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Abstract We consider the graph sandwich problem and introduce almost monotone
properties, for which the sandwich problem can be reduced to the recognition prob-
lem. We show that the property of containing a graph in C as an induced subgraph is
almost monotone if C is the set of thetas, the set of pyramids, or the set of prisms and
thetas. We show that the property of containing a hole of length ≡ j mod n is almost
monotone if and only if j ≡ 2 mod n or n ≤ 2.Moreover, we show that the imperfect
graph sandwich problem, also known as the Berge trigraph recognition problem, can
be solved in polynomial time.We also study the complexity of several graph decompo-
sitions related to perfect graphs, namely clique cutset, (full) star cutset, homogeneous
set, homogeneous pair, and 1-join, with respect to the partitioned and unpartitioned
probe problems.We show that the clique cutset and full star cutset unpartitioned probe
problems are NP-hard. We show that for these five decompositions, the partitioned
probe problem is in P , and the homogeneous set, 1-join, 1-join in the complement,
and full star cutset in the complement unpartitioned probe problems can be solved in
polynomial time as well.
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1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. Gc denotes the
complement of G, obtained from G by replacing each edge with a non-edge and vice
versa. For X ⊆ V (G), G|X denotes the induced subgraph of G with vertex set X . For
X,Y ⊆ V (G)with X ∩Y = ∅, we say that X is complete to Y if for all x ∈ X, y ∈ Y ,
xy ∈ E(G); we say that X is anticomplete to Y if for all x ∈ X, y ∈ Y , xy /∈ E(G).
For v ∈ V (G), X ⊆ V (G)\ {v}, we say that v is complete (anticomplete) to X if {v}
is complete (anticomplete) to X .

Let G1 = (V1, E1),G2 = (V2, E2), then G2 is a supergraph of G1 if V1 = V2 and
E1 ⊆ E2. A pair (G1,G2) of graphs such that G2 is a supergraph of G1 is called a
sandwich instance. A graph G is called a sandwich graph for the sandwich instance
(G1,G2) if G2 is a supergraph of G and G is a supergraph of G1. For a graph G
and a set E ′ of edges with both endpoints in V (G), G ∪ E ′ denotes the supergraph
G ′ = (V (G), E(G)∪E ′) ofG, andG\E ′ denotes the graphG ′′ = (V (G), E(G)\E ′),
and G is a supergraph of G ′′.

Let P be a graph property. We define the complementary property Pc by saying
that G satisfies Pc if and only if Gc satisfies P .

The P recognition problem is the problem of deciding whether a given graph
G satisfies P . The P sandwich problem is the following: For a given sandwich
instance (G1,G2), does there exist a sandwich graph G for (G1,G2) such that G sat-
isfies P? This generalization of the recognition problem was introduced by Golumbic
and Shamir [23]. The sandwich problem becomes the recognition problem when
G1 = G2, and thus, if the P recognition problem is NP-hard, so is the P sandwich
problem.

Sandwich problems have attracted much attention lately, see [4,16,18,23,24,32,
33]. Starting with [24], research has focused on the sandwich problem for subclasses
of perfect graphs, and for decompositions related to perfect graphs. The complexity of
the perfect graph sandwich problem remains one of themost prominent open questions
in this area.

Let G,G ′ be a pair of graphs such that G ′ is a supergraph of G. Then G ′ is a
(P, N )-probe graph for G if (P, N ) is a partition of V (G), N is a stable set in G, and
every edge in E(G ′)\E(G) has both of its endpoints in N .

For a graph property P , a graph G = (V, E) is a P probe graph with partition
(P, N ) if there exists a (P, N )-probe graph G ′ for G such that G ′ satisfies P . A graph
G is a P probe graph if there exists a partition (P, N ) of its vertex set such that G is
a P probe graph with partition (P, N ). The vertices in P are called probes, and the
vertices in N are called non-probes.

For a graph property P , the P partitioned probe problem is the following:
Given a graph G = (V, E), and a stable set N ⊆ V , is G a P probe graph with
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partition (V \N , N )? The partitioned probe problem was first introduced in [28,36]
for interval graphs because of its applications to the physical mapping of DNA.

The P partitioned probe problem with input graph G = (V, E) and stable set
N ⊆ V is a special case of the P sandwich problem in which E(G1) = E and the
edges in E(G2)\E(G1) are precisely the edges between all pairs of distinct vertices
in N .

The complexity of the Pc sandwich problem is the same as the complexity of the
P sandwich problem, because an instance (G1,G2) is a Yes instance for the former
if and only if (Gc

2,Gc
1) is a Yes instance for the latter. The same is true for the P

partitioned probe problem: A graph G with partition (P, N ) is a Yes instance for the
P partitioned probe problem if and only if the graph G ′ arising from Gc by removing
all edges with both endpoints in N with the partition (P, N ) is a Yes instance for the
Pc partitioned probe problem.

Let P be a graph property. The P unpartitioned probe problem is the
following: Given a graph G, is G a P probe graph? We also consider the P
unpartitioned probe problem in the complement: Given a graph G, is Gc

a Pc probe graph? In other words, in the unpartitioned probe problem, the goal to
decide whether there is a stable set N in G and a set of edges E ′ with both endpoints
in N such that G ∪ E ′ satisfies P , whereas in the unpartitioned probe problem in the
complement, the goal to decide whether there is a clique N in G and a set of edges E ′
with both endpoints in N such that G\E ′ satisfies P . Therefore, these problems are
not equivalent in general, and indeed we will show an example (containing a full star
cutset) for which the unpartitioned probe problem is NP-hard, but the unpartitioned
probe problem in the complement is in P .

The partitioned and unpartitioned probe problems have been studied extensively,
see for example [2,14,25,28,36]. Couto, Faria, Gravier andKlein [14] conjectured that
the perfect partitioned and unpartitioned probe problems can be solved in polynomial
time, and proved that if the perfect unpartitioned probe problem can be solved in
polynomial time, this also follows for the partitioned case.

This paper is organized as follows: In Sect. 2, we show that the sandwich problem
can be reduced to the recognition problem for almost monotone properties, and we
prove that several properties related to containing an induced subgraph from a certain
set of graphs are almost monotone. In particular, we give a polynomial-time algorithm
for the recognition of Berge trigraphs. In Sect. 3, we consider several decompositions
that are related to the study of perfect graphs, and we study the hardness of testing
for these decompositions for the partitioned probe problem and the unpartitioned
probe problem in the graph and in the complement. In Sect. 3.1, we present resulting
polynomial-time algorithms, and in Sect. 3.2, we give NP-hardness results. In Sect. 4,
we mention some open problems.

2 Almost Monotone Properties

A property P of graphs is ancestral if for all G = (V, E) that satisfy P and E ′ ⊇ E ,
G ′ = (V, E ′) also satisfies P . It is hereditary if for all G = (V, E) that satisfy P and
E ′ ⊆ E , G ′ = (V, E ′) also satisfiesP . If a property is either ancestral or hereditary, it
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is called monotone. If a property P is ancestral, then Pc is hereditary, and vice versa.
For monotone properties, the sandwich problem reduces to the recognition problem
for either G1 or G2. Since the partitioned probe problem is a special case of the
sandwich problem, it follows that this holds for the partitioned probe problem as well.
Moreover, the unpartitioned probe problem for a hereditary property P with input G
is the same as the P recognition problem with input G, and the unpartitioned probe
problem in the complement for an ancestral property P with input G is the same as
the Pc recognition problem with input Gc.

In the following, we define a more general notion of monotonicity, which allows us
to reduce solving the sandwich problem to solving a polynomial number of recognition
problems in this case.

A property P of graphs is k-edge monotone if for all sandwich instances (G1,G2),
if there exists a sandwich graph G that satisfies P , then there exists a sandwich
graph G ′ that satisfies P with the additional property that |E(G ′)\E(G1)| ≤ k or
|E(G2)\E(G ′)| ≤ k.

A propertyP of graphs is k-vertex monotone if for all sandwich instances (G1,G2),
if there exists a sandwich graph G that satisfies P , then there exists a sandwich graph
G ′ that satisfies P and a set S ⊆ V (G) satisfying |S| ≤ k and such that for V1 = {v ∈
V (G) : NG ′(v)\S = NG1(v)\S} and V2 = {v ∈ V (G) : NG ′(v)\S = NG2(v)\S} we
have V1 ∪ V2 = V (G) and V (G)\V1 ⊆ S or V (G)\V2 ⊆ S.

Clearly, any monotone property is 0-edge monotone and 0-vertex monotone. We
also remark the following simple consequence of these definitions.

Lemma 1 If a property P is k-edge monotone, it is 2k-vertex monotone. The converse
is not true in general.

Lemma 2 Let P be a k-edge monotone property, then the P sandwich problem for
a sandwich instance (G1,G2) with |V (G1)| = n can be decided by solving the P
recognition problem for O(kn2k) graphs.

Proof If there exists a sandwich graph that satisfies P , then there exists a sand-
wich graph G with |E(G)\E(G1)| ≤ k or |E(G2)\E(G)| ≤ k. Thus, it suffices
to check for all subsets F ⊆ E(G2)\E(G1) with |F | ≤ k if (V (G1), E(G1) ∪ F) or
(V (G2), E(G2)\F) satisfies P . Since there are O(n2) edges, it follows that there are
O(kn2k) sets F to consider. ��
Lemma 3 Let P be a k-vertex monotone property, then the P sandwich problem for
a sandwich instance (G1,G2) with |V (G1)| = n can be decided by solving the P
recognition problem for O(knk2(

k+1
2 )) graphs.

Proof It suffices to solve the recognition problem for all sandwich graphs G with a
set S ⊆ V (G) satisfying |S| ≤ k and such that for V1 = {v ∈ V (G) : NG(v)\S =
NG1(v)\S} and V2 = {v ∈ V (G) : NG(v)\S = NG2(v)\S}we have V1∪ V2 = V (G)

and V (G)\V1 ⊆ S or V (G)\V2 ⊆ S. There areO(knk) sets S ⊆ V of size at most k,
and two choices such that either V (G)\V1 ⊆ S or V (G)\V2 ⊆ S. This determines all
edges inG with both endpoints not in S. For each vertex in S, we choosewhether it is in
V1 or V2. There are 2k options for this, and they determine all edges in G with exactly
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one endpoint in S. Finally, we choose any subset of the edges in E(G2)\E(G1) with

both endpoints in S to be in G; there are at most 2(
k
2) possibilities. Thus, the number

of possible graphs G is O(knk2(
k+1
2 )). ��

Let C be a set of graphs. We say that G is C-free if no induced subgraph of G is
isomorphic to a graph in C. We say that C is almost edge monotone (almost vertex
monotone) if there exists a k such that the property of not being C-free is k-edge mono-
tone (k-vertex monotone). If C is almost edge monotone or almost vertex monotone,
so is the set of graphs whose complement is in C. Moreover, any finite set C of graphs
is almost edge monotone.

The following lemma is a simple consequence of the definition of almost monotone
properties.

Lemma 4 Let C, C′ be almost edge (vertex) monotone sets of graphs. Then their union
is almost edge (vertex) monotone.

An induced cycle Ck with k ≥ 4 vertices is called a hole; it is called an odd hole if
k is odd, and an even hole if k is even. An antihole is the complement of a hole. It is
an odd antihole if its complement is an odd hole, and an even antihole otherwise.

Lemma 5 Let C be the set of odd holes. Then C is almost edge monotone; in particular,
the property of containing an odd hole is 5-edge monotone. Consequently, the property
of containing an odd antihole is also 5-edge monotone.

