
A Faster 1.375-Approximation Algorithm

for Sorting by Transpositions*

LUÍS FELIPE I. CUNHA,1 LUIS ANTONIO B. KOWADA,2

RODRIGO DE A. HAUSEN,3 CELINA M.H. DE FIGUEIREDO1

ABSTRACT

Sorting by Transpositions is an NP-hard problem for which several polynomial-time ap-
proximation algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-
approximation O(n

3
2

ffiffiffiffiffiffiffiffiffiffiffi
log n
p

) algorithm, whose running time was improved to O(nlogn) by Feng
and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman
(2006) developed a 1.375-approximation O(n2) algorithm, and Firoz et al. (2011) claimed an
improvement to the running time, from O(n2) to O(nlogn), by using the permutation tree. We
provide counter-examples to the correctness of Firoz et al.’s strategy, showing that it is not
possible to reach a component by sufficient extensions using the method proposed by them. In
addition, we propose a 1.375-approximation algorithm, modifying Elias and Hartman’s ap-
proach with the use of permutation trees and achieving O(nlogn) time.

Key words: approximation algorithms, genome rearrangement, sorting by transpositions.

1 INTRODUCTION

In the study of genome rearrangements, chromosomes are commonly modeled by permutations

(Fertin et al., 2009). In the Sorting by Transpositions (SBT) problem, the aim is to find the minimum

number of contiguous block interchanges that transforms a given permutation of n elements into the identity

permutation; this minimum is called the transposition distance (Bafna and Pevzner, 1998). SBT is an NP-

hard problem (Bulteau et al., 2012), and tight bounds on the transposition distance are known (Bafna and

Pevzner, 1998; Labarre, 2006), but exact values for the transposition distance are known only for a few

classes of permutations (Cunha et al., 2013a; Labarre, 2006). Several approaches to handling the SBT

problem have been considered. Our focus is to explore approximation algorithms for estimating the trans-

position distance between permutations, providing better practical results or lowering time complexities.

Bafna and Pevzner (1998) designed a 1.5-approximation O(n2) algorithm, where n is the length of the

input permutation, based on the cycle structure of the breakpoint graph. Hartman and Shamir (2006) later

Extended abstracts appeared in Cunha et al. (2013b, 2014b).
1COPPE – Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de

Janeiro, Brazil.
2Instituto de Computação, Universidade Federal Fluminense, Rio de Janeiro, Brazil.
3Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 22, Number 11, 2015

Mary Ann Liebert, Inc.

Pp. 1044–1056

DOI: 10.1089/cmb.2014.0298

1044

proposed an easier 1.5-approximation algorithm that exploits a balanced tree data structure to decrease the

running time to O(n
3
2

ffiffiffiffiffiffiffiffiffiffi
log n
p

). Feng and Zhu (2007) developed another balanced tree data structure—the

permutation tree—and further decreased the complexity of Hartman and Shamir’s 1.5-approximation

algorithm to O(nlogn). Elias and Hartman (2006) obtained, by a thorough computational case analysis of

cycles of the breakpoint graph, a 1.375-approximation algorithm that runs in O(n2) time. Firoz et al. (2011)

claimed that this 1.375-approximation algorithm could be easily adapted to run in O(nlogn) time if a

permutation tree was used.

In the present article, we show that Firoz et al.’s usage of the so-called ‘‘Query’’ procedure to extend a

full configuration into a component fails in some situations. We provide an infinite family of permutations

for which Firoz et al.’s approach does not find an 11=8-sequence, proving that the immediate use of a

permutation tree is not enough to lower the running time of the 1.375-approximation algorithm to O(nlogn).

We rectify the use of the permutation tree, proposing a new algorithm that generalizes the bad small

component strategy of Elias and Hartman toward bad small full configurations, achieving both the 1.375

approximation ratio and the O(nlogn) time complexity. We thus achieve the best approximation ratio

and time complexity for the SBT problem, known so far. The correctness of our algorithm is asserted

via a branch-and-bound analysis that finds an 11/8-sequence for every combination of bad small full

configurations.

The present article is organized as follows: section 2 contains basic definitions, some background on

Elias and Hartman’s algorithm and on the permutation tree data structure; section 3 discusses Firoz et al.’s

approach on the use of a permutation tree to speed up the 1.375-approximation algorithm and provides

counterexamples that establish the incorrectness of their approach; section 4 presents a strategy to deter-

mine the existence and to find a sequence of two transpositions, in which both are 2-moves, in linear time;

section 5 describes our proposed 1.375-approximation O(nlogn) algorithm for SBT, proving its correctness

and its worst-case running time; and section 6 contains our final remarks.

2 BACKGROUND

For our purposes, a gene is represented by a unique integer and a chromosome with n genes is a permutation

p = [p0p1p2 . pnpn+1], where p0 = 0, pn+1 = n + 1 and each pi, where 1 £ i £ n, is a unique integer in the range 1,

. , n. The transposition t(i, j, k) applied to p, where 1 £ i < j < k £ n + 1, is the permutation p$t (i, j, k) in which

the two contiguous blocks pi pi+1 . pj-1 and pj pj+1 . pk-1 are interchanged. A sequence of q transpositions

t1, t2, . , tq sorts a permutation p if p � t1 � t2 . . . : : tq = i, where i is the identity permutation [0 1 2 . n n + 1].

The transposition distance of p, denoted d(p), is the length of a minimum sequence of transpositions that sorts

p.

