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A clique of a graph is a maximal set of vertices of size at least 2 that induces a complete 
graph. A k-clique-colouring of a graph is a colouring of the vertices with at most k colours 
such that no clique is monochromatic. Défossez proved that the 2-clique-colouring of 
perfect graphs is a �P

2 -complete problem (Défossez (2009) [4]). We strengthen this result 
by showing that it is still �P

2 -complete for weakly chordal graphs. We then determine 
a hierarchy of nested subclasses of weakly chordal graphs whereby each graph class is 
in a distinct complexity class, namely �P

2 -complete, NP-complete, and P . We solve an 
open problem posed by Kratochvíl and Tuza to determine the complexity of 2-clique-
colouring of perfect graphs with all cliques having size at least 3 (Kratochvíl and Tuza 
(2002) [7]), proving that it is a �P

2 -complete problem. We then determine a hierarchy of 
nested subclasses of perfect graphs with all cliques having size at least 3 whereby each 
graph class is in a distinct complexity class, namely �P

2 -complete, NP-complete, and P .
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple graph with n = |V | vertices and m = |E| edges. A clique of G is a maximal set of vertices 
of size at least 2 that induces a complete graph. A k-clique-colouring of a graph is a colouring of the vertices with at 
most k colours such that no clique is monochromatic. Any undefined notation concerning complexity classes follows that of 
Marx [9].

A cycle is a sequence of vertices starting and ending at the same vertex, with each two consecutive vertices in the 
sequence adjacent to each other in the graph. A chord of a cycle is an edge joining two nodes that are not consecutive in 
the cycle.

The clique-number ω(G) of a graph G is the number of vertices of a clique with the largest possible size in G . A perfect 
graph is a graph in which every induced subgraph H needs exactly ω(H) colours in its vertices so that no K2 (not necessarily 
clique) is monochromatic. The celebrated Strong Perfect Graph Theorem of Chudnovsky et al. [3] says that a graph is perfect if 
neither it nor its complement contains a chordless cycle with an odd number of vertices greater than 4. A graph is chordal
if it does not contain a chordless cycle with a number of vertices greater than 3, and a graph is weakly chordal if neither it 
nor its complement contains a chordless cycle with a number of vertices greater than 4.
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Fig. 1. Examples of (α,β)-polar graphs.

Both clique-colouring and perfect graphs have attracted much attention due to a conjecture posed by Duffus et al. [5] that 
perfect graphs are k-clique-colourable for some constant k. This conjecture has not yet been proved. Following the chronological 
order, Kratochvíl and Tuza gave a framework to argue that 2-clique-colouring is NP-hard and proved that 2-clique-
colouring is NP-complete for K4-free perfect graphs [7]. Notice that K3-free perfect graphs are bipartite graphs, which 
are clearly 2-clique-colourable. Moreover, 2-clique-colouring is in � P

2 , since it is coNP to check that a colouring of the 
vertices is a clique-colouring. A few years later, the 2-clique-colouring problem was proved to be a � P

2 -complete problem 
by Marx [9], a major breakthrough in the clique-colouring area. Défossez [4] proved later that 2-clique-colouring of perfect 
graphs remained a � P

2 -complete problem.
When restricted to chordal graphs, 2-clique-colouring is in P , since all chordal graphs are 2-clique-colourable [10]. Notice 

that chordal graphs are a subclass of weakly chordal graphs, while perfect graphs are a superclass of weakly chordal graphs. 
In contrast to chordal graphs, not all weakly chordal graphs are 2-clique-colourable (see Fig. 1a).

We show that 2-clique-colouring of weakly chordal graphs is a � P
2 -complete problem, improving the proof of Défos-

sez [4] that 2-clique-colouring is a � P
2 -complete problem for perfect graphs. As a remark, Défossez [4] constructed a graph 

which is not a weakly chordal graph as long as it has chordless cycles with even number of vertices greater than 5 as 
induced subgraphs. We determine a hierarchy of nested subclasses of weakly chordal graphs whereby each graph class is in 
a distinct complexity class, namely � P

2 -complete, NP-complete, and P .
A graph is (α, β)-polar if there exists a partition of its vertex set into two sets A and B such that all connected com-

ponents of the subgraph induced by A and of the complementary subgraph induced by B are complete graphs. Moreover, 
the order of each connected component of the subgraph induced by A (resp. of the complementary subgraph induced by 
B) is upper bounded by α (resp. upper bounded by β) [2]. A satellite of an (α, β)-polar graph is a connected component of 
the subgraph induced by A (see Fig. 1b). In this work, we restrict ourselves to the (α, β)-polar graphs with β = 1, so the 
subgraph induced by B is complete and the order of each satellite is upper bounded by α (see Fig. 1c). Clearly, (α, 1)-polar 
graphs are perfect, since they do not contain chordless cycles with an odd number of vertices greater than 4 nor their 
complements [11].

A generalized split graph is a graph G such that G or its complement is an (α, 1)-polar graph, for some α [11]. See Fig. 1c 
for an example of a generalized split graph, which is a (2, 1)-polar graph. The class of generalized split graphs plays an 
important role in the areas of perfect graphs and clique-colouring. This class was introduced by Prömel and Steger [11]
to show that the strong perfect graph conjecture is at least asymptotically true by proving that almost all C5-free graphs 
are generalized split graphs. Approximately 14 years later the strong perfect graph conjecture became the Strong Perfect 
Graph Theorem by Chudnovsky et al. [3]. Regarding clique-colouring, Bacsó et al. [1] proved that generalized split graphs are 
3-clique-colourable and concluded that almost all perfect graphs are 3-clique-colourable [1]. This conclusion supports the 
conjecture due to Duffus et al. [5]. In fact, there is no example of a perfect graph where more than three colours would be 
necessary to clique-colour. Surprisingly, after more than 20 years, relatively little progress has been made on the conjecture.

The class of (α, 1)-polar graphs, for fixed α ≥ 3, is incomparable to the class of weakly chordal graphs. Indeed, the 
chordless path with seven vertices P7 is weakly chordal but not generalized split, and the complement of the chordless 
cycle with six vertices C6 is (3,1)-polar but by definition is not weakly chordal. Clearly, (α, 1)-polar graphs do not contain 
all chordless cycles with at least 5 vertices. For complements of chordless cycles with an even number of 2t vertices, the 
graph is (t, 1)-polar but not (t − 1, 1)-polar. Hence, (2, 1)-polar graphs are a subclass of weakly chordal graphs. We show 
that 2-clique-colouring of (2, 1)-polar graphs is a NP-complete problem. Finally, the class of (1, 1)-polar graphs is precisely 
the class of split graphs. It is interesting to recall that 2-clique-colouring of (1, 1)-polar graphs is in P , since (1, 1)-polar are 
a subclass of chordal graphs, which are 2-clique-colourable.

