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a b s t r a c t

A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique
is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G,
denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there
exists a graph H such that G = K(H). The clique graph recognition problem asks whether
a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968,
and a characterization was proposed by Roberts and Spencer in 1971. However, the time
complexity of the problem of recognizing clique graphs is a long-standing open question.
We prove that the clique graph recognition problem is NP-complete.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider finite, simple and undirected graphs. V and E denote the vertex set and the edge set of the graph G, respectively.
A complete set of G is a subset of V inducing a complete subgraph. A clique is a maximal complete set. The clique family of G
is denoted by C(G). The clique graph of G is the intersection graph of C(G).
The clique operator, K , assigns to each graph G its clique graph which is denoted by K(G). On the other hand, say that G is

a clique graph if G belongs to the image of the clique operator, i.e. if there exists a graph H such that G = K(H).
Clique operator and its image were widely studied. First articles focused on recognizing clique graphs [20,36]. In [4,13],

graphs for which the clique graph changes whenever a vertex is removed are considered. Graphs fixed under the operator
K or fixed under the iterated clique operator, K n, for some positive integer n; and the behavior under these operators of
parameters such as the number of vertices or diameter were studied in [5,8,9,12,26,30] and more recently in [7,14,21–23,
29]. For several classes of graphs, the image of the class under the clique operator was characterized [10,18,19,24,34,37];
and, in some cases, also the inverse image of the class [16,28,35]. Results of the previous bibliography can be found in the
survey [39]. Clique graphs have been much studied as intersection graphs and are included in several books [11,25,33].
In this paper we are concerned with the time complexity of the problem of recognizing clique graphs, this is the time

complexity of the following decision problem.
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Fig. 1. (a) Non-clique graph thus non-clique-Helly graph; (b) non-clique-Helly graph but clique graph; (c) clique-Helly graph thus clique graph.

clique graph
instance: A graph G = (V , E).
question: Is there a graph H such that G = K(H)?
In spite of the characterizations of clique graphs given in [36] and more recently in [1], the time complexity of clique

graph is a long-standing open question [11,32,36,39].
Our main theorem proves that clique graph is NP-complete by a reduction from a specially chosen version of the 3-

satisfiability problem. In Section 2, definitions and basic concepts about clique graphs are presented. Besides, we detail a
proof that clique graph is in NP, and we state the selected 3sat3 version of satisfiability problem.
In Section 3, we describe the construction of instance GI of clique graph from instance I = (U, C) of 3sat3; and analyze
some of its properties. In Section 4, we state and prove the main theorem by showing that the constructed graph GI is a
clique graph if and only if C is satisfiable. In Section 5, we have our concluding remarks.
The extended abstract [3] recently published contains the description of the special graph GI constructed from the

satisfiability instance I = (U, C) but omits most of the proof. The present paper presents the full required proof – a difficult
and long case analysis – andhighlights the properties of the constructed graphGI for the full understanding of the complexity
of the recognition problem and the subsequent study of the problem for special classes of graphs.

2. Definitions and basic concepts

Given a set family F = (Fi)i∈I , the sets Fi are called members of the family. F ∈ F means that F is a member of F . The
family is pairwise intersecting if the intersection of any twomembers is not the empty set. The intersection or total intersection
of F is the set

⋂
F =

⋂
i∈I Fi. The family F has the Helly property, if any pairwise intersecting subfamily has nonempty

total intersection.
The edge with end vertices u and v is represented by uv. We say that the complete set C covers the edge uv when u and

v belong to C . A complete set edge cover of a graph G is a family of complete sets of G covering all edges of G.
The following theorem is a well-known characterization of Clique Graphs.

Theorem 1 (Roberts and Spencer [36]). G is a clique graph if and only if there exists a complete set edge cover of G satisfying the
Helly property.

Notice that for any graph G the clique family C(G) is a complete set edge cover of G, but, in general, this family does not
satisfy the Helly property. Graphs such that C(G) satisfies the Helly property are called clique-Helly graphs. It follows from
Theorem 1 that every clique-Helly graph is a clique graph. The reciprocal implication is not true: there exist clique graphs
which are not clique-Helly graphs. We have depicted in Fig. 1 three examples: (a) a non-clique graph (no complete set edge
cover satisfies the Helly property [36]); (b) a clique graph that is not a clique-Helly graph (the clique family does not satisfy
the Helly property, but the complete set edge cover {a, b, c}, {c, e, f }, {b, d, g}, {d, e, g}, {b, c, e, g} does); and (c) a clique
graph that is a clique-Helly graph (the clique family has the Helly property). Examples given in Fig. 1 also show that being
a clique graph or being a clique-Helly graph are not hereditary properties.
In [38], clique-Helly graphs are characterized and a polynomial-time algorithm for their recognition is presented. Next

lemma extends that result and leads to a polynomial-time algorithm to check if a given complete set edge cover of a graph
satisfies the Helly property; this lemma is used to show that clique graph is in NP and in the proof of Theorem 8.
A triangle is a complete set with exactly 3 vertices. The set of triangles of G is denoted by T (G). Let F be a complete set

edge cover of G and T a triangle, and denote by FT the subfamily of F formed by all the members containing at least two
vertices of T .

Lemma 2 (Alcón and Gutierrez [2]). Let F be a complete set edge cover of G. The following conditions are equivalent:
(i) F has the Helly property.
(ii) For every T ∈ T (G), the subfamily FT has the Helly property.
(iii) For every T ∈ T (G), the subfamily FT has nonempty intersection, this means

⋂
FT 6= ∅.