Proof Let (G1,G2) be a sandwich instance such that there is a sandwich graph for
(G1,G2) that contains an odd hole. Let G be the sandwich graph for (G1,G2) with
|E(G2)\E(G)| minimum subject to G containing an odd hole, and let C be an odd
hole in G. There is no edge in E(G2)\E(G) with at least one endpoint not in V (C),
since adding such an edge to G would preserve the odd hole C . Our goal is to prove
that |E(G2)\E(G)| ≤ 5.

Let v1, . . . , vk denote the vertices ofC in order along C . All edges in E(G2)\E(G)

have both endpoints in C . For each edge e ∈ E(G2)\E(G), adding e to G splits C
into two smaller induced cycles whose number of edges sums to k +2. Therefore, one
of these cycles is odd, but since it is not an odd hole, it follows that it is a triangle. Let
v(e) denote the vertex of this triangle that is not an endpoint of e. Clearly, v(e) = v(e′)
implies that e = e′. Suppose first that there are two edges e1, e2 ∈ E(G) such that
v(e1) and v(e2) are non-adjacent, then {v1, . . . , vk} \ {v(e1), v(e2)} induces an odd
cycle in G ∪ {e1, e2} which is not an odd hole, and therefore, this cycle is a triangle.
This implies that k = 5, and thus there are at most five edges connecting two non-
adjacent vertices in C , which implies the result that |E(G2)\E(G)| ≤ 5. Thus, we
may assume that for all distinct e1, e2 ∈ E(G2)\E(G), v(e1) is adjacent to v(e2).
This implies that {v(e) : e ∈ E(G2)\E(G)} is a clique in C , and since C has clique
number two, we conclude in this case that |E(G2)\E(G)| ≤ 2. ��

A graph is Berge if it contains no odd hole and no odd antihole as an induced
subgraph. A graphG is perfect if for each induced subgraph H ofG, the clique number
of H equals the chromatic number of H . The strong perfect graph theorem [8], first
conjectured in [1], states that a graph is perfect if and only if it is Berge. An important

123



Algorithmica

tool for the proof of this theorem are Berge trigraphs, which were introduced by the
first author in [5,7]. A trigraph is defined as a sandwich pair (G1,G2). A trigraph
(G1,G2) satisfies a property P if there is no sandwich graph G for (G1,G2) which
does not satisfy P . In this sense, trigraphs are complementary to sandwich graphs.

It is known that Berge graphs can be recognized in polynomial time [6], but the
recognition of Berge trigraphs was previously open. Note that it is not known if the
recognition of graphs containing an odd hole is in P .

Corollary 1 Recognizing Berge trigraphs is in P; equivalently, the imperfect sand-
wich problem is in P.

Proof Note that (G1,G2) is a Berge trigraph if and only if (G1,G2) is a No instance
for the imperfect sandwich problem.

By Lemma 5, the property of containing an odd hole is 5-edge monotone, and the
property of containing an odd antihole is 5-edge monotone as well. Let (G1,G2) be
a trigraph. Suppose that (G1,G2) is not Berge. Then there is a sandwich graph for
(G1,G2) which contains an odd hole or an odd antihole, and consequently there is
a sandwich graph G which differs from either G1 or G2 by at most five edges, and
which is not Berge. We can check whether or not every such sandwich graph is Berge
by using the Berge graph recognition algorithm. If we find a sandwich graph that is
not Berge, then (G1,G2) is not a Berge trigraph. If all of the graphs we checked are
Berge, then no sandwich graph for (G1,G2) contains an odd hole or an odd antihole,
and consequently, (G1,G2) is a Berge trigraph. ��

A pyramid is a graph consisting of distinct vertices a, b1, b2, b3 and three induced
internally vertex-disjoint paths P1, P2, P3, each consisting of at least one edge, such
that

– for i = 1, 2, 3, Pi has endpoints a and bi ; and
– for distinct i, j ∈ {1, 2, 3}, bi b j is an edge, and this is the only edge between

V (Pi )\ {a} and V (Pj )\ {a}; and
– a is adjacent to at most one of b1, b2, b3.

The vertex a is called the apex of the pyramid, and {b1, b2, b3} is called the base of the
pyramid. P1, P2, P3 are called the paths of the pyramid. A graph contains a pyramid
if it contains a pyramid as an induced subgraph.

The recognition algorithm for Berge graphs in [6] uses a recognition algorithm for
pyramid-free graphs as a subroutine. In particular, the recognition of graphs containing
a pyramid is in P [6]. Pyramids are studied in relation to perfect graphs, because if a
graph contains a pyramid, it contains an odd hole.

Theorem 1 Let C be the set of all pyramids. Then C is almost vertex monotone.

Proof Let (G1,G2) be a sandwich instance which is a Yes instance for the property
of containing a pyramid. Let G be a sandwich graph for (G1,G2)with |E(G2)\E(G)|
minimum subject to G containing a pyramid P . Let {b1, b2, b3} be the base of P , and
let a be the apex of P; let P1, P2, P3 be the paths of P . Let S′ be the set of vertices of P
adjacent to at least one of {b1, b2, b3, a}, and let S = S′∪{b1, b2, b3, a}. Then |S| ≤ 10.
Let G ′ be the sandwich graph with vertex set V (G1) in which NG ′(v)\S = NG2(v)\S
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for all v ∈ V (G)\ {b1, b2, b3, a}, and NG ′(v)\S = NG1(v)\S for v ∈ {b1, b2, b3, a},
and for x, y ∈ S, xy ∈ E(G ′) if and only if x and y are adjacent in P . We claim that
P is a pyramid in G ′, which then implies the result of the lemma.

Suppose for a contradiction that P is not a pyramid in G ′. If some edge e of P
is not an edge of G ′, then e ∈ E(G2), and so by definition of G ′, e has exactly
one endpoint in S; consequently e is incident with {b1, b2, b3, a}. But then the other
endpoint of e is in S as well, contradicting the definition of G ′. Thus, there is an edge
e = xy of G ′ with x, y ∈ V (P) that is not an edge of P , and therefore e /∈ E(G),
and so e ∈ E(G2)\E(G1). By definition of G ′, x, y /∈ {a, b1, b2, b3}. Suppose that
x, y ∈ V (Pi ) for some i ∈ {1, 2, 3}, and letC denote the unique cycle in (G|Pi )∪{xy}.
Then P ′ = P\(V (C)\ {x, y}) ∪ {xy} is an induced pyramid in G ∪ {xy}, which
contradicts the definition of G.

By symmetry, we may assume that x ∈ V (P1) and y ∈ V (P2), and y /∈ S. Now
let P ′

3 denote the subpath of P1 from x to a, let P ′
2 denote the subpath of P2 from y

to b2, and let P ′
1 denote the subpath of P1 from x to b1. Let Q denote the subpath of

P2 from a to y, and note that since y /∈ S, it follows that Q contains more than one
edge. Then P\(V (Q)\ {a, y}) ∪ {xy} induces a pyramid with paths P ′

1, xy P ′
2, P ′

3P3,
apex x and base {b1, b2, b3} in G ∪ {xy}. Note that x is non-adjacent to b2, b3, where
P ′
3P3 denotes the concatenation of the paths P ′

3 and P3. This is a contradiction to the
definition of G. Thus, P is a pyramid in G ′, and the result follows. ��

A theta is a graph consisting of two distinct non-adjacent vertices a, b and three
induced internally vertex-disjoint paths P1, P2, P3 with ends a and b such that for all
distinct i, j ∈ {1, 2, 3}, V (Pi )\ {a, b} is anticomplete to V (Pj )\ {a, b}; the vertices
a, b are the ends of the theta, and P1, P2, P3 are the paths of the theta.A prism is a graph
consisting of distinct vertices a1, a2, a3, b1, b2, b3 and three induced vertex-disjoint
paths P1, P2, P3 such that

– for i = 1, 2, 3, Pi has endpoints ai and bi ; and
– {a1, a2, a3} is a clique and {b1, b2, b3} is a clique; and
– for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi )\ {ai , bi } and

V (Pj )\
{
a j , b j

}
.

The sets {a1, a2, a3} and {b1, b2, b3} are called the triangles of the prism, and
P1, P2, P3 are called the paths of the prism.

Testing if a graph contains a theta as an induced subgraph is in P [10], and testing
if a graph contains a theta or a prism as an induced subgraph is in P as well [9], but
testing if a graph contains a prism is NP-hard [27]. The theta-free sandwich problem
is NP-hard [16], and as a consequence of [27], the prism-free sandwich problem and
the not prism-free sandwich problem are NP-hard as well.

Theorem 2 Let C be the set of thetas, and let C′ be the set of thetas and prisms. Both
C and C′ are almost vertex monotone.

Proof Let (G1,G2) be a sandwich instance, and suppose that some sandwich graph
contains a theta. Let G be a sandwich graph with |E(G2)\E(G)| minimum subject
to G containing a theta. Let P be a theta in G with ends a, b and paths P1, P2, P3.
Let S be the set of vertices of P at distance at most one from {a, b} in P . Let S′

123



Algorithmica

be the set of vertices of P at distance at most two from {a, b} in P; it follows that
|S′| ≤ 14.We claim that E(G2)\E(G) does not contain an edgewith both endpoints in
V (P)\ {S}. Suppose for a contradiction that it does contain such an edge, say e = xy.
If both endpoints of e are contained in the same path Pi , then we can replace Pi by
a shorter path containing e and still have a theta in G ∪ {e}; this is a contradiction.
Therefore, there exist distinct i, j ∈ {1, 2, 3} such that x ∈ V (Pi ) and y ∈ V (Pj ). Let
{k} = {1, 2, 3} \ {i, j}. Let Qi be the subpath of Pi with endpoints x and b; let Q j be
the concatenation of xy and the subpath of Pj from y to b; let Qk be the concatenation
of the subpath of Pi from x to a and Pk . Then G ∪ {e} contains a theta with ends x
and b and paths Q1, Q2, Q3. This is a contradiction, and thus our claim is proved.

Let G ′ be the graph with vertex set V (G1) and NG ′(x)\S′ = NG2(x)\S′ for all
x ∈ V (G ′)\S, NG ′(x)\S′ = NG1(x)\S′ for all x ∈ S, and for x, y ∈ S′, let xy be
an edge if and only if xy is an edge in P . We claim that G ′ contains P as an induced
subgraph. This follows becauseG ′ contains every edge of P , and ifG ′ contains an edge
e with endpoints in P which is not an edge in P , then e has an endpoint x in S by the
claim proved above. The other endpoint, say y, of e is not in S′, because by definition
G ′|S′ = P|S′. But NG ′(x)\S′ = NG1(x)\S′ for all x ∈ S, and so y ∈ NG1(x), and
thus xy ∈ E(G) and xy ∈ E(P), a contradiction. This proves that C is almost vertex
monotone.

To prove that C′ is almost vertex monotone, wemay assume that no sandwich graph
for (G1,G2) contains a theta. Suppose that some sandwichgraph for (G1,G2) contains
a prism, and let G be the sandwich graph with |E(G2)\E(G)| minimum subject to
G containing a prism; let P be a prism in G. Let {a1, a2, a3} and {b1, b2, b3} be the
triangles of P , and let T = {a1, a2, a3, b1, b2, b3}. Let S be the set containing all
vertices in T as well as their neighbors (with respect to G) in P .

By definition of G, every edge in E(G2)\E(G) has both endpoints in P . Suppose
that there exists i ∈ {1, 2, 3} such that E(G2)\E(G) contains an edge e = xy with
{x, y} ⊆ V (Pi )\ {S}. Then we can replace Pi by a shorter path using only e and edges
of Pi , and obtain a prism in G ∪ {e}. This contradicts the definition of G.