Giving continuity to our results, we investigate an open problem left by Kratochvíl and Tuza [7] to determine the com-
plexity of 2-clique-colouring of perfect graphs with all cliques having size at least 3. Restricting the size of the cliques to 
be at least 3, we first show that 2-clique-colouring remains NP-complete for (3, 1)-polar graphs. Recall that (3, 1)-polar 
graphs with all cliques having size at least 3 are weakly chordal, since C6 has cliques of size 2 and C2t for t > 3 is not 
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Table 1
2-clique-colouring complexity of perfect graphs and subclasses.

Class 2-clique-colouring complexity

– Perfect – � P
2 -complete [4]

K4-free NP-complete [7]

K3-free (Bipartite) P
Weakly chordal – � P

2 -complete

(3, 1)-polar – NP-complete

(2, 1)-polar –

Chordal (includes Split) – P [10]

All cliques having 
size at least 3

Perfect – � P
2 -complete

Weakly chordal –

(3, 1)-polar NP-complete

(2, 1)-polar – P

Fig. 2. Auxiliary graphs AK(a, g) and NAS(a, j).

(3, 1)-polar. Subsequently, we prove that the 2-clique-colouring of (2, 1)-polar graphs becomes polynomial when all cliques 
have size at least 3. Recall that the 2-clique-colouring of (2, 1)-polar graphs is NP -complete when there are no restrictions 
on the size of the cliques.

We finish the paper answering the open problem of determining the complexity of 2-clique-colouring of perfect graphs 
with all cliques having size at least 3 [7], by improving our proof that 2-clique-colouring is a � P

2 -complete problem for 
weakly chordal graphs. We replace each K2 clique by a gadget with no clique of size 2, which forces distinct colours into 
two given vertices.

The paper is organized as follows. In Section 2, we show that 2-clique-colouring is still � P
2 -complete for weakly 

chordal graphs. We then determine a hierarchy of nested subclasses of weakly chordal graphs whereby each graph class 
is in a distinct complexity class, namely � P

2 -complete, NP-complete, and P . In Section 3, we determine the complex-
ity of 2-clique-colouring of perfect graphs with all cliques having size at least 3, answering a question of Kratochvíl and 
Tuza [7]. We then determine a hierarchy of nested subclasses of perfect graphs with all cliques having size at least 3 
whereby each graph class is in a distinct complexity class. We refer the reader to Table 1 for our results and related 
work about 2-clique-colouring complexity of perfect graphs, and to Fig. 9 for a clear overview of the different considered 
classes.

2. Hierarchical complexity of 2-clique-colouring of weakly chordal graphs

Défossez proved that 2-clique-colouring of perfect graphs is a � P
2 -complete problem [4]. In this section, we strengthen 

this result by showing that the problem remains � P
2 -complete for weakly chordal graphs. We show a subclass of perfect 

graphs (resp. of weakly chordal graphs) in which 2-clique-colouring is neither a � P
2 -complete problem nor in P – assuming 

that the polynomial hierarchy does not collapse – namely (3, 1)-polar graphs (resp. (2, 1)-polar graphs). Recall that 2-clique-
colouring of (1, 1)-polar graphs is in P , since (1, 1)-polar are a subclass of chordal graphs, thereby 2-clique-colourable. 
Notice that weakly chordal, (2, 1)-polar, and (1, 1)-polar (resp. perfect, (3, 1)-polar, and (1, 1)-polar) are nested classes of 
graphs.

Given a graph G = (V , E) and vertices a, g ∈ V , we say that we add to G a copy of an auxiliary graph AK(a, g) of order 
7 – depicted in Fig. 2a – if we change the definition of G by doing the following: we first change the definition of V by 
adding to it copies of the five vertices b, c, d, e, and f of the auxiliary graph AK(a, g); then we change the definition of 
E by adding to it copies of the eight edges (a, b), (b, c), (c, d), (d, e), (e, f ), ( f , g), (a, d), and (d, g) of AK(a, g). Similarly, 
given a graph G = (V , E) and vertices a, j ∈ V , we say that we add to G a copy of an auxiliary graph NAS(a, j) of order 10 – 
depicted in Fig. 2b – if we change the definition of G by doing the following: we first change the definition of V by adding 
to it copies of the eight vertices b, c, d, e, f , g , h, and i of the auxiliary graph NAS(a, j); then we change the definition of E
by adding to it copies of the thirteen edges (a, b), (b, c), (c, d), (d, e), (e, f ), ( f , g), (a, d), (a, g), (d, g), (g, j), (g, h), (h, i), 
and (i, j) of NAS(a, j).
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The auxiliary graph AK(a, g) is constructed to force the same colour (in a 2-clique-colouring) to vertices a and g , while 
the auxiliary graph NAS(a, j) is constructed to force distinct colours (in a 2-clique-colouring) to vertices a and j (see Lem-
mas 1 and 2).

Lemma 1. Let G be a graph and a, g be vertices in G. If we add to G a copy of an auxiliary graph AK(a, g), then in any 2-clique-colouring 
of the resulting graph, vertices a and g have the same colour.

Proof. Follows from the fact that in AK(a, g) there exists a path abcdef g such that no edge lies in a triangle of G . �
Lemma 2. Let G be a graph and a, j be vertices in G. If we add to G a copy of an auxiliary graph NAS(a, j), then in any 2-clique-
colouring of the resulting graph, vertices a and j have distinct colours.

Proof. Follows from the fact that in NAS(a, j) there exists a path abcdef ghi j such that no edge lies in a triangle of G . �
We improve the proof of Défossez [4], in order to determine the complexity of 2-clique-colouring for weakly chordal 

graphs. Consider the QSAT2 problem, which is the � P
2 -complete canonical problem [9], as follows.

Problem 1. Quantified 2-Satisfiability (QSAT2)

Instance: A formula � = (X, Y , D) composed of a disjunction D of implicants (that are conjunctions of three literals) over 
two sets X and Y of variables.

Question: Is there a truth assignment for X such that for every truth assignment for Y the formula is true?