The breakpoint graph Nontrivial bounds on the transposition distance were obtained by using the

breakpoint graph (Bafna and Pevzner, 1998). Given a permutation p, the breakpoint graph of p is

G(p) = (V,R W D). The set of vertices is V = {0, -1, + 1, -2, +2, . , -n, +n, -(n + 1)}, and the set of edges is

partitioned into two subsets, the directed reality edges R = f i
!= (+ pi‚ - pi + 1)ji = 0‚ . . . ‚ ng and the undi-

rected desire edges D = {(+i, -(i + 1)) j i = 0, . ,n}). Figure 1 shows Gð½0 10 9 8 7 1 6 11 5 4 3 2 12�Þ, where

the arrows represent the directed edges in R and the arcs represent the undirected edges in D.

FIG. 1. Gð½0 10 9 8 7 1 6 11 5 4 3 2 12�Þ. The set of cycles is {C1 = C024D, C2 = C136D, C3 = C5810D, C4 = C7911D}. The

cycles C2 and C3 intersect, but are not interleaving; the cycles C1 and C2 are interleaving, and so are C3 and C4. The cycle

C1 is the leftmost cycle.

A FASTER 1.375-APPROXIMATION ALGORITHM 1045

Since every vertex in G(p) has degree 2, the graph can be partitioned into disjoint cycles. We shall use

the terms a cycle in p and a cycle in G(p) interchangeably to denote the latter. A cycle in p has length ‘ (or

it is an ‘-cycle), if it has exactly ‘ reality edges. A permutation p is a simple permutation if every cycle in p
has length at most 3, as the example in Figure 1.

After applying a transposition t, the number of cycles of odd length in G(p), denoted codd(p), changes

in such a way that codd(p $ t) = codd(p) + x, where x ˛ {-2, 0, 2}; the transposition t is thus classified as an

x-move for p. Since codd(i) = n + 1, we have the lower bound d(p) � (n + 1) - codd (p)
2

h i
, where the equality holds

if, and only if, p can be sorted solely with 2-moves.

Hannenhalli and Pevzner (1999) proved that every permutation p can be transformed, in O(n) time, into a

simple one p̂, by inserting new elements in appropriate positions of p, preserving the lower bound for the

distance, (n + 1) - codd (p)
2

h i
= (m + 1) - codd(p̂)

2

h i
, where m is such that p̂ = ½0p̂1:::p̂mm + 1�. Additionally, in a se-

quence that sorts p̂, every transposition can be transformed, in O(logn) time (Feng and Zhu, 2007), into a

sequence with the same number of transpositions that sorts p, which implies that d(p)�d(p̂). The approach

of finding a sorting sequence for p via a simple permutation p̂ is commonly used in approximation

algorithms for SBT (Elias and Hartman, 2006; Hartman and Shamir, 2006).

A transposition t (i, j, k) affects a cycle C if it contains one of the following reality edges: i + 1
��!

, or j + 1
��!

, or

k + 1
��!

. A cycle is oriented if there is a 2-move that affects it, otherwise it is unoriented (these names come

from the order of such triplet of reality edges in the breakpoint graph). If p contains an oriented cycle then p
is oriented, otherwise p is unoriented.

A sequence of q transpositions of which exactly r transpositions are 2-moves is a (q,r)-sequence. A q/r-

sequence is an (x,y)-sequence such that x £ q and x/y £ q/r.

Interactions between cycles A cycle in p can be uniquely identified by its reality edges, in the order

that they appear, starting from the leftmost edge. The notation C = Cx1 x2 . x‘D, where x1
!, x2
!‚ . . . ‚ x‘

! are

reality edges, and x1 = min {x1, x2, . ,x‘}, characterizes an ‘-cycle. The leftmost cycle is the cycle that

contains the edge 0
!

.

Let x!‚ y!‚ z!, where x < y < z, be reality edges in a cycle C, and a!‚ b
!

‚ c!, where a < b < c be reality

edges in a different cycle C0. The pair of reality edges x!‚ y!, intersects the pair a!, b
!

‚ if these four

edges occur in an alternating order in the breakpoint graph, that is, either x < a < y < b or a < x < b < y,

and we say C and C0 intersect. Similarly, a triplet of reality edges x!‚ y!‚ z! interleaves a triplet

a!‚ b
!

‚ c! if these six edges occur in an alternating order: x < a < y < b < z < c or a < x < b < y < c < z.

Two 3-cycles interleave if their respective triplets of reality edges interleave. Figure 1 also illustrates

these concepts.

A configuration of p is a subset of the cycles in G(p). A configuration C is connected if there is a

sequence of C1, . ,Ck in C such that C1 = C, Ck = C0 and for each i ˛ {1, 2, . , k - 1}, the cycles Ci and

Ci+1 are intersecting. If the configuration C is connected and maximal, then C is a component. Every

permutation admits a unique decomposition into disjoint components. For instance, in Figure 1, the

configuration {C1, C2, C3, C4} is a component, but the configuration {C1, C2, C3} is connected but not a

component.

Let C be a 3-cycle in configuration C. An open gate is a pair of reality edges in C that does not intersect

any other pair of reality edges in C. If a configuration C has only 3-cycles and no open gates, then C is a full

configuration. Some full configurations do not correspond to the breakpoint graph of any permutation. A

full configuration corresponds to a permutation if, and only if, the complement configuration is Hamiltonian

(Elias and Hartman, 2006), as illustrated in Figure 2b. Figure 2a shows the full configuration F = {C0 7 9D,

C1 3 6D, C2 4 11D, C5 8 11D}, which does not correspond to any permutation but is important in the analysis of

our algorithm and will be studied in detail in section 5.