Next, we claim that for each pair Pi , Pj of paths of P , all edges in E(G2)\E(G)

with one endpoint in V (Pi )\ {S} and one endpoint in V (Pj )\ {S} share a common
endpoint. Suppose not; then there exist edges xy and x ′y′ in E(G2)\E(G)with x, x ′ ∈
V (Pi )\ {S} and y, y′ ∈ V (Pj )\ {S}, and with x �= x ′ and y �= y′. Without loss
of generality, let ai , x, x ′, bi lie in this order on Pi . Let k = {1, 2, 3} \ {i, j}. We
consider two cases. Suppose first that a j , y, y′, b j lie in this order on Pj . Let Q1 be
the concatenation of the 1-edge path xy and the subpath of Pj with ends y and y′; let
Q2 be the concatenation of the subpath of Pi with ends x and x ′ and the 1-edge path
x ′y′; let Q3 be the concatenation of the subpath of Pi with ends x and ai , the 1-edge
path ai ak , the path Pk , the 1-edge path bkb j , and the subpath of Pj with ends b j and
y′. Then G ∪ {

xy, x ′y′} contains a theta with ends x and y′ and paths Q1, Q2, Q3.
This is a contradiction, because we assumed that no sandwich graph contains a theta.
For the other case, suppose that a j , y′, y, b j lie in this order along Pj . Let Q1 be
the concatenation of the 1-edge path xy and the subpath of Pj with endpoints y and
y′; let Q2 be the concatenation of the subpath of Pi with endpoints x and x ′ and the
1-edge path x ′y′; let Q3 be the concatenation of the subpath of Pi with endpoints x
and ai , and the 1-edge path ai a j , and the subpath of Pj with endpoints a j and y′. Then
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G ∪ {
xy, x ′y′} contains a theta with ends x and y′ and paths Q1, Q2, Q3. Again, this

is a contradiction, and the claim follows.
Thus, there exists a set U of at most three vertices (one in each of P1, P2, P3) such

that each edge in E(G2)\E(G) has an endpoint either in S or in U . Let S′ be the set of
all vertices in S ∪ U as well as their neighbors in P . Clearly, |S′| ≤ 27. Let G ′ be the
graph with vertex set V (G1) and NG ′(x)\S′ = NG2(x)\S′ for all x ∈ V (G ′)\(S ∪U ),
NG ′(x)\S′ = NG1(x)\S′ for all x ∈ S ∪ U , and for x, y ∈ S′, let xy be an edge if
and only if xy is an edge in P . As above, it follows that G ′ contains P as an induced
subgraph. This proves that C′ is almost vertex monotone. ��
Theorem 3 For n, j ∈ N, the set of holes of length j mod n is almost edge monotone
if and only if it is almost vertex monotone if and only if j ≡ 2 mod n or n ≤ 2.

Proof Let C be a cycle with vertex set v1, . . . , vl such that vivi+1 is an edge for all
i (where we use the convention vl+1 = v1 from now on). Vertices vi and vi+1 are
called consecutive. An edge connecting two non-consecutive vertices is a chord. Two
distinct chords vavb, vcvd of C are related in one of the following three ways: either
they share an endpoint, or they are parallel, i. e. their endpoints are distinct and lie in
the order vavbvcvd along C (up to cyclic permutation and switching the label of va

with vb as well as vc with vd ), or they cross, i. e. their endpoints are distinct and lie
in the order vavcvbvd along C (up to cyclic permutation and switching the label of va

with vb as well as vc with vd ).
We first give constructions for n ≥ 3 and j �≡ 2 mod n proving that the class of

holes of length j mod n is not almost vertex monotone. Suppose for a contradiction
that there exists a k ∈ N such that the property of containing such a hole is k-vertex
monotone. Let N = (2k + 2)n + j and let G2 be a graph with vertex set {v1, . . . , vN }
and the following edges:

– For i ∈ {1, . . . , N − 1}, vivi+1 is and edge, and v1vN is an edge; and
– for i ∈ {1, . . . , k + 1}, vin−1vN−in is an edge, and these edges are called special.

In other words, G2 is a long cycle C in which the special edges form parallel chords
such that the number of edges of the hole C between the two consecutive endpoints
of different special edges is n. This construction is shown in Fig. 1. By inspection,
it follows that no hole in any sandwich graph contains three or more special edges;
therefore, every hole in a sandwich graph contains at most two special edges. If it
contains two special edges, its length is 2 mod n; if it contains one special edge, its
length is either j + 1 mod n or 1 mod n; if it contains no special edge, it is the hole
C containing all vertices of G2 in order, and this is the only hole of length j mod n
in any sandwich graph for (G1,G2) unless j ≡ 1 mod n.

Next, consider the following, slightlymodified construction. Let N = (2k+2)n+ j
and let G ′

2 be a graph with vertex set {v1, . . . , vN } and the following edges:

– For i ∈ {1, . . . , N − 1}, vivi+1 is and edge, and v1vN is an edge; and
– for i ∈ {1, . . . , k + 1}, vin−1vN−in−2 is an edge, and these edges are called special.

Let G1 be the graph with V (G1) = V (G ′
2) and E(G1) = ∅. Then (G1,G ′

2) is a
sandwich instance and the sandwich graph obtained by removing all special edges
from G ′

2 contains a hole of length j mod n. This construction is shown in Fig. 2.
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Fig. 1 Construction showing that j ≡ 1 mod n

Fig. 2 Construction showing that j ≡ 3 mod n

As before, every hole in a sandwich graph contains at most two special edges. If it
contains two special edges, its length is 2 mod n; if it contains one special edge, its
length is either j − 1 mod n or 3 mod n; if it contains no special edge, it is the hole
C containing all vertices of G2 in order, and this is the only hole of length j mod n
in any sandwich graph for (G1,G ′

2) unless j ≡ 3 mod n. If 3 ≡ 1 mod n, and then
n = 2, but we assumed that n ≥ 3.

Therefore, the hole C is the only hole of length j mod n in any sandwich graph
for at least one of (G1,G2) and (G1,G ′

2). Since we assumed that the property of
containing a hole of length j mod n was k-vertex monotone, it follows that there
exists a set S of k vertices such that there is a sandwich graph G containing a hole of
length j mod n, and either all edges with no endpoint in S are as in G1, or all edges
with no endpoint in S are as in G2. If edges outside S are as in G1, then there are at
most 3k edges in G, but C has N ≥ 2kn ≥ 6k edges, so G does not contain the hole
C . If edges outside S are as in G2, then S does not include either endpoint for at least
one of the special edges, and so C is not induced in G. In both cases, we reached a
contradiction, and thus the property of containing a hole of length j mod n is not
monotone if n ≥ 3 and j �≡ 2 mod n.

Let n ≤ 2 and j �≡ 2 mod n. Then we must have j ≡ 1 mod n, and thus holes
of length ≡ j mod n are precisely odd holes, for which we proved the result in
Lemma 5.

Now, let j = 2 and n ∈ N. Let (G1,G2) be a sandwich instance such that some
sandwich graph contains a hole of length 2 mod n, and let G be the sandwich graph
with |E(G2)\E(G)| minimum subject to G containing a hole C of length 2 mod n.
It follows that all edges in E(G2)\E(G) have both endpoints in V (C).

Let v ∈ V (C). The number of edges in E(G2)\E(G) incident with v is
at most n.

(1)
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Suppose for a contradiction that v ∈ V (C) is the endpoint of n + 1 distinct chords.
Let w1, . . . , wn+1 be the endpoints in V (C)\ {v} of these chords, and without loss of
generality, let v,w1, . . . , wn+1 lie in this order along C . Let Pi denote thew1-wi path
in C\ {v}. If there is an i > 1 such that the number of edges of Pi is 0 mod n, then
v∪V (Pi ) induces a hole of length 2 mod n in G∪{vw1, vwi }. This is a contradiction.
Therefore, (|E(Pi )| mod n) ∈ {1, . . . , n − 1} for all i > 1, and by the pigeonhole
principle, there exist 1 < i < j such that |E(Pi )| ≡ |E(Pj )| mod n. But then
(V (Pj )\V (Pi ))∪{wi , v} induces a hole of length 2 mod n in G ∪ {

vwi , vw j
}
. This

is a contradiction, and (1) is proved.

Let E ′ ⊆ E(G2)\E(G) such that either for all distinct e, e′ ∈ E ′, e and
e′ cross, or for all distinct e, e′ ∈ E ′, e and e′ are parallel. Then |E ′| ≤ n.

(2)

Suppose for a contradiction that there exist distinct vertices v1, . . . , vn+1 and
w1, . . . , wn+1 such that either v1, . . . , vn+1, w1, . . . , wn+1 lie in this order along C ,
or v1, . . . , vn+1, wn+1, . . . , w1 lie in this order along C , and viwi ∈ E(G2)\E(G) for
all i ∈ {1, . . . , n + 1}. Let Pi denote the v1-vi path in C\ {w1, wi }, and let P ′

i denote
the w1-wi path in C\ {v1, vi }. If there is an i > 1 such that |E(Pi ) + E(P ′

i )| ≡ 0
mod n, then V (Pi ) ∪ V (P ′

i ) induces a hole of length 2 mod n in G ∪ {v1w1, viwi },
a contradiction. Thus, (|E(Pi ) + E(P ′

i )| mod n) ∈ {1, . . . , n − 1} for all i > 1.
By the pigeonhole principle, there exist 1 < i < j such that |E(Pi ) + E(P ′

i )| ≡
|E(Pj ) + E(P ′

j )| mod n. But then (V (Pj )\V (Pi )) ∪ (V (P ′
j )\V (P ′

i )) ∪ {wi , vi }
induces a hole of length 2 mod n in G ∪ {

viwi , v jw j
}
. This is a contradiction,

and (2) is proved.
By Ramsey’s theorem [30], there exists a number R(n) such that if C has at least

R(n) chords, then C has at least n chords that either all have a common endpoint, or
all pairs of them cross, or all pairs of them are parallel. Thus, |E(G2)\E(G)| ≤ R(n),
which proves that the set of holes of length 2 mod n is R(n)-edge monotone. ��

In particular, the set of even holes is almost vertex monotone. Since even-hole-free
graphs can be recognized in polynomial time [13], we obtain the following.

Corollary 2 The sandwich problems for the following properties can be solved in
polynomial time:

– containing a pyramid as an induced subgraph;
– containing a theta as an induced subgraph;
– containing a theta or a prism as an induced subgraph;
– containing an even hole.

In particular, we proved that the property of containing a pyramid is 10-vertex mono-
tone, containing a theta is 14-vertex monotone, and containing a theta or a prism is
27-vertex monotone. These constants are not best possible, and it is not hard to see that
these properties are almost edge monotone as well. We leave the proof to the reader.

We presented a number of results that imply polynomial-time algorithms for the
not C-free sandwich problem, and thus also for the corresponding partitioned probe
problem. The following lemma shows that both the unpartitioned and the partitioned
probe problem can be reduced to the recognition problem in this context, even if C is
not almost vertex monotone.
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Lemma 6 The unpartitioned probe and partitioned probe problem are in P for all
not C-free problems such that recognition of C-free graphs is in P.