As noted by Roberts and Spencer [36], Theorem 1 yields a polynomial certificate of G being a clique graph. First, for the
polynomial size of the edge cover certificate, note that if F has the Helly property, then every subfamily F ′ of F has the
Helly property as well. In addition, we prove that if G admits a complete set edge cover F , then G admits a complete set
edge cover F ′ of size at most |E| which is our considered certificate: just sequentially scan the edges of E, select for F ′
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one complete set of F covering the first edge, and for each edge e not yet covered by F ′, select for F ′ one complete set of
F covering e. Clearly this procedure labels each selected set with a corresponding scanned edge of E, yielding a subfamily
F ′ of size at most |E|. Notice, in addition, that no member of F ′ is contained in another one. Second, for the polynomial
verification of the certificate, a result of Berge [6] says that a family of sets has the Helly property, if and only if for any triple
of elements, the subfamily of sets containing at least two out of these three elements has nonempty intersection. Actually,
by Lemma 2, it is enough to consider the triples of vertices a, b, c of G defining a triangle T . We consider the members of
F ′T and check for every vertex v of V if v belongs to

⋂
F ′T . This produces an O(|V |4|E|) algorithm that checks if a complete

set edge cover F ′ of size O(|E|) is Helly. Thus clique graph belongs to NP.
A consequence of the above analysis is that a graph admits a complete set edge cover with the Helly property if and only

if the graph admits a complete set edge cover with the Helly property such that no member is contained in another; such
cover is called an RS-family of the graph. Thus Theorem 1 is equivalent to the following simpler statement:

G is a clique graph if and only if G admits an RS-family.

The following two facts are stated and proved by Roberts and Spencer [36] and as we explain after each statement, they
are explicitly used in our NP-completeness proof.

Fact 3 (Lemma 1 of [36]). LetF be an RS-family of a graph G. ThenF contains a complete set of size 2 if and only if this complete
set is a clique of G.

Our constructed instance of clique graph is a graph where every edge is in a triangle, which means that no complete set
of size 2 is a clique. In our proof we apply the definition of RS-family and Fact 3 to our constructed graph to know that any
possible RS-family does not contain complete sets of size 1 or 2.

Fact 4 (Proof of Theorem 3 of [36]). If a triangle T is a clique of G, then T is a member of every complete set edge cover of G that
satisfies the Helly property.

Our constructed instance of clique graph has many auxiliary vertices of degree 2. Each vertex of degree 2 is contained
in exactly one corresponding auxiliary triangle T , which implies that this auxiliary triangle T is a clique. In our proof we use
Fact 4 to know that every such auxiliary triangle T of our constructed graph is a member of any possible RS-family.
We show that clique graph is NP-complete by a reduction from the following version of the 3-satisfiability problem

with at most 3 occurrences per variable. Let U = {ui, 1 ≤ i ≤ n} be a set of boolean variables. A literal is either a variable ui
or its complement ui. A clause over U is a set of literals of L. Let C = {cj, 1 ≤ j ≤ m} be a collection of clauses over U . We
say that variable ui occurs in clause cj (and then in C) if ui or ui ∈ cj. We say that variable ui occurs in clause cj as literal ui
(or that literal ui occurs in cj) if ui ∈ cj, and as literal ui (or that literal ui occurs in cj) if ui ∈ cj.
3sat3
instance: I = (U, C), where U = {ui, 1 ≤ i ≤ n} is a set of boolean variables, and C = {cj, 1 ≤ j ≤ m} a set of clauses over
U such that each clause has two or three variables, each variable occurs at most three times in C .
question: Is there a truth assignment for U such that each clause in C has at least one true literal?
It is a known result that 3sat3 is an NP-complete problem [15,27]. Note that the instances of the chosen version of 3sat

must satisfy a linear dependency between parameters n andm: every 3sat3 instance satisfies 2m ≤ 3n.
In order to reduce 3sat3 to clique graphweneed to construct in polynomial time a particular instanceGI of clique graph

from a generic instance I = (U, C) of 3sat3, in such a way that the constructed graph GI is a clique graph if and only if C is
satisfiable.

3. Construction of GI from I = (U, C)

Let I = (U, C) be any instance of 3sat3. We assume with no loss of generality that each variable occurs two or three
times in C , and no variable occurs twice in the same clause. In addition, if variable ui occurs twice in C , then we assume it is
once as literal ui and once as literal ui; and if variable ui occurs three times in C , then we assume it is once as literal ui and
twice as literal ui.
For each variable ui, let ji be the subindex of the unique clause where variable ui occurs as literal ui; and J i = {j |

literal ui occurs in cj}.
For each clause cj with |cj| = 3, let Ij = {i | variable ui occurs in cj}; and for each clause cj with |cj| = 2, let

Ij = {i | variable ui occurs in cj} ∪ {n + 1}. Notice that in any case |Ij| = 3. Given Ij = {i1, i2, i3}, with i1 < i2 < i3,
let i∗1 = i2, i

∗

2 = i3 and i
∗

3 = i1.
From instance I = (U, C), we construct a graph GI = (V , E) as follows (we give immediately after an easier alternative

modular description of the graph GI ):
The vertex set V is the union:

V =
⋃
1≤i≤n

{aiji , c
i
ji , d

i
ji , e

i
ji , f

i
ji , g

i
ji , h

i
ji} ∪

⋃
1≤i≤n

⋃
j∈J i

{aij, c
i
j , d

i
j, e
i
j, f
i
j , g

i
j , h

i
j, z
i
j , v

i
j, w

i
j}

∪

⋃
1≤j≤m,|cj|=2

{an+1j , cn+1j , dn+1j , en+1j , f n+1j , gn+1j , hn+1j }.
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Fig. 2. Truth Setting component Ti for variable ui with J i = {s, k}.

