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a b s t r a c t

The Clay Mathematics Institute has selected seven Millennium Problems to motivate
research on important classic questions that have resisted solution over the years. Among
them is the central problem in theoretical computer science: the P versus NP problem,
which aims to classify the possible existence of efficient solutions to combinatorial and
optimization problems. The main goal is to determine whether there are questions whose
answer can be quickly checked, but which require an impossibly long time to solve by any
direct procedure. In this context, it is important to determine precisely what facet of a
problemmakes it NP-complete. We shall discuss classes of problems for which dichotomy
results do exist: every problem in the class is classified into polynomial or NP-complete.We
shall discuss our contribution through the classification of some long-standing problems
in important areas of graph theory: perfect graphs, intersection graphs, and structural
characterization of graph classes. More precisely, we have shown that Chvátal’s skew
partition is polynomial and that Roberts–Spencer’s clique graph is NP-complete.We have
also solved the dichotomy for Golumbic–Kaplan–Shamir’s sandwich problem. We shall
describe two examples where we can determine the full dichotomy: the edge-colouring
problem for graphs with no cycle with a unique chord and the three nonempty part
sandwich problem. Some open problems are discussed: the stubborn problem for list
partition, the chromatic index of chordal graphs, and the recognition of split clique graphs.

© 2010 Elsevier B.V. All rights reserved.

1. Overview

One of the seven Millennium Problems1 selected by the Clay Mathematics Institute is the P versus NP problem, a central
problem in theoretical computer science [29]:

Are there questions whose answer can be quickly checked, but which require an impossibly long time to solve by any direct
procedure?

My personal approach to the P versus NP problem is to classify challenging combinatorial problems into P or NP-complete.
This paper presents our contribution to graph theory: the classification of two long-standing problems, one into P, and
the other into NP-complete; the definition of two full dichotomies, of two classes of problems for which every problem is
classified into P or NP-complete.

✩ This paper is based on an invited talk given at LAGOS 2009, the Latin-American Algorithms, Graphs and Optimization Symposium. The work is partially
supported by Brazilian agencies CNPq and FAPERJ.
∗ Fax: +55 21 25628676.

E-mail addresses: celina@cos.ufrj.br, cmhfig@gmail.com.
1 It is remarkable that the first Clay Mathematics Institute Millennium prize has just been announced on 18 March 2010, awarded to Grigory Perelman

for resolution of the Poincaré conjecture; see http://www.claymath.org/ for details.
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Fig. 1. A, B, C,D is a skew partition, and A ∪ B is a skew cutset.

Section 2 discusses the classification of the skew partition problem as polynomial and of the clique graph problem
as NP-complete. Section 3 discusses the search for interesting problems and interesting graph classes, and the concept of
complexity-separating problems and classes. Section 4 discusses the definition of two full dichotomies: one for sandwich
problems and one for edge-colouring. Throughout the paper, several related problems are proposed, and in Section 5 we
conclude by collecting the main proposed complexity-separating questions.

2. Two long-standing problems in graph theory

Two long-standing problems in graph theory are the skew partition problem and the clique graph problem. The skew
partition problem was defined by Chvátal in 1985 as the recognition problem for a special decomposition arising in the
context of perfect graphs [18]. The clique graph problem was defined by Roberts and Spencer in 1971 as the recognition
problem for a class of graphs arising in the context of intersection graphs [56].

Both problems have been much studied, and are discussed in several graph theory books [5,10,43,51,53,64]. The skew
partition plays a central role in the solution of the Perfect Graph Theorem [15,17]. Reed [55] gives a good account of the
introduction of skew partition in connection with perfect graphs. The clique graph is widely studied in Graph Dynamics,
graph operators, the clique operator and its image [48,52,62].

It is additionally remarkable that both skewpartition and clique graphwere proved to be inNPwhen their classification
into P or NP-complete was proposed [18,56]. The long-standing challenge was the search for a polynomial-time algorithm
or an NP-completeness proof.

2.1. Skew partition

A skew partition in a graph G = (V , E) is a partition of the vertex set V into four nonempty parts A, B, C,D such that
there are all possible edges between parts A and B but no edges between parts C and D. (See Fig. 1.) By definition, in G, the
set A ∪ B is a cutset whose removal disconnects nonempty parts C and D, and, in the complement of G, the set C ∪ D is a
cutset whose removal disconnects nonempty parts A and B. This is why Chvátal [18] called A∪ B a skew cutset and A, B, C,D
a skew partition. The concept of a skew partition generalizes well-studied decompositions: star cutset, clique cutset, and
homogeneous set.

The first polynomial-time algorithm for testing whether a graph admits a skew partition was obtained in collaboration
with Sulamita Klein, Yoshiharu Kohayakawa, and Bruce Reed [26]. The polynomial-time algorithm actually solves the more
general list skew partition problem, where the input contains, for each vertex, a list containing some of the four parts. The
two decision problems are stated as follows.
skew partition
Instance: Graph G = (V , E).
Question: Does V admit a partition into four nonempty parts A, B, C,D such that each vertex in A is adjacent to each vertex
in B and each vertex in C is nonadjacent to each vertex in D?
list skew partition
Instance: Graph G = (V , E) and, for each v ∈ V , a list L(v) ⊆ {A, B, C,D}.
Question: Does V admit a partition into four parts A, B, C,D such that each vertex in A is adjacent to each vertex in B, each
vertex in C is nonadjacent to each vertex in D, and such that each vertex v is assigned to a part in L(v)?