A configuration C that has k edges is in the cromulent form4 if all edges 0
!

‚ 1
!

‚ . . . ‚ k - 1
��!

are in C. Given

a configuration C having k edges, a cromulent relabeling of C is a configuration C such that C0 is in the

cromulent form and there is a function r satisfying that, for every pair of edges i
!

‚ j
!

, in C such that i < j,

4Cromulent is neologism coined by David X. Cohen, meaning ‘‘normal’’ or ‘‘acceptable.’’

1046 CUNHA ET AL.

we have that r(i)
�!

‚ r(j)
�!

, are in C0 and r(i) < r(j). For instance, in Figure 2a the cromulent relabeling of the

configuration {C1 = C0, 7, 9D, C2 = C1, 3, 6D} is {C1 = C0, 4, 5D, C2 = C1, 2, 3D}.

Given an integer x, a circular shift of a configuration C, which is in the cromulent form and has k edges,

is a configuration denoted C + x such that every edge i
!

in C corresponds to i + x(mod k)
�������!

in C + x. Two

configurations C and K are equivalent if there is an integer x such that C0 + x ¼K0, where C0 and K0 are

their respective cromulent relabelings.

Elias and Hartman’s algorithm Elias and Hartman (2006) performed a systematic enumeration of all

components with nine cycles or less, in which all cycles have length 3. Starting from single 3-cycles,

components were obtained by applying a series of sufficient extensions, as described next. An extension of a

configuration C is a connected configuration C [fCg, where C =2 C. A sufficient extension is an extension

that either: 1) closes an open gate; or 2) extends a full configuration such that the extension has at most one

open gate. A configuration obtained by a series of sufficient extensions is a sufficient configuration if an

(x,y)-, or an x/y-sequence can be applied to its cycles.

Lemma 1 (Elias and Hartman, 2006) Every unoriented sufficient configuration of nine cycles has an

11/8-sequence.

Components with less than nine cycles are called small components. Elias and Hartman have shown that,

of all small components, only five types of them do not have an 11/8-sequence; these components are called

bad small components. Small components that have an 11/8-sequence are called good small components.

Lemma 2 (Elias and Hartman, 2006) The bad small components are:

� A = {C0 2 4D, C1 3 5D};
� B = {C0 2 10D, C1 3 5D, C4 6 8D, C7 9 11D};
� C = {C0 5 7D, C1 9 11D, C2 4 6D, C3 8 10D};
� D = {C0 2 4D, C1 12 14D, C3 5 7D, C6 8 10D, C9 11 13D}; and
� E = {C0 2 16D, C1 3 5D, C4 6 8D, C7 9 11D, C10 12 14D, C13 15 17D}.

If a permutation has bad small components, it is still possible to find an (11,8)-sequence, as Lemma 3

states.

Lemma 3 (Elias and Hartman, 2006) Let p be a permutation with at least eight cycles and containing

only bad small components. Then p has an (11,8)-sequence.

Corollary 1 (Elias and Hartman, 2006) If every cycle in G(p) is a 3-cycle, and there are at least eight

cycles, then p has an 11/8-sequence.

Lemmas 1 and 3 and Corollary 1 form the theoretical basis for Elias and Hartman’s 11/8 = 1.375-

approximation algorithm for SBT, Algorithm 1. The main procedure of Algorithm 1 is: obtain extensions, if

a configuration with nine cycles or if a small good component is reached, then an 11/8-sequence is applied

(Lemma 1); if a bad small component is reached then no sequence is applied. After all configurations with

nine cycles or small good components have been sorted, the permutation just contains small bad com-

ponents; Lemma 3 states the existence of an (11,8)-sequence.

a b

FIG. 2. (a) Full configuration F = {C079D, C136D, C2411D, C5810D}, which does not correspond to a permutation.

(b) Complement of F, obtained by replacing the reality edges with the edges -pipi and 0-pn+1.

A FASTER 1.375-APPROXIMATION ALGORITHM 1047

Algorithm 1: Elias and Hartman’s Sort(p)

1 Transform permutation p into a simple permutation p̂.

2 Check if there is a (2,2)-sequence. If so, apply it.

3 While G(p̂) contains a 2-cycle, apply a 2-move.

4 p̂ consists of 3-cycles. Mark all 3-cycles in G(p̂).
5 while G(p̂) contains a marked 3-cycle C do

6 if C is oriented then

7 Apply a 2-move.

8 else

9 Try to sufficiently extend C eight times (to obtain a configuration with at most nine cycles).

10 if sufficient configuration with nine cycles has been achieved then

11 Apply an 11/8-sequence.

12 else It is a small component

13 if it is a good component then

14 Apply an 11/8-sequence.

15 else

16 Unmark all cycles of the component.

17 (Now G(p̂) has only bad small components.)

18 while G(p̂) contains at least eight cycles do

19 Apply an (11,8)-sequence

20 While G(p̂) contains a 3-cycle, apply a (3,2)-sequence.

21 Mimic the sorting of p using the sorting of p̂.

Feng and Zhu’s permutation tree Feng and Zhu (2007) introduced the permutation tree, a binary

balanced tree that represents a permutation. In logarithmic time the operation of applying a transposition

could be done, and also the Query procedure of finding a pair of reality edges that intersects another given

pair of reality edges, as well. The Query procedure is the method used in Hartman and Shamir’s (2006) 1.5-

approximation algorithm to find a (3,2)-sequence that affects a pair of intersecting or interleaving cycles.

Besides that, Firoz et al. (2011) claimed the Query procedure could be used to sufficiently extend a

configuration in Algorithm 1.

