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DÚBRAVSKÁ 9, 841 04 BRATISLAVA, SLOVAK REPUBLIC
E-mail: vrto@savba.sk

∗An extended abstract of this article was presented at WG’2003, Graph Theoret-
ical Concepts in Computer Science and appeared in Lecture Notes in Computer
Science 2880 (2003), 230–236.
Contract grant sponsor: CNPq; Contract grant sponsor: CAPES; Contract grant
sponsor: FAPERJ; Contract grant sponsor: FINEP, Brazilian Research Agencies;
Contract grant sponsor: VEGA; Contract grant number: 2/0111/09 ; Contract grant
number: APVV-0433/06.

Journal of Graph Theory
© 2008 Wiley Periodicals, Inc.

145



146 JOURNAL OF GRAPH THEORY

Received May 31, 2007; Revised April 18, 2008

Published online 18 June 2008 in Wiley InterScience(www.interscience.wiley.com).
DOI 10.1002/jgt.20330

Abstract: We draw the n-dimensional hypercube in the plane with 5
324n −⌊n2+1

2

⌋
2n−2 crossings, which improves the previous best estimation and co-

incides with the long conjectured upper bound of Erdös and Guy. © 2008 Wiley

Periodicals, Inc. J Graph Theory 59: 145–161, 2008
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1. INTRODUCTION

The crossing number of a graph G, denoted by cr(G) is the minimum number of
crossings of its edges among all drawings of G in the plane. It is a fundamental
topological invariant but appears naturally in the design of VLSI circuits [8] and
visualization of graph like structures [1]. The problem isNP-hard [5]. There are only
a few infinite families of graphs for which exact crossing numbers are known. See,
for example, surveys [9,11]. One of the most challenging problems is the crossing
number of the hypercube graph. The hypercube Qn is defined in the standard way.
The vertices are all binary strings of length n and two vertices are adjacent iff the
corresponding strings differ in one position. In 1969, Harary [7] mentioned that
there does not even exist a conjecture about the crossing number of the hypercube.
Then, Eggleton and Guy [2] announced a drawing which implies that for n ≥ 3

cr(Qn) ≤ 5

32
4n −

⌊
n2 + 1

2

⌋
2n−2. (1)

Later a gap was found in the construction [6]. However, Erdös and Guy [3]
conjectured equality in (1). Madej [10] proposed a drawing of Qn with

1

6
4n − n22n−3 − 32̇n−4 + 1

48
(−2)n

crossings and showed that cr(Q5) ≤ 56. Sýkora and Vrt’o [12] proved that Madej’s
bound is asymptotically optimal by deriving the following lower bound:

cr(Qn) ≥ 1

20
4n + O(n22n).

Then Dean and Richter showed that cr(Q4) = 16, which is the only exact result
in this area apart from the trivial observation cr(Q3) = 0. Recently, Faria and de
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Figueiredo [4] decreased the Madej’s upper bound to

165

1024
4n − (2n2 − 11n + 34)2n−3, (2)

which coincides with the RHS of (1) up to n ≤ 8.
In this article we construct a new drawing of Qn in the plane which has the

conjectured number of crossings

5

32
4n −

⌊
n2 + 1

2

⌋
2n−2.

2. PRELIMINARIES

In this section we consider some topological results necessary to establish the
counting of crossings of our proposed family of drawings. For this purpose, we
define next four structures: Mi

1, Mi
2, Mi

3, and Mi
1c, called “meshes” which are

used in the counting process of the number of crossings. Specifically, only Mi
3 and

Mi
1c are used to evaluate the number of crossings, Mi

1 and Mi
2 are auxiliary to the

construction of Mi
3 and Mi

1c.
We consider the canonical geometry of the real plane IR2. We denote by [0, 1]

the closed interval joining the points (0, 0) and (1, 0) of the horizontal real axis.
Let n be a positive integer. Let r and s be a non-horizontal pair of parallel straight
lines in the real plane IR2, such that the point (0, 0) belongs to r and the point (1, 0)
belongs to s. Let S = {(ri, si) : i ∈ {1, 2, 3, . . . n}} be a set of non-horizontal pairs
of parallel straight lines in the real plane IR2, such that the point (0, 0) belongs to ri

and the point (1, 0) belongs to si.
We call mesh one index n (Mn

1 ) the set of points of the plane consisting of the
points of the n-element set S plus the points in the interval [0, 1]. In Figure 1 we
show as an example a drawing of each M1

1 , M2
1 , M3

1 , and M5
1 .

