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Abstract. A bull is a graph with five vertices a, b, c, d, e and five edges ab, ac, bc, da, eb. Here
we present polynomial-time combinatorial algorithms for the optimal weighted coloring and weighted
clique problems in bull-free perfect graphs. The algorithms are based on a structural analysis and
decomposition of bull-free perfect graphs.
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1. Introduction. A graph G is called perfect if the vertices of every induced
subgraph G′ of G can be colored with ω(G′) colors, where ω(G′) is the maximum
clique size in H. Berge [1] introduced perfect graphs and conjectured the following
characterization: A graph is perfect if and only if it contains no odd hole and no odd
antihole as an induced subgraph, where a hole is a chordless cycle with at least five
vertices, and an antihole is the complement of a hole. Graphs with no odd hole and
no odd antihole have become known as Berge graphs. This conjecture, known as the
strong perfect graph conjecture, was proved recently by Chudnovsky et al. [5]; thus
every Berge graph is perfect. One problem that is not yet solved in this context is
the existence of a combinatorial algorithm to compute the chromatic number of a
perfect graph. Here we will give such an algorithm for bull-free Berge graphs, i.e.,
graphs with no induced subgraph isomorphic to a bull, where a bull is a graph with
five vertices a, b, c, d, e and five edges ab, bc, cd, be, ce (see Figure 1). Our algorithm
is based on specific properties of these graphs. Let us recall that Chvátal and Sbihi
[3] proved the validity of the strong perfect graph conjecture for bull-free graphs, and
subsequently Reed and Sbihi [18] gave a polynomial algorithm for recognizing bull-free
Berge graphs.
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Fig. 1. The bull.

In this paper, we present polynomial-time algorithms for solving the following op-
timization problems for bull-free perfect graphs: find a largest clique, a largest stable
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OPTIMIZING BULL-FREE PERFECT GRAPHS 227

set, a minimum coloring, and a minimum clique covering. We actually present algo-
rithms which solve the weighted versions of these problems, defined as follows. We are
given a graph G with vertices v1, . . . , vn and positive integer weights w(v1), . . . , w(vn).

Maximum weighted clique problem. Find a clique K of G, such that the weight
of K, defined as the sum of the weights of the vertices of K, w(K) =

∑
x∈K w(x), is

maximum over all cliques of G.
Maximum weighted stable set problem. Find a stable set S of G, such that the

weight of S, defined as the sum of the weights of the vertices of S, w(S) =
∑

x∈S w(x),
is maximum over all stable sets of G.

Minimum weighted coloring problem. Find stable sets S1, . . . , St and integers
W (S1), . . ., W (St), such that

∑

Si�vj

W (Si) ≥ w(vj) (∀vj)(1)

and the sum W (S1) + · · · + W (St) is minimum over all sets of integers that satisfy
(1).

Minimum weighted clique covering problem. Find cliques K1, . . . ,Kt and weights
W (K1), . . ., W (Kt), such that

∑

Ki�vj

W (Ki) ≥ w(vj) (∀vj)(2)

and the sum W (K1) + · · · + W (Kt) is minimum over all sets of integers that satisfy
(2).

Recall that if G is a perfect graph, classical polyhedral considerations (see [12])
imply that (a) the optimal value of the maximum weighted clique problem and of the
minimum weighted coloring problem are equal; (b) there exists a minimum weighted
coloring that satisfies (1) with equality for every vertex. The same facts hold for the
maximum weighted stable set problem and the minimum weighted clique covering
problem.

It is possible to color every perfect graph optimally and in polynomial time, thanks
to the algorithm of Grötschel, Lovász, and Schrijver [12]; but that algorithm is based
on the ellipsoid method and may be rather complex and impractical. In contrast, the
algorithm we are going to present here exploits the combinatorial structure of bull-
free graphs and is fairly transparent. We will find it convenient, however, to use the
following argument. Let C be a self-complementary class of perfect graphs. If there
exists a strongly polynomial-time algorithm A that can compute the weighted clique
number of any graph G in C in time O(nk) (n being the number of vertices of G), then
there exists a strongly polynomial-time algorithm A′ that can construct a minimum
weighted coloring for any graph G in C in time O(nk+4). This argument is implicit
in [12, section 9.4] and in [19, Proof of Corollary 67.5c and Theorem 67.6], and we
do not copy its proof here. It suffices to note that A′ consists mainly in at most
n4 calls to A applied to weighted subgraphs of G and G; this is independent of the
method that A is based on. Since the class of bull-free Berge graphs that we consider
here is self-complementary, this argument can be applied; this allows us, therefore, to
focus on only one of the above four problems, namely, the maximum weighted clique
number.

Roughly speaking, our algorithm follows a decomposition procedure for bull-free
Berge graphs; with each bull-free Berge graph G a decomposition tree is associated;
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228 CELINA M. H. DE FIGUEIREDO AND FRÉDÉRIC MAFFRAY

our algorithm uses some known polynomial-time algorithms to solve the problem
for the leaves of the tree (these indecomposable graphs turn out to belong to well-
known classical families); it then recursively combines solutions along the tree, upward
from children to parent, up to the root G. A key point in our proofs is the use of
decomposition theorems in order to show how to combine the solutions properly from
the children to the parent. Another key point is to show that the number of tree nodes
is polynomial so that the total running time of our algorithm itself is polynomial.

In order to present this algorithm exactly and to justify it, a number of definitions
and results must be recalled; also, some new results will be proved. The algorithm
will be described precisely in section 6.

