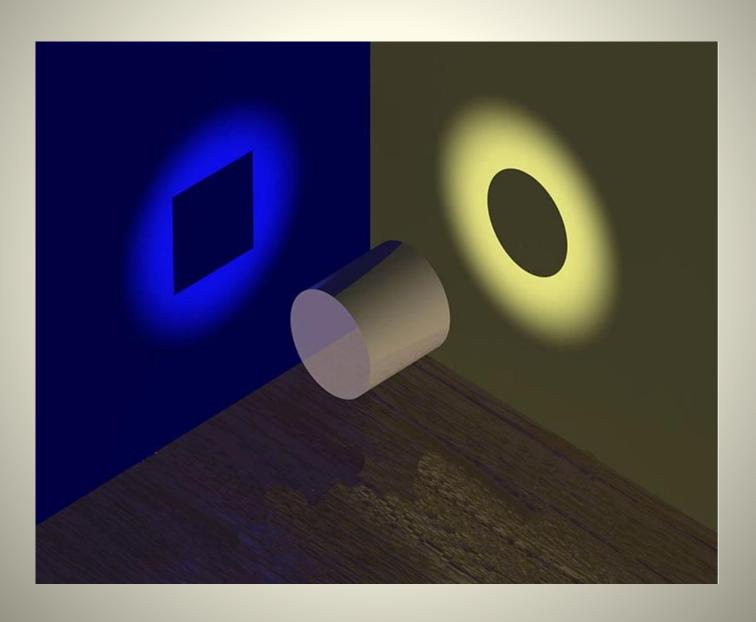
Podemos ver em Rⁿ?

Carlos Eduardo Pedreira
PESC - COPPE

Como se projeta = Como se vê



Porque (e quando) queremos 'ver' em Rⁿ?

Porque:

Frequentemente, é interessante ter uma ferramenta de suporte a decisão para auxiliar na tarefa de classificação. Busca-se que a decisão final seja tomada pelo usuário e não pelo 'sistema'.

Quando:

- Não se quer classificar automaticamente por razões éticas ou legais e.g. diagnósticos médicos.
- Existe informação adicional difícil de ser modelada mas relevante de ser incluída.

O problema de projeção em 2D

Dado um conjunto de observações X em \Re^n , encontre um mapeamento y = f(x) $f : \Re^n \to \Re^2$

tal que a **informação** (ou a estrutura) existente no espaço original **se preserva** (na medida do possível) em \Re^2 .

Mas, como definir 'o que' deve ser preservado?

Escolhendo critérios para projetar os dados

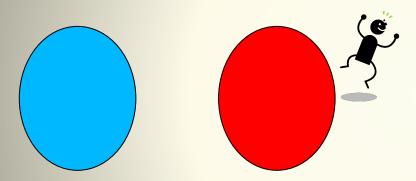
- Minimizar o <u>erro médio quadrático de</u> <u>reconstrução</u>.
- Buscar <u>preservar</u> a <u>topologia</u> ou a <u>estrutura de</u> <u>distância</u> no espaço projetado
 ².
- Produzir agrupamentos <u>concentrados</u> e <u>bem</u> <u>separados</u> no espaço projetado.

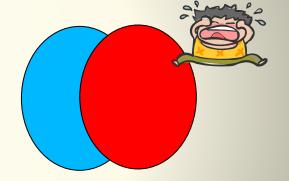
Bom para classificação!

Critério de separabilidade

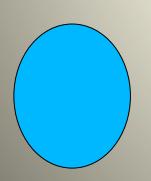
Queremos agrupamentos que sejam:

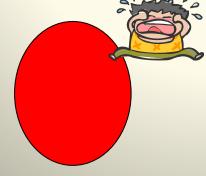
1) O mais separados possível





2) O mais concentrados possível





Exstem muitas possibilidades:

Manifold Learning

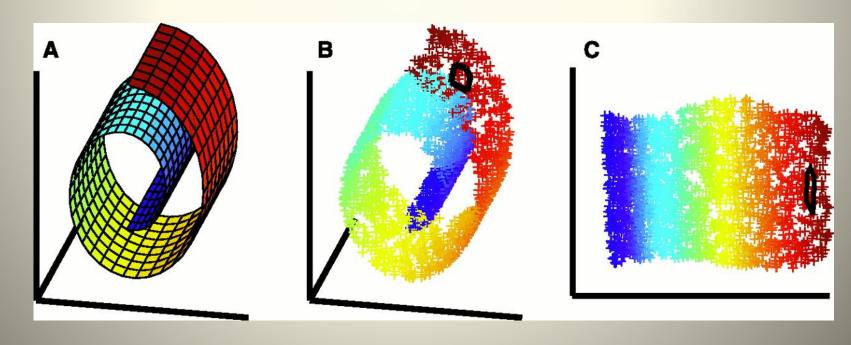
PCA -Principal Component Analisys

MDS - Multidimensional Scaling Supervisionado

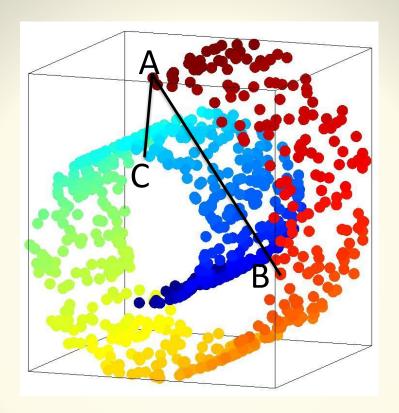
Outros métodos (alguns em desenvolvimento)

Manifold Learning: Desenrolando o Rocambole

A ideia central é revelar uma 'dimensão intrínseca' dos dados usando uma métrica baseada no menor caminho em um grafo de vizinhos mais próximos.



