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Abstract. The Clay Mathematics Institute has selected seven Mil-
lennium Problems to motivate research on important classic ques-
tions that have resisted solution over the years. Among them is the
central problem in theoretical computer science: the P versus NP
problem, which aims to classify the possible existence of efficient so-
lutions to combinatorial and optimization problems. The main goal
is to determine whether there are questions whose answer can be
quickly checked, but which require an impossibly long time to solve
by any direct procedure.
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A gift to Mathematics from Computer Science

One of the seven Millennium Problems selected by the Clay Mathe-
matics Institute is the P versus NP problem, a central problem in theoret-
ical computer science: Are there questions whose answer can be quickly
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checked, but which require an impossibly long time to solve by any direct
procedure?

Given n cities to visit by car, how can one do this without visiting a city
twice? If you give me a permutation of the cities, I can easily check that it
is correct. But no general method is known to find a correct permutation
so easily. Given a map with n countries, how can one properly colour the
map with three colours such that neighbouring countries receive different
colours? If you give me a coloured map, I can easily check that the solution
is correct. But no general method is known to find a proper colouring with
three colours so easily. In both situations, one is seeking an object which
lies somewhere in a large space of possibilities. As n grows, the space
of possibilities gets extremely large, and searching by brute force would
require an impossibly long time. The P versus NP problem asks whether,
in general, a method which avoids brute force exists.

The 2023 ACM A.M. Turing award for foundational contributions to
the theory of computation for Avi Wigderson follows his 2021 Abel prize,
together with László Lovász, for their foundational contributions to theo-
retical computer science and discrete mathematics, and their leading role
in shaping them into central fields of modern mathematics.

The unprecedented recognition given to Avi Wigderson, who now holds
the Abel prize, often referred to as the Nobel prize for Mathematics,
and the Turing award, often referred to as the Nobel prize for Computer
Science, gives attention to the P versus NP problem, considered by Avi
Wigderson “a gift to Mathematics from Computer Science”.

Abel and Turing

The Abel prize is directly modeled after the Nobel prizes and was pro-
posed by the King of Norway since Alfred Nobel had not included Math-
ematics, but the dissolution of the union between Sweden and Norway in
1905 postponed the prize to 2002, to celebrate the two-hundredth anniver-
sary of the Norwegian mathematician Niels Henrik Abel (1802–1829). The
laureates for fundamental contributions to discrete mathematics and the-
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oretical computer science include in 2012 Endre Szemerédi, a coauthor of
the Brazilian Yoshiharu Kohayakawa of University of São Paulo [1], and
more recently in 2021 László Lovász and Avi Wigderson [7].

Today is more difficult to distinguish pure and applied Mathemat-
ics, and the lives of the two pioneers of the theory of computation who
have recently won in 2021 the prestigious honours in Mathematics witness
a two way street between Mathematics and Computer Science. László
Lovász (1948, Budapest) grew up a talented child competing at solving
hard problems inspired by Paul Erdős, the most prolific mathematician of
the modern era. László Lovász focused on the mathematics of discrete ob-
jects, interested in basic research as well as in its applications, and worked
as a full-time researcher at Microsoft for seven years in between academic
positions. Avi Wigderson (1956, Haifa) on the other hand studied Com-
puter Science in Israel and the United States and held various academic
positions before moving to the Institute for Advanced Study, Princeton, in
1999, where he is ever since. Avi Wigderson contributed to practically all
areas of computer science, in which he attacked any problem with whatever
mathematical tools he could find, even from distant fields of study.