In Lemma 1, we evaluate the number of crossings of Mn
1 .

FIGURE 1. Drawings of (a) M1
1, (b) M2

1, (c) M3
1, and (d) M5

1.
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Lemma 1. Let n be a positive integer, then there is a drawing of Mn
1 with

i(n) = n(n − 1) crossings.

Proof. We argue by induction. Lemma 1 is true for n = 1. Let (r, s) be the
additional pair of parallel straight lines we add to Mn−1

1 . Then there are 2 additional
crossings which are yielded between (r, s) and each one of n − 1 pairs of parallel
straight lines of Mn−1

1 , that is, we have 2(n − 1) additional crossings. Suppose that
for each k < n there is a drawing of Mk

1 with i(k) = k(k − 1) crossings. Hence,
we obtain a drawing of Mn

1 with i(n) = n(n − 1) = (n − 1)(n − 2) + 2(n − 1)
crossings from a drawing of Mn−1

1 , since the drawing of Mn−1
1 has i(n − 1) =

(n − 1)(n − 2) crossings. �
Let S = {(ri, si) : i ∈ {1, 2, 3, . . . n}} be the set of non horizontal pairs of par-

allel straight lines corresponding to the set of straight lines of a drawing of Mn
1

with n(n − 1) crossings. Consider R the innermost region of the upper semi-plane
containing the interval [0, 1] bounded by the elements of S. Let I = [P, Q] be
a horizontal closed interval of the plane contained in the interior of R. For each
i ∈ {1, 2, 3, . . . n} consider ti and ui the pair of parallel straight lines each parallel
to ri, respectively, containing the points P and Q.

The mesh two index n (Mn
2 ) consists of a drawing of the set S of parallel straight

lines S = {ri, si, ti, ui : i ∈ {1, 2, 3, . . . n}} and of the points of the trapezium de-
fined by the points (0, 0), P, Q and (1, 0). In Figure 2, we show as an example a
drawing of each M1

2 , M2
2 , M3

2 , and M5
2 .

In Lemma 2, we evaluate the number of crossings of Mn
2 .

Lemma 2. Let n be a positive integer, then there is a drawing of Mn
2 with

j(n) = 2[i(n) + n(2n − 1)] = 2n[n − 1 + (2n − 1)] = 2n(3n − 2) crossings.

Proof. Let S = {ri, si, ti, ui : i ∈ {1, 2, 3, . . . n}} and the points (0, 0), P, Q and
(1, 0) be, respectively, the set of parallel straight lines and the points of the trapez-
ium of a corresponding drawing of Mn

2 . First of all, we note that in a drawing
of Mn

2 we have twice the crossings of Mn
1 , once given by the crossings among

FIGURE 2. Drawings of (a) M1
2, (b) M2

2, (c) M3
2, and (d) M5

2.
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the parallel straight lines of the set S1 = {ri, si, : i ∈ {1, 2, 3, . . . n}}, and once
given by the crossings among the parallel straight lines of the set S2 = {ti, ui :
i ∈ {1, 2, 3, . . . n}}.

We observe that for each i ∈ {1, 2, 3, . . . n} the straight line ti:

(1) has exactly one crossing with one straight line in the pair of parallel straight
lines rj, sj, where j ∈ {1, 2, 3, . . . n} \ {i} in the upper semi-plane;

(2) has exactly one crossing with one straight line in the pair of parallel straight
lines rj, sj, where j ∈ {1, 2, 3, . . . n} \ {i} in the lower semi-plane;

(3) has exactly one crossing with the interval [0, 1].

Hence, we have that the number of crossings between the straight lines of S1

and the straight line ti is (n − 1) + (n − 1) + 1 = 2n − 1 crossings. Analogously,
we have the number 2n − 1 of crossings between the straight lines of S1 and the
straight line ui. Hence, we have 2n(2n − 1) crossings between the straight lines of
S1 and the straight lines of S2.

Thus, there is a drawing of Mn
2 with j(n) = 2[i(n) + n(2n − 1)] = 2n[n − 1 +

(2n − 1)] = 2n(3n − 2) crossings. �

The mesh three index n (Mn
3 ) consists of a Mn

2 plus a suitable modification, where
we remove one semi-straight line and add five additional curves defined next:

(1) Let q be the leftmost semi-straight line of Mn
2 starting in P which crosses

the lower semi-plane. Remove q from Mn
2 .

