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Mathematician wins Turing award for harnessing randomness

Wigderson started exploring the
relationship between randomness and
computers in the 1980s, before the
internet existed, attracted to ideas he
worked on by intellectual curiosity,
rather than how they might be used

One of the unexpected ways in which
his ideas are now widely used was on
zero-knowledge proofs, which detail
ways of verifying information without
revealing the information itself

read Quanta Magazine
watch Zero Knowledge Proof

https://www.quantamagazine.org/avi-wigderson-complexity-theory-pioneer-wins-turing-award-20240410/
https://www.youtube.com/watch?app=desktop&v=5ovdoxnfFVc


Abel prize celebrates union of Mathematics and Computer Science

Two pioneers of the theory of computation
have won one of the most prestigious
honours in mathematics

Since the advent of computers in the
twentieth century, the emphasis in research
has changed from ‘can an algorithm solve
this problem?’ to ‘can an algorithm, at
least in principle, solve this problem on an
actual computer and in a reasonable time?’

read Abel interview 2021

https://euromathsoc.org/magazine/articles/54


Today is more difficult to distinguish pure and applied mathematics

Mathematics → Computing
László Lovász (1948, Budapest) grew up a talented child
competing at solving hard problems Early inspiration
from Paul Erdos, prolific mathematician of the modern
era, who focused on the mathematics of discrete objects
Interested in basic research as well as in its applications,
worked as a full-time researcher at Microsoft for seven
years in between academic positions

Computing → Mathematics
Avi Wigderson (1956, Haifa) studied in Israel and the
United States and held various academic positions before
moving to the IAS in 1999, where he is ever since.
Contributed to practically all areas of computer science,
in which he attacked any problem with whatever
mathematical tools he could find, even from distant
fields of study



Abel prize – The Nobel for Mathematics

Laureates since 2003 in DM and TCS

2012 Endre Szemerédi – fundamental contributions
to discrete math and theoretical computer science

2021 László Lovász and Avi Wigderson –
foundational contributions to theoretical computer
science and discrete math, and their role in shaping
them into central fields of modern mathematics

John Nash awarded Nobel (1994, Game Theory) +
Abel (2015, Partial Differential Equations)

The Fields Medal is awarded since 1936 up to four
mathematicians under 40 years at the International
Mathematical Union Congress, every four years

Foundations of Computer Science, 2000



Turing award – The Nobel for Computer Science

Laureates since 1966 in theoretical
computer science

1974 Donald Knuth – contributions to the
analysis of algorithms

1982 Stephen Cook – understanding the
complexity of computation

1985 Richard M. Karp – contributions to
the theory of algorithms, polynomial-time
computability and NP-completeness

1986 Robert Tarjan – design and analysis
of algorithms and data structures

INFORMATION PRWESSING LETTERS 2 (1974) 153-157. NORTH-HOLLNAD PUBLISHING COMPANY 
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An algorithm for topological sorting was  presented by Xnuth [4] a s  an example of typical interaction between 
linked and sequentia l forms of da ta  representa tion. The purpose of the present note is  to extend the algorithm so 
tha t it generates  QB solutions of the topological sorting problem: the extended algorithm serves  as  an instructive  
example of severa l important general issues  re la ted to baclztracking, procedures  for changing recurs ion into ite ra - 
tion, manipulation of da ta  s tructures , and the creation of se ll-s tructured programs. 

Given a  number n and a  se t of integer pa irs  (i, j), where 1 G i, j4 n, the problem of topological sorting is  to 
fmd a  permutation x1x2. ..x, of (1,2,. . . n) such tha t i appears  to the left ofj for a ll pa irs  (i,j) tha t have been in- 
put. It is  convenient to denote input pa irs  by writing the re la tion “ii r’ and saying “i precedes  j”. The topological 
sorting problem is  essentia lly equivalent to arranging the vertices  of a  directed graph into a  s tra ight line  SO that a ll 
a rcs  go from left to right. It is  well known that such an arrangement is  possible  if and only if there  an no oriented 
cycles  in the graph, i.e ., if and only if no k > 1 re la tions  of the form 

exis t in the input. The problem in mathematical terms is  to embed a  given partia l order into a  linear (tota l) order. 
A natura l way to solve this  problem is  to le t x1 be  an element having no predecessors , then to e rase  a ll re la - 