Se usarmos a distância Euclidiana, D_{AC} < D_{AB}



a estrutura real dos dados seria ocultada

Manifold Learning

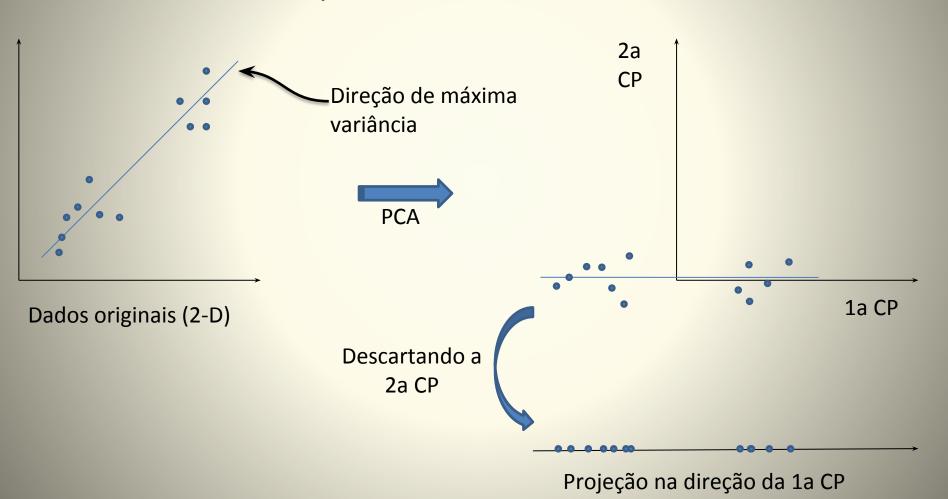
- Atrativo do ponto de vista teórico
- Dificil mostrar que essa estrutura de rocambole de fato existe em problemas reais
- Há vários algoritmos disponíveis na literatura
- Computacionalmente caro
- Sensível à ruído

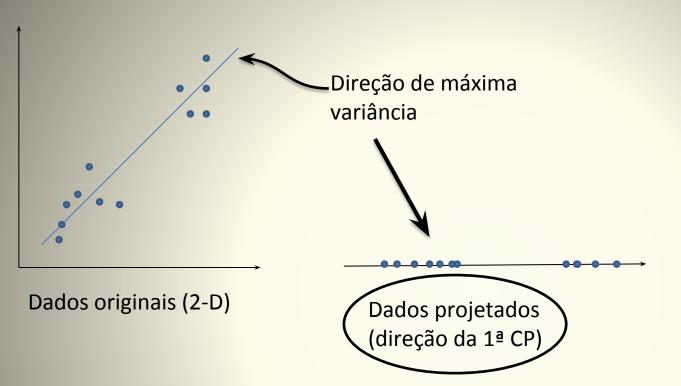
PCA

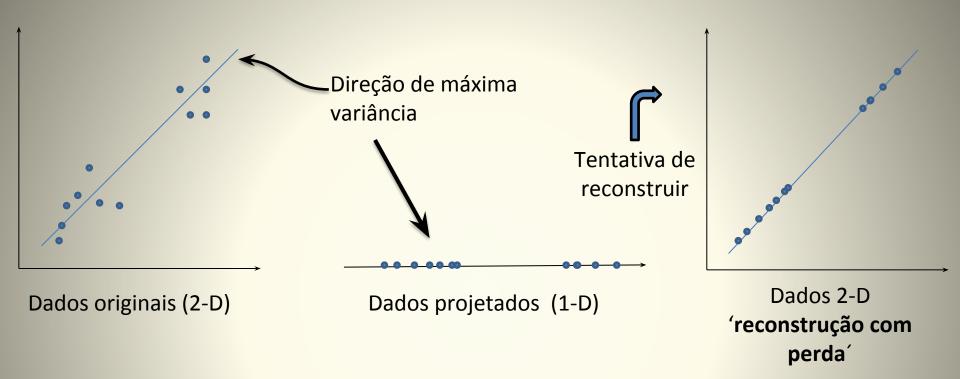
Projeções nas componentes pricipais (transformada de Karhunen) retêm o máximo da variação presente nos dados no espaço original (\Re^n) .

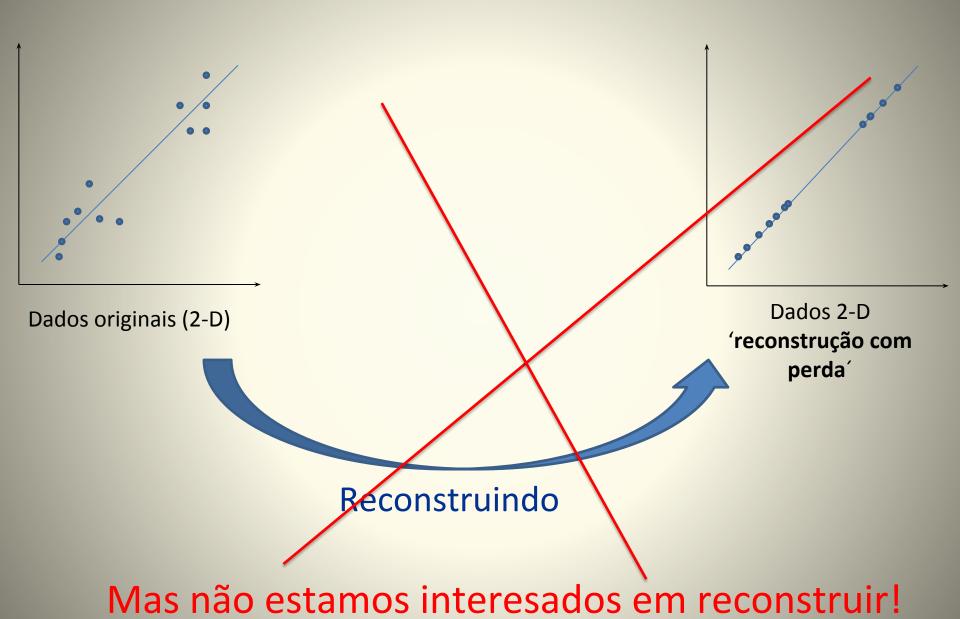
Como estamos interessados em 'visualização', iremos direcionar a atenção à primeira e segunda componentes.

