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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.SC.)

Aline Marins Paes

September/2011

Advisors: Gerson Zaverucha

Vı́tor Manuel de Morais Santos Costa

Department: Systems Engineering anc Computer Science

Theory Revision from Examples is the process of improving user-defined or

automatically generated theories, guided by a set of examples. Despite several suc-

cessful theory revision systems having been built in the past, they have not been

widely used. We claim that the main reason is the inefficiency of these systems,

as they usually yield large search spaces. This thesis contributes towards the goal

of designing feasible theory revision systems. First, we focus on first-order theory

revision. We introduce techniques from Inductive Logic Programming (ILP) and

from Stochastic Local Search to reduce the size of each individual search space ge-

nerated by a FOL theory revision system. We show through experiments that it is

possible to have a revision system as efficient as a standard ILP system and still

generate more accurate theories. Moreover, we present an application involving

the game of Chess that is successfully solved by theory revision, in contrast with a

learning from scratch system that fails in correctly achieving the required theory.

As first-order logic handles well multi-relational domains but fails on representing

uncertain data, there is a great recent interest in joining relational representations

with probabilistic reasoning mechanisms. We have contributed with a probabilis-

tic first-order theory revision system called PFORTE. However, despite promising

results in artificial domains, PFORTE faces the complexity of searching and per-

forming probabilistic inference over large search spaces, making it not feasible to be

applied to real world domains. Thus, the second major contribution of this thesis

is to address the bottlenecks of probabilistic logic revision process. We aggregate

techniques from ILP and probabilistic graphical models to reduce the search space

of the revision process and also of the probabilistic inference. The new probabilistic

revision system was successfully applied in real world datasets.
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Chapter 1
Introduction

Artificial Intelligence is concerned with building computer programs that solve pro-

blems which would require intelligence if solved by a human. As intelligence requires

learning, to build computer programs that can learn plays a central role in artificial

intelligence. This task is the subject of the area of machine learning, whose ultimate

goal is to construct computer programs that can automatically improve their behav-

ior with experience (Mitchell, 1997). Traditional machine learning algorithms learn

from independent homogeneous examples, described in attribute-value (or proposi-

tional) format. However, in many real world applications, data are multi-relational,

highly structured and sampled from complex relations. Consequently, propositional

algorithms are not appropriate to learn from them. In this case, formalisms such as

first-order logic are more adequate to represent such data than the classical propo-

sitional format.

Inductive Logic Programming (Muggleton, 1992; Muggleton and De Raedt,

1994) is the process of automatically learning First-Order Logic Theories from a

set of examples and a fixed body of prior knowledge, the background knowledge,

both written as logical clauses. ILP offers several advantages. It learns from an ex-

pressive language; it is easy for humans to understand; the background knowledge

is a useful tool to guide the learning process. A large number of algorithms and

systems have been developed towards learning in this context. Popular examples in-

clude FOIL (Quinlan, 1990), Progol (Muggleton, 1995), Claudien (De Raedt, 1997),

Aleph (Srinivasan, 2001b), Tilde (Blockeel and De Raedt, 1998), among many oth-

ers. ILP has been successfully applied on a number of applications, mainly involving
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chimio and bio-informatics (Muggleton et al., 1992; Bratko and King, 1994; Srini-

vasan et al., 1997; Srinivasan et al., 2006; Tamaddoni-Nezhad et al., 2006; Srinivasan

and King, 2008). Most ILP systems learn one logical clause at each time, employing

a covering approach: after learning a clause, positive examples covered by it are re-

moved from the set of examples, so that only unprovable positive examples remain

to be explained by new clauses.

1.1 First-order Logic Theory Revision from Examples

ILP systems consider background knowledge as correct. However, it may be the

case that prior knowledge is available but it is incomplete or only partially correct.

The background theory may have been elicited from a domain expert, who relies

on incorrect assumptions or who only has partial, even if useful, understanding of a

domain. Or it may be that new examples, that cannot be explained by the current

theory, have become available. Still, there may the case that a theory has been

learned/eilicited for a domain and one would like to transfer it to a related domain.

In all such cases, since the initial theory probably contains important information,

one would like to take advantage of the original theory as a starting point for the

learning process, and repair it or improve it. Ideally, this should accelerate the

learning process and result in more accurate theories.

Several theory refinement systems have been proposed towards this goal (Shapiro,

1981; Muggleton, 1987; Wogulis and Pazzani, 1993; Wrobel, 1994; Adé et al., 1994;

Wrobel, 1996; Richards and Mooney, 1995; Garcez and Zaverucha, 1999; Esposito

et al., 2000). Such systems assume the initial theory is approximately correct. If

so, then only some points (clauses and/or literals) in the theory prevent it from

correctly modeling the dataset. Therefore it should be more effective to search for

such points in the theory and revise them, than to use an algorithm that learns a

whole new theory from scratch.

Thus, theory revision systems operate by searching for revision points, which

are the points considered as responsible for the faults in the theory, and then pro-

posing revisions to such points, through applying at each one a number of revision

operators. Theory revision systems thus learn from whole theories, instead of indi-
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vidual clauses. Despite the advantages of refining complete theories (Bratko, 1999),

this unfortunately produces a large search space of proposed hypothesis.

Consider, for example, the FORTE (Richards and Mooney, 1995) system, that

automatically revises first-order logic theories from a set of positive and negative

examples. Its first step is to search for points responsible for misclassifying po-

sitive and negative examples. After identifying all revision points in the current

theory, FORTE proposes revisions to each one of them, using a set of revision op-

erators. Those operators include adding/deleting antecedents to/from a clause and

adding/deleting rules to/from the theory. Finally, from the set of proposed revisions,

FORTE chooses one to be implemented and restarts the cycle. Arguably, each step

of such a revision process produces a large search space, depending on the number

of revision points and the amount of possible revisions that can be proposed to each

one of them.

Thus, despite the various theory revision systems developed in the past (Wro-

bel, 1996) they are not widely used anymore. There are two main reasons for that,

as pointed out in (Dietterich et al., 2008): (1) the lack of applications with subs-

tantial codified initial theory and (2) as discussed above, the large search space

theory revision systems explore. The first problem does not hold any longer, as

large-scale resources of background knowledge in areas such as biology have become

available (Muggleton, 2005). Therefore, there is an increasing need for efficient

theory revision systems, that can fulfill the promise of theory revision.

The work in this thesis contributes toward the goal of obtaining more efficient

relational revision systems, both for purely logical and for probabilistic relational

theories. We demonstrate that search can be substantially improved by techniques

such as bottom-clause based search or stochastic search, with comparable or im-

proved performance, and we demonstrate that the techniques allow revising chal-

lenging applications. Next, we introduce each individual contribution of the present

thesis.
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1.1.1 Contributions to First-order Logic Theory Revision

In this work we focus on FORTE system, since it revises theories automatically from

a set of positive and negative examples. FORTE performs an iterative hill climbing

search in three steps. First, it searches for the points in the current theory considered

as responsible for the misclassification of some example. Second, it searches for

modifications at each revision point considering appropriate revision operators, so

that a number of revisions to the theory are proposed. Third, it must choose which

revision is going to be implemented.

Execution time strongly depends on the second step. When searching for

modifications to be implemented in the theory, FORTE takes into account operators

that attempt to generalize or specialize the theory, according to the revision point.

To specialize theories, it tries to simply delete rules and/or add antecedents to

existing rules. To generalize theories, it may delete antecedents from existing rules

or add new rules to the theory1. Depending upon the number of revision points,

FORTE may take a large amount of time to employ each revision operator to each

revision point. Additionally, it may be the case that the expert of the domain already

has some idea or constraint about how the theory can be modified. For example,

he/she could want a new theory that would preserve all the old clauses and therefore

deletion of rules would not be allowed. Considering those issues, we modified the

FORTE algorithm so that not all operators are employed to propose modifications

to the theory. First, we observe that it is possible that a simpler operator (for

example, delete rules compared to add antecedents) has already achieved the goal

of the revision point and therefore it would not be necessary to propose modifications

with a more complex operator. Second, we allow the expert to decide beforehand

which operator(s) is going to be employed in the revision process.

We further observe that FORTE spends a large amount of time choosing literals

to be added to clauses, namely when applying the add antecedents and add rules

operator. This is due to the top-down approach borrowed from FOIL (Quinlan,

1990). In this approach, literals are generated from the knowledge base, without

1FORTE has others operators that we do not consider in this work, such as absorption and
identification
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taking into account the set of examples. The dataset is employed only to score

the literals so that the best one is chosen to be added to a clause. On the other

hand, standard ILP algorithms such as Progol (Muggleton, 1995) take advantage of

a hybrid bottom-up and top-down approach to refine clauses. First, they create a

Bottom Clause from a single positive example, following a Mode Directed Inverse

Entailments (MDIEs) approach (Muggleton, 1995). Next, this variabilized Bottom

Clause composes the search space for possible antecedents to be added to a clause.

Arguably, the size of the search space can be greatly reduced, when compared to

trying all possible antecedents generated from the knowledge base. Thus, a second

contribution of this thesis is to replace the FOIL literals generation approach by the

use of the Bottom clause. Sets of literals subsuming the Bottom Clause are scored

and the best one is chosen to be added to a clause. The system built upon the

modifications discussed in the last two paragraphs is called here YAVFORTE and it

includes FORTE MBC (Duboc et al., 2009) as the algorithm for collecting literals

from the Bottom clause.

Next, we have designed a challenging application to show the power of re-

vision compared to learning from scratch. The application concerns the revision

of the game of Chess to acquire the rules of variants of this game. Throughout

the years the game of chess has inspired several variants, either to be more chal-

lenging to the player, or to produce an easier and faster variant of the original

game (Pritchard, 2007). It also has several different regional versions, such as the

Chinese and Japanese versions. Ideally, if the rules of the chess have been obtained,

we would like to use them as a starting point to obtain the rules of a variant. How-

ever, such rules need non-trivial changes in order to represent the particular aspects

of the variant. In a game such as chess this is a complex task that may require

addressing different board sizes, introducing or deleting new promotion and capture

rules, and may require redefining the role of specific pieces in the game. Thus, we

address this problem as an instance of theory revision from examples. Additionally,

we show that for effectively tackling this problem, the revision system handles ab-

duction (Flach and Kakas, 2000a) and negation as failure (Clark, 1978). In this way,

these both thecniques are integrated to the revision process of YAVFORTE system.
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Although those earlier developments are capable of improving the runtime of

the revision process without harming the accuracy of the system, the performance

of the revision system must still be improved when it faces large initial theories

and datasets. When looking for revision points, the system must first select the

misclassified examples. Next, it must mark the clauses responsible for such mis-

classification. In case the initial theory is composed of a large amount of clauses

and/or there are several (misclassified) examples, the search for revision points can

be very expensive. Moreover, if after selecting the revision points there is a large

amount of clauses marked to be revised, several possible modifications are going

to be proposed. Additionally, it may be the case that the background knowledge

and the language of the theory (predicates and modes declarations) is large enough

to produce a huge bottom clause. In those situations, the modifications we de-

scribed before may not lead to a acceptable revision time. In order to overcome

the intractability of the revision process in those situations, we propose to abandon

completeness in favor of finding good solutions in a reasonable amount of time. To

achieve this goal we make use of stochastic local search techniques (Hoos and Stützle,

2005) to introduce randomization into to the searches performed during the revi-

sion process. We include stochastic search components in the key searches within

the revision process of YAVFORTE: the search for revision points(1), the search for

literals to be added/deleted to/from a clause when proposing modifications within

a revision operator(2) and the revision operator that is going to indeed modify the

theory(3).

To summarize, the first major contribution of this thesis, concerning first-order

logic revision, is the development of a effective revision system named YAVFORTE.

YAVFORTE has reduced search space of new literals, revision points and revision

operators compared to FORTE. The spaces are limited mainly by the use of the

Bottom Clause and stochastic components. The revision process is stronger also by

the use of stochastic search and by the integration of abduction and negation as

failure in the revision process.
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1.2 Probabilistic Logic Learning

The successful applications of classical ILP to relational domains is often limited by

the need of representing uncertainty and partially observed information. Although

traditional statistical machine learning techniques have the ability to handle un-

certainty, they cannot represent relational domains, as they are essentially proposi-

tional. Thus, recently there has been a great interest in the integration of logical and

probabilistic reasoning mechanisms. Building languages and algorithms for learning

programs in these languages is the main subject of a new area of Artificial Intelli-

gence named Probabilistic Logic Learning (PLL), also known as Probabilistic Induc-

tive Logic Programming (PILP) and quite related to Statistical Relational Learning

(SRL). PLL deals with machine learning in relational domains where information

may be missed, only partially observed, noisy or uncertain. Several formalisms have

been developed in this area in the last decades, including SLP (Stochastic Logic

Programs) (Muggleton, 1996), PRM (Probabilistic Relational Models) (Koller and

Pfeffer, 1998), BLP (Bayesian Logic Programs) (Kersting and De Raedt, 2001b),

CLP(BN) (Constraint Logic Programming with Bayes net) (Santos Costa et al.,

2003a), MLN (Markov Logic Networks) (Richardson and Domingos, 2006), Prob-

Log (De Raedt et al., 2007), among many others. In most such systems, knowledge

is represented by definite clauses annotated with probability distributions. Infe-

rence may be performed either using a logical mechanism taking into account the

probabilities, or through a probabilistic graphical model, built from the examples

and the current model. This is, for example, the case of BLPs, that generalize

both logic programs and Bayesian networks. Inference is performed over Bayesian

networks, built from each example and clauses in BLP through a Knowledge Base

Model Construction (KBMC) approach (Ngo and Haddawy, 1997).

Most algorithms developed in PLL assume either the model must be learned

from scratch, from background knowledge and dataset, or the rules must be modified

as a whole, considering they are in the same level of correctness. This last case is

the approach followed by BLPs learning algorithm. There is less work on the task of

repairing or improving an initial probabilistic logic model. As examples of models

that could be fixed/improved are the ones elicited by an expert of the domain,

7



1.2. PROBABILISTIC LOGIC LEARNING

containing useful information but that not guaranteed to reflect the set of examples.

Also, it may be the case that an initial first-order theory was learned from an ILP

system and therefore noise and uncertainty were not taken into account during the

learning process.

1.2.1 BFORTE: Towards a Feasible Probabilistic Revision
System

As the learning task is time consuming and the initial model may contain valuable

information, one would like to consider it as a starting point and refine it. Ideally,

this should result in faster learning time and more accurate models. Motivated by

the benefits brought by first-order theory revision to the learning task, we have

proposed to automatically revise an initial Bayesian Logic Program in (Revoredo

and Zaverucha, 2002; Paes et al., 2005b; Paes et al., 2005a; Paes et al., 2006a),

resulting in a system we called PFORTE, since it is based on FORTE.

Learning or revising probabilistic first-order theories does introduce interesting

novel issues. In PLL it is convenient to see examples as evidence for random vari-

ables. The distribution of probabilities will then give an expectation for whether an

example will take a specific value, say the true value or the false value. Following a

discriminative approach, a theory should be revised if it fails on generating the ap-

propriate probability distribution for an example. In this case, we say the example

is misclassified. PFORTE’s strategy is as follows. First, it addresses theory incom-

pleteness, by finding the points that failed when proving examples. PFORTE uses

generalization operators to propose modifications to those points, choosing the best

one to correct through a scoring function. This phase uses a hill-climbing search and

stops when we cannot improve example covering. Second, PFORTE uses the gen-

eralized theory as starting point for search in the space composed by generalization

and specialization on points of the theory that failed in producing a proper proba-

bility distribution. In this case, clauses taking part in the Bayesian network model

generated from a misclassified example are considered as revision points. After this

step we expect a theory more accurate in classification.

Although with PFORTE we experimentally demonstrated that it is possible to
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obtain more accurate models compared to learning from scratch, the time it spends

to achieve that is prohibitive. We have identified at least three bottlenecks of the

revision process:

� Choice of the revision points: As stated before, the BLP learning algorithm

starts from an initial most general theory and proposes modifications to each

clause, in an attempt to represent the uncertainty in the model. PFORTE, on

the other hand, proposes modification to every clause used to construct the

Bayesian network where an example is misclassified. Albeit PFORTE reduces

the number of clauses subject to modifications compared to BLP learning, it

may still select several clauses to be revised. The problem is, as the Bayesian

network is built from a relational example, composed of several ground facts,

it usually contains several clauses from the BLP, with many of them not even

relevant to compute the probability distribution of an instance.

� Inference time: Bayesian networks built from relational examples must capture

the relationships between different objects of the domain. This fact, added to

the inherent complexity of inference in Bayesian networks makes the inference

very expensive. Additionally, as we assume a discriminative approach, every

possible modification is scored through an evaluation function that must infer

the probability distribution of each query variable. Because of those issues,

inference time dominates the cost of the revision process.

� Search for literals to be added to a clause: Similarly to FORTE, PFORTE

also considers addition of antecedents in clauses in two revision operators,

namely add antecedents and add rules. PFORTE uses FORTE’s top-down

FOIL approach. As in first-order logic theory revision, this approach yields a

large number of literals to be added to clauses during the revision of BLPs.

We propose several contributions in order to make the revision of BLPs feasible.

First, we noticed that the number of revision points can be reduced. We observe

that not all random variables in the Bayesian network of a misclassified example are

in fact influencing its probability. We would like to identify the variables relevant to

the misclassification, so that only the clauses relative to them are candidates to be

9
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modified. To achieve this goal, we employ the d-separation concept (Geiger et al.,

1990) through the use of the Bayes Ball algorithm (Shachter, 1998). Bayes Ball is

a linear time algorithm that identifies the set of relevant nodes to a query variable,

given evidence on some of others variables. We collect the relevant random variables

and mark the clauses producing them as revision points. In this way, we expect that

only clauses improving misclassification are liable to be modified during the revision

process, greatly reducing the runtime.