tions of the formxl <j and to le t x2 be  an element #xl with no predecessors  in the system as  it now exis ts , then 
to e rase  a ll re la tions  of the formxl <j, e tc. It is  not difficult t.3 verify (cf. (41) tha t this  method will a lways  suc- 
ceed unless  there  is  an oriented cycle  in the input. Moreover, in a  sense it is  the only way to proceed, s ince x1 
must be  an element without predecessors , and 15~ must be  without predecessors  when a ll re la tions  xl <j a re  de- 
le ted,ktc. This  observation leads  natura lly to an algorithm that finds a ll solutions to the topological sorting prob. 
lem; it is  a  typical example of a  “backtrack” procedure [ 2,3], where a t every s tage  we consider a  subproblem of the 
form “Find a ll ways to complete agiven partia l permutation x1x2 . . . Xk to a  topological sort ~1x2 . . . X, .” The general 
no ii. od is  to branch on a ll possible  choices of xk+ 1. 

* Research supported in part by the  National Science Foundation, grant GJ  36473X, and by the  Office  of Naval Research, con- 
tract NR 044402. 
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* Present address : Computing Labora tory, University of Newcas tle  upon Tyne, Claremont Tower, Newcas tle  upon Tyne, NE% 7RU, 
England. 

’ Research supported by the  Conselho National de  Pesquisas , Brxil. 



The Millennium Prize Problems

David Hilbert:
23 problems
Paris in 1900

Clay Mathematics Institute:
7 prize problems
Paris in 2000

P versus NP problem has no
associated mathematician

9/23/11 3:49 PMMillennium Prize Problems
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First Clay Mathematics Institute Millennium Prize
Announced
Prize for Resolution of the Poincaré Conjecture
Awarded to Dr. Grigoriy Perelman

March 18, 2010. The Clay Mathematics Institute (CMI) announces today that
Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium
Prize for resolution of the Poincaré conjecture. The citation for the award reads:

The Clay Mathematics Institute hereby awards the Millennium Prize for resolution
of the Poincaré conjecture to Grigoriy Perelman.

More ...

The Millennium Prize Problems

In order to celebrate mathematics in the new millennium, The Clay Mathematics
Institute of Cambridge, Massachusetts (CMI) established seven Prize Problems.
The Prizes were conceived to record some of the most difficult problems with
which mathematicians were grappling at the turn of the second millennium; to
elevate in the consciousness of the general public the fact that in mathematics,
the frontier is still open and abounds in important unsolved problems; to
emphasize the importance of working towards a solution of the deepest, most
difficult problems; and to recognize achievement in mathematics of historical
magnitude.

The prizes were announced at a meeting in Paris, held on May 24, 2000 at the
Collège de France. Three lectures were presented: Timothy Gowers spoke on The
Importance of Mathematics; Michael Atiyah and John Tate spoke on the problems
themselves.

The seven Millennium Prize Problems were chosen by the founding Scientific
Advisory Board of CMI, which conferred with leading experts worldwide. The
focus of the board was on important classic questions that have resisted solution
for many years.

Follwing the decision of the Scientific Advisory Board, the Board of Directors of
CMI designated a $7 million prize fund for the solution to these problems, with $1
million allocated to the solution of each problem.

It is of note that one of the seven Millennium Prize Problems, the Riemann
hypothesis, formulated in 1859, also appears in the list of twenty-three problem
discuss in the address given in Paris by David Hilbert on August 9, 1900.

Clay Mathematics Institute
Dedicated to increasing and disseminating mathematical knowledge
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The rules for the award of the prize have the endorsement of the CMI Scientific
Advisory Board and the approval of the Directors. The members of these boards
have the responsibility to preserve the nature, the integrity, and the spirit of this
prize.

Please send inquiries regarding the Millennium Prize Problems to
prize.problems@claymath.org.

P vs NP Problem
If it is easy to check that a solution
to a problem is correct, is it also
easy to solve the problem? This is
the essence of the P vs NP
question. Typical of the NP
problems is that of the Hamiltonian
Path Problem: given N cities to
visit (by car), how can one do this
without visiting a city twice? If you
give me a solution, I can easily
check that it is correct. But I
cannot so easily (given the
methods I know) find a solution.