Note that a skew partition requires its four parts to be nonempty whereas a list skew partition does not require its four
parts to be nonempty. Refer to Fig. 2, where instance G, L admits a list skew partition by setting the two bottom vertices into
part A and the two top vertices into part C , and parts B and D to be empty. On the other hand, the graph G itself admits no
skew partition.

The list skew partitionwas proposed by Feder, Hell, Klein, and Motwani in a seminal paper [23] in which list partitions
were introduced and the complexity dichotomy into quasi-polynomial and NP-complete was fully achieved for the class of
list partitions into four parts. A quasi-polynomial algorithm for list skew partition was presented, an indication that the
problem would be in P.

Many combinatorial problems can be described as finding a partition of the vertices of a given graph into subsets
satisfying certain properties internally (some parts may be required to be stable sets, others may conversely be required
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Fig. 2. Instance G, L admits a list skew partition.

Fig. 3. Matrices for the skew (a), 2K2 (b), and stubborn (c) partition problems.

to be complete sets), and externally (some pairs of parts may be required to be completely nonadjacent, others completely
adjacent). Following the notation introduced by Feder, Hell, Klein, and Motwani [23], the basic family of partition problems
considered is known asM-partition: partition the vertex set of a graph into k parts, A1, A2, . . . , Ak, with a fixed ‘‘pattern’’ of
requirements as towhichAi are stable or complete andwhich pairsAi, Aj are completely nonadjacent or completely adjacent.
These requirements may be conveniently encoded by a corresponding symmetric k × k matrix M: the diagonal entry Mii is
0 if Ai is required to be a stable set, 1 if Ai is required to be a clique, and ∗ otherwise (no restriction); the off-diagonal entry
Mij is 0, 1, or ∗, if Ai and Aj are required to be completely nonadjacent, completely adjacent, or to have arbitrary connections,
respectively.

Many combinatorial problems just ask for an M-partition. For instance, a k-colouring is an M-partition in which the
k diagonal entries of M are all 0. Other well-known problems ask for M-partitions in which all parts are restricted to
be nonempty (e.g., skew partition, star cutset, clique cutset, stable cutset, 1-join, 2-join). In yet other problems there are
additional constraints, such as those in the definition of a homogeneous set (requiring one of the parts to have at least
two and at most n − 1 vertices). The most convenient way to express these additional constraints turns out to be to allow
specifying for each vertex (as part of the input) a ‘‘list’’ of parts in which the vertex is allowed to be. Specifically, the list
M-partition problem asks for an M-partition of the input graph in which each vertex is placed in a part that is in its list.
Both the basic M-partition problem (‘‘Does the input graph admit an M-partition?’’) and the problem of existence of an
M-partition with all parts nonempty admit polynomial-time reductions to the list M-partition problem as do all of the
above problems with the ‘‘additional’’ constraints. List partitions generalize list-colourings, which have proved very fruitful
in the study of graph colourings.

Feder et al. [23] were the first to introduce and investigate the list version of these problems. It turned out to be a useful
generalization, since list problems recurse more conveniently. They classified the complexity (as polynomial-time solvable
or NP-complete) of listM-partition problems for all 3×3matricesM and some 4×4matricesM . For other 4×4matricesM
theywere able to produce sub-exponential algorithms—including one for the skew partition problem. This was the first sub-
exponential algorithm for the problem, and an indication that the problemwas not likely to be NP-complete. Subsequently,
and motivated by their approach, we were able to show that in fact one can use the mechanism of list partitions to give a
polynomial-time algorithm for the problem [26].

Our recursive algorithm for list skew partition recursively defines simpler list skew partition problems with smaller
simpler lists. The number of subproblems T (n) encountered during recursive skew partitioning satisfies nested recurrences
of the form T (n) ≤ 4 T (9n/10), which yield the running time O(n100), a challenge to the accepted notion that polynomial-
time solvable is the same as efficiently solvable in practice.

Every list M-partition problem with M of dimension 4 was classified by Feder et al. [23] as either solvable in quasi-
polynomial time or NP-complete. Quasi-polynomial time is complexity of O(nc logt n), where t and c are positive constants
and n is the number of vertices in the input graph. In particular, please refer to Fig. 3: list M-partition, where M is the
skew-partition matrix, was classified as quasi-polynomial-time solvable; list M-partition, where M is the 2K2-partition
matrix, was classified as NP-complete; Cameron et al. [11] showed that all the quasi-polynomial-time cases of the Feder
et al. [23] quasi-dichotomy result are actually polynomial-time solvable, with the sole exception of the list stubborn
partition problem, where in the stubborn problem the only external constraint is that every vertex of part C is nonadjacent
to every vertex of part D, the internal constraints are that part C and part B are required to be stable sets, and that part A is
required to be a clique. Kennedy andReed [39] announced recently amore efficientO(n6)-time algorithm for skewpartition,
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Table 1
N: NP-complete, P: polynomial, Q: quasi-polynomial, O: open.

Problem List Singleton list Nonempty part

skew n100 n100 n6

2K2 N N O
stubborn Q P P

Fig. 4. The Lagos graph.

in which they did not consider the more general list skew partition problem. Dantas et al. [22] studied H-partitions, where
thematrixM has dimension 4 and only ∗s on themain diagonal (i.e., no internal constraints are imposed) and all parts must
be nonempty. All such nonempty part partitions with external constraint problems have been shown to be polynomial-time
solvable [11,22,23,26], except for 2K2-partition [19].