(2) We add to Mn
2 , the curve q′ which starts in P, contains only the point P of the

trapezium, is asymptotical to the leftmost semi-straight line containing (0, 0)
crossing the lower semi-plane; and crosses the other straight lines containing
P only in the point P.

(3) The curves r′, s′, t′ and u′ defined below do not intersect each other.
(4) We add to Mn

2 , two horizontal semi-straight lines r′ and s′, respectively,
starting in the vertices Q and (1, 0) of the trapezium, each of the semi-straight
lines r′ and s′ takes, with respect to the x-axis, the direction of +∞.

(5) We add to Mn
2 , the curve t′ which starts in P, contains only the point P of the

trapezium, is asymptotical to the semi-straight line r′, and crosses the other
straight lines containing P only in the point P.

(6) We add to Mn
2 , the curve u′ which starts in (0, 0), contains only the point (0,

0) of the trapezium, is asymptotical to the semi-straight line s′, and crosses
the other straight lines containing (0, 0) only in the point (0, 0).

For the convenience of the reader, we offer in Figure 3 an example with a drawing
of each M1

3 , M2
3 , M3

3 , and M5
3 .

In Lemma 3, we evaluate the number of crossings of Mn
3 .
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FIGURE 3. Drawings of (a) M1
3, (b) M2

3, (c) M3
3, and (d) M5

3.

Lemma 3. The number of crossings in Mn
3 is

k(n) = j(n) + 3n + 3n − 1 = j(n) + 6n − 1 = 2n(3n − 2) + 6n − 1

= 6n2 + 2n − 1.

Proof. We count the number of crossings in Mn
3 by deriving the resulting num-

ber of crossings when we remove and add curves in order to obtain Mn
3 from Mn

2 .
By Lemma 2 the number of crossings of Mn

2 is j(n) crossings.
The semi-straight line q has n crossings in Mn

2 . The added curve q′, it crosses
the same n − 1 straight lines as q except the crossing with the interval [0, 1]. In
addition, q′ has a crossing with one of the straight lines parallel to q. Hence, there
are n crossings in q′. Thus, the removal of q and the addition of q′ do not modify,
j(n), the number of crossings in Mn

2 .
The semi-straight line s′ has no crossing. The semi-straight line r′ crosses each

one of the n semi-straight lines which crosses the upper semi-plane and starts in
(1, 0). The curve t′ crosses each one of the n semi-straight lines that crosses the
upper semi-plane and starts in Q and each one of the n semi-straight lines that
crosses the upper semi-plane and starts in (1, 0). Hence, there are 2n crossings in
t′. The curve u′ crosses each one of the n semi-straight lines that crosses the lower
semi-plane and starts in Q and each one of the n semi straight lines that crosses
the upper semi-plane and starts in (1, 0) and the n − 1 semi-straight lines which
starts in P. Here we remark that the straight line q is replaced by curve q′ which has
no crossing with the curve u′. Hence, there are 3n − 1 crossings in u′. Altogether
we have the number of crossings k(n) = j(n) + 3n + 3n − 1 = j(n) + 6n − 1 =
2n(3n − 2) + 6n − 1 = 6n2 + 2n − 1. �

We call chopped mesh 1 index n (Mn
1 c) the set of points of Mn

1 without a pair of
parallel semi-straight lines of the left-most lower semi-plane. In Figure 4, we show
a drawing of M1

1c, M2
1c, M3

1c, and M5
1c.

Lemma 4. Let n be a positive integer. There is a drawing Mn
1 c with (n − 1)2

crossings.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 4. Drawings of (a) M1
1c, (b) M2

1c, (c) M3
1c, and (d) M5

1c. Dashed straight
lines represent the straight lines r and s which are removed in order to define the
corresponding drawing to Mn

1c.

Proof. By Lemma 1 we have that there is a drawing of Mn
1 with n(n − 1)

crossings. We obtain a drawing of Mn
1 c by removing r which is the leftmost semi-

straight line in the lower semi-plane and s its corresponding parallel semi-straight
line in the lower semi-plane. Note that the semi-straight line r has no crossing while
the semi-straight line s has n − 1 crossings, one for each of the semi-straight lines
starting in (0, 0) which cross the lower semi-plane. Hence we have n(n − 1) −
(n − 1) = (n − 1)2 crossings in our drawing of Mn

1 c. �

3. THE PROPOSED FAMILY OF DRAWINGS FOR Qn

Recall the definition of the hypercube. We say that an edge belongs to the ith
dimension if its end-vertices (strings) differ in the ith position from the left. A
vertex is called an even vertex if the number of 1’s in its corresponding string is
even. Let Cm denote an m-vertex cycle. For graphs G and H, let G � H denote their
Cartesian product.