We prove that 2-clique-colouring weakly chordal graphs is � P
2 -complete by reducing the � P

2 -complete canonical problem
QSAT2 to it. For a QSAT2 formula � = (X, Y , D), a weakly chordal graph G is constructed such that graph G is 2-clique-
colourable if, and only if, there is a truth assignment of X , such that � is true for every truth assignment of Y .

Theorem 3. The problem of 2-clique-colouring is � P
2 -complete for weakly chordal graphs.

Proof. The problem of 2-clique-colouring is in � P
2 , since it is coNP to check that a colouring of the vertices is a 2-clique-

colouring.
We prove that 2-clique-colouring weakly chordal graphs is � P

2 -hard by reducing QSAT2 to it. Let n, m, and p be the 
number of variables X , Y , and implicants, respectively, in formula � . We define graph G , as follows.

• for each variable xi , we create vertices xi and xi ;
• for each variable y j , we create vertices y j , y′

j , and y j and edges y j y′
j , and y′

j y j ;
• we create a vertex v and edges so that the set {x1, x1, . . . , xn, xn, y1, y1, . . . , ym, ym, v} induces a complete subgraph of 

G minus the matching {{x1, x1}, . . . , {xn, xn}, {y1, y1}, . . . , {ym, ym}};
• add copies of the auxiliary graph NAS(xi, xi), for i = 1, . . . , n;
• add copies of the auxiliary graph AK(y j, y j+1), for j = 1, . . . , m − 1;
• add a copy of AK(ym, v); and
• for each implicant dk , we create vertices dk, d′

k , d′′
k , and we add the edges dkd′

k , d′
kd′′

k , d′′
k v , and dk v . Moreover, each 

vertex dk is adjacent to vertex v and to a vertex l in {x1, x1, . . . , xn, xn, y1, y1, . . . , ym, ym} if, and only if, the literal 
corresponding to l is not in the implicant corresponding to vertex dk .

Refer to Fig. 3 for an example of such construction, given a formula � = (x1 ∧ x2 ∧ y2) ∨ (x1 ∧ x3 ∧ y2) ∨ (x1 ∧ x2 ∧ y1).
We claim that graph G is 2-clique-colourable if, and only if, � has a solution. Assume there exists a valuation v X of X

such that � is satisfied for any valuation of Y . We give a colouring to the graph G , as follows.

• assign colour 1 to y j , y j , d′
k , and v ,

• assign colour 2 to y′
j , dk and d′′

k ,
• extend the unique 2-clique-colouring to the m − 1 copies of the auxiliary graph AK(y j, y j+1) and AK(ym, v),
• assign colour 1 to xi if the corresponding variable is true in v X , otherwise we assign colour 2 to it,
• assign colour 2 to xi if the corresponding variable is true in v X , otherwise we assign colour 1 to it,
• extend the unique 2-clique-colouring to the n copies of the auxiliary graph NAS(xi, xi).

We prove that this is indeed a 2-clique-colouring. Let us assume that it is not the case and that there exists a clique K
of G that is monochromatic. Clearly, K is not contained in a copy of any auxiliary graph, and it does not contain any vertex 
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Fig. 3. Example of a graph constructed for a QSAT2 instance, where NAS and AK denote the respectively auxiliary graphs.

of type y′
j , d′

k , or d′′
k . As v is adjacent to all other vertices (which are the xi , xi , y j , y j , and dk), we deduce that v ∈ K

and, subsequently, that all vertices of K have colour 1. Moreover, K contains exactly one vertex among xi and xi , i.e. the 
one corresponding to the literal which is true in v X , and similarly exactly one vertex among y j and y j . We remark that 
K does not contain any dk since they have colour 2. Then we define a valuation vY in the following way. If y j ∈ K , then 
vY assigns value true to the corresponding variable, otherwise vY assigns the value false. Thus, the literals corresponding to 
the vertices of K \ {v} are exactly those that are true in the total valuation (v X , vY ). Let us consider now any dk . Since K is 
a clique, each dk is not adjacent to at least one vertex of K . By construction of G , this means that all implicants are false, 
which contradicts the definition of v X . Hence, there is no monochromatic clique and we have a 2-clique-colouring.

For the converse, we now assume that G is 2-clique-colourable. For every i, the vertices xi and xi have opposite colours 
in any 2-clique-colouring of G (see Lemma 2). The set {y1, y2, . . . , ym, y1, y2, . . . , ym, v} is monochromatic. Indeed, the 
three vertices y j , y j , and y j+1 have the same colour, since sets {y j, y′

j} and {y′
j, y j} are cliques and, by Lemma 1, vertices 

y j and y j+1, as well as vertices ym and v , have the same colour. Finally, since each path dkd′
kd′′

k v is chordless, vertices 
d1, d2, . . . , dp all have the same colour, which is the opposite to the colour of v . Consider a 2-clique colouring of G using 
colours 1 and 2 and assume, w.l.o.g., that v has colour 1. Then, y j and y j have colour 1, and dk has colour 2. Vertices xi and 
xi have opposite colours and we define v X in the following way. The literal xi is assigned true in v X if the corresponding 
vertex has colour 1 in the clique-colouring, otherwise it is assigned false in v X . Let vY be any valuation of Y . Consider the 
set of vertices K that contains v and the vertices corresponding to literals which are true in the total valuation (v X , vY ). 
Clearly, set K induces a complete subgraph. Since all those vertices have colour 1 and we have a 2-clique-colouring, it 
follows that K is not a clique. As a consequence, there exists some dk which is adjacent to all vertices of K . Thus, the 
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Algorithm 1: Polynomial-time algorithm to check if no clique intersecting a given satellite Ai of an (α, 1)-polar graph 
G , for a fixed α ≥ 1, is monochromatic.

input : an (α, 1)-polar graph G with partition (A, B)

a 2-colouring π of G
a satellite Ai = {x1, x2, . . . , x|Ai |} of G

output: YES, if every clique of G that intersects Ai is polychromatic; NO, otherwise

1 foreach non-empty subset X j ⊂ Ai do
2 S j := X j ∪ B
3 foreach element p ∈ X j do
4 S j := S j ∩ N[p]
5 maximal := YES
6 foreach element q ∈ Ai \ X j do
7 if NB (q) == S j ∩ B then
8 maximal := NO

9 if maximal == yes and |π(S j)| = 1 then
10 return NO

11 Return YES

corresponding implicant is true in that valuation and this proves that � is satisfied for any valuation vY and that v X has 
the right property.