The ACM A. M. Turing Award, also an annual prize, is given since
1966 by the Association for Computing Machinery (ACM) and is named
after the British mathematician Alan Mathison Turing (1912–1954). The
laureates in theoretical computer science include in 1974 Donald Knuth,
a coauthor of the Brazilian Jayme Szwarcfiter of the Federal University of
Rio de Janeiro [15], for his contributions to the analysis of algorithms, in
1982 Stephen Cook for the understanding of the complexity of computa-
tion, in 1985 Richard Karp for contributions to the theory of algorithms,
polynomial-time computability and NP-completeness, and 1986 Robert
Tarjan for the design and analysis of algorithms and data structures. This
year, the mathematician Avi Wigderson was nominated for harnessing ran-
domness and for reshaping our understanding of the role of randomness in
computation.

Avi Wigderson started exploring the relationship between randomness
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and computers in the 80s, before the internet existed, attracted to ideas he
worked on by intellectual curiosity, rather than how they might be used.

One of the unexpected ways in which Avi Wigderson’s ideas are now
widely used is on zero-knowledge proofs, interactive protocols used by a
prover to convince a skeptical verifier without revealing the proof. Two
people want to establish trust without sharing information, and zero-
knowledge proofs detail ways of verifying information without revealing
the information itself1.

Hilbert, Gödel, Turing, and von Neumann

The Clay Institute was inspired by the set of twenty-three problems
proposed by the mathematician David Hilbert in Paris in 1900 as a pro-
gram to drive the progress of mathematics in the twentieth century. The
Clay Millennium Prize Problems were announced in Paris in 2000 but
unlike Hilbert’s problems, the seven prize problems selected by the Clay
Institute were already renowned among professional mathematicians, with
many actively working towards their resolution. Only one problem se-
lected by the Clay Institute belonged to David Hilbert’s list: the Riemann
hypothesis. Only one problem selected by the Clay Institute has no asso-
ciated mathematician: the P versus NP problem.

David Hilbert had a two-part dream: everything that is true in Math-
ematics is provable, and everything that is provable can be automatically
computed. In 1931, Kurt Gödel proved his incompleteness theorems about
the limits of what if provable, establishing that no matter how hard you
try, your set of axioms will always be incomplete, they will not be sufficient
to prove all true facts.

In 1936, Alan Turing proved that a general solution of Hilbert’s entschei-
dungsproblem is impossible, by introducing his Turing machine, which
captures the idea of effective procedure and sets the standard of what
can be computed. The Turing machine is a universal model, in a single
machine you can have as part of the data the program you want to run.

1Avi explains https://www.youtube.com/watch?app=desktop&v=5ovdoxnfFVc

https://www.youtube.com/watch?app=desktop&v=5ovdoxnfFVc
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The unsolvable problem of determining from a description of an arbitrary
computer program and its input whether the program will finish running
is known as Turing’s halting problem.

Gödel and Turing proved that Hilbert’s dreams were unattainable, but
in doing so gave birth to the theoretical foundations of computation and
algorithms. In 1956, Kurt Gödel wrote to John von Neumann about the
time required on a Turing machine to test whether a formula in the pred-
icate calculus has a proof of length n. In the 40s and 50s, Alan Turing
and John von Neumann played a major role in the early development of
computers.

The Turing machine is the standard computer model in computability
theory, the necessary formal model of a computer to define the P versus
NP problem precisely. Although the model was introduced before physi-
cal computers were built, it nevertheless continues to be accepted as the
proper computer model for the purpose of defining the notion of com-
putable function.

Cook, Karp, Knuth and Wigderson

Stephen Cook and Richard Karp brought order into chaos by formaliz-
ing a very natural class of problems. In every undertaking that we embark
on, we assume that when we find what we are looking for, we know that
we have found it. This is the very definition of NP: a problem is in NP
exactly if you can check if the solution you got is correct [5].

Alan Turing showed that testing whether an assertion has a proof is
algorithmicaly unsolvable. The P versus NP question can be viewed as a
more finitary version of the entscheidungsproblem. Suppose we wish to
test whether an assertion has a short proof. Of course this can be solved
by a brute force algorithm, but can it be done efficiently?