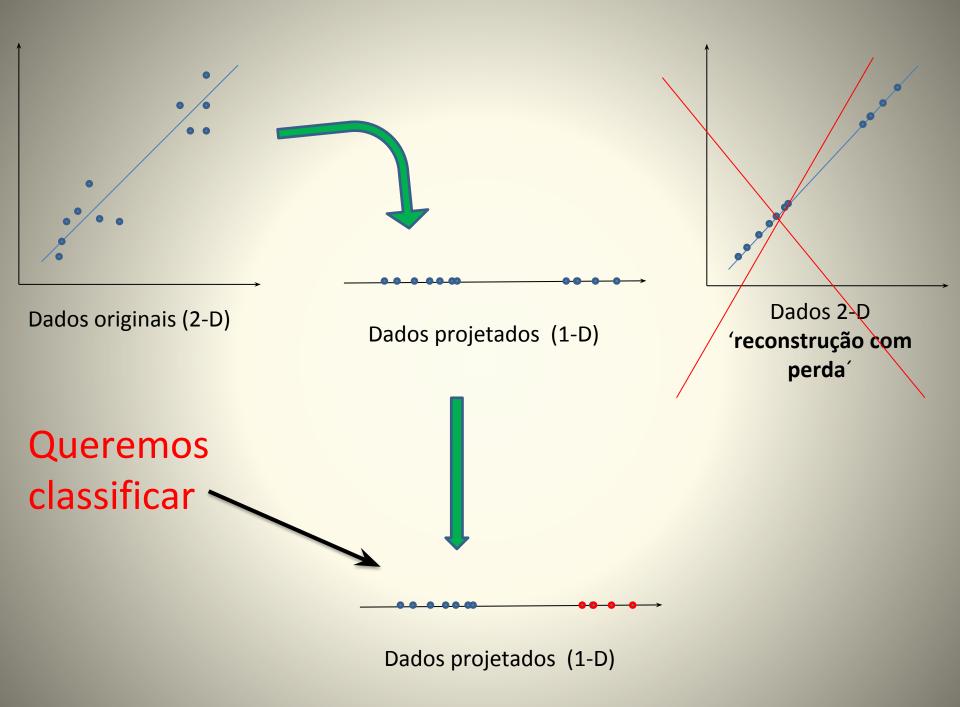
Vamos, por simplicidade, considerar uma projeção $\Re^2 \to \Re$ (normalmente estaríamos interessados em reduzir de $\Re^n \to \Re^2$)











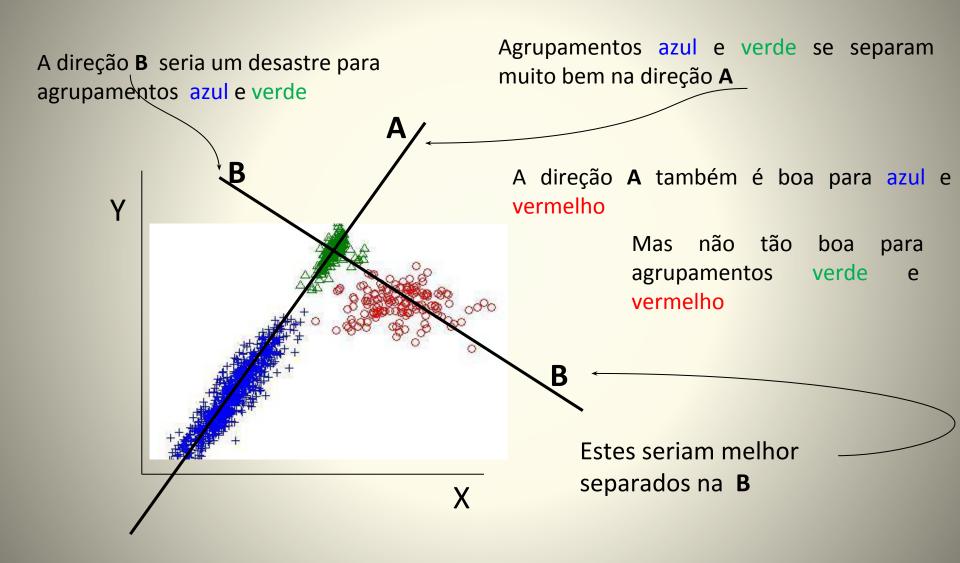
Porque usar PCA? (dispersão como critério)

- Porque a solução do problema de otimização envolvido é bem conhecida.
 Existem alguns algoritmos bastante testados para esta finalidade.
- Porque funciona bastante bem em muitas situações.

Mas não tão bem quanto gostaríamos ...

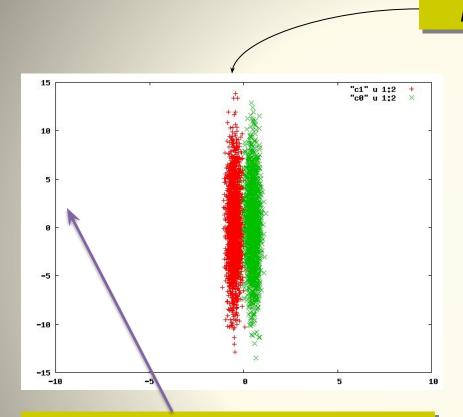
Porque?

Quando PCA vai mal para classificação



Quando PCA vai mal para classificação

Esta direção seria melhor



A direção de máxima variância não separa os dados de nenhuma maneira.

