from the current input stream and unifies it with Term. The input term
must be followed by a full stop, that is, a ’.” character followed by a layout character (tab, space
or newline) or by the end of file. If end of file has been reached then an exception is raised, the
default handler causes the atom end_of_file to be returned. A term may be read from a stream
other than the current input stream by the call

read(Stream, Term)
which reads the term from the named stream. The goal
write(Term)

writes Term to the current output stream. This is done by taking the current operator
declarations into account. Qutput produced by the write/1, 2 predicate is not (necessarily) in
a form suitable for subsequent input to a Prolog program using the read/1 predicate, for this
purpose writeq/1, 2 is to be used. The goal

write(Stream, Term)
writes Term to the named output stream. The predicate

display(Term)

88

outputs the Term on the current output stream in the functor syntax, ignoring possible operator
declarations. The predicate

readvar(Stream, Term, VarList)

can be used to read a term from the specified stream and obtain the list of variable names
contained in the Term. VarListis a list of pairs [VarName|Var] where VarName is the atom
corresponding to the variable name and Var is the corresponding variable.

When the flag variable names is switched off, the output predicates are not able to write free
variables in their source form, i.e. with the correct variable names. Then the variables are
output in the form

aN

where a is a character which depends on the memory area where the variable is located or on
its properties: 1 for a local variable, g for a global variable or a metaterm. N is a number.
It is possible to pass any input stream to the ECL*PS® compiler using the predicate

compile_stream(Stream)

and it is of course possible to mix the compilation with other input predicates. If, for example,
the file a.pl contains the following data

p(1).
p(2).
end_of_file.
p(3).

it is possible to execute
[eclipse 1]: open(’a.pl’, read, a).

yes.
[eclipse 2]: read(a, X).

X = p(1)

yes.

[eclipse 3]: compile_stream(a).

a.pl compiled 40 bytes in 0.00 seconds

yes.
[eclipse 4]: read(a, X).

X = p(3)
yes.
[eclipse 5]: p(X).

X=2
yes.

To specify a position in the file to write to or read from, the predicate seek/2 is provided. The
call

89

seek(Stream, Pointer)

moves the current position in the file (the "file pointer’) to the offset Pointer (a number specifying
the length in bytes) from the start of the file. If Pointer is the atom end_of_file the current
position is moved to the end of the file. Hence a file could be open in append mode using

open(File, update, Stream), seek(Stream, end_of_file)

The current position in a file may be found by the predicate at/2. The call
at(Stream, Pointer)

unifies Pointer with the current position in the file. The predicate
at_eof (Stream)

succeeds if the current position in the given stream is at the file end.

12.5 In-memory Streams

There are two kinds of in-memory streams, string streams and queues. String streams be-
have much like files, they can be read, written, positioned etc, but they are implemented as
buffer in memory. Queues are intended mainly for message-passing-style communication be-
tween ECL‘PS®and a host language, and they are also implemented as memory buffers.

12.5.1 String Streams

In ECL*PS® it is possible to associate a stream with a Prolog string in its memory, and this
string is then used in the same way as a file for the input and output operations. A string stream
is opened like a file by the open/3 predicate call

open(string(InitString), Mode, Stream)

where InitString can be a ECL'PS® string or a variable and represents the initial contents of the
string stream. If a variable is supplied for InitString, the initial value of the string stream is the
empty string and the variable is bound to this value:

[eclipse 1]: open(string(S), update, s).
g = un
yes.

Once a string stream is opened, all predicates using streams can take it as argument and perform
I/O on it. In particular the predicates seek/2 and at/2 can be used with them.

While writing into a stream changes the stream contents destructively, the initial string that has
been opened will never be affected. The new stream contents can be retrieved either by reading
from the string stream, or as a whole by using get_stream_info/3:

[eclipse 1]: S = "abcdef", open(string(S), write, s), write(s, ---).
S = "abcdef"
yes.

[eclipse 2]: get_stream_info(s, name, S).

90

S = "---def"

yes.
[eclipse 3]: seek(s, 1), write(s, .), get_stream_info(s, name, S).

S = "-.-def"

yes.

[eclipse 4]: seek(s, end_of_file), write(s, ine),
get_stream_info(s, name, S).

S = "= ,-define"

yes.

12.5.2 Queue streams

A queue stream is opened by the open/3 predicate
open(queue(InitString), Mode, Stream)

The initial queue contents is InitString. It can be seen as a string which gets extended at its
end on writing and consumed at its beginning on reading.

[eclipse 11]: open(queue(""), update, q), write(q, hello), write(q, " wo").

yes.
[eclipse 12]: read_string(q, " ", _, X).

S = "hello"

yes.

[eclipse 13]: write(q, "rld"), read(q, X).
S = world

yes.

[eclipse 14]: at_eof(q).

yes.

It is not allowed to seek on a queue. Therefore, once something is read from a queue, it is no
longer accessible. A queue is considered to be at its end-of-file position when it is currently
empty, however this is no longer the case when the queue is written again.

A useful feature of queues is that they can raise a synchronous event when data arrives on the
empty queue. To create such an event-raising queue, this has to be specified as an option when
opening the queue with open/4. In the example we have chosen the same name for the stream
and for the event, which is not necessary but convenient when the same handler is going to be
used for different queues:

[eclipse 1]: [user].
handle_queue_event(Q) :-

read_string(Q, "", _, Data),

printf ("Queue %s received data: %s\n", [Q,Datal).
yes.
[eclipse 2]: set_event_handler(eventq, handle_queue_event/1).
yes.

91

[eclipse 3]: open(queue(""), update, eventq, [event(eventq)]).
yes.

[eclipse 4]: write(eventq, hello).

Queue eventq received data: hello

yes.

12.6 Modifying the Output

There are several possible ways to modify the standard way of outputting terms in ECL'PS®.

12.6.1 The printf/2, 3 Predicate

This predicate subsumes all other output predicates, and it also offers formatted printing. Its
syntax is similar to the C printf(3) function, but it also has further Prolog-specific options. For
example, the sequence

write(’The result is ’),
writeq(T),

write(’, which is),
write(P),

write(’Y, better than ’),
write(R),

nl,

flush(output) .

can be written with
printf ("The result is %q, which is %d%% better than %w\n¥%b", [T, P, R]).

In the printf/2,3 predicate, several options for printing Prolog terms can be specified by using
the following option characters in the %w format string:

O ignore operator declarations

D disregard depth limit for nested terms

. print lists as ./2 structures

Q print quotes around functors when needed

v print variables as unique numbers, e.g. _g123

V print variables as names and numbers, e.g. X_g123

P use portray/1,2 if defined

U use portray/1,2 even for variables

m print metaterm attributes using user-defined handlers
M print metaterm attributes in a standard form

G print term as a goal, i.e. apply goal write macros

92

T don’t apply write macro transformations

A depth limit can be sepcified for the printed term by giving an integer immediately after the
% in the format string.
Using those options, the other I/O predicates can be defined in terms of printf/2 as follows:

write(X) := printf("%w", [x1).
writeq(X) - printf("%QDTMvw", [X]).
print(X) - printf ("%Pu", [x1).
display(X) - printf("%40.w", [X]).

write_canonical (X) printf ("%0.QDTMvw", [X]).

12.6.2 The output_mode flag

The flag output_mode, set by set_flag/2, is a string of control characters (as recognised by
the %w format of printf/3). It is used to specify the format in which the system prints terms

e in the debugger (the o command allows some modifications of the output_mode flag from
within the debugger)

e when printing the answer bindings in the top-level loop

For example, calling set_flag(output_mode, ”O.P”) will cause the debugger to write the
traced goals without operators, with dot notation for lists and using the user-defined predicate
portray/1, 2. The default value is ”QPm”.