It now remains to be proved that G is a weakly chordal graph. Suppose that G contains W a chordless cycle of 
size at least 5. Suppose that d′

k ∈ W , which implies dk, d′
k, d

′′
k ∈ W , and that v ∈ W , a contradiction to the size of 

W . An analogous argument holds for the hypothesis d′′
k ∈ W . Hence, W does not contain d′

k, d
′′
k . Recall that by con-

struction of G , the set S = {x1, x1, . . . , xn, xn, y1, y1, . . . , ym, ym, v} induces a complete subgraph minus the matching 
{{x1, x1}, . . . , {xn, xn}, {y1, y1}, . . . , {ym, ym}}. Moreover, G \ (S ∪ {d′

1, . . . , d
′
p, d′′

1, . . . , d′′
p}) is disconnected, and has as con-

nected components singletons dk , or singletons y′
j , or chordless paths P5, or connected components whose largest cycle is 

a C4. Therefore, W must contain at least two non-adjacent vertices of set S , a contradiction to the size of W , since any 
pair of non-adjacent vertices in S are extremities of chordless paths of size at most 2. Now suppose that G contains W the 
complement of a chordless cycle of size at least 6, where W = w1 w2 w3 . . . wt , with t ≥ 6 and wi wi+1 /∈ E . Every vertex 
of W has degree larger than 2 in G , so W does not contain d′

k, d
′′
k , y′

j , nor vertices of AK(a, g) \ {a, g}, and nor vertices of 
NAS(a, j) \ {a, j}. Moreover, W does not contain v , a vertex adjacent to every vertex of set S \ v . Since R = {d1, d2, . . . , dp}
is an independent set, |W ∩ R| ≤ 2, and in case |W ∩ R| = 2, the two vertices are consecutive in W . On the other hand, 
recall S \ v is an antimatching, and |W ∩ (S \ v)| ≥ 4 forces S to have at least one vertex s with two vertices in S that are 
non-adjacent to vertex s, and a contradiction. �

Now, our focus is on showing a subclass of weakly chordal graphs, actually, a subclass of generalized split graphs, in 
which 2-clique-colouring is NP-complete, namely (2, 1)-polar graphs.

Défossez [4] showed that it is coNP-complete to check whether a 2-colouring of a complement of a bipartite graph is 
a 2-clique-colouring [4]. Clearly, complements of bipartite graphs are a subclass of generalized split graphs. We show next 
that if α is fixed, listing all cliques of a (α, 1)-polar graph and checking if each clique is polychromatic can be done in 
polynomial-time – although the constant behind the big O notation is impracticable – which implies that the problem of 
2-clique-colouring is in NP for (α, 1)-polar graphs, where α is fixed.

The outline of the algorithm follows. We create a subroutine in which, given a satellite K of G , we check whether every 
clique of G containing a subset of K is polychromatic. Lemma 4 determines the complexity of the subroutine and proves 
its correctness. The algorithm runs the subroutine for each satellite of G and, as a final step, check whether part B is 
polychromatic if, and only if, part B is a clique of G . Theorem 5 determines the complexity of the algorithm and prove its 
correctness.

Lemma 4. Let G be an (α, 1)-polar graph, let π be a 2-colouring of G, and let Ai be a satellite of G. Algorithm 1 returns NO if there 
exists a monochromatic clique of G that intersects Ai , and YES otherwise. Moreover, Algorithm 1 runs in polynomial time.

Proof. We prove the correctness of Algorithm 1. The algorithm has an external loop, that is executed for each subset X j of 
Ai , verifies whether G has a clique intersecting Ai precisely in X j , and if this clique is monochromatic. It is easy to see that 
Algorithm 1 runs in polynomial time. The external loop of Algorithm 1 runs at most 2α times, while each of the internal 
loops is executed a number of times that is bounded by n. �
Theorem 5. Let G be an (α, 1)-polar graph and let π be a 2-colouring of G. Algorithm 2 returns YES if π is a 2-clique-colouring, and 
NO otherwise. Moreover, Algorithm 2 runs in polynomial time.
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Algorithm 2: Polynomial-time algorithm to check if a 2-colouring of an (α, 1)-polar graph, for a fixed α ≥ 1, is a valid 
clique-colouring.

input : an (α, 1)-polar graph G with partition (A, B)

a 2-colouring π of G
output: YES, if every clique of G is polychromatic; NO, otherwise

1 begin
2 foreach satellite Ai of A do
3 answer == Algorithm 1(G, π, Ai) if answer == NO then
4 return NO

5 if |π(B)| == 2 then
6 return YES

7 else
8 foreach v ∈ A do
9 if NB (v) == B then

10 return YES

11 return NO

Proof. The correctness of Algorithm 2 follows. A clique of G contains at least one vertex of a satellite of G or it is B . The first 
loop of Algorithm 2 checks whether there exists some monochromatic clique intersecting any of the satellites of G – if one 
such monochromatic clique is found, then the algorithm stops and returns NO. If the algorithm passes this first loop, then 
the only possible monochromatic clique is B . Two tests are done. First, the algorithm checks whether B uses two colours: if 
two colours appear in B then there is no monochromatic clique and the algorithm returns YES. If B is monochromatic, then 
it remains to check if B is a clique. This is done in the last loop, which tests if some vertex in A is adjacent to every vertex 
in B; if such a vertex if found then B is not maximal and Algorithm 2 returns YES, otherwise B is a monochromatic clique 
and Algorithm 2 returns NO.

It is easy to see that Algorithm 2 runs in polynomial time. The first loop of Algorithm 2 runs at most n times the 
Algorithm 1, which in turn runs in polynomial time. The second loop is executed at most n times. �

Once we have proved that 2-clique-colouring is in NP for (α, 1)-polar graphs, for fixed α, we proceed to show that 
2-clique-colouring is NP-hard for (2, 1)-polar graphs.

Theorem 6. The problem of 2-clique-colouring is NP-complete for (2, 1)-polar graphs.

Proof. The problem of 2-clique-colouring a (2, 1)-polar graph is in NP : Theorem 5 confirms that it is in P to check 
whether a 2-colouring of a (2, 1)-polar graph is a 2-clique-colouring.

