Sistemas Distribuídos Aula 19

Aula de hoje

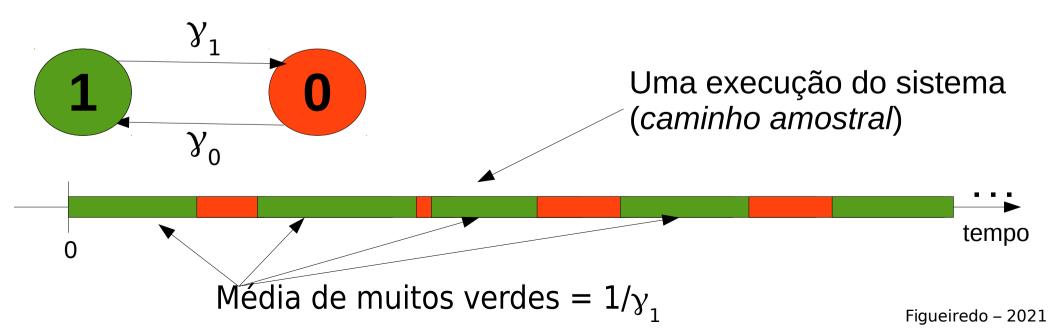
- Reliability e Availability
- Modelo de falhas
- Falhas na prática
- Redundância
- Triple Module Redundancy

- Por que sistemas reais falham?
- O que é uma falha?
- Queremos construir sistemas que sejam tolerantes a falhas (fault tolerant)
 - mas tolerância a falhas é um conceito vago
- Definir propriedades que um sistema deve oferecer
 - availability, reliability, safety, maintainability
- Tolerante a falhas: ter bons índices nos indicadores destas propriedades

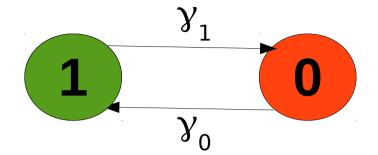
Reliability (confiabilidade)

- Reliability: tempo operacional continuamente até que falha ocorra
 - ex. tempo até lâmpada queimar
- Tempo geralmente é aleatório
 - distribuição desconhecida ou complicada
 - MTTF: Mean Time To Failure (média)
- Outro conceito relacionado: tempo em falha contínua até ser reparado
 - ex. tempo até lâmpada ser trocada depois de queimar
 - MTTR: Mean Time To Repair
- Mean Time Between Failures (MTBF) = MTTF + MTTR

Availability (disponibilidade)


- Availability: fração de tempo que sistema está operacional
 - ex. fração de tempo que lâmpada está operacional
- Definida em função de reliability e recovery
 - na média, A = MTTF/(MTTF+MTTR)
- Exemplo
 - lâmpada dura em média 4.5 anos e demora em média 1.5 dias para ser trocada
 - \blacksquare MTTF = 4.5 anos = 4.5*365 = 1642.5 dias
 - MTTR = 1.5 dia
 - \triangle A = 1642.5/(1642.5+1.5) = 0.999087

Availability != Reliability


- Conceitos são fundamentalmente diferentes
 - reliability: duração de tempo (até falha ou reparo)
 - availability: fração de tempo
- Reliability alto e availability baixo?
 - Sim: MTTF = 5 anos, MTTR = 3 anos
- Availability alto e reliability baixo?
 - Sim: MTTF = 10 s, MTTR = 1 ms
- Sistema deve oferecer alto realiability, alto availability

Modelo de Falhas

- Abstração matemática para falhas
- Assume que sistema possui dois estados
 - operacional (1), falho (0)
- Alterna entre os estados
 - tempo em cada estado aletatório, com médias $1/\gamma_1$ e $1/\gamma_0$ (γ_1 : taxa de falha, γ_0 : taxa de reparo)

Modelo de Falhas

- Assumir que tempo até falhar e reparar possui distribuição exponencial
 - **■** P(Falha < t) = $1 e^{-\gamma 1t}$
- Neste caso, temos uma cadeia de Markov!
- P[1] = fração tempo no estado 1 (depois de muito tempo) = $\gamma_0/(\gamma_1+\gamma_0)$ = availability (pela definição)
- Depende apenas da razão (availability != reliability)
- Modelo permite responder muitas outras perguntas
 - ex. quantas falhas em T unidades de tempo?