MDS - Muldimensional Scaling

Dado um conjunto de observações em \Re^n , <u>busca-se</u> <u>a melhor representação em 2-D</u> tal que a **estrutura original de distância** seja prevervada.

Note-se que este problema em geral não tem uma solução perfeita.

Vamos então <u>buscar uma solução otimizada</u>.

SMDS - Supervised Multidimensional Scaling

- É supervisado, utiliza-se portanto os rótulos das classes
- A 'quantidade' de <u>supervisão</u> pode ser <u>controlada pelo usuário</u>.

Consideremos um conjunto de 'n' observações $X = \{x_1, x_2, ..., x_n\}, x_i \in \Re^p$. Seja $D \in \Re^{n \times n}$ uma matriz simétrica que contém informação sobre as dissimilaridades entre os pares de observações. Ou seja, D_{ij} é a distância (Euclidiana) entre as observações x_i e x_i .

O Problema: Encontrar o conjunto de pontos $z_i \in \Re^2$ (i=1...n) tal que o seguinte critério é minimizado:

$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(D_{ij} - \left\| z_i - z_j \right\|_2 \right)^2$$

Introduzindo Supervisão:

$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij} - \|\mathbf{z}_i - \mathbf{z}_j\|_2)^2$$

o critério que tínhamos

$$\underset{\mathbf{z}_{1},...,\mathbf{z}_{n} \in \mathbb{R}^{S}}{\text{minimize}} \left\{ \frac{1}{2} (1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij} - \|\mathbf{z}_{i} - \mathbf{z}_{j}\|_{2})^{2} + \alpha \sum_{i:y_{i}=1} \sum_{j:y_{j}=2}^{2} \sum_{s=1}^{2} \left(\frac{D_{ij}}{\sqrt{S}} - (z_{js} - z_{is}) \right)^{2} \right\}$$

ά É usado para controlar a supervisão

Quanto maior for α, mais importancia é dada ao 2º termo, e consequentemente mais supervisado é o algoritmo.

Entendendo o custo que deve ser minimizado

$$\underset{\mathbf{z}_{1},...,\mathbf{z}_{n} \in \mathbb{R}^{S}}{\text{minimize}} \left\{ \frac{1}{2} (1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij} - \|\mathbf{z}_{i} - \mathbf{z}_{j}\|_{2})^{2} + \alpha \sum_{i:y_{i}=1} \sum_{j:y_{j}=2}^{2} \sum_{j=1}^{2} \left(\frac{D_{ij}}{\sqrt{S}} - (z_{js} - z_{is}) \right)^{2} \right\}$$

Supervisão está aqui: precisamos saber y_i=1 ou y_i=2 (agrupamentos 1 ou 2)

2 dimensões

$$\underset{\mathbf{z}_{1},...,\mathbf{z}_{n} \in \mathbb{R}^{S}}{\text{minimize}} \left\{ \frac{1}{2} (1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij} - \|\mathbf{z}_{i} - \mathbf{z}_{j}\|_{2})^{2} + \alpha \sum_{i:y_{i}=1} \sum_{j:y_{j}=2}^{n} \sum_{s=1}^{2} \left(\frac{D_{ij}}{\sqrt{S}} - (z_{js} - z_{is}) \right)^{2} \right\}$$

ZOOM

$$\left\{ \sum_{j=1}^{n} (D_{ij} - \|\mathbf{z}_i - \mathbf{z}_j\|_2)^2 + \alpha \sum_{i:y_i=1}^{n} \sum_{j:y_j=2}^{n} \sum_{s=1}^{2} \left(\frac{D_{ij}}{\sqrt{S}} - (z_{js} - z_{is}) \right)^2 \right\}$$

Quanto maior $(z_j - z_i)$, menor será o termo de α , assim os " z_j 's" (população 2) tendem a se localizar a direita em comparação com os " z_i 's" (população 1)

Este critério é não-convexo, e é preciso usar um enfoque iterativo de majoração para resolver o problema de minimização que resulta em:

$$z_{ks} \leftarrow \frac{1}{(n-1)(1-\alpha) + n_2\alpha} \left[(1-\alpha) \sum_{j \neq k} z_{js} + (1-\alpha) \sum_{j \neq k} D_{jk} \frac{\tilde{z}_{ks} - z_{js}}{\|\tilde{z}_k - z_j\|_2} + \alpha \sum_{j:y_j = 2} z_{js} - \frac{\alpha}{\sqrt{S}} \sum_{j:y_j = 2} D_{kj} \right]$$

Iterar para calcular uma melhor localização em 2-D

Escolher um ponto incial de localização da representação da observação em 2-D

Projeção Baseada em Separabilidade

A ideia central é calcular, em um ambiente supervisionado, projeções (lineares) X & Y usando um critério de separabilidade (ao invés da variância como no caso de PCA).

Agora, precisamos definir o que precisamente queremos dizer com 'separabilidade' (nosso critério).

1) Melhor separação

Usamos o Divergente para medir o quanto 'próximas estão as distribuições de probabilidade.

2) Agrupamentos bem concentrado s

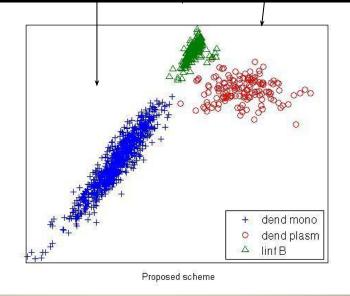
Usamos a *Entropia* para medir a 'concentração' dos agrupamentos (quanto menor a entropia, mais concentrados).