We prove that 2-clique-colouring (2, 1)-polar graphs is NP-hard by reducing hypergraph 2-colouring [8] to it. For 
every hypergraph H, a (2, 1)-polar graph G is constructed such that hypergraph H is 2-colourable if, and only if, graph 
G is 2-clique-colourable. Let n (resp. m) be the number of vertices (resp. hyperedges) in hypergraph H. We define graph 
G = (V , E), as follows.

• for each vertex vi , 1 ≤ i ≤ n, of hypergraph H, we create a vertex vi in the vertex set V of graph G , so that the set 
{v1, . . . , vn} induces a complete subgraph of G , which is the part B of the partition (A, B) of the vertex set V ;

• for each hyperedge e j = {v1, . . . , vl}, l > 1, 1 ≤ j ≤ m, we create two vertices u j1 and u j2 in V . Moreover, we create 
edges u j1 u j2 , u j1 v1, . . . , u j1 vl−1, and u j2 vl so that S j = {u j1 , u j2 } is a satellite satisfying NB (u j1 ) ∩ NB(u j2 ) = ∅.

Clearly, G is a (2, 1)-polar graph and such construction is done in polynomial-time. Refer to Fig. 4 for an example of such 
construction. Note that every satellite S of the constructed (2, 1)-polar graph G satisfies S = {s1, s2} and NB(s1) ∩ NB(s2) = ∅.

We claim that hypergraph H is 2-colourable if, and only if, graph G is 2-clique-colourable.
Assume first that there exists a proper 2-colouring π of H. We give a 2-clique-colouring to the constructed graph G , as 

follows.

• assign colour π(v) for each corresponding vertex v of part B of graph G . Note that for each satellite S j , 1 ≤ j ≤ m, we 
have that S j = {u j1 , u j2 } satisfies NB(u j1 ) ∪ NB(u j2 ) is polychromatic, since this set of vertices of V corresponds to a 
hyperedge in H.

• assign colour π(u) for each vertex u of part A of graph G as follows. Let S j = {u j1 , u j2 } be a satellite. Assume NB (u j1 )

is polychromatic. Then, assign colour 1 to u j2 if there is a vertex in NB(u j2 ) coloured 2, and assign colour 2 to u j2

if there is a vertex in NB(u j2 ) coloured 1; next assign the other colour to u j1 . Otherwise, assume both NB(u j1 ) and 
NB(u j2 ) are monochromatic, coloured 1 and 2, respectively, and assign u j1 colour 2 and u j2 colour 1.
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Fig. 4. Example of a (2, 1)-polar graph constructed for a given hypergraph instance.

The above colouring is indeed a 2-clique-colouring. Consider the part B = {v1, v2, . . . , vn} of the partition (A, B) of the 
vertex set V . Clearly, the above colouring assigns 2 colours to this set. Moreover, for each satellite S j , 1 ≤ j ≤ m, both 
cliques u j1 ∪ NB(u j1 ) and u j2 ∪ NB(u j2 ) are 2-coloured, and the clique {u j1 , u j2 } is 2-coloured.

For the converse, we now assume that G is 2-clique-colourable and we consider any 2-clique-colouring π ′ of G . We give 
a proper 2-colouring to hypergraph H, as follows. Assign colour π ′(v) for each vertex v of H. It is enough to prove that 
each satellite S j = {u j1 , u j2 } satisfies that NB (u j1 ) ∪ NB(u j2 ) is polychromatic, since each hyperedge in H corresponds to 
the neighbourhood in B of a satellite. Suppose that every vertex of NB(u j1 ) ∪ NB(u j2 ) has colour 1. Since both u j1 ∪ NB(u j1 )

and u j2 ∪ NB(u j2 ) are cliques, we have that both u j1 and u j2 have colour 2, and now the satellite S j = {u j1 , u j2 } is a 
monochromatic clique, a contradiction. �
3. Restricting the size of the cliques

Kratochvíl and Tuza [7] are interested in determining the complexity of 2-clique-colouring of perfect graphs with all 
cliques having size at least 3. We determine what happens with the complexity of 2-clique-colouring of (2, 1)-polar graphs, 
of (3, 1)-polar graphs, and of weakly chordal graphs, respectively, when all cliques are restricted to have size at least 3. The 
latter result address Kratochvíl and Tuza’s question.

Given graph G = (V , E) and mutually adjacent vertices b1, b2, b3 ∈ V , we say that we add to G a copy of an auxil-
iary graph BP(b1, b2, b3) of order 6 – depicted in Fig. 5a – if we change the definition of G by doing the following: we 
first change the definition of V by adding to it copies of the vertices a1, a2, a3 of the auxiliary graph BP(b1, b2, b3); sec-
ond, we change the definition of E by adding to it copies of the 9 edges (a1, b1), (a1, b2), (a2, b2), (a2, b3), (a3, b1), (a3, b3), 
(a1, a2), (a1, a3), (a2, a3) of BP(b1, b2, b3).

Similarly, given a graph G = (V , E), a set of mutually adjacent vertices D , and adjacent vertices b1, b2 ∈ D , we say that 
we add to (G, D) a copy of an auxiliary graph BS(b1, b2) of order 17 – depicted in Fig. 5b – if we change the definition 
of G by doing the following: we first change the definition of V by adding to it copies of the vertices b′ , b′′ , b′′′ of the 
auxiliary graph BS(b1, b2); second, we change the definition of E by adding to it edges so that b′, b′′ , b′′′ and the vertices in 
D are mutually adjacent; and finally, we add copies of the auxiliary graphs BP(b1, b2, b′), BP(b1, b2, b′′), BP(b1, b2, b′′′), and 
BP(b′, b′′, b′′′).

Lemma 7. Let G = (V , E) be a weakly chordal graph (resp. (3, 1)-polar graph, with vertex partition (A, B)) and let mutually adjacent 
vertices b1, b2, b3 ∈ V (resp. b1, b2, b3 ∈ B). If we add to G a copy of an auxiliary graph BP(b1, b2, b3), then the following assertions 
about the resulting graph G ′ are true.
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Fig. 5. Auxiliary graphs BP(b1,b2,b3) and BS(b1,b2).

• The resulting graph G ′ is weakly chordal (resp. (3, 1)-polar).
• If all cliques of G have size at least 3, then all cliques of G ′ have size at least 3.
• Any 2-clique-colouring of G ′ uses 2 colours in the set of vertices {b1, b2, b3}.
• If G ′ is 2-clique-colourable, then G is 2-clique-colourable.
• If there exists a 2-clique-colouring of G that uses 2 colours in the set of vertices {b1, b2, b3}, then G ′ is 2-clique-colourable.