MTTF na Prática

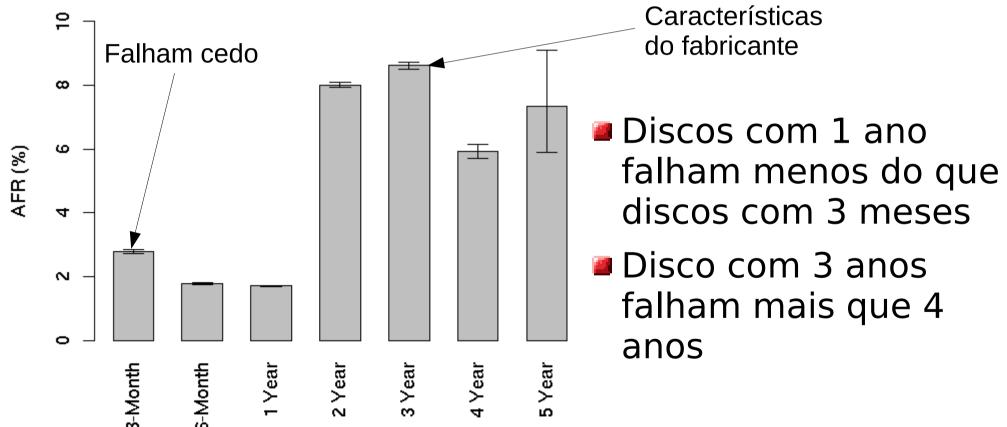
- Fabricante deve especificar MTTF do componente
 - ex. CPU, memória, disco, etc
 - necessário para calcular MTTF do sistema
- Para HDs, MTTF entre 300K e 1.5M horas

KEY SPECIFICATIONS

- 146-, 73- and 36-Gbyte capacities
- 3.3-msec average read and 3.8-msec average write seek times
- Up to 96-Mbytes/sec sustained transfer rate.
- 1.4 million hours full duty cycle MTBF
- Serial Attached SCSI (SAS), Ultra320 SCSI and 2 Gbits/sec Fibre Channel interfaces
- 5-year warranty
- 1M horas = 114 anos: como é possível?
- Valor estimado com milhares de casos em condições ideais, extrapolado com modelo matemático
 - realidade é bem diferente

HD Seagate Cheetah

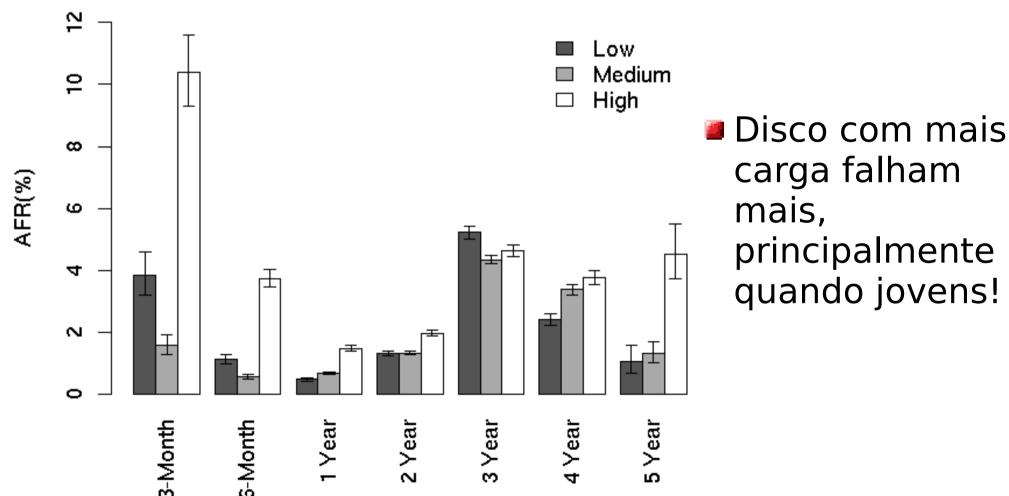
Estudo de Falhas em Sistemas


- Caracterização de falhas em grandes sistemas reais
 - +1000 servidores, discos, etc
- Fração relativa de troca de componentes