Second, the inference runtime may also be improved, and consequently the

runtime of the whole revision process, if only the requisite nodes to compute a

probability distribution of a variable are taken into account, instead of performing

inference in the complete network. Moreover, BLP collects all proofs of each exam-

ple to compose the Bayesian network. Several ground clauses on the set of proofs

may share the same features: besides containing the same predicates, the random

variables originating from them may also have the same evidence value or the lack

of evidence. Thus, we propose to separate the original large network in small net-

works, where each one contains only the requisite nodes for computing a probability

distribution. The requisite nodes are collected through the Bayes Ball algorithm.

Ground clauses with the same features are overlapped so that the number of nodes

in the network decreases. Finally, those smaller networks may also contain same

information for more than one query variable. Then, we also overlap networks with

exactly the same features (same graph and same evidence).

Third, and motivated by the great reduction in runtime resulting by the use of

the Bottom Clause in first-order theory revision, we also compose the search space

of possible literals to be added to clauses with the literals coming from the Bottom

Clause. As BLP does not make a logical difference between positive and negative

examples, in the sense the class of the example is the value of the random variable,

a Bottom Clause may be built from examples of any class.

We named the revision system built upon those modifications as BFORTE,

where B stands for BLP, Bayes Ball and Bottom clause.

10
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1.3 Publications

The following publications arose from work conducted during the course of this

thesis research:

� “Using the Bottom Clause and Mode Declarations in FOL Theory Revision

from Examples”, published in Machine Learning Journal (2009) (Duboc et al.,

2009) and presented at 18th International Conference on Inductive Logic Pro-

gramming (ILP-2008) (Duboc et al., 2008). The main ideias and algorithms

of this paper are presented in chapter 3.

� “Chess Revision: Acquiring the Rules of Chess through Theory Revision from

Examples”, that I presented at 19th International Conference on Inductive

Logic Programming (ILP-2009) (Muggleton et al., 2009b). A preliminar ver-

sion of this paper was also presented at the Workshop on General Game Play-

ing / 21st International Joint Conference on Artificial Intelligence (IJCAI-

09) (Muggleton et al., 2009a). A more detailed version of these papers is

presented in Chapter 4.

� “ILP through Propositionalization and Stochastic k-term DNF Learning” (Paes

et al., 2006b), that I presented at 16th International Conference on Induc-

tive Logic Programming (ILP 2006) and motivated me to start the studies

on Stochastic Local Search algorithms. This paper employes stochastic local

search over propositionalized versions of the set of examples. The main ideias

of this paper are reviewed in the last section of chapter 5.

� “Revising First-order Logic Theories from Examples through Stochastic Local

Search” (Paes et al., 2007b), that I presented at 17th Annual International

Conference on Inductive Logic Programming (ILP-2007). A preliminar por-

tuguese version of this paper won the best paper prize of the VI Encontro

Nacional de Inteligência Artificial (Paes et al., 2007a). Chapter 6 is a signifi-

cant extension of these papers, by using the Bottom Clause to bound the search

space and including three additional stochastic components on different steps

of the revision process.
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� “PFORTE: Revising Probabilistic FOL Theories” (Paes et al., 2006a), that I

presented at 2nd International Joint Conference (10th Ibero-American Con-

ference on AI, 18th Brazilian AI Symposium), 2006. This paper extends

PFORTE system introduced in (Paes et al., 2005b), by including generali-

zation operators to solve misclassification problem. The algorithm and main

ideias discussed there are reviewed in the last section of chapter 7.

In work carried out during the thesis, I also co-authored the following papers:

� “Combining Predicate Invention and Revision of Probabilistic FOL theories”

(Revoredo et al., 2006), that I presented at 16th International Conference on

Inductive Logic Programming (ILP-2006) and was published in the short paper

proceedings of the conference. This paper introduces two predicate invention

based operators during the revision process. Due to the expensive cost yielded

by these operators, we do not consider them when experimenting the revision

system designed in this thesis.

� “On the Relationship between PRISM and CLP(BN)” (Santos Costa and Paes,

2009), presented at International Workshop on Statistical Relational Learning

(SIM-2009).

� “Revisando Redes Bayesianas através da Introdução de Variáveis Não-

observadas” (Revoredo et al., 2009), presented at VI Encontro Nacional de

Inteligência Artificial(ENIA-2009).

1.4 Thesis outline

The thesis is organized as follows.

Chapter 2 reviews Inductive Logic programming and Theory revision. Basic

concepts of ILP and the ideas behind the Bottom clause construction are presented

in this chapter. Also, we review key concepts of theory revision from examples and

extensively discuss the FORTE system, which is the base system employed in this

thesis. We present the top-level algorithm and the algorithms for searching revi-

sion points and for proposing modifications to the revision points through revision

operators.
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Next, in chapter 3 we present the first contribution of this thesis: the intro-

duction of the bottom clause and mode declarations in FORTE and user controlled

revision. Part of this chapter was published in (Duboc et al., 2008; Duboc et al.,

2009).

Chapter 4 presents the framework we have developed to acquire the rules of

variants of chess from the rules of traditional chess, with this problem tackled from

the theory revision point of view. We also present additional improvements on the

revision system, so that it includes abduction to modify theories and negation in

the clauses. This work is published in (Muggleton et al., 2009b; Muggleton et al.,

2009a; Muggleton et al., 2009c).

Chapter 5 reviews the main concepts and algorithms of Stochastic Local search.

We also present a contribution to propositionalization and stochastic local search to

induce definite logic programs, published in (Paes et al., 2006b).

In chapter 6 we present another contribution to first-order theory revision,

which is the introduction of stochastic local search in the key searches of the revision

process: search for revision points, for the literals to be added/removed from a clause

and search for the best revision. Part of this work is published in (Paes et al., 2007a;

Paes et al., 2007b).

Chapter 7 reviews main concepts of Bayesian networks, Bayesian Logic Pro-

grams and our revision system PFORTE as published in (Paes et al., 2005b; Paes

et al., 2006a).

Chapter 8 presents the BFORTE revision system, built upon PFORTE with

significant improvements, namely, the use of the Bottom Clause to bound the search

space of new literals, the thecniques developes to reduce the inference space and the

reduction of the space of clauses to be modified, compared to PFORTE and BLP

learning algorithm.

Finally, we conclude the thesis and discuss future work in chapter 9.

The digital version of this thesis can be found in www.cos.ufrj.br/~ampaes/

thesis_ampc.pdf. Systems developed in this work and datasets used to experiment

on them are going to be available in www.cos.ufrj.br/~ampaes/theory_revision.
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Chapter 2
Inductive Logic Programming and Theory
Revision

Machine learning is a sub area of artificial intelligence which studies systems

that improve their behavior over time with experience

(Mitchell, 1997). Standard machine learning algorithms are propositional, searching

for patterns from data of fixed size and represented as attribute-value pairs. In this

way, they assume the objects of the domain are homogeneous and sampled from a

simple relation. However, real data usually contain many different types of objects

and multiple entities, disposed typically in several related tables. Inductive Logic

Programming (ILP) (Muggleton, 1992; Lavrac and Dzeroski, 1994; Muggleton and

De Raedt, 1994; Nienhuys-Cheng and De Wolf, 1997; De Raedt, 2008), also known

as Multi-Relational Data Mining (Dzeroski and Lavrac, 2001), combines machine

learning and logic programming to automatically induce sets of first-order clauses

(theory) from multi-relational data. ILP systems have been experimentally tested

on a number of important applications (King et al., 1995b; Srinivasan et al., 1997;

Muggleton, 1999; Fang et al., 2001; King et al., 2004). Theories learned by ILP

elegantly and expressively represent complex situations, even involving a variable

number of entities and relationships among them. Such theories are formed with

the goal of discriminating between positive and negative examples, given background

knowledge. The background knowledge consists of a list of logical facts and/or a set

of inference rules.

ILP algorithms assume the background knowledge is fixed and correct. How-
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ever, it may be the case that background knowledge also contains incorrect rules

and therefore it would be necessary to modify them so that they become correct.

This is the task of Theory revision which has as goal to fix the rules responsible

for the misclassification of some example. In this chapter, we start by reviewing

the main techniques used in ILP community in section 2.1. Next, we discuss theory

revision in section 2.2 with special attention to the system used in this thesis, the

FORTE system (Richards and Mooney, 1995). The reader familiar with ILP and

Theory Revision may skip this chapter.

2.1 Inductive Logic Programming

Inductive Logic Programming algorithms have as goal to induce from a set of training

examples a logic program describing a relational domain, using concepts defined in

the background knowledge. The returned logic program will be used to classify new

examples into positive or negative, using techniques such as resolution. A brief

description of some logic programming terms can be found in Table 2.1 and more

details can be explored in (Sterling and Shapiro, 1986; Lloyd, 1987; Flach, 1994;

Nilsson and Maluszynkski, 2000). The learning problem in ILP is usually defined as

follows.

Table 2.1: Some standard Logic Programming terms and their definitions
Term Definition

constants Symbols for denoting individuals. Following Prolog convention,
we represent constants in lower case.

variables Symbols referring to an unspecified individual. Following Prolog
convention, we represent variables in upper case.

predicate Symbols for denoting relations, such as mother, loves, etc.
term They are constants, variables or functions in predicates.
atom Formulas in the form p(t1, ..., tn), where p is a predicate

and t1, ..., tn are terms.
ground atom An atom which contains no variable
clause A formula ∀(L1 ∨ ... ∨ Ln), where each Li is a an atom

(positive literal) or the negation of an atom (negative literal)
definite clause A clause with exactly one positive literal, in the form A0 ← A1, ..., An,

or equivalently A0 ∨ ¬A1 ∨ ... ∨ ¬An,
where n ≥ 0. A0 is the head of the clause, whereas A1, ..., An is the
body of the clause.

fact A definite clause where n = 0.
Horn clause A clause with at most one positive literal.
Herbrand universe The set of all ground terms constructed from functors

and constants in a domain
Herbrand base The set of all ground atoms over a domain

15



2.1. INDUCTIVE LOGIC PROGRAMMING

Figure 2.1: Schema of the learning task in ILP, where BK is background knowledge,
E is the set of positive (E+) and negative (E−) examples andH ′ is the theory learned
by the ILP system.

Definition 2.1 Given:

� A set E of examples, divided into positive E+ and negative E− examples and

� Background knowledge BK,

both expressed as first-order Horn clauses.

Learn:

� A hypothesis H composed of first-order definite clauses such that BK∧H � E+

(H is complete) and BK ∧H 2 E− (H is consistent), i.e., H is correct.

Figure 2.1 brings a schema of the learning task in ILP.

Often it is not possible to find a correct hypothesis and then the criteria BK∧

H � E+ and B ∧H 2 E− are relaxed.
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2.1.1 Learning Settings in ILP

The standard learning setting previously defined is known as learning from en-

tailment (Frazier and Pitt, 1993). ILP algorithms may also follow the Learning

from interpretations approach (Valiant, 1984; Angluin et al., 1992; De Raedt and

Džeroski, 1994), where the examples are Herbrand interpretations and the goal is

to induce a true hypothesis H in the minimal Herbrand model of BK ∧ E. In this

setting, it is assumed the examples are completely specified. Otherwise, the learning

is done from partial interpretations (Fensel et al., 1995) and H must be true in the

Herbrand model created by extending BK ∧E. The generalization of learning from

partial interpretations is called learning from satisfiability (De Raedt, 1997). In this

last case, it is required that H ∧BK ∧ E 2 �.

From the point of view of examples representation, there are two learning

settings (De Raedt, 1997):

1. Extensional ILP. An example e ∈ E is a ground atom. In this case, the whole

BK is shared by all the examples, i.e., the conditions are the same for each

example. This setting is reduced to learning from entailment.

2. Intentional ILP. An example e ∈ E is a definite ground clause. Each example

may have different information associated to them, i.e., the BK may be di-

vided into a set of definite clauses shared by all examples and sets of definite

clauses restricted to each example. This setting is reduced to learning from

satisfiability.

Usually, ILP systems such as Progol (Muggleton, 1995), Aleph (Srinivasan,

2001b), FOIL (Quinlan, 1990), TopLog (Muggleton et al., 2008) learn a single target

predicate, are extensional and learn from entailment. ILP algorithms may also be

designed to learn a set of target concepts, possibly related to each other. CLAU-

DIEN (De Raedt, 1997) learns multiple predicates from interpretations. TILDE (Bloc-

keel and De Raedt, 1998) has as goal to learn relational decision trees from complete

interpretations. Hyper (Bratko, 1999) learns multiple related predicates from en-

tailment. We refer the reader to (Lavrac and Dzeroski, 1994; Dzeroski and Lavrac,

2001; De Raedt, 2008) for more details on ILP systems.
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2.1.2 Ordering the Hypothesis Search Space

In order to generalize and/or specialize hypothesis in ILP it is used the framework

of θ-subsumption. A clause c1 θ-subsumes a clause c2 if and only if ∃ a variable

substitution θ such that c1θ ⊆ c2. Due to θ-subsumption, ILP algorithms may

traverse the search space from bottom to up (generalizing the hypothesis), from

top to down (specializing the hypothesis) or even combining both specialization

and generalization strategies. Top-down ILP systems such as (Shapiro, 1983),

(Quinlan, 1990) and (De Raedt and Dehaspe, 1997) search the hypothesis space

by considering, at each iteration, all valid refinements to a current set of candidate

hypotheses. The hypotheses are then evaluated considering their coverage of positive

and negative examples, and also measures such as the information gain or the length

of the clauses. This strategy considers the set of examples only to evaluate the

candidate hypotheses but no to create new hypotheses.

On the other hand, algorithms following a bottom-up strategy use the examples

to propose hypotheses. They start with the most specific hypothesis and proceed

to generalize it until no further generalizations are possible, without covering some

negative examples. Usually, they are based on (1) the least general generalization

relative to the background knowledge (RLGG) (Plotkin, 1971), such as it is done in

Golem system (Muggleton and Feng, 1990) and its descendant ProGolem (Muggle-

ton et al., 2010) or (2) inverse resolution (Muggleton, 1987; Muggleton and Buntine,

1988; Muggleton and De Raedt, 1994). Nowadays, it is common to somehow com-

bine the bottom-up and top-down strategies, in order to exploit the strengths of

both techniques while avoiding their weaknesses. This is the case of systems such as

Progol (Muggleton, 1995), Aleph (Srinivasan, 2001b), CHILLIN (Zelle et al., 1994),

BETH (Tang et al., 2003) and TopLog (Muggleton et al., 2008), among others.

2.1.3 Mode Directed Inverse Entailment and the Bottom
Clause

The bottom clause (Muggleton, 1995)⊥ (e) with regard to a clause e and background

theory BK is the most specific clause within the hypothesis space that covers the
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example e, i.e.,

BK∪ ⊥ (e) � e
�� ��2.1

Any single clause hypothesis covering the example e with regard to BK must

be more general than ⊥ (e). Any clause that is not more general than ⊥ (e) cannot

cover e and can be safely disregarded. Thus, the bottom clause bounds the search

for a clause covering the example e, as it captures all relevant information to e and

BK. A top-level algorithm of the bottom clause construction process defined in (De

Raedt, 2008) is reproduced here as Algorithm 2.1.

Algorithm 2.1 Top-level Algorithm of the Bottom Clause Construction Process (De
Raedt, 2008)

1: Find a skolemization substitution θ for e with regard to BK
2: Compute the least Herbrand model M of BK ∪ ¬body(e)θ
3: Deskolemize the clause head(eθ)←M
4: return the result of step 3

In order to understand how the bottom clause is constructed, consider the

example e as

nice(X)← dog(X).

and the BK as

animal(X)← pet(X).

pet(X)← dog(X).

First of all, notice that BK∪ ⊥ (e) � e is equivalent to BK ∪ ¬e � ¬ ⊥ (e). The

first step is to replace all variables in ¬ e by distinct constants not appearing in the

clause (skolemization). The result is one false ground fact coming from the head of

¬ eθ, since it is a definite clause and a set of positive ground facts coming from the

body of ¬ eθ. In the example above, considering the skolemization substitution as

θ = {X ← skol}, we have

¬eθ = {¬nice(skol), dog(skol)}

The next step is to find the set of all ground facts entailed by BK ∪ ¬e, i.e., the

ground literals which are true in all models of BK ∪ ¬e. This is achieved by com-
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puting the least Herbrand model of BK and ¬body(cθ). In the example, we have

¬ ⊥ (e)θ = ¬ eθ ∪ {pet(skol), animal(skol)}

Finally, each skolemization constant is replaced by a different variable in ¬ ⊥ (e)θ

and the result is negated to obtain ⊥ (e). In the example,

⊥ (e) = nice(X)← dog(X), pet(X), animal(X)

In general, ⊥ could have an infinite cardinality. Thus, Mode Directed Inverse

Entailment (Muggleton, 1995) systems such as Aleph and Progol, consider a set of

user-defined mode declarations together with other settings to constrain the search

for a good hypothesis. A mode declaration (Muggleton, 1995) has either the form

modeh(recall, atom) ormodeb(recall, atom), where recall is an integer greater than 1

or ′∗′ and atom is a ground atom. Modeh declarations indicate predicates appearing

in the head of clauses and modeb, predicates in the body of clauses. Recall is the

maximum number of different instantiations of atom allowed to appear in a clause

(where ’*’ means an indefinite number of times). Terms in the atom are either

normal or place-marker. A normal term is either a constant or a function symbol

followed by a bracketed tuple of terms. A place-marker is either +type, -type or

#type, where type is a constant defining the type of term. The meaning of +, - and

# is as follows.

� Input (+) - an input variable of type T in a body literal Bi appears as an

output variable of type T in a body literal that appears before Bi, or appears

as an input variable of type T in the head of the clause.