The usual polynomial reduction from nonempty part partition to list partition considers the solution of O(n4) particular
singleton list problems such that four special vertices xA, xB, xC , xD have singleton lists A, B, C,D, respectively, and the
remaining n−4 vertices have lists ABCD. This reductionwas used in [26] to reduce skew partition, a nonempty part partition
problem, to list skew partition. The particular singleton list stubborn partition problem such that all but four special
vertices xA, xB, xC , xD have lists ABCD can be solved [22] by noticing that a vertex containing C in its list must also contain D,
which gives a refined set of nonsingleton lists: {ABCD, ABD, ACD, BCD, AB, AD, BD, CD}. Therefore, we may place all vertices
containing D in their nonsingleton lists into D and check whether the remaining graph (subgraph induced by the vertices
with listAB) is a split graph,which can be done by applying 2-SAT, yielding anO(n2)-time algorithm [3]. Therefore, singleton
list stubborn partition is in P, which implies that nonempty part stubborn partition is in P. On the other hand, and
perhaps surprisingly, we may reduce list 2K2-partition to singleton list 2K2-partition, thus establishing that singleton
list 2K2-partition is NP-complete2: from an instance G, L of list 2K2-partition construct an instance G′, L′ of singleton
list 2K2-partition by setting G′ to be graph G with additional four vertices xA, xB, xC , xD, such that N ′(xA) contains xB and
all vertices z satisfying B ∈ L(z), and similarly for vertices xB, xC , xD. As a consequence, a possible polynomial algorithm for
nonempty part 2K2-partition cannot use the usual strategy of considering the singleton list 2K2-partition problem, or
maybe the reduction indicates that indeed nonempty part 2K2-partition is NP-complete.

The above discussion, summarized in Table 1, suggests a complexity-separating question.

Is list partition harder than nonempty part partition?

2.2. Clique graph

A complete set of a graph H = (V , E) is a subset of V inducing a complete subgraph. A clique is a maximal complete set.
The clique family of H is denoted by C(H). The clique graph of H is the intersection graph of C(H). The clique operator assigns
to each graph H its clique graph, which is denoted by K(H). We say that a graph G is a clique graph if G belongs to the image
of the clique operator, i.e., if there exists a graph H such that G = K(H).

Note that the number of maximal complete sets may be exponential on the number of vertices. Consider, for instance,
the graph consisting of an induced matching. It contains 2n/2 maximal stable sets; thus its complement is a graph with 2n/2

maximal complete sets. The graph in the Lagos 2009 logo depicted in Fig. 4 is the complement of an induced matching of
size 3, and it has eight cliques.

2 This argument is due to Fabio Protti, private communication.
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Fig. 5. G is the clique graph of H .

Fig. 6. (1) clique-complete, but non-clique-Helly graph, non-clique graph; (2) clique-complete, non-clique-Helly graph, but clique graph; (3) clique-
complete, clique-Helly graph, clique graph.

Consider the time complexity of the problem of recognizing clique graphs. This is the time complexity of the following
decision problem.
clique graph
Instance: Graph G.
Question: Is there a graph H such that graph G is the intersection graph of the cliques of graph H?

The Helly property has been much studied with the goal of classifying the clique graph problem. A family of sets
F = (Fi)i∈I is pairwise intersecting if the intersection of any two members is not the empty set. The total intersection of
F is the set


F =


i∈I Fi. The family F has the Helly property if any pairwise intersecting subfamily has nonempty total

intersection. The complete set C covers the edge uv when u and v belong to set C . A complete set edge-cover of a graph G is a
family of complete sets of G covering all edges of G.

Roberts and Spencer [56] proved the following characterization: G is a clique graph if and only if G admits an edge-cover
by complete sets satisfying the Helly property. The characterization by such a special edge-cover by complete sets – known
as the RS-family – leads to a proof that clique graph is in NP. An RS-family of size at most |E(G)| gives the desired graph H
such that |V (H)| ≤ |V (G)|+|E(G)|. In Fig. 5,H was constructed after the RS-family of G consisting of the three triangles of G.
Note thatH has five cliques and eight vertices. Each of the three square vertices of graphH corresponds to a triangle ofG, and
the remaining five vertices of H are labelled so that they correspond to the five vertices of G. Each vertex of G corresponds
to a clique of H , and G is indeed the clique graph of H .

Notice that for any graph G the clique family C(G) is a complete set edge-cover of G, but, in general, this family does
not satisfy the Helly property. Graphs such that C(G) satisfies the Helly property are called clique-Helly graphs [34]. The
characterization by Roberts and Spencer [56] implies that every clique-Helly graph is a clique graph. The converse is not
true: there exist clique graphs which are not clique-Helly graphs. Fig. 6 shows three examples: (1) a non-clique graph (no
complete set edge-cover satisfies the Helly property [56]); (2) a clique graph that is not a clique-Helly graph (the clique
family does not satisfy the Helly property, but the complete set edge-cover {a, b, c}, {c, e, f }, {b, d, u}, {d, e, u}, {b, c, e, u}
does); and (3) a clique graph that is a clique-Helly graph (the clique family has the Helly property). These examples also
show that being a clique graph or being a clique-Helly graph is not a hereditary property.

Hamelink [34] defined clique-Helly graphs and proved that every clique-Helly graph is a clique graph. The concept
of the RS-family generalized the proof of Hamelink from an edge-cover by cliques to an edge-cover by complete sets.
Szwarcfiter [63] subsequently gave a polynomial-time algorithm to recognize clique-Helly graphs. Mello, Lucchesi, and
Szwarcfiter [44] considered clique-complete graphs (graphs whose clique family is mutually intersecting) and proved that
the corresponding recognition problem is coNP-complete. It is remarkable that to test whether the clique family of a given
graph is mutually intersecting is coNP-complete, whereas to test whether the clique family satisfies the Helly property is
polynomial. Fig. 6 shows three graphs such that all of them have four cliques and all of them are clique complete. The graph
of Fig. 6(1) is the smallest non-clique graph.