2. Definitions. Apart from standard graph-theoretic terms, we use the verbs
“see” and “miss” instead of “be adjacent to” and “not be adjacent to.” The neigh-
borhood N(x) of a vertex x in a graph G is the set of all vertices of G\x that see x. A
chordless path on k vertices is denoted by Pk. Unless otherwise specified, the phrase
“G contains H” means “G contains H as an induced subgraph.” Note also that a
graph G is bull-free if and only if its complement G is bull-free. For any subset X of
vertices of a graph G, we let G[X] denote the subgraph of G induced by X.

Weakly triangulated graphs. A graph is called weakly triangulated if it does not
contain a hole or an antihole. Hayward [13] proved that all weakly triangulated graphs
are perfect. Subsequently, Hayward, Hoàng, and Maffray [14] gave polynomial-time
algorithms that solve the four optimization problems above for weakly triangulated
graphs.

Transitively orientable graphs. A graph is called transitively orientable if it admits
a transitive orientation, i.e., an orientation of its edges with no circuit and with no P3

abc with the orientation �ab and �bc. Such graphs are also called comparability graphs.
A well-known subclass of comparability graphs is the class of P4-free graphs, also
called cographs [8]. Indeed, a result Seinsche [20] states is that for every P4-free graph
G on at least two vertices, either G or its complement G is disconnected; from this it
is easy to derive that every P4-free graph is transitively orientable.

Partial vertices, homogeneous sets. Given a subset of vertices S in a graph G, a
vertex from G \ S is partial on S or S-partial if it has at least one neighbor and at
least one nonneighbor in S. A vertex from G \ S is impartial on S if it either sees all
vertices of S or misses all vertices of S.

A homogeneous set (or module) in a graph G = (V,E) is a subset S ⊆ V such
that every vertex from G \ S sees either all or none of S. A homogeneous set S is
proper if 2 ≤ |S| ≤ |V | − 1. Note that if S is a homogeneous set of G, then it is also
a homogeneous set of the complementary graph G. A graph is called prime if it has
no proper homogeneous set.

Homogeneous pairs. A homogeneous pair [3] in a graph G is a pair of disjoint
subsets of vertices Q1, Q2 such that all Q1-partial vertices are in Q2; all Q2-partial
vertices are in Q1; at least one of Q1, Q2 includes at least two vertices; and there are
at least two vertices in G \Q1 ∪Q2. Note that if Q1, Q2 is a homogeneous pair in G,
then it is also a homogeneous pair in G.

Whenever a graph G admits a homogeneous pair Q1, Q2, we will denote by Ti the
set of vertices of G \ (Q1 ∪Q2) that see all of Qi and miss all of Q3−i (i = 1, 2), by T
the set of vertices of G\ (Q1∪Q2) that see all of Q1∪Q2, and by Z the set of vertices
of G \ (Q1 ∪Q2) that miss all of Q1 ∪Q2. Following [3], we may decompose G along
this homogeneous pair into two graphs H and Q defined as follows. The graph H is
made from G \ (Q1 ∪Q2) by adding four vertices u1, u2, s1, s2 with edges u1s1, u2s2,
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OPTIMIZING BULL-FREE PERFECT GRAPHS 229

u1s2, u2s1, s1s2 and with edges tui, tsi for every vertex t ∈ Ti ∪ T for each i = 1, 2.
The graph Q is the subgraph of G induced by Q1 ∪Q2.

Let us say that a homogeneous pair Q1, Q2 is interesting if both Q1, Q2 induce
connected subgraphs of G, Q1 ∪Q2 contains a square with an edge in Q1 and an edge
in Q2, T1 �= ∅, T2 �= ∅, and there exists an edge t1t2 with t1 ∈ T1, t2 ∈ T2.

In [7] the following result was proved (although not stated explicitly this way).

Theorem 2.1. Let G be a prime bull-free Berge graph G. If G contains an even
hole, then G admits a “box partition.”

The box partition is a structural concept whose exact definition we defer to sec-
tion 3. The proof of that theorem in [7] is actually a polynomial-time algorithm which,
given a bull-free Berge graph G, produces a proper homogeneous set of G, or asserts
that G contains no even hole, or produces a box partition. Our interest in the box
partition here is due mainly to the following lemma.

Lemma 2.2 (the transitive box partition lemma). Let G be a bull-free Berge graph
with no antihole. If G has a box partition, then G admits a transitive orientation.

This lemma will be proved in section 3.

Theorem 2.3. Let G be a prime bull-free Berge graph that contains a hole and
an antihole. Then the following hold.

(I) The graph G contains an interesting homogeneous pair Q1, Q2.
(II) If H,Q are the two graphs obtained by decomposing G along an interesting

homogeneous pair, then both H and Q are bull-free Berge graphs.
(III) It is possible to build a solution of the maximum weighted clique problem on

G from a solution of the same problem on H and Q with appropriately defined
vertex-weights.

This theorem will be proved in section 5.

3. Boxes and transitive orientations. For any subset B of vertices in a graph
G, we let M(B) denote the set of vertices of G \B that are partial on B.

Definition 3.1 (the box partition). Let G be a graph with vertex set V . We
call box partition any partition of V into disjoint nonempty subsets called the boxes,
inducing connected subgraphs which satisfy the following properties:

(i) Each box is labeled either “odd” or “even” (each vertex will be labeled odd or
even accordingly), and there is no edge between two odd boxes or between two
even boxes.

(ii) For each box B such that M(B) �= ∅, there exist in V − B two auxiliary
adjacent vertices aB and a′B, such that aB sees all of B and misses all of
M(B), while a′B sees all of M(B) and misses all of B.

Remark 1. When G is bull-free, the fact that a′B sees every vertex of M(B) is a
consequence of the other facts given in property (ii).

Indeed, if a′B missed a vertex x of M(B), then there should exist adjacent vertices
u, v in B such that x sees u and misses v, and then aB , u, v, x, a

′
B would be a bull.