� Output(−) - an output variable of type T in the head of the clause must appear

as an output variable of type T in any literal of the body of the clause.

� Constant(#) - an argument denoted by #T must be ground with terms of

type T .

The Algorithm 2.2 illustrates in more details the construction of the bottom

clause in Progol (Muggleton, 1995) system, considering modes declaration. The list
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InTerms keeps the terms responsible for instantiating the input terms in the head

of the clause and the terms instantiating output terms in the body of the clause. The

function hash associates a different variable to each term. The depth of a variable v

in a definite clause C is 0 if v is in the head of C and (maxu∈Uvd(u)) + 1 otherwise,

where Uv are the variables in the body of C containing v.

Algorithm 2.2 Bottom clause construction Algorithm (Muggleton, 1995)

Input: Background knowledge BK, a positive example e, where ¬e is a clause
normal form logic program ¬a, b1, ..., bn

Output: The bottom clause BC

1: InTerms← ∅, ⊥← ∅
2: i← 0, corresponding to the variables depth
3: BK ← BK ∪ e
4: find the first modeh h such that h subsumes e with substitution θ
5: for each v/t in θ do
6: if v is a ] type then
7: replace v in h by t
8: if v is a + or − type then
9: replace v in h by vk, where vk is a variable such that k = hash(t)
10: if v is a + type then
11: InTerms← InTerms ∪ t
12: ⊥←⊥ ∪h
13: for each modeb declaration b do
14: for all possible substitution θ of arguments corresponding to + type by

terms in the set InTerms do
15: repeat
16: if b succeeds with substitution θ

′
then

17: for each v/t in θ and θ
′
do

18: if v corresponds to ] type then
19: replace v in b by t
20: else
21: replace v in b by vk, where k = hash(t)
22: if v corresponds to − type then
23: InTerms← InTerms ∪ t
24: ⊥←⊥ ∪b
25: until reaches recall times
26: i← i+ 1
27: Go to line 13 if the maximum depth of variables is not reached
28: return ⊥.

Suppose, for example, the modes declaration below, expressing a fatherhood

relationship, where the first argument is the recall number
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modeh(1, father(+person,+person))

modeb(10, parent of(+person,+person))

modeb(10, parent of(−person,+person))

and the background knowledge

parent of(jack, anne)

parent of(juliet, anne)

parent of(jack, james)

parent of(juliet, james)

and the example father(jack, anne). The most specific clause is

⊥= father(jack, anne)← parent of(jack, anne), parent of(juliet, anne)

where the first literal on the body was obtained by

modeb(10, parent of(+person,+person)) and the second literal by

modeb(10, parent of(−person,+person)).

The bottom clause with the constants replaced by variables is

⊥= father(A,B)← parent of(A,B), parent of(C,B)

The space complexity of the bottom clause is the cardinality of it and is

bounded by r(|M |j + j−)ij+ , where |M | is the cardinality of M (the set of modes

declarations), j+ is the number of + type occurrences in each modeb in M plus the

number of – type occurrences in each modeh, j− is the number of – type occurrences

in each modeb in M plus the number of + type occurrences in each modeh, r is

the recall of each mode m ∈ M , and i is the maximum variable depth (Muggleton,

1995). For more details on formal definitions of the Bottom Clause and Inverse

Entailment we refer the reader to (Muggleton, 1995).

22



2.2. FIRST-ORDER LOGIC THEORY REVISION FROM EXAMPLES

2.2 First-order Logic Theory Revision from Examples

ILP algorithms learn first-order clauses given a set of examples and a static and

assumed as correct background knowledge. On the other hand, theory revision from

examples (Wrobel, 1996) has as goal to improve a previously obtained knowledge.

To do so, theory revision assumes the provided BK may also contains incorrect rules,

which should be modified to better reflect the set of examples. Revision in certain

clauses of the BK can be avoided by letting a part of the preliminary knowledge

be defined as correct and invariant. Thus, in theory revision the BK is divided in

two parts: A set of rules assumed as correct and therefore not modifiable, called

here as Fundamental Domain Theory (FDT) (Richards and Mooney, 1995); and

the remaining rules which may be incorrect and are subject to modifications, called

the Initial Theory. The goal of a theory revision process is to identify points in

the initial theory which prevent it from correctly classifying positive or negative

examples, and propose modifications to such points, so that the revised theory

together with the FDT is as close to a correct theory as possible. The task of theory

revision from examples is defined as follows (Wrobel, 1996).

Definition 2.2 Given:

� A background knowledge BK divided into

– A modifiable set of clauses which might be incorrect (H ′) and

– An invariant and assumed as correct set of clauses (FDT ) and

� A set of positive E+ and negative examples E− composing the set of examples

E

both written as logic programs;

Find:

� A revised theory H consisting of definite first-order clauses such that FDT ∧

H � E+ (H is complete) and FDT ∧ H ′ 2 E− (H is consistent), i.e., H is

correct and obeys a minimality criteria
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The minimality criteria may be seen as the attempt of obtaining a revised

theory as syntactically and semantically close as possible from the original BK.

Usually it is not possible to find a correct theory and such a criteria is relaxed to

find a theory as close to be correct as possible.

The schema of theory revision is shown in Figure 2.2. Note that ILP could be

seen as a subset of theory revision, where H ′ is empty and therefore BK = FDT .

Theory Revision is particularly powerful and challenging because it must deal

with the issues arising from revising multiple clauses (theory) and even multiple

predicates (multiple target concepts). Additionally, as the initial theory is a good

starting point and the revision process takes advantage of it, the theories returned by

revision systems are usually more accurate than theories learned from standard ILP

systems using the same dataset. Several papers such as (Shapiro, 1981), (Wogulis

and Pazzani, 1993), (Richards and Mooney, 1995), (Buntine, 1991), (Towell and

Shavlik, 1994), (Adé et al., 1994), (Wrobel, 1996), (Ramachandran and Mooney,

1998), (Garcez and Zaverucha, 1999), (Esposito et al., 2000) show that propositional

and first-order theory revision systems are capable of learning more accurate theories

than purely inductive systems and using less examples.

Figure 2.2: Schema of Theory Revision from Examples, where FDT is the fixed
preliminary knowledge and H ′ is the modifiable preliminary knowledge, E is the
set of positive (E+) and negative (E−) examples. H is the theory returned by the
revision system

.
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2.2.1 Revision Points

Usually, the first step in a revision system is to identify the misclassified examples.

A positive example not covered by the theory (a false negative) indicates the theory

is too specific and therefore needs to become more general. In the opposite case, a

negative example covered by the theory indicates it is too general and therefore it

needs to become more specific. In the former case we need to generalize the theory

and in the latter case we need to specialize the theory.

As the theory may be composed of several target concepts, described by sev-

eral clauses, it is necessary to find out which clauses and/or literals are responsible

for the misclassification of the examples. Also, many clauses can be responsible for

proving negative examples as many clauses could be generalized so that the misclas-

sified positive examples become covered. In theory revision, the clauses and literals

considered as responsible for misclassifying examples are called revision points. It

is expected that modifications performed on such points improve the quality of the

theory. Depending on the type of the misclassified example being considered we can

define two types of revision points:

� Generalization revision points - Those are the points in the theory where proofs

of positive examples fail.

� Specialization revision points - clauses used in successful proof paths of nega-

tive examples.

Revision points are the same as culprit clauses in MIS system(Shapiro, 1981),

which are clauses covering negative examples, found through the SLD tree, and

clauses not covering positive examples. In this last case, these clauses are the ones

leading to missing clauses, which can be suggested by posing queries to an oracle

and using examples it already knows (De Raedt, 2008).

The specification of the revision point determines the type of revision opera-

tor that will be applied to make the theory consistent with the dataset. One may

consider two types of operators: generalization operators, applied on generaliza-

tion revision points and specialization operators, applied on specialization revision

points (Wrobel, 1996).

25



2.2. FIRST-ORDER LOGIC THEORY REVISION FROM EXAMPLES

2.2.2 Revision Operators

Theory revision relies on operators that propose modifications at each revision point

aiming to transform a theory into another one. Any operator used in first-order

machine learning can be used in a theory revision system. In this work we use some

operators previously defined in (Richards and Mooney, 1995). Below, we briefly

describe them. Next section we show in details how some of theses operators work.

The operators for specialization are:

• Delete-rule - this commonly used operator removes a clause that was used to

prove a negative example.

• Add-antecedent - this operator adds antecedents to an inconsistent clause.

Other approaches exist. Indeed, there are several specialization operators based on

the idea of inventing new concepts (predicate invention (Stahl, 1993; Kramer, 1995))

while revising theories (Wrobel, 1994; Bain, 2004).

Different from specialization operators, which only modify existing clauses,

generalization operators may create entirely new clauses. As the goal is to cover

unprovable positive examples, any ILP operator which accepts positive examples as

input can be used. Next we cite usual generalization operators:

• Delete-antecedent - this operator removes failed antecedents from clauses that

could be used to prove positive examples.

• Add-rule - this operator generates new clauses, either from failed existing

clauses (deleting antecedents followed by addition of antecedents) or from

scratch (starting only from the generalized head of the example).

Other generalization operators exist. One can use abduction: first, look for a clause

that might satisfy the example but has missing premises, and then add the missing

premises. For more details on revision operators we refer the reader to (Richards

and Mooney, 1995) and (Wrobel, 1996).
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2.2.3 FORTE

In this work we follow the First Order Revision of Theories from Examples (FORTE)

system (Richards and Mooney, 1995), which automatically revises function-free

first-order Horn clauses. There are several first-order theory revision systems de-

scribed in the literature, including MIS (Shapiro, 1981), RUTH (Adé et al., 1994),

MOBAL (Wrobel, 1993; Wrobel, 1994), INTHELEX (Esposito et al., 2000), among

others.

FORTE performs a hill-climbing search through a space of both specialization

and generalization operators in an attempt to find a minimal revision to a theory

that makes it consistent with the set of training examples. In order to find the

revision points FORTE follows a bottom-up strategy, as the training examples are

used to find out the clauses/literals presenting some problem. The key ideas of the

system are:

1. Identify all the revision points in the current theory using the misclassified

training examples.

2. Generate a set of proposed modifications for each revision point using the

revision operators. It starts from the revision point with the highest potential,

defined as the number of misclassified examples that could be turned into

correctly classified from a revision in that point. FORTE stops to propose

revisions when the potential of the next revision point is less than the score

of the best revision to date. Conceptually, each operator develops its revision

using the entire training set. However, in practice, this is usually unnecessary

and thus FORTE considers only the examples whose provability can be affected

after by the revision.

3. Score each revision through the actual increase in theory accuracy it achieves,

calculated as the difference between the misclassified examples which turned

into correctly classified and the correctly classified examples which turned into

misclassified because of the revision.

4. Retain the revision with the highest score.
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5. Implement the revision in case the overall score is really improved.

The top-level algorithm is exhibited in 2.3. The algorithm finishes when it

cannot find any revision capable of improving the score.

Algorithm 2.3 FORTE Algorithm (Richards and Mooney, 1995)

1: repeat
2: generate revision points;
3: sort revision points by potential (high to low);
4: for each revision point do
5: generate revisions;
6: update best revision found;
7: until potential of next revision point is less than the score of the best

revision to date
8: if best revision improves the theory then
9: implement best revision;
10: until no revision improves the theory;

Next we detail the learning setting and representation of the examples in

FORTE, followed by the procedures for finding revision points and the algorithms

employed by each revision operator.

Examples Representation and Learning Setting

Most ILP algorithms employ the extensional approach to represent examples and

background knowledge. In this case, each example is a ground fact and the back-

ground knowledge is equally shared by all the examples. FORTE differs from them

representing the examples intentionally as they are written as sets of clauses in the

format

Ground Instances of Target Predicates← Conjunction of facts from the context.

The head of the above clause is a set of positive and/or negative ground facts,

with the same predicate as the concepts intended to be learned. The conjunction of

facts from the context is a set of definite clauses confined to the example, i.e., the

BK restricted only to that example. There is also a set of background clauses FDT

common to all the examples. The FDT and the BK restricted to each example

compose the background knowledge of the domain. In this way, each example can

be considered as a partial interpretation (De Raedt, 1997).
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Although the dataset is composed of partial interpretations, the learning re-

quirement is that the positive instances of each example are logically entailed by the

current hypothesis H ′ together with the background knowledge, i.e., ∀e∀e+ ∈ e,H ′∧

FDT ∧Be � e+ and the negative instances of each example are not logically entailed

by the hypothesis and background knowledge, i.e., ∀e∀e− ∈ e,H ∧ FDT ∧Be 2 e−,

where e+ represents the positive instances, e− represents the negative instances and

Be is the background knowledge confined to each example e.

It should be noted from section 2.1.1 that most ILP systems learn a single

target predicate only. FORTE, on the contrary, is able to learn multiple predicates

simultaneously. Such a task is facilitated because the search space is composed

of whole theories instead of individual clauses. When learning individual clauses

there is a great chance that the final returned theory is strongly composed of locally

optimal and unnecessarily long clauses. On the other hand, when learning whole

theories the final hypothesis tends to be globally optimal and smaller. However,

learning whole theories is known to be much more expensive than learning individual

clauses.

Finding revision points in FORTE

FORTE identifies revision points by annotating proofs of incorrectly provable nega-

tive instances or by annotating attempted proofs of incorrectly unprovable positive

instances. When the goal is to find the specialization revision points, all the provable

instances are considered, since they are the ones whose provability may be affected

by a specialization in the theory: any of these instances might become unprovable

because of the specialization. These instances are either True Positive (TP) - cor-

rectly classified positive instances - or False Positive (FP) - misclassified negative

instances. The algorithm for collecting specialization revision points is shown in

Algorithm 2.4.

First, FORTE annotates each clause participating in the successful proof of

the instances. The positive instances are annotated separately from the negative

instances in the clauses. In case the clause has no annotation of false positive

instances, it is discarded. The remaining clauses compose the set of specialization
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Algorithm 2.4 FORTE Algorithm for collecting specialization revision
points (Richards and Mooney, 1995)

Input: The current theory H ′ and the FDT and EP , the set of provable instances
composed of the TP , the set of correctly provable positive instances; FP the
set of incorrectly provable negative instances

Output: RPS, a set of clauses marked as specialization revision points, each one
annotated with TPC, true positive instances relative to clause C, FPC, false
positive instances relative to clause C, and PC the potential of the revision
point

1: for each provable instance e ∈ EP do
2: Ce← clauses participating in the proof of the instance e using H ′ and FDT
3: for each clause C ∈ Ce do
4: if e ∈ FP then
5: FPC ← FPC ∪ e;
6: PC ← PC + 1;
7: else
8: TPC ← TPC ∪ e;
9: RPS ← RPS ∪ Ce;
10: for each clause C ∈ RPS do
11: if PC = 0 then
12: delete C from RPS;

revision points. The true positive and false positive instances relative to the clauses

are used to calculate the score of revision proposed to those points.

In case there are misclassified positive instances, the goal is to find generaliza-

tion revision points. In this case, all the unprovable instances are considered, since

they are the ones whose provability may be affected by a generalization in the theory:

any of these instances might become provable because of the generalization. These

instances are either True Negative (TN) - correctly classified negative instances -

or False Negative (FN) - misclassified positive instances. In order to identify gene-

ralization revision points, it is necessary to make annotations from failed proofs of

positive instances. Three types of points in the failed proof path are collected:

1. the literal in a clause responsible for the failure proof,

2. the clause whose body contains such literal and

3. the literals which might have contributed to the failure by assigning incorrect

values to variables (it is a contribution point).
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Thus, each time a backtrack occurs, the failed antecedent is noted and marked as

a failure point. Next, the literals binding values to variables in failure points are

collected recursively. Finally, the clauses with the failure antecedents and with the

contribution antecedents are also marked as failure points. This process is also

followed to identify which failure points are responsible for not proving negative

instances, since they might become provable after a revision in such points. The list

of TN and FN instances are used to calculate the potential of the revision point,

and, after proposing some revision, to calculate the score of the revision in such a

point. The procedure is exhibited as Algorithm 2.5.

Proposing revisions in FORTE

As stated before, the four basic revision operators add rules, delete rules, add an-

tecedents to clauses and delete antecedents from clauses. FORTE revision operators

are ultimately composed of these four basic operations, aggregated to techniques

for escaping local maxima, such as deleting/adding several antecedents at once

from/to a clause. Additionally, the system uses two operators based on inverse

resolution (Muggleton, 1992), namely the absorption and identification operators.

The operators are described in terms of the changes they make to the theory. How-

ever, recall that each one is proposing a revision and not really implementing it on

the theory. This is only done after proposing all possible revisions and choosing

the one with the highest score. In order to calculate the score, FORTE employs a

simple evaluation function: the number of incorrect instances which become correct

less the number of correct instances which become incorrect because of the revision.

Next, we review the way FORTE revision operators work. Note that here we only

describe the cases for non-recursive clauses. For more details, including how FORTE

deals with recursive clauses, we refer the reader to the original paper (Richards and

Mooney, 1995).