Fig. 3. Satisfaction Testing component Sj for clause cj with: (a) 2 literals corresponding to variables ui1 and ui2 ; and (b) 3 literals corresponding to variables
ui1 , ui2 and ui3 . Vertices {a

i
j, d

i
j, g

i
j , h

i
j | i ∈ Ij} induce a complete graph on 12 vertices but for simplicity some edges are not drawn.

Since |J i| ≤ 2, |V | is bounded by n × 7 + n × 2 × 10 + m × 7 = 27n + 7m. Actually, the linear dependency 2m ≤ 3n
between parameters n andm gives a linear upper bound on n: |V | is bounded by 27n+ 7m ≤ 27n+ 21

2 n =
75
2 n.

The edge set E contains:
For each j, 1 ≤ j ≤ m, the edges of the complete graph induced by the vertex set K12(j) = {aij, d

i
j, g

i
j , h

i
j | i ∈ Ij}; the edges

of the sets {c ijd
i
j | i ∈ Ij, i 6= n+ 1} and {c

i
ja
i
j, c
i
ja
i∗
j , e

i
jd
i
j, e
i
jh
i
j, f
i
j g
i
j , f

i
j a
i∗
j | i ∈ Ij}.

And for each i, 1 ≤ i ≤ n, for each j ∈ J i, the edges of the complete graph induced by the vertex set K5(j, i) =
{hiji , g

i
ji
, vij, h

i
j, g

i
j }; and the edges of the set {h

i
ji
wij, w

i
jh
i
j, g

i
ji
z ij , z

i
jg
i
j , a

i
ji
vij, v

i
ja
i
j}.

Notice that for each variable ui, graph GI contains an induced subgraph, Truth Setting component Ti, the graph depicted
in Fig. 2; and for each clause cj, graph GI contains as induced subgraph, Satisfaction Testing component Sj, the graph depicted
either in Fig. 3(a) or (b), depending on the number of variables in clause cj. Notice that in that figure some edges have been
omitted for simplicity. A subgraph Ti intersects a subgraph Sj if and only if variable ui occurs in clause cj; and, in that case, the
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Fig. 4. Graph GI obtained from the 3sat3 instance I = (U, C), U = {u1, u2, u3}, C = {{u1, u3}, {u1, u2, u3}, {u1, u2}}.

intersection is the subgraph induced by vertices aij, a
i∗
j , c

i
j , d

i
j, e
i
j, f
i
j , g

i
j , and h

i
j. We obtain the whole graph GI by superposing

the subgraphs Ti and Sj, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
For the convenience of the reader we offer an example in Fig. 4 of graph GI obtained from the instance I = (U, C),

U = {u1, u2, u3}, C = {{u1, u3}, {u1, u2, u3}, {u1, u2}}.
In Section 3.1, we shall prove some properties about the RS-families of the constructed graph GI . Note that in the

constructed graph GI , every edge is in a triangle, so by Fact 3 we know that every complete set in an RS-family of GI has
size at least 3. Note the presence in the constructed graph GI of auxiliary vertices of degree 2: eij, f

i
j , w

i
j, z
i
j . The auxiliary

triangles containing those auxiliary degree 2 vertices are cliques and by Fact 4 must be present in every RS-family of the
constructed graph GI . For the convenience of the reader, we list all cliques of the constructed graph GI .

Fact 5. The cliques of GI can be listed as follows:

• For each j, 1 ≤ j ≤ m, the complete set K12(j) = {aij, d
i
j, g

i
j , h

i
j | i ∈ Ij};

• For each i, 1 ≤ i ≤ n, for each j ∈ J i, the complete set K5(j, i) = {hiji , g
i
ji
, vij, h

i
j, g

i
j };

• For each j, 1 ≤ j ≤ m, i ∈ Ij, i 6= n+ 1, one complete set K4 containing c ij : {a
i
j, c
i
j , d

i
j, a
i∗
j };

• For each i, 1 ≤ i ≤ n, for each j ∈ J i, two complete sets K4 containing vij : {a
i
ji
, hiji , g

i
ji
, vij}, {a

i
j, h

i
j, g

i
j , v

i
j};

• All triangles with a vertex of degree 2. For each j, 1 ≤ j ≤ m, for each i ∈ Ij, the triangles {f ij , a
i∗
j , g

i
j }, {e

i
j, d
i
j, h

i
j}; and the

triangle {cn+1j , an+1
∗

j , an+1j } when n+ 1 ∈ Ij. For each i, 1 ≤ i ≤ n, for each j ∈ J i, the triangles {g
i
ji
, z ij , g

i
j }, {h

i
ji
, wij, h

i
j}.

3.1. About RS-families of graph GI

Our main theorem is proved in the next section by showing that the constructed graph GI admits an RS-family if and
only if there exists a truth assignment for U that satisfies C . The following lemmata are used in that proof when given an
RS-family of GI we exhibit a truth assignment for U that satisfies C . The truth value of each variable ui will be assigned
depending on the member of the RS-family of GI covering the edge aijic

i
ji
.

For the convenience of the reader, we recall our notation. The notation explicitly defines a correspondence between
indices of variables and clauses of instance I , and the vertices of the constructed graph GI . For each variable ui, let ji be the
subindex of the unique clausewhere variable ui occurs as literal ui; and J i = {j | literal ui occurs in cj}. For each clause cjwith



L. Alcón et al. / Theoretical Computer Science 410 (2009) 2072–2083 2077

Fig. 5. Figure used in the proof of Lemma 6. Any RS-family of GI must contain the highlighted triangles. In order to cover highlighted edge aiji c
i
ji
, exactly one

of the triangles {aiji , c
i
ji
, ai
∗

ji
} or {aiji , c

i
ji
, diji }must belong to F .

|cj| = 3, let Ij = {i | variable ui occurs in cj}; and for each clause cjwith |cj| = 2, let Ij = {i | variable ui occurs in cj}∪{n+1}.
Notice that in any case |Ij| = 3. Given Ij = {i1, i2, i3}, with i1 < i2 < i3, let i∗1 = i2, i

∗

2 = i3 and i
∗

3 = i1.
Notice that, in case i = n + 1, vertex cn+1j is of degree 2 contained in precisely one triangle {an+1j , cn+1j , a(n+1)

∗

j } which

is the only clique covering edge an+1j cn+1j . From Fact 4, triangle {an+1j , cn+1j , a(n+1)
∗

j }must belong to any RS-family. Lemma 6
considers the possible ways an RS-family may cover edge aijc

i
j , when i 6= n+ 1.