Sobre o critério de separação

Queremos maximizar a seguinte função de custo:

$$Dc-s = CET(C1,C2,C3) - H(C1) - H(C2) - H(C3)$$
, onde:

- •CET(X) é o *Divergente* entre agrupamentos;
- •H(X) é a **entropia de** *Renyi* **dos agrupame**ntos (mede o quanto concentrados estão);



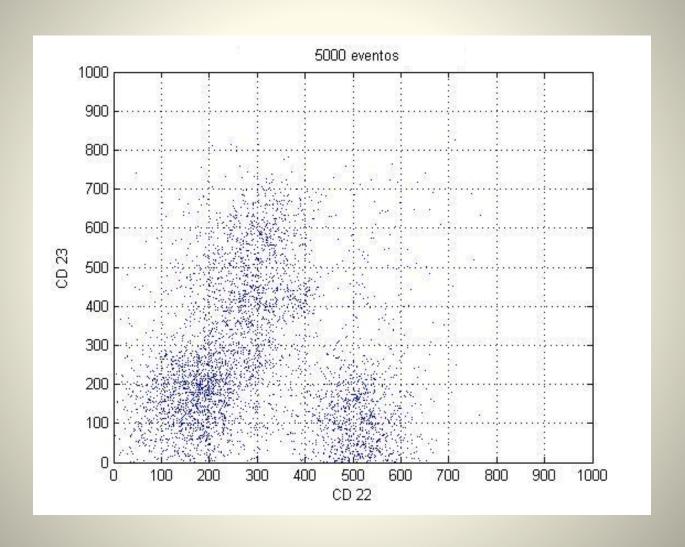
Usamos um algoritmo baseado em computação evolucionaria para resolver este `problema de otimização'.

Queremos encontrar as direções X e Y tal que o critério Dc-s seja maximizado. Buscamos então coeficientes A1, A2, A3, B1, B2, B3 ... etc em:

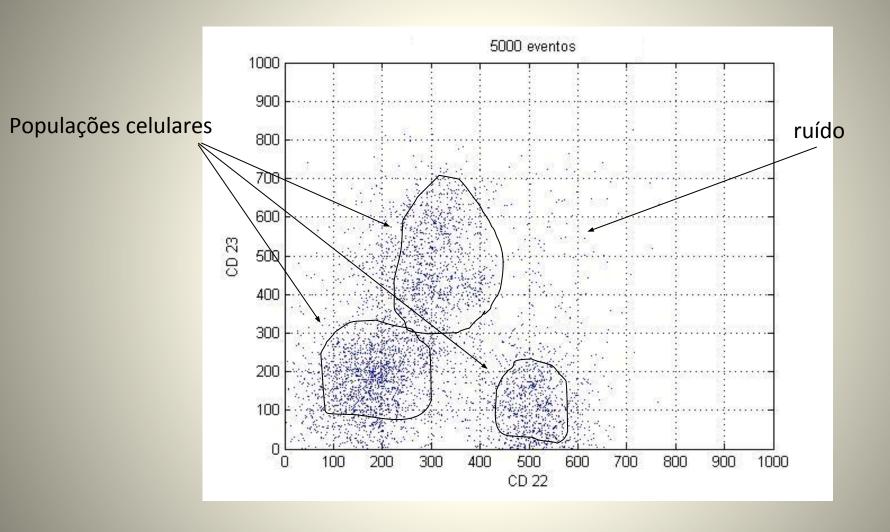
$$X = A1 * \alpha_x + A2 * \beta_x + A3 * \delta_x + ...$$

 $Y = B1 * \alpha_y + B2 * \beta_y + B3 * \delta_y + ...$

Um problema de classificação



mas onde estão os grupos?



A solução é trivial?

- ✓ Podemos ter 30 ou mais dimensões (estavamos vendo apenas uma projeção em duas dimensões)
- ✓ Não sabemos quais destas dimensões são relevantes para separabilidade dos agrupamentos
- ✓ Podem existir agrupamentos com apenas 10 ou 20 observações em uma amostra de milhões

Temos um problema relevante?

Sim, temos um problema complexo onde a aplicação de inteligência computacional e outras ferramentas avançadas de estatística, se justificam.

As figuras acabamos de ver são dados gerados através de *citometria de fluxo*

O que é citometria de fluxo?

Citometria de Fluxo

É a principal ferramenta na caracterização fenotípica de enfermidades infecciosas como a infecção pelo HIV, e de doenças neoplásicas - leucemias, linfomas, e tumores sólidos - ao diagnóstico e também durante o tratamento.

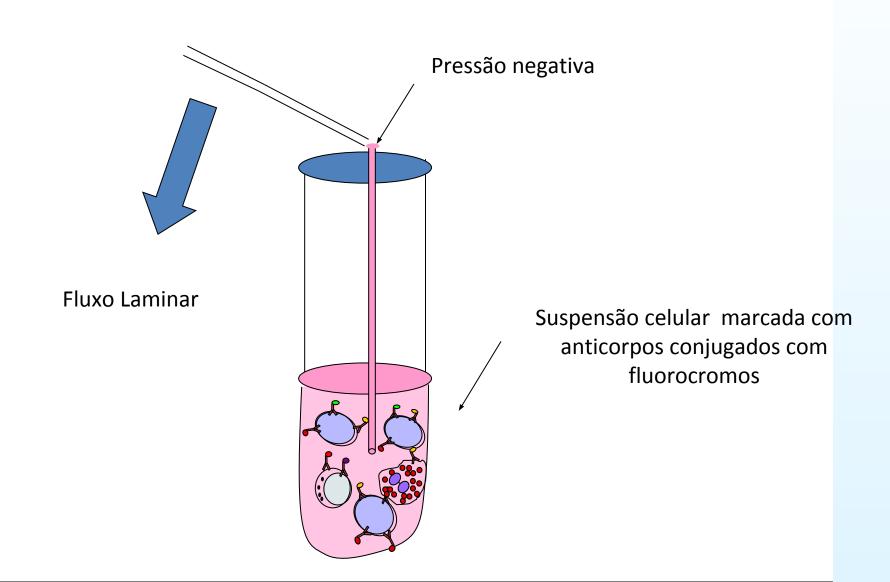
Esta caracterização tem fundamental importância prognóstica, <u>dela depende decisivamente o tratamento aplicado ao paciente</u>.