The NP-completeness of the clique graph problem was obtained in collaboration with Liliana Alcón, Luerbio Faria, and
Marisa Gutierrez [2]. The chosen NP-complete problem was a variation of 3sat [30,47].
3sat3
Instance: I = (U, C), where U = {ui : 1 ≤ i ≤ n} is a set of Boolean variables, and C = {cj : 1 ≤ j ≤ m} a set of clauses over
U such that each clause has two or three variables, and each variable occurs at most three times in C .
Question: Is there a truth assignment for U such that each clause in C has at least one true literal?

Let I = (U, C) be any instance of 3sat3. For the NP-completeness proof, it is convenient to assume with no loss of
generality that each variable occurs two or three times in C , and no variable occurs twice in the same clause. In addition,



2686 C.M.H. de Figueiredo / Discrete Applied Mathematics 160 (2012) 2681–2693

a

b

Fig. 7. For any variable ui and j ∈ J i , any RS-family of GI must contain either the filled triangles in (a) or the filled triangles in (b). In any case the bold
triangles must belong to the RS-family.

Table 2
N: NP-complete, P: polynomial, O: open.

Graph class vertexcol edgecol maxcut

Perfect P N N
Chordal P O N
Split P O N
Strongly chordal P O O
Comparability P N O
Bipartite P P P
Permutation P O O
Cographs P O P
Proper interval P O O
Split-proper interval P P P

if ui occurs twice in C , then we assume that it occurs once as literal ui and once as literal ui; and if ui occurs three
times in C , then we assume that it occurs once as literal ui and twice as literal ui. These assumptions allow the following
convenient notation: for each variable ui, let ji be the subindex of the unique clause where variable ui occurs as literal ui;
and J i = {j : literal ui occurs in cj}.

Fig. 7 exhibits the variable gadget corresponding to variable ui, a subgraph of the constructed graph GI . Note in the
variable gadget several bold triangles that are cliques, a property that forces a triangle to be present in every RS-family. The
key property of the variable gadget is that every RS-family of GI must contain either the filled triangles in (a), called the false
triangles, or the filled triangles in (b), called the true triangles. All bold triangles must belong to the RS-family.

Note that the smallest non-clique graph depicted in Fig. 6(1) is a planar split graph. The NP-completeness of clique graph
suggests the study of the problem restricted to classes of graphs not properly contained in the class of clique graphs.

Is clique graph polynomial for split graph instances?

The next section discusses the role of split graphs in the context of complexity-separating problems and complexity-
separating graph classes.

3. NP-completeness ongoing guide

In his famous NP-completeness columns [37], Johnson updates his seminal book, Computers and Intractability [30]. We
refer to the column on graph restrictions and their effect [38]. The goal is to identify interesting problems and interesting
graph classes establishing the concept of complexity-separating questions. A complexity-separating graph class C separates
two problems π and σ if π is NP-complete when restricted to C-graph inputs but σ is P when restricted to C-graph inputs.
A complexity-separating problem π separates two graph classes A ⊂ B if π is P when restricted to A-graph inputs but π is
NP-complete when restricted to B inputs. The column has sections devoted to perfect graphs and to intersection graphs.

Table 2 is a subtable of the table presented in [38] from where we have selected some rows (graph classes) and some
columns (problems), and we have kept the same notation.

It is well known that perfect graphs constitute a graph class for which vertex colouring is polynomial. On the other
hand, edge colouring is NP-complete for perfect graph inputs. Actually, the subclass of comparability graphs is complexity
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G1 G G2

Fig. 8. G is a sandwich split graph for pair G1,G2 .

separating [36] because it separates problems vertex colouring and edge colouring. In fact, edge colouring is itself a
complexity-separating problem that separates comparability graphs and bipartite graphs. It is remarkable that there are
very few graph classes for which the complexity of edge colouring is established, and it is surprising that, since 1985,
several graph classes for which Johnson stated edge colouring as ‘‘apparently open, but possibly easy to resolve’’ remain
stubbornly open. The class of cographs, a very structured graph class defined by forbidding the path on four vertices P4 as
an induced subgraph, admits only a partial solution [57]. The graph class of split-proper interval graphs deserves attention.
Ortiz, Maculan, and Szwarcfiter [46] characterized graphs that are required to be split and proper interval. By using this
characterization, polynomial algorithms have been found for edge colouring [46] and for maxcut [6]. Note that although
often stated otherwise [59], maxcut is open when restricted to proper interval graphs.

I should point out3 that there are classes of graphs for which vertex colouring is NP-complete and edge colouring is
polynomial, for instance graphs with a universal vertex [49]. Perhaps even more interesting is the existence of classes of
graphs for which edge colouring is NP-complete but total colouring (where we proper colour all elements of a graph,
vertices and edges) is polynomial [42].

3.1. Split versus chordal

The fact that the graph classes split and chordal agree with respect to vertex colouring, edge colouring, andmaximum
cut suggests a pattern that has been the subject of much research.

Split graphs constitute a very structured subclass of chordal graphs, being graphs such that both the graph and its
complement are required to be chordal. This strong requirement forces the vertex set of a split graph to admit a partition
into a stable set and a clique.