Let us note that if a bull-free perfect graph G with no proper homogeneous set
and no C6 admits a box partition, then two further properties hold. Say that two
neighborhoods N(u), N(v) are comparable if N(u) ⊆ N(v) or N(v) ⊆ N(u) holds.

(iii) Every box is P4-free.
(iv) Any two adjacent vertices in B have comparable neighborhoods in M(B).

To prove (iii), we recall that a broom is the graph made up of a P4, plus a fifth
vertex adjacent to all vertices of the P4, plus a sixth vertex adjacent to the fifth vertex
only. We proved the following result.
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230 CELINA M. H. DE FIGUEIREDO AND FRÉDÉRIC MAFFRAY

Lemma 3.2 (the broom lemma [7]). If a bull-free, C5-free graph contains a broom,
then it has a proper homogeneous set which contains the P4 of the broom.

Now observe that if a box B contains a P4, then adding the vertices aB and
a′B we obtain a broom, and then by the broom lemma G should contain a proper
homogeneous set, which is a contradiction.

To prove (iv), suppose on the contrary that some two adjacent vertices u, v in
a box B have incomparable neighborhoods in M(B). So there exist a vertex x in
M(B) ∩ N(u) − N(v) and a vertex y in M(B) ∩ N(v) − N(u). Recall the auxiliary
vertices aB , a

′
B for B, so that aB sees u, v, and a′B and misses x and y, while a′B sees

x and y and misses u and v. If xy is an edge in G, then aB , u, v, x, y, a
′
B is a C6. If

xy is not an edge in G, then aB , u, v, x, y is a bull. So (iv) is proved.

3.1. Proof of the transitive box partition lemma. Given a box partition,
any edge whose endpoints are in different boxes will be called a vertical edge. (Nec-
essarily, for any such edge, one endpoint is in an odd box and the other is in an even
box.) The other edges will be called horizontal; i.e., a horizontal edge is any edge
whose two endpoints are in the same box. Recall from (iii) that each box B is P4-free,
and recall that every P4-free graph admits a transitive orientation [11]. Let L(B) be
a transitive orientation for each box B. All edges xy of G are oriented according to
the following rules:

• Rule V0. If an edge is vertical, orient it from its even extremity to its odd
extremity.

• Rule H1. If x, y are in an even (resp., odd) box B and x has strictly more
neighbors than y in M(B), then orient xy from x to y (resp., from y to x).

• Rule H2. If x, y are in an even (resp., odd) box B and have the same neigh-
borhood in M(B), and if there exists a P4 yxvu with u ∈ M(B) and v ∈ B,
then orient the edge yx from y to x (resp., from x to y).

• Rule H3. If x, y are in a box B and do not satisfy the hypotheses of Rules
H1 and H2, then orient xy according to L(B).

After these rules are applied, every edge of G has received an orientation. We
claim that this is a transitive orientation of G. To certify this claim, we have to
check that these combined rules are consistent (i.e., noncontradictory) and that they
produce no P3 xyz with orientation �xy and �yz and no circuit. Note that a result of
Ghouila-Houri [10] shows that if a graph admits an orientation with no directed P3,
then it admits an acyclic transitive orientation.

Claim 1. The rules are consistent.

Proof. We need only prove that no edge must be oriented by the rules in two
opposite ways. Clearly, the vertical edges are oriented consistently. Since Rules H1,
H2, and H3 apply to edges of different types, they cannot contradict each other. Rule
H1 cannot orient an edge in two opposite ways, by property (iv) of the box partition.
Clearly Rule H3 also cannot orient an edge in two opposite ways. So the only case of
inconsistency would be the following: some horizontal edge xy (x, y ∈ box B) must
be oriented in one way because there is a P4 uvxy with u ∈ M(B) and v ∈ B (Rule
H2) and must also be oriented in the opposite way because there is a P4 ztyx with
z ∈ M(B) and t ∈ B, and x and y have the same neighbors in M(B). Clearly v �= t
(but u = z is possible). Let a′B be the auxiliary vertex of B given by property (ii) of
the box partition; so a′B sees u and z and misses all of v, x, y, t. In addition, v must
see t or else vxyt is a P4 in B. Now, either u sees t or z sees v, or else property (iv) is
contradicted for v, t. By symmetry we may assume that u sees t, but then v, t, u, a′B , x
is a bull. So Claim 1 is proved.
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OPTIMIZING BULL-FREE PERFECT GRAPHS 231

Claim 2. The rules produce no P3 xyz with orientation �xy and �yz.
Proof. Suppose the contrary. Rules V0 and H1 imply easily that the vertices

x, y, z cannot be in different boxes. So, and by symmetry, we may assume that they
lie in one odd box B. Note that one of the edges xy, yz must have been oriented by
Rule H1 or by Rule H2.

Case 1. The edge xy was oriented from x to y by Rule H1. This hypothesis
means that there exists a vertex u in M(B) ∩ N(y) − N(x). If u misses z, then yz
should be oriented by Rule H1 from z to y, which is a contradiction; so u sees z. Now
x, y, z, u, a′B is a bull, which is a contradiction.

So xy is not oriented by Rule H1, and then x and y have the same neighborhood
in M(B).

Case 2. The edge xy was oriented from x to y by Rule H2. This means that x
and y have the same neighborhood in M(B) and that there exists a P4 uvxy with
u ∈ M(B) and v ∈ B. Because B has no P4, we have that v sees z. In addition, if
u sees z, then u, v, z, y, a′B is a bull. Moreover, y and z have the same neighborhood
in M(B). For, if y has more neighbors than z in M(B), then by Rule H1, we have
yz oriented from z to y. If there exists w ∈ M(B) ∩ N(z) − N(y), then w misses
x also and Rule H2 orients xy from y to x, which is a contradiction. Thus we can
apply Rule H2 to the P4 uvzy which forces yz to be oriented from z to y, which is a
contradiction.