Stephen Cook’s 1971 paper The complexity of theorem proving [3],
followed by Richard Karp’s 1972 paper Reducibility among combinatorial
problems [13], formalized the complexity of problems through the defini-
tion of the classes of problems NP and P. The key complexity concept
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is the asymptotic behaviour of algorithms, given by a function describing
the growth of the number of steps taken by an algorithm as a function of
the size of an arbitrary input. The theory of NP-completeness restricts
attention to decision problems: those having a yes/no solution.

An algorithm solves a problem in polynomial time if its associated
complexity function is a polynomial, which says that its complexity growth
is bounded by a fixed power of the size of the input. The class P consists of
the problems that admit a polynomial-time algorithm. The class P refers
to decision problems that can be solved by a deterministic polynomial-
time algorithm that given an arbitrary input after a polynomial number
of steps deterministically always returns the same yes/no correct answer.

A non-deterministic algorithm can exhibit different behaviours on dif-
ferent runs. We view a non-deterministic algorithm as being composed
of two separate stages, the first being a guessing stage and the second a
checking stage. Given a problem input, the first stage guesses some struc-
ture. We then provide both input and structure to the checking stage
which proceeds to compute in a deterministic manner, either answering
yes or no. A non-deterministic algorithm solves a problem in polynomial
time if for every input there is some guessed structure that leads the de-
terministic checking stage to answer yes in polynomial time. The class NP
consists of the problems that admit a polynomial-time non-deterministic
algorithm.

The class P is symmetric, since having a fast algorithm to determine
whether an object has a property C is equivalent to having a fast algorithm
to determine whether an object does not have a property C.

The class NP is asymmetric, since it requires a short certificate that
a given object has property C, but does not require a short certificate
that a given object does not have property C. For the problem of proper
colouring a map with three colours, a proper colouring with three colours
is a short certificate but there is no short certificate for the inexistence of
such a colouring. A correct permutation of the cities such that from one
city we are able to visit the next city directly without visiting a city twice
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is also a short certificate but there is no short certificate for the inexistence
of such a correct permutation.

The polynomial-time non-deterministic algorithm captures the notion
of polynomial-time verifiability. A non-deterministic algorithm always
produces on a given input the same answer yes or no. By definition,
a deterministic polynomial-time algorithm is a particular case of a non-
deterministic polynomial-time algorithm, which implies that the class NP
contains the class P. The prize problem asks whether NP and P are equal
classes of problems.

Stephen Cook used the concept of polynomial-time reduction to relate
the complexity of problems in the class NP. He proved that the problem in
logic Satisfiability is a complete problem by proving that every problem is
NP admits a polynomial-time reduction to Satisfiability. It means that if
a polynomial-time algorithm is found to Satisfiability, then every problem
in the class NP also admits a polynomial-time algorithm. Subsequently,
Richard Karp proved that 21 well known problems are also complete in
the class NP, by defining for each of the 21 problems a polynomial-time
reduction from the complete problem Satisfiability. It means that if a
polynomial-time algorithm is found to one of Cook-Karp’s complete prob-
lems, then P = NP.

Donal Knuth in 1974 [14] asked the community for a suitable name
for a problem at least as difficult to solve in polynomial time as those of
Cook-Karp class NP. Knuth suggested the names Herculean, Formidable
or Arduous, but the winning write-in vote was NP-hard and NP-complete,
put forward by several people at Bell Labs. Two if them, Michael R. Garey
and David S. Johnson, wrote the book Computers and Intractability – A
Guide to the Theory of NP-Completeness [9].

We now know thousands of problems that we want to solve, in logic,
in number theory, in combinatorics, in optimization, and so on, that are
equivalent, because they are all proved to be NP-complete. We have these
two classes that seem separate, the class P of problems that admit a
polynomial-time algorithm, and the class NP-complete of problems that
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admit a non-deterministic polynomial algorithm and such that every prob-
lem in NP is polynomial-time reduced to it. It is almost a dichotomy: most
problems we want to solve are either in P or in NP-complete. Whether
these two classes are equal or not is the P versus NP question; and all we
need to know is the answer to one of the NP-complete problems.