Let p = ½p0p1p2 . . . pnpn + 1� be a permutation. The corresponding permutation tree has n leaves, labeled

p1‚ p2‚ . . . ‚ pn; every internal node represents an interval of consecutive elements pi‚ pi + 1‚ . . . ‚ pk - 1, with

i < k, and is labeled by the maximum number in the interval. Therefore, the root of the tree is labeled with n.

Furthermore, the left child of a node represents the interval pi‚ . . . ‚ pj - 1, and the right child represents

pj‚ . . . ‚ pk, with i < j < k. Feng and Zhu provided algorithms: to build a permutation tree in O(n) time; to

join two permutation trees into one in O(h) time, where h is the height difference between the trees; and to

split a permutation tree into two in O(logn) time.

The operations split and join allow us to apply a transposition to a permutation p, updating the tree, in

time O(logn). Based on Lemma 4, the Query procedure (Algorithm 2) solves the problem of finding a pair

of reality edges intersecting another given pair of reality edges.

Lemma 4 (Bafna and Pevzner, 1998) Let i
!

and j
!

be two reality edges in an unoriented cycle C, i < j.

Let pk = maxi<m£jpm, p‘ = pk + 1. Then, the reality edges k
!

and ‘ - 1
��!

belong to the same cycle, and the pair

k
!

‚ ‘ - 1
��!

intersects pair i
!

‚ j
!

.

Algorithm 2: Query(p,i,j)

input: permutation p, integers i and j

1 Let T be the permutation tree of p
2 Split T, into three permutation trees, T1, T2 and T3, corresponding to [p0‚ p1‚ . . . ‚ pi]‚ [pi + 1‚ . . . ‚ pj],

and [pj + 1‚ . . . ‚ pn‚ pn + 1], respectively.

3 Let pk = root (T2). (the largest element in the interval pi + 1‚ . . . ‚ pJ)

4 Let p‘ = pk + 1

5 Return the pair k, ‘ - 1 (by Lemma 4, k
!

‚ l - 1
��!

intersects, i
!

‚ J
!

)

1048 CUNHA ET AL.

Firoz et al. (2011) suggested the use of the permutation tree data structure to reduce the running time of

Algorithm 1 to O(nlogn), but in section 3 we show that the strategy, in the manner proposed by Firoz et al.,

fails to extend some 3-cycles into a full configuration with nine cycles.

3. THE USE OF THE PERMUTATION TREE BY FIROZ ET AL.

Firoz et al. (2011) stated that Step 9 in Algorithm 1 could be done in O(logn) time. To do so, they

categorized the sufficient extensions of a configuration A obtained by a Query call into type 1 extensions—

those that add a cycle that closes an open gate—and type 2 extensions—those that extend a full configu-

ration by adding a cycle C such that A W {C} has at most one open gate.

A type 1 extension can be performed in logarithmic time with Query(p, i, j), where i
!

‚ j
!

form an open

gate. For a type 2 extension, since there are no open gates, Firoz et al. claimed that it would be sufficient to

perform queries with every pair of reality edges that belonged to the same cycle in the configuration that is

being extended. Example 1 shows that this strategy is flawed.

Example 1 Consider the permutation p = [0 10 9 8 7 1 6 11 5 4 3 2 12], whose breakpoint graph is depicted

in Figure 1. It is a simple permutation having only unoriented 3-cycles. Mark all the cycles C1 = C0,2,4D,

C2 = C1, 3, 6D, C3 = C5,8,10D, and C4 = C7,9,11D. Let A = {C1} be the configuration to be sufficiently extended

(step 9 in Algorithm 1). Using the method proposed by Firoz et al., we have that:

1. Configuration A has three open gates 0
!

‚ 2
!

; 2
!

‚ 4
!

; 4
!

‚ 0
!

. Execute Query(p, 0, 2), which returns the

pair 1
!

‚ 6
!

, in cycle C2 = C1, 3, 6D (or, alternatively Query(p, 2, 4), which yields the same result).

Therefore, C2 is added to the configuration A, which becomes A = {C1, C2}.

2. Configuration A has no more open gates. We must execute Query(p,i,j) for every pair of elements

i
!

‚ j
!

in the same cycle of the configuration such that i < j; it is easy to observe that each execution

returns a pair that is already in A. So far, Firoz et al.’s method has failed to extend A.

3. Since A is not a component, unmark all the cycles in A.

4. The marked cycles are now C3 and C4. Considering either A = {C3} or A = {C4}, Firoz et al.’s method

only extends A as far as {C3, C4}. Again, A is not a component.

Therefore, Firoz et al.’s method fails to find the component {C1, C2, C3, C4}.

Although the permutation in Example 1 has only one small component, it is a counterexample to the

correctness of Firoz et al.’s strategy for dealing with type 2 extensions. The same problem happens for

sufficient configurations with more than nine cycles, such as:

r = [0 25 24 23 22 1 21 26 20 19 18 2 17 27 16 15 14 3 13 28 12 11 10 4 9 29 8 7 6 5 30]:

By Lemma 1, every configuration of nine cycles has an 11/8-sequence. Figure 3 shows an example of a

breakpoint graph of r with 10 cycles, for which any configuration with 9 cycles has an 11/8-sequence.