Case 3. The edge yz was oriented from y to z by Rule H1. This hypothesis means
that there exists a vertex u in M(B)∩N(z)−N(y). Recall that x and y have the same
neighborhood in M(B). Thus we can apply Rule H2 to the P4 uzyx which forces xy
to be oriented from y to x, which is a contradiction.

Case 4. The edge yz was oriented from y to z by Rule H2. This means that
there exists a P4 uvyz with u ∈ M(B) and that y and z have the same neighborhood
in M(B). Recall that x and y also have the same neighborhood in M(B). Vertex
x misses v or else u, v, x, y, z is a bull. Thus we can apply Rule H2 to the P4 uvyx
which forces xy to be oriented from y to x, which is a contradiction.

In all cases a contradiction arises; so Claim 2 is proved.
Claim 3. The rules produce no circuit.
Proof. By Rule V0, a circuit may occur only inside a box. Without loss of

generality, let us assume that an odd box B contains a circuit C = c1 · · · cr. Observe
that if an edge xy in B is oriented from x to y, then y has at least as many neighbors
as x in M(B) because of Rule H1. Therefore, if somewhere along the circuit two
consecutive vertices ci, ci+1 satisfy N(ci)∩M(B) ⊂ N(ci+1)∩M(B) (where ⊂ denotes
strict inclusion), then necessarily elsewhere on the cycle some two consecutive vertices
cj , cj+1 must satisfy N(cj+1) ∩ M(B) ⊂ N(cj) ∩ M(B). But then this inclusion
contradicts the fact that the edge cjcj+1 is oriented from cj to cj+1. So, all vertices
along C have the same neighborhood in M(B). Moreover, since L(B) has no circuit,
at least one edge of C must have been oriented by Rule H2. So let us assume that
there is a P4 uvc1c2 with u ∈ M(B) and v ∈ B. Since all the vertices of C have the
same neighborhood in M(B), in particular, they all miss u, and v is not one of the
ci’s. Let j be the last subscript such that v misses cj (j ≥ 2). Then uvcj+1cj is a P4

implying that the edge cjcj+1 is oriented from cj+1 to cj , which is a contradiction.
So Claim 3 is proved.

Now the proof of Lemma 2.2 is complete.

4. More about the box partition. Everywhere in this section we reserve the
letter G for a prime bull-free Berge graph that contains a hole. We let k denote the
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232 CELINA M. H. DE FIGUEIREDO AND FRÉDÉRIC MAFFRAY

length of a shortest even hole in G. So there are k nonempty sets V1, . . . , Vk such
that every vertex in Vi sees every vertex in Vi+1 (modulo k) and there is no other
edge between two Vi’s. By [7] G admits a box partition built from the Vi’s. We will
need to use some properties and notation from [7] concerning this box partition. In
particular, the boxes of this partition are classified as either “central” or “peripheral”
with the following properties that will be used here:

(a) If k ≥ 8, every central box is a homogeneous set. (To see this, recall from [7]
that when k ≥ 8 the central boxes are the connected components of the k sets
V1, . . . , Vk. If B ⊆ V1, then the proof of [7, Lemma 3] gives M(B) ⊆ A2, where
A2 is the set of vertices that are adjacent to all of V1 ∪ V3 ∪ · · · ∪ Vk−1; hence
every vertex adjacent to B is adjacent to all of B, and B is a homogeneous
set.)

(b) If k = 6, there are eight sets D1, . . . , D6, A1, A2 such that the central boxes
are exactly the connected components of these eights subgraphs. The sets
D1, . . . , D6 play symmetrical roles; the sets A1, A2 play symmetrical roles.
Moreover, if B is a box in D1 or in A1, then M(B) ⊆ D4 ∪ A2. There are
vertices v2, v6 that see all of D1 ∪A1 and none of D4 ∪A2; there are vertices
v3, v5 that see all of D4 ∪A2 and none of D1 ∪A1; v2v3 and v5v6 are the only
edges between v2, v3, v5, v6.

(c) [7, Lemma 4, Property (v)] In a peripheral box B any two adjacent vertices
have comparable neighborhoods in M(B).

Lemma 4.1. The graph G contains an antihole if and only if it contains a C6.

Proof. The “if” part is trivial. Conversely, suppose that G contains no C6.
Then Lemma 2.2 implies that G is transitively orientable, and hence it contains no
antihole.

When a C4 (a “square”) is denoted uvxy it is understood that ux and vy are the
two nonadjacent pairs.

Definition 4.2 (blocking square). We say that a square uvxy is blocking if u, v
belong to one box B and x, y belong to another box B′. The edges uv and xy are called
the blocking edges of the square. Likewise any edge uv with both endpoints in one box
is called blocking whenever it is one of the two blocking edges of a blocking square.

Remark 2. In Definition 4.2, clearly one of B,B′ is an even box and the other is
an odd box. Clearly too, we have {x, y} ⊆ M(B) and {u, v} ⊆ M(B′).

Lemma 4.3. The graph G contains a C6 if and only if G contains a blocking
square.

Proof. First suppose that G contains a blocking square uvxy with the notation as
in Definition 4.2. Let aB and a′B be the auxiliary vertices for B. Then aB , a

′
B , u, v, x, y

induce a C6.