Proof We may assume that C �= ∅. Let k be the minimum number of vertices of a
graph in C. Let G be a graph, possibly with a given partition into probe and non-probe
vertices P and N . If |N | ≥ k in the partitioned probe problem, or if G contains a
stable set of size at least k in the unpartitioned probe problem, then there is a choice
of optional edges such that a subset of N induces a graph in C. Otherwise, in the
partitioned probe problem, |N | is constant and thus the number of optional edges
is constant, so we may check C-freeness for each choice of optional edges. In the
unpartitioned probe problem, there are at most |V (G)|k possible choices for N , and
for each of them, we check in polynomial time whether the resulting partitioned probe
graph is a not C-free probe graph. ��

3 Decompositions

In this section, we will focus on the partitioned and unpartitioned probe problems, and
consider the property of having a certain decomposition.

Let G be a graph. A cutset in G is a set X ⊆ V (G) such that G\X is not connected.
A cut vertex is a vertex x such that {x} is a cutset. A clique cutset in G is a cutset X
such that X is a clique in G. A star cutset in G is a cutset X with a special vertex
v such that v is complete to X\v; here, v is called a center of the star cutset. A star
cutset is full if its center has no neighbors outside the cutset. A homogeneous set in G
is a set X ⊆ V (G) with |X | ≥ 2 and |V (G)\X | ≥ 1 such that for all v ∈ V (G)\X ,
either v is complete to X or v is anticomplete to X . A homogeneous pair in G is a
partition (Q1, Q2, A, B, S1, S2) of V (G) such that

– |Q1| ≥ 2 or |Q2| ≥ 2 and |V (G)\(Q1 ∪ Q2)| ≥ 2; and
– A is complete to Q1 and Q2; and
– B is anticomplete to Q1 and Q2; and
– S1 is complete to Q1 and anticomplete to Q2; and
– S2 is complete to Q2 and anticomplete to Q1.

A 1-join in G is a partition (A1, B1, A2, B2) of V (G) such that A1 is complete to A2,
B1 is anticomplete to A2 ∪ B2 and B2 is anticomplete to A1 ∪ B1, and |A1 ∪ B1| ≥ 2,
|A2 ∪ B2| ≥ 2.

Table 1 gives an overview of the hardness of the decomposition problems we will
consider. New results are in bold; known results are shown for clique cutset due to
[32,35], star cutset due to [12,32] (for completeness, we give an algorithm for the full
star cutset sandwich problem in Lemma 9) homogeneous set due to [4], homogeneous
pair due to [21], and 1-join due to [15,18].

3.1 Algorithms

We first consider the clique cutset partitioned probe problem. The clique cut-
set sandwich problem is known to be NP-complete [32]. Whitesides [35] gave a
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Table 1 Hardness of decomposition problems for recognition, sandwich problem, partitioned probe prob-
lem, unpartitioned probe problem, and unpartitioned probe problem in the complement

Recogn. Sandwich Part. Unpart. Unp. in Gc

Clique cutset P NPc P NPc ?

Full star cutset P P P NPc P

Homogeneous set P P P P P

Homogeneous pair P ? P ? ?

1-Join P NPc P P P

New results are shown in bold

polynomial-time algorithm for the problem of finding a clique cutset in a graph, which
we adapt here.

A graph is chordal if it does not contain a hole as an induced subgraph. Every
chordal graph either is a complete graph or has a clique cutset [19].

Theorem 4 (Berry et al. [2]) A graph G is a chordal probe graph with partition
(P, N ) if and only if N is stable and for every hole C of G, G|(V (C) ∩ P) is stable.
The chordal partitioned probe problem can be solved in polynomial time.

Theorem 5 The clique cutset partitioned probe problem can be solved in polynomial
time.

Proof Let G be a graph and N ⊆ V (G) be a stable set; let P = V (G)\N . Suppose G
is chordal probe with partition (P, N ) and G ′ is a supergraph of G which is chordal
and such that every edge in E(G ′)\E(G) has both of its endpoints in N . If G ′ has a
clique cutset, then G is a Yes instance for the clique cutset partitioned probe problem.
If G ′ is a complete graph, then either G is a complete graph, and thus there is no clique
cutset in any probe graph and G is a No instance, or there exist x, y ∈ N . Let G ′′
arise from G ′ by removing the edge xy. Then G ′′ has the clique cutset V (G)\ {x, y},
and hence G is a Yes instance.

Now we may assume that G is not a chordal probe graph with partition (P, N ), and
thus there exists an induced subgraph of G which is a hole containing two consecutive
vertices x, y ∈ P . We find such a hole as follows: for each edge xy with x, y ∈ P , let
X be the set of vertices adjacent to both x and y. Then there is a hole in G using xy if
and only if there is a path from x to y in G ′′ = (G\ {xy})\X , which can be checked
in polynomial time, and by choosing an induced x-y-path in G ′′, we can find such a
hole C . Let z be the neighbor �= x of y in C .

We say that S ⊆ V (G) is inseparable if for every (P, N )-probe graph H for G
and every clique cutset K of H , S\K is included in a connected component of H\K .
If S is a clique, then S is inseparable. We claim that S0 = {x, y, z} is inseparable.
Let H be a (P, N ) probe graph for G. Then H |V (C) contains x, y, z, and an induced
path Q from x to z not using any neighbors of y (because y ∈ P , NH (y) = NG(y)).
Since x ∈ P , xz is not an edge, it follows that Q has at least two edges, and hence
H |(V (Q) ∪ {y}) is a hole C ′ containing x, y, z. But a hole has no clique cutset, and
thus, for every clique cutset K of H , C ′\K is connected. This proves our claim.
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Now let Si be an inseparable set which is not a clique in any (P, N )-probe graph H
for G. We claim that either Si = V (G), or there exists an inseparable set Si+1 which
is a proper superset of Si and can be found in polynomial time, or some (P, N )-probe
graph for G has a clique cutset. This claim implies that starting with S0, which is not a
clique in any (P, N ) probe graph since x ∈ P is non-adjacent to z, it follows that we
can grow a maximal sequence S0, S1, . . . , Sk with k ≤ |V (G)| and Si a proper subset
of Si+1 and Si inseparable for all i in polynomial time, and if Sk = V (G), then V (G)

is inseparable, and so G is a No instance; if Sk �= V (G), then G is a Yes instance.
Thus, our result follows from the claim.

To prove the claim, let Si be an inseparable set which is not a clique in any (P, N )-
probe graph, and let Si �= V (G). Let Z be a connected component of G\Si , and
let Y be the set of neighbor of Z in Si . If Y ∩ P is a clique complete to Y ∩ N ,
then the (P, N )-probe graph H for G in which we add an edge ab if and only if
a, b ∈ Y ∩ N has the clique cutset Y separating Z from H\(Z ∪ Y ), and since Si is
not a clique in H , but Y is, it follows that V (H)\(Z ∪ Y ) ⊇ Si\Y �= ∅. Thus, we
may assume that there exists a ∈ Y ∩ P, b ∈ Y with a non-adjacent to b. Let Q be
an induced a-b path in G|(Z ∪ {a, b}), and let c be the neighbor of a in Q. Suppose
that Si ∪ {c} is not inseparable. Then there exists a (P, N )-probe graph H for G and
a clique cutset K in H such that in H\K , Si ∪ {c} contains vertices from at least two
connected components. Since Si is inseparable, it follows that there exists a connected
component T of H\K containing Si\K , and Si ∩ V (T ) �= ∅ since Si is not a clique in
H . Thus, there exists a second connected component T ′ of H\K containing c. Since
a is adjacent to c, it follows that a ∈ K . Since a ∈ P , it follows that V (Q)∩ K = {a},
because a has exactly one neighbor in V (Q)\ {a}, and this neighbor is c ∈ T ′. Since
G|(V (Q)\ {a}) is connected, so is H |(V (Q)\ {a}), and therefore, V (Q)\ {a} ⊆ T ′.
But now b ∈ Si ⊆ T ∪ K , and also b ∈ V (Q)\ {a} ⊆ T ′. This is a contradiction as
(T ∪ K )∩ T ′ = ∅. Thus, Si ∪ {c} is inseparable, and we may choose Si+1 = Si ∪ {c}.
This concludes the proof. ��

The disconnected sandwich problem can be solved in polynomial time, because it
is hereditary; thus the partitioned probe problem and the unpartitioned probe problem
can be solved in polynomial time as well.

Lemma 7 The disconnected unpartitioned probe problem in the complement can be
solved in polynomial time.

Proof A graph G is a Yes instance for the disconnected unpartitioned probe problem
in the complement if there exists N ⊆ V (G) such that N is a clique in G and a
partition (A, B) of V (G) such that the edges with one endpoint in each of A and B
have both endpoints in N . In other words, G has a biclique cutset, which is defined as
a partition (A1, B1, A2, B2) of V (G) with A1 ∪ B1 �= ∅, A2 ∪ B2 �= ∅ such that B1
is anticomplete to A2 ∪ B2, B2 is anticomplete to A1 ∪ B1, and A1 ∪ A2 is a clique.

If G is disconnected, then G has a biclique cutset with A1 = A2 = ∅. Otherwise,
every biclique cutset satisfies that A1, A2 �= ∅.

Let v,w ∈ V (G). Suppose that there is a biclique cutset (A∗
1, B∗

1 , A∗
2, B∗

2 ) with
v ∈ A∗

1 and w ∈ A∗
2. We find this biclique cutset as follows. First, if v is non-adjacent

to w, then no such biclique cutset exists. Let A be the set containing v, w and all
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common neighbors of v and w. From the definition of a biclique cutset it follows that
A = A∗

1 ∪ A∗
2. If A is not a clique, then no such biclique cutset exists. Let C1, . . . ,Ck

be the connected components of G\A. For i = 1, . . . , k, let Di be the set of neighbors
of Ci in A. If there is a vertex u in A\(D1∪· · ·∪ Dk), then ({u} ,∅, A\ {u} , V (G)\A)
is a biclique cutset. Therefore, we may assume that D1 ∪ · · · ∪ Dk = A. Let H be the
hypergraph with vertex set A and edges D1, . . . , Dk . If H is not connected, then there
exists a partition (A1, A2) of A with A1, A2 �= ∅ such that for i ∈ {1, . . . k}, either
Di ⊆ A1 or Di ⊆ A2. Let B1 be the union of V (Ci ) for i with Di ⊆ A1 and B2 the
union of V (Ci ) for i with Di ⊆ A2. Then (A1, B1, A2, B2) is a biclique cutset. If H
is connected, then there exists an i ∈ {1, . . . , k} such that Di ∩ A∗

1, Di ∩ A∗
2 �= ∅. But

then Ci ⊆ B1 and also Ci ⊆ B2, because Ci is connected and has neighbors in A∗
1

and A∗
2. This is a contradiction, which proves that if H is connected, then no biclique

cutset containing v ∈ A∗
1 and u ∈ A∗

2 exists.
Every step of the procedure described above can be done in polynomial time, and

by applying it to all pairs of vertices, we find a biclique cutset if there is one. Therefore,
this solves the disconnected unpartitioned probe problem in the complement. ��
Lemma 8 (Chvátal [12]) In a graph G, v is the center of a star cutset if and only if
either

– G\({v} ∪ N (v)) is disconnected; or
– N (v) = V (G)\ {v} and N (v) contains two non-adjacent vertices; or
– N (v) contains a vertex anticomplete to V (G)\({v} ∪ N (v)).

Lemma 9 The full star cutset sandwich problem can be solved in polynomial time.