However, Firoz et al.’s approach fails to find such a sequence, for it performs the following sequence of

operations: i) starting from any configuration having a unique cycle, the first call to Query correctly finds

another intersecting cycle, which is added to the configuration (Fig. 4); ii) with this configuration having

two interleaving cycles, every possible invocation of Query returns one of the cycles already in the

configuration, which means that their strategy cannot further extend the configuration; iii) the resulting

configuration, with only two cycles, is a bad small component, so the cycles are unmarked; iv) if an

unmarked cycle still remains, it is selected to start a configuration, and we return to the first step in this

sequence of operations. The procedure finishes after unmarking all 10 cycles, incorrectly presuming that the

breakpoint graph only has bad small components with two cycles.

FIG. 3. Breakpoint graph of a permutation r for which Firoz et al.’s method fails. Note that r has 10 cycles, and that

s is obtained by setting k = 5 in Equation (2).

A FASTER 1.375-APPROXIMATION ALGORITHM 1049

Notice that, according to Step 18 in Algorithm 1, if a permutation contains only bad small components,

then an 11/8-sequence can be applied. The permutation c (whose breakpoint graph is in Fig. 5) is one of

those permutations:

c = [0 5 4 3 2 1 6 11 10 9 8 7 12 17 16 15 14 13 18 23 22 21 20 19 24 29 28 27 26 25 30]‚

Notice how the breakpoint graphs in Figures 4 and 5 differ, but according to Firoz et al.’s approach they

would be indistinguishable. In Figure 5, the bad small components can be separately handled, which is not

the case for configurations with two interleaving cycles in Figure 4, for these configurations intersect other

cycles. Algorithm 1 does not have a rule to deal with this last case.

Note that the permutation of Example 1 and the permutation above s just describe examples belonging

to a family of permutations such that any type 2 extension fails. Actually, an infinite family can be

constructed as follows: let k be any integer greater than or equal to 2, and let f (i) be the sequence of six

integers

i 5k - 4i 5k + i 5k - 4i - 1 5k - 4i - 2 5k - 4i - 3: ð1Þ

Consider rk a permutation of 6k - 1 elements defined using Equation (1) as:

[0 5k 5k - 1 5k - 2 5k - 3 f (1) f (2) . . . f (k - 1) k 6k]‚ ð2Þ

whose breakpoint graph has a similar structure to those in Figure 1 (where in Equation (2) we set k = 2) and 3.

If we start from a configuration having any cycle, it is impossible to extend it past a configuration of more than

two cycles using Firoz et al.’s approach.

Some other configurations cannot be extended using only the Query procedure either, such as the full

configuration illustrated in Figure 2. This is a bad small configuration (Elias and Hartman, 2006) that does

not correspond to the breakpoint graph of any permutation, but this configuration may appear during the

sorting of a larger permutation.

4. FINDING AND APPLYING A (2,2)-SEQUENCE IN LINEAR TIME

In order to implement Step 2 of Algorithm 1, Elias and Hartman (2006) proved that, given a simple

permutation, a (2,2)-sequence can be found in O(n2) time.

Firoz et al. (2011) described a strategy for finding and applying a (2,2)-sequence in O(nlogn) time using

permutation trees. But, according to their strategy, for each one of the O(n) oriented 3-cycles, we apply a

2-move and check in O(n) time for the existence of an oriented cycle in the resulting graph, which implies

that Firoz et al.’s strategy may run in O(n2) time in the worst case. One such case is illustrated in Figure 6,

where the cycles drawn in solid lines—one oriented, the other unoriented—are interleaving, so by case 3 of

Lemma 5 there is a (2,2)-sequence that affects them. However, if the first 2-move is applied to any of the

FIG. 4. A configuration that is not maximal returned by a Query call on r.

FIG. 5. The breakpoint graph of permutation g.

1050 CUNHA ET AL.

dashed cycles, the resulting breakpoint graph has no oriented cycle, hence the transposition is undone and

another oriented cycle is selected; this procedure would continue until the solid oriented cycle is selected.

Algorithm 5 summarizes our proposed approach toward finding and applying a (2,2)-sequence in O(n)

time. It is a direct application of Algorithms 3 and 4 to the cases stated in Lemma 5.

Algorithm 3: Search (2,2)-sequence from K1.

1 for i = min K1 + 1, . ,mid K1 -1 do

2 if i
!

belongs to an oriented cycle Kj then

3 if mid Kj < mid K1 then

4 return (2,2)-sequence that affects K1 and Kj.

5 else if max Kj < max K1 then

6 return (2,2)-sequence that affects K1 and Kj.

7 else if max K1 < mid Kj then

8 return (2,2)-sequence that affects K1 and Kj.

9 if i
!

belongs to an unoriented cycle Lj then

10 if mid K1 < mid Lj < max K1 < max Lj then

11 return (2,2)-sequence that affects K1 and Lj

12 else if min Lj < min K1 < mid Lj < mid K1 < max Lj < max K1 then

13 return (2,2)-sequence that affects K1 and Lj.

14 for i = mid K1 + 1, . ,max K1 - 1 do

15 if i
!

belongs to an oriented cycle Kj then

16 if mid K1 < min Kj then

17 return (2,2)-sequence that affects K1 and Kj.

18 for i = max K1 + 1, . , n – 1 do

19 if i
!

belongs to an oriented cycle Kj then

20 if max K1 < min Kj then

21 return (2,2)-sequence affecting K1 and Kj.