To mark the 40th anniversary in 2012 of the publication of Karp’s
paper, where the wide applicability of the NP-completeness concept was
established, David S. Johnson wrote the paper A Brief History of NP-
Completeness [12]. The year 2012 also marked the 100th birthday of Alan
Turing, whose Turing machine is the basic model for computation used to
define the classes P and NP [11]. A paper was written to mark the 40th
anniversary in 2019 of the publication of the NP-completeness guide [2].

To mark the 50th anniversary in 2021 of the publication of Cook’s
paper, the Communications of the ACM published the paper Fifty years
of P vs. NP and the possibility of the impossible, where Lance Fortnow
argues how advances in algorithms, machine learning, and hardware can
help tackle many NP-hard problems once thought impossible [8]. Vijaya
Ramachandran in her a Millennium Lecture about P versus NP remarks
that NP-complete does not mean that the problem is intractable, although
it was often seen as a barrier to the existence of efficient algorithms2.
The theory that proposes the millennium problem helps to understand the
fundamental computational limitations. A question of theoretical interest
explains the practical difficulty of problems formulated throughout the
scientific community.

Donald Knuth and Avi Wigderson have opposed views regarding the
possible equality of the classes of problems P and NP. On one hand, Avi
Wigderson has the intuition that P is not equal to NP, since one may easily
check whether a given proof of a theorem is correct and to actually find
the proof may be much harder. On the other hand, Donald Knuth has the
intuition that P is equal to NP, since there are proofs of existence of algo-
rithms that are not constructive, the proof of existence do not necessarily

2watch https://www.claymath.org/lectures/p-versus-np/

https://www.claymath.org/lectures/p-versus-np/
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provide the algorithm. Donald Knuth, in a recent interview3, questions
that to actually find an algorithm is not necessarily easier than to prove
that the algorithm does not exist.

Discrete Mathematics, Theoretical Computer Science and
Randomized Algorithms

We can look at Avi Wigderson as following the steps of the compu-
tational complexity pioneers. We shall next describe the areas of Mathe-
matics that Avi Wigderson brought to the center of modern mathematics,
and how he revolutionized our understanding of the role of randomness in
computation and the way we see the P versus NP problem.

A change occurred in the attitude of mainstream Mathematics towards
the areas of Discrete Mathematics and Theoretical Computer Science. The
notions of computational classes of P and NP became central, nowadays
the whole of Mathematics can be viewed through effective computation
and short proofs of existence.

According to the Mathematics Subject Classification4, the area of Dis-
crete Mathematics appears as 68R, a subarea of Computer Science [16].
The area of Combinatorics appears as 05, a branch of mathematics that
plays crucial role in computer science, since digital computers manipu-
late discrete, finite objects [18]. The subarea of Graph Theory, known
as the mathematics of connectivity, appears as 05C [19]. Combinatorial
methods give analytical tools for the analysis of worst-case and expected
performance of algorithms.

Concrete Mathematics, according to Graham, Knuth, and Patash-
nik [10] is a complement to abstract mathematics, a blend of continuous
and discrete mathematics.

Theoretical Computer Science studies the power and limitations of
computing and has two complementary sub-disciplines. Algorithm Design
that develops efficient methods for computational problems, and Compu-

3watch https://www.youtube.com/watch?v=XDTOs8MgQfg
4see https://mathscinet.ams.org/mathscinet/msc/msc2020.html

https://www.youtube.com/watch?v=XDTOs8MgQfg
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
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tational Complexity that shows limitations on the efficiency of algorithms.
Discrete Mathematics and Theoretical Computer Science are allied fields:
the study of graphs, strings, permutations are central to Theoretical Com-
puter Science [4].