Conversely, suppose that six vertices u1, u2, . . . , u6 form in G a C6, such that
the nonadjacent pairs are uiui+1 (subscripts here are understood modulo 6). In the
triangle u1, u3, u5 at least two vertices are on the same side of the box partition; say,
u1 and u3 are in one even box B. If both u4, u6 are in an odd box, then u1u3u6u4 is
a blocking square. So let us assume without loss of generality that u4 is in an even
box and hence in B. Then u2 is in an odd box or else u3u1u4u2 would be a P4 in B.
If u5 is on the odd side, then u1u4u2u5 is a blocking square. So let us assume that
u5 is on the even side and hence in B. Then u6 is on the odd side or else u5u3u6u4

would be a P4 in B. But now u3u5u2u6 is a blocking square.

Lemma 4.4. An edge uv in a box B is a blocking edge if and only if the vertices
u, v have incomparable neighborhoods in M(B).
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OPTIMIZING BULL-FREE PERFECT GRAPHS 233

Proof. The “only if” part of the lemma is trivial. Conversely, suppose that u, v
have incomparable neighborhoods in M(B); i.e., there exist a vertex x ∈ M(B) ∩
N(v)−N(u) and a vertex y ∈ M(B)∩N(u)−N(v). Recall that the auxiliary vertex
aB sees both u, v and misses both x, y. Then x must see y or else aB , u, v, x, y would
be a bull. Now uvxy is a blocking square and uv is a blocking edge.

At this point it is useful to recall the graph called H0 in [3] and featured in
Figure 2.
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Fig. 2. The graph H0.

Lemma 4.5. If G contains an antihole, then G contains an H0.
Proof. By the preceding lemmas we may assume that G admits a blocking square

uvxy, with blocking edges uv in a box B and xy in a box B′. So the vertices u, v have
incomparable neighborhoods in M(B). By [7, Lemma 4, Property (v)] as recalled
above, B cannot be a peripheral box. So B is a central box. If k ≥ 8, then item (a)
above implies that B is a proper homogeneous set, which is impossible because u, v
have incomparable neighborhoods in M(B). So we have k = 6, and we may assume,
without loss of generality, that B ⊆ D1 ∪A1, with the notation of item (b). Now we
have

u, v ∈ B ⊆ D1 ∪A1, x, y ∈ B′ ⊆ D4 ∪A2.

Using the vertices v2, v3, v5, v6 whose properties are recalled in (b) above, we note
that vertex v2 sees all of {u, v, v3}, vertex v6 sees all of {u, v, v5}, vertex v3 sees all
of {x, y, v2}, vertex v5 sees all of {x, y, v6}, and there are no other edges between the
vertices u, v, x, y, v2, v3, v5, v6. Hence these eight vertices induce an H0.

The following result will be useful. Recall that, given a homogeneous pair Q1, Q2

in a graph G, we denote by Ti, i = 1, 2, the set of vertices in G \ (Q1 ∪Q2) that see
all of Qi and miss all of Q3−i, by T the set of vertices in G \ (Q1 ∪Q2) that see all of
Q1 ∪Q2, and by Z the set of vertices in G \ (Q1 ∪Q2) that see none of Q1 ∪Q2.

Theorem 4.6 (see [3]). Let G be a bull-free graph that contains an H0 (with the
notation as in Figure 2). Then the following hold.

(i) G contains a homogeneous pair Q1, Q2 such that a, b ∈ Q1, c, d ∈ Q2, e, f ∈
T1, g, h ∈ T2, and G[Q1] and G[Q2] are connected.

(ii) If G is connected and prime, then Z = ∅.
Proof. Part (i) of the theorem is proved in [3, Theorem 2]; it consists in a

polynomial-time algorithm that builds the homogeneous pair Q1, Q2 from a given
H0.

To prove part (ii) suppose on the contrary that Z �= ∅. Since G is connected,
there exists an edge zt with z ∈ Z and t ∈ T ∪T1∪T2. If t ∈ T1, then z, t, a, b, c induce
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234 CELINA M. H. DE FIGUEIREDO AND FRÉDÉRIC MAFFRAY

a bull, which is a contradiction. So we may assume that t ∈ T , and z misses e since
e ∈ T1. Then t sees e, or else z, t, e, a, c would induce a bull. But then z, t, e, a, c, d
induce a broom, which is a contradiction to Lemma 3.2.

5. Proof of Theorem 2.3. Let G be a prime bull-free Berge graph that contains
a hole and an antihole. Recall that we want to prove that (I) the graph G contains
an interesting homogeneous pair Q1, Q2; (II) if H,Q are the two graphs obtained
by decomposing G along an interesting homogeneous pair, then both H and Q are
bull-free Berge graphs; and (III) it is possible to build a solution of the maximum
weighted clique problem on G from a solution of the same problem on H and Q with
appropriately defined vertex-weights.

To prove (I), we need only apply Lemma 4.5 and Theorem 4.6 above.
Now let us prove (II). Let abcd be a square with edge ab in Q1 and edge cd in

Q2. Here again Ti (resp., T ) is the set of vertices of G \ (Q1 ∪Q2) that see all of Qi

and none of Q3−i (resp., all of Q1 ∪Q2), and Z = V \ (Q1 ∪Q2 ∪ T1 ∪ T2 ∪ T ); i.e.,
no vertex of Z sees any of Q1 ∪Q2.

Recall that the graph H is obtained from G \ (Q1 ∪ Q2) by adding vertices
u1, u2, s1, s2, edges u1s1, u2s2, u1s2, u2s1, s1s2, and edges tui, tsi for each i and each
vertex t ∈ Ti ∪ T .

Lemma 5.1. H is perfect and bull-free.
Proof. Call G∗ the subgraph of G induced by V \ ((Q1 \ {a, b}) ∪ (Q2 \ {c, d})).