Citometria de Fluxo

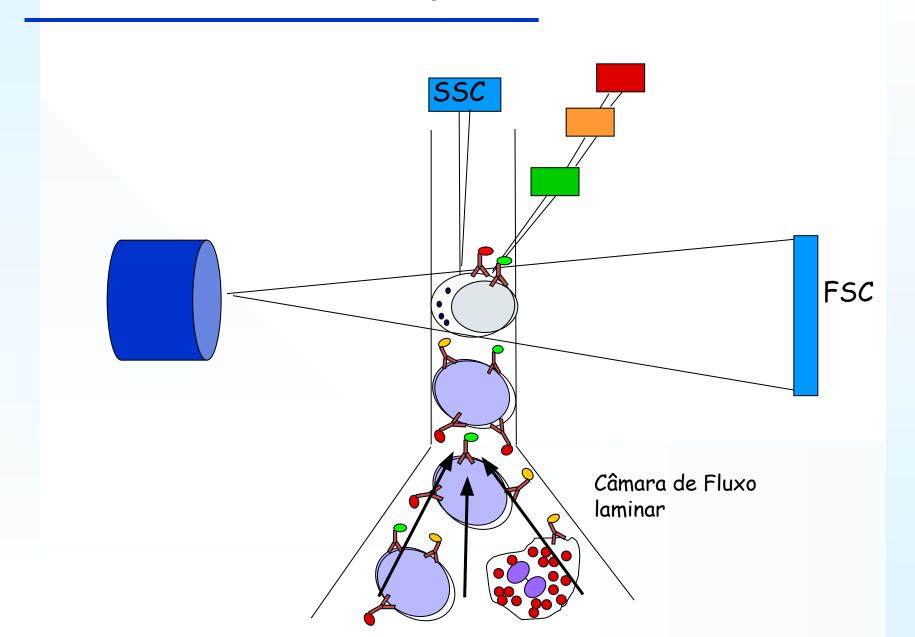
A citometria de fluxo multiparamétrica é capaz de medir simultaneamente diversos parâmetros de milhares de células por segundo.

É possível avaliar milhões de células em suspensão e obter diversas informações individualizadas de cada célula.

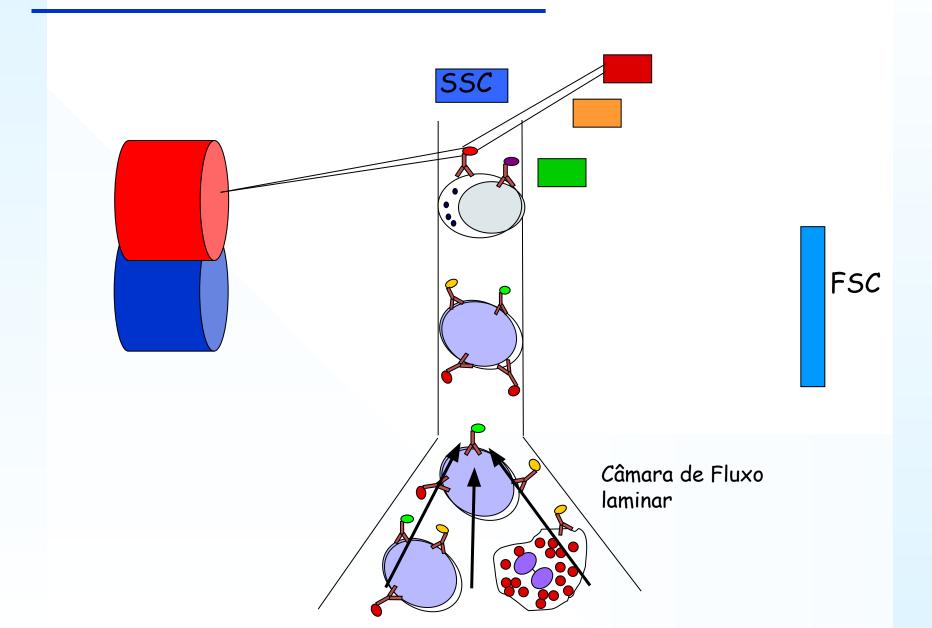
Citometria de Fluxo Multiparamétrica:



Citometria de Fluxo Multiparamétrica:

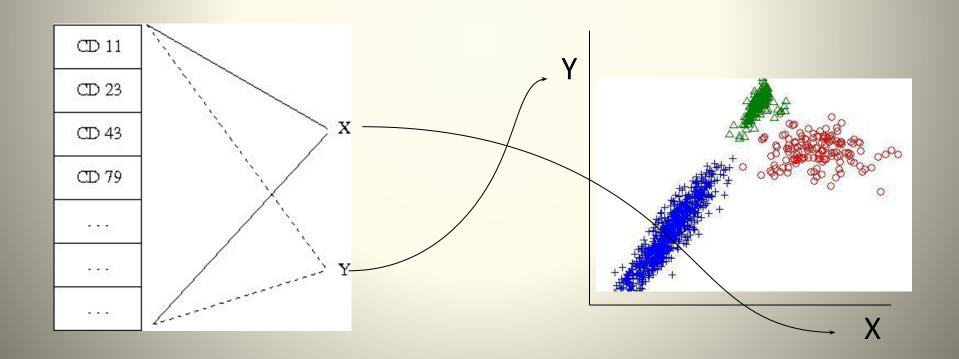


Citometria de Fluxo Multiparamétrica:



Classificação de doenças hematológicas

O objetivo é representar a informação (dos atributos relevantes) nos eixos x e y, de modo que <u>se possa ver a</u> <u>informação</u> em um só gráfico.