12.6.3 The syntax_option flag
When

:- set_flag(syntax_option, ’$VAR’).

is set, terms of the form ’$VAR’(N) are printed in a special way by all the predicates that obey
operator declarations (i.e. write, writeq, print and partly printf). '$VAR’(0) is printed as A,
'SVAR’(25) as Z, ’$VAR’(26) as Al and so on. When the argument is an atom or a string, just
this argument is printed. This option is also used for Quintus compatibility mode.

12.6.4 The print/1, 2 Predicate

When print/1, 2 is used to print a term, the user-definable predicate portray/1, 2 is called
on all its nonvariable subterms and if it succeeds, it is assumed that it has printed the term,
otherwise the term is printed in the standard way. The portray/1, 2 predicate is also invoked
by printf/2, 3 when the option P is used. Note that portray/1, 2 is also invoked to print
metaterms, but it is not invoked for variable subterms, unless the option U in printf/2, 3 or
in the output_mode flag is used.

93

94

Chapter 13

ECL'PS® Macros

13.1 Introduction

ECL'PS® provides a very general mechanism to perform macro expansion of Prolog terms. Macro
expansion can be performed in two situations:

read macros they are applied just after a Prolog term has been read by the ECL‘PS® parser,
i.e. during compilation or in a read predicate

write macros they are applied just before a Prolog term is printed by one of the output
predicates

Macros are attached to classes of terms specified by their functors or by their type. Macros obey
the module system’s visibility rules. They may be either locally (default) or globally visible.
The macro expansion is performed by a user-defined Prolog predicate.

13.2 Using the macros

The following built-ins control macro expansion:

define_macro(+TermClass, +TransPred, +Options) define a macro for the given Term-
Class. The transformation will be performed by the predicate TransPred.

erase_macro(+TermClass) erase a currently defined macro for TermClass. This can only be
done in the module where the definition was made.

current_macro(?TermClass, ?TransPred, ?Options, ?Module) retrieve information about
currently defined visible macros.

Macros are selectively applied only to terms of the specified class. TermClass can take two
forms:

Name/Arity transform all terms with the specified functor

type(Type) transform all terms of the specified type, where Type is one of compound, string,
integer, rational, real, atom, goall.

'type(goal) stands for suspensions.

95

The +TransPred argument specifies the predicate that will perform the transformation. It has
to be of arity 2 or 3 and should have the form:

trans_function(01dTerm, NewTerm [, Module]) :- ...

At transformation time, the system will call TransPredin the module where define_macro/3
was invoked. The term to transform is passed as the first argument, the second is a free variable
which the transformation predicate should bind to the transformed term, and the optional third
argument is the module where the term is read or written.

Options is a list which may be empty (in this case the macro defaults to a local read term macro)
or contain specifications from the following categories:

e visibility
local: The transformation is only visible in this module (default).

global: The transformation is globally visible.

e mode

read: This is a read macro and shall be applied after reading a term (default).

write: This is a write macro and shall be applied before printing a term.

e type

term: Transform all terms (default).

clause: Transform only if the term is a program clause, i.e. inside compile/1, assert/1
etc. Write macros are applied using the ’C’ option in the printf/2 predicate.

goal: Transform only if the term is a subgoal in the body of a program clause. Write
macros are applied using the G’ option in the printf/2 predicate.

e additional specification

protect_arg: Disable transformation of subterms (optional).

top_only: Consider only the whole term, not subterms (optional).
Here is an example of a conditional read macro:

[eclipse 1]: [user].

trans_a(a(X,Y), b(Y)) :- % transform a/2 into b/1,
number (X), % but only under these
X > o0. % conditions

:- define_macro(a/2, trans_a/2, [1).
user compiled traceable 204 bytes in 0.00 seconds

yes.
[eclipse 2]: read(X).
a(1, hello).

X = b(hello) % transformed

96

yes.
[eclipse 3]: read(X).
a(-1, bye).

X = a(-1, bye) % not transformed
yes.

If the transformation function fails, the term is not transformed. Thus, a(1, zzz) is transformed
into b(zzz) but a(-1, zzz) is not transformed. The arguments are transformed bottom-up. It
is possible to protect the subterms of a transformed term by specifying the flag protect_arg.
A term can be protected against transformation by quoting it with the “protecting functor” (by
default it is no_macro_expansion/1):

[eclipse 4]: read(X).
a(1, no_macro_expansion(a(l, zzz))).
X = b(a(l, zzz)).

Note that the protecting functor is itself defined as a macro:

trprotect (no_macro_expansion(X), X).
:- define_macro(no_macro_expansion/1, trprotect/2, [global, protect_arg]).

A macro is by default only visible in the module where it has been defined. When it is defined
inside a module interface, then it is copied to all other modules that contain a use_module/1
for this module. The transformation function should be exported in this case and be defined in
the module interface as well.

A macro can also be made visible in all modules by specifying the global option in the option list.
As usual, local definitions hide global ones. The global flag macro_expansion can be used to
disable macro expansion globally, e.g. for debugging purposes. Use set_flag(macro_expansion,
off) to do so.

The next example shows the use of a type macro. Suppose we want to represent integers as s/1
terms:

[eclipse 1]: [user].

tr_int(0, 0).

tr_int(N, s(S)) :- N > 0, N1 is N-1, tr_int(N1i, S).
:- define_macro(type(integer), tr_int/2, [1).

yes.
[eclipse 2]: read(X).
3.

X = s(s(s(0)))

yes.

When we want to convert the s/1 terms back to normal integers so that they are printed in the
familiar form, we can use a write macro. Note that we first erase the read macro for integers,
otherwise we would get unexpected effects since all integers occurring in the definition of tr_s/2
would turn into s/1 structures:

97

[eclipse 3]: erase_macro(type(integer)).

yes.
[eclipse 4]: [user].

tr_s(0, 0).

tr_s(s(S), N) :- tr_s(S, N1), N is Ni+1.
:- define_macro(s/1, tr_s/2, [write]l).

yes.
[eclipse 2]: write(s(s(s(0)))).
3

yes.

13.3 Definite Clause Grammars — DCGs

Grammar rules are described in many standard Prolog texts ([2]). In ECL'PS® they are provided
by a predefined global? macro for -==>/2. When the parser reads a clause whose main functor is
-->/2, it transforms it according to the standard rules. The syntax for DCGs is as follows :

grammar_rule --> grammar_head, [’-->’], grammar_body.

grammar_head --> non_terminal.
grammar_head --> non_terminal, [’,’], terminal.

grammar_body --> grammar_body, [’,’], grammar_body.
grammar_body --> grammar_body, [’;’], grammar_body.
grammar_body --> grammar_body_item.

grammar_body_item --> [’!’].

grammar_body_item --> [’{’], Prolog_goals, [’}’].
grammar_body_item --> non_terminal.
grammar_body_item --> terminal.

The non-terminals are any valid prolog term (other than a variable, a number, or a string),
the terminals are prolog terms between square brackets. Every term is transformed, unless it
is enclosed in curly brackets. The or (;/2 or |/2), the cut (!/0), the condition (->/1) do not
need to be enclosed in curly brackets.

The grammar can be accessed with the built-ins phrase/2 and phrase/3. The first argument of
phrase/2 is the name of the grammar to be used, the second argument one is a list containing
the input to be parsed. If the parsing is successful the built-in will succeed. For instance with
the grammar

a-->01 [z], a.

phrase(a, X) will give on backtracking: X = [z] ; X = [z, z] ; X = [z, z, z] ;

280 that the user can redefine it with a local one.