Observe that H \ s1s2 is isomorphic to G∗.
First we prove that H is perfect. Consider any induced subgraph H ′ of H. If

H ′ contains at most one of u1, s1 and at most one of u2, s2, then H ′ is isomorphic
to one of the subgraphs G∗ \ {a, c}, G∗ \ {a, d}, so H ′ is perfect. Suppose now by
symmetry that H ′ contains both u1 and s1. Note that s1 dominates u1 in H (i.e.,
NH(u1) ⊂ NH(s1)∩{s1}), and thus also in H ′. It is well known (see, e.g., [11]) that a
minimally imperfect graph cannot contain a pair of vertices such that one dominates
the other. So all induced subgraphs of H are perfect, including H itself.

Now suppose that H contains a bull B. It is easy to see that any induced subgraph
of H that contains none of the two triangles formed by u1, s1, s2 and u2, s1, s2 is
contained in one of the subgraphs G∗ \ {a, c}, G∗ \ {a, d} and thus cannot be a bull.
So we may assume by symmetry that B contains the triangle u1, s1, s2. Now B
must have a vertex adjacent to exactly one of u1, s1 and not adjacent to s2. But H
contains no such vertex since u2 is the only vertex adjacent to exactly one of u1, s1.
This completes the proof of the lemma.

Since Q is the subgraph of G induced by Q1 ∪Q2, the next claim is obvious.
Claim 4. Q is perfect and bull-free.
We now prove part (III) of Theorem 2.3. Let us denote by w(x) the weight of

a vertex x in G. Define weights for vertices in H as follows. Denote by ω(X) the
maximum weight of a clique in X, and set

wH(u1) = wH(u2) = ω(Q1) + ω(Q2) − ω(Q1 ∪Q2),

wH(s1) = ω(Q1 ∪Q2) − ω(Q2),

wH(s2) = ω(Q1 ∪Q2) − ω(Q1),

wH(x) = w(x) ∀x ∈ G \ (Q1 ∪Q2).

Say that a set X of vertices in H is of type 0 if X ∩ {u1, s1, u2, s2} = ∅, of type 1 if
X∩{u1, s1} �= ∅ and X∩{u2, s2} = ∅, of type 2 if X∩{u1, s1} = ∅ and X∩{u2, s2} �= ∅,
and of type 3 if X ∩ {u1, s1} �= ∅ and X ∩ {u2, s2} �= ∅.
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OPTIMIZING BULL-FREE PERFECT GRAPHS 235

Let q be the maximum weight of a clique in H with respect to the weighting wH ,
and let CH be a clique of weight q. We can transform CH into a clique CG of weight
q in G as follows. If CH is of type 0, set CG = CH . If CH is of type i ∈ {1, 2}, let CG

be the union of CH \ (Q1 ∪Q2) and of a clique of size ω(Qi) in Qi. If CH is of type 3,
let CG be the union of CH \ (Q1 ∪Q2) and of a clique of size ω(Q1 ∪Q2) in Q1 ∪Q2.

Lemma 5.2. We have ω(G) = q and CG is a maximum weighted clique of G.
Proof. We need only exhibit a q-weighted coloring of G: that will prove both that

the clique CG defined above for G is maximum and that this coloring has minimum
weight. The proof of this lemma is essentially the weighted version of the proof of [3,
The Homogeneous Pair Lemma].

Recall that q = ω(H). So there exists a weighted coloring of H of total weight
q, that is, a collection of stable sets SH

1 , . . . , SH
t of H with corresponding weights

W (SH
1 ), . . . ,W (SH

t ), such that
∑

{W (SH
i ) | SH

i � x} = wH(x) (∀x ∈ H)

and W (SH
1 ) + · · · + W (SH

t ) = q. Split the subscripts 1, 2, . . . , t into sets I0, I1, I2, I3
by writing j ∈ Ii if and only if SH

j is of type i. Thus

wH(ui) ≤
∑

{W (SH
j ) | j ∈ Ii ∪ I3},

wH(si) ≤
∑

{W (SH
j ) | j ∈ Ii}.

In addition, since ui and si are adjacent,

wH(ui) + wH(si) ≤
∑

{W (SH
j ) | j ∈ Ii ∪ I3}.

Define a graph F by adding to the subgraph Q = G[Q1 ∪ Q2] adjacent vertices
x1, x2 and edges xiy for all vertices y in Qi (i = 1, 2). Note that F is isomorphic to
the subgraph of G induced by Q1 ∪Q2 ∪ {t1, t2}, where t1 ∈ T1, t2 ∈ T2, and t1t2 is
an edge of G; such vertices exist because Q1, Q2 is an interesting homogeneous pair.
So F is a perfect graph. Define a weight function WF on the vertices of F as follows:

wF (x1) =
∑

{W (SH
j ) | j ∈ I2},

wF (x2) =
∑

{W (SH
j ) | j ∈ I1},

wF (y) = w(y) (∀y ∈ Q1 ∪Q2).

We have

wF (x1) + ω(Q1) = wF (x1) + wH(u1) + wH(s1)

≤
∑

{W (SH
j ) | j ∈ I1 ∪ I2 ∪ I3},

and similarly

wF (x2) + ω(Q2) = wF (x2) + wH(u2) + wH(s2)

≤
∑

{W (SH
j ) | j ∈ I1 ∪ I2 ∪ I3}.

In addition,

ω(Q1 ∪Q2) = wH(u1) + wH(s1) + wH(s2)

≤
∑

{W (SH
j ) | j ∈ I1 ∪ I2 ∪ I3}.
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236 CELINA M. H. DE FIGUEIREDO AND FRÉDÉRIC MAFFRAY

Hence each clique CF has weight at most qF =
∑

{W (SH
j ) | j ∈ I1 ∪ I2 ∪ I3}.