Birch and Swinnerton-Dyer
Conjecture

Hodge Conjecture

Navier-Stokes Equations

P vs NP

Poincaré Conjecture

Riemann Hypothesis

Yang-Mills Theory

Rules

Millennium Meeting Videos

 Return to top
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watch Vijaya Ramachandran

https://www.claymath.org/lectures/p-versus-np/






P versus NP – a gift to Mathematics from Computer Science

The question is whether or not, for all
problems for which an algorithm can verify
a given solution quickly (in polynomial
time), an algorithm can also find that
solution quickly

Avi Wigderson expects P not equal NP

Donald Knuth expects P equal NP

Timothy Gowers, The Importance of Mathematics, 2000

watch Donald Knuth: P=NP

https://www.youtube.com/watch?v=XDTOs8MgQfg


Hilbert, Gödel, Turing, von Neumann, Wigderson

Hilbert’s two-part dream:
Everything that is true in Mathematics is provable.
Everything that is provable can be automatically
computed.

1931 Gödel proved that no matter how hard you try,
your set of axioms will always be incomplete, they
will not be sufficient to prove all true facts

1936 Turing introduced his Turing machine and
proved the unsolvability of the halting problem

1940s–50s Turing and von Neumann played a major
role in early development of computers

Kurt Gödel’s Letter to John von Neumann - 1956

Princeton, 20 March 1956

Dear Mr. von Neumann:

With the greatest sorrow I have learned of your illness. The news came to me as quite unexpected. Morgen-
stern already last summer told me of a bout of weakness you once had, but at that time he thought that this
was not of any greater significance. As I hear, in the last months you have undergone a radical treatment
and I am happy that this treatment was successful as desired, and that you are now doing better. I hope
and wish for you that your condition will soon improve even more and that the newest medical discoveries,
if possible, will lead to a complete recovery.

Since you now, as I hear, are feeling stronger, I would like to allow myself to write you about a mathe-
matical problem, of which your opinion would very much interest me: One can obviously easily construct a
Turing machine, which for every formula F in first order predicate logic and every natural number n, allows
one to decide if there is a proof of F of length n (length = number of symbols). Let Ψ(F, n) be the number of
steps the machine requires for this and let ϕ(n) = maxF Ψ(F, n). The question is how fast ϕ(n) grows for an
optimal machine. One can show that ϕ(n) ≥ k · n. If there really were a machine with ϕ(n) ∼ k · n (or even
∼ k · n2), this would have consequences of the greatest importance. Namely, it would obviously mean that
in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning
Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose
the natural number n so large that when the machine does not deliver a result, it makes no sense to think
more about the problem. Now it seems to me, however, to be completely within the realm of possibility
that ϕ(n) grows that slowly. Since it seems that ϕ(n) ≥ k · n is the only estimation which one can obtain
by a generalization of the proof of the undecidability of the Entscheidungsproblem and after all ϕ(n) ∼ k ·n
(or ∼ k · n2) only means that the number of steps as opposed to trial and error can be reduced from N to
logN (or (logN)2). However, such strong reductions appear in other finite problems, for example in the
computation of the quadratic residue symbol using repeated application of the law of reciprocity. It would
be interesting to know, for instance, the situation concerning the determination of primality of a number and
how strongly in general the number of steps in finite combinatorial problems can be reduced with respect to
simple exhaustive search.

I do not know if you have heard that “Post’s problem”, whether there are degrees of unsolvability among
problems of the form (∃y)ϕ(y, x), where ϕ is recursive, has been solved in the positive sense by a very
young man by the name of Richard Friedberg. The solution is very elegant. Unfortunately, Friedberg does
not intend to study mathematics, but rather medicine (apparently under the influence of his father). By
the way, what do you think of the attempts to build the foundations of analysis on ramified type theory,
which have recently gained momentum? You are probably aware that Paul Lorenzen has pushed ahead with
this approach to the theory of Lebesgue measure. However, I believe that in important parts of analysis
non-eliminable impredicative proof methods do appear.

I would be very happy to hear something from you personally. Please let me know if there is something that
I can do for you. With my best greetings and wishes, as well to your wife,

Sincerely yours,

Kurt Gödel

P.S. I heartily congratulate you on the award that the American government has given to you.