Lemma 6 (Two Cover Lemma). Let F be an RS-family of the graph GI . For each j, 1 ≤ j ≤ m, and for each i ∈ Ij, i 6= n + 1,
exactly one of the triangles {aij, c

i
j , a

i∗
j }, {a

i
j, c
i
j , d

i
j} belongs to F .

Proof. Consider any j, 1 ≤ j ≤ m, and i ∈ Ij, i 6= n+ 1. Assume with no loss of generality, j = ji, and refer to the left side of
Fig. 5. Indeed, to prove the case j ∈ J i, refer to the right side of Fig. 5 accordingly.
We have to prove that exactly one of the triangles {aiji , c

i
ji
, ai
∗

ji
}, {aiji , c

i
ji
, diji} of Fig. 5 belongs to F .

Notice that, by Fact 4, triangles {diji , e
i
ji
, hiji} and {a

i∗
ji
, f iji , g

i
ji
} highlighted in Fig. 5 belong to F , as eiji and f

i
ji
are vertices of

degree 2 in GI .
From Facts 3 and 5, in order to cover the highlighted edge aijic

i
ji
, at least one of the three complete sets {aiji , c

i
ji
, ai
∗

ji
, diji},

{aiji , c
i
ji
, ai
∗

ji
} or {aiji , c

i
ji
, diji}must belong to F .

We claim that the complete set {aiji , c
i
ji
, ai
∗

ji
, diji} 6∈ F .

Indeed, from Facts 3 and 5, in order to cover the highlighted edge aijiv
i
k, at least one of the three complete sets

{aiji , g
i
ji
, vik, h

i
ji
}, {aiji , g

i
ji
, vik}, or {a

i
ji
, hiji , v

i
k} must belong to F . Now, assuming {aiji , c

i
ji
, ai
∗

ji
, diji} ∈ F , implies that no one of

these three complete sets is a member of F , as each of the following three subfamilies:
{{aiji , g

i
ji
, vik, h

i
ji
}, {aiji , c

i
ji
, ai
∗

ji
, diji}, {a

i∗
ji
, f iji , g

i
ji
}},

{{aiji , g
i
ji
, vik}, {a

i
ji
, ciji , a

i∗
ji
, diji}, {a

i∗
ji
, f iji , g

i
ji
}}, and

{{aiji , h
i
ji
, vik}, {a

i
ji
, ciji , a

i∗
ji
, diji}, {d

i
ji
, eiji , h

i
ji
}} violate the Helly property.

It follows that {aiji , c
i
ji
, ai
∗

ji
, diji} 6∈ F , and that it remains to prove that both triangles {aiji , c

i
ji
, ai
∗

ji
} and {aiji , c

i
ji
, diji} are not

together in F .
Indeed, again by considering the highlighted edge aijiv

i
k, the presence of triangles: {a

i∗
ji
, f iji , g

i
ji
}, {diji , e

i
ji
, hiji}, {a

i
ji
, c iji , a

i∗
ji
},

and {aiji , c
i
ji
, diji} together in F implies that none of the three complete sets that may possibly cover aijiv

i
k is a member of F ,

as each of the following three subfamilies:
{{aiji , g

i
ji
, vik, h

i
ji
}, {aiji , c

i
ji
, ai
∗

ji
}, {ai

∗

ji
, f iji , g

i
ji
}},

{{aiji , g
i
ji
, vik}, {a

i
ji
, c iji , a

i∗
ji
}, {ai

∗

, f iji , g
i
ji
}}, and

{{aiji , h
i
ji
, vik}, {a

i
ji
, c iji , d

i
ji
}, {diji , e

i
ji
, hiji} violate the Helly property.

It follows that exactly one of the triangles {aiji , c
i
ji
, ai
∗

ji
} or {aiji , c

i
ji
, diji} belongs to F ; and the proof is completed. �

Lemma 7 (Literal Communication Lemma). Let F be an RS-family of the graph GI . For each i, 1 ≤ i ≤ n, and for each j ∈ J i, if
{aij, c

i
j , d

i
j} ∈ F then {aiji , c

i
ji
, ai
∗

ji
} ∈ F , (Fig. 6(a)), and if {aij, c

i
j , a

i∗
j } ∈ F then {aiji , c

i
ji
, diji} ∈ F , (Fig. 6(b)).

Proof. Please refer to Fig. 6. Consider any i, 1 ≤ i ≤ n, and j ∈ J i. First assume {aij, c
i
j , d

i
j} ∈ F and refer to the right side of

Fig. 6(a), where the assumed triangle {aij, c
i
j , d

i
j} is a filled triangle.