We consider n odd and n even separately. For every positive integer k we describe
a drawing for Qn, where n = 2k − 1. Second, we use this construction in order to
establish the corresponding construction for n + 1. Given a drawing D of a graph
G, we denote by cr(D) the number of crossings of the drawing D.

A. Odd Case

Let n = 2k − 1, for k an odd positive integer. The main idea of the construction is
the following. Assume we have a suitable drawing Dn of Qn in the plane with the
claimed number of crossings, denoted by cr(Dn). We utilize the identity Qn+2 =
Qn � C4. Replace every vertex v of Qn in the “small” neighborhood of v in the
drawing Dn by a 4-cycle. Now every drawn edge e in Dn which started in v will be
replaced by 4 “parallel” edges (bunch) and drawn along the original edge e. Notice
that, in this case, locally we have a drawing of mesh Mk−1

3 . Doing this carefully
we get a drawing of Qn+2. The total number of crossings will be the number of the
crossings in the small neighborhood of the 4-cycle times 2n plus 16cr(Dn).

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 5. The number of edges between edges ab and ad is equal to the
number of edges between edges dc and da in Figure (a). Two 4-cycles drawn
between edge ab and the first counterclockwise edge ax, and between edge ab
and the first clockwise edge by in Figure (b).

We construct inductively a drawing Dn of Qn satisfying the following five prop-
erties:

Property 1. The number of crossings in the drawing is:

cr(Dn) = 5

32
4n −

⌊
n2 + 1

2

⌋
2n−2.

Property 2. Edges of the same dimension do not cross.

Property 3. In any 4-cycle abcd, where ab, cd are of the nth dimension and ad, bc

are of the ith dimension, i < n, it holds that the number of edges drawn between
edges ab and ad in the counterclockwise order, and the number of edges drawn
between dc and da in the clockwise order are the same. See Figure 5a.

Property 4. Take any edge ab of the nth dimension, where a is an even vertex.
In a small neighborhood of a, a 4-cycle is attached to a as in Figure 5b, that is,
the 4-cycles do not interfere with the current drawing, and the 4-cycle is placed
between the edge ab and its neighbor ax in the counterclockwise order.

Draw a symmetrical 4-cycle attached at the vertex b lying between the edge
ab and its neighbor by in the clockwise order. Call these 4-cycles new 4-cycles.
Consider again any 4-cycle abcd, where ab, cd are edges of the nth dimension,
ad, bc are of the ith dimension, i < n, and a is an even vertex. Starting with the
edge ab let the edge of the ith dimension be the r(i)th in the clockwise direction
around a vertex a.

(1) If r(i) > k then the new four 4-cycles attached to a, b, c, d lie in the bounded
region of the cycle abcd as one can see in Figure 6a.

(2) If r(i) ≤ k then the new 4-cycles attached to a, b, c, d lie in the unbounded
region of the cycle abcd as one can see in Figure 6b.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 6. The drawing of the new 4-cycles according to r(i) > k in Figure (a), or
according to r(i) ≤ k in Figure (b).

Property 5. Consider the five types of bunches of four edges from a 4-cycle,
corresponding to a mesh Mn

3 , spanned by edges of dimensions n and n − 1, depicted
in Figure 7. Whenever k ≥ 3, n = 2k − 1 ≥ 5, then a bunch of four edges of same
type is joint to a bunch of edges of same type. In Figure 8, we have depicted the
five join types. In Figure 9, we show that when the meshes replace the vertices we
produce the same collection of join types.

This concludes the inductive construction for odd n.
Let n = 3. Then Figure 10 shows a drawing of Q3 satisfying the above five

properties.
Assume we have a drawing of Qn, for some n ≥ 3 satisfying the five proper-

ties. In what follows we construct a drawing of Qn+2 satisfying the five properties.

FIGURE 7. Bunch types.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 8. Definition for the kind of joins of the same types.

FIGURE 9. a: Join types 1-1, 3-3 or 4-4 and 5-5 in Qn+2 obtained from a join type
1-1 in Qn . b: Join types 1-1, 3-3 or 4-4 and 5-5 in Qn+2 obtained from a join type
2-2 in Qn . c: Join types 1-1, 2-2, 3-3 or 4-4 and 5-5 in Qn+2 obtained from a join
type 3-3 in Qn . d: Join types 1-1, 3-3 or 4-4 and 5-5 in Qn+2 obtained from a join
type 4-4 in Qn . e: Join types 1-1, 2-2, 3-3 or 4-4 and 5-5 in Qn+2 obtained from a
join type 5-5 in Qn .