Specialization operators

Delete rule The clause marked as a specialization revision point is deleted from

the theory. If there is only such a clause explaining a concept, it is replaced by
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Algorithm 2.5 FORTE Algorithm for collecting generalization revision
points (Richards and Mooney, 1995)

Input: The current theory H ′ and the FDT ; EU , the set of unprovable instances
composed of the TN , the set of correctly unprovable negative instances and FN
the set of incorrectly unprovable positive instances

Output: RPG, a set of clauses marked as generalization revision points, each one
annotated with TNC, true negative instances relative to clause C, FNC, false
negative instances relative to clause C, and PC the potential of the revision
point

1: for each unprovable instance e ∈ EU do
2: Try to prove instance e using H ′ and FDT
3: for each time that a literal fails do
4: collect the failed literal lfe;
5: collect the literals LCe responsible for binding variables in lfe, recur-

sively
6: collect the clauses Ce where lfe failed and where LCe appeared
7: if e ∈ TN then
8: TN lfe← TN lfe ∪ e
9: for each literal lce ∈ LCe do
10: TN lce← TN lce ∪ e
11: for each clause ce ∈ Ce do
12: TN ce← TN ce ∪ e
13: else
14: FN lfe← FN lfe ∪ e
15: P lfe← P lfe+ 1
16: for each literal lce ∈ LCe do
17: FN lce← FN lce ∪ e
18: P lce← P lce+ 1
19: for each clause ce ∈ Ce do
20: FN ce← FN ce ∪ e
21: P ce← P ce+ 1
22: RPG← RPG ∪ lfe ∪ LCe ∪ Ce
23: for each point P ∈ RPG do
24: if PG = 0 then
25: delete P from RPG;

concept :- fail. This simple process is stated as Algorithm 2.6.

Add Antecedents The operation of adding antecedents to clauses works through

two nested processes: the innermost case adds antecedents to the input clause in an

attempt to make as many as possible negative instances become unprovable. This

specialized clause is included in the revision. In case the specialized clause makes

previously provable positive become unprovable, the outer case restarts the special-
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Algorithm 2.6 FORTE Delete Rule Revision Operator Algorithm

Input: The current theory H ′ and the FDT , a clause C marked as specialization
revision point together with TPC, the set of correctly provable positive instances
using clause C and FPC, the set of incorrectly provable negative instances using
clause C

Output: A proposed revision Rev together with score Sc
1: Rev ← H ′ − C;
2: if C is the only clause explaining concept then
3: Rev ← Rev ∪ concept : −fail;
4: Sc← calculate score(Rev, FDT , FPC, TPC)

ization from the original input clause, looking for alternative specializations which

retain the proof of positive instances while still making the negative instances unpro-

vable. The top-level process of this revision operator is exhibited as Algorithm 2.7.

Algorithm 2.7 FORTE Top Level Add Antecedents Revision Operator Algorithm

Input: The current theory H ′ and the FDT , a clause C marked as specialization
revision point together with TPC, the set of correctly provable positive instances
using clause C and FPC, the set of incorrectly provable negative instances using
clause C

Output: A proposed revision Rev, containing one or more clauses specialized from
C, together with score Sc

1: H ′ ← H − C
2: Rev ← H ′;
3: repeat
4: C ′ ← addAntecedents(C, H ′, FDT , TPC, FPC);
5: if C ′ is different from C then
6: Rev ← Rev ∪ C ′;
7: FNC ← instances in TPC which become unprovable by Rev ∪ FDT
8: TPC ← FNC
9: until FNC = ∅ or it is not possible to create a specialized version of C (C ′ ==

C)
10: Sc← calculate score(Rev, FDT , FPC, TPC)

There are two algorithms for adding antecedents to a clause, which may be

executed in replacement to line 4 of Algorithm 2.7:

1. Hill Climbing (Algorithm 2.8) - This algorithm follows FOIL (Quinlan, 1990),

adding one antecedent at a time. It works as follows. First, all possible

antecedents are created and scored using a slightly modified version of FOIL

scoring function, displayed in formula 2.2. There, Old score is the score of the
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clause without the literal being evaluated, #TPCA is the number of positive

instances proved by the clause with the literal added to it and #FPCA is

the number of negative instances proved by the clause with the literal. The

difference concerns the fact that FOIL score counts the number of proofs of

instances, whereas FORTE counts the number of provable instances, ignoring

the fact that one instance may be provable in several different ways. Next,

the antecedent with the best score is selected. If the best score is better than

the current clause score, the antecedent is added to the clause. This process

continues until either there are no further antecedents to be added to the clause

or no antecedent can improve the current score. This approach is susceptible

to local maxima.

foil based score = #TPCA∗(Old score−log(#TPCA/(#TPCA+#FPCA)))�� ��2.2

Algorithm 2.8 Hill climbing add antecedents Algorithm

Input: The current theory H ′ and the FDT , a clause C, TPC, the set of correctly
provable positive instances using clause C and FPC, the set of incorrectly pro-
vable negative instances using clause C

Output: A (specialized) clause C ′

1: repeat
2: antes← generateAntecedents(C);
3: Ante← best antecedent from antes, scored with FPC and TPC;
4: if score (C + ∪ ante) > score (C) then
5: C ← C ∪ ante;
6: FPC ← FPC−instances in FPC not proved by C;
7: until FPC = ∅ or it is not possible to improve the score of the current clause
8: return C

2. Relational Pathfinding (Algorithm 2.9 - This approach adds a sequence of an-

tecedents to a clause at once in attempt to skip local maxima, as, sometimes,

none of the antecedents put individually in the clause improves its perfor-

mance.

The Relational Pathfinding algorithm is based on the assumption that gene-

rally in relational domains there is a path with a fixed set of relations connect-

ing a set of terms, and such path satisfies the target concept. Its goal is to find
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such paths given a relational domain, since important concepts are represented

by a small set of fixed paths between terms defining a positive instance. In

order to find the paths, the relational domain is represented as a graph where

the nodes are the terms and the edges are the relations among them. Thus, a

relational path is defined as the set of edges (relations) which connect nodes

(terms) of the graph. To better visualize such an approach, consider, for in-

stance, the graph in Figure 2.3, which represents part of the family domain.

Horizontal lines denote marriage relationships, and the remaining lines denote

parental relationships:

Figure 2.3: An instance of a relational graph representing part of the family do-
main (Richards and Mooney, 1995)

Now, suppose the goal is to learn the target concept grandfather, given an

empty initial rule and the positive instance grandfather(peter,anne). The re-

lational path between the terms peter and anne is composed of the relation

parents connecting peter to victoria, and also of the relation parents connect-

ing victoria to anne. From these relations, the path parents(peter,victoria),

parents(victoria,anne) is formed, which can be used to define the target con-

cept grandfather(A,B) : −parents(A,C), parents(C,B).

From the point of view of theory revision, this algorithm can be used whenever

a clause needs to be specialized and it does not have relational paths connecting

its variables. In this case, a positive instance proved by the clause is chosen to

instantiate it, and, from it, relational paths to the terms without a relationship

in the clause are searched.

If the found relations introduce new terms appearing only once, FORTE tries
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to complete the clause by adding relations that hold between these singletons

terms and other terms in the clause; these new relations are not allowed to

eliminate any of the currently provable positive instances. If FORTE is unable

to use all of the new singletons, the relational path is rejected.

Algorithm 2.9 Top level Algorithm for Adding Antecedents to a Clause Using
Relational Pathfinding Approach

Input: The current theory H ′ and the FDT , a clause C, TPC, the set of correctly
provable positive instances using clause C and FPC, the set of incorrectly pro-
vable negative instances using clause C

Output: A (specialized) clause C ′

1: ex← a positive instance from TPC, covered only because of C (and not because
of others clauses with the same head);

2: find all clauses created from C and from paths generated through the terms in
head of ex;

3: C ′ ← the clause retaining the most instances in TPC as provable, or, in case of
a tie, the shortest clause

4: FNC ← negative instances still provable
5: if FNC 6= ∅ then
6: C ′ ← Hill climbing add antecedents algorithm(C ′, TPC, FPC)
7: return C ′

Antecedents Generation Following FOIL approach, all the predicates in the

knowledge base are considered for creating literals to be added to the clause. A

literal is created from a predicate by instantiating its arguments by variables, while

respecting the following constraints:

1. At least one variable of the new literal must be in the clause being revised;

2. The arguments of the literals must obey the types defined in the knowledge

base.

The larger the number of new variables in the clause is, the more literals are

created. Actually, the space complexity grows exponentially in the number of new

variables since the complexity of enumerating all possible combinations of variables

is exponential in the arity of the predicate.

The algorithms for generating literals used by Hill climbing approach and Re-

lational Pathfinding can be seen in Algorithm 2.10 and Algorithm 2.11, respectively.
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Algorithm 2.10 Hill Climbing Antecedents Generation Algorithm

Input: A clause C
Output: A set of literals antes
1: for each literal lit in the knowledge base do
2: varsC ← variables in C with their types;
3: argsL← terms in lit with their types;
4: for each combination comb of variables ∈ varsC in the arity of lit do
5: if comb is compatible with argsL considering the types in argsL then
6: create a new antecedent ante by replacing the terms of lit with

the variables in comb;
7: antes← antes ∪ ante;
8: n← arity of lit - 1;
9: i← 1;
10: while i ≤ n do
11: create a new variable v
12: varsN ← varsC ∪ v
13: for each combination comb of variables ∈ varsN in the arity of lit,

including at least one variable ∈ varsC do
14: if comb is compatible with argsL considering the types in argsL

then
15: create a new antecedent ante by replacing the terms of lit

with the variables in comb;
16: antes← antes ∪ ante;
17: i← i+ 1;

As already mentioned, the Relational Pathfinding algorithm starts from a

clause grounded from a positive instance covered by the clause. The terms in the

ground clause will be the nodes in the graph, connected by the relations defined

in the body of the clause. The algorithm constructs the graph iteratively, starting

from these initial nodes and expanding them until finding the relational paths. The

end values are the terms (nodes) created when a node is expanded.

In practice, Relational pathfinding and Hill climbing algorithms might be ex-

ecuted competitively and then the clause chosen in the inner loop is the one with

the highest FOIL score. Also, if it is desired, only one of these two approaches may

be executed.

Generalization operators

Delete antecedents The algorithm followed by the delete antecedents operator

is displayed as Algorithm 2.12.
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The antecedents are deleted from a clause marked as a generalization revision

point using a hill climbing approach or a method that removes a set of antecedents

simultaneously, in case the hill climbing has no success. The generalized clause is

added to the proposed revision and the process restarts, in an attempt to make

remaining false negative instances become provable, until it is not possible to create

useful generalized versions of the original clause. The two methods used to remove

antecedents are described below.

1. The first method deletes one antecedent from the clause at each time, follow-

ing a hill-climbing approach. FORTE chooses the antecedent whose removal

makes the largest number of unprovable positive instances become provable,

requiring that no unprovable negative instance becomes provable. This pro-

cess is iterated until there are no antecedents in the clause whose deletion is

going to make misclassified positive instances become provable. The process

is exhibited as Algorithm 2.13.

Algorithm 2.11 Relational Pathfinding Antecedent Generation Algo-
rithm (Richards and Mooney, 1995)

Input: A clause C
Output: A set of sequence of literals paths
1: CI ← C instantiated with a randomly chosen positive instance;
2: find isolated sub-graphs among the terms in CI;
3: for each sub-graph do
4: terms become initial end-values;
5: repeat
6: for each sub-graph do
7: expand paths by one relation in all possible ways;
8: remove paths with previously seen end-values;
9: until intersection found or resource bound exceeded
10: if one or more intersections found then
11: for each intersection do
12: C ′ ← C with path-relations added;
13: if C ′ contains new singleton variables then
14: add relations using the singleton variables;
15: if all singletons cannot be used then
16: discard C ′;
17: replace terms with variables;
18: paths← paths ∪ C ′;
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2. Multiple antecedents are removed from the clause at once, in order to over-

come the vulnerability of the former approach to get stuck in local maxima.

First, the antecedents whose individual removal does not allow true nega-

tive instances become provable are collected. Then, combinations of such

antecedents are produced, looking for the combination that makes the largest

number of positive instances become provable without making negative in-

stances become provable. The process continues deleting antecedents in this

way, trying to prove as many positive instances as possible. This algorithm

is computationally expensive and it is only executed when the hill climbing

approach cannot propose any modification in the current theory. It is shown

as Algorithm 2.14.

Algorithm 2.12 Top-level Delete Antecedents Revision Operator Algorithm

Input: The current theory H ′ and the FDT , a clause C marked as generalization
revision point together with TNC, the set of correctly unprovable negative in-
stances because clause C and FNC, the set of incorrectly unprovable positive
instances possibly because of clause C

Output: A proposed revision Rev, containing one or more generalized versions of
clause C, together with its score Sc

1: Rev ← H ′ − C
2: stop← false
3: repeat
4: C ′ ← hillClimbingDeleteAntecedents(C, TNC, FNC, Rev, FDT );
5: if C ′ = C then
6: C ′ ← delMultipleAntecedents(C, TNC, FNC, Rev, FDT );
7: if C ′ = C then
8: stop = true
9: if C ′ 6= C then
10: Rev ← Rev ∪ C ′

11: FNC ← FNC− instances in FNC which become provable by Rev
12: if FNC = ∅ then
13: stop← true
14: until stop == true

Add rules FORTE implements two operators for adding rules to the current

theory. It may create rules from an existing one or it may create a completely

new rule from scratch. In the first case, the operator makes a copy of the clause
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Algorithm 2.13 Hill Climbing Delete Antecedents Algorithm

Input: A clause C, TNC, a set of unprovable negative instances, FNC, a set of
unprovable positive instances, a theory H ′′, the static BK FDT

Output: A (generalized) clause C
1: stop← false
2: repeat
3: for each antecedent ante ∈ C do
4: CTemp← C − ante
5: score CTemp ← number of instances in FNC which are proved by

H ′′ ∪ CTemp ∪ FDT
6: score2 CTemp ← number of instances in TNC which are proved by

H ′′ ∪ CTemp ∪ FDT
7: if score CTemp <= 0 or score2 CTemp > 0 then
8: discards CTemp
9: antes ← (CTemp, score CTemp)
10: if antes neqemptyset then
11: C ← CTemp ∈ antes with the highest score score CTemp
12: else
13: stop← true
14: until stop = true
15: return C

Algorithm 2.14 Delete Multiple Antecedents Algorithm

Input: A clause C, TNC, a set of unprovable negative instances, FNC, a set of
unprovable positive instances, a theory H ′′, the static BK FDT

Output: A (generalized) clause C ′

1: antes← all antecedents in C whose deletion does not change TNC
2: repeat
3: ante← an antecedent in antes
4: CTemp← C − ante
5: if no negative instance in TNC become provable by H ′′ ∪ CTemp ∪ FDT

then
6: C ← C − ante;
7: until there are no antecedents left to try
8: if one or more positive instances in FNC become provable by H ′′ ∪ CTemp ∪

FDT then
9: return C;

marked as a generalization revision point and tries to modify such a copy of the

clause in two steps. First, antecedents are deleted from the clause while they make

false negative instances become provable. Antecedents are deleted even though true

negative instances become provable. Then, the next step of the add rule operator

is to add antecedents to the created clause in an attempt to make such negative
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instances be unprovable again. This operation is performed by the add antecedents

operators as previously explained. The process is exhibited as Algorithm 2.15. The

second add rule operator starts by creating the head of the rule from a predicate

marked as a generalization revision point. The next step is to compose the body of

the clause, using the add antecedents operator.

Algorithm 2.15 Top-level Add rule Revision Operator Algorithm

Input: The current theory H ′ and the FDT , a clause C marked as a generaliza-
tion revision point together with TNC, the set of correctly unprovable negative
instances because clause C and FNC, the set of incorrectly unprovable positive
instances possibly because of clause C

Output: A proposed revision Rev, containing one or more generalized versions of
clause C, together with its score Sc

1: H ′′ ← H ′ ∪ C
2: C ′ clause C after deleting antecedents which make instances from FNC become

provable
3: H ′′ ← H ′ ∪ C ′

4: TPC ← instances in FNC which become provable by H ′′ ∪ FDT ∪ C ′

5: FPC ← instances in TNC which become provable by H ′′ ∪ FDT ∪ C ′

6: Rev′ ← addAntecedents(H ′′, FDT , C ′, TPC, FPC);
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Chapter 3
YAVFORTE: A Revised Version of
FORTE, Including Mode Directed Inverse
Entailment and the Bottom Clause

3.1 Introduction

Theory revision systems usually induce more accurate theories than ILP techniques

learning from scratch. However, such more accurate theories come at the expense

of searching in a large search space, mainly because theory revision refines whole

theories instead of individual clauses and this is known to be a hard problem (Wrobel,

1996; Bratko, 1999). Therefore, it is essential to develop efficient theory revision

systems so that the advantages of them become feasible. Focusing on FORTE

theory revision system, in this chapter we contribute towards this goal by identifying

a number of the bottlenecks of the revision process and developing algorithms based

on state-of-the-art ILP systems to overcome it. The worst bottleneck is related to

generation of literals to be included in the body of clauses, which is done inside

the add antecedents and add rules operators. FORTE followed the FOIL top-down

approach (Quinlan, 1990), considering all the literals of the knowledge base to create

antecedents to clauses, which leads to a huge search space, dominating the cost of the

revision process. Instead of following a pure top-down approach when specializing

clauses, ILP algorithms such as Progol (Muggleton, 1995) and Aleph (Srinivasan,

2001b) restrict the search for literals to those belonging to the Bottom Clause. The
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Bottom Clause contains the literals relevant to a positive example, collected from a

Mode Directed Inverse Entailment (MDIE) search in the BK. This hybrid bottom-

up and top-down approach often generates much fewer literals, and they are also

guaranteed to cover at least one positive example (the one used to generate the

Bottom Clause) and for this reason it is a good option to reduce the search space for

literals in the revision process. As part of this work, in (Duboc, 2008) and (Duboc

et al., 2009) the Bottom Clause approach is introduced as the search space of literals

to speed up FORTE. We describe that process here and also how to further take

advantage of the Bottom Clause by (1) allowing its generation to start from a base

clause and (2) using the current theory to create literals, in addition to the BK.