Lemma 5 (Bafna and Pevzner, 1998; Christie, 1999; Elias and Hartman, 2006) Given a breakpoint

graph of a simple permutation, there exists a (2,2)-sequence if any of the following conditions is met:

1. There are either four 2-cycles, or two intersecting 2-cycles, or two nonintersecting 2-cycles, and the

resulting graph contains an oriented cycle after the first transposition is applied;

2. There are two noninterleaving oriented 3-cycles;

3. There is an oriented cycle interleaving an unoriented cycle.

Our strategy to find a (2,2)-sequence in linear time starts by checking whether the breakpoint graph

satisfies first case of Lemma 5, as described in detail between lines 1 and 4 in Algorithm 5. In our approach,

it is unnecessary to try all pairs of cycles to verify that conditions 2 and 3 in Lemma 5 are satisfied. It differs

from previous methods (Elias and Hartman, 2006; Firoz et al., 2011) in that the leftmost oriented cycle of

the breakpoint graph, named K1, is fixed when verifying for conditions 2 and 3.

Given a simple permutation p, it is immediate to enumerate all of its cycles in linear time. The size of

each cycle, and whether it is oriented, are both determined in constant time.

Christie (1999) proved that every permutation has an even number (possibly zero) of even cycles; he also

showed that, given a simple permutation, when the number of even cycles is not zero, there exists a (2,2)-

FIG. 6. A breakpoint graph for which Firoz et al.’s strategy takes O(n2) time in the worst case to find a (2,2)-sequence.

A FASTER 1.375-APPROXIMATION ALGORITHM 1051

sequence that affects those cycles if, and only if, there are either four 2-cycles, or there are two intersecting

even cycles. Therefore, in these cases, a (2,2)-sequence can be applied in O(logn) using permutation trees. If

there is only a pair of nonintersecting 2-cycles, it remains to check if there is a 3-cycle intersecting both even

cycles: i) if the 3-cycle is oriented, then first we apply the 2-move applied to the 3-cycle, and the second 2-

move is applied to 2-cycles; ii) if the 3-cycle is unoriented, then first we apply the 2-move applied to the 2-

cycles, and the second 2-move is applied to the 3-cycle, which turns oriented after the first transposition.

There is also a (2,2)-sequence if there is an oriented cycle intersecting at most one even cycle.

However, if there are no even cycles in the permutation, but there is an oriented cycle, the 3-cycles must

be scanned for the existence of a (2,2)-sequence, as conditions 2 and 3 require in Lemma 5.

Algorithm 4: Finding intersecting oriented cycles interleaving K1.

1 s1 = sequence of edges belonging to oriented cycles from left to right between min K1 and mid K1.

2 s2 = sequence of edges belonging to oriented cycles from left to right between mid K1 and max K1.

3 if the sequences of cycles corresponding to s1 and s2 are different then

4 There is a pair of intersecting oriented cycles, exists a (2,2)-sequence.

5 else

6 All oriented cycles are mutually interleaving.

To check, in linear time, for the existence of a pair of cycles satisfying either condition 2 or 3 in

Lemma 5, consider the oriented cycles of the breakpoint graph, in the order K1 = Ca1 b1 c1D, K2 = Ca2 b2 c2D,

K3 = Ca3 b3 c3D, . such that a1 < a2 < a3 < . , and the unoriented cycles in the order L1 = Cx1 y1 z1D, L2 = Cx2

y2 z2D, L3 = Cx3 y3 z3D, . such that x1 < x2 < x3 < . . Given any 3-cycle C = CabcD, let min C = a, mid C = min

{b,c}, and max C = max {b,c}, that is, if C is unoriented, then min C = a, mid C = b, max C = c, whereas if C

is oriented, then min C = a, mid C = c, max C = b. The main idea is:
1. Check for the existence of an oriented cycle Kj noninterleaving K1 or an unoriented cycle Lj interleaving

K1. Algorithm 3 searches for an oriented cycle Ki noninterleaving K1 or an unoriented cycle Li interleaving

K1. The search is done between minK1 and mid K1, between mid K1 and max K1, and to the right of max K1.

2. If Algorithm 3 does not return any oriented cycle noninterleaving K1, then every oriented cycle interleaves K1

but no unoriented cycle interleaves K1. Hence, we must check for the existence of two oriented cycles Ki, Kj

that are intersecting but not interleaving. Note that if Ki, Kj were nonintersecting oriented cycles, Algorithm 3

would have this case already covered (see Fig. 7), since Ki or Kj would not interleave K1. Algorithm 4

describes how to verify the existence of two intersecting oriented cycles that are also interleaving with K1.

Algorithm 5: Find and Apply (2,2)-sequence

1 if there are four 2-cycles then

2 Apply (2,2)-sequence.

3 else if there is a pair of intersecting 2-cycles then

4 Apply (2,2)-sequence.

5 else if there is a 3-cycle intersecting a pair of 2-cycles then

6 Apply (2,2)-sequence.

7 else if there is a pair of 2-cycles and an oriented 3-cycle intersecting at most one of them then

8 Apply (2,2)-sequence.

9 else if Search (2,2)-sequence from K1 returns a sequence then

10 Apply (2,2)-sequence.

11 else if Finding intersecting oriented cycles interleaving K1 then

12 Apply (2,2)-sequence.

13 else

14 There are no (2,2)-sequences to apply.

FIG. 7. Oriented cycles represented by their reality edges. All oriented cycles interleave K1, but there are i and j such

that Ki and Kj are noninterleaving.

1052 CUNHA ET AL.

5. SUFFICIENT EXTENSIONS USING THE QUERY PROCEDURE

In section 3, we discussed Firoz et al.’s use of the permutation tree and proved that their strategy does not

account for every configuration with less than nine cycles that is not a component, since successive

invocations of Query may result in a full configuration with less than nine cycles that is not a small

component. Our proposed strategy generalizes the definitions regarding small components to small con-

figurations—configurations with less than nine cycles.