In 1985, Johnson [38] stated ‘‘I know of no problem that separates the two classes in complexity’’. Twenty years later,
Spinrad, in his book [59], gives a survey of results on graph classes, an update of the complexity status regarding complexity-
separating problems.maximum clique, vertex colouring are in P, actually solvable in linear time, for both chordal and split
graphs, whereas dominating set, maxcut, hamilton cycle are NP-complete for both chordal and split graphs. There are a
few complexity-separating problems (for instance triangle packing and pathwidth) for which the problem is NP-complete
for chordal but polynomial for split graphs. Spinrad [59] states: ‘‘split graphs often are at the core of algorithms and hardness
results for chordal graphs’’.

Complexity-separating problems for chordal and split graphs are rare. The existing literature suggests two possible
additional complexity-separating problems: edge colouring and clique graph. The partial results for edge colouringwhen
restricted to chordal graphs, interval graphs, and split graphs indicate the problem is challenging even when restricted to
very structured graph classes [24,46]. The recent NP-completeness proof of clique graph suggests considering the graph
class of planar graphs and the graph class of chordal graphs, in particular the class of split graphs [1,2].

3.2. Graph sandwich problem

A graph G1 = (V , E1) is a spanning subgraph of G2 = (V , E2) if E1 ⊆ E2; a graph G = (V , E) is a sandwich graph for the
pair G1,G2 if E1 ⊆ E ⊆ E2. For notational simplicity in what follows, we let E3 be the set of all edges in the complete graph
with vertex set V which are not in E2. Thus every sandwich graph for the pair G1,G2 satisfies E1 ⊆ E and E ∩ E3 = ∅. We
call E1 the forced edge set, E2 \ E1 the optional edge set, and E3 the forbidden edge set. Fig. 8 shows an instance and a solution
for graph sandwich problem for split graphs.
graph sandwich problem for property Π

Instance: Two graphs G1 = (V , E1) and G2 = (V , E2) with E1 ⊆ E2.
Question: Is there a graph G = (V , E) with E1 ⊆ E ⊆ E2 that satisfies property Π?

We shall use both forms (V , E1, E2) and (V , E1, E3) to refer to an instance of a graph sandwich problem. The recognition
problem for a class of graphsC is equivalent to the graph sandwich problem inwhich the forced edge set E1 = E, the optional
edge set E2 \ E1 = ∅,G = (V , E) is the graph we want to recognize, and property Π is ‘‘to belong to class C’’.

In their seminal paper, Golumbic et al. [31] introduced sandwich problems and studied this class of problemswith respect
to several subclasses of perfect graphs proving that the graph sandwich problem for split graphs remains polynomial.

3 I thank Flavia Bonomo for this question after my talk!
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Fig. 9. — NP-complete; — polynomial; − − − open.

On the other hand, they proved that the graph sandwich problem for permutation graphs turns out to be NP-complete.
Since a sandwich problem generalizes a recognition problem, the interest is to search for problems forwhich the recognition
is polynomial but the sandwich version is NP-complete. For instance, the 1-join composition recognition problem is
polynomial [20] whereas the 1-join composition sandwich problem turns out to be NP-complete [27]. Note that the
recognition problem for clique cutset, star cutset and skew cutset are all in P, whereas the sandwich problempresents a non-
monotonicity: for clique cutset it is NP-complete, for star cutset it is polynomial, and for skew cutset is NP-complete [65,68].

Polynomial graph sandwich problems are rare. In the seminal paper [31], where this generalization of recognition
problems was proposed, several classes of perfect graphs were considered with NP-completeness proofs for the
corresponding sandwich problems with only two exceptions: split graphs and cographs, for which the sandwich problems
were proved to be polynomial. Further work found two additional examples of polynomial graph sandwich problems also
arising in the context of perfect graphs: the homogeneous set sandwich problem [12] and the star cutset sandwich
problem [65].

Fig. 9 updates the diagram by Golumbic et al. [31] that considered with respect to the sandwich problem the original
diagram by Johnson [38]. At the time of Johnson [38], the recognition problem for all those graph classes was known to be
polynomial, with the exception of the recognition problem for perfect graphs, a famous open problem at that time, classified
recently to be polynomial [15]. Although the recognition problem for all those graph classes is polynomial, for several of them
the relaxation given by the sandwich problem turns out to be NP-complete. Recently, two open problems proposed in [31]
were settled as NP-complete: the graph sandwich problem for strongly chordal graphs [28] and the graph sandwich
problem for chordal bipartite graphs [61]. A challenging open problem is the graph sandwich problem for perfect
graphs. It is the only remaining open problem among those proposed by Golumbic et al. [31]. It is remarkable that the
recognition of Berge trigraphs defined by Chudnovsky [16] corresponds to the graph sandwich problem for imperfect
graphs. It is also interesting that the graph sandwich problem for chordal graphs is NP-complete, whereas the graph
sandwich problem for split graphs is polynomial [31].

4. Two full dichotomies

We shall discuss two full dichotomies, by presenting two classes of problems that we have been able to define such that
for each class every problem is classified into P or NP-complete.

The first class of problems considers sandwich problems [31] and the full dichotomy for the three nonempty part
sandwich problem. For every graph partition into three nonempty parts, we were able to classify the corresponding
sandwich problem [66]. The second class of problems considers edge colouring [36]. We were able to identify the graph
class of graphs with no cycle with a unique chord [69], a class of graphs such that the complexity of edge colouring is
obtained for every possible value of the maximum vertex degree [41].