Moreover, we use mode directed search when deleting antecedents from a clause so

that after the deletion the clause is still valid according to the mode declarations.

Besides following FOIL’s pure top-down approach, FORTE has six different

revision operators and may try to propose revisions suggested by all of them in a

single step, depending on the revision points found. This may lead to a large search

space of operators. In many tasks, the expert of the domain has some idea about

the kind of modifications the theory needs to represent. This could be used as an

advantage for reducing the search space of operators. Another weakness of FORTE is

that the delete antecedent operator does not allow any incorrectly provable negative

example to become unprovable, which may cause overfitting of the clause or not

generate a revision by this operator because of such a hard requirement.

In this chapter we describe a number of modifications performed on the FORTE

system to handle the shortcomings listed above. We call the resulting system

as YAVFORTE (Yet Another Version of FORTE), which includes FORTE MBC

(Duboc, 2008; Duboc et al., 2009) to create the search space of new literals. The

chapter starts by depicting the modified top level revision process in section 3.2.

Next, modifications implemented on the revision operators are devised in section 3.3,

concerning mainly the use of Bottom Clause and Mode Directed Search. Experi-

mental results are shown in section 3.4, followed by conclusions about this work in

section 3.5.
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3.2 Restricting the Search Space of Revision Opera-
tors

The original FORTE system proposes modification in the theory through six diffe-

rent revision operators, four designed to generalize the theory and two designed to

specialize the theory. Moreover, it tries to apply all these possible operators, even

when one of them has already achieved its maximum potential1 or a maximum score.

Suppose for example that we have a clause proving 10 positive examples and 20 ne-

gative examples. Now, suppose an extreme case where these 10 positive examples

are also covered by another clause. Therefore, the simplest way to rectify the theory

would be deleting that clause. However, besides FORTE proposing the deletion of

the clause, it would also try to add antecedents to the body of the clause, so that

the negative examples become unprovable, which is clearly a waste of time. Thus,

in order to make the revision proposals more flexible and efficient, we modified the

revision process by including two amendments:

1. The user is able to stipulate which operators the system must apply in order

to propose modifications in the theory. In case the user does not specify any

operator, the system tries to apply all of them, according to the revision points.

Thus, the revision process is able to only specialize/generalize the theory, as

well as to apply a subset of specialization and/or generalization operators when

proposing modifications.

2. Instead of applying all possible revision operators on a revision point, the

system establishes an order of simplicity to apply the operators. Using this

order, in case a simpler operator has already achieved the maximum potential

or a maximum score, the system stops to propose modifications. Put in other

words, the system only applies a more complex operator when no simpler ope-

rator simpler than it was able to attain the maximum potential or score. The

order imposed to specialization operators is first to apply the delete rule and

then the add antecedents operator, clearly because the number of operations

1Remember from the previous chapter that the potential is the number of examples indicating
the necessity of revision in one point.
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performed to evaluate the delete rule is much less than when proposing addi-

tion of antecedents. The order imposed to generalization revision operators is

delete antecedents, absorption, identification, add rule. Delete antecedents has

as search space only the literals belonging to the initial clause. Identification

and absorption defines their search space in terms of the literals presented in

the theory. Add rule first uses delete antecedents and then add antecedents

operators. This last operator may have a large number of literals to evaluate,

depending on the background knowledge and mode definitions, therefore we

assume it as the more complex generalization revision operator.

Algorithm 3.1 presents the modified revision process, built upon Algorithm 2.3

of chapter 2.1.

Algorithm 3.1 YAVFORTE Top-Level Algorithm

Input: An initial theory T , background knowledge FDT , a set of examples E, list
of applicable operators Rev

Output: A revised theory T ′

1: if Rev = ∅ then
2: Rev ← all revision operators
3: GenRev ← ordered list of generalization operators in Rev, starting from the

simplest one
4: SpecRev ← ordered list of specialization operators in Rev, starting from the

simplest one
5: repeat
6: generate revision points;
7: sort revision points by potential (high to low);
8: for each revision point RP do
9: if RP is a specialization revision point then
10: for each revision operator RO ∈ SpecRev do
11: apply RO in RP
12: compute scoreRO

13: else
14: for each revision operator RO ∈ GenRev do
15: apply RO in RP
16: compute scoreRO

17: update best revision found;
18: until scoreRO = maximum score or RO achieved maximum potential

of RP
19: if best revision improves the theory then
20: implement best revision;
21: until no revision improves the theory;
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3.3 Improvements Performed on the Revision Opera-
tors

This section starts by reviewing the theory behind Bottom Clause and MDIE, since

we use them to restrict the search space of the add antecedents and the delete

antecedents operators. Next, the operator developed in (Duboc et al., 2009) to add

antecedents is reviewed but also including improvements performed on it in this

work. Then, we describe modifications implemented on delete antecedents operator.

3.3.1 Using the Bottom Clause as the Search Space of An-
tecedents when Revising a FOL theory

FORTE, following FOIL, generates literals to be added to a clause obeying two

conditions: (1) the variables of the literals must follow their types defined in the

knowledge base and (2) they must have at least one variable in common with the

current clause. While this makes the generation of antecedents simple and fast, it

also leads to a large search space composed of all the possible literals of the know-

ledge base. Such a large search space turns the complexity of the add antecedents

operation in a clause very high, contributing to the bottleneck of the revision pro-

cess. Aiming to reduce such cost, we implemented the following modifications to

FORTE system:

1. The variabilized Bottom Clause generated by Algorithm 2.2 became the search

space of literals, which reduces the search space and also impose the following

constraints:

� Limits the maximum number of different instantiations of a literal (the

recall number);

� Limits the number of new variables in a clause;

� Guarantees that at least one positive example is covered (the one which

generates the Bottom Clause).

2. The mode declarations are used to further constrains the antecedents, which

means they only may be added to the clause if their terms respect the mode

defined in the knowledge base.
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3. Determination definitions of the form

determination(HeadPredicate/Arity, BodyPredicate/Arity)

state which predicates can be called in the clauses defining HeadPredicate.

The modified version of FORTE considering mode declarations and the Bottom

Clause is called FORTE MBC . Recall that when specializing a clause, the goal of the

operation is to make false positive examples become unprovable while still covering

true positive examples. Thus, the Bottom Clause is created immediately before the

search for antecedents begins, by saturating a positive example covered by the clause

being specialized (called base clause). The Bottom Clause is going to be composed

of the literals relevant to at least such a positive example and it is guaranteed to

be a super-set of the base clause. The created Bottom Clause becomes the search

space for antecedents, which improves the efficiency of the addition antecedents

operation since it usually has many fewer literals than the previous space of the

whole knowledge base. It is important to emphasize that the constraints of FOIL

continue to be met here, as the arguments of the literals in the Bottom Clause must

obey their types and there is a linking variable between the literal being added in

the clause and the literals of the current clause.

Algorithm 3.2 shows the process of constructing the Bottom Clause in YAV-

FORTE. It differs from Algorithm 2.2 when the base clause has a non-empty body,

since in this case it is necessary to take into account the terms of the current clause.

Note that in (Duboc et al., 2009) the variables of the Bottom Clause were uni-

fied with the variables of the base clause only after the Bottom Clause had been

constructed. Besides this being an expensive process involving lots of backtracks,

sometimes it was not possible to find a correct unification. We noticed two of such

situations: cases where the example contains two or more equal terms in the head

but the base clause has two different variables in their place (1) and when the base

clause has no constant in the head but the first modeh has a constant, or vice-verse

(2). In these cases the Bottom Clause would follow the unification according to the

example, differing from the base clause and making more difficult to find a substi-

tution that would match the Bottom Clause and the base clause. Thus, the first
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step in Algorithm 3.2 is to find the ground literals of the base clause considering the

example but maintaining the substitution of the variables in the base clause. Then,

the terms of the base clause are put in the list of terms to be used by the procedure

and the Bottom Clause is initialized with the literals of the base clause. The rest of

the process is the same as the original algorithm, except that we do not allow the

inclusion of a literal being already in the Bottom Clause. Note that if the clause

is being constructed from scratch, it is not necessary to keep an association with

the base clause passed as input argument. In this case, we completely follow the

original algorithm.

Another difference from the algorithm developed in (Duboc et al., 2009) is the

input: there, the Bottom Clause is constructed considering only the BK but here

we also allow the current theory to be used to produce literals. This is essential in

case we have intermediate clauses in the current theory.

Next, we show how the Bottom Clause is used as the space of new literals.

Using the Bottom Clause in Hill Climbing Add Antecedents Algorithm

The Hill Climbing add antecedents algorithm modified from Algorithm 2.6, to take

into account the Bottom Clause as search space, is detailed in Algorithm 3.3. Both

algorithms differ in three aspects:

1. Algorithm 3.3 has as first step the construction of the Bottom Clause in line

2, as it is used as search space for antecedents. In order to obtain the Bottom

Clause from a positive instance correctly proved by the base clause it is used

Algorithm 3.2.

2. Such a Bottom Clause becomes the input for antecedents generation in line 4.

This procedure is soon going to be explained in details.

3. As the Bottom Clause created in the beginning is not modified during the

execution of this algorithm, it is necessary to remove the antecedent added to

the clause from the Bottom Clause, in line 11. From this last difference, it

follows that the algorithm also stops when there is no more literal left in the

Bottom Clause.
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Algorithm 3.2 Bottom clause Construction Algorithm in FORTE-MBC

Input: The current theory H ′ and the FDT , a clause C, Ex, an instance
Output: The Bottom Clause BC

1: if C has an empty body then
2: ⊥← Algorithm 2.2(H ′, FDT , Ex);
3: else
4: InTerms← ∅, ⊥← ∅
5: Cground ← instantiation of the clause C using H ′, FDT , and Ex, with

substitution θ maintaining the variables of C
6: for each v/t in θ do
7: InTerms← InTerms ∪ t
8: ⊥←⊥ ∪C
9: i← 0, corresponding to the variables depth
10: BK ← FDT ∪ Ex
11: for each modeb declaration b do
12: for all possible substitution θ of arguments corresponding to + type

by terms in the set InTerms do
13: repeat
14: if b succeeds with substitution θ

′
then

15: for each v/t in θ and θ
′
do

16: if v corresponds to ] type then
17: replace v in b by t
18: else
19: replace v in b by vk, where k = hash(t)
20: if v corresponds to − type then
21: InTerms← InTerms ∪ t
22: if b /∈ C then
23: ⊥←⊥ ∪b
24: until reaches recall times
25: i← i+ 1
26: Go to line 14 if the maximum depth of variables is not reached
27: return ⊥.

4. There is a parameter specifying the maximum size a clause is allowed to have.

Using the Bottom Clause in Relational Pathfinding Add Antecedents
Algorithm

The Relational Pathfinding algorithm adding more than one antecedent at once in

a clause and considering as search space the Bottom Clause is exhibited in Algo-

rithm 3.4.

There are only two major differences between Algorithm 3.4 and Algorithm

2.7: the creation of the Bottom Clause from a positive example covered by the
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Algorithm 3.3 Hill Climbing Add Antecedents Algorithm Using the Bottom Clause

Input: The current theory H ′ and the FDT , a clause C, TPC, the set of correctly
provable positive instances using clause C and FPC, the set of incorrectly pro-
vable negative instances using clause C, CL, maximum size of a clause

Output: A (specialized) clause C ′

1: Ex← an instance from TPC;
2: BC ← createBottomClause(Ex, H ′, FDT , C); %use Algorithm 3.2
3: repeat
4: antes← getAntecedentsfromBC(C, BC);
5: Ante← best antecedent from antes, scored with FPC and TPC;
6: if score (C ∪ ante) > score (C) then
7: C ← C ∪ ante;
8: remove Ante from BC
9: FPC ← FPC−instances in FPC not proved by C;
10: until FPC = ∅ or there are no more antecedents in BC or it is not possible to

improve the score of the current clause or |C| = CL
11: return C

base clause happens before the searching for relational paths (1); consequently, the

Bottom Clause is used as search space for paths, together with the same positive

example used to generate the Bottom Clause and the base clause (2).

Using the Bottom Clause as Search Space for Antecedents Generation

The original FORTE dynamically generates antecedents at each iteration of the add

antecedents procedure, since it is necessary to collect the variables of the current

clause to create new literals. FORTE MBC, on the contrary, generates literals stati-

cally, at the beginning of the process by creating the Bottom Clause. However, not

every literal in the whole Bottom Clause can be added to a current clause in a specific

moment. Suppose, for example, the clause head(A,B). whose body is empty is be-

ing specialized. The modeh definition to this predicate is modeh(1, head(+ta,+ta)),

indicating that it can be used in the head of a clause and it is allowed only one

instantiation of it (recall = 1) since we deal with definite clauses, and their ar-

guments are both of input, whose types are ta. Consider the BK and a positive

instance producing the Bottom Clause

head(A,B) : −body1(A,C), body2(B,C), body3(C,A).
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Algorithm 3.4 Top-level Relational Pathfinding Add Antecedents Algorithm Using
the Bottom Clause
Input: The current theory H ′ and the FDT , a clause C, TPC, the set of correctly

provable positive instances using clause C and FPC, the set of incorrectly pro-
vable negative instances using clause C

Output: A (specialized) clause C ′

1: Ex ← an example from TPC, covered only because of C (and not because of
others clauses with the same head);

2: BC ← createBottomClause(Ex, H ′, FDT , C); %use Algorithm 3.2;
3: find all clauses created from C and from paths generated through the terms in

head of ex, considering BC as search space;
4: C ′ ← the clause retaining the most instances in TPC as provable, or, in case of

a tie, the shortest clause
5: FNC ← negative instances still provable
6: if FNC 6= ∅ then
7: C ′ ← Hill climbing add antecedents algorithm(C ′, TPC, FPC)
8: return C ′

based on the following mode declaration:

{modeb(∗, body1(+ta,−ta)),modeb(∗, body2(+ta,−ta)),modeb(∗, body3(+ta,−ta)}

which indicates that the clause can have infinite different instantiations of the pre-

dicates bodyi (recall = ∗) and the arguments of these predicates have both type

ta, where the first one is an input term and the second one is an output term. In

case every literal in the Bottom Clause is a candidate to specialize the base clause,

the literal body3(C,A) could be added in the current clause. However, notice the

variable C is in the place of an input term and therefore such a variable should have

appeared before in the current clause, which is not the case. To consider only the

FOIL constraint of having a connection variable between the clause and the literal

is not enough, since in this case body3(C,A) would be valid because of the second

variable. Note that such a literal is correctly placed inside the Bottom Clause be-

cause the variable C appeared before in body2(B,C). Because of that ILP systems

such as Progol and Aleph take advantage of the order of literals in the Bottom

Clause when choosing an antecedent to be added to a clause. We follow a different

approach for collecting the eligible literals to be added to a clause, from a Bottom

Clause. A literal in the Bottom Clause is a candidate to be included in a current

51



3.3. IMPROVEMENTS PERFORMED ON THE REVISION
OPERATORS

clause if and only if their input variables have already appeared before in another

literal of the current clause. Thus, Line 4 of Algorithm 3.3 is composed of two steps:

(1) collect the literals of the current Bottom Clause and (2) validate such candidate

antecedents to verify if each one of them is actually allowed to be part of the clause,

according to their input variables.

In regard to the Relational Pathfinding Algorithm we follow a slightly different

approach. First of all, it is important to notice that the generation of antecedents

to this algorithm is the same as the one performed in Algorithm 2.9, with only one

obvious difference: now the literals are searched in the Bottom Clause generated at

the beginning of the process. Thus, when looking for paths the literals considered to

be in a path are the ones from the Bottom Clause, but still taking into account the

end values of the relational paths. However, we do not validate literals concerning

modes immediately before they are considered to be in a path, since more than one

antecedent will be added at once. In this way, it may be the case the whole path is

valid according to the modes but the isolated literal would not be. Thus, the whole

path is validated according to mode declarations: if the relational path does not

obey the modes it is discarded just before it is evaluated. Line 3 of Algorithm 3.4

returns the clauses created from C and from paths, but ensuring such clauses are

valid according to mode declarations.

Remarks about the Complexity of Antecedents Addition

The revision process of FORTE has an exponential complexity in the size of the

input theory and in the arity of the theory predicates (Richards and Mooney, 1995).

When adding antecedents to a rule, the number of permutations of arguments to a

predicate is an exponential function of the predicate’s arity. Thus, the space com-

plexity of possible literals grows exponentially on the number of new variables, since

the complexity of enumerating all possible combinations of variables is exponential

according to the arity of the predicate. On the other hand, the space complexity

of the Bottom Clause is the cardinality of it and is bounded by r(|M |j + j−)ij+ ,

where |M | is the cardinality of M (the set of mode declarations), j+ is the number

of + type occurrences in each modeb in M plus the number of – type occurrences
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in each modeh, j− is the number of – type occurrences in each modeb in M plus the

number of + type occurrences in each modeh, r is the recall of each mode m ∈ M ,

and i is the maximum variable depth (Muggleton, 1995). On the same way the use

of the Bottom Clause brings the advantage of reducing the search space of Progol

when compared to a top-down approach as FOIL, the use of the Bottom Clause

also reduces the search space of antecedents of FORTE, which originally generated

antecedents based on FOIL. However, it is important to point out that this ad-

vantage is only guaranteed if the i variable is small enough. In the extreme case

that i and the background knowledge are both large, the Bottom Clause has a very

large number of literals and hence the search space is as large as or even larger than

the search space of FORTE. Considering exactly this problem, (Tang et al., 2003)

proposed the BETH system, which makes use of a hybrid top-down and bottom-up

approach when constructing the Bottom Clause, aiming to reduce the cardinality of

the Bottom Clause and consequently the search space of literals.