Cook’s SAT followed by Karp’s 21 problems

1971 Stephen Cook –
SAT NP-complete and
polynomial-time reduction

1972 Richard Karp – Reducibility
among combinatorial problems

Equivalent classic unsolved problems

Either each has polynomial algorithm
or none does



Knuth’s terminology

Problem at least as difficult to solve in
polynomial time as those of Cook–Karp
class NP

Knuth wrote to 30 people:
Herculean, Formidable or Arduous?

The winning write-in vote is NP-hard,
put forward by several people at Bell Labs

A terminology proposal, D.E. Knuth, SIGACT News, 1974



Knuth – Garey – Johnson



The Guide is 40 years old

“Despite that 23 years have passed since its publication,
I consider Garey and Johnson the single most
important book on my office bookshelf. Every
computer scientist should have this book on their
shelves as well. NP-completeness is the single most
important concept to come out of theoretical
computer science and no book covers it as well as
Garey and Johnson.”

Lance Fortnow, “Great Books: Computers and Intractability:
A Guide to the Theory of NP-Completeness”





Discrete Mathematics

Combinatorics is a branch of mathematics, plays
crucial role in computer science, since digital
computers manipulate discrete, finite objects

Combinatorial methods give analytical tools for
computer algorithms worst-case and expected
performance

Concrete Mathematics =
CONtinuous and disCRETE mathematics

a complement to abstract mathematics



Theoretical Computer Science

Studies the power and limitations of computing

Has two complementary sub-disciplines:

Algorithm Design develops efficient methods for
computational problems

Computational Complexity shows limitations on
efficiency of algorithms

Discrete mathematics and TCS are allied fields:
graphs, strings, permutations are central to TCS

Computing technology is made possible by
algorithms, understanding the principles of powerful
and efficient algorithms deepens our understanding
of computer science, and also of the laws of nature

TSP Art by Craig Kaplan

https://cs.uwaterloo.ca/~csk/other/tsp/


Randomized Algorithms

Computers are deterministic: set of
instructions of algorithm applied to input
determines its computation and output

The world we live in is full of random
events that lack predictability, or a
well-defined pattern

Computer scientists allow algorithms to
make random choices to improve their
efficiency

A randomized algorithm flips coins to
compute a solution that is correct with
high probability

Introdução aos Algoritmos Randomizados

Curso introdutório no 26o Colóquio Brasileiro de Matemática 
30/7 a 3/8, 14:00–15:00 (monitoria 13:00–13:30), sala 232

Professores
Celina Miraglia Herrera de Figueiredo (COPPE/UFRJ) 
Guilherme Dias da Fonseca (CS/UMD) 
Manoel José Machado Soares Lemos (DMAT/UFPE) 
Vinícius Gusmão Pereira de Sá (COPPE/UFRJ)

Monitor
Raphael Carlos Santos Machado (COPPE/UFRJ)

Materiais
prefácio · texto completo · soluções dos exercícios · proximos.py 
slides: apresentação · aulas 1 e 2 · aula 3 · aulas 4 e 5

O curso tem como objetivo apresentar técnicas fundamentais para o desenvolvimento de algoritmos randomizados (também
chamados de probabilísticos, por alguns autores). O curso tem caráter introdutório: não são assumidos conhecimentos
avançados de probabilidade ou de algoritmos. Os conceitos teóricos que se fizerem necessários serão apresentados juntamente
aos problemas e algoritmos que os demandem. Ao completar este curso introdutório, o aluno terá travado contato com o
instrumental básico desta área e com um elenco representativo de algoritmos randomizados — e, em alguns casos, também
determinísticos — para diversos problemas combinatórios.

Os principais tópicos do curso são: Introdução aos algoritmos randomizados: modelos de computação randomizada; classes de

Brazilian Mathematics Colloquium, 2007



Sorting and Primality

Las Vegas Quicksort:
correct answer
expected time

Monte Carlo Primality Test:
expected answer
deterministic time

31.8 Primality testing 967

finement of this method that removes the small defect. Let ZC
n denote the nonzero

elements of Zn:
Z

C
n D f1; 2; : : : ; n ! 1g :

If n is prime, then ZC
n D Z!

n.
We say that n is a base-a pseudoprime if n is composite and

an"1 " 1 .mod n/ : (31.40)
Fermat’s theorem (Theorem 31.31) implies that if n is prime, then n satisfies equa-
tion (31.40) for every a in ZC

n . Thus, if we can find any a 2 ZC
n such that n does

not satisfy equation (31.40), then n is certainly composite. Surprisingly, the con-
verse almost holds, so that this criterion forms an almost perfect test for primality.
We test to see whether n satisfies equation (31.40) for a D 2. If not, we declare n
to be composite by returning COMPOSITE. Otherwise, we return PRIME, guessing
that n is prime (when, in fact, all we know is that n is either prime or a base-2
pseudoprime).