98

13.3.1 Simple DCG example
The following example illustrates a simple grammar declared using the DCGs.

sentence --> imperative, noun_phrase(Number), verb_phrase(Number).

imperative, [youl --> [].
imperative --> [].

noun_phrase(Number) --> determiner, noun(Number).
noun_phrase(Number) --> pronom(Number) .

verb_phrase(Number) --> verb(Number).
verb_phrase(Number) --> verb(Number), noun_phrase(_).

determiner --> [the].

noun(singular) --> [man].
noun(singular) --> [apple].
noun(plural) --> [men].
noun(plural) --> [apples].

verb(singular) --> [eats].
verb(singular) --> [sings].
verb(plural) --> [eat].
verb(plural) --> [sing].

pronom(plural) --> [you].

The above grammar may be successfully parsed using phrase/2. If the predicate succeeds then
the input has been parsed successfully.

[eclipse 1]: phrase(sentence, [the,man,eats,the,applel).

yes.
[eclipse 2]: phrase(sentence, [the,men,eat]).

yes.
[eclipse 3]: phrase(sentence, [the,men,eats]).

no.
[eclipse 4]: phrase(sentence, [eat,the,apples]).

yes.
[eclipse 5]: phrase(sentence, [you,eat,the,man]).

yes.

The predicate phrase/3 may be used to return the point at which parsing of a grammar fails
— if the returned list is empty then the input has been successfully parsed.

99

[eclipse 1]: phrase(sentence, [the,man,eats,something,nasty],X).
X = [something, nasty] More? (;)

no (more) solution.
[eclipse 2]: phrase(sentence, [eat,the,apples],X).

X

[the, apples] More? (;)

X

0 More? (;)

no (more) solution.
[eclipse 3]: phrase(sentence, [hello,there],X).

no (more) solution.

13.3.2 Mapping to Prolog Clauses

Grammar rule are translated to Prolog clauses by adding two arguments which represent the
input before and after the nonterminal which is represented by the rule. The effect of the
transformation can be observed, e.g. by switching on the all dynamic flag so that the compiled
clauses can be listed:

[eclipse 1]: set_flag(all_dynamic, on), [user].

p(X) --> q(X).

p(X) --> [a].

user compiled traceable 296 bytes in 0.25 seconds
yes.

[eclipse 2]: listing.

p(_g212, _g214, _g216) :-
q(_g212, _g214, _g216).

p(_g212, _g214, _g216) :-
-g214 = [a]_g216].

yes.

13.3.3 Parsing other Data Structures

DCGs are in principle not limited to the parsing of lists. The predicate *C’/3 is responsible for
reading resp. generating the input tokens. The default definition is

’C’ ([Token|Rest], Token, Rest).

The first argument represents the parsing input before consuming Token and Rest is the input
after consuming Token. By redefining C’/3, it is possible to apply a DCG to other input sources
than a list, e.g. to parse directly from an 1/O stream:

’C’ (Stream-Pos0O, Token, Stream-Posl) :-

100

seek(Stream, Pos0),

read_string(Stream, " ", _, TokenString),
atom_string(Token, TokenString),
at(Stream, Posl).

sentence --> noun, [is], adjective.
noun --> [prolog] ; [1lisp].
adjective --> [boring] ; [great].

This can then be applied to a string as follows:

[eclipse 1]: String = "prolog is great", open(String, string, S),
phrase(sentence, S-0, S-End).
End = 15
yes.
Unlike the default definition, this definition of ’C’/3 is not bi-directional. Consequently, the
grammar rules using it can only be used for parsing, not for generating sentences.

Note that every grammar rule uses the definition of C’/3 which is visible in the module where
the grammar rule itself is defined.

101

102

Chapter 14

Events and Interrupts

The normal execution of a Prolog program may be interrupted by Events and Interrupts:

Interrupts
Interrupts usually originate from the operating system, e.g. on a Unix host, signals are
mapped to ECL'PS® interrupts.

Events

Errors

they occur asynchronously

the handler is executed asynchronously in a separate ECL‘PS® engine. This means
that

the handler cannot interact with interrupted execution, except via global variables,

files and the like.
failure of the handler is ignored.
interrupt handlers are not available in embedded ECL'PS® systems

the development system catches and handles many operating system signals as inter-
rupts, user abort by typing ~C, data arriving at sockets, memory protection faults,
etc.

they may occur asynchronously (posted by the environment) or synchronously (raised
by the program itself).

they are handled synchronously by a handler goal that is inserted into the resolvent.
the handler can interact with interrupted execution via global references.
the handler can cause the interrupted execution to fail or to abort.

the handler can cause waking of delayed goals.

Errors are a special case of events. They are raised by built-in predicates (e.g. when the
arguments are of the wrong type) and usually pass the culprit goal to the error handler.

103

14.1 Events

14.1.1 Event Identifiers

Events are identified by names or by small numbers. User defined events always have names,
while the ECL*PS® system uses events with a numerical identifier to raise errors (The error
numbers are listed in appendix D).

14.1.2 Handling Events

When an event occurs, a call to the appropriate handler is inserted into the resolvent (the
sequence of executing goals). The handler will be executed as soon as possible, which means at
the next synchronous point in execution, which is usually just before the next regular predicate
is invoked. Note that there are a few built-in predicates that can run for a long time and will
not allow handlers to be executed until they return (e.g. read/1, sort/4).

A handler is defined using a call like this

my_handler(Event) :-
<code to deal with Event>

:- set_event_handler(hello, my_handler/1).

The handler’s first argument is the event identifier, in this case the atom ’hello’.

Note that to ensure the handling of all events, an event handler should not directly fail or raise
an exception. This is because the system will backtrack if the handler fails or raise an exception,
and any other raised events that has not yet been handled will not be handled, and thus the
system will seem to ‘forget’ about such events. The event handler itself should also be run at
the highest priority (1), and if failure is desired, this can be done indirectly through triggering
a suspended goal which runs at a lower priority.

14.1.3 Raising Events

Events are normally posted to the ECL‘PS® engine from its software environment, e.g. from a
C program using

ec_post_event(ec_atom(ec_did("hello",0)));

This works both when the foreign code is called from ECL'PS® or when ECL'PS has been called
from the foreign code.

It is also possible to post an event from within an interrupt handler by setting the interrupt
handler to event /1. This is the recommended mechanism to translate an asynchronous interrupt
into a synchronous event. E.g.

:- set_interrupt_handler(alrm, event/1).
:- set_event_handler(alrm, handle_alarm/1).

An event can also be raised by the running program itself, using event/1:
., event(hello),

However, this is mainly useful for test purposes, since it is almost the same as calling the handler
directly.

104

14.1.4 Timed Events (after events)

ECL!PS® provides support for setting up an event which is then triggered after a specified
amount of elasped time. Previous to version 4.2, the user can program this functionality using
the (now obsolete) low level OS dependent set_timer/2 primitives. From version 4.2, a higher
level interface is provided, allowing for multiple independent timed events to be set up in a
standardised way. These events are known as after events, as they are set up so that the event
occurs after a certain amount of elasped time. They are setup by two predicates:

event_after(+Name, +Time) This sets up an event Name so that the event is raised once
after Time seconds of elasped time from when the predicate is executed. Name is an atom and
Time is a positive number.

event_after_every(4+Name, +Time) This sets up an event Name so that the event is raised

every Time seconds has elasped from when the predicate is executed.

Once an after event has been set up, it is pending until it is raised. In the case of event_after_every/2,
the event will always be pending because it is rasied repeatedly. A pending event can be cancelled

so that it will not be raised:

cancel _after_event(4+Name) This cancels the pending after event Name. If Name is not a
pending after event, the predicate fails.

current_after_event(+Name) This tests if Name is a pending after event. The predicate
suceeds if it is, fails if it is not.