3.3.2 Modifying the Delete Antecedent Operator to use Modes
Language and to Allow Noise

Using Mode Directed Search when Deleting Literals from a Clause

Besides using the theory of MDIE for generating the Bottom Clause and take advan-

tage of it when adding literals to be added to a clause, we would also need to yield a

theory that follows the modes language. This is not only a requirement to make the

final theory valid according to the modes, but is also essential to the specialization

procedure since, as it was said before, the first step is to include the terms in the

base clause as terms to be used in the Bottom Clause. Such terms must correctly

follow the modes, otherwise it will not exist a match for them in the Bottom Clause

construction procedure.

To begin with, we assume the initial theory follows the modes established in the

language bias. To continue following modes when revising the theory, it is necessary

to validate each single proposed modification according to them. When specializing

clauses, this is already done, since any literal to be added to the body of a clause

comes from the Bottom Clause and immediately before to be indeed included, it
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is checked if it obeys any mode. It remains to be checked whether a proposed

modification does not make the theory invalid according to the modes when it is

generalized. Thus, a mode check is included after deleting a literal from the body

of the clause being generalized. It works as follows. Immediately before evaluating

a literal to be removed from a clause, it is checked if the resulting clause follows one

of the modes assertions. The inspection will prevent a literal to be removed in case

it falls in one of two cases: (1) the literal to be removed is the only one with an

output variable of the head of the clause; or (2) the literal to be removed is the only

one with a variable that is input to other literal. Both cases would make the clause

not follow the modes language and therefore the procedure does not allow this to

happen.

Allowing noise in Delete Antecedent Operator

In addition to using modes definitions to validate a deletion of a literal from a clause,

we also remodel the delete antecedents operator so that it becomes more flexible in

the sense of allowing noise, i.e., true negative instances become provable. Rather

than specifying a maximum number of negative examples to be considered as noise,

as it is done in Aleph and Progol systems for example, the number of negative

examples that a clause may cover is decided by the score of the clause. Thus, at

each iteration the antecedent improving the score at most is selected. In case after

deleting such an antecedent from the body of a clause the score is improved, yet a

true negative instance becomes false positive, the procedure nevertheless proceeds

to further deletions. The deletion of antecedents stops when it is not possible to

improve the score, following a classical greedy hill climbing approach. This modus

operandi is used in deletion antecedents operator and to delete antecedents in order

to create a new rule from an existing one (add rules operator).

3.4 Experimental Results

We have already experimentally demonstrated in (Duboc et al., 2009) the benefits

of using mode declarations and the Bottom Clause when revising FOL theories. Ex-

perimental results have presented a speed-up of 50 times compared to the original
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Algorithm 3.5 Remodeled Greedy Hill Climbing Delete Antecedents Algorithm

Input: A clause C, TNC, a set of unprovable negative instances, FNC, a set of
unprovable positive instances, a theory H ′′, the static BK FDT

Output: A (generalized) clause C
1: scoreC ← compute current score
2: repeat
3: for each antecedent ante ∈ C do
4: CTemp← C − ante
5: scoreCTemp ← compute score for CTemp
6: antes ← (CTemp, scoreCTemp)
7: C ← CTemp ∈ antes with the highest score scoreCTemp

8: if scoreCTemp is better than scoreC then
9: C ← CTemp
10: scoreC ← scoreCTemp

11: until it not possible to improve score
12: return C

FORTE system, without significantly decreasing accuracies. Additionally, we have

shown there that the revision system provides more accurate and smaller theories,

compared to a standard inductive method also based on the Bottom Clause. In this

chapter, we would like to know if it is possible to further decrease the runtime of

the revision process without decreasing the accuracy. With this goal, we present

the results obtained from the current implementation, varying the set of operators

used to revise the theory, compared to the implementation of FORTE containing

FORTE MBC algorithm and also to Aleph system. We compare the average run-

time, accuracy and size of the theories, in number of clauses and literals.

Datasets We consider the same datasets used in (Duboc et al., 2009), namely the

Alzheimer (King et al., 1995a) domain, composed of four datasets and the DssTox

dataset (Fang et al., 2001). Alzheimer domain compares 37 analogues of Tacrine, a

drug combating Alzheimer’s disease, according to four properties as described below,

where each property originates a different dataset:

1. inhibit amine re-uptake, composed of 343 positive examples and 343 negative

examples

2. low toxicity, with 443 positive examples and 443 negative examples
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3. high acetyl cholinesterase inhibition, composed of 663 positive examples and

663 negative examples and

4. good reversal of scopolamine-induced memory deficiency, containing 321 po-

sitive examples and 321 negative examples

Alzheimer domain considers 33 different predicates and 737 facts in background

knowledge. DssTox dataset was extracted from the EPA’s DSSTox NCTRERDatabase.

It contains structural information about a diverse set of 232 natural, synthetic and

environmental estrogens and classifications with regard to their binding activity for

the estrogen receptor. The dataset is composed of 131 positive examples and 101

negative examples. There are 25 different predicates and 16177 facts in backgrund

knowledge.

Experimental Methodology The datasets were split up into 10 disjoint folds

sets to use a K-fold stratified cross validation approach. Each fold keeps the rate

of original distribution of positive and negative examples (Kohavi, 1995). The sig-

nificance test used was corrected paired t-test (Nadeau and Bengio, 2003), with

p < 0.05. As stated by (Nadeau and Bengio, 2003), corrected t-test takes into ac-

count the variability due to the choice of training set and not only that due to the

test examples, which could lead to gross underestimation of the variance of the cross

validation estimator and to the wrong conclusion that the new algorithm is signif-

icantly better when it is not. In this work, we are assuming that both modes and

types definitions are correct and therefore cannot be modified. All the experiments

were run on Yap Prolog (Santos Costa, 2008).

The initial theories were obtained from Aleph system using three settings:

� The first setting runs Aleph with its default parameters, except for minpos2,

which was set to 2 to prevent Aleph from adding to the theory ground unit

clauses corresponding to positive examples. It is identified in the Tables as

Theory-def.

2Minpos parameter set a lower bound on the number of positive examples to be covered by an
acceptable clause. If the best clause covers positive examples below this number, then it is not
added to the current theory (Srinivasan, 2001b)
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� The second setting named as Theory-def+cl, runs Aleph with its default

parameters, except for minpos and clauselength parameters, to set an upper

bound on the number of literals in a clause. We choose this last parameter

because YAVFORTE implementation also limits the number of literals in an

acceptable clause. To all systems, clause length is defined as 5 in Alzheimer

domain and 10 in Dsstox, following previous work (Landwehr et al., 2007).

� The third setting, Theory-best runs Aleph with “literature” parameters ac-

cording to previous work (Huynh and Mooney, 2008; Landwehr et al., 2007).

Thus, following (Huynh and Mooney, 2008), Aleph was set to consider minscore

as 0.6, evaluation function is M-estimate (Dzeroski and Bratko, 1992), noise

is 300 for Alzheimers and 10 for DSStox and clause length and minpos are

defined as above. Additionally, induce cover command was invoked instead

of the standard ”induce”. The difference is that positive examples covered

by a clause are not removed prior to seeding on a new example when using

induce cover. Note that only clause length parameter is used in YAVFORTE,

as the others parameters are not implemented there.

To generate such theories, the whole dataset was considered but using a 10-fold

cross validation procedure. Thus, a different theory was generated for each fold and

each one of these theories was revised considering its respective fold (the same fold

is used to generate and revise the theories).

In order to identify if there are any benefit on pre-defining the set of applica-

ble operators when revising the theories, YAVFORTE is run with 5 different sets

of operators. Four settings consider a combination of one specialization operator

together with one generalization operator. The last setting, identified in tables as

Y AV FORTE considers all operators.

� YAV-del considers delete rule as specialization operator and delete antecedents

only as generalization operator.

� YAV-add considers only addition of antecedents as specialization operator

and addition of rules as generalization operator.
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� YAV-add-del considers additions of antecedents as specialization operator

and delete antecedents as generalization operator.

� YAV-del-add considers delete rules as specialization operator and add an-

tecedents as generalization operator.

Both YAVFORTE and FORTE MBC run add antecedents algorithm consid-

ering Relational Pathfinding algorithm, followed by Hill climbing in Alzheimers do-

mains. As DSSTox top-level predicate is unary, Relational Pathfinding is not ap-

plicable. Because of that, only Hill climbing algorithm is taken into account. Both

systems considers clause length parameter as 5 for Alzheimers and clause length as

10 for DssTox.

Table 3.1: Runtime in seconds, predictive accuracy and size in number of literals
and clauses of final theories for Alzheimer amine dataset

Theory-def Theory-def+cl Theory-best
System Runtime Acc #Lits, Runtime Acc #Lits, Runtime Acc #Lits,

(s) (%) #Clauses (s) (%) #Clauses (s) (%) #Clauses

Aleph 7.53 62.67 20.8 48.66 65.62 36.9 43.19 73.64 69.7
5.5 8.5 7.16

FORTE 21.96 71.38 34.6 26.29 75.09 35.5 69.09 76.87 52.5
MBC 8.7 8.6 12
YAV-del 3.91 70.13 18.4 6.01 75.09 34.7 12.89 76.87 51.9

♦ • ? ♦? 5.5 ♦ • ? ♦ 8.5 ♦ • ? ♦ 11.8
YAV-add 7.29 70.48 46.7 8.61 74.94 53.8 15.31 76.55 79

•? ♦? 10.8 ♦• ♦ 11.9 ♦ • ? ♦ 17.2
YAV-add- 9.14 71.92 42.2 7.13 75.54 39.1 15.93 76.55 74.9
del ♦ • ? ♦? 9.8 ♦ • ? ♦ 9.2 ♦ • ? ♦ 16.4
YAV-del- 7.18 72.34 43.2 8.93 75.24 52.8 14.14 77.57 55.5
add •? ♦? 10.1 ♦• ♦ 11.7 ♦ • ? ♦ 12.4
YAV- 12.76 74.23 34.6 11.15 75.68 38 29.12 77.27 58.9
FORTE ♦• ♦• 8.7 ♦• ♦ 9 ♦• ♦ 12.8

Results and remarks about them Tables 3.1, 3.2, 3.3, 3.4 and 3.5 bring the

results for Amine, Toxic, Choline, Scopolamine and DssTox datasets, respectively.

The best values for each column are in bold, but we require that, in case the best

runtime or theory size result is of one of the revision settings, the accuracy of

the initial theory is still improved. The symbol ♦ identifies the cases where the

runtime and accuracy of the new systems have significant difference compared to

Aleph. The symbol • is used for a similar reason, comparing YAVFORTE with its
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Table 3.2: Runtime in seconds, predictive accuracy and size in number of literals
and clauses of final theories for Alzheimer toxic dataset

Theory-def Theory-def+cl Theory-best
System Runtime Acc #Lits, Runtime Acc #Lits, Runtime Acc #Lits,

(s) (%) #Clauses (s) (%) #Clauses (s) (%) #Clauses

Aleph 17.29 62.48 13 53.57 63.85 32.2 25.98 77.75 40.1
4.3 8.1 10.4

FORTE 22.54 71.32 25.4 37.67 71.19 27.9 22.14 79 33.5
MBC 7.8 8.1 8.9
YAV-del 2.93 68.48 11.6 8.79 71.19 28.1 4.38 79.12 32.4

♦ • ? ♦ 4.5 ♦ • ? ♦ 8.1 ♦ • ? ♦ 8.7
YAV-add 4.21 63.62 22.3 16.57 75.71 62.1 5.92 77.53 51.5

♦• •? 6.3 ♦• ♦ • ? 14.3 ♦ • ? • 11.8
YAV-add- 4.64 68.94 14.8 10.99 71.64 30.9 6.13 77.76 51.4
del ♦• ♦ 5.1 ♦ • ? 8.6 ♦ • ? • 11.8
YAV-del- 4.69 64.30 20.9 22.39 75.93 53.6 4.42 78.89 32.5
add ♦• ♦ • ? 6 ♦ • ? ♦ 12.6 ♦ • ? ♦ 8.7
YAV- 6.10 69.05 14.8 16.73 71.64 30.9 11.51 78.67 44.9
FORTE ♦• ♦ 5.1 ♦• ♦ 8.6 ♦• 10.6

Table 3.3: Runtime in seconds, predictive accuracy and size in number of literals
and clauses of final theories for Alzheimer choline dataset

Theory-def Theory-def+cl Theory-best
System Runtime Acc #Lits, Runtime Acc #Lits, Runtime Acc #Lits,

(s) (%) #Clauses (s) (%) #Clauses (s) (%) #Clauses

Aleph 39.23 56.02 30.7 100.63 56.62 39.33 147.94 64.47 74.9
8.5 9.4 17.1

FORTE 100.73 61.01 34.6 79.21 64.93 40 228.18 67.6 15.9
MBC 9.8 10.3 8.9
YAV-del 19.83 65.21 27.7 24.13 64.48 38.7 38.33 65.09 66.2

♦ • ? ♦• 8.9 ♦ • ? 10.1 ♦ • ? • 15.6
YAV-add 37.57 64.32 66.1 36.23 65.16 67.6 46.85 64.70 91.1

•? ♦• 6.3 ♦ • ? ♦ 14.3 ♦ • ? • 19.8
YAV-add- 46.05 62.98 60.2 39.07 67.09 51.9 59.22 64.94 82.4
del •? 15.2 ♦ • ? 12.1 ♦ • ? • 18.2
YAV-del- 39.58 66.32 63.7 38.63 65.39 65.6 51.42 64.93 75
add •? ♦ • ? 15.2 ♦ • ? ♦ 14.4 ♦ • ? • 16.7
YAV- 64.36 64.02 51.7 70.57 64.93 40 98.76 64.86 77.8
FORTE ♦• ♦• 13.5 ♦ ♦ 10.3 ♦• • 16.7

difference settings to FORTE MBC. Finally, ? identifies the cases where there is

significant difference between YAVFORTE disregarding some revision operator and

YAVFORTE using all the operators. From the results we make remarks as follows.

� YAVFORTE is always faster than FORTE MBC and even produces more ac-

curate theories with significant difference in four cases. There are two cases

where YAVFORTE returns worse theories than FORTE MBC: Choline and

DSSTox with the literature Aleph parameters. In the rest of the cases both
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Table 3.4: Runtime in seconds, predictive accuracy and size in number of literals
and clauses of final theories for Alzheimer Scopolamine dataset

Theory-def Theory-def+cl Theory-best
System Runtime Acc #Lits, Runtime Acc #Lits, Runtime Acc #Lits,

(s) (%) #Clauses (s) (%) #Clauses (s) (%) #Clauses

Aleph 15.96 51.71 24.9 41.40 51.41 31.3 57.24 58.42 45.3
6.5 7.5 10.5

FORTE 47.43 61.53 37.8 42.56 66.53 37 48.04 64.51 45.1
MBC 9.7 9.2 10.9
YAV-del 4.97 60.74 22.8 6.45 64.79 28.3 7.27 64.20 40.9

♦ • ? ♦? 6.5 ♦ • ? ♦ 7.5 ♦ • ? ♦ 10
YAV-add 3.54 51.87 28.2 14.67 62.02 57.5 15.02 62.17 66.9

♦ • ? •? 7.4 ♦• ♦ • ? 13 ♦ • ? ♦ • ? 14.8
YAV-add- 5.30 60.59 23.70 7.70 63.87 29.8 8.9 64.35 45.8
del ♦ • ? ♦? 6.7 ♦ • ? ♦ • ? 7.8 ♦ • ? ♦ 11
YAV-del- 3.48 51.87 28.2 14.8 62.02 57 14.06 61.70 62.6
add ♦ • ? •? 7.4 ♦• ♦ • ? 12.9 ♦ • ? ♦ • ? 13.9
YAV- 13.93 62.47 37.5 15.68 66.53 37 48.04 64.51 45.1
FORTE ♦• ♦ 9.6 ♦• ♦ 10.3 ♦ ♦ 11.3

Table 3.5: Runtime in seconds, predictive accuracy and size in number of literals
and clauses of final theories for DssTox dataset

Theory-def Theory-def+cl Theory-best
System Runtime Acc #Lits, Runtime Acc #Lits, Runtime Acc #Lits,

(s) (%) #Clauses (s) (%) #Clauses (s) (%) #Clauses

Aleph 25.55 51.36 10.2 50.07 51.36 11.2 39.96 55.39 9
2.9 2.9 2.3

FORTE 4.26 71.37 31.4 4.27 71.37 31.4 3.12 77.43 20.8
MBC 6 4.2 4.2
YAV-del 0.25 49.08 10.2 0.24 49.08 10.2 0.15 54.73 8.4

♦ • ? •? 2.9 ♦ • ? •? 2.9 •? •? 2.3
YAV-add 2.47 78.33 40.5 2.46 78.33 40.5 1.5 71.34 26.2

♦• ♦• 7.4 ♦• ♦• 7.4 ♦• ♦• 5
YAV-add- 2.39 75.29 35.9 2.38 75.29 35.9 1.66 72.64 27.6
del ♦• ♦ • ? 6.4 ♦• ♦ • ? 6.4 ♦• ♦• 5
YAV-del- 2.06 79.20 33.9 2.06 79.20 33.9 0.57 61.34 14.7
add ♦• ♦• 6.6 ♦• ♦• 6.6 ♦ • ? ♦ • ? 3.3
YAV- 2.56 78.33 38.9 2.61 78.33 38.9 1.72 71.34 24
FORTE ♦• ♦• 7.2 ♦• ♦• 7.2 ♦• ♦• 4.7

systems produces similar accuracy results. The difference in time is mainly due

to the fact that YAVFFORTE may stop to propose revisions without using all

operators, when a simpler operator already reaches the potential of the revision

point. Additionally, there is some gain in time when terms of the base clause

are included in the set of terms of the Bottom Clause before generating literals.