Notice that, by Fact 4, triangles {eij, h
i
j, d
i
j}, {g

i
ji
, g ij , z

i
j}, {e

i
ji
, hiji , d

i
ji
} highlighted in Fig. 6 belong to F , as eij, z

i
j and e

i
ji
are

vertices of degree 2 in GI .
As in the proof of the previous Lemma, in order to cover edge aijv

i
j, the complete set {a

i
j, g

i
j , v

i
j}must be in F , as each of

the following two subfamilies:
{{aij, h

i
j, g

i
j , v

i
j}, {a

i
j, c
i
j , d

i
j}, {e

i
j, h

i
j, d
i
j}}, and

{{aij, h
i
j, v
i
j}, {a

i
j, c
i
j , d

i
j}, {e

i
j, h

i
j, d
i
j}} violate the Helly property.
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Fig. 6. Figure used in the proof of Lemma 7. For any variable ui and j ∈ J i , any RS-family of GI must contain either the filled triangles in (a) or the filled
triangles in (b). In any case the bold triangles must belong to the RS-family.

Now, again, in order to cover the edge aijiv
i
j, the complete set {a

i
ji
, hiji , v

i
j} must be in F , as each of the following two

subfamilies:
{{aiji , g

i
ji
, vij, h

i
ji
}, {aij, g

i
j , v

i
j}, {g

i
ji
, g ij , z

i
j}}, and

{{aiji , g
i
ji
, vij}, {a

i
j, g

i
j , v

i
j}, {g

i
ji
, g ij , z

i
j}} violate de Helly property.

So far, the assumption of triangle {aij, c
i
j , d

i
j} ∈ F , forced that the triangles {aij, g

i
j , v

i
j} and {a

i
ji
, hiji , v

i
j} are both in F . Note

these three triangles are filled triangles in Fig. 6(a).
Please refer to the left side of Fig. 6(a). By the previous lemma,we know that precisely one of the two triangles {aiji , c

i
ji
, ai
∗

ji
}

or {aiji , c
i
ji
, diji} belongs to F .

Since the assumption of {aiji , c
i
ji
, diji} ∈ F implies a subfamily {{aiji , h

i
ji
, vij}, {e

i
ji
, diji , h

i
ji
}, {aiji , c

i
ji
, diji}} that violates de Helly

property, we conclude that {aiji , c
i
ji
, ai
∗

ji
} ∈ F . Note, this is the fourth filled triangle in Fig. 6(a).

To get the second implication, an analogous argument refers to Fig. 6(b), starts with the assumption of {aij, c
i
j , a

i∗
j } ∈ F ,

a filled triangle on the right side of Fig. 6(b), and obtains as a consequence and in turn the other three filled triangles of
Fig. 6(b): {aij, h

i
j, v

i
j}, {a

i
ji
, g iji , v

i
j}, and finally {a

i
ji
, c iji , d

i
ji
}. �

These two lemmata are the basis of the proof of the main theorem. The first implies that given any variable ui and any
clause cj where ui occurs, any RS-family of GI is forced to choose exactly one of the triangles {aij, a

i∗
j , c

i
j }, {a

i
j, c
i
j , d

i
j} to cover

the edge aijc
i
j . The second lemma implies that if ck and cji are clauses where variable ui occurs as different literals, then any

RS-family of GI is forced to choose different types of triangles to cover respectively the edges aikc
i
k and a

i
ji
c iji . It follows from

the structure of the Truth Setting component Ti, that if cs and ck are clauses where variable ui occurs as the same literal, then
any RS-family of GI is forced to choose the same type of triangle to cover the edges aisc

i
s and a

i
kc
i
k, respectively.

The correspondence between the two possible truth assignments of variable ui and the two possible triangles used to cover
the edge aijic

i
ji
is clear.

4. Main theorem

Theorem 8. clique graph is NP-complete.
Proof. As shown in Section 2, clique graph belongs to NP.
Given any instance I = (U, C) of 3sat3, let GI be the graph obtained by Section 3 process. We show that GI is a clique

graph if and only if C is satisfiable.
First, suppose GI is a clique graph and let F be an RS-family for GI . We exhibit a truth assignment for U that satisfies C:
For each variable ui ∈ U , set

ui equal to true if and only if {aiji , c
i
ji , d

i
ji} ∈ F . (1)
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To see that this truth assignment satisfies C consider a clause cj.
Please refer to Fig. 3. The Helly property of F implies there exists i ∈ Ij such that the triangle {aij, c

i
j , a

i∗
j } 6∈ F ; notice

that i 6= n+ 1, because cn+1j is a vertex of degree 2 in GI . It follows, by the Two Cover Lemma, that

{aij, c
i
j , d

i
j} ∈ F . (2)

Observe that, since i 6= n+1, subindex i corresponds to a variable ui which occurs in clause cj. There are two possibilities:

ui occurs as literal ui in cj: then j = ji and condition (2) says {aiji , c
i
ji
, diji} ∈ F . Then, by (1), variable ui is true; and clause cj

is satisfied.
ui occurs as literal ui in cj: then j ∈ J i.

By condition (2) and Literal Communication Lemma, {aiji , a
i∗
ji
, c iji} ∈ F ; then, by Two Cover Lemma, {aiji , c

i
ji
, diji} 6∈

F ; thus, by (1), ui is false; and clause cj is satisfied.

Conversely, given a truth assignment of U that satisfies C , we exhibit a complete set edge cover F of GI .
For each j, 1 ≤ j ≤ m, complete set K12(j) = {aij, d

i
j, g

i
j , h

i
j | i ∈ Ij}.

For each j, 1 ≤ j ≤ m, for each i ∈ Ij, the triangles {f ij , a
i∗
j , g

i
j }, {e

i
j, d
i
j, h

i
j}.

For each j, 1 ≤ j ≤ m, for each i ∈ Ij, i 6= n+ 1, {c ij , a
i∗
j , d

i
j}; and for i = n+ 1, {c

n+1
j , a(n+1)

∗

j , an+1j }.
For each i, 1 ≤ i ≤ n, for each j ∈ J i, the complete set K5(j, i) = {hiji , g

i
ji
, vij , h

i
j, g
i
j }.