Um exemplo:

Para as doenças (linfomas) BL X FL, os pesos seriam 77, 15 & -7, resultando em:

$$X = 77*CD38 + 15*CD43 - 7*CD95$$

e

$$Y = -57*CD81 + 20*CD45 - 14*CD31 + 9*CD39$$

CD31 CD 43 etc são anticorpos monoclonais (nossos atributos)

O procedimento

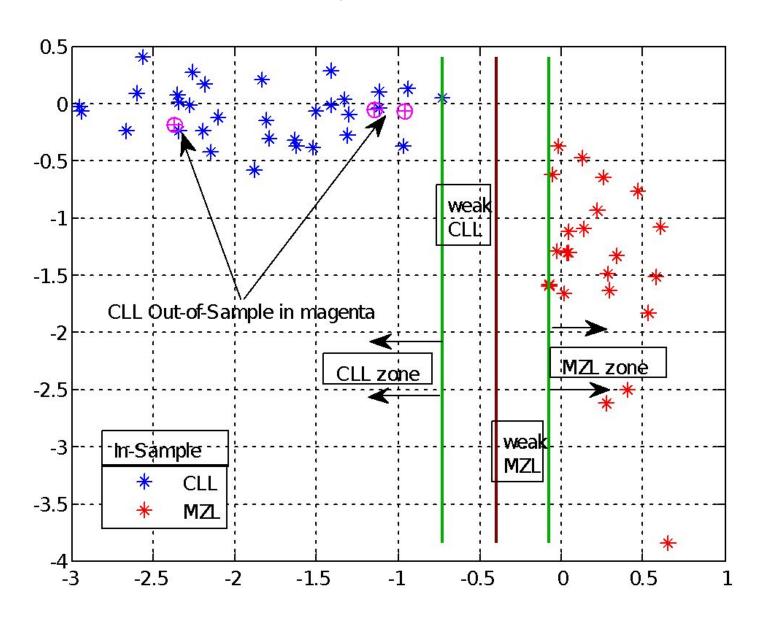
- Selecionar os marcadores relevantes para cada par de doenças
- 2. Calcular os coeficientes, x1, x2.... y1, y2.... Que geram a melhor separação
- 3. Testar, fora-da-amostra, com novos casos

Selecionando os atributos relevantes

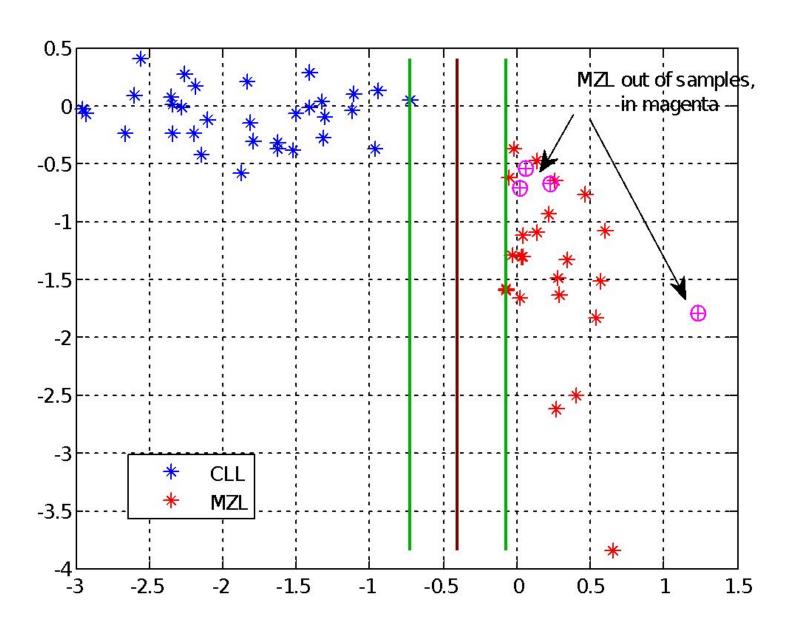
1. Selecionar um par doenças, e.g. BL X FL

- 2. Rodar o algoritmo de otimização 20 vezes. Selecionar para o eixo-X os atributos que retêm > 5% dopeso total em pelo menos 50% das rodadas.
- **3**. Excluir os atributos selecionados do 'pool' e re-rodar para o eixo-Y.