Proof. Let G = (V , E) be a weakly chordal graph and let mutually adjacent vertices b1, b2, b3 ∈ V . Add to G a copy of an 
auxiliary graph BP(b1, b2, b3) in order to obtain graph G ′ .

Suppose, by contradiction, that G ′ is not weakly chordal, which means that G ′ has W a chordless cycle with a number of 
vertices greater than 4 or the complement of a chordless cycle with a number of vertices greater than 5. Clearly, the auxiliary 
graph BP(b1, b2, b3) is a weakly chordal graph. Since both G and BP(b1, b2, b3) are weakly chordal graphs, a chordless cycle 
W with a number of vertices greater than 4 contains a vertex of {a1, a2, a3} and a vertex of G ′ \ BP(b1, b2, b3). Note that 
{b1, b2, b3} induces a complete graph and is a cutset of G ′ that disconnects {a1, a2, a3} from G ′ \ BP(b1, b2, b3). So, every 
cycle with vertices of {a1, a2, a3} and of G ′ \ BP(b1, b2, b3) contains a chord, i.e. there is no such chordless cycle W . For W
the complement of a chordless cycle with a number of vertices greater than 5, note that a1 , a2, and a3 have each exactly 
4 neighbours, so |W | ∈ {6, 7}. If W has only one vertex ai of {a1, a2, a3}, then ai has at most 2 neighbours in W , which 
is a contradiction. If W has only two vertices ai , a j , i = j, of {a1, a2, a3}, then W contains {b1, b2, b3}, otherwise ai or a j
have at most 2 neighbours in W . Let u be a vertex of G ′ \ BP(b1, b2, b3) in W . Since neither ai nor a j are neighbours of 
u and a vertex in W has at most two non-neighbours in W , set {u, b1, b2, b3} induces a complete subgraph, which is a 
contradiction. If W has all three vertices a1, a2, a3, then a vertex of G ′ \ BP(b1, b2, b3) in W has 3 non-neighbours in W , 
which is a contradiction. Hence, there is no such W and G ′ is weakly chordal. If G is a (3, 1)-polar graph with partition 
(A, B), and b1, b2, b3 ∈ B , then G ′ is a (3, 1)-polar graph with partition (A′, B ′), where A′ = A ∪ {a1, a2, a3} and B ′ = B as 
the partition of V (G ′) into two sets. Notice that the added satellite is a triangle. Hence, G ′ is a (3, 1)-polar graph.

The cliques of G ′ that are not cliques of G are {a1, b1, b2}, {a2, b2, b3}, {a3, b1, b3}, {a1, a2, b2}, {a2, a3, b3}, {a1, a3, b1}, and 
{a1, a2, a3}. Clearly, if all cliques of G have size at least 3, then all cliques of G ′ have size at least 3.

Since {a1, a2, a3} is a clique of G ′ , any 2-clique-colouring π ′ of G ′ uses 2 colours in the set {a1, a2, a3}. Let i, j, k, � ∈
{1, 2, 3} and π ′(ai) = π ′(a j). Since {ai, bi, bk} (resp. {a j, b j, b�}) is a clique of G ′ , π ′ assigns a colour which is not π ′(ai) to 
bi or bk (resp. π ′ assigns a colour which is not π ′(a j) to b j or b�). Hence, π ′ uses 2 colours in the set {b1, b2, b3}.

Note that π ′ is also a 2-clique-colouring of G , since C(G) ⊂ C(G ′). Now, consider π a 2-clique-colouring of G that uses 
2 colours in the set {b1, b2, b3}. It is easy to extend π in order to assign colours to the vertices of BP(b1, b2, b3) \ G , such 
that all cliques of C(G ′) \ C(G) are polychromatic. �
Lemma 8. Let G = (V , E) be a weakly chordal graph (resp. (3, 1)-polar graph with vertex partition (A, B)) and let adjacent vertices 
b1, b2 ∈ V (resp. b1, b2 ∈ B). If we add to (G, {b1, b2}) (resp. to (G, B)) a copy of an auxiliary graph BS(b1, b2), then the following 
assertions about the resulting graph G ′ are true.

• The resulting graph G ′ is weakly chordal (resp. (3, 1)-polar).
• If all cliques of G have size at least 3, then all cliques of G ′ have size at least 3.
• Any 2-clique-colouring of G ′ uses 2 colours in the set of vertices {b1, b2}.
• If G ′ is 2-clique-colourable, then G is 2-clique-colourable.
• If there exists a 2-clique-colouring of G that uses 2 colours in the set of vertices {b1, b2}, then G ′ is 2-clique-colourable.
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Proof. Let G = (V , E) be a weakly chordal graph and let adjacent vertices b1, b2 ∈ V . Add to (G, {b1, b2}) a copy of an 
auxiliary graph BS(b1, b2) in order to obtain graph G ′ . First, we prove that BS(b1, b2) is a weakly chordal (3, 1)-polar graph. 
A complete graph K5 with vertices b1, b2, b′, b′′, b′′′ is a weakly chordal (3, 1)-polar graph with vertex partition (A, B), 
where A = ∅ and B = {b1, b2, b′, b′′, b′′′}. By Lemma 7, if we add copies of the auxiliary graphs BP(b1, b2, b′), BP(b1, b2, b′′), 
BP(b1, b2, b′′′), and BP(b′, b′′, b′′′), then we have a weakly chordal (3, 1)-polar graph that corresponds to BS(b1, b2). Hence, 
BS(b1, b2) is a weakly chordal (3, 1)-polar graph.

Suppose, by contradiction, that G ′ is not weakly chordal, which means that G ′ has W a chordless cycle with a number 
of vertices greater than 4 or the complement of a chordless cycle with a number of vertices greater than 5. Since both G
and BS(b1, b2) are weakly chordal graphs, a chordless cycle W with a number of vertices greater than 4 contains a vertex 
of BS(b1, b2) \ G and a vertex of G \ BS(b1, b2). Note that {b1, b2} induces a complete subgraph and is a cutset of G ′ that 
disconnects BS(b1, b2) \ G from G \ BS(b1, b2). So, every cycle with vertices of BS(b1, b2) \ G and of G \ BS(b1, b2) contains 
a chord, i.e. there is no such chordless cycle W . For W the complement a chordless cycle with a number of vertices 
greater than 5, W has vertices b1 or b2, otherwise W is disconnected. Hence, W has a 1-cutset or a 2-cutset, which is a 
contradiction since the complement of a chordless cycle with a number of vertices greater than 5 is triconnected. Hence, 
G ′ is weakly chordal. If G = (V , E) is a (3, 1)-polar graph with partition (A, B) and b1, b2 ∈ B , then G ′ is obtained by 
adding to (G, B) a copy of BS(b1, b2), and G ′ is a (3, 1)-polar graph with partition (A′, B ′), where A′ = A ∪ (V (BS(b1, b2)) \
{b1, b2, b′, b′′, b′′′}) and B ′ = B ∪ {b′, b′′, b′′′} as the partition of V (G ′) into two sets. Notice that all added satellites are 
triangles. Hence, G ′ is a (3, 1)-polar graph.