Proof Let (G1,G2) be a sandwich instance, and suppose that v is the center of a
full star cutset in some sandwich graph G for (G1,G2); let X be the cutset and let
(A, B) be a partition of G\X such that A, B �= ∅ and A is anticomplete to B. If
G1\({v} ∪ NG2(v)) is disconnected, then v is the center of a full star cutset in the
sandwich graph arising from G1 by adding all edges incident with v in G2. If v is
complete to V (G1)\ {v} in G2, then v has at least two non-adjacent non-neighbors x
and y in G1 (one in A, one in B). Therefore, v is the center of a full star cutset in
G2\ {xv, yv, xy}.

Finally, we consider the case that G1\({v} ∪ NG2(v)) is non-empty and connected,
and without loss of generality, V (G1)\({v} ∪ NG2(v)) ⊆ A. Let x ∈ B, then x is
anticomplete to A∪{v} in G1. Thus, v is the center of a full star cutset in the sandwich
graph arising from G2 by removing all edges incident with x in E(G2)\E(G1).

Applying this to every vertex v ∈ V (G1) yields a polynomial-time algorithm for
checking if some sandwich graph has a full star cutset. ��
This implies that the full star cutset partitioned probe problem can be solved in poly-
nomial time as well.

Lemma 10 The star cutset unpartitioned probe problem in the complement can be
solved in polynomial time. The same is true for the full star cutset unpartitioned probe
problem in the complement.
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Proof Let G be a graph. For each vertex v ∈ V (G), we check if there is a probe graph
in the complement G ′ for G in which v is the center of a star cutset, i. e. if there is a
clique N in G so that G ′ arises from G by removing a set of edges with both endpoints
in N . Let X be the cutset and let (A, B) be a partition of G ′\X such that A, B �= ∅
and A is anticomplete to B.

Suppose first that NG(v) ∪ {v} = V (G). If v has two adjacent neighbors x, y,
then G\ {xy, xv, yv} has a full star cutset with center v. Thus, we may assume that
V (G)\ {v} is a stable set. If |V (G)| ≤ 2, then no unpartitioned probe graph in the
complement for G has a star cutset. If |V (G)| ≥ 3, let w be a neighbor of v, then
{v,w} is a full star cutset with center w. This can be done in polynomial time.

The next case we consider is when G ′\(NG(v)∪ {v}) is connected and non-empty.
Without loss of generality, let V (G)\({v}∪NG(v)) ⊆ A. Then B contains a vertex x ∈
NG(v) anticomplete to V (G)\({v}∪NG(v)) inG ′ and adjacent to v, i. e. NG(x)\({v}∪
NG(v)) is a clique. If NG(v) contains such a vertex x , then let N = NG(x)\({v} ∪
NG(v)) and let G ′ be the probe graph in the complement for G in which all edges
with both endpoints in N are removed. Then G ′ contains a star cutset with center v
in which x is one of the connected components of G ′\({v} ∪ NG(v)). Now, suppose
that X is a full star cutset in G ′. Since B ⊆ NG(v), this implies that v ∈ N , and thus
every vertex in B is non-adjacent to every vertex in V (G)\({v} ∪ NG(v)), because
no such vertex is in a clique also containing v. Let x ∈ B, and let N = {x, v}. Let
G ′′ = G\ {xv}. Then G ′′ is a probe graph in the complement for G, and G ′′ has a full
star cutset with center v, because x is an isolated vertex of G ′′\({v} ∪ NG ′′(v)). This
shows that in this case, we can test all combinations of v and x and find a (full) star
cutset in polynomial time.

Therefore, wemay assume that G ′\(NG(v)∪{v}) is disconnected. This implies that
G\(NG(v)∪ {v}) is a Yes instance for the disconnected unpartitioned probe problem
in the complement. By Lemma 7, we find a clique N in polynomial time such that
if G ′′ is the graph arising from G after removing edges with both endpoints in N ,
G ′′\(NG(v)∪{v}) is disconnected, and so NG(v)∪{v} is a full star cutset in G ′′. This
concludes the proof. ��
Lemma 10 is of particular interest because we will prove in Theorem 13 that the
full star cutset unpartitioned probe problem is NP-hard, thus giving an example of a
problem for which the unpartitioned probe problem has a different complexity in the
graph and in its complement assuming that P �= NP.

In the following, we will use a tool from [22]. Let k ∈ N, and let M be a symmetric
(k ×k)-matrix with entries in {0, 1, ∗}. Let G be a graph, and let L : V (G) → 2{1,...,k}
be a function assigning to each vertex a subset of {1, . . . , k}. An M-list partition of G
with respect to L is a partition of V (G) into sets (A1, . . . , Ak) such that

– if v ∈ Ai , then i ∈ L(v); and
– for all i ∈ {1, . . . , k}, if Mii = 0, then Ai is a stable set in G, and if Mii = 1, then

Ai is a clique in G; and
– for all distinct i, j ∈ {1, . . . , k}, if Mi j = 0, then Ai is anticomplete to A j , and if

Mi j = 1, then Ai is complete to A j .

This problem is quite general, but here we will only use Lemma 11:

123



Algorithmica

Lemma 11 (Feder et al. [22]) The list partition problem with lists of size at most two
can be solved in polynomial time.

By slightly adapting the proof of Lemma 11,we can extend its result to the sandwich
problem.

Corollary 3 The M-list partition sandwich problem with respect to L with lists of
size at most two can be solved in polynomial time.

Proof Let (G1,G2) be a sandwich instance with V (G1) = V (G1) = V and E(G1) ⊆
E(G2). The reduction uses a variable vi for each v ∈ V, i ∈ L(v) which is true if
v ∈ Ai . If L(v) = {i, j}, we add the clause (vi ∨ v j ), and if L(v) = {i}, we add
the clause (vi ). For each pair vi , w j with v �= w, if Mi j = 0, and vw ∈ E(G1), we
add a clause (vi ∨ w j ); if Mi j = 1, and vw /∈ E(G2), we add a clause (vi ∨ w j ) as
well. If there is a valid list partition (A1, . . . , Ak), then the assignment in which vi is
true if and only if v ∈ Ai satisfies all clauses. For the other direction, if we have a
satisfying assignment, then for each variable, vi is true for some i ∈ L(v); put v in
Ai . Suppose that this is not a valid list partition, then there exists i, j ∈ {1, . . . , k}
and v ∈ Ai , w ∈ A j , v �= w, such that either Mi j = 1 and vw /∈ E(G2), or Mi j = 0
and vw ∈ E(G1). Therefore, the instance has a clause (vi ∨w j ), but by definition, vi

and w j are true in our assignment, and hence it is not a satisfying assignment. This
reduction uses at most 2|V (G)| variables and |V (G)|2 clauses, hence the fact that
2-Satisfiability can be solved in polynomial time [20] implies the result. ��
Theorem 6 The unpartitioned probe homogeneous set problem and the same problem
in the complement can be solved in polynomial time.

Proof First, note that if H is a homogeneous set in G, then H is a homogeneous set
in Gc. Therefore, the property P of having a homogeneous set satisfies P = Pc, and
hence the complexity of the unpartitioned probe problem is the same in the graph and
in the complement.

To solve the unpartitioned probe homogeneous set problem, we note that a homoge-
neous set inG is a partition of V (G) into H , A and B with |H | ≥ 2 and |V (G)\H | ≥ 1,
A complete to H and B anticomplete to H . Suppose that there exists a partition (P, N )

of V (G) and a (P, N )-probe graph G ′ for G such that G ′ has a homogeneous set H
with A complete to H and B anticomplete to H in G ′. We may assume N ⊆ H ∪ A,
because if E(G ′)\E(G) contains any edge with an endpoint in B, removing it from
E(G ′) preserves that H is a homogeneous set complete to A and anticomplete to B.

If N ∩ A = ∅ or N ∩ H = ∅, then H is complete to A in G, and therefore G has
a homogeneous set. A homogeneous set in G can be found in polynomial time [31].
Therefore, we may assume that N ∩ A �= ∅ and N ∩ H �= ∅. If H ⊆ N , then H is
complete to A\N and anticomplete to B ∪(A∩ N ) in G, and thus H is a homogeneous
set in G, and again, H can be found in polynomial time. Thus, we may assume that
H\N �= ∅.

To prove the result, we need to show for v,w, u ∈ V (G) how to find a homogeneous
set H complete to A and anticomplete to B in a (P, N )-probe graph for G with
v ∈ H\N , w ∈ H ∩ N , and u ∈ A ∩ N . Let X be the set containing u as well as
all vertices of G that are non-adjacent to w, non-adjacent to u, and adjacent to v. It
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follows that (N ∩ A) ⊆ X ⊆ N , and hence G\X has a homogeneous set containing
v and w (because H\X is complete to A\X and anticomplete to B).

Let H ′ ⊆ H . If there is a vertex x ∈ V (G)\(H ′ ∪ X) such that x has a neighbor and
a non-neighbor in H ′, we call x a mixed vertex for H ′; then x /∈ A\X , x /∈ B, x /∈ X ,
and so x ∈ H , which implies that {x} ∪ H ′ ⊆ H . If there is a vertex x ∈ X\H ′ such
that H ′\N (x) is not a stable set, we call x a non-stable vertex for H ′; then x /∈ N ∩ A,
and so x ∈ N ∩ H , and thus {x} ∪ H ′ ⊆ H . If there is a vertex x ∈ X\H ′ such that
x has a neighbor y ∈ H ′ with y non-adjacent to u, we call x a conflict vertex for H ′;
since all non-neighbors of u in H ′ ⊆ H are in N , it follows that y ∈ N , but since
X ⊆ N , x ∈ N . But then N is not stable, which is a contradiction, and so H ′

� H . If
there is a vertex x ∈ X\H ′ such that x has a non-neighbor y ∈ H ′ with y adjacent to
u, we call x a small vertex for H ′; then x /∈ B, but since u is adjacent to y, it follows
that y ∈ P ∩ H , and so x /∈ A, and thus x ∈ H ; therefore, {x} ∪ H ′ ⊆ H .

This gives rise to the following algorithm. For all v,w, u ∈ V (G), let H ′ = {v,w}.
Compute X as above.While there exists a mixed vertex, a non-stable vertex, or a small
vertex for H ′, we add it to H ′. If X is not stable, or u was added to H ′, or there is a
conflict vertex, the algorithm terminates with a No, because there is no homogeneous
set H in a (P, N )-probe graph for G with v ∈ H\N , w ∈ H ∩ N , and u ∈ A ∩ N .
Clearly, this algorithm takes polynomial time, since it runs for at most |V (G)| steps,
each of which takes time polynomial in |V (G)|.

Let H ′′ be the set we obtain if the algorithm does not terminate with a No. Let
N ′′ = (H ′′\NG(u)) ∪ (X\H ′′), and let G ′′ be the graph arising from G by adding
edges between every pair of vertices in N ′′. Since u /∈ H ′′ and u is not a non-stable
vertex, it follows that (H ′′\NG(u)) is stable, and X is stable. If there is a vertex x in
X\H ′′ with a neighbor in H ′′ \ NG(u), then x is a conflict vertex. Since the algorithm
did not terminate with a No, it follows that N ′′ is a stable set, and so G ′′ is a probe
graph for G. Let x ∈ V (G ′′)\H ′′, and suppose that x has a neighbor in H ′′ and a
non-neighbor in H ′′ with respect to G ′′. Then x is not a mixed vertex for H ′′ in G,
and so x ∈ X\H ′′. Let y be a non-neighbor of x in H ′′ with respect to G ′′, then
y ∈ NG(u), but then x is a small vertex for H ′′, a contradiction. Thus, no such vertex
x exists. Since v,w ∈ H ′′ and u /∈ H ′′, it follows that H ′′ is a homogeneous set in
the (V (G)\N ′′, N ′′)-probe graph G ′′ for G. We found H ′′ in polynomial time, which
proves the result. ��
Theorem 7 The partitioned probe homogeneous pair problem can be solved in poly-
nomial time.