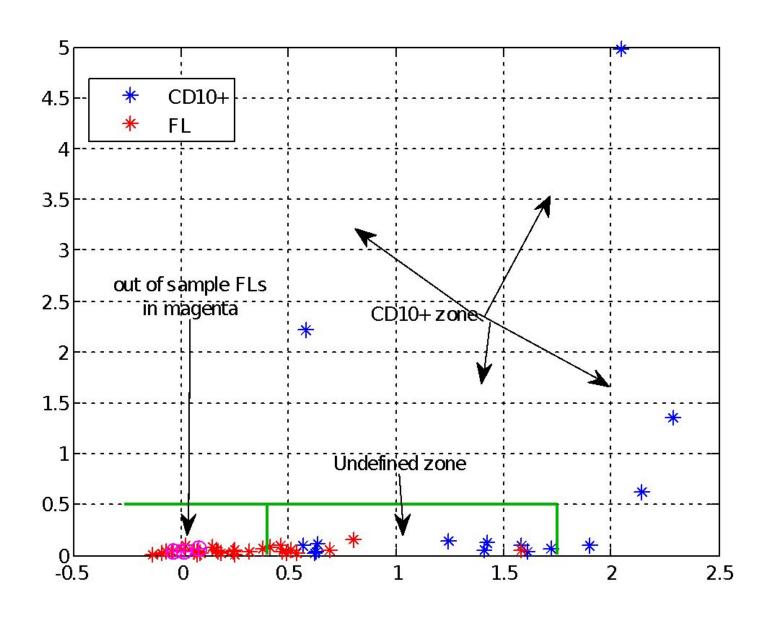
Out of Sample CLL X MZL



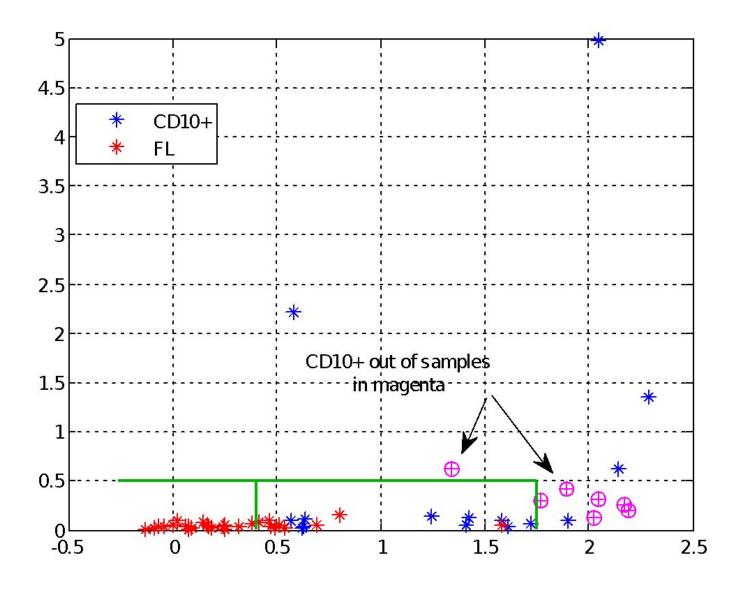
Out of Sample CLL X MZL



Out of Sample dificult case CD10+ X FL



Out of Sample dificult case CD10+ X FL



Alguns artigos e patentes relacionados:

- Pedreira CE; "Automating flow cytometry". Cytometry A, v. 81A, p.110-111, (2012).
- Ayuso MM; Costa ES Pedreira CE; et al. "EuroFlow strategies and tools for data analysis.
 In: EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols". (in press, on line published), Leukemia, (2012).
- Peres RT, Aranha CC, and Pedreira CE, Optimized Bi-Dimensional Data Projection For Clustering Visualization" Information Sciences (to appear)
- Costa ES; Pedreira CE; Flores J; Lecrevisse Q; Quijano S; Barrena S; Almeida, J; Böttcher S; Van Dongen JJM; Orfao A; on behalf of EuroFlow Consortium . "Automated Pattern-Guided Principal Component Analysis versus Expert-Based Immunophenotypic Classification of Hematological Malignancies" Leukemia, 24(11):1927-33, (2010).
- Peres RT e Pedreira CE; "A New Local-Global Approach for Classification. Neural Networks, v. 23, p. 887-891, (2010).
- Patente nos Estados Unidos da América nº US 7,507,548B2. "Multidimensional detection of aberrant phenotypes to be used to monitor minimal disease levels using flow cytometry measurements". Inventores: Alberto Orfao de Matos, Carlos Eduardo Pedreira e Elaine Sobral da Costa. (2009). Licença cedida a Cytognos SL.
- Patente nos Estados Unidos da América nº US 7,321,843B2 "Method for generating flow cytometry data files containing an infinite number of dimensions based on data estimation" (2008). Inventores: Alberto Orfao de Matos, Carlos Eduardo Pedreira e Elaine Sobral da Costa. Licença cedida a Cytognos SL.

Apoio:

CNPq FAPERJ CAPES

Meus Colaboradores:

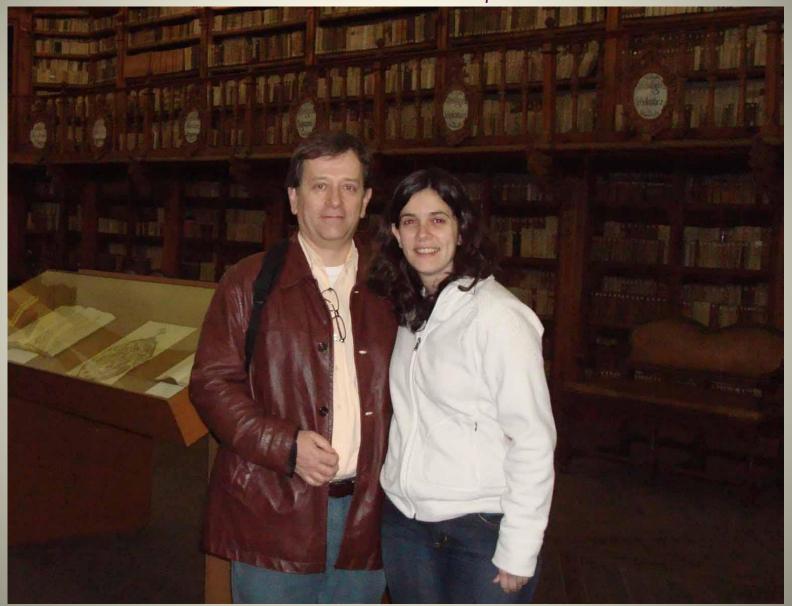
Claus Aranha - Universidade de Tsukuba (Japão)

Rodrigo Peres
CEFET-RJ / UERJ

Alberto Orfao

Centro de Investigação do Câncer da Universidade de Salamanca - Espanha

Elaine Sobral da Costa IPPMG e Dept. Clinica Médica UFRJ



Quentin Lécrevisse

Universidade de Salamanca - Espanha

Julia Almeida
Centro de Investigação do Câncer da Universidade
de Salamanca - Espanha

Obrigado!

sites.google.com/site/pedreira56 pedreira@ufrj.br