FIGURE 10. Q3.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 11. Valid patterns for the edges emanating from the vertices of the two 4-
cycles in the clockwise direction: upward k − 1 bunches of edges, horizontal bunch
of edges, and downward bunches of edges.

Take any even vertex v in the drawing of Qn. Let v′ be its neighbor along the nth
dimension. Without producing new crossings, draw two new 4-cycles on vertices
v00 = v, v01, v11, v10 and v′00 = v′, v′01, v′11, v′10 such that the edge v00, v01
(v′00, v′01) is a “neighbor” of the edge vv′, in the drawing. The edge pattern
in the original vertices v and v′ is repeated in all vertices of the cycle corre-
sponding to v and v′, respectively. And the new edges are routed as depicted in
Figure 11.

We complete the drawing of Qn+2 by describing the routing of the new edges.
The drawing of the edges of the ith dimension, i = n, n + 1, n + 2, is obvious
from Figure 11. Let i < n. Consider any four cycle v, v′, u, u′ in the drawing of
Qn, where the edges vv′ and uu′ belong to the nth dimension, and the edges vu′

and v′u belong to the ith dimension, and v is an even vertex. Starting with the
edge vv′, let the edge of the ith dimension be the r(i)th in the clockwise direction
around the vertex v. Consider now the corresponding cycle v00, v′00, u00, u′00 in
the “partial” drawing of Qn+2.

Distinguish 3 cases (see Fig. 12):

(1) Let r(i) > k. Note that in this case the new 4-cycles lie in the bounded
region of the 4-cycle vv′uu′. Draw the connection between vjl and u′jl for
j, l, = 0, 1, j + l > 0 parallel with the “old” edge v00 and u′00 using the
valid join type for one of the k − 1 upward bunches of edges (Figs. 11 and
12 case r(i) > k).

(2) Let r(i) = k. In this case the new 4-cycles lie in the unbounded region of
the 4-cycle vv′uu′. Use the valid join type for the horizontal bunch of edges
(Figs. 11 and 12 case r(i) = k).

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 12. The routing of the bunches according to the edge r(i)th dimension.

(3) Let r(i) < k. In this case again the new 4-cycles lie outside the 4-cycle
vv′uu′. Use the valid join type for one of the k − 2 downward bunches of
edges (Figs. 11 and 12 case r(i) < k).

We make a similar drawing for the 4-cycles attached to v′00 and u00.
In Lemma 6, the main lemma of the article, we prove that if n is odd and Property 1

holds for the drawing Dn of Qn, then Property 1 holds for the drawing Dn+2 of Qn+2.
Here we show that the drawing Dn+2 satisfies properties 2–5. Property 2 is obviously
fulfilled. Properties 3 and 4 can be checked by taking the 4-cycle v00, v01, u′01,
u′00, formed by edges of the (n + 2)nd dimension and the ith dimension, i < n + 2
and using the inductive assumption. Property 5 can be checked in Figures 8 and 9.
The drawing immediately implies that the produced graph is Qn+2.

The proposed drawing of Qn+2 is concluded.
For the convenience of the reader we offer in Figures 13 and 14 a drawing for

Q5 and Q7 obtained according to the rules of the construction.

FIGURE 13. a: Drawing D3 of Q3 plus a 4-cycle for each vertex, indicating the
routing of the bunches for each edge and (b) drawing D5 of Q5 obtained from D3.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 14. Indication of the routing for the bunches of four edges of the drawing
D7 of Q7 obtained from the drawing D5 of Q5.

B. Even Case

We start with the drawing Dn of Qn described above, for n odd. We utilize the
identity Qn+1 = Qn � P2, where P2 denotes a 2 vertex path. The construction
proceeds similarly as above but in a simpler way. To every vertex u in Dn, attach
a new edge uv in a small neighborhood of u. For every edge e, starting in u, draw
a new edge which starts in v and goes “parallel” to e. Notice that, in this case,

FIGURE 15. Drawing D3 of Q3 plus an edge for each vertex in (a) and drawing
D4 of Q4, in (b), obtained from (a) by the addition of an edge for each suitable pair
of vertices.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 16. D6.

locally we have a drawing of mesh M
n+1

2
1 c. Doing this carefully we get a drawing

of Qn+1.