Proof Let G be a graph and N a stable set in G; let P = V (G)\N . Suppose that
there is a partition (Q1, Q2, A, B, S1, S2) of V (G) which is a homogeneous pair in a
(P, N )-probe graph G ′ for G, and that S1, S2 ⊆ N and N ∩ Q1, N ∩ Q2 �= ∅. Let
Q = (Q1∪ Q2)∩ N . We claim that (Q1\Q, Q2 ∪ Q, A, B, S1, S2) is a homogeneous
pair in some (P, N )-probe graph G ′′ for G. Let G ′′ arise from G ′ by removing all
edges from S1 to Q and adding all edges from S2 to Q. Then S1 is complete to Q1\Q
and anticomplete to Q2∪ Q, S2 is complete to Q2∪ Q, and A is complete to Q1∪ Q2,
B is anticomplete to Q1∪Q2. Since N ∩Q1, N ∩Q2 �= ∅, it follows that |Q2∪Q| ≥ 2.
Moreover, |A∪ B ∪ S1∪ S2| ≥ 2, because these sets remain unchanged. By symmetry,
this proves that if G with partition (P, N ) is a Yes instance for the partitioned probe
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homogeneous pair problem, then there exists a partition (Q1, Q2, A, B, S1, S2) of
V (G) which is a homogeneous pair in a (P, N )-probe graph G ′, and S1 ∩ P �= ∅ or
Q1 ⊆ P .

We consider two steps. First, if Q2 = ∅, or if S1 = S2 = ∅, then we are looking
for a homogeneous set Q1 in some (P, N )-probe graph for G with the additional
requirement that |V (G)\Q1| ≥ 2. This can be found as follows. For all pairs of
vertices p, q ∈ V (G), we test if there is such a homogeneous set containing p and q.
Let H = {p, q}. While there is a vertex x with a neighbor y and a non-neighbor z in
H such that {x, z} ∩ P �= ∅, add x to H . Let H ′ be the set after this terminates. In the
beginning, H ⊆ Q1 ∪ Q2. At every step, we add a vertex x to H if there exist y and z
in H such that xy is an edge and xz is a non-edge in every (P, N )-probe graph for G.
Since Q1 ∪ Q2 is a homogeneous set containing H , it follows that x is in Q1 ∪ Q2,
and thus, H ′ ⊆ Q1 ∪ Q2. Let G ′ be the (P, N )-probe graph for G in which we add
an edge from x ∈ N ∩ (V (G)\(Q1 ∪ Q2)) to y ∈ N ∩ (Q1 ∪ Q2) if and only if x
has a neighbor (in G) in (Q1 ∪ Q2)\N . Suppose that there is a vertex x ∈ V (G ′)\H ′
such that x has a neighbor in H ′ and a non-neighbor in H ′ with respect to G ′. Then
x /∈ P , because we would have added x to H ′. So x ∈ N , and since x has a neighbor
in H ′, x has a neighbor in H ′\N . If x had a non-neighbor in H ′\N , we would have
added x to H ′. But then, by definition of G ′, x is complete to H ′\N and to H ′ ∩ N .
Thus, every vertex in V (G ′)\H ′ is either complete to anticomplete to H ′. Moreover,
|H ′| ≥ 2 as H ′ includes p, q, and |V (G)\H ′| ≥ |V (G)\(Q1 ∪ Q2)| ≥ 2. Therefore,
we have found H ′, a homogeneous pair with Q2 = ∅, and with S1 = S2 = ∅, in G ′,
a (P, N )-probe graph for G, in polynomial time.

For the second step, suppose that there is a partition (Q1, Q2, A, B, S1, S2) of
V (G) which is a homogeneous pair in a (P, N )-probe graph for G, and Q1, Q2 �= ∅
and hence |Q1 ∪ Q2| ≥ 3. Suppose further that S1 ∪ S2 �= ∅, and S1 ∩ P �= ∅ or
Q1 ⊆ P . For p, q, r, x ∈ V (G), we will show how to test if there is such a partition
with {p, q, r} ⊆ Q1 ∪ Q2, and one of the following holds:

(a) x ∈ S1 ∩ P; or
(b) x ∈ S1 ∩ N , Q1 ⊆ P; or
(c) x ∈ S2 ∩ N , Q1 ⊆ P .

Every homogeneous pair that was not found in the first step satisfies one of these
assumptions (up to symmetry) for some choice of {p, q, r, x}. Now suppose such a
partition (Q1, Q2, A, B, S1, S2) of V (G) which is a homogeneous pair in a (P, N )-
probe graph for G exists with {p, q, r, x} as above. Let Q′

1, Q′
2 = ∅. For each vertex

v in {p, q, r}, if we are in case (a) or (b), add v to Q′
1 is v is adjacent to x , and add v

to Q′
2 otherwise. If we are in case (c), add v to Q′

1 if v is non-adjacent to x and v ∈ P ,
and add v to Q′

2 otherwise. It follows that Q′
1 ⊆ Q1 and Q′

2 ⊆ Q2.
While there is a vertex v ∈ V (G)\(Q1 ∪ Q2) and there exist a, b with {a, b} ⊆ Q1

or {a, b} ⊆ Q2 such that {v, a} ∩ P �= ∅ and {v, b} ∩ P �= ∅, and va ∈ E(G),
vb /∈ E(G), we add v to Q′

1 ∪ Q′
2. In case (a), we add v to Q′

1 if vx ∈ E(G), and
we add v to Q′

2 otherwise. In case (b), we add v to Q′
2 if v ∈ N , and otherwise

proceed as for (a). In case (c), we add v to Q′
2 if v ∈ N or vx ∈ E(G), and we add

v to Q′
1 otherwise. In each case, it follows that this algorithm preserves the property

that Q′
1 ⊆ Q1, Q′

2 ⊆ Q2. After at most |V (G)| iterations, this algorithm terminates
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with Q′
1 ⊆ Q1, Q′

2 ⊆ Q2 in polynomial time. Let G ′ be the (P, N ) probe graph
for G arising from G by adding all edges from z ∈ V (G)\(Q′

1 ∪ Q′
2) to N ∩ Q′

1
if z has a neighbor in Q′

1\N , and adding all edges from z ∈ V (G)\(Q′
1 ∪ Q′

2) to
N ∩ Q′

2 if z has a neighbor in Q′
2\N . Suppose for a contradiction that there is a

vertex z ∈ V (G ′)\Q′
1 ∪ Q′

2 such that either z is neither complete nor anticomplete
to Q′

1 in G ′, or z is neither complete nor anticomplete to Q′
2 in G ′; without loss of

generality, let this be the case for Q′
1. Then z /∈ P , for otherwise the algorithm would

have added z to Q′
1 or Q′

2. It follows that z ∈ N , and since z has a neighbor in Q′
1

with respect to G ′, by definition, z has a neighbor a in Q′
1 ∩ P with respect to G. But

then there exists b ∈ Q′
1\NG ′(z) ⊆ P , and a and b would have caused the algorithm

to add z to Q′
1 or Q′

2. This implies that V (G ′) can be partitioned into (S′
1, S′

2, A′, B ′)
such that S′

1 is complete to Q′
1 and anticomplete to Q′

2, S′
2 is complete to Q′

2 and
anticomplete to Q′

1, A′ is complete to Q′
1 ∪ Q′

2 and B ′ is anticomplete to Q′
1 ∪ Q′

2.
If |S′

1 ∪ S′
2 ∪ A′ ∪ B ′| ≥ 2, then this is a homogeneous pair in a (P, N )-probe graph

for G. If not, then Q′
1 ∪ Q′

2 ⊆ Q1 ∪ Q2 implies that (Q1, Q2, S1, S2, A, B) is not
a homogeneous pair either, a contradiction showing that no homogeneous pair with
x, p, q, r as chosen exists. By checking all combinations of x, p, q, r , and each of
cases (a), (b) and (c), we find a homogeneous pair with the specified properties in a
(P, N )-probe graph in polynomial time, if there is one. This concludes the proof. ��
Theorem 8 The 1-join partitioned probe problem and the 1-join unpartitioned probe
problem can be solved in polynomial time.

Proof For the partitioned probe problem, we claim that for G and a partition (P, N ), if
there is a (P, N )-probe graph forG that has a 1-join, then there is a (P, N )-probe graph
with a 1-join (A1, B1, A2, B2) such that either A1 ⊆ N and A2 ⊆ P , or A1 ∩ P �= ∅
and A2 ∩ P �= ∅. Suppose not, then there is a (P, N )-probe graph G ′ for G with a
1-join (A1, B1, A2, B2), and without loss of generality A1 ⊆ N , A2 ∩ N �= ∅. Let
G ′′ be the graph obtained from G ′ by removing all edges with one endpoint in A1 and
one endpoint in A2 ∩ N . This is a (P, N )-probe graph for G, because we have only
modified edges with both endpoints in N . But now (A1, B1, A2 ∩ P, (A2 ∩ N )∪ B2)

is a 1-join in G ′′, and it satisfies the first condition. This proves the claim.
Next, note that if G contains a 1-join, we can find it in polynomial time [15].

Thus, we may assume that G does not contain a 1-join, and hence if there is a 1-join
(A1, B1, A2, B2) in a probe graph for G, then N ∩ A1, N ∩ A2 �= ∅. In particular, if
there is a 1-join in a probe graph with A1 ⊆ N , A2 ⊆ P , then G has a 1-join. This
implies that we only need to show how to find a 1-join (A1, B1, A2, B2) in a probe
graph with A1 ∩ N , A1 ∩ P, A2 ∩ N , A2 ∩ P �= ∅.

For distinct u, v ∈ P , we show how to find a (P, N )-probe graph with a 1-join
(A1, B1, A2, B2) such that u ∈ A1 ∩ P, v ∈ A2 ∩ P , if it exists. We consider the
four sets A, B, S1, S2 where A is the set of common neighbors of u and v in G, B is
the set of vertices of G non-adjacent to both u and v, S1 is the set of vertices of G
adjacent to u and non-adjacent to v, and S2 is the set of vertices of G adjacent to v and
non-adjacent to u. Clearly, (A, B, S1, S2) is a partition of V (G)\ {u, v}. Moreover, by
definition of a 1-join, and since we cannot modify edges adjacent with either u or v
in a (P, N )-probe graph, it follows that A ⊆ A1 ∪ A2, B ⊆ B1 ∪ B2, S1 ⊆ B1 ∪ A2,
and S2 ⊆ B2 ∪ A1.
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We can now formulate the 1-join partitioned probe problem as a list partition sand-
wich problem with G1 = G and G2 the graph arising from G by adding edges
between every pair of vertices in N . For each w ∈ V (G)\ {u, v}, if w ∈ A,
we set L(w) = {A1, A2}; if w ∈ B, we set L(w) = {B1, B2}; if w ∈ S1,
we set L(w) = {B1, A2}; and if w ∈ S2, we set L(w) = {B2, A1}. We set
L(u) = {A1} , L(v) = {A2}. Moreover, we require that A1 is complete to A2, B1
is anticomplete to A2 and B2, and B2 is anticomplete to A1. To satisfy the cardinality
constraint, we check for all pairs x, y ∈ V (G)\ {u, v} if the list partition sandwich
instance has a solution when L(x) is replaced by L(x)∩{A1, B1} and L(y) is replaced
by L(y) ∩ {A2, B2}. If there is a solution for any pair x, y, then the corresponding
partition is a 1-join in the (P, N )-probe graph arising from G by adding all edges
between A1 ∩ N and A2 ∩ N . On the other hand, if there is a 1-join in a (P, N )-probe
graph, then there exists x ∈ (A1∪ B1)\ {u} and y ∈ (A2∪ B2)\ {v}, and for this choice
of x, y, there is a valid solution of the list partition sandwich instance. By Corollary 3,
the list partition sandwich problem with lists of size at most two can be solved in
polynomial time. Therefore, we can find a 1-join (A1, B1, A2, B2) in a (P, N )-probe
graph such that u ∈ A1, v ∈ A2 in polynomial time, if it exists.