A small configuration is full if it has no open gates. Small configurations are also classified as good if

they have an 11/8-sequence, or as bad otherwise.

Algorithm 1 applies an 11/8-sequence to every sufficient unoriented configuration of nine cycles, and

also to every good small component. After that, the permutation contains just bad small components, and

Lemma 3 states that there exists an (11,8)-sequence for every combination of bad small components with at

least eight cycles.

Our approach can handle bad small full configurations, which may or may not be bad small components,

during the course of an extension via successive invocations of Query. The possible bad small full con-

figurations are the bad small components A, B, C, D, and E, from Lemma 2, and the full configuration

F = {C079D, C136D, C2411D, C5810D}, the only bad small full configuration that is not a component (Elias and

Hartman, 2006).

Our strategy (Algorithm 6) is similar to Elias and Hartman’s (Algorithm 1): apply an 11/8-sequence to

every sufficient unoriented configuration of nine cycles and also to every good small full configuration; the

main difference is that, whenever a combination of bad small full configurations is found, a decision to

apply an 11/8-sequence is made according to Lemmas 6 and 7.

We developed a tool (Cunha et al., 2014a) that finds 11/8-sequences for a given configuration using

branch-and-bound, where a branch is obtained by either applying a 2-move or a 0-move, and the moves are

bounded by the ratio between the number of total moves and the number of 2-moves, which cannot be

greater than 1.375. The algorithm either returns an 11/8-sequence, whenever it exists, or fails after trying all

possible sequences.

Lemma 6 Every combination of F with one or more copies of either B, C, D, or E has an 11/8-sequence.

Proof. Consider all breakpoint graphs of F and its circular shifts combined with B, C, D, E, and their

circular shifts. A combination of a pair of small full configurations is obtained by starting from one small

full configuration and inserting a new one in different positions in the breakpoint graph. Altogether, there

are 324 such graphs. A computerized case analysis (Cunha et al., 2014a) enumerates all possible breakpoint

graphs and provides an 11/8-sequence for each of them. -

Notice that Lemma 6 considers neither combinations of F with F, nor combinations of F with A.

We have found that almost every combination of F with F has an 11/8-sequence, as Lemma 7 states.

Let FiF
j be the configuration obtained by inserting the circular shift F + j between the edges i

!
and i + 1

��!
of F.

Lemma 7 There exists an 11/8-sequence for FiF
j, if:

� i ˛ {0,4} and j ˛ {0,1,2,3,4,5};
� i ˛ {1,2,3} and j ˛ {1,2,3,4,5}; or
� i = 5 and j ˛ {1,5}.

Proof. The 11/8-sequences for the cases enumerated above were also found through a computerized

case analysis (Cunha et al., 2014a). Note that FiF
j is equivalent to Fi+6Fj for i = {0, 1, . ,5}, which

simplifies our analysis. -

Only seven combinations of F with F have no 11/8-sequence: F1F0, F2F0, F3F0, F5F0, F5F2, F5F3, and

F5F4. We will return to them shortly.

All combinations of one copy of F and one copy of A have less than eight cycles. It only remains to

analyze the combinations of F and two copies of A, denoted F–A–A. The good F–A–A combinations are the

A FASTER 1.375-APPROXIMATION ALGORITHM 1053

F–A–A combinations for which an 11/8-sequence exists. Out of 57 combinations of F–A–A, only 31 are

good. The complete list of combinations is in Cunha et al. (2014a).

Combinations of F with A, B, C, D, E, and F that have 11/8-sequences are called well-behaved

combinations—the ones in Lemmas 6, 7, and the good F–A–A combinations. The remaining combinations

having F are called naughty: the seven combinations of F – F that have no 11/8-sequence, and the 57

combinations of F–A–A.

For extensions that yield a bad small configuration, Algorithm 6 adds their cycles to a set S (line 32).

Later, if a well-behaved combination is found among the cycles in S, an 11/8-sequence is applied (line 37)

and the set is emptied. If all combinations in S are naughty, another bad small configuration can be

obtained and added to it in the next iteration (line 6).

We have shown (Cunha et al., 2014a) that every combination of three copies of F is well-behaved, even

if each pair of F – F is naughty; the same can be said of every combination of F and three copies of A, even

if each triple F–A–A is naughty. Therefore, at most 12 cycles are in S, since it may contain at most three

copies of F, or one copy of F and three copies of A, in the worst case. For each of these cases, there exists

an 11/8-sequence (Cunha et al., 2014a).

Proposed algorithm Algorithm 6 is a direct application of the results in the section. In a nutshell,

it obtains configurations using the Query procedure and applies 11/8-sequences to configurations of

size at most 9. Algorithm 6 differs from Algorithm 1 not only in the use of permutation trees, but

also because the main loop handles bad small full configurations, instead of only dealing with them at

the end.

Algorithm 6: Proposed algorithm based on Elias and Hartman’s algorithm

1 Transform permutation p into a simple permutation p̂.

2 Find and apply (2,2)-sequence (Algorithm 5).

3 While G(p̂) contains a 2-cycle, apply a 2-move.

4 p̂ consists of 3-cycles. Mark all 3-cycles in G(p̂).