For the convenience of the reader we offer in Figures 15 and 16 drawings for Q4

and Q6 obtained according to the rules of construction.

4. THE CALCULATION OF THE NUMBER OF CROSSINGS IN THE

PROPOSED FAMILY

Lemma 5. If n is an odd positive integer, then the number of crossings produced
“in the neighborhood” of the new 4-cycle attached in v00 is (3n2 − 4n − 1)/2.

Proof. We observe that the “neighborhood” of the vertex v00 in Fig-
ure 11 corresponds to a drawing of a Mk−1

3 , whose number of cross-
ings, by Lemma 3, is 6(k − 1)2 + 2(k − 1) − 1 = 6k2 − 10k + 3 = 12k2−20k+6

2 =
3(4k2−4k+1)−4(2k−1)−1

2 = 3(2k−1)2−4(2k−1)−1
2 = 3n2−4n−1

2 crossings. �
Lemma 6. If n is an odd positive integer, then

cr(Dn) = 5

32
4n −

(
n2 + 1

2

)
2n−2.

Proof. We argue by induction. The Lemma is valid if n = 1 or n = 3. We
prove next that if n is an odd positive integer and the drawing Dn of Qn
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has 5
32 4n − (

n2+1
2

)
2n−2 crossings, then the drawing Dn+2 of Qn+2 has 5

32 4n+2 −⌊ (n+2)2+1
2

⌋
2(n+2)−2 crossings.

By Lemma 5 the total number of crossings in the drawing Dn+2 of Qn+2 is

cr(Dn+2) = 16cr(Dn) + 3n2 − 4n − 1

2
2n

= 16

(
5

32
4n −

(
n2 + 1

2

)
2n−2

)
+ (3n2 − 4n − 1)2n−1

= 5

32
4n+2 − 4n2 + 4

2
2(n+2)−2 + (3n2 − 4n − 1)

2n

2

= 5

32
4n+2 − 4n2 + 4 − 3n2 + 4n + 1

2
2n = 5

32
4n+2 − n2 + 4n + 4 + 1

2
2n

= 5

32
4n+2 − (n + 2)2 + 1

2
2n = 5

32
4n+2 −

⌊
(n + 2)2 + 1

2

⌋
2(n+2)−2,

and the inductive step for odd case is completed. �

Lemma 7. If n is an even positive integer, then the number of crossings produced
“in the neighborhood” of the new edge in a drawing Dn of Qn is ((n − 2)/2)2.

Proof. Recall a vertex of Dn−1 has degree n − 1. We yield Dn from Dn−1 by
adding a new edge attached to each vertex of Dn−1 and the corresponding new
edges defined in the construction for the even case. Hence, in the “neighborhood”

of each new edge there is a drawing corresponding to a M
n
2

1 c, which by definition
has 2n

2 − 1 = n − 1 pairs of semi-straight lines, totalizing degree n for each vertex

of Dn. From Lemma 4, each M
n
2

1 c contributes with
(

n
2 − 1

)2 = (
n−2

2

)2 additional
crossings. �

Lemma 8. If n is an even positive integer, then

cr(Dn) = 5

32
4n −

⌊
n2 + 1

2

⌋
2n−2.

Proof. Consider n an even positive integer. Next we prove that the drawing Dn

of Qn satisfies cr(Dn) = 5
32 4n − ⌊

n2+1
2

⌋
2n−2 crossings.

By Lemma 6,

cr(Dn−1) = 5

32
4n−1 −

(
(n − 1)2 + 1

2

)
2(n−1)−2.
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By Lemma 7 the total number of crossings in the drawing Dn of Qn is,

cr(Dn) = 4cr(Dn−1) +
(

n − 2

2

)2

2n−1

= 4

(
5

32
4(n−1) − (n − 1)2 + 1

2
2(n−1)−2

)
+

(
n − 2

2

)2

2n−1

= 5

32
4n − 2n2 − 4n + 2 + 2

2
2n−2 + n2 − 4n + 4

2
2n−2

= 5

32
4n − 2n2 − 4n + 4 − n2 + 4n − 4

2
2n−2 = 5

32
4n − n2

2
2n−2

= 5

32
4n −

⌊
n2 + 1

2

⌋
2n−2.

�
Theorem 1. For every positive integer, cr (Qn) ≤ 5

32 4n − ⌊
n2+1

2

⌋
2n−2.

Proof. It follows from Lemmas 6 and 8. �
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(Editors), Bolyai Society Mathematical Studies 6, Akadémia Kiadó, Budapest,
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