More details on after events

More precisely, Time is actually the minimum of elasped time before the event is raised. Factors
constraining the actual time of raising of the event include the granularity of the system clock,
and also that ECL'PS® must be in a state where it can synchronously process the event — it
needs to be where it can make a procedure call.

The event is raised and executed at priority 1, so that it cannot be interrupted by execution
of woken goals in the middle of handling the event. However, any other events that are raised
during the execution of the event handler will interrupt the execution of the original event
handler. It is thus advisable to keep the event handling code as short as possible — if more
complex actions needs to be performed, it should be done via the event handler triggering a
suspended goal, which will execute at a lower priority than 1.

The after event make use of the vtalrm signal where this signal exists, or the alrm signal if it
doesn’t, so elasped time is normally measured in elasped user cpu time, or in real time in the
case of alrm. Currently, alrm is used only on the Windows platform. The user should not make
use of these signals for their own purpose if they plan on using the after event mechanism.
The after event mechanism allows multiple events to make use of the timing mechanism inde-
pendently of each other. However, the same event can be setup multiple times with multiple
calls to event_after/2 and event_after_every/2. The cancel_after_event/1 will cancel
all instances of an event.

Using the suspension and event handling mechanisms, the user can cause a goal to be added
to the resolvent which would then be executed after a defined elasped time. The goal will be

105

suspended and attached to a symbolic trigger, which is triggered by the event handler. The goal
behaves ‘logically’, in that if the execution backtracks pass the point in which the suspended
goal is created, the goal will disappear from the resolvent as expected and thus not be executed.
The event will still be raised, but there will not be a suspended goal to wake up.

The following is an example for waking a goal with a timed event. Once monitor(X) is called,
the current value of X will be printed every second:

:- set_event_handler(monvar, trigger/1).

monitor(Var) :-
suspend(m(Var), 3, trigger(monvar)),
event_after_every(monvar, 1).

:- demon m/1.
m(Var) :- writeln(Var).

Note the need to declare m/1 as a demon: otherwise, once m/1 is woken up once, it will disappear
from the resolvent and the next monvar event will not have a suspended m/1 to wake up. Note
also that it is necessary to connect the event machanism to the waking mechanism by setting
the event handler to trigger/1.

14.2 Errors

Errors handling is one particular use of events. The main property of error events is that they
have a culprit goal, ie. the goal that detected or caused the error. The error handler obtains
that goal as an argument.

The errors that the system raises have numerical identifiers, as documented in appendix D.
Whenever an error occurs, the ECL'PS® system identifies the type of error, and calls the appro-
priate handler. For each type of error, it is possible for the user to define a separate handler.
This definition will replace the default error handling routine for that particular error - all other
errors will still be handled by their respective handlers. It is of course possible to associate the
same user defined error handler to more than one error type.

When a goal is called and produces an error, execution of the goal is aborted and the appropriate
error handler is invoked. This invocation of the error handler is seen as replacing the invocation
of the erroneous goal:

o If the error handler fails it has the same effect as if the erroneous goal failed.

o If the error handler succeeds, possibly binding some variables, the execution continues at
the point behind the call of the erroneous goal.

e If the handler calls exit_block/1, it has the same effect as if this was done by the erroneous
goal itself.

For errors that are classified as warnings the second point is somewhat different: If the handler
succeeds, the goal that raised the warning is allowed to continue execution.

Apart from binding variables in the erroneous goal, error handlers can also leave backtrack
points. However, if the error was raised by an external or a builtin that is implemented as an
external, these choicepoints are discarded!.

!This is necessary because the compiler recognises simple predicates as deterministic at compile time and so

106

14.2.1 Error Handlers

The predicate set_error_handler/2 is used to assign a procedure as an error handler. The call
set_error_handler(N, PredSpec)

sets the error handler for error type N to the procedure specified by PredSpec, which must be
of the form Name/Arity.

The corresponding predicate get_error_handler/3 may be used to identify the current handler
for a particular error. The call

get_error_handler (N, PredSpec, HomeModule)

will, provided N is a valid error identifier, unify PredSpec with the specification of the current
handler for error N in the form Name/Arity, and HomeModule will be unified with the module
where the error handler has been defined. Note that this error handler might not be visible from
every module and therefore may not be callable.

To re-install the system’s error handler in case the user error handler is no longer needed,
reset_error_handler/1 should be used. reset_error_handlers/0 resets all error handlers to
their default values.

To enable the user to conveniently write predicates with error checking the built-ins

error (N, Goal)
error (N, Goal, Module)

are provided to raise the corresponding error number N with the culprit Goal. Inside tool
procedures it is usually necessary to use error/3 in order to pass the caller module to the error
handler. Typical error checking code looks like this

increment (X, X1) :-
integer(X) ->
X1 is X + 1

error(5, increment(X, X1)).

The predicate current_error/1 can be used to yield all valid errors, a valid error is that one
to which an error message and an error handler are associated. The predicate error_id/2
gives the corresponding error message to the specified error number. To ease the search for the
appropriate error number, the library util contains the predicate

list_error(Text, N, Message)

which returns on backtracking all the errors whose error message contains the string Tezt.

The ability to define any Prolog predicate as the error handler permits a great deal of flexibility
in error handling. However, this flexibility should be used with caution. The action of an
error handler could have side effects altering the correctness of a program; indeed it could be
responsible for further errors being introduced. Omne particular area of danger is in the use
of input and output streams by error handlers. For example: a particular error handler may
interact with the user at the terminal, to explain the nature of the error and ask for directions

if a simple predicate would cause the invocation of a non-deterministic error handler, the generated code may no
longer be correct.

107

regarding what action should be taken. Care should be taken in such a case to ensure that
the error handler does not affect the input to the program. If it does, since program execution
continues normally after exit of the error handler, any input consumed by the error handler is
lost.

14.2.2 Arguments of Error Handlers

An error handler has 3 optional arguments. The first argument is the number that identifies the
error, the second argument is the culprit (a structure corresponding to the call which caused the
error). For instance, if, say, a type error occurs upon calling the second goal of the procedure
p(2, Z):

pX, Y) :=- a(X), b(X, Y), c(¥).

the structure given to the error handler is b(2, Y). Note that the handler could bind Y which
would have the same effect as if b/2 had done the binding.

The third argument is only defined for a subset of the existing errors. If the error occurred
inside a tool body, it holds the caller module, otherwise it is a free variable. Note that some
events are not errors but are used for different purposes. In thoses cases the second and third
argument are sometimes used differently. See Appendix D for details.

The error handler is free to ignore some of these arguments, i.e. it can have any arity from 0 to
3. The first argument is provided for the case that the same procedure serves as the handler for
several error types - then it can distinguish which is the actual error type. An error handler is
just an ordinary Prolog procedure and thus within it a call may be made to any other procedure,
or any built in predicate; this in particular means that a call to exit_block/1 may be made (see
the section on the block/3 predicate). This will work 'through’ the call to the error handler,
and so an exit may be made from within the handler out of the current block (i.e. back to
the corresponding call of the block/3 predicate). Specifying the predicates true/0 or fail/0 as
error handlers will make the erroneous predicate succeed (without binding any further variables)
or fail respectively.

14.2.3 User Defined Errors

The following example illustrates the use of a user-defined error. We declare a handler for the
event ’Invalid command’ and raise the new error in the application code.

% Command error handler - output invalid command, sound bell and abort
command_error_handler(_, Command) :-

printf ("\007\nInvalid command: %w\n", [Command]),

abort.

% Activate the handler
:- set_event_handler(’Invalid command’, command_error_handler/2).