4.1. The three nonempty part problem

Tomotivate the study of the sandwich problem for three nonempty part partition, we need tomake some considerations
about two-part partitions and about some related classes of problems for which the full dichotomy had been established
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Fig. 10. (a) Instance (V , E1, E3) obtained from the satisfiable instance of 3sat: I = (U, C) = ({x1, x2, x3}, {(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3)})
and (b) respective partition for the (2, 1) graph G defined from the satisfying truth assignment x1 = F , x2 = T , x3 = F .

previously: the three nonempty part recognition problem and the graph recognition problem for (k, l) graphs—the
so-called generalized split graphs.

The graph sandwich problem for split graphswas proved polynomial in the seminal paper of sandwich problems [31]
by a reduction to 2-SAT. All remaining two-part sandwich problems can be proved to be in P by a similar reduction, where
each vertex corresponds to a variable, and the parts A, B are associated with the values true and false. The forced edge set
E1 and the forbidden edge set E3 correspond to a set of 2-SAT clauses, in such a way that different two-part problems have
different forcing rules [66].

A graph G is (k, l) if its vertex set can be partitioned into at most k stable sets and l cliques. The particular case k = l = 1
is the class of split graphs and a (k, l)-graph is called a generalized split graph. The full dichotomy for the graph recognition
problem for (k, l) graphs had been completely determined as follows [7]: if k = 3 and l = 0 then the corresponding
problem is 3-colouring, which implies that the recognition of (k, l) graphs is NP-complete, whenever k ≥ 3 or l ≥ 3. For the
remaining values of k and l, the problem is polynomial: (1, 1) graphs are split graphs; (2, 0) graphs are the bipartite graphs;
and the polynomial-time recognition of (2, 1) graphs and of (2, 2) graphs had been established in [7,8,23]. By proving that
graph sandwich problem for (k, l) graphs is NP-complete for the cases (2, 1) and (2, 2), the full dichotomy for graph
sandwich problem for (k, l) graphswas completely determined [21]. The problem is NP-complete if k+ l > 2; the problem
is polynomial otherwise. Consider in Fig. 10 the constructed instance for the graph sandwich problem for (2, 1) graphs.

The full dichotomy for the three nonempty part recognition problem had been completely determined [23]: apart from
3-colouring, the only such recognition problem classified as NP-complete is stable cutset [9,40].

Regarding sandwich problems, two interesting cases of partitions into three nonempty parts had been classified: the
homogeneous set sandwich problem as polynomial [12] and the clique cutset sandwich problem as NP-complete [65].

The next natural stepwas to establish the full dichotomy for the three nonempty part sandwich problem. If all entries of
amatrixM are 0 or ∗, thenM defines a hereditary property, and the sandwich problem is a recognition problem, for which it
is sufficient to testwhetherG1 admits a three nonempty partM-partition. If all entries of amatrixM are 1 or∗, thenM defines
an ancestral property, and the sandwich problem is a recognition problem, forwhich it is sufficient to testwhetherG2 admits
a three nonempty part M-partition. Since all three nonempty part M-partition recognition problems were classified, we
focused on interesting matrices containing at least one entry 0 and one entry 1, which gave a challenging task of classification
of 61 interesting problems, among them 19 classified as NP-complete and 42 as polynomial [66]. For instance, the addition
of distinct internal constraints to the homogeneous set problem provided three nonempty part sandwich problems that are
polynomial or NP-complete.

Subsequently, the external constraint four nonempty part sandwich problem was considered [67,68] with the goal
of further studying the challenging partition problems depicted in Fig. 11. Note that skew partition, 1-join composition,
and 2K2-partition are external constraint four nonempty part partitions. For both skew partition and 1-join composition,
the same dichotomy holds: recognition is in P whereas the sandwich problem is NP-complete [27,68]. Note that
2K2-partition defines an ancestral property, and so the recognition and the sandwich problem must have the same
complexity. Additionally, we were able to define the class of 2K2-hard problems, containing several external constraint
four nonempty part sandwich problems. The classification obtained for the external constraint four nonempty part
sandwichwas into NP-complete, polynomial, or 2K2-hard [67].
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Fig. 11. (a) Skew partition, (b) 1-join composition, and (c) 2K2-partition.

Table 3
Complexity dichotomy for edge-colouring graphs with no cycle with unique chord.

Graph class ∆ = 3 ∆ ≥ 4 Regular

Graphs of C NP-complete NP-complete NP-complete
4-hole-free graphs of C NP-complete Polynomial Polynomial
6-hole-free graphs of C NP-complete NP-complete NP-complete
{4-hole, 6-hole}-free graphs of C Polynomial Polynomial Polynomial

Table 4
Complexity dichotomy for edge-colouring multipartite graphs.