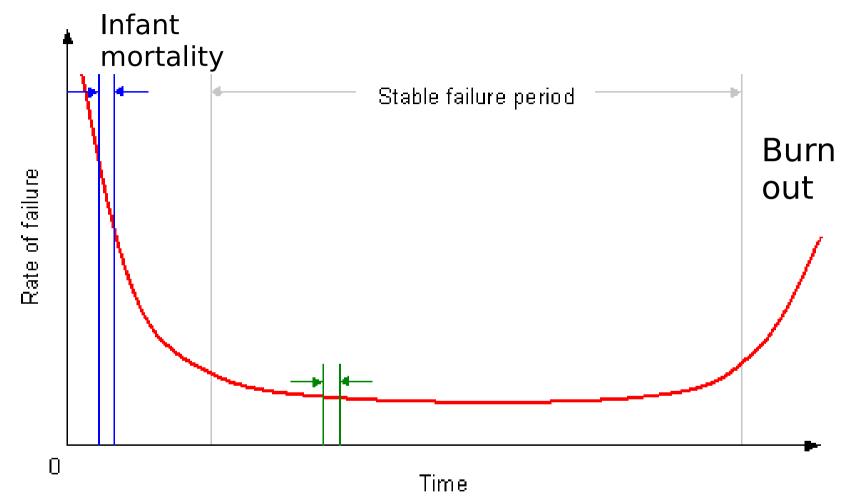
HPC1		COM1		COM2	
Component	%	Component	%	Component	%
Hard drive	30.6	Power supply	34.8	Hard drive	49.1
Memory	28.5	Memory	20.1	Motherboard	23.4
Misc/Unk	14.4	Hard drive	18.1	Power supply	10.1
CPU	12.4	Case	11.4	RAID card	4.1
motherboard	4.9	Fan	8	Memory	3.4
Controller	2.9	CPU	2	SCSI cable	2.2
QSW	1.7	SCSI Board	0.6	Fan	2.2
Power supply	1.6	NIC Card	1.2	CPU	2.2
MLB	1	LV Pwr Board	0.6	CD-ROM	0.6
SCSI BP	0.3	CPU heatsink	0.6	Raid Control.	0.6

Disco e memória estão entre principais causas de reparo

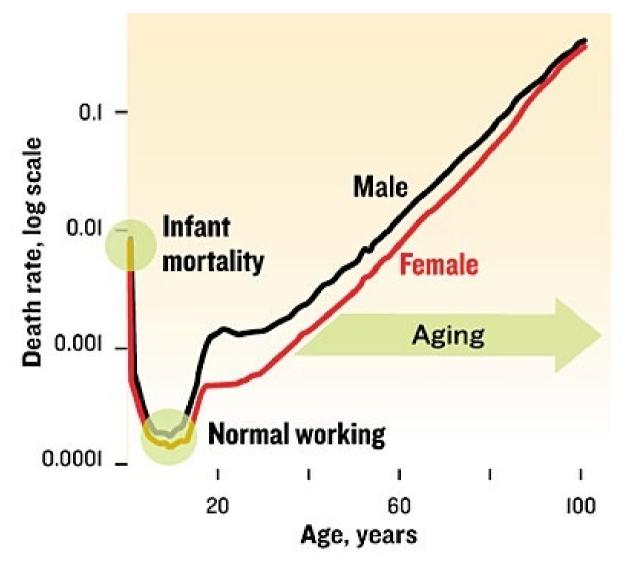
Estudo da Google sobre Discos


- Discos de um serviço (interno) da Google
- Estudo com +100 mil discos em 5 anos
 - taxa anual de falhas por idade

Failure Trends in a Large Disk Drive Population **Eduardo Pinheiro**, Wolf-Dietrich Weber, and Luiz André Barroso
5th USENIX Conference on File and Storage Technologies, 2007


Estudo da Google sobre Discos

- taxa anual de falhas por idade e carga
 - carga: bytes total escritos/lidos por semana


Failure Trends in a Large Disk Drive Population **Eduardo Pinheiro**, Wolf-Dietrich Weber, and Luiz André Barroso
5th USENIX Conference on File and Storage Technologies, 2007

Modelo para Taxa de Falha

- Curva do tipo bathtube (banheira)
 - taxa maior no início, depois cresce com o tempo
- Representa comportamento de muitos componentes

"Taxa de Falhas" em Pessoas

Human Mortality Rates (US, 1999)

- Outra curva do tipo banheira
- Ser humano é formado por componentes
- Modelos de sobrevida similares?

Lidando com Falhas

Como lidar com falhas?

Redundância!

- Natureza faz isto (dois olhos, dois rins, etc)
- Ideia: diferentes componentes fazendo mesma função
 - ex. dois HDs com os mesmos dados (replicação)
- Construir sistemas tolerantes a falhas utilizando partes que falham
 - essencial em sistemas distribuídos

Usando Redundância

- Como redundância pode ajudar?
- Exemplo: 1 HD possui availability de 90%. Gostaria que availability fosse 99.9%. Quantos HDs eu devo usar?
- avalilability = fração de tempo operacional = probabilidade de estar operacional = p
- p_k = probabilidade de ao menos um de k estar operacional
- Assumir que falhas são independentes (uma falha não afeta a outra, forte premissa)

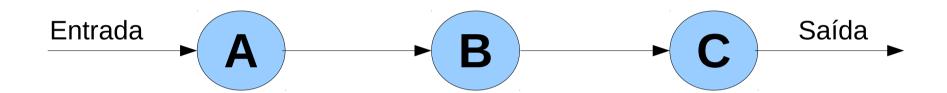
$$p_k = 1 - (1-p)^k$$
 (1-p)^k = prob. de todos falharem

p aumenta com k, converge para 1

Exemplo

Exemplo: 1 HD possui availability de 90%. Gostaria que availability fosse 99.9%. Quantos HDs eu devo usar?