% top command processing loop

go :-
writeln("Enter command."),
read(Command) ,
(valid_command(Command)->

108

process_command (Command) ,
go

error(’Invalid command’,Command) % Call the error handler

% Some valid commands
valid_command(start).
valid_command(stop) .

14.3 Interrupts

Operating systems such as Unix provide a notion of asynchronous interrupts or signals. In a
standalone ECLPS® system, the signals can be handled by defining interrupt handlers for them.
In fact, a set of default handlers is already predefined in this case.

In an embedded ECL'PS®, signals are usually handled by the host application. It is recommended
to use the event mechanism (the ec_post_event() library function) when signals are meant to be

handled by ECL‘PS® code.

14.3.1 Interrupt Identifiers

Interrupts are identified either by their signal number (Unix) or by a name which is derived from
the name the signal has in the operating system. Most built-ins understand both identifiers.
It is usually more portable to use the symbolic name. The built-in current_interrupt/2 is
provided to check and/or generate the valid interrupt numbers and their mnemonic names.

14.3.2 Asynchronous handling

When an interrupt happens the ECL'PS® system calls an interrupt handling routine in a manner
very similar to the case of event handling. The only argument to the handler is the interrupt
number. Just as event handlers may be user defined, so it is possible to define interrupt handlers.
The goal

set_interrupt_handler(N, PredSpec)

assigns the procedure specified by PredSpec as the interrupt handler for the interrupt identified
by N (a number or a name). Some interrupts can not be caught by the user (e.g. the kill signal),
trying to establish a handler for them yields an error message.

To test interrupt handlers, the built-in kill/2 may be used to send a signal to the own process.
The predicate get_interrupt_handler/3 may be used to find the current interrupt handler for
an interrupt N, in the same manner as get_error_handler:

get_interrupt_handler(N, PredSpec, HomeModule)

The predicates reset_interrupt_handler/1 and reset_interrupt_handlers/0 are used to re-
set a particular interrupt handler or all interrupt handlers to their default values.

An interrupt handler has one optional argument, which is the interrupt number. There is no
argument corresponding to the error culprit, since the interrupt has no relation to the currently
executed predicate. A handler may be defined which takes no argument (such as when the

109

handler is defined for only one interrupt type). If the handler has one argument, the identifier
of the interrupt is passed to the handler when it is called.

When an interrupt occurs, the system halts what it is currently doing and calls the interrupt
handler. Just as in the case with error handling, the interrupt handler can be any Prolog
procedure. However, unlike the situation in the case of error handling, when the handler exits,
be it with success or failure, the execution is resumed at the point where it was interrupted,
the interrupt handling is in this case completely independent?. This “resume and forget” policy
means that to the Prolog program, an interrupt is “invisible” — providing the handler has no
side effects, the program continues as if the interrupt had never happened. As a consequence
it is not significant whether the handler succeeds or fails. However, again just as in the case
of error handlers, a call to the predicate exit_block/1 may be made in order to escape from
within the handler to the corresponding call of block/3. Obviously, in this case the interrupted
execution can no longer be resumed.

There are a few special settings for interrupt handlers:

default /0
performs the standard UNIX handling of the specified interrupt (signal). Setting this
handler is equivalent to calling signal(N, SIG_DFL) on the C level. Thus e.g. specifying

?- set_interrupt_handler(int, default/0)

will exit the ECL!PS® system when AC is pressed.

true/0
This is equivalent to calling signal(N, SIG_IGN) on the C level, ie. the interrupt is ignored.

event/1
The signal is handled by posting a (synchronous) event. The event name is the symbolic
name of the interrupt.

Apart from these special cases, all other arguments will result in the specified predicate to be
called when the appropriate interrupt occurs.

14.3.3 Example

Here is an example for the use of an asynchronous timer signal and a synchronous event handler
for implementing a time-out predicate. Mapping the interrupt to an event is necessary in order
to cleanly abort the running excecution at a well-defined point in execution.

timeout (Goal, Seconds, TimeOutGoal) :-

block(
timeout_once(Goal, Seconds),
timeout,
call(TimeOutGoal)

).

timeout_once(Goal, Seconds) :-

?Note that since the interrupt handler has only one optional argument which is a number, it cannot bind any
variables in the current resolvent.

110

set_timer(real,Seconds),

call(Goal),

]

set_timer(real,0).
timeout_once(_, _) :-

set_timer(real,0),

fail.
timeout_handler :-
set_timer(real,0),

exit_block(timeout).

:- set_interrupt_handler(alrm, event/1).
:- set_event_handler(alrm, timeout_handler/0).

111

112

Chapter 15
Debugging

NOTE: The ECL'PS® debugger has been completely reimplemented for release 4.1. The de-
bugger is now more modular, easier to extend and can be equipped with different user interfaces
(command line, graphical, programmable). It is also more reliable and more scalable with respect
to large applications.

Some features of the old debugger are no longer supported, they fall into two categories:

o Features that have been dropped for good in order to reduce time and space overheads and
make the system more scalable. These include the possibility of inspecting exited subtrees,
the availability of instantiations at fail- and leave-ports, and the tracing of cut and unify
ports.

o Features that are desirable and may be reintroduced in some form in forthcoming releases.
These include some support for retrying goals and the tracing of external predicates.

15.1 The Box Model

The ECL'PS® debugger is based on a port model which is an extension of the classical Box
Model commonly used in Prolog debugging.

A procedure invocation (or goal) is represented by a box with entry and exit ports. Each time a
procedure is invoked, a box is created and given a unique invocation number. The invocations
of subgoals of this procedure are seen as boxes inside this procedure box.

Tracing the flow of the execution consists in tracing the crossing of the execution flow through
any of the port of the box.

The five basic ports of the box model of ECL‘PS® are the CALL, EXIT, REDO, FAIL and
NEXT ports, the suspension facilities are traced through the DELAY and RESUME ports, and
the exceptional exit is indicated by LEAVE.

CALL: When a procedure is invoked, the flow of the execution enters the procedure box by
its CALL port and enters the first clause box which could (since not all clauses are tried,
some of them being sure to fail, i.e. indexing is shown) unify with the goal. It may happen
that a procedure is called with arguments that make it sure to fail (because of indexing).
In such cases, the flow does not enter any clause box.

For each CALL port a new procedure box is created and is given:

113

LEAVE

CALL \
RESUME
K Clause 1 |
REDO
NEXT
Clause 2 |
NEXT
""" EXIT
*EXIT
Clausen
r FAIL

Figure 15.1: The box model

e an invocation number that is one higher than that given for the most recent CALL
port. This allows to uniquely identify a procedure invocation and all its corresponding
ports.

e a level that is one higher than that of its parent goal.

The displayed variable instantiations are the ones at call time, i.e. before the head unifi-
cation of any clause.

EXIT: When a clause of a predicate succeeds (i.e. unification succeeded and all procedures
called by the clause succeeded), the flow gets out of the box by the EXIT port of both
boxes (only the EXIT port of the procedure boz is traced).

When a procedure exits non-deterministically (and there are still other clauses to try on
that procedure or one of its children goals has alternatives which could be resatisfied), the
EXIT port is traced with an asterisk (*EXIT). When the last possibly matching clause of
a procedure is exited, the exit is traced without asterisk. This means that this procedure
box will never be retried as there is no other untried alternative.

The instantiations shown in the EXIT port are the ones at exit time, they result from the
(successful) execution of the procedure.

FAIL: When a clause of a procedure fails (because head unification failed or because a sub-goal
failed), the flow of the execution exits the clause box and leaves the procedure box via
the FAIL port. Note that the debugger cannot display any argument information at FAIL
ports (an ellipsis ... is displayed instead for each argument).