For each i, 1 ≤ i ≤ n, for each j ∈ J i, {g iji , z
i
j , g

i
j }, {h

i
ji
, wij, h

i
j}.

For each i, 1 ≤ i ≤ n, such that variable ui is true, {c iji , d
i
ji
, aiji}; and for each j ∈ J i, {a

i
ji
, g iji , v

i
j}, {v

i
j, h

i
j, a
i
j}, {a

i
j, a
i∗
j , c

i
j }.

For each i, 1 ≤ i ≤ n, such that variable ui is false, {c iji , a
i∗
ji
, aiji}; and for each j ∈ J i, {a

i
ji
, hiji , v

i
j}, {v

i
j, g

i
j , a

i
j}, {a

i
j, d
i
j, c
i
j }.

Please refer to Fig. 6. Notice that the triangles depicted in bold are present in the above defined complete set edge cover
regardless of the truth assignment. On the other hand, according to the truth assignment of variable ui, in the above defined
complete set edge cover, there are the filled triangles depicted in either Fig. 6(a) or (b). Observe that, when i 6= n + 1,
according to the truth assignment of variable ui, precisely one of the triangles {c iji , d

i
ji
, aiji} or {c

i
ji
, ai
∗

ji
, aiji} is selected in order

to cover the edge aijic
i
ji
. On the other hand, when i = n+ 1, the triangle {cn+1j , a(n+1)

∗

j , an+1j } is always selected to cover the
edge an+1j cn+1j , regardless of the truth assignment.
Observe that in particular given a 2-sized clause cj = {ui1 , ui2}, i1 < i2, a satisfiable truth assignment must set ui1 or

ui2 to true, hence the complete set edge cover F defines the forced triangles {c
n+1
j , an+1j , ai1j }, {a

i2
j , d

i1
j , c

i1
j }, {a

n+1
j , di2j , c

i2
j },

and according to ui1 or ui2 be set to true respectively triangles {a
i1
j , d

i1
j , c

i1
j } or {a

i2
j , d

i2
j , c

i2
j } in the corresponding Satisfaction

Testing component Sj.
The proof is concluded by showing that the complete set edge cover F of GI has the Helly property. By Lemma 2, it is

enough to show that for each triangle T ∈ T (GI),
⋂

FT 6= ∅.
If a triangle T contains an edge e for which any complete set of F covering e contains also T , then

⋂
FT 6= ∅. We call

such a triangle an easy triangle. Note, in particular, that if T is a triangle of GI with a vertex of degree 2, and e is any of the
two edges of T incident to the vertex of degree 2, then the only member of the defined family F covering e is the triangle T
itself — which clearly contains T . It follows that the triangles of GI containing a vertex of degree 2 are easy triangles.
For the analysis below, please refer to Fig. 6. We classify the triangles of GI into types according to either they are, or they

are not contained in a K12(j) or in a K5(j, i).

(1) First we consider the triangles of GI which are not contained in a K12(j) nor in a K5(j, i). These can be classified as follows.
(a) Triangles containing c ij , 1 ≤ j ≤ m, i ∈ Ij, i 6= n + 1. Note, in this case, vertex c

i
j is of degree 4, and is contained in

precisely 3 triangles of GI :
{c ij , a

i
j, a
i∗
j }, {c

i
j , a

i
j, d
i
j}, {c

i
j , a

i∗
j , d

i
j}.

For any of these three types of triangles T the members of FT are:
If either ui is true and occurs as literal ui in cj, or ui is false and occurs as literal ui in cj, the members of FT are:

K12(j), {c ij , a
i∗
j , d

i
j}, {a

i
j, c
i
j , d

i
j}. Thus d

i
j ∈

⋂
FT .

If either ui is true and occurs as literal ui in cj, or ui is false and occurs as literal ui in cj, the members of FT are:
K12(j), {c ij , a

i∗
j , d

i
j}, {a

i
j, c
i
j , a

i∗
j }. Thus a

i∗
j ∈

⋂
FT .

(b) Triangles containing cn+1j , 1 ≤ j ≤ m, n+ 1 ∈ Ij:

{cn+1j , an+1j , a(n+1)
∗

j }. All these triangles are easy.
(c) Triangles containing eij or f

i
j orw

i
j or z

i
j , 1 ≤ j ≤ m, i ∈ Ij:

{eij, d
i
j, h

i
j}, {f

i
j , a

i∗
j , g

i
j }, {w

i
j, h

i
ji
, hij}, {z

i
j , g

i
ji
, g ij }. All these triangles are easy.

(d) Triangles containing vij , 1 ≤ i ≤ n, j ∈ J i,
{vij, g

i
ji
, aiji}, {v

i
j, h

i
ji
, aiji}, {v

i
j, g

i
j , a

i
j}, {v

i
j, h

i
j, a
i
j}:
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Fig. 7. Triangles of K12(j)which may be not easy, they contain edges covered not only by the K12(j) itself but also by other members of F .

(i) T = {vij, g
i
ji
, aiji}.

If ui is true, then the members of FT are: K12(ji), K5(j, i), {aiji , g
i
ji
, vik}, where k ∈ J i. Thus g

i
ji
∈

⋂
FT . If ui is

false, then the members of FT are: K12(ji), K5(j, i), {aiji , h
i
ji
, vij}. Thus h

i
ji
∈

⋂
FT .

(ii) T = {vij, h
i
ji
, aiji}:

If ui is true, then the members of FT are: K12(ji), K5(j, i), {aiji , g
i
ji
, vij}. Thus g

i
ji
∈

⋂
FT . If ui is false, then the

members of FT are: K12(ji), K5(j, i), {aiji , h
i
ji
, vik}, where k ∈ J i. Thus h

i
ji
∈

⋂
FT .