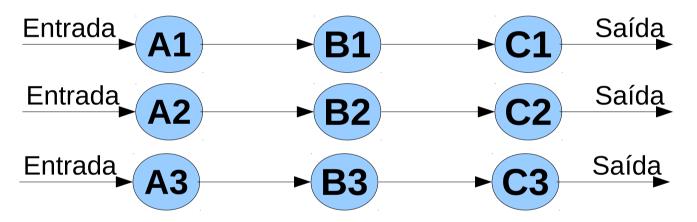
$$p_k = 1 - (1-p)^k$$


- $0.999 = 1 (1-0.9)^k \rightarrow k = 3$
- Outro lado da moeda: probabilidade de ao menos um estar em reparo?
 - assumindo independência nas falhas

$$q_k = 1 - p^k$$

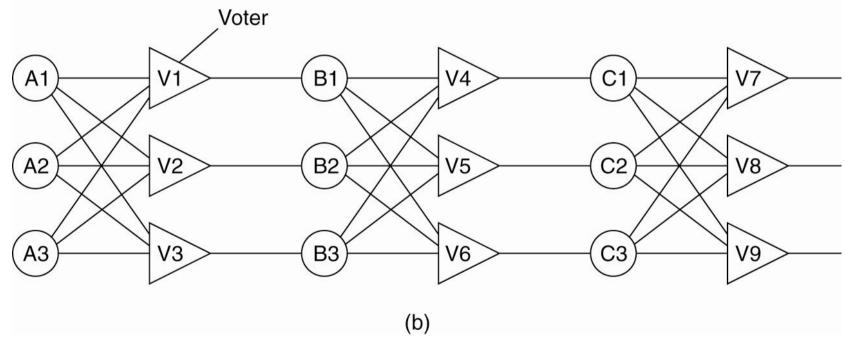
- Para $k=3 \rightarrow q_3 = 1 (0.9)^3 = 27.1\%$
- Grande fração de tempo com algum disco em reparo
 - aumenta com k

Organizando Componentes

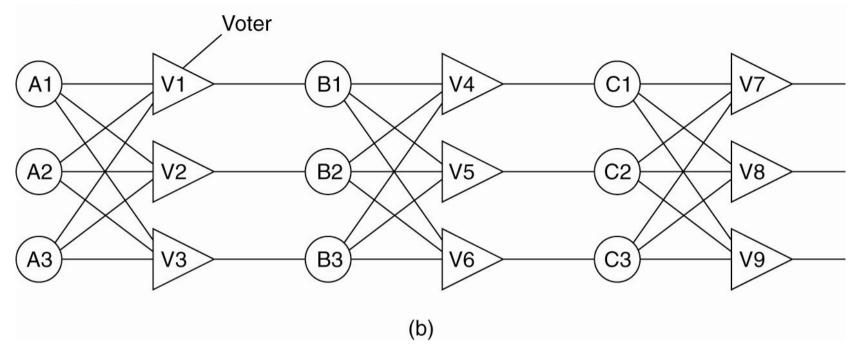

- Três módulos em sequência (A,B,C)
 - resultado do anterior enviado ao próximo

- Replicar componentes
 - ex. três cópias de cada componente
- Como organizar a redundância?

Linhas Independentes


- Ideia 0: replicar componentes de forma independente
 - ex. três linhas em paralelo

- Operacional quando não há falhas em alguma linha
- Não operacional se há falhas nas três linhas
 - mesmo quando em componentes distintos


Triple Modular Redundancy (TMR)

- Organizar componentes de forma não-independente
- Votador: circuito simples, se duas ou mais entradas são iguais, repassa entrada, caso contrário não repassa nada

- O que ocorre se A1, B2 e C3 falham?
- Funciona mesmo com uma falha em todas as linhas

Triple Modular Redundancy (TMR)

- Por que temos três votadores por nível?
 - um seria suficiente para corretude
- Votadores podem falhar!
 - redundância nos votadores
- O que ocorre se V1 e A1 falhar? OK
- O que ocorre de V1 e V2 falharem? Não OK!