The cliques of G ′ that are not cliques of G are precisely the clique containing {b1, b2, b′, b′′, b′′′}, and all cliques added by 
the inclusion of copies of the auxiliary graphs BP(b1, b2, b′), BP(b1, b2, b′′), BP(b1, b2, b′′′), and BP(b′, b′′, b′′′). By Lemma 7, 
all cliques added by the auxiliary graphs have size at least 3. Then, all cliques of G ′ have size at least 3.

Consider any 2-clique-colouring π ′ of G ′ . Since we added a copy of the auxiliary graph BP(b′, b′′, b′′′), Lemma 7 states 
that π ′ assigns at least 2 colours to b′, b′′, b′′′. Without loss of generality, suppose that π ′ assigns distinct colours to b′ and 
b′′ . Since we added copies of the auxiliary graphs BP(b′, b1, b2) and BP(b′′, b1, b2), Lemma 7 states that π ′ assigns at least 
2 colours to {b′, b1, b2} and at least 2 colours to {b′′, b1, b2}, i.e. π ′ assigns a colour which is not π ′(b′) to b1 or b2 and a 
colour which is not π ′(b′′) to b1 or b2. Hence, π ′ assigns 2 distinct colours to b1, b2.

Since every 2-clique-colouring π ′ of G ′ uses 2 colours in the set {b1, b2} and every clique of G that is not a clique of G ′
contains {b1, b2}, π ′ defines a 2-clique-colouring π of G .

Now, consider a 2-clique-colouring π of G that assigns 2 colours to b1, b2. Assign the same colour of b1 to b′ and b′′ . 
Assign the same colour of b2 to b′′′ . The sets {b1, b2, b′}, {b1, b2, b′′}, {b1, b2, b′′′}, and {b′, b′′, b′′′} have 2 colours each. By 
Lemma 7, all cliques added by the inclusion of copies of the auxiliary graphs BP(b1, b2, b′), BP(b1, b2, b′′), BP(b1, b2, b′′′), and 
BP(b′, b′′, b′′′) are polychromatic. Hence, we have a 2-clique-colouring π ′ of G ′ . �

Recall that (3, 1)-polar graphs with all cliques having size at least 3 are weakly chordal, since C6 has cliques of size 2 
and C2t for t > 3 is not (3, 1)-polar. We strengthen the result that 2-clique-colouring of (3, 1)-polar graphs is NP-complete, 
now even restricting all cliques to have size at least 3, which gives a subclass of weakly chordal graphs.

Theorem 9. The problem of 2-clique-colouring is NP-complete for (3, 1)-polar graphs with all cliques having size at least 3.

Proof. The problem of 2-clique-colouring a (3, 1)-polar graph with all cliques having size at least 3 is in NP : Theorem 5
confirms that to check whether a 2-colouring of a (3, 1)-polar graph is a 2-clique-colouring is in P .

We prove that 2-clique-colouring (3, 1)-polar graphs with all cliques having size at least 3 is NP -hard by reducing
NAE-3SAT [12] to it. We apply the ideas of the framework developed by Kratochvíl and Tuza [7]. For every formula φ, a (3, 
1)-polar graph G with all cliques having size at least 3 is constructed such that φ is satisfiable if, and only if, graph G is 
2-clique-colourable. Let n (resp. m) be the number of variables (resp. clauses) in formula φ. We define graph G as follows.

• for each variable xi , 1 ≤ i ≤ n, we create two vertices xi and xi . Moreover, we create edges so that the set 
{x1, x1, . . . , xn, xn} induces a complete subgraph of G .

• for each variable xi , 1 ≤ i ≤ n, add a copy of the auxiliary graph BS(xi, xi). Vertices xi and xi correspond to the literals 
of variable xi .

• for each clause c j = (la, lb, lc), 1 ≤ j ≤ m, we add a copy of the auxiliary graph BP(la, lb, lc).

Refer to Fig. 6 for an example of such construction, given a formula φ = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x3 ∨ x5).
First, we prove that the graph G is a (3, 1)-polar graph with all cliques having size at least 3.
Consider the set {x1, x1, . . . , xn, xn}. Clearly, this set is a clique with size at least 3 and also a (3, 1)-polar graph. Lemma 8

states that, for each added auxiliary graph BS(xi, xi) to a (3, 1)-polar graph with all cliques having size at least 3, every 
obtained graph remains in the class. Lemma 7 states that, for each added auxiliary graph BP(lac j

, lbc j
, lcc j

) to a (3, 1)-polar 
graph with all cliques having size at least 3, every obtained graph remains in the class. Hence, G is a (3, 1)-polar graph 
with all cliques having size at least 3.

Such construction is done in polynomial-time. One can check with Lemmas 7 and 8 that G has 3m + 17n vertices.
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Fig. 6. Example of a (3, 1)-polar graph with all cliques having size at least 3 constructed for a NAE-3SAT instance φ = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x1 ∨
x3 ∨ x5).

We claim that formula φ is satisfiable if, and only if, there exists a 2-clique-colouring of G . Assume there exists a 
valuation vφ such that φ is satisfied. We give a colouring to graph G , as follows.

• assign colour 1 to l ∈ {x1, x1, . . . , xn, xn} if it corresponds to the literal which receives the true value in vφ , otherwise we 
assign colour 2 to it.

• extend the 2-clique-colouring to the copy of the auxiliary graph BS(xi, xi), for each variable xi , 1 ≤ i ≤ n, according to 
Lemma 8. Notice that the necessary condition to extend the 2-clique-colouring is satisfied.

• extend the 2-clique-colouring to the copy of the auxiliary graph BP(la, lb, lc), for each triangle c = {la, lb, lc}, 1 ≤ j ≤ m, 
according to Lemma 7. Notice that the necessary condition to extend the 2-clique-colouring is satisfied.