(iii) T = {vij, g
i
j , a

i
j}:

If ui is true, then the members of FT are: K12(j), K5(j, i), {vij, h
i
j, a
i
j}. Thus h

i
j ∈

⋂
FT . If ui is false, then the

members of FT are: K12(j), K5(j, i), T . Thus g ij ∈
⋂

FT .
(iv) T = {vij, h

i
j, a
i
j}:

If ui is true, then the members of FT are: K12(j), K5(j, i), T . Thus hij ∈
⋂

FT . If ui is false, then the members
of FT are: K12(j), K5(j, i), {vij, g

i
j , a

i
j}. Thus g

i
j ∈

⋂
FT .

(2) Consider the triangles of GI contained in a K12(j) or in a K5(j, i).
(a) Now we study the triangles contained in K12(j) = {aij, d

i
j, g

i
j , h

i
j | i ∈ Ij}, 1 ≤ j ≤ m. Among these triangles the ones

with at least one edge covered only by K12(j) are easy triangles. The remaining triangles are the triangles whose
three edges are edges of K12(j) covered by a complete set of F besides K12(j) itself.
Notice, by looking at the list of sets of the complete set edge cover F or by looking at Fig. 6, that the only edges

of K12(j) that may be covered by a complete set of F besides K12(j) are:
aija
i∗
j , a

i
jd
i
j, a
i
jg
i
j , a
i
jh
i
j, a
i∗
j g
i
j , a
i∗
j d
i
j, h
i
jd
i
j, h
i
jg
i
j , for i 6= n+ 1; and

aija
i∗
j , a

i∗
j g
i
j , h
i
jd
i
j, for i = n+ 1, which are depicted in Fig. 7.

Thus the triangles of K12(j) which are not easy triangles can be classified into only five types, as follows (see
Fig. 7):
(i) T = {aij, i ∈ Ij}.

Since cj is satisfied there exists i ∈ Ij such that either ui occurs as literal ui in cj and variable ui is true or ui
occurs as literal ui in cj and variable ui is false. In any case, by the construction of F , aija

i∗
j is covered only by

K12(j). Since K12(j) also contains the third vertex of T , it follows that T is an easy triangle.
(ii) T = {aij, a

i∗
j , d

i
j}, i ∈ Ij, i 6= n+ 1.

If either ui is true and occurs as literal ui in cj, or ui is false and occurs as literal ui in cj, the members of FT
are: K12(j), {c ij , a

i∗
j , d

i
j}, {a

i
j, c
i
j , d

i
j}. Thus d

i
j ∈

⋂
FT .

If either ui is true and occurs as literal ui in cj, or ui is false and occurs as literal ui in cj, the members of FT
are: K12(j), {c ij , a

i∗
j , d

i
j}, {a

i
j, c
i
j , a

i∗
j }. Thus a

i∗
j ∈

⋂
FT .

(iii) T = {aij, d
i
j, h

i
j}, i ∈ Ij, i 6= n+ 1.

If either ui is true and occurs as literal ui in cj, or ui is false and occurs as literal ui in cj, the members of FT
are: K12(j), {eij, h

i
j, d
i
j}, {a

i
j, c
i
j , d

i
j}. Thus d

i
j ∈

⋂
FT .

If ui is true and occurs as literal ui in cj, the members ofFT are: K12(j), {eij, h
i
j, d
i
j}, {a

i
j, h

i
j, v

i
j}. Thus h

i
j ∈

⋂
FT .

If ui is false and occurs as literal ui in cj, the members of FT are: K12(j), {eij, h
i
j, d
i
j}, {a

i
j, h

i
j, v

i
k}, k ∈ J i. Please
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Fig. 8. Triangles of K5(j, i)which may be not easy, they contain edges covered not only by the K5(j, i) itself but also by other members of F .

refer to the proposed complete set edge cover F , where {aij, h
i
j, v

i
k} is listed in the 7th item as {a

i
ji
, hiji , v

i
j}. Thus

hij ∈
⋂

FT .
(iv) T = {aij, a

i∗
j , g

i
j }, i ∈ Ij, i 6= n+ 1.

If ui is true and occurs as literal ui in cj, the members of FT are: K12(j), {ai
∗

j , f
i
j , g

i
j }, {a

i
j, g

i
j , v

i
k}, k ∈ J i. Thus

g ij ∈
⋂

FT .
If either ui is true and occurs as literal ui in cj, or ui is false and occurs as literal ui in cj, the members of FT

are: K12(j), {ai
∗

j , f
i
j , g

i
j }, {a

i
j, a
i∗
j , c

i
j }. Thus a

i∗
j ∈

⋂
FT .

If ui is false and occurs as literal ui in cj, themembers ofFT are: K12(j), {ai
∗

j , f
i
j , g

i
j }, {a

i
j, g

i
j , v

i
j}. Thus g

i
j ∈

⋂
FT .

(v) T = {aij, h
i
j, g

i
j }, i ∈ Ij, i 6= n+ 1.

If ui is true and occurs as literal ui in cj, the members of FT are: K12(j), K5(k, i), {aij, g
i
j , v

i
k}, k ∈ J i. Thus

g ij ∈
⋂

FT .
If ui is false and occurs as literal ui in cj, the members of FT are: K12(j), K5(k, i), {aij, h

i
j, v

i
k}, k ∈ J i. Thus

hij ∈
⋂

FT .
If ui is true and occurs as literal ui in cj, the members of FT are: K12(j), K5(j, i), {aij, h

i
j, v

i
j}. Thus h

i
j ∈

⋂
FT .