NEXT: If a clause fails and there is another possibly matching clause to try, then that one
is tried for unification. The flow of the execution from the failure of one clause to the

114

head unification of a following clause is traced as a NEXT port. The displayed variable
instantiations are the same as those of the corresponding CALL or REDO port.

ELSE: This is similar to the NEXT port, but indicates that the next branch of a disjunction
(;/2) it tried after the previous branch failed. The predicate that gets displayed with the
port is the predicate which contains the disjunction (the immediate ancestor).

REDO: When a procedure box is exited trough an *EXIT port, the box can be retried later
to get a new solution. This will happen when a later goal fails. The backtracking will
cause failing of all procedures that do not have any alternative, then the execution flow
will enter a procedure box that an contains alternative through a REDO port.

Two situations may occur: either the last tried clause has called a procedure that has left
a choice point (it has exited through an *EXIT port). In that case the nested procedure
box is re-entered though another REDO-port.

Otherwise, if the last clause tried does not contain any nondeterministically exited boxes,
but there are other untried clauses in the procedure box, the next possibly matching clause
will be tried.

The last REDO port in such a sequence is the one which contains the actual alternative
that is tried. The variable instantiations for all REDO ports in such a sequence are the
ones corresponding to the call time of the last one.

LEAVE: This port allows to trace the execution of a the block/3 and exit_block/1 predicates
within the box model. The predicate block/3 is traced as a normal procedure. If the
goal in its first argument fails, block/3 fails, if it exits, block/3 exits. If the predicate
exit_block/1 is called (and exited since it never fails), all the goals inside the matching
block are left through a special port called LEAVE, so that each entry port matches with
an exit port. The recover procedure (in the third argument of block/3) is then called and
traced normally and block/3 will exit or fail (or even leave) depending on the recover
procedure.

As with the FAIL port, no argument value are displayed in the LEAVE port.

DELAY: The displayed goal becomes suspended. This is a singleton port, it does not enter
or leave a box. However, a new invocation number is assigned to the delayed goal, and
this number will be used in the matching RESUME port. The DELAY port is caused by
one of the built-in predicates suspend/3, suspend/4, make_suspension/3 or a delay
clause. The port is displayed just after the delayed goal has been created.

RESUME: When a waking condition causes the resuming of a delayed goal, the procedure
box is entered through its RESUME port. The box then behaves as if it had been entered
through its CALL port. The invocation number is the same as in its previous DELAY
port. which makes it easy to identify corresponding delay and resume events. However
the depth level of the RESUME corresponds to the waking situation. It is traced like a
subgoal of the goal which has caused the waking.

In the rest of this chapter the user interface to the debugger is described, including the commands
available in the debugger itself as well as built-in predicates which influence it. Some of the
debugger commands are explained using an excerpt of a debugger session. In these examples,
the user input is always underlined (it is in fact not always output as typed) to distinguish it

115

from the computer output. For the description of the windowing interface to the debugger in
the KEGI environment see [5].

15.2 Format of the Tracing Messages

All trace messages are output to the debug_output stream, (see section 12.2), the debugger
command input is taken from the stream debug_input. These streams are by default connected
to the user’s terminal.

The format of one trace line is as follows:

S+(4) 2 *EXIT module:foo(one, X, two) %>
123 456 7 8 9

1. The first character shows some properties of the displayed procedure. It may be one of

e C - an external procedure, not implemented in Prolog

o 5 - a skipped procedure, i.e. a procedure whose subgoals are not traced
2. A '+’ displayed here shows that the procedure has a spy point set.

3. The number between parentheses shows the box invocation number of this procedure call.
Since each box has a unique invocation number, it can be used to identify ports that
belong to the same box. It also shows how many procedure redos have been made since
the beginning of the query. Only boxes that can be traced obtain an invocation number,
for instance subgoals of a procedure which is compiled in debug mode or has its skip-flag
set are not numbered.

When a delayed goal is resumed, it keeps the invocation number it was assigned when
it delayed. This makes it easy to follow all ports of a specified call even in data-driven
computation.

4. The second number shows the level or depth of the goal, i.e. the number of its ancestor
boxes. When a subgoal is called, the level increases and after exit it decreases again. The
initial level is 1.

Since a resumed goal is considered to be a descendant of the procedure that woke it, the

level of a resumed goal may be different from the level the goal had when it delayed.

5. An asterisk before an EXIT means that this procedure is nondeterministic and that it
might be resatisfied.

6. The next word is the name of the port. It might be missing if the displayed goal is not
the current position in the execution (e.g. when examining ancestors or delayed goals).

CALL a procedure is called for the first time concerning a particular invocation,
DELAY a procedure delays,

EXIT a procedure succeeds,

FAIL a procedure fails, there is no (other) solution,

LEAVE aprocedure is left before having failed or exited because of a call to exit_block/1,

116

NEXT the next possibly matching clause of a procedure is tried because unification failed
or a sub-goal failed,
ELSE the next branch of a disjunction is tried because some goal in the previous branch

failed.
REDO a procedure that already gave a solution is called again for an alternative,

RESUME a procedure is woken (the flow enters the procedure box as for a call) because
of a unification of a suspending variable,

7. The optional module name followed by a colon. Printing of the module can be enabled
and disabled by the debugger command m. If it is enabled, the module from where the
procedure is called is displayed. By default the module printing is disabled.

8. The goal is printed according to the current instantiations of its variables. Arguments of
the form ... represent subterm that are not printed due to the depth limit in effect. The
depth limit can be changed using the < command.

The goal is printed with the current output_mode settings. which can be changed using
the o command.

9. The prompt of the debugger, which means that it is waiting for a command from the user.

15.3 Debugging-related Predicate Properties

Predicates have a number of properties which can be listed using the pred/1 built-in. The
following predicate flags and properties affect the way the predicate is traced by the debugger:

debugged
Indicates whether the predicate has been compiled in debug-compile mode. If on, calls
the the predicate’s subgoal will be traced. The value of this property can only be changed
by re-compiling the predicate in a different mode.

leash
If notrace, no port of the predicate will be shown in the trace (but the invocations will be
counted nevertheless). If stop, the ports of this predicate will be shown and the debugger
will stop and await new commands. (The print setting is currently not supported). The
value of this property can be changed with traceable/1, untraceable/1 or set_flag/3.

spy
If on, the predicate has a spy-point and the debugger will stop at its ports when in leap
mode. The value of this property can be changed with spy/1, nospy/1 or set_flag/3.
skipped

If on, the predicate’s subgoal will not be traced even if it has been compiled in debug-
compile mode. The value of this property can be changed with skippped/1, unskippped/1
or set_flag/3.

start_tracing
If on, a call to the predicate will activate the debugger if it is not already running. Only
the execution within this predicate’s box will be traced. This is useful for debugging part of
a big program without having to change the source code. The effect is similar to wrapping
all call of the predicate into trace/1.

117

15.4 Starting the Debugger

Several methods can be used to switch the debugger on. If the interactive top-level is used, the
commands trace/0 and debug/0 are used to switch the debugger on for the following queries
typed from the top-level. trace/0 will switch the debugger to creep mode whereas debug/0
will switch it in it leap mode. When the debugger is in it creep mode, it will prompt for a
command at the crossing of the first port of a leashed procedure. When the debugger is in leap
mode, it will prompt for a command at the first port of a leashed procedure that has a spy
point. The debugger is switched off either from the toplevel with the commands nodebug/0
or notrace/0, or by typing n or N to the debugger prompt.

A spy point can be set on a procedure using spy/1 (which will also switch the debugger to leap)
and removed with nospy/1. They both accept a SpecList as argument. Note that set_flag/3
can be used to set and reset spy points without switching the debugger on and without printing
messages.

debugging/0 can be used to list the spied predicates and the current debugger mode.