5 Let S be an empty set.

6 while G(p̂) contains at least eight 3-cycles do

7 Start a configuration C with a marked 3-cycle.

8 if the cycle in C is oriented then

9 Apply a 2-move.

10 else

11 Try to sufficiently extend C eight times using the Query procedure.

12 if C is a sufficient configuration with nine cycles then

13 Apply an 11=8-sequence.

14 else

C is a small full configuration

15 if C is a good small configuration then

16 Apply an 11=8-sequence.

17 else

C is a bad small configuration

18 Add every cycle in C to S.

19 Unmark all cycles in C.

20 if S contains a well-behaved combination then

21 Apply an 11=8-sequence.

22 Mark the remaining 3-cycles in S.

23 Remove all cycles from S.

24 While G(p̂) contains a 3-cycle, apply a 4/3-sequence or a 3/2-sequence.

25 Mimic the sorting of p using the sorting of p̂.

Theorem 1 Algorithm 6 runs in O(nlogn) time.

1054 CUNHA ET AL.

Proof. Steps 1 through 5 can be implemented to run in linear time [Elias and Hartman (2006); Feng

and Zhu (2007), and section 4]. Step 17 runs in O(log n) time using permutation trees. The comparisons

in Steps 12, 15, and 20 are done in O(1) time using lookup tables whose sizes are bounded by a constant.

Updating the set S also requires constant time, since it has at most 12 cycles (case where S contains F – F

– F). Every sequence of transpositions of size bounded by a constant can be applied in time O (log n) due to

the use of permutation trees. The time complexity of the loop between Steps 6 to 23 is O(nlogn), since the

number of 3-cycles is linear in n, and the number of cycles decreases, in the worst case, every third

iteration. In Step 24, the search for a 4/3– or a 3/2-sequence is done in constant time, since the number of

cycles is bounded by a constant. Steps 24 and 25 also run in time O(nlogn), according to Feng and Zhu

(2007). -

6. FINAL REMARKS

Although sorting permutations by transpositions is an NP-hard problem, some approximation

strategies have been successful. This article describes a 1.375-approximation algorithm that rectifies a

previous attempt (Firoz et al., 2011) of using the permutation tree data structure to achieve a running

time of O(nlogn). We have managed to achieve both the 1.375 approximation and the O(nlogn) running

time. The approximation ratio is guaranteed by a new computational case analysis (Cunha et al., 2014a)

that finds 11/8-sequences for bad small full configurations. The running time is attained by providing,

for the first time, a correct linear-time strategy for finding and applying a (2,2)-sequence.

ACKNOWLEDGMENTS

This work has been partially supported by grants from Brazilian agencies Faperj, CNPq, and CAPES.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Bafna, V., and Pevzner, P.A. 1998. Sorting by transpositions. SIAM J. Discrete Math. 11, 224–240.

Bulteau, L., Fertin, G., and Rusu, I. 2012. Sorting by transpositions is difficult. SIAM J. Discrete Math. 26, 1148–1180.

Christie, D.A. 1999. Genome rearrangement problems [Ph.D. thesis]. University of Glasgow, UK.

Cunha, L.F.I., Kowada, L.A.B., de A. Hausen, R., and de Figueiredo, C.M.H. 2013a. Advancing the transposition

distance and diameter through lonely permutations. SIAM J. Discrete Math. 27, 1682–1709.

Cunha, L.F.I., Kowada, L.A.B., de A. Hausen, R., and de Figueiredo, C.M.H. 2013b. On the 1.375-approximation

algorithm for sorting by transpositions in O(nlogn) time. Proceedings of the 8th Brazilian Symposium on Bioin-

formatics, volume 8213 of Lectures Notes in Bioinformatics, pp. 126–135.

Cunha, L.F.I., Kowada, L.A.B., de A. Hausen, R., and de Figueiredo, C.M.H. 2014a. 1.375-approximation for SBT in

O(n log n) time. Available at: http://compscinet.org/research/sbt1375 Accessed September 2, 2015.

Cunha, L.F.I., Kowada, L.A.B., de A. Hausen, R., and de Figueiredo, C.M.H. 2014b. A faster 1.375-approximation

algorithm for sorting by transpositions. Proceedings of the 14th Workshop on Algorithms in Bioinformatics, volume

8701 of Lectures Notes in Bioinformatics, pp. 26–37.

Elias, I., and Hartman, T. 2006. A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Trans.

Comput. Biol. Bioinform. 3, 369–379.

Feng, J., and Zhu, D. 2007. Faster algorithms for sorting by transpositions and sorting by block interchanges. ACM

Trans. Algorithms 3, 1549–6325.

Fertin, G., Labarre, A., Rusu, I., et al. 2009. Combinatorics of Genome Rearrangements. The MIT Press,

New York.

A FASTER 1.375-APPROXIMATION ALGORITHM 1055

Firoz, J.S., Hasan, M., Khan, A.Z., and Rahman, M.S. 2011. The 1:375 approximation algorithm for sorting by

transpositions can run in O(nlogn) time. J. Comput. Biol. 18, 1007–1011.

Hannenhalli, S., and Pevzner, P.A. 1999. Transforming cabbage into turnip: Polynomial algorithm for sorting signed

permutations by reversals. J. ACM 46, 1–27.

Hartman, T., and Shamir, R. 2006. A simpler and faster 1.5-approximation algorithm for sorting by transpositions. Inf.

Comput. 204, 275–290.

Labarre, A. 2006. New bounds and tractable instances for the transposition distance. IEEE/ACM Trans. Comput. Biol.

Bioinform. 3, 380–394.

Address correspondence to:

Luı́s Felipe I. Cunha

Centro de Tecnologia

Universidade Federal do Rio de Janeiro

Bloco H, Sala 317-10

Rio de Janeiro 21941972

Brazil

E-mail: lfignacio@cos.ufrj.br

1056 CUNHA ET AL.