If ui is false and occurs as literal ui in cj, the members of FT are: K12(j), K5(j, i), {aij, g
i
j , v

i
j}. Thus g

i
j ∈

⋂
FT .

(b) Now we consider the triangles of GI which are contained in a K5(j, i) = {hiji , g
i
ji
, vij, h

i
j, g

i
j }, for each 1 ≤ i ≤ n and

j ∈ J i. Among these triangles the ones with at least one edge covered only by K5(j, i) are easy triangles. Notice the
edges g ijih

i
j and h

i
ji
g ij are covered only byK5(j, i), which implies that six triangles formed by one of these two edges and

an additional vertex of K5(j, i) are all easy. Every edge of the remaining four triangles may be covered by a complete
set besides K5(j, i). Notice that such edges are: g ijig

i
j , g

i
ji
vij , g

i
ji
hiji , h

i
jv
i
j , h
i
jg
i
j , h
i
jh
i
ji
, vijh

i
ji
, vijg

i
j , which are depicted in Fig. 8.

Thus we study four types of triangles contained in K5(j, i) (see Fig. 8): {g iji , g
i
j , v

i
j}, {h

i
ji
, hij, v

i
j}, {g

i
ji
, hiji , v

i
j},

{g ij , h
i
j, v

i
j}.

(i) T = {g iji , g
i
j , v

i
j}.

If ui is true, then the members of FT are: K5(j, i), {g iji , g
i
j , z

i
j}, {a

i
ji
, g iji , v

i
j}. Thus g

i
ji
∈

⋂
FT . If ui is false, then

the members of FT are: K5(j, i), {g iji , g
i
j , z

i
j}, {v

i
j, g

i
j , a

i
j}. Thus g

i
j ∈

⋂
FT .

(ii) T = {hiji , h
i
j, v

i
j}.

If ui is true, then the members of FT are: K5(j, i), {hiji , h
i
j, w

i
j}, {v

i
j, h

i
j, a
i
j}. Thus h

i
j ∈

⋂
FT . If ui is false, then

the members of FT are: K5(j, i), {hiji , h
i
j, w

i
j}, {a

i
ji
, vij, h

i
ji
}. Thus hiji ∈

⋂
FT .

(iii) T = {g iji , h
i
ji
, vij}.

If ui is true, then the members of FT are: K12(ji), {aiji , g
i
ji
, vij}, K5(k, i), where k ∈ J i. Thus g

i
ji
∈

⋂
FT . If ui is

false, then the members of FT are K12(ji), {aiji , h
i
ji
, vij}, K5(k, i), where k ∈ J i. Thus h

i
ji
∈

⋂
FT .

(iv) T = {g ij , h
i
j, v

i
j}.

If ui is true, then the members of FT are: K12(j), K5(j, i), {vij, h
i
j, a
i
j}. Thus h

i
j ∈

⋂
FT . If ui is false, then the

members of FT are: K12(j), K5(j, i), {vij, g
i
j , a

i
j}. Thus g

i
j ∈

⋂
FT . �

In Fig. 9, we give an example of an RS-cover defined by a satisfying truth assignment, according to the proof of Theorem 8.

5. Concluding remarks

We have proved that deciding whether a given graph is a clique graph is an NP-complete problem. From the same proof,
it follows that the problem remains NP-complete even for graphs with bounded clique size ω, and for bounded maximum
degree ∆ graphs. We say that the complete bipartite graph K1,t is a t-claw. A graph G is t-claw free if G does not contain a
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Fig. 9. RS-cover F for graph GI of Fig. 4. The RS-cover is defined by the satisfying truth assignment where u1 is true, and u2 and u3 are false. Bold
edges highlight forced triangles present in every RS-cover of GI . Filled connected regions depict triangles of F which depend on the truth assignment
for I = (U, C). Complete sets K5(j, i) and K12(j) belong to the RS-cover F but are not depicted in order to make simpler the drawing.

t-claw as an induced subgraph. The instance of clique graph used to prove NP-completeness has clique size ω = 12, has
maximum degree∆ = 14, and it is 7-claw free. However the problem is polynomial when restricted to graphs with clique
size ω < 4, and also when restricted to graphs with maximum degree ∆ < 5. Note that Theorem 3 of the fundamental
paper by Roberts and Spencer [36] says: a K4-free graph is a clique graph if and only if it is clique-Helly. A graph with∆ < 5
is a clique graph if and only if it is hereditary clique-Helly [17,31]. G is a 1-claw free graph if and only if each connected
component of G is K1, and G is a 2-claw free graph if and only if each connected component of G is a complete graph. This
suggests the search of the maximum values for the clique size 3 ≤ ω ≤ 11 and for the maximum degree 4 ≤ ∆ ≤ 13 for
which the problem is polynomial, and additionally the maximum value of 2 ≤ t ≤ 6 such that the problem is polynomial
for t-claw free graphs.
The only reference for the problem of recognizing clique graphs restricted to greater bounded maximum clique size

graphs is the class of Planar graphs [2]. In that paper, a non-bounded degree subclass of planar clique graphs, larger than
clique-Helly planar graphs, and admitting cliques of size 4, is characterized. In addition, a polynomial-time algorithm for
the recognition of that subclass of planar clique graphs is given.
Several subclasses of clique graphs have been studied for which polynomial-time recognition is known. In particular, for

several classes of graphs the corresponding class of clique graphs is known [39]. Note that it is known that the clique graph
of a Chordal graph is a Dually chordal graph, but the complexity of deciding whether a Chordal graph is a clique graph is not
known.
The NP-completeness of clique graph suggests the study of the problem restricted to classes of graphs not properly

contained in the class of clique graphs. We leave as open problems the recognition of Planar clique graphs, and of Chordal
clique graphs.
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