Since F is perfect, there exist a family of stable sets SF
1 , . . . , SF

r of F and weights
W (SF

1 ), . . . ,W (SF
r ) such that

W (SF
1 ) + · · · + W (SF

r ) ≤ qF

and
∑

{W (SF
j ) | x ∈ SF

j } = wF (x) (∀x ∈ F ).

Since x1 and x2 are adjacent, no SF
j contains both x1, x2. The definition of

wF (x1) implies

∑
{W (SF

j ) | x1 ∈ SF
j } =

∑
{W (SH

j ) | j ∈ I2},

and similarly for x2.
Now we build a family of stable sets of G by “merging” the families of stable

sets of H and of F defined above. This is done as follows: First we merge the family
{SH

i | i ∈ I1} with the family of those stable sets SF
j that cover x2. Note that the

total weight is the same for both families, by the definition of wF (x2), though the
individual weights may be different. Also, each set (SF

j ∩(Q1∪Q2))∪(SH
i \(Q1∪Q2))

is a stable set, because the choice of j, i is such that SF
j covers x2 and i ∈ I1.

Merging procedure. Take the heaviest set S of the two families (say, the first
family), then take the heaviest set T of the second family, and merge them. That is,
make the set S ∪ T \ {u1, s1, x2}; remove S and T from their respective families; if
the weight α of S is strictly larger than the weight β of T , put a copy of S in the first
family with weight α − β; repeat with the remaining families until they are emptied
out. Clearly, at the end of each step of the merging subroutine at least one of the
two families has one less element, so the merging procedure produces a finite family
of stable sets of G (more precisely, the total number of steps, and thus of merged sets
that are created, is at most the total size of the two families).

Likewise, we merge the family {SH
i | i ∈ I2} with the family of stable sets SF

j

covering x1. Note that these two families have the same total weight, by the definition
of wF (x1).

Likewise, we merge the family {SH
j | j ∈ I3} with the remaining family of stable

sets SF
j (i.e., those stable sets SF

j that do not cover any of x1, x2).
Finally, the three families of stable sets produced by the mergings above, plus

the family {SH
j | j ∈ I0}, form a family S1, . . . , St of stable sets of G with weights

W (S1), . . . ,W (St), such that

∑

Si�vj

W (Si) = w(vj) (∀vj).(3)

Since the total weight of S1, . . . , St is q, these stable sets form a minimum weighted
coloring of G, and this certifies that CG is a maximum weighted clique of G.

This completes the proof of Lemma 5.2 and of Theorem 2.3.

6. The algorithm. We can now present the algorithm BFCLIQUE, which, given
a bull-free Berge graph G = (V,E) with a weight w(x) on each vertex x, finds in
polynomial time a maximum weighted clique of G. Along with the description of the
algorithm it is convenient to maintain a decomposition tree TG associated with G.
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OPTIMIZING BULL-FREE PERFECT GRAPHS 237

Step 1. In a first phase, we test whether G has any nontrivial homogeneous set.
Determining the homogeneous sets of a graph is a problem that is essentially solved by
the theory of modular decomposition; see, in particular, [4, 6, 17], stemming from the
seminal work of Gallai [9, 16]. This theory is rich and complex, and we outline only
the aspects that will be used here. Say that a homogeneous set S is strong if every
homogeneous set S′ satisfies S′ ⊆ S or S ⊆ S′ or S′∩S = ∅. It is known [9, 16] that the
strong homogeneous sets form a nested family, and so there are at most 2n of them,
including V and every singleton {v} (v ∈ V ). One can associate with every graph
G a unique rooted tree MG defined as follows. Let X1, . . . , Xr be the (inclusionwise)
maximal strong homogeneous sets of G, and let G′ be the graph obtained from G by
contracting each Xi into one vertex xi. The root of MG is G, and the children of node
G in MG are the graphs G[X1], . . . , G[Xr], G

′. For each i = 1, . . . , r, the subtree of
MG rooted at node G[Xi] is the tree MG[Xi] defined recursively. As for G′, it follows
from the theory of modular decomposition that G′ is a clique, or an edgeless graph,
or a prime graph, so G′ is a leaf of MG. This tree is called the modular decomposition
tree of G and can be computed in time linear in the number of edges of G [4, 6, 17].

To obtain a maximum weighted clique for G, we can follow this tree from the
bottom up. Assume that we have a maximum weight clique Q(Xi) for each graph
G[Xi]. We then assign the weight of Q(Xi) to vertex xi in G′. We then apply the
algorithm BFCLIQUE (step 2) on G′ and obtain a clique Q′ of maximum weight in
G′. From Q′ we can obtain a clique Q of G by replacing any xi that lies in Q′ by the
vertices of Q(Xi). Then Q is a maximum weighted clique of G. (To see this, take a
minimum weighted coloring for each of the G[Xi]’s, of weight ω(G[Xi]) since G[Xi] is
perfect, and for G′, of weight ω(G′) since G′ is perfect, and merge them in the obvious
way; thus a weighted coloring is obtained for G, whose weight is the weight of Q.)

This first step shows that the computation of a maximum clique for G by BF-
CLIQUE is reduced to calls of BFCLIQUE on at most n graphs (the leaves of the
modular decomposition tree). We represent this situation in the associated tree TG

by saying that if G has a nontrivial homogeneous set, then the children of node G in
TG are the leaves of the modular decomposition tree MG. In that case we say that
node G is a modular node of TG.

Step 2. We are now dealing with a bull-free Berge graph K that is a clique, or
an edgeless graph, or a prime graph. We use the algorithm from [7], whose output is
one of the following cases.