It still remains to be proved that this is indeed a 2-clique-colouring.
Consider the set {x1, x1, . . . , xn, xn}. Clearly, the above colouring assigns 2 colours to this set. Lemma 8 states that, for 

each added auxiliary graph BS(xi, xi) to a 2-clique-colourable (3, 1)-polar graph, we obtain a 2-clique-colourable graph. 
Lemma 7 states that, for each added auxiliary graph BP(la, lb, lc) to a 2-clique-colourable (3, 1)-polar graph, we obtain a 
2-clique-colourable graph. Hence, graph G is 2-clique-colourable.

For the converse, we now assume that G is 2-clique-colourable and we consider any 2-clique-colouring. Recall that, 
by Lemma 8, the vertices xi and xi have distinct colours, since we added the auxiliary graph BS(xi, xi), for each variable 
xi . Hence, we define vφ as follows. The literal xi is assigned true in vφ if the corresponding vertex has colour 1 in the 
clique-colouring, otherwise it is assigned false. Since we are considering a 2-clique-colouring, by Lemma 7, every triangle c j , 
1 ≤ j ≤ m, is polychromatic. As a consequence, there exists at least one literal with true value and at least one literal with 
false value in every clause c j . This proves that φ is satisfied for valuation vφ . �

On the other hand, we prove that 2-clique-colouring (2, 1)-polar graphs becomes polynomial when all cliques have size 
at least 3.

Theorem 10. Every (2, 1)-polar graph with all cliques having size at least 3 is 2-clique-colourable, and such a 2-clique-colouring can 
be determined in polynomial time.

Proof. Let G = (V , E) be a (2, 1)-polar graph with all cliques having size at least 3, and with vertex partition (A, B). We 
first colour the vertices of B: if B is a singleton, then assign colour 1 to its only vertex; if |B| > 1, then colour the vertices 
of B using precisely two colours 1 and 2, arbitrarily.

Next, we colour the vertices of A. For each singleton satellite S = {s}, assign colour 1 to vertex s, if s has a neighbour in 
B with colour 2, otherwise assign to vertex s colour 2.

The other case considers each edge satellite S = {s1, s2}, where we note that set S is not a clique, which implies that 
NB(s1) ∩ NB(s2) = ∅. There are just three cliques containing set S: the set S ∪ (NB(s1) ∩ NB(s2)), the set {s1} ∪ NB(s1), and 
the set {s2} ∪ NB(s2). Note that every clique that contains set S also contains set NB(s1) ∩ NB(s2). Assign colour 1 to both 
vertices s1 and s2, if there is a vertex in NB(s1) ∩ NB(s2) with colour 2, otherwise assign to both vertices s1 and s2 colour 2.

Clearly, such assignment is a 2-clique-colouring and can be achieved in polynomial time. �
In the proof that 2-clique-colouring weakly chordal graphs is a � P

2 -complete problem (Theorem 3), we constructed 
a weakly chordal graph with K2 cliques to force distinct colours in their extremities (in a 2-clique-colouring). We can 
eliminate the K2 cliques and obtain a weakly chordal graph with all cliques having size at least 3 by adding copies of 
the auxiliary graph BS(u, v), for every K2 clique {u, v}. Auxiliary graphs AK and NAS in Fig. 2 become AK′ and NAS′ , both 
depicted in Fig. 7.

With this modification, the weakly chordal graph constructed in Theorem 3 becomes a weakly chordal graph with no K2
clique, depicted in Fig. 8.

Such construction is done in polynomial-time. Notice that, in the constructed graph of Theorem 3, every K2 clique {u, v}
has 2 distinct colours in a clique-colouring. Hence, one can check with Lemmas 7 and 8 that the obtained graph is weakly 



H.B. Macêdo Filho et al. / Theoretical Computer Science 618 (2016) 122–134 133
Fig. 7. Auxiliary graphs AK′(a, g) and NAS′(a, j).

Fig. 8. Graph constructed for a QSAT2 instance � = (x1 ∧ x2 ∧ y2) ∨ (x1 ∧ x3 ∧ y2) ∨ (x1 ∧ x2 ∧ y1).

chordal and it is 2-clique-colourable if, and only if, the constructed graph of Theorem 3 is 2-clique-colourable. This implies 
the following theorem.

Theorem 11. The problem of 2-clique-colouring is � P
2 -complete for weakly chordal graphs with all cliques having size at least 3.

As a direct consequence of Theorem 11, we have that 2-clique-colouring is � P
2 -complete for perfect graphs with all 

cliques having size at least 3.

Corollary 12. The problem of 2-clique-colouring is � P
2 -complete for perfect graphs with all cliques having size at least 3.

4. Final considerations

Marx [9] proved complexity results for k-clique-colouring, for fixed k ≥ 2, and related problems that lie in between two 
distinct complexity classes, namely � P

2 -complete and 
P
3 -complete. Marx approaches the complexity of clique-colouring by 

fixing the graph class and diversifying the problem. In the present work, our point of view is the opposite: we rather fix 
the (2-clique-colouring) problem and we classify the problem complexity according to the input graph class, which belongs 
to nested subclasses of weakly chordal graphs. We achieved complexities lying in between three distinct complexity classes, 
namely � P

2 -complete, NP-complete and P . Fig. 9 shows the relation of inclusion among the classes of graphs of Table 1. 
The 2-clique-colouring complexity for each class is highlighted.

Notice that the perfect graph subclasses for which the 2-clique-colouring problem is in NP mentioned so far in the 
present work satisfy that the number of cliques is polynomial. We remark that the complement of a matching has an expo-
nential number of cliques and yet the 2-clique-colouring problem is in NP , since every such graph is 2-clique-colourable. 
Now, notice that the perfect graph subclasses for which the 2-clique-colouring problem is in P mentioned so far in the 
present work satisfy that all graphs in the class are 2-clique-colourable. Macêdo Filho et al. [6] have proved that unichord-
free graphs are 3-clique-colourable, but a unichord-free graph is 2-clique-colourable if and only if it is perfect. As a future 
work, we aim to find interesting subclasses of perfect graphs where not all graphs are 2-clique-colourable and yet the 
2-clique-colouring problem is in P when restricted to the class.
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Fig. 9. 2-clique-colouring complexity of perfect graphs and subclasses. Inside the frame, we have the graph classes considered in the present paper.
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