The following procedure pretends in this manner to be checking the primality
of n. It uses the procedure MODULAR-EXPONENTIATION from Section 31.6. We
assume that the input n is an odd integer greater than 2.

PSEUDOPRIME.n/

1 if MODULAR-EXPONENTIATION.2; n ! 1; n/ 6" 1 .mod n/
2 return COMPOSITE // definitely
3 else return PRIME // we hope!
This procedure can make errors, but only of one type. That is, if it says that n
is composite, then it is always correct. If it says that n is prime, however, then it
makes an error only if n is a base-2 pseudoprime.

How often does this procedure err? Surprisingly rarely. There are only 22 values
of n less than 10,000 for which it errs; the first four such values are 341, 561,
645, and 1105. We won’t prove it, but the probability that this program makes an
error on a randomly chosen ˇ-bit number goes to zero as ˇ ! 1. Using more
precise estimates due to Pomerance [279] of the number of base-2 pseudoprimes of
a given size, we may estimate that a randomly chosen 512-bit number that is called
prime by the above procedure has less than one chance in 1020 of being a base-2
pseudoprime, and a randomly chosen 1024-bit number that is called prime has less
than one chance in 1041 of being a base-2 pseudoprime. So if you are merely
trying to find a large prime for some application, for all practical purposes you
almost never go wrong by choosing large numbers at random until one of them
causes PSEUDOPRIME to return PRIME. But when the numbers being tested for
primality are not randomly chosen, we need a better approach for testing primality.

Cormen, Leiserson, Rivest, Stein, 2009



Trading hardness for randomness

Avi revolutionized our understanding of the role
of randomness in computation

Every randomized polynomial time algorithm
can be efficiently derandomized, made fully
deterministic

Trade-off between hardness versus randomness:

If there exists a hard enough problem, then
randomness can be simulated by efficient
deterministic algorithms; conversely, efficient
deterministic algorithms even for specific
problems with known randomized algorithms
would imply that there must exist such a hard
problem

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 49, 149-167 (1994) 

Hardness vs Randomness* 

N O AM N IS AN  t AN D  AvI W IG D E R S O N  $ 

Ins titute  o f Computer S cience , 
Hebrew Univers ity o f Jerusalem, Israe l 

Received February 27, 1989; revised September 26, 1993 

We present a  s imple  new cons truction of a  pseudorandom bit genera tor. It s tre tches  a  short 
s tring of truly random bits  into a  long s tring tha t looks  ra ndom to a ny a lgorithm from a  com- 
plexity class  C (e .g., P, NC, P S P A C E ,  ...) us ing a n arbitrary function tha t is  hard for C. This  
cons truction revea ls  a n equivalence  be twe e n the  problem of proving lowe r bounds  a nd the  
problem of genera ting good pseudorandom sequences . Our cons truction has  ma ny consequen- 
ces. The  mos t direct one  is  tha t e fficient de te rminis tic s imula tion of randomized a lgorithms  is  
poss ible  under much weaker assumptions  tha n previous ly known. The  efficiency of the  s imula- 
tions  depends  on the  s trength of the  assumptions , a nd may achieve  P  = BPP. We be lieve  
tha t our results  a re  ve ry s trong evidence  tha t the  gap be tween randomized a nd de te rminis tic 
complexity is  not la rge . Us ing the  known lowe r bounds  for cons tant depth circuits , our 
cons truction yie lds  a n unconditiona lly proven pseudorandom genera tor for cons tant depth 
circuits . As a n applica tion of this  genera tor we characte rize  the  powe r of NP  with a  random 
o ra c le .  © 1994 Academic Press , Inc. 