For the unpartitioned probe problem, we consider the same cases, and show how to
find a partition (P, N ) and a 1-join (A1, B1, A2, B2) in a probe graph for G. As before,
wemay assume that G does not contain a 1-join, and we only need to show how to find
a 1-join (A1, B1, A2, B2) in a probe graph with A1∩ N , A1∩ P, A2∩ N , A2∩ P �= ∅.
For p, q, r, s ∈ V (G), we will give an algorithm for finding a 1-join (A1, B1, A2, B2)

in a probe graph with some partition (P, N ) and with p ∈ A1 ∩ N , q ∈ A1 ∩ P, r ∈
A2 ∩ N , s ∈ A2 ∩ P . We may assume that B1 ∩ N = B2 ∩ N = ∅.

We now show that this can be written as a list partition problem with six parts
A1 ∩ P, A1 ∩ N , A2 ∩ P, A2 ∩ N , B1, B2 such that B1 is anticomplete to B2 ∪ A2, B2
is anticomplete to B1∪ A1, A1 is complete to A2∩ P , A2 is complete to A1∩ P , A1∩N
is anticomplete to A2 ∩ N , and A1 ∩ N , A2 ∩ N are stable sets. This is a list partition
problem, and if it has a solution with p ∈ A1 ∩ N , q ∈ A1 ∩ P, r ∈ A2 ∩ N , s ∈
A2 ∩ P , then the graph G ′ arising from G by adding all edges with both endpoints in
N ∩ (A1 ∪ A2) is a (N , V (G)\N )-probe graph for G in which (A1, B1, A2, B2) is a
1-join.

By Lemma 11, it suffices to show that in this list partition problem, all lists have
size at most two. Then the problem can be solved in polynomial time, and by solving
it for every choice of {p, q, r, s}, we solve the 1-join unpartitioned probe problem in
polynomial time. Let w ∈ V (G)\ {p, q, r, s}. If w is non-adjacent to q and s, then
w ∈ B1 ∪ B2. If w is non-adjacent to q, adjacent to s, and non-adjacent to r , then
w ∈ B2 ∪ (A1 ∩ N ). If w is non-adjacent to q, adjacent to s, and adjacent to r , then
w ∈ B2 ∪ (A1 ∩ P). If w is adjacent to q, non-adjacent to s, and non-adjacent to p,
then w ∈ B1 ∪ (A2 ∩ N ). If w is adjacent to q, non-adjacent to s, and adjacent to
p, then w ∈ B1 ∪ (A2 ∩ P). Now we may assume that w is adjacent to q and s. If
w is non-adjacent to p and r , then w ∈ (A1 ∩ N ) ∪ (A2 ∩ N ). If w is adjacent to at
least one of p and r , then w /∈ N , and so w ∈ (A1 ∩ P) ∪ (A2 ∩ P). Every vertex in
{p, q, r, s} has a list of size one, and as we have shown, every other vertex has a list of
size two. This shows that the list partition problem can be solved in polynomial time,
which implies the result. ��
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Theorem 9 The 1-join unpartitioned probe problem in the complement can be solved
in polynomial time.

Proof Let G be a graph, and suppose that there exists a partition (P, N ) of V (G)

and a (P, N )-probe graph in the complement G ′ for G such that G ′ has a 1-join
(A1, B1, A2, B2). As in Theorem 8, note that if G contains a 1-join, we can find it
in polynomial time [15]. Thus, we may assume that G does not contain a 1-join, and
hence if there is a 1-join (A1, B1, A2, B2) in a probe graph in the complement for G
with partition (P, N ), then (B1 ∪ B2) ∩ N �= ∅.

Suppose first that there is a 1-join (A1, B1, A2, B2) in a probe graph in the comple-
ment for G with partition (P, N ) and with B1 ∩ N , B2 ∩ N �= ∅. For u, v ∈ V (G), we
will show how to find such a 1-join with u ∈ B1 ∩ N , v ∈ B2 ∩ N , if it exists. Let N ′
be the set containing u and v as well as all of the common neighbors of u and v in G.
Then N ′ ⊆ N , because vertices in (B1 ∪ A1)\N are non-adjacent to v, and vertices
in (B2 ∪ A2)\N are non-adjacent to u, but N is a clique, so N ⊆ N ′. Thus, we have
reduced this to the partitioned probe problem, which can be solved in polynomial time
by Theorem 8. By repeating this for all u, v ∈ V (G), we find a 1-join of this kind in
polynomial time, if it exists.

Now suppose that B1 ∩ N = ∅. Then we may assume that A2 ∩ N = ∅, because B1
is already anticomplete to A2 in G, and thus N ⊆ A1 ∪ B2. Since G does not have a
1-join, it follows that N � A1 and N � B2, and consequently, B2 ∩ N , A1 ∩ N �= ∅.
Moreover, (A1, B1, (B2 ∩ N )∪ A2, B2 ∩ P) is not a 1-join in G, and so A1 ∩ P �= ∅.
Furthermore, (A1 ∩ N , B1 ∪ (A1 ∩ P), A2 ∪ (B2 ∩ N ), B2 ∩ P) is not a 1-join in
G, and so A2 ∩ P �= ∅. For u, v, x, y we show how to find such a 1-join with
u ∈ A1 ∩ N , v ∈ B2 ∩ N , x ∈ A1\N , y ∈ A2 ⊆ P . Let N ′ be the set containing v

and all vertices adjacent to u and v, and non-adjacent to x . It follows that B2 ∩ N ⊆
N ′ ⊆ N = (A1 ∩ N ) ∪ (B2 ∩ N ). We can now reduce the 1-join problem to a
list partition problem with lists of size at most two. We partition into the six sets
A1 ∩ N , A1 ∩ P, B1 ⊆ P, A2 ⊆ P, B2 ∩ N , B2 ∩ P . For each of u, v, x, y, we have a
list of size one. For n ∈ N ′, we let L(n) = {A1 ∩ N , B2 ∩ N }. For n /∈ N ′, it follows
that n /∈ B2 ∩ N . If n is non-adjacent to x and y, then L(n) = {B1, B2 ∩ P}. If n is
adjacent to x and non-adjacent to y, then L(n) = {B1, A2}. If n is non-adjacent to
x and n is adjacent to v, then L(n) = {A1 ∩ N , B2 ∩ P}. If n is adjacent to y and
non-adjacent to x , and n is non-adjacent to v, then L(n) = {A1 ∩ P, B2 ∩ P}. If n
is adjacent to x and adjacent to y and adjacent to v, then L(n) = {A1 ∩ N , A2}. If n
is adjacent to x and adjacent to y and non-adjacent to v, then L(n) = {A1 ∩ P, A2}.
We require that A1 ∩ P is complete to A2 and anticomplete to B2, A1 ∩ N is a clique
and complete to A2 and B2 ∩ N , and anticomplete to B2 ∩ P , B1 is anticomplete to
A2 and B2, and B2 ∩ N is a clique. If there is a list partition with these lists and these
properties, then N is a clique, and by removing all edges with both endpoints in N ,
we obtain a 1-join (A1, B1, A2, B2). By solving this list partition problem with lists of
size two in polynomial time by Lemma 11, and by checking all choices of u, v, x, y,
we find a 1-join in a probe graph in the complement in polynomial time, if there is
one. This concludes the proof. ��
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3.2 Hardness Results

Let G be a graph. A set M ⊆ E(G) is a matching if no two edges in M share
an endpoint. G is decomposable if there exists a partition (V1, V2) of V (G) with
V1, V2 �= ∅ such that the set of edges of G with one endpoint in V1 and one endpoint
in V2 is a matching; (V1, V2) is called a decomposition of G if this holds. The line
graph L(G) is the graph with vertex set E(G), and in which distinct e, f ∈ E(G) are
connected by an edge in E(L(G)) if and only if e and f share an endpoint.

Theorem 10 (Chvátal [11]) Recognizing decomposable graphs is NP-hard, even
when the maximum degree of the input graph is bounded by four.

Lemma 12 Let G be a graph. If G is not connected, then G is decomposable. If G
has a cut vertex v separating G\ {v} into A and B with A anticomplete to B, then G
is decomposable if and only if at least one of G|(A ∪ {v}), G|(B ∪ {v}) is.

Proof Let G be a graph that has a cut vertex v separating G\ {v} into A and B with A
anticomplete to B.

Suppose that G is decomposable with decomposition (V1, V2) such that V1, V2 �=
∅, and v ∈ V1. Since V2 �= ∅, without loss of generality, let V2 ∩ A �= ∅. Then
((A ∪ {v}) ∩ V1, (A ∪ {v}) ∩ V2) is a decomposition of G|(A ∪ {v}).

For the other direction, suppose that G|(A ∪ {v}) has a decomposition (V1, V2),
and without loss of generality, v ∈ V1. Then (V1 ∪ B, V2) is a decomposition of G. ��

By Lemma 12, it follows that the decomposable problem is still NP-hard in 2-
connected graphs. Theorem 10 was used in [3] to prove, by going to the line graph and
using Lemma 13, that the problem of finding a stable cutset in a graph is NP-hard.

Lemma 13 (Brandstädt et al. [3]) If L(G) has a stable cutset, then G is decomposable.
If G is decomposable and has minimum degree at least two, then L(G) has a stable
cutset.

Theorem 11 (Moshi [29]) The problem of recognizing decomposable graphs is NP-
hard, even when the input graph is required to be bipartite.

Theorem11uses the following construction: LetG be a graph. Then♦(G) is defined
as the graph containing a vertex for each vertex in G, as well as two vertices e1 and
e2 for each e ∈ E(G). For each v ∈ V (G) and each edge e ∈ E(G) incident with v,
we add two edges ve1 and ve2 to ♦(G), and no other edges. Clearly, ♦(G) is bipartite
(the two parts correspond to vertices of G and edges of G, respectively), and Moshi
[29] showed that ♦(G) is decomposable if and only if G is. An example is shown in
Fig. 3.

In a graph G, a vertex star at v ∈ V (G) is a set of edges of G that are all incident
with v.

Theorem 12 The clique cutset unpartitioned probe problem is NP-hard, even when
the input is restrict to line graphs of bipartite graphs with clique number at most eight.
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Fig. 3 An example with
G = Pc

5 (left) and ♦(G) (right)

Proof We give a reduction from the problem of recognizing 2-connected decompos-
able graphs with maximum degree four.

Let G be a 2-connected graph with maximum degree four. Consider the graph
H = L(♦(G)). We claim that H is a clique cutset probe graph if and only if G is
decomposable. Note that since G has maximum degree four, ♦(G) has maximum
degree eight. Since ♦(G) is bipartite, it follows that L(♦(G)) has clique number at
most eight.

By Lemma 13 and Theorem 11, it suffices to show that H is a clique cutset probe
graph if and only if H has a stable cutset. If H has a stable cutset N , then H is a clique
cutset probe graph with partition (V (H)\N , N ), because the graph H ′ obtained from
H by adding all edges with both endpoints in N has the clique cutset N .