2.1. K is weakly triangulated. We use the algorithm due to Hayward, Hoàng, and
Maffray [14] to produce a maximum weighted clique of K; it is strongly polynomial
and its time complexity is O(n4m). Since K is not subject to a decomposition, node
K is a leaf of TG.

2.2. K contains an even hole and the algorithm produces a box partition for K,
and there is no blocking square with respect to this partition. Lemmas 4.1 and 4.3,
Theorem 2.1, and Lemma 2.2 imply that K is transitively orientable. A transitive
orientation can be found in linear time using the algorithm in [17]. A maximum
weighted clique and a minimum weighted coloring can be found using the algorithm
in [15], which is strongly polynomial and whose time complexity is O(nm). Here too,
node K is a leaf of TG.

2.3. K contains an even hole and the algorithm produces a box partition for K,
and there is a blocking square. Then Lemmas 4.1 and 4.5, and Theorem 2.3 imply
that we can decompose K into the two graphs H and Q as above. The proof of part
(III) of Theorem 2.3 describes how to obtain a solution to our problem on K from
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a solution of the same problems on each of H,Q. Therefore, H and Q are the two
children of node K in the tree TG. We will say that node K is an H0-node of TG.

2.4. K contains no even hole, its complementary graph K contains an even hole,
and the algorithm produces a box partition for K. Then K is a leaf of TG. Lemmas 4.3
and 4.1, Theorem 2.1, and Lemma 2.2 imply that K is transitively orientable. A
transitive orientation of K can be found rapidly using the algorithm in [17]. Finding
a maximum weighted clique and a minimum weighted coloring for K is equivalent to
finding a maximum weighted stable set and a minimum weighted clique covering for
the transitively orientable graph K; this problem can be solved in strongly polynomial
time by the algorithm described in [2]. Here too, node K is a leaf of TG.

7. Complexity analysis. As noted several times, each step of the algorithm
can be done in polynomial time. So, in order to prove polynomiality of the whole
algorithm, we need only establish the following lemma.

Lemma 7.1. There is a polynomial number of nodes in the tree TG.

Proof. Let n and m be the number of vertices and edges in G. There are two types
of nonleaf nodes in TG: modular nodes and H0-nodes. Let β(G), β1(G), β0(G) be,
respectively, the number of nodes, of modular nodes, and of H0-nodes in TG. Note that
each node of TG has no more vertices than its parent. (The “H” child of an H0-node
K may have exactly as many vertices as K; this happens if its sibling the “Q” child of
K has exactly four vertices.) Thus every node of TG has at most n vertices. So each
node has at most n children, and β(G) ≤ n(β0(G)+β1(G)). The principle of modular
decomposition implies that the parent of a modular node is an H0-node. Since each
H0-node has exactly two children, we see that β1(G) ≤ 2β0(G) + 1. Therefore,
β(G) ≤ n(3β0(G) + 1), and we need only prove that β0(G) is a polynomial of n. Our
counting argument now focuses on the subgraphs (of nodes of TG) that induce a 2K2,
i.e., a graph on four vertices with two nonincident edges. We want to see how the
number of 2K2’s evolves along TG.

First, suppose that K is a modular node of TG. Then it is a routine matter to
check that the total number of 2K2’s that are induced in its children in MG is not
larger than the number of 2K2’s induced in K, and thus that the same holds with
respect to the children of K in TG.

Second, suppose that K is an H0-node of G, decomposed along an interesting
homogeneous pair Q1, Q2 (with the notation T1, T2, T, Z as usual), and call H,Q the
two children of K in the tree. Let us prove that in total H and Q have strictly fewer
2K2’s than K. For this purpose let us define a one-to-one mapping f that maps every
subgraph D that induces a 2K2 in H or Q to a subgraph f(D) that induces a 2K2

in K. If D is in Q, then set f(D) = D. If D is in H, we observe that D does not
have an edge with an endvertex in {u1, s1} and the other in {u2, s2}, for otherwise
the remaining two vertices of D should be in Z, which is a contradiction to (ii) of
Theorem 4.6. Therefore, if D is in H, we let f(D) be the 2K2 of K obtained from
D by replacing u1, s1, s2, u2 (whichever appear in D), respectively, by a, b, c, d. It is a
routine matter to check that f is indeed a one-to-one mapping. Moreover, the 2K2 of
G induced by b, c, e, h is not the image f(D) of any 2K2 D of H or Q. This ensures
that H and Q have in total strictly fewer 2K2’s than K.

Now let T ′
G be the tree obtained from TG by contracting each node that is not an

H0-node with its parent. The number of nodes of T ′
G is β0(G) (if G is an H0-node)

or β0(G) + 1 (if G is a modular node). The preceding two paragraphs imply that the
total number of 2K2’s at a given level of T ′

G decreases strictly as the level is farther
from the root (viewed as level 0), with the only possible exception of the first level
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if G is an H0-node. This implies that the number of nodes in T ′
G is bounded by the

number of 2K2’s in G plus 1, which is O(m2).

With this final claim, we obtain that the total number of recursive calls to the
algorithm is at most O(m2). It follows that the algorithm is strongly polynomial,
with worst-case complexity O(n5m3).

Let us conclude with a remark. The proof of Lemma 5.2 shows how a minimum
weighted coloring can be found directly from a minimum weighted coloring of H and
of the graph F defined in Lemma 5.2. This method could be the basis for a coloring
algorithm that does not involve n4 calls to the maximum weighted clique algorithm
as mentioned in the introduction. However, this method leads to a decomposition
algorithm in which a node K that contains an H0 must be decomposed into three
graphs H,Q,F . In that case, note that the vertices of Q also appear in F , and so we
cannot guarantee that the total number of nodes of the decomposition tree remains
polynomial in the size of the root graph.
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