Computing technology is made possible by algorithms, understanding
the principles of powerful and efficient algorithms deepens our understand-
ing of computer science, and also of the laws of nature since any natural
process is an evolution which can be viewed as computation.

Computers are deterministic: the set of instructions of an algorithm
applied to its input determines its computation and its output. The world
we live in is full of random events that lack predictability, or a well-defined
pattern. Computer scientists allow algorithms to make random choices to
improve their efficiency. A randomized algorithm flips coins to compute a
solution that is correct with high probability [6].

Both non-deterministic and randomized algorithms are not determinis-
tic, but in different ways. A non-deterministic algorithm always produces
on a given input the same answer yes or no. A randomized algorithm on
a given input will answer yes or no with a certain probability, so on one
run it might answer yes and on another it might answer no.

Two paradigms of randomized algorithms can be seen through the
fastest algorithms for the well known problems of Sorting and Primality [4].
A Las Vegas randomized algorithm always returns a correct answer but
its running time depends on the input. The Quicksort algorithm always
returns a sorted sequence, but its time depends on the choice of a pivot.

A Monte Carlo randomized algorithm always returns an answer in the
same time, but the answer may be incorrect with a certain small proba-
bility. The Primality Test that uses a necessary condition for a number
to be prime always returns an answer in the same time, but the answer
is definitely correct only if the input fails to satisfy the necessary condi-
tion (in that case, we definitely know the input is composite), otherwise if
the input does satisfy the necessary condition the input may be composite
with a small probability.
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It is natural to believe that having randomness is much more powerful
than not having it, but Avi Wigderson asked how necessary randomness
was for efficient problem solving. Avi Wigderson revolutionized our un-
derstanding of the role of randomness in computation by establishing that
the need for randomness is tied to the computational difficulty of the prob-
lem [17].

Avi Wigderson established sufficient conditions to ensure that every
randomized polynomial-time algorithm can be efficiently derandomized,
made fully deterministic, establishing a trade-off between hardness versus
randomness: If there exists a hard enough problem, then randomness can
be simulated by efficient deterministic algorithms; conversely, efficient de-
terministic algorithms even for specific problems with known randomized
algorithms would imply that there must exist such a hard problem.

Are you a mathematician or a computer scientist?

As soon as Avi Wigderson was named in April 2024 by the Associa-
tion for Computing Machinery (ACM) as the recipient of the 2023 ACM
Turing Award, he was interviewed by David Nirenberg, the director of
the Institute for Advanced Study, Princeton, where Avi Wigderson works
at the School of Mathematics. The director holds Avi Wigderson’s book
Mathematics and Computation: A Theory Revolutionizing Technology
and Science [20], an introduction to computational complexity theory, the
mathematical study of efficient computation that has evolved into a highly
interdisciplinary field, its connections and interactions with mathematics,
and its central role in the natural and social sciences, technology, and
philosophy.

After congratulating his colleague, the director asks Avi Wigderson,
who now holds the highest recognitions for lifetime achievement in Mathe-
matics and in Computer Science: “Are you a mathematician or a computer
scientist?”. Avi Wigderson answers that he is both a mathematician and a
computer scientist, since he studies the mathematical foundations of com-
puting, he proves theorems to understand computation and computational
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processes also in nature. The director then asks: “After winning the Abel
prize, which is considered the Nobel prize for Mathematics, and the Turing
award, which is considered the Nobel prize for Computer Science, which
natural science do you think is more amenable to give the Nobel prize
for applications of innovations of computing?”. Avi Wigderson answers
that it is conceivable that a Nobel prize goes to innovations of computing,
since every evolution process in nature can be studied as a computational
process.

Avi Wigderson feels lucky to be part of such a dynamic community, and
I feel lucky to have the opportunity given by the Bienal de Matemática
2024 to speak about Avi Wigderson’s favorite problem, in the year his
contributions have attracted so much attention, thanks to the prizes he
has recently won.
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