For the converse direction, let H ′ be a clique cutset probe graph for H with partition
(P, N ), and let S be a clique cutset in H ′. We may assume that N ⊆ S, because
removing all edges in E(H ′)\E(H) that do not have both endpoints in S preserves
that S is a clique in H ′ and H ′\S is disconnected. If N = S, then S is a stable cutset
in H , which is what we wanted to show. Therefore, we may assume that |P ∩ S| ≥ 1.

If |N | ≤ 1, then H ′ = H , and H contains a clique cutset. A clique in the line
graph of a bipartite graph corresponds to a vertex star in the bipartite graph, and a
clique cutset in the line graph of a bipartite graph corresponds to 1-vertex cutset in
the bipartite graph. Since G and ♦(G) are 2-connected, it follows that ♦(G) has no
1-vertex cutset, and therefore, |N | ≥ 2.

It is well-known that line graphs of bipartite graphs contain neither a claw (K1,3)
nor a diamond (K4\e) as an induced subgraph. If |N | ≥ 3, then H contains a claw,
and if |P ∩ S| ≥ 2, then H contains a diamond. Therefore, |N | = 2, |P ∩ S| = 1. Let
{n1, n2} = N , {p} = P ∩ S. Then, there exists an edge e = vw ∈ E(G) such that p
corresponds to the edge ve1 or ve2 in ♦(G); by symmetry, we may assume that the
former holds. Since n1 and n2 are non-adjacent and the edges of ♦(G) incident with
v form a clique in L(♦(G)), it follows that one of n1, n2 corresponds to the edge e1w
in ♦(G); by symmetry, we may assume that n1 = e1w. It follows that n2 corresponds
either to ve2 or to ve′

1 or ve′
2 for some e′ �= e.

Since S is a cutset in H , it follows that ♦(G)\ {n1, n2, p} has more than one
connected component that is not just a single vertex. If n2 = ve′

1 or n2 = ve′
2

for some edge e′ �= e, then every vertex of V (G) can be reached from every other
vertex of V (G) in ♦(G)\ {n1, n2, p}, because every edge e = xy in a path in G can
be replaced with xe2 and e2y in ♦(G). Thus, every vertex of V (G) is in the same
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connected component in ♦(G)\ {n1, n2, p}, and every other component is therefore
a single vertex (because ♦(G)\V (G) is a stable set). This is a contradiction, since S
was a cutset in H .

It follows that n2 = ve2. The vertex v can be reached fromw in ♦(G)\ {n1, n2, p},
because G is 2-connected, and hence there exists a path in G from v to w not using
the edge e = vw. Every edge of ♦(G) not incident with e1 or e2 is not in the cutset,
and since G\e is connected, every vertex of V (G) can be reached from every other
vertex of V (G) in ♦(G)\ {n1, n2, p}. As before, this yields a contradiction.

This proves that if H is a clique cutset probe graph, then H has a stable cutset. ��
In a graph G, two vertices x, y ∈ V (G) are clones if NG(x) = NG(y). A graph G ′

arises from G by cloning x ∈ V (G) if V (G ′) = V (G) ∪ {
x ′}, G ′|V (G) = G, and

NG ′(x ′) = NG(x).

Theorem 13 The full star cutset unpartitioned probe problem is NP-hard.

Proof To prove this, we modify the previous construction as follows. Let G be a 2-
connected graph, and let G ′ arise from G by adding a vertex v complete to V (G).
Let ♦v(G ′) arise from ♦(G ′) by cloning twice each vertex e1 for e ∈ E(G ′) with
e incident to v to obtain two new vertices e3, e4 with the same set of neighbors as
e1 (and e2), and {e1, e2, e3, e4} a stable set. We claim that H ′ = L(♦v(G ′)) is a full
star cutset probe graph if and only if G is decomposable. ♦v(G ′) consists of ♦(G), v,
and for each vertex w of G, four vertices e1, e2, e3, e4, each adjacent to precisely v

and w. In the line graph, we1, we2, we3, we4 correspond to a K4 we will call t (w),
and ve1, ve2, ve3, ve4 correspond to a K4 we will call k(w). The edges between
t (w) and k(w) are precisely edges from vei to wei for i = 1, 2, 3, 4. Moreover, for
w, u ∈ V (G), t (w) is anticomplete to t (u) ∪ k(u) and k(w) is complete to k(u). For
w ∈ V (G), we denote by s(w) the clique in H ′ corresponding to edges incident with
w in ♦(G); s(w)∪ t (w) is a clique. Let V ∗ denote the union of the cliques s(w), i. e.
denote the vertices in H ′ corresponding to edges of ♦(G). Then H ′|V ∗ = L(♦(G)).
Let K denote the union of the cliques k(w), i. e. the clique in H ′ corresponding to the
vertex star at v in ♦v(G ′). Let T denote the union of the cliques t (w) for w ∈ V (G).
Then V (H ′) = V ∗ ∪ K ∪ T , where K is anticomplete to V ∗, and k(w) is anticomplete
to V ∗ ∪ (T \s(w)).

From the proof of Theorem 12, we know that G is decomposable if and only if
H = L(♦(G)) is a clique cutset probe graph, if and only if H has a stable cutset.

If G is decomposable, then H = L(♦(G)) has a stable cutset S and a partition
(A, B) of V (H)\S such that A is anticomplete to B. Then K is anticomplete to S in
H ′, and so wemay choose k ∈ K and N = {k}∪S, make k complete to S, and obtain a
probe graph H ′′ for H ′ which has a star cutset N (k)∪ S ⊃ S ∪ K with center k. This is
a cutset, because S is a cutset of H , and forw ∈ V (G), N (x) ⊆ s(w)∪t (w)∪k(w) for
x ∈ t (w), and since s(w) is a clique, s(w)∩ A = ∅ or s(w)∩ B = ∅. If s(w)∩ A = ∅,
add t (w) to B, otherwise, to A. By the properties of H ′ it follows that the resulting
sets are still anticomplete to each other.

To prove the other direction, let X be a full star cutset in a probe graph H ′′ with
partition (P, N ) for H ′, and let b be the center of X , and A = X\ {b} = NH ′′(b). Let
(C, D) be a partition of H ′′\X such that C is anticomplete to D.
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Suppose first that b ∈ V ∗, and so b ∈ s(w) for somew ∈ V (G). Then b corresponds
to an edge e = ww′, say b = we1. Then NH ′(b) = (s(w)\ {b}) ∪ t (w) ∪ {

e1w′}. In
particular, we may assume that |K ∩ X | ≤ 1 and K\X ⊆ C . For w′ ∈ V (G)\ {w},
|t (w′)∩ X | ≤ 1, and so t (w′)∩ C �= ∅. Consequently, s(w′)∪ t (w′) ⊆ X ∪ C for all
w′ �= w. But then D = ∅, a contradiction.

Now suppose that b ∈ t (w) for some w ∈ V (G). Then b has exactly one neighbor
k ∈ K , and NH ′(b) = (t (w)\ {b}) ∪ s(w) ∪ {k}. Therefore, X contains at most two
vertices of K , and hencewemay assume that |K\C | ≤ 2. Since X contains atmost one
vertex from t (w′) for all w′ ∈ V (G)\ {w}, it follows that each such t (w′) intersects
C , and thus t (w′) ∪ s(w′) ⊆ C ∪ X . But then D = ∅, a contradiction.

This implies that b ∈ K , and letw ∈ V (G) such that b ∈ k(w); let b′ be the unique
neighbor of b in t (w). Then NH ′(b) = K ∪ {

b′}, and thus X ∩ V ∗ is a stable set. We
may assume that X ∩ V ∗ is not a cutset of H ′|V ∗, and thus V ∗\ {X} ⊆ C . For all
w′ ∈ V (G), X contains at most one vertex in s(w′), and thus, s(w′)∪ t (w′) ⊆ C ∪ X .
But then D = ∅, a contradiction. This concludes the proof. ��
Note that this proof does not imply that the star cutset unpartitioned probe problem
is NP-hard: In the bipartite graph ♦v(G ′), the maximum degree on one side of the
bipartition is two. This implies that in the line graph, every vertexw has a neighborhood
consisting of a single vertex x anticomplete to a clique C . By picking y ∈ C , setting
N = {x, y}, and adding the edge xy, we have produced the star cutset {x} ∪ C with
center y separating w from the rest of the graph.

4 Conclusion and Open Questions

We introduced almost monotone properties, and showed that the sandwich problem
can be reduced to the recognition problem for almost monotone properties. We proved
that the imperfect sandwich problem can be solved in polynomial time.

In the not C-free sandwich problem, we are asking if there exists a sandwich graph
in which there exists an induced subgraph isomorphic to a graph in C, whereas in
the C-free sandwich problem, we are testing if there exists a sandwich graph G such
that for every induced subgraph H of G, H is not in C. The latter problem has an
additional alternation, which is an indication that the not C-free sandwich problem
might always be “easy”, or at least easier than the C-free sandwich problem. Clearly,
if the recognition problem for C-free graphs is NP-hard (e. g. if C is the set of prisms),
then the not C-free sandwich problem is NP-hard. This leads to two open questions:

– Is there a set C such that recognition of C-free graphs is in P , but the not C-free
sandwich problem is NP-hard?

– Is there a set C such that the C-free sandwich problem is in P , but the not C-free
sandwich problem is NP-hard?

Three kinds of graphs we considered for the not C-free sandwich problems were the
Truemper configurations [34], prisms, thetas, and pyramids. In particular, [27] implies
that the prism-free and not prism-free sandwich problems are NP-hard, because the
recognition problem is NP-hard. However, the theta-free sandwich problem is NP-
hard [16], but we proved that the not theta-free sandwich problem is in P . We also
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proved that the not pyramid-free sandwich problem is in P , but the complexity of the
pyramid-free sandwich problem remains open.

We considered the hardness of probe problems for deciding if certain decom-
positions exist. Our results are summarized in Table 1. In particular, we gave an
NP-hardness reduction for the clique cutset unpartitioned probe problem, and we gen-
eralized it to the full star cutset unpartitioned probe problem. This reduction is mainly
based on the fact that in those probe problems, we make changes to a stable set (the set
of non-probes) to create a cutset with a certain structure. This allows us to reduce the
problem to a variant of the stable cutset problem. It is possible that a similar reduction
can be used for the star cutset problem or the skew cutset problem, i. e. the problem
of finding a cutset X of a graph G such that Gc|X is not connected, which is a gen-
eralization of star cutsets. The skew cutset recognition problem is in P [17], and the
skew cutset sandwich problem is NP-hard [33]. The fast skew partition recognition
algorithm in [26] is based on the clique cutset recognition algorithm, and sincewe gave
a polynomial-time algorithm for the partitioned probe clique cutset problem, similar
ideas as in [26] might lead to a polynomial-time algorithm for the partitioned probe
skew cutset problem.

We also showed that all probe problems are in P for the homogeneous set problem.
For the sandwich problem, as well as all probe problems except the partitioned probe
problem, it is open if the homogeneous pair problem, a generalization of the homo-
geneous set problem, can be solved in polynomial time. In general, our algorithms
were based on showing that the non-probe vertices could only occur in certain ways
in the decomposition, and then assigning a few vertices in key places and checking if
these initial choices would lead to a full decomposition using Lemma 11 and Corol-
lary 3. This approach seems useful in general for adapting algorithms for recognition
problems to algorithms for the partitioned and unpartitioned probe problem.
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