Graph class k ≤ 2 k ≥ 3

k-partite graphs Polynomial NP-complete

4.2. Graphs with no cycle with a unique chord

Trotignon and Vušković [69] studied the class C of graphs that do not contain a cycle with a unique chord. The main
motivation for investigating this class was to find a structure theorem for it, a kind of result that is not very frequent in
the literature. Basically, a structure result states that every graph in C can be built starting from a restricted set of basic
graphs and applying a series of known ‘‘gluing’’ operations. Another interesting property of this class is that it belongs to the
family of the χ-bounded graphs, introduced by Gyárfás [33] as a natural extension of perfect graphs. A family of graphs G
is χ-bounded with χ-binding function f if, for every induced subgraph G′ of G ∈ G, we have χ(G′) ≤ f (ω(G′)), where χ(G′)
denotes the chromatic number of G′ andω(G′) denotes the size of amaximum clique in G′. The research in this area ismainly
devoted to understanding for what choices of forbidden induced subgraphs the resulting family of graphs is χ-bounded;
see [54] for a survey. Note that perfect graphs are a χ-bounded family of graphs with χ-binding function f (x) = x, and
perfect graphs are characterized by excluding odd holes and their complements, where a hole is a chordless cycle of length
at least 4. Also, by Vizing’s Theorem, the class of line graphs of simple graphs is a χ-bounded family with χ-binding function
f (x) = x + 1 (this special upper bound is known as the Vizing bound) and line graphs are characterized by nine forbidden
induced subgraphs [70]. The class C is also χ-bounded with the Vizing bound [69]. Also in [69] the following results are
obtained for graphs in C: an O(nm) algorithm for vertex colouring, an O(n+m) algorithm formaximum clique, an O(nm)
recognition algorithm, and the NP-completeness of maximum stable set.

We have considered the complexity of the edge-colouring problem in C [41]. The edge-colouring problem or the
chromatic index problem is the problem of determining the least number χ ′(G) of colours needed in an edge-colouring of G.
We have also investigated the subclasses obtained from C by forbidding 4-holes and/or 6-holes. Tables 3 and 4 summarize
the main results, showing that, even for graph classes with strong structure, the edge-colouring problem may be difficult.
We denote by C the class of graphs that do not contain a cycle with a unique chord and by ∆ the maximum degree.

The class initially investigated in [41]was the classC of graphswith no cyclewith a unique chord. For the purposes of that
work, a graph G is basic if G is a complete graph, a hole with at least five vertices, a strongly 2-bipartite graph, or an induced
subgraph of the Petersen graph or of the Heawood graph; and G has no 1-cutset, proper 2-cutset or proper 1-join. We have
proved that edge-colouring is NP-complete for graphs in C. We have considered, then, a subclass C ′

⊂ C whose graphs
are the graphs in C that do not have a 4-hole. By forbidding 4-holes we avoid decompositions by proper 1-joins, which are
difficult to deal with in edge-colouring [4,57,58]. That is, each non-basic graph in C ′ can be decomposed by 1-cutsets and
proper 2-cutsets. For this class C ′ we have established a dichotomy: edge-colouring is NP-complete for graphs in C ′ with
maximum degree 3 and polynomial for graphs in C ′ with maximum degree not 3. We have also determined a necessary
condition for a graph G ∈ C ′ of maximum degree 3 to be Class 2, satisfying chromatic index χ ′(G) = ∆(G) + 1 = 4.
This condition is having graph P∗ – a subgraph of the Petersen graph – as a basic block in the decomposition tree. As a
consequence, if both 4-holes and 6-holes are forbidden, the chromatic index of graphs with no cycle with unique chord
can be determined in polynomial time. The results achieved in [41] have connections with other areas of research in edge-
colouring, as we describe in the following four observations.

The first observation refers to the complexity dichotomy result found for class C ′. This dichotomy presents great interest
since, to the best of our knowledge, this is the first class for which edge-colouring is NP-complete for graphs with a given
fixed maximum degree ∆ but is polynomial for graphs with maximum degree ∆′ > ∆. Moreover, Class C ′ is the first
interesting graph class for which edge-colouring is NP-complete in general, but is polynomial when restricted to regular
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Fig. 12. Combining edge-colourings with respect to 2-cutset.

graphs. It is interesting to observe that C ′ is a graph class with few regular graphs—only the Petersen graph, the Heawood
graph, the complete graphs and the holes.

The second observation refers to a conjecture of Chetwynd and Hilton. An important tool to identify Class 2 graphs is the
concept of overfullness [25]. A graph G = (V , E) is overfull if |E| > ∆(G)⌊|V |/2⌋;G is subgraph overfull if it has a subgraph of
same maximum degree that is overfull. Subgraph-overfull graphs are Class 2 [25], and it can be verified in polynomial time
whether a graph is subgraph overfull [45]. For some graph classes, being subgraph overfull is equivalent to being Class 2.
Examples of such classes are graphs with a universal vertex [49], complete multipartite graphs [35], and split graphs with
odd maximum degree [13]. A conjecture of Chetwynd and Hilton [14] states that a graph G = (V , E) with ∆(G) > |V |/3 is
Class 2 if and only if is subgraph overfull. In fact, for most graph classes for which the edge-colouring problem can be solved
in polynomial time, the equivalence ‘‘Class 2 = Subgraph Overfull’’ holds. It is remarkable that the majority of these classes
are composed of graphswhosemaximumdegree is large, always larger than one third of the number of vertices. So, for these
graph classes, the equivalence ‘‘Class 2= Subgraph Overfull’’ – and the consequent polynomial-time algorithm for the edge-
colouring problem – would be a direct consequence of the Subgraph Overfull Conjecture, in the case of its validity. In this
sense, the class C ′ investigated in [41,69] presents great interest: for graphs in C ′ there is no bound on the relation ‘‘number
of vertices over maximum degree’’; yet, if the maximum degree is not 3, the equivalence ‘‘Class 2 = Subgraph Overfull’’
holds. So, the class of the graphs in C ′ with maximum degree not 3 is a class of graphs that do not fit the assumptions of
Subgraph Overfull Conjecture, but for which edge-colouring is still solvable in polynomial time through the equivalence
‘‘Class 2 = Subgraph Overfull’’.