1. INTRODUCTION 

Th e  fu n d a m e n ta l id e a  o f t ra d in g  h a rd n e s s  fo r r a n d o m n e s s  is  d u e  to  S h a m ir  [S h ],  
wh o  s u g g e s te d  th a t  th e  R S A fu n c t io n  c a n  b e  u s e d  to  c o n s tru c t  g o o d  p s e u d o ra n d o m  
s e q u e n c e s .  Th e  firs t s e c u re  p s e u d o ra n d o m  b it -g e n e ra to r  wa s  b u ilt  b y Blu m  a n d  
Mic a li [B1 M],  wh o  u s e d  th e  in tra c ta b iliy o f th e  d is c re te  lo g a r ith m  fu n c tio n .  Th e s e  
id e a s  we re  g e n e ra liz e d  b y Ya o  [Ya ],  wh o  s h o we d  th a t  a n y o n e -wa y p e rm u ta t io n  
c a n  b e  u s e d  to  c o n s tru c t  g e n e ra to rs  th a t  fo o r e ve ry p o lyn o m ia l tim e  c o m p u ta t io n .  
Th is  re s u lt g a ve  th e  firs t e xp lic it h a rd n e s s - r a n d o m n e s s  tra de -o ff: if n o  p o ly-s iz e  c ir- 
c u it c a n  in ve rt  th e  o n e -wa y p e rm u ta t io n ,  th e n  R P  ~ ( ~  > o D T IM E ( 2 n ")  • Ya o 's  re s u lt 
wa s  re c e n tly g e n e ra liz e d  b y Im p a g lia z z o ,  Le vin ,  a n d  Lu b y  J ILL] wh o  s u c c e e d e d  in  
c o n s t ru c t in g  a  p s e u d o ra n d o m  g e n e ra to r  b a s e d  o n  a n  a rb it ra ry  o n e -wa y fu n c tio n .  

In  a ll th e s e  p a p e rs ,  th e  g e n e ra to r  us e s  th e  o n e -wa y fu n c t io n  f e s s e n tia lly a s  
fo llows : F r o m  a  r a n d o m  s trin g  X0 (th e  s e e d),  it c o m p u te s  a  s e q u e n c e  {Xi} b y 
Xi+ l = f( Xi) .  Th e  o u tp u t  b its  b i d e p e n d  o n  th is  s e q u e n c e .  Th e  h e a rt  o f th e  a rg u - 
m e n t  is  th e n  s h o win g  th a t  a  s m a ll c irc u it th a t  is  n o t  fo o le d  b y th e  b it s e q u e n c e  {b~ } 

• Presented a t the  29th IEEE Conference  on Founda tions  of Computer Science , October 24-26, 1988. 
t This  work was done  while  the  firs t author was a  s tudent in the  Univers ity of Ca lifornia  a t Berkeley. 

Supported by Is rae l Nationa l Academy of Science  Gra nt No. 328071, by the  Alon Fe llowship, a nd 
by NS F Gra nt CCR8612563. 
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0022-0000/94 $6.00 

Copyright © 1994 by Academic Press , Inc. 
All rights  of reproduction in any form reserved. 



Avi Wigderson, 2023 Turing Award, Q&A with director of the IAS

I am both a mathematician and a computer scientist

I study the mathematical foundations of computing

I prove theorems to understand computation,
computational processes also in nature

Could a Nobel go to innovations of computing
applied to a natural science?

My three decades in this field have been a
continuous joyride, with fun problems, brilliant
researchers, and many students, postdocs, and
collaborators who have become close friends

I’m lucky to be part of a dynamic community

Avi Wigderson, Herbert H. Maass Professor in the Institute for Advanced
Study’s School of Mathematics, was named by the Association for
Computing Machinery (ACM) as the recipient of the 2023 ACM A.M. Turing
Award, often referred to as the "Nobel Prize of Computing." With this
honor, Wigderson has become the "rst person to receive both a Turing
Award and the Abel Prize, widely considered to be the highest recognition
for lifetime achievement in mathematics.

The Turing award recognizes Wigderson’s foundational contributions to the
theory of computation, which include reshaping understanding of the role of
randomness in computation, and decades of intellectual leadership in
theoretical computer science.

Watch this video of Wigderson discussing his Turing Award and
research career in a conversation with IAS Director and Leon

Levy Professor David Nirenberg.

"I am excited that the ACM has again recognized with this award the theory
of computation community, which has contributed so much to computing

watch

https://www.youtube.com/watch?v=TK_vD-VnsFw
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