[eclipse 1]: spy writeln/1.
spypoint added to writeln / 1.

yes.
Debugger switched on - leap mode
[eclipse 2]: debugging.

Debug mode is leap

writeln / 1 is being spied

yes.
[eclipse 3]: true, writeln(hello), true.

B+(2) 0 CALL writeln(hello) %> 1 leap

hello

B+(2) 0 EXIT writeln(hello) %> c creep
B (3) 0 CALL true %4> 1 leap

yes.
[eclipse 4]: trace.
Debugger switched to creep mode

yes.
[eclipse 5]: true, writeln(hello), true.
B (1) 0 CALL true %> c creep

B (1) 0 EXIT true %> c creep

B+(2) 0 CALL writeln(hello) %> 1 leap
hello

B+(2) 0 EXIT writeln(hello) %> 1 leap

yes.

118

15.5 Debugging Parts of Programs

15.5.1 Mixing debuggable and non-debuggable code

The debugger can trace only procedures which have been compiled in debug mode. The com-
piler debug mode is by default switched on and it can be changed globally by setting the flag
debug_compile with the set_flag/2 predicate or using dbgcomp/0 or nodbgcomp/0. The
global compiler debug mode can be overruled on a file-by-file basis using one of the compiler
pragmas

:- pragma(nodebug) .
:- pragma(debug).

Once a program (or a part of it) has been debugged, it can be compiled in nodbgcomp mode so
that all optimisations are done by the compiler. The advantages of non-debugged procedures
are

e They run slightly faster than the debugged procedures when the debugger is switched off.
When the debugger is switched on, the non-debugged procedures run considerably faster
than the debugged ones and so the user can selectively influence the speed of the code
which is being traced as well as its space consumption.

e Their code is shorter than that of the debugged procedures.

Although only procedures compiled in the dbgcomp mode can be traced, it is possible to mix the
execution of procedures in both modes. Then, calls of nodbgcomp procedures from dbgcomp ones
are traced, however further execution within nodbgcomp procedures, i.e. the execution of their
subgoals, no matter in which mode, is not traced. In particular, when a nodbgcomp procedure
calls a dbgcomp one, the latter is normally not traced. There are two important exceptions from
this rule:

e When a debuggable procedure has delayed and its DELAY port has been traced, then its
RESUME port is also traced, even when it is woken inside non-debuggable code.

¢ When non-debuggable code meta-calls a debuggable procedure (i.e. via call/1), then this
procedure can be traced. This is a useful feature for the implementation of meta- predi-
cates like setof/3, because it allows to hide the details of the setof-implementation, while
allowing to trace the argument goal.

Setting a procedure to skipped (with set_flag/3 or skipped/1) is another way to speed up the
execution of procedures that do not need to be debugged. The debugger will ignore everything
that is called inside the skipped procedure like for a procedure compiled in nodbgcomp mode.
However, the debugger will keep track of the execution of a procedure skipped with the command
s of the debugger so that it will be possible to ’creep’ in it on later backtracking or switch the
debugger to creep mode while the skip is running (e.g. by interrupting a looping predicate with
"C and switching to creep mode).

The two predicates trace/1 and debug/1 can be used to switch on the debugger in the middle of
a program. They execute their argument in creep or leap mode respectively. This is particularly
useful when debugging large programs that take too much time (or need a lot of memory) to
run completely with the debugger.

119

[eclipse 1]: debugging.
Debugger is switched off

yes.
[eclipse 2]: big_goall, trace(buggy_goal), big_goal2.
Start debugging - creep mode

(1) 0 CALL buggy_goal %> c creep

(1) 0 EXIT buggy_goal %> c creep
Stop debugging.

yes.

It is also possible to enable the debugger in the middle of execution without changing the code.
To do so, use set_flag/3 to set the start_tracing flag of the predicate of interest. Tracing will
then start (in leap mode) at every call of this predicate!. To see the starting predicate itself,
set a spy point in addition to the start_tracing flag:

[eclipse 1]: debugging.
Debugger is switched off

yes.
[eclipse 2]: set_flag(buggy_goal/0O, start_tracing, on),
set_flag(buggy_goal/0, spy, on).

yes.
[eclipse 3]: big_goall, buggy_goal, big_goal2.
+(0) 0 CALL buggy_goal %> creep
+(0) 0 EXIT buggy_goal %> creep

yes.

15.6 Using the Debugger via the Command Line Interface

This section describe the commands available at the debugger prompt in the debugger’s com-
mand line interface (for the graphical user interface, please refer to the online documentation).
Commands are entered by typing the corresponding key (without newline), the case of the letters
is significant. The action of some of them is immediate, others require additional parameters to
be typed afterwards. Since the ECL'PS® debugger has the possibility to display not only the
goal that is currently being executed (the current goal or procedure), but also its predecessors,
some of the commands may work on the displayed procedure whatever it is, and others on the
current one.

15.6.1 Counters and Command Arguments

Some debugger commands accept a counter (a small integer number) before the command letter
(e.g. ¢ creep). The number is just prefixed to the command and terminated by the command
letter itself. If a counter is given for a command that doesn’t accept a counter, it is ignored.

!provided the call has been compiled in debug_compile mode, or the call is a meta-call

120

When a counter is used and is valid for the command, the command is repeated, decrementing
the counter until zero. When repeating the command, the command and the remaining counter
value is printed after the debugger prompt instead of waiting for user input.

Some commands prompt for a parameter, e.g. the j (jump) command asks for the number of the
level to which to jump. Usually the parameter has a sensible default value (which is printed in
square backets). If just a newline is typed, then the default value is taken. If a valid parameter
value is typed, followed by newline, this value is taken. If an illegal letter is typed, the command
is aborted.

15.6.2 Commands to Continue Execution

All commands in this section continue program execution. They difference between them is the
condition under which execution will stop the next time. When execution stops again, the next
trace line is printed and a new command is accepted.

nc creep
This command allows exhaustive tracing: the execution stops at the next port of any
leashed procedure. No further parameters are required, a counter n will repeat the com-
mand n times. It always applies on the current procedure, even when the displayed pro-
cedure is not the current one (e.g. during term inspection). An alias for the ¢ command
is to just type newline (Return-key).

ns skip
If given at an entry port of a box (CALL, RESUME, REDO), this command skips the
execution until an exit port of this box (EXIT, FAIL, LEAVE). If given in an exit port it
works like creep. (Note that sometimes the i command is more appropriate, since it skips
to the next port of the current box, no matter which). A counter, if specified, repeats this
command.

nl leap
Continues to the next spy point (any port of a procedure which has its spy flag set). A
counter, if specified, repeats this command.

i par invocation skip
Continue to the next port of the box with the invocation number specified. The default
invocation number is the one of the current box. Common uses for this command are to
skip from CALL to NEXT, from NEXT to NEXT/EXIT/FAIL, from *EXIT to REDO,
or from DELAY to RESUME.

j par jump to level

Continue to the next port with the specified nesting level (which can be higher or lower
than the current one). The default is the parent’s level, i.e. to continue until the current
box is exited, ignoring all the remaining subgoals of the current clause. This is particularly
useful when a ¢ (creep) has been typed where a s (skip) was wanted.

n nodebug
This command switches tracing off for the remainder of the execution. However, the next
top-level query will be traced again. Use N to switch traceing off permanently.

121

v var/term modification skip
This command sets up a monitor on the currently displayed term, which will cause a
MODIFY-port to be raised on each modification to any variable in the term. These ports
will all have a unique invocation number which is assigned and printed at the time the
command is issued. This number can then be used with the i command to skip to where
the modifications happen.