Remember that FORTE MBC is used to unify the terms of the base clause

and the Bottom Clause only after the Bottom Clause has been constructed.
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Concerning the difference in accuracy, there are two factors responsible for

that: (1) to stop proposing revisions before trying all operators may cause the

revision let aside some revision that could be better to the test set. This is the

case with Choline dataset; also, delete antecedents operator in YAVFORTE

does not try to eliminate the proof of all negative examples; instead it deletes

antecedents following a score value. While this more flexible operator is able

of producing more accurate results in the four cases previously mentioned, it

is also responsible for worse revision of the DSSTox theory. However, in most

cases, YAVFORTE is able to revise theories as well as FORTE MBC (without

significant difference) in reduced runtime.

� Note that the results for Choline dataset using FORTE MBC are in most of

the figures detached from the rest. FORTE MBC has a harder time to revise

the theories generated from this dataset than in the others datasets for two

main reasons: this is the dataset with the largest set of examples and the

theories generated from Aleph for it have the highest size.

� YAVFORTE considering only delete antecedents and delete rules as revision

operators achieves the fastest revision system and produces the smallest theo-

ries according to both number of literals and number of clauses. What is

interesting about this setting is that with rare exceptions (Choline with best

parameters of Aleph and DssTox), the results show that those both opera-

tors alone are able to provide significant improvements over the initial theory.

Actually, in Toxic with literature Aleph parameters this setting is the one pro-

viding the best revision: the final theory is the smallest and more accurate

and it even has been revised in less time.

� The results indicate that there are benefits of considering only a subset of the

revision operators: most cases produce theories as accurate as when consider-

ing all operators and in less time. Thus, when the expert of the application

has some insight on what to expect from the revised theory, he could use this

knowledge to reduce the set of applicable revision operators.

� It is important to emphasize that YAVFORTE considering any set of operators
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is faster than Aleph in 11 of 15 cases, with most of the settings still returning

more accurate theories. With this result, we can claim that a revision system is

capable to behave better than an inductive system, considering both runtime

and accuracy.

Figure 3.1: Scatter plot for all datasets and systems settings considering theories
learned by Aleph with its default parameters

Figure 3.2: Scatter plot for all datasets and systems settings considering theories
learned by Aleph with its default parameters, except for clause length
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Figure 3.3: Scatter plot for all datasets and systems settings considering theories
learned by Aleph with better parameters settings than just default

Figures 3.1, 3.2 and 3.3 exhibit scatter plots for all systems and theories, con-

sidering theories learned with Aleph default parameters, Aleph default plus clause

length changed and Aleph best parameters, respectively. Symbols in the bottom

right corner indicate the best results. Note that when considering default parame-

ters Aleph concentration is in bottom left corner: runtime is small, at the cost of

bad accurate theories. When changing clause length parameter, the situation slightly

changes for accuracy, but runtime increases, as expected. Better parameters improve

accuracy, at the cost of increasing runtime. Most of the cases FORTE MBC is in

higher y-axis than the others systems, although it is more present in the left side,

indicating its accuracies results are still elevated, compared to Aleph. YAVFORTE

settings, on the other hand concentrates in the bottom (right) corner, indicating in

the overall they are capable of producing the best accurate theories, in less time.

3.5 Conclusions

Although work in theory revision gained great attention in the 1990s, in recent years

ILP community had practically set aside research in this area, since the benefits of

revising theories could not outweigh the large runtime effort expended by those
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systems. This chapter contributes towards changing this scenario, based on the

FORTE revision system. First, in (Duboc et al., 2009) we have abandoned the top-

down search of literals based on FOIL in order to use the Bottom clause, to reduce

the set of literals taken into account when refining a theory, as standard ILP systems

do. In this chapter we further improve the scalability of the revision system, by (1)

making the use of revision operators more flexible, once it is possible to choose which

operators are going to be considered to revise the theory; (2) stopping to propose

revisions in one revision point as soon as a simpler operator already achieves the full

potential of the point; (3) requiring the clause continues to obey mode declaration

after an antecedent is deleted.

We additionally introduced one modification in the delete antecedents opera-

tor, once in the original FORTE and FORTE MBC an antecedent could be deleted

only when none of the true negative instances become provable. It was necessary to

make this hard requirement more flexible because there are cases when the set of

false negative instances is only reduced if the clause is allowed to also prove some

negative instances. Finally, we have modified the Bottom Clause construction pro-

cedure of FORTE MBC in two ways: (1) the terms of the ground base clause are

considered to be part of the Bottom Clause, so that they can be used to bring further

terms to the Bottom Clause, and also to make unnecessary to unify the base clause

with the Bottom Clause after this last one is constructed; (2) the current theory is

taken into account to prove literals to be included in the Bottom clause. We named

the system including all these issues as YAVFORTE.

Experimental results were extracted from five relational benchmark datasets,

namely four datasets from Alzheimer domain and the DSSTox dataset. Through

them, it was possible to verify that the revision process can be indeed improved with

those modifications. YAVFORTE is faster than FORTE MBC without decreasing

the accuracy. In fact, there were cases where the accuracy was further improved,

considering the initial theory. It was also possible to see that when we turn the set

of revision operators more flexible, the runtime diminishes while the initial accuracy

is still improved, though not that much as when the complete set of operators are

considered. More important, we could show that when the same parameter for
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limiting the size of a clause is used for revising and for learning from scratch, the

revision performs faster than the inductive method. In this way, we achieve our goal

of devising a revision system as feasible as a standard inductive system, at least

when datasets of regular size are used.

Datasets used in this chapter are not considered as robust ones. Therefore,

we still need to verify how the revision system behaves when the datasets have a

large number of examples and/or large background knowledge. Also, as the revision

system starts from an initial theory, if this one has a large number of faulty clauses,

the system is probably going to behave badly. In this case, it is going to be more

difficult to do the revision than learning from scratch, since the revision must pro-

pose modifications to each faulty clause. Because of those issues, in chapter 6 we

investigate stochastic local search techniques applied to the revision process.
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Chapter 4
Chess Revision: Acquiring the Rules of
Variants of Chess through First-order
Theory Revision from Examples

4.1 Motivation

In the recent paper (Dietterich et al., 2008), the authors point out that there was

considerable effort in the development of theory revision systems in the past, but the

lack of applications suited to that task made those systemsnot be widely deployed.

In this chapter we intend to contribute in this direction by designing an application

in the area of games that fits perfectly to theory revision.

Game playing is a fundamental human activity, and has been a major topic

of interest in AI communities since the very beginning of the area. Games quite

often follow well defined rituals or rules on well defined domains, hence simplifying

the task of representing them as computer programs. On the other hand, good

performance in games often requires a significant amount of reasoning, making this

area one of the best ways of testing human-like intelligence. Namely, datasets based

on games are common testbeds for machine learning systems (Fürnkranz, 2007).

Usually, machine learning systems may be required to perform two different kinds

of tasks (Fürnkranz, 1996). A first task is to learn a model that can be used to decide

whether a move in a game is legal, or not. Having such a model is fundamental for

the second task, where one wants to learn a winning strategy (Bain and Muggleton,
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1994; Sadikov and Bratko, 2006). We focus on the the first task in this work.

In order to acquire a meaningful representation of the set of rules describing a

game, one can take advantage of the expressiveness of first-order logic and hence its

ability to represent individuals, their properties and the relationship between them.

Thus, using ILP methods it is possible - roughly speaking - to induce the game’s

rules written as a logic program, from a set of positive and negative examples and

background knowledge.

Previous work has demonstrated the feasibility of using ILP to acquire a rule-

based description of the rules of chess (Goodacre, 1996). However, to effectively

learn chess theory, it is necessary to induce not only the top-legal concept of how

a piece should legally move, but also subconcepts to help on that task. Consider,

for example, Figure 4.1. In the first case, a king is in check and therefore its only

legal moves are those which get it out of check. In the second case, a piece is

playing the role of protector to the king (it is a pin). Before moving such a piece one

should realize if the king continues to be protected, if the piece leaves its position.

Those are intermediate concepts that must also be induced by the revision system.

The authors of (Goodacre, 1996) employed hierarchical induction to learn a concept

at each time, starting from the lowest level concept and incrementally adding the

learned definitons to the final theory, until it reaches the ultimate goal: learning the

concept of legal moves.

Figure 4.1: Visualization of situations when an ILP system should learn definitions
for subconcepts. Figure (a) shows a board of chess with a checked king. Figure (b)
shows a piece working as a pin.
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On the other hand, game playing is a dynamic environment where games are

always being updated, say, to be more challenging to the player, or to produce an

easier and faster variant of the original game. In fact, popular games often have

different regional versions, that may be considered variants or even a new version

of the game. Consider, for example, the game of Chess, arguably, the most widely

played board game in the world. It also has been a major game testbed for research

on artificial intelligence and it has offered several challenges to the area. There are

numerous chess variants, where we define chess variant as any game that is derived

from, related to or inspired by chess, such that the capture of the enemy king is

the primary objective (Pritchard, 2007). For instance, the Shogi game (Hooper

and Whyld, 1992), is the most popular Japanese version of Chess. Although both

games have similar rules and goal, they also have essential differences. For example,

in Shogi a captured piece may change sides and return to the board 1, which is

not allowed in Western Chess. Figure 4.2 shows boards of several chess variants.

Ideally, if the rules of a variant of a game have been obtained, we would like to take

advantage of them as a starting point to obtain the rules of a variant. However,

such rules need to be modified in order to represent the particular aspects of the

variant. In a game such as chess this is a complex task that may require addressing

different board sizes, introducing or deleting new promotion and capture rules, and

may require redefining the role of specific pieces in the game.

In this work, we address this problem as an instance of Theory Revision from

Examples (Wrobel, 1996). In this case, theory revision is closely related to Transfer

Learning (Thrun, 1995; Caruana, 1997), since the rules of international chess (the

initial theory for the theory revision system) have been learned previously using ILP.

Arguably, transfer learning is concerned about retaining and applying the knowledge

learned in one or more tasks, to efficiently develop an effective hypothesis for a

completely new task while theory revision deals with very related problems. For

example, transfer learning may carry out a mapping between two different predicates

but theory revision systems are not designed to perform such a task. However, after

mapping one predicate to another it is usually necessary to change the definition of

1It is suggested that this innovative drop rule was inspired by the practice of 16th century
mercenaries who switched loyalties when captured (Pritchard, 2007).
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Figure 4.2: Boards of variants of chess. In the first row it is the international
Chess, on its side it is the Xiangqi (Chinesse chess), followed by Shogi (Japanese
Chess). Next row it one of the first chess games, the Chaturanga in the Hindu
version, followed by the Chess in the Round game and a more modern version of
Chaturanga, quite close to the International Chess. In the last group it is Shogi,
Anti King Chess, Los Alamos and Grand chess, in this order.

the predicate, which is in fact a task of theory revision. Thus, theory revision may

be seen as an important part of transfer learning systems.

We show that we can learn rules between different variants of the game of

chess. Starting from YAVFORTE revision system explained in a previous chapter,

we contribute with (i) a new strategy designed to simplify the initial theory by

removing facts that will not be transferred between variants; (ii) support for ab-

duction; and (iii) support for negation as failure. Experimental evaluation on real

variants of chess shows that our technique can transfer between variants with smaller

and larger boards, acquire unusual rules, and acquire different pieces. This chapter

is organized as follows. First, we describe the components besides the revision sys-

tem composing the framework for revising the rules of chess in section 4.2. Next,

the modifications performed on YAVFORTE to support abduction and negation so

that the problem is best addressed are described in section 4.3. Finally, we show
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TO TURN THEM IN THE RULES OF VARIANTS

the effectiveness of our approach through experimental results on chess revision in

section 4.4 and conclude the work in section 4.5. A reduced version of this chapter

has been published in (Muggleton et al., 2009b) and (Muggleton et al., 2009a).

4.2 Revision Framework for Revising Rules of Chess
to Turn Them in the Rules of Variants

The framework designed in this work for revising rules of chess so that laws of a

variant of this game can be found is composed of five components, three of them

are input components, one is the transformer component and the last one is the

resulting component. The input components are (1) the initial theory, containing

rules of international chess learned previously from examples and/or defined by an

expert of the domain, (2) a set of examples reflecting the laws of the game’s variant

and responsible for pointing out where the initial theory differs from the domain

of the variant and (3) a set of fundamental concepts supporting the provability of

the initial theory. The transformer component is the theory revision system, which

is responsible for modifying the initial theory according to the examples so that

it reflects the rules of the variant of the game. Finally, the last component is the

resulting revised theory, which ideally is a logic program capable of deciding whether

a move in the game is legal or not, according to its governing rules. Figure 4.3

displays the components of the framework and how they cooperatively work to

achieve the goal.

4.2.1 The Format of Chess Examples

As most ILP frameworks, theory revision refines an initial theory from a set of

positive and negative examples. The Chess domain addressed in this work has as

positive instances the legal moves allowed by the rules of the game. Consequently,

the negative instances are the illegal moves, i.e., the moves not obeying the rules of

the game. In order to represent the moves executed during a game, the dataset is

composed of a set of simulated games up to a specified number of rounds. The moves

are within a game aiming to represent castling and en-passant, which require the

history of the games, and promotion, which require update of the board. In case of
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Figure 4.3: Components of the chess revision framework: Initial theory is going to
be revised by the Revision system, using FDT and Dataset. Dataset is created from
the Examples generator component.

castling, history is necessary to check whether the king and rook has already moved

in previous rounds. To allow an en-passant it is necessary to check the immediately

preceding move. Promotion requires to replace the promoted pawn with another

piece in subsequent moves.

We take advantage of FORTE examples representation discussed in chap-

ter 2.1, where an example obeys the format

Ground Instances of Target Predicate← Conjunction of facts from the context

Thus, the ground instances of the target predicate are instances of legal (positive

instances) and illegal (negative instances) moves and the facts from the context are

the positions of the pieces related to each round (the board of the game). Each

simulated game has its separate set of legal and illegal moves and set of positions of

the piece during the game, in the format exhibited in Table 4.1.

The terms of the target predicate are the round of the move, with 1 as the first

round, 2 the subsequent round, and so on, and the current and next status of the

piece. The status is the name of the piece, its color and position, composed by File

and Rank. For example, move(9, pawn,white, c, 7, rook, white, c, 8) states that in

round 9 a white pawn moved from c, 7 to c, 8 and is promoted to a rook, i.e, its next
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Table 4.1: Format of one example in Chess dataset

Target Predicate:
Positives:

move(Round,Piece,Colour,File,Rank,NextPiece,
NextColour,NextFile,NextRank),...

Negatives:
move(Round,Piece,Colour,File,Rank,NextPiece,

NextColour,NextFile,NextRank),...
Context:

board(Round,Piece,Colour,File,Rank),...
out board(Round,Piece,Colour,-1,-1),...
out board(Round,Piece,Colour,0,0),...

status is rook, white, c, 8. Similarly, themove(5, bishop, black, c, 8, bishop, black, e, 5)

states that in round 5 the black bishop moved from c, 8 to e, 5. The facts from the

context represent the position of the pieces on the board at each round of the game,

through the predicate board/5 and the pieces removed of the game by capturing or

promotion moves, through the predicate out board/5. In out board/4 predicate, the

two last terms are −1,−1 in case of a capture and 0, 0 in case of a promotion.

The board setting is updated according to the legal move(s) performed on the

previous round. Suppose, for example, the white bishop move above. There is a fact

board(5, bishop, black, c, 8) in that example and after the move, another fact is gene-

rated to represent the new position of the piece, namely board(6, bishop, black, e, 5).

Suppose there were a fact board(5, pawn,white, e, 5) in the context of this same

game. Thus, when the bishop has moved it captured a white pawn, which “produces”

another fact out board(6, pawn,white,−1,−1) in the new setting of the board. The

board facts for the first round are composed of the initial position of the pieces for

the game and therefore they are the same for each example in the dataset. Fig-

ure 4.4 shows the initial board for the international chess and board/5 predicates

representing it.