The third observation is related to the study of snarks [60]. A snark is a cubic bridgeless graph with chromatic index 4. In
order to avoid trivial cases, snarks are commonly restricted to have girth 5 or more and not to contain three edges whose
deletion results in a disconnected graph, each of whose components is non-trivial. The study of snarks is closely related
to the Four Colour Theorem. By the result of [41], the only non-trivial snark which has no cycle with unique chord is the
Petersen graph.

The fourth observation refers to the problem of determining the chromatic index of a k-partite graph, that is, a graph
whose vertices can be partitioned into k stable sets. The problem was known to be polynomial for k = 2 [37,38] and for
complete multipartite graphs [35]. The NP-completeness proof for the chromatic index of graphs in C implies that edge-
colouring is NP-complete for k-partite r-regular graphs, for each k ≥ 3, r ≥ 3 [41].

Fig. 12 shows a decomposition with respect to a proper 2-cutset {a, b}. Note that G is Class 1, a graph for which∆ colours
suffice to colour its edges, whereas GX = P∗ is Class 2, any edge-colouring requiring ∆ + 1 colours.

5. Proposed complexity-separating questions

Throughout this paper, we have proposed several complexity-separating questions. We conclude by focusing on three
main such questions.
Is list partition harder than nonempty part partition?
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In Section 2.1, we have summarized in Table 1 the complexity status according to classification into NP-complete,
Polynomial, Quasi-polynomial, and Open of partition problems into four parts, considering the list and nonempty part
versions. There is a large gap between the known polynomial algorithms for list skew partition and skew partition. The
list stubborn problem is the only list M-partition problem of dimension 4 of the Quasi dichotomy of Feder et al. [23]
classified as Quasi-polynomial that resists classification as NP-complete or polynomial. All partition problems of dimension
4 into nonempty parts and with no internal constrains are polynomial-time solvable with the exception of 2K2-partition.
The list 2K2-partition has been classified by Feder et al. [23] as NP-complete. It is remarkable that both classifications of
2K2-partition into polynomial or NP-complete are complexity separating. If 2K2-partition is classified as NP-complete, it
will be the only partition problem of dimension 4 into nonempty parts and with no internal constrains classified as NP-
complete. On the other hand, if 2K2-partition is classified as polynomial, it will separate the list from the nonempty part
versions for partition problems.
Is clique graph polynomial for split graph instances?

In Section 2.2, we discussed the NP-completeness proof that settled the complexity of clique graph after 40 years. Once
this challenging problem is classified as NP-complete, the new challenge now is to further understand which feature of the
problem makes it NP-complete. Being a graph theory problem, the natural direction of research is to look for a graph class
for which the problem remains NP-complete or turns out to be polynomial. The instance of clique graph used to prove NP-
completeness has clique size ω = 12 and maximum degree ∆ = 14, so the problem remains NP-complete even for graphs
with bounded clique size ω, and for graphs with bounded maximum degree ∆. However, the problem is polynomial when
restricted to graphs with clique size ω < 4 and also when restricted to graphs with maximum degree ∆ < 5. Theorem 3
of the fundamental paper by Roberts and Spencer [56] says: a K4-free graph is a clique graph if and only if it is clique-Helly.
A graph with ∆ < 5 is a clique graph if and only if it is hereditary clique-Helly [32,50]. This suggests the search of the
maximum values for the clique size 3 ≤ ω ≤ 11 and for the maximum degree 4 ≤ ∆ ≤ 13 for which the problem is
polynomial.

The only reference for the problem of recognizing clique graphs restricted to greater bounded maximum clique size
graphs is the class of planar graphs [1]. In that paper, a non-bounded degree subclass of planar clique graphs, larger than
clique-Helly planar graphs, and admitting cliques of size 4, is characterized. In addition, a polynomial-time algorithm for
the recognition of that subclass of planar clique graphs is given.

Several subclasses of clique graphs have been studied for which polynomial-time recognition is known. In particular, for
several classes of graphs the corresponding class of clique graphs is known [64]. Note that it is known that the clique graph
of a chordal graph is a dually chordal graph, but the complexity of deciding whether a chordal graph is a clique graph is not
known.

Note that the smallest non-clique graph depicted in Fig. 6(1) is a planar split graph. The NP-completeness of clique graph
suggests the study of the problem restricted to classes of graphs not properly contained in the class of clique graphs. The
recognition of planar clique graphs and of chordal clique graphs are suggested open problems. The discussion of Section 3.1
suggests clique graph as a possible complexity-separating problem for the classes of chordal and split graphs.
Is Class 2 = subgraph overfull for chordal graphs?

In Section 4.2, we discussed the concept of overfullness as an important tool to identify Class 2 graphs. In fact, for most
graph classes for which the edge-colouring problem can be solved in polynomial time, the equivalence ‘‘Class 2 = Subgraph
Overfull’’ holds.Wehave conjectured that every Class 2 chordal graph is subgraphoverfull [25]. The validity of this conjecture
implies that the edge-colouring of chordal graphs can be solved in polynomial time. Partial evidence for the subclasses of
split graphs [13] and of interval graphs [24] have been obtained.

It is remarkable that, for most graph classes for which edge colouring can be solved in polynomial time, there is a bound
on the ‘‘number of vertices over maximum degree’’: the maximum degree is larger than one third of the number of vertices
in order to fit a conjecture of Chetwynd and Hilton [14]. In Section 4.2, we presented the class of {4-hole, cycle with a
unique chord}-free graphs with maximum degree not 3 as a class of graphs with no such bound and yet Class 2 = Subgraph
Overfull for those graphs. The class of chordal graphs is another graph class with no such bound for which we conjecture
Class 2 = Subgraph Overfull.
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