[eclipse 4]: [X, Y] :: 1..9, X #>= Y, Y#>1.
(1) 1 CALL [X, Y] :: 1..9 %> var/term spy? Ly]

Var/term spy set up with invocation number (2) %> jump to invoc: [1]7 2
(2) 3 MODIFY [X{[1..9]}, Y{[2..9]}] :: 1..9 %> jump to invoc: [2]?
(2) 4 MODIFY [X{[2..9]}, Y{[2..9]}] :: 1..9 %> jump to invoc: [2]?

Note that these monitors can also be set up from within the program code using one of
the built-ins spy_var/1 or spy_term/2.

Z par zap
This command allows to skip over, or to a specified port. When this command is executed,
the debugger prompts for a port name (e.g. fail or a negated port name (e.g. ~exit).
Execution then continues until the specified port appears or, in the negated case, until
another than the specified port appears. The default is the negation of the current port,
which is useful when exiting from a deep recursion (a long sequence of EXIT or FAIL
ports).

15.6.3 Commands to Modify Execution

f par fail
Force a failure of the procedure with the specified invocation number. The default is to
force failure of the current procedure.

a abort
Abort the execution of the current query and return to the top-level. The command
prompts for confirmation.

15.6.4 Display Commands

This group of commands cause some useful information to be displayed.

d par delayed goals
Display the currently delayed goals. The optional argument allows to restrict the diplay
to goal of a certain priority only. The goals are displayed in a format similar to the trace
lines, except that there is no depth level and no port name. Instead, the goal priority is
displayed in angular brackets:

[eclipse 5]: [X, Y] :: 1..9, X #>= Y, Y #>= X.
(1) 1 CALL [X, Y] :: 1..9 %> creep
(1) 1 EXIT [X{[1..9]}, Y{[1..9]}] :: 1..9 %> creep
(2) 1 CALL X{[1..91} - Y{[1..9]1}#>=0 %> creep
(3) 2 DELAY X{[1..91} - Y{[1..91}#>=0 %> creep
(2) 1 EXIT X{[1..91} - Y{[1..91}#>=0 %> creep

122

(4) 1 cALL Y{[1..9]1} - X{[1..9]1}#>=0
(5) 2 DELAY Y{[1..9]} - X{[1..9]}#>=0

4> creep
%> delayed goals
with prio: [all]?

delayed goals
(3) <2> X{[1..9]} - Y{[1..9]}#>=0
(8) <2> Y{[1..9]} - X{[1..9]}#>=0
———————————— end
(56) 2 DELAY Y{[1..9]} - X{[1..9]}#>=0

h>

u par scheduled goals

Similar to the d command, but displays only those delayed goals that are already scheduled
for execution. The optional argument allows to restrict the diplay to goal of a certain
priority only. Example:

[eclipse 13]: [X,Y,Z]::1..9, X#>Z, Y#>Z, Z#>1.

(1) 1 CALL [X, Y, Z] :: 1..9 %> creep

(1) 1 EXIT [X{[1..9]}, Y{[1..9]}, Z{[1..9]1}] :: 1..9 %> creep

(2) 1 CALL X{[1..9]1} - Z{[1..9]1}+-1#>=0 > creep

(3) 2 DELAY X{[2..91} - Z{[1..8]1}#>=1 %> creep

(2) 1 EXIT X{[2..9]1} - Z{[1..8]}+-1#>=0 > creep

(4) 1 CALL Y{[1..9]1} - Z{[1..8]1}+-1#>=0 > creep

(6) 2 DELAY Y{[2..91} - Z{[1..8]1}#>=1 %> creep

(4) 1 EXIT VY{[2..9]1} - Z{[1..8]1}+-1#>=0 > creep

(6) 1 CALL O + Z{[1..8]}+-2#>=0 > creep

(3) 2 RESUME X{[2..9]} - Z{[2..8]}#>=1 J> scheduled goals
with prio: [all]?

—————— scheduled goals ------
(6) <2> Y{[2..9]1} - Z{[2..8]}#>=1

end

(3) 2 RESUME X{[2..91} - Z{[2..8]}#>=1 >

all ancestors
Prints all the current goal’s ancestors from the oldest to the newest. The display format

is similar to trace lines, except that is displayed in the port field.

print definition

If given at a trace line, the command displays the source code of the current predicate. If
the predicate is not written in Prolog, or has not been compiled from a file, or the source
file is inaccessible, no information can be displayed.

help

Print a summary of the debugger commands.

help

Identical to the h command.

15.6.5 Navigating among Goals

While the debugger waits for commands, program execution is always stopped at some port of
some predicate invocation box, or goal. Apart from this current goal, two types of other goals

123

are also active. These are the ancestors of the current goal (the enclosing, not yet exited boxes
in the box model) and the delayed goals. The debugger allows to navigate among these goals
and inspect them.

g ancestor
Move to and display the ancestor goal (or parent) of the displayed goal. Repeated
application of this command allows to go up the call stack.

X par examine goal
Move to and display the goal with the specified invocation number. This must be one of
the active goals, i.e. either an ancestor of the current goal or one of the currently delayed
goals. The default is to return to the current goal, i.e. to the goal at whose port the
execution is currently stopped.

15.6.6 Inspecting Goals and Data

This family of commands allow the subterms in the goal displayed at the port to be inspected?.
The ability to inspect subterms is designed to help overcome two problems when examining a
large goal with the normal display of the goal at a debug port:

1. Some of the subterms may be omitted from the printed goal because of the print-depth;

2. If the user is interested in particular subterms, it may be difficult to precisely locate them
from the surrounding arguments, even if it is printed.

With inspect subterm commands, the user is able to issue commands to navigate through the
subterms of the current goal and examine them. A current subterm of the goal is maintained,
and this is printed after each inspect subterm command, instead of the entire goal. Initially, the
current subterm is set to the goal, but this can then be moved to the subterms of the goal with
navigation commands.

Once inspect subterm is initiated by an inspect subterm command, the debugger enters into the
inspect subterm mode. This is indicated in the trace line by INSPECT’ instead of the name of
the port, and in addition, the goal is not shown on the trace line:

INSPECT (length/2) %>

Instead of showing the goal, a summary of the current subterm — generally its functor and arity
if the subterm is a structure — is shown in brackets.

par move down to parth argument

The most basic command of inspect subterm is to move the current subterm to an argu-
ment of the existing current subterm. This is done by typing a number followed by carriage
return, or by typing #, which causes the debugger to prompt for a number. In both cases,
the number specifies the argument number to move down to. In the following example,
the # style of the command is used to move to the first argument, and the number style
of the command to move to the third argument:

2In ECL'PS® 4.0, this was implemented as a submode (invoked with two key strokes - Hi). It is now fully
integrated into the debugger

124

(1) 1 CALL foo(a, g(b, [1, 21), X) %> inspect arg #: 1<NL>
INSPECT (atom) %>

(1) 1 CALL foo(a, g(b, [1, 21), X) %> 3<NL>
X
INSPECT (var) %>

The new current subterm is printed, followed by the INSPECT trace line. Notice that
the summary shows the type of the current subterm, instead of Name/Arity, since in both
cases the subterms are not structures.

If the current subterm itself is a compound term, then it is possible to recursively navigate
into the subterm:

(1) 1 CALL foo(a, g(b, [1, 21), X) #> 2<NL>
g(v, [1, 21)
INSPECT (g/2) %> 2<NL>
(1, 2]
INSPECT (list 1-head 2-tail) %> 2<NL>
[2]
INSPECT (list 1-head 2-tail) %>

Notice that lists are treated as a structure with arity 2, although the functor (./2) is not

printed.

In addition t