A move generator procedure is responsible for creating the dataset of simulated

games, since we could not find any saved games for variants of chess. Basically,

it starts from the initial board setting and successively chooses a piece from the
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Figure 4.4: The initial setting of the board in international chess and atomic facts
corresponding to it. Figure of the board is taken from http : //www.mark −
weeks.com/aboutcom/bloa0000.htm

current board, generating legal moves for it. After that it chooses at random one

of the legal moves to be the positive example of the round. Then, it generates il

illegal moves from pieces chosen at random from the current board to compose the

set of negative examples of the round. Note that only one legal move is chosen

because naturally each round of the game has one legal move. However, several

possible illegal moves are selected, since they are not in fact performed. Moreover,

the board must be updated based on the legal move, which does not happen from

illegal moves, allowing us to have as many negative examples for each round as

desired. The process continues up to the specified maximum number of rounds,

respecting for each round the piece with the right to play. It may be also necessary

to represent negative examples created from a non-existing board. This is the case of

negative examples representing non-existing pieces or non-existing positions in the

game. A variant of chess which does not use all the usual pieces or it uses a smaller

board would require that. In this situation, a random board is created, specifically

to represent such a negative example. Algorithm 4.1 shows the steps necessary to

generate the set of examples. Table 4.2 exhibits part of one example in the dataset,

extracted from a chess variant known as Gardner mini-chess (5X5 board).
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Table 4.2: Part of one example in Mini-chess Dataset

example(
% positive examples
[move(p1,pawn,white,a,2,pawn,white,a,3),
move(p2,pawn,black,c,4,pawn,black,c,3),
% This is the black pawn that moved from c,4 to c,3 in round 2
move(p4,pawn,black,c,3,pawn,black,b,2),...,
move(p23,knight,white,c,3,knight,white,a,4),
% A pawn is promoted to a knight
move(p24,pawn,black,2,black,knight,c,1),
move(p25,rook,white,d,1,rook,white,d,2)],

% negative examples
% promotion in an existing rank (therefore, from a non-existing board)
[move(r94,pawn,bishop,white,b,7,bishop,white,b,8),
move(p1,pawn,white,c,2,pawn,white,b,2),...,
move(w84,queen,black,f,2,queen,black,b,2),...,
move(p10,pawn,black,d,4,pawn,black,d,1),...,
move(p25,king,white,e,1,king,white,f,1)],

% facts from the context: board setting for each round
board(p26,king,white,a,1),board(p26,knight,black,c,1),...,
board(p25,knight,black,d,5),board(p25,rook,black,e,5),...,
% A white pawn has been promoted to a knight
% The fact such a pawn does not more belong to the board is
% represented by out board predicate
out board(p24,pawn,white,0,0),
board(p24,knight,white,a,4),...,
board(p23,pawn,white,a,3),board(p23,knight,white,c,3),...,
board(p23,rook,black,e,5),...,
% The black queen has been captured
out board(p25,queen,black,-1,-1),...,
board(p5,rook,white,e,1),board(p5,queen,white,a,2),
% Board updated after fourth round: a black pawn has moved to b,2
board(p5,pawn,black,b,2),...,board(p5,pawn,black,e,4),...,
board(p5,knight,black,d,5),board(p4,king,white,a,1),...,
% Board updated after third round: the white queen has moved to a,2
board(p4,queen,white,a,2),board(p4,pawn,white,b,2),...,
board(p3,king,white,a,1),board(p3,queen,white,b,1),...,
%Board updated after second round: a black pawn has moved to c,3
board(p3,pawn,black,c,3),...,board(p2,pawn,white,e,2),...,
%Board updated after first round: a white pawn has moved to a,3
board(p2,pawn,white,a,3),board(p2,pawn,black,a,4),...,
board(p1,bishop,white,c,1),board(p1,rook,white,e,1),
board(p1,pawn,white,a,2),board(p1,pawn,white,b,2),...,
board(p1,knight,black,d,5),board(p1,rook,black,e,5),
% Non-existing boards are uptaded after a negative move
board(r95,bishop,white,b,8),...,board(w9,rook,black,b,1)
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Algorithm 4.1 Chess examples generator Algorithm

Input: The initial board setting CB, int d, representing the depth of each exam-
ple/game, int il, number of negative examples for each round, number of exam-
ples n

Output: A dataset for a chess variant
1: nex← 1
2: while nex <= n do
3: round← 1
4: current board← CB
5: color ← white
6: while r <= d do
7: piece← choose a piece with color color from current board
8: legal moves← generate legal moves for piece ∈ CB
9: pos move round← a move chosen at random from legal moves
10: neg moves round ← il illegal moves generated at random from CB

and/or a non-existing board
11: current board← update current board according to pos move round
12: color ← black
13: r ++
14: n++

4.2.2 The Background Knowledge

In the chess revision problem, the initial theory describes the rules of the standard

game of chess, which will be modified to state the rules of the variants, using ap-

propriate examples. This theory is inspired on the one learned in (Goodacre, 1996)

where hierarchical structured induction was employed in Progol system to learn

clauses from the lowest level predicate (which does not have any other target predi-

cate in the body) to the top-level predicate (the one which is not in the body of any

other predicate). The resulting theory was approved by Professor Donald Michie,

who was a world authority in computer chess research. To accomplish that, a set

of examples were generated at each time as the target predicate of the respective

level. Thus, different from her, the examples were not represented within a game,

but isolated from each other.

The major differences between the theory exploited in the present work and

the one learned in (Goodacre, 1996) concern the clauses describing special moves

namely, castling, en-passant and promotion, since the authors of that work opted

by not representing those moves. Additionally, we try as much as possible to avoid
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negated literals with output variables to increase efficiency, as explained above, and

because of that some rules were re-learned to obey this requirement.

Initial Theory

The initial theory, which must be revised to turn into the theory of the variant game

rules, describes the rules for achieving a legal move following the rules of chess (Burg

and Just, 1987). From a query about the legality of the move, the first step of the

logic program is to inspect whether the opponent king is in check. If so, it is illegal

to move the piece and the clause does not succeed. Otherwise, it proceeds trying to

find a valid next position for the piece. In more detail:

1. Either the piece is a king, and:

(a) It must be in a valid position (existing file and rank), and,

(b) it must not go next to the opponent king, and,

(c) it must not go into check, that is to a position threatened by an opponent

piece and,

(d) it cannot go to a position where there is already a piece of the same color,

and then,

(e) it can perform castling with a rook, if the castling conditions hold; or,

(f) it moves one square in any direction to anexisting position in the board.

2. Or the piece is not a king, and:

(a) It must be in a valid position (existing file and rank), and,

(b) it cannot move if its king is in double check (in this situation the only

piece allowed to move is the king), and,

(c) if it is protecting the king from a check (absolute pin) it can only move

to a position where it continues protecting the king, or,

(d) it can move to stop a check if the king is in simple check, either by captur-

ing the threatening piece or by blocking the path between the threatening

piece and the king, as long as it also respects conditions (g) and (h), or,
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(e) it may perform an attack, only in case the intended position is already

occupied by an opponent piece, by moving according to the direction it

is allowed to, except for the pawn, or,

(f) if the piece is a pawn, and ((d) or (e)), it can perform an en-passant

move; otherwise it captures one square diagonal, or,

(g) if the intended position is not occupied, the piece moves without capturing

other piece;

(h) except for a knight, it must not pass over any other piece on the board

while going to its next position;

(i) finally, it must move according to its basic move (bishops diagonally,

rooks orthogonally, etc), to a valid position in the board (existing file

and rank).

(j) If the piece is a pawn reaching the last rank it is promoted. The pawn

can move 2 squares vertical forward only if this is its first move in the

game.

Note that if the rules of the variant of the chess differ from the standard chess

in any of the conditions above, the revision process must identify this through the

examples and change those rules, so that they reflect the rules of the variant.

The pieces, files, ranks and color are represented in the initial theory as ground

facts, where each fact is related to a piece, a file, a rank or a color allowed in the

game of chess, as exhibited in Table 4.3.

Table 4.3: Ground facts representing pieces and colors in the game and file and
ranks of the board, considering the interantional Chess

Pieces Colors Files Ranks
piece(rook). file(a). file(e). rank(1). rank(5).
piece(knight). file(b). file(f). rank(2). rank(6).
piece(bishop). piece(pawn). color(white). file(c). file(g). rank(3). rank(7).
piece(queen). piece(king). color(black). file(d). file(h). rank(4). rank(8).

In order to avoid output variables in negated literals, some clauses were mo-

dified to provide the same definition but using only input variables. Suppose, for
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example, the clause below explaining the concept of check, where the terms related to

the piece checking the opponent king are unified with (Piece, Colour1, F ile1, Rank1).

check(Round, P iece, Colour1, F ile1, Rank1, king, Colour2, F ile2, Rank2)←

nequal(Colour1, Colour2),

%load the information about a piece on the board

board(Round, P iece, Colour1, F ile1, Rank1),

attack(Round, P iece, Colour1, F ile1, Rank1, king, Colour2, F ile2, Rank2).

The clause above holds true if there is an opponent piece attacking the king;

in this case (Piece, Colour1, F ile1, Rank1) states the opponent. If one simply needs

to know whether the king is in check or not, the information regarding the attacking

piece can be only local to the clause, i.e., it is not necessary to return them as answer

substitution. Thus, a simplified predicate for deciding if the king is in check has a

clause wherein all variables may be considered input:

check(Round,King, Colour2, F ile2, Rank2)←

check(BoardID, P iece, Colour, F ile1, Rank1, king, Colour2, F ile2, Rank2).

In this case, the predicate check/5 has as input only the information about

the king which might be in check, i.e., Colour2, F ile2, Rank2 refers to the color and

position of the possibly checked king.

Now, we can have not(check(Round,King, Colour2, F ile2, Rank2)) in the body

of a clause where all the terms are input variables, such as load, if we have a subgoal

board(Round,King, Colour2, F ile2, Rank2) first. The same was done with other

concepts in the theory appearing as negated literals in the body of some clause. Al-

though this optimization was not required by the revision itself, it was an important

useful step to achieve efficient construction of the bottom-clause.

The clauses representing special moves such as castling, en-passant and pro-

motion were written by an expert and inserted by hand into the initial theory in

appropriate clauses. Defining some part of the knowledge with the help of an expert
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in the domain is usual in theory revision area.

Fundamental Domain Theory

Besides the initial theory, there is previous knowledge about the domain which is

assumed as correct and therefore does not need to be revised. Fundamental Domain

Theory contains definitions valid to the standard chess and also to the chess vari-

ants. During the revision process, this set of clauses is not modified and some of the

clauses in the theory being revised need to use them so that they can be satisfied.

After the revision process, the clauses in the FDT, together with the revised theory,

will compose the theory of the chess variant. FDT is mainly responsible for keeping

the definitions of fundamental concepts such as differences between positions (files

or ranks), relations of equality, non-equality, greater than or less than between files

and ranks, directions, among others. Below there is an example of a clause belon-

ging to FDT, which defined the concept of northdirection.

%( b,2 is north from b,3)

direction(File, Rank1, F ile, Rank2, north)← less thanRank1, Rank2).

where less than concept is defined as

less than(A,B)← integer(A), integer(B), !, A < B. %for ranks

less than(A,B)← name(A), name(B), A < B. %for files

The initial theory has 109 clauses with 42 intermediate predicates and the

FDT 42 clauses. The work in (Goodacre, 1996) had 61 clauses in the BK and it

learned 61 clauses. The difference in the total number of clauses is from the clauses

that were added to avoid output variables in negated literals, as explained in the

previous section, and from clauses representing special moves.

79



4.3. MODIFYING YAVFORTE TO ACQUIRE RULES OF CHESS
VARIANTS

4.3 Modifying YAVFORTE to Acquire Rules of Chess
Variants

Unfortunately, the revision algorithm described in chapter 3 cannot tackle the pro-

blem of revising between variants of chess. Analysis showed that chess generates a

very large search space that could not be addressed well with uninformed search.

Moreover, we must consider changes in the domain (such as differences in board

size), that are not addressed well through the standard revision operators. We

therefore propose a number of modifications to the current version of the system,

described as follows.

4.3.1 Starting the Revision Process by Deleting Rules

In an attempt to decrease the complexity of the theory and consequently of the

whole revision process, we introduce a first step of deletion of rules. This process is

performed as a hill-climbing iterative procedure, where at each iteration the clauses

used in proofs of negative examples are selected, each one is deleted in turn using

the delete rule operator and the resulting theory is scored. The modified theory

with best score is selected for the next step. The process finishes when no deletion

is able to improve the score.

A similar algorithm was proposed to revise ProbLog programs (De Raedt et al.,

2008b), where it has shown to be quite effective at finding minimal explanations. In

our case, the goal would be to find a “common denominator” between the two diffe-

rent games. We found this procedure both reduces theory size and noise, namely

when the target theory is a specialized version of the initial theory. On the other

hand, it could implicate that the final revision is not the “minimally revised” one,

since the proof of negative examples could be avoided through addition of few an-

tecedents to the rules. However, the benefits on the decrease of runtime outweighs

the possibility of returning a non-minimal revision.

After this step, the algorithm is executed as usual. The procedure for deleting

rules is exhibited as Algorithm 4.2 and it is executed before the line 1 of the Algo-

rithm 3.1. Note that the operator for deleting rules might be normally used again

during the rest of the revision process (since it is one of the revision operators).
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Algorithm 4.2 First Step for Deleting Rules
1: repeat
2: generate specialization revision points;
3: for each specialization revision point (a clause) do
4: delete clause;
5: update best revision found;
6: if best deletion improves the current score then
7: delete clause with best score;
8: until no deletion improves the theory;

4.3.2 Using abduction during the revision process

Abduction is concerned with finding explanations for observed facts, viewed as miss-

ing premises in an argument, from available knowledge deriving those facts (Flach

and Kakas, 2000a). Usually, theory revision systems, including FORTE, use abduc-

tion when searching for generalization revision points, to locate faults in a theory

and suggest repairs to it. Using abduction, a revision system determines a set of

assumptions (atomic ground or existentially quantified formulae) that would allow

the positive example to be proved. Consider, for example, the theory below, taken

from (Mooney, 2000)

p(X) : −r(X), q(X).

q(X) : −s(X), t(X).

and the positive instance p(a), with BK r(a), s(a), v(a), unprovable by the current

theory. The algorithm discovering revision points would find out by abduction that

the instance is unprovable because the literal t(a) fails. One of its suggestions to fix

the theory would be to add a new definition for t(X)

We further benefit from abduction in three distinct situations of the revision

process.

Intermediate Predicates Abduction Intermediate predicates are those ones

appearing in the head of clauses and also in the body of others clauses, but there

is neither example nor facts in the dataset corresponding to them. Suppose, for

example the extracted piece of the chess theory in Table 4.4. The clause we show
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in the table handles the case of a king moving by calling the clause defining how

a king should legally move. Note that there are two clauses for doing this, one of

them dealing with a king in check and another one to handle a move of a king not

in check. Predicates kingmove/7, kingmove in check/7 and kingmove no check/7

are intermediate predicates, as they appear in the body of clauses and also in the

head of others clauses. The instances in the dataset are of predicate move/4 only.

Table 4.4: An extracted piece of the chess theory, to exemplify the need of abduction
when learning intermediate concepts

move(BoardID, king, Color, File1, Rank1, king, Color, File2, Rank2):-
file(File1), rank(Rank1),
file(File2), rank(Rank2),
color(Color1), nequal(Co lour,Color1),
equal(Piecek, king), % no constants in negated predicates
% there is only one king of Color1 in the board
board(BoardID, Piecek,Color1, File3, Rank3),
% the king is not in check
not(any check(BoardID, Piecek, Color1, File3, Rank3)),
% clause defining the legal move of a king
kingmove(BoardID, king, Co lour, File1, Rank1, File2, Rank2).

kingmove(BoardID, king, Co lour, File1, Rank1, File2, Rank2):-
kingmove in check(BoardID, king, Co lour, File1, Rank1, File2, Rank2).

kingmove(BoardID, king, Co lour, File1, Rank1, File2, Rank2):-
kingmove no check(BoardID, king, Co lour, File1, Rank1, File2, Rank2).

It may be the case that the clause(s) defining intermediate predicates are

wrongly defined. The error propagates to clauses containing literals with such pred-

icate in their bodies, and so on. In this situation, such a literal is marked as a revision

point, since it is in the path of the failing/successful proof of some positive/negative

example. Suppose, for example there is no definition or a wrong definition for a king

moving when it is in check, as in the example of Table 4.4.

In the first case, when the predicate is contributing to a positive example not

to be proved, besides trying to modify clauses from where the intermediate predicate

is called, the revision is going to propose the following modifications concerning the
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predicate itself:

� Delete antecedents from the body of the clause defining an intermediate pred-

icate, if such a clause exists;

� Add rules with the intermediate predicate in the head of the clause.

In the second case, an intermediate predicate is in the path of a successful

proof of a negative example. Possible proposed modifications trying to solve this

problem are going to be:

� Delete the rule with the intermediate predicate in the head.

� Add antecedents to the body of such a clause.

The second modification of each item concerns refining the clause by adding

literals to its body. As we discussed in the previous chapter, this search space is com-

posed of literals in the Bottom Clause, generated from a positive example covered by

the clause, whose example predicate is the same as the one in the head of the clause.

The problem is we have no examples for such intermediate predicates. In the chess

theory, for example, the instances correspond to move predicates, but there is no

example in the dataset for kingmove, kingmove in check, or kingmove no check.

Therefore, we need to tackle non-observation predicate learning (Muggleton

and Bryant, 2000), where the concept being learned differs from that observed in

the examples. We introduce intermediate predicate abduction in order to “fabricate”

the required example. From a positive instance belonging to the answer set (rel-

evant examples) of the intermediate clause, i.e, the proof of the instance includes

the clause, we obtain an “intermediate instance” using the current theory and FDT.

The procedure takes an example from the answer set together with the interme-

diate predicate and instantiates such a predicate to its first call encountered when

attempting to prove the goal. The proof starts from the example and finds an instan-

tiation for the specified intermediate predicate. After constructing the intermediate

example, the bottom clause construction procedure is ready to run, followed by the

refinement of the clause. The whole procedure can be visualized in Algorithm 4.3.
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In Table 4.4, assume the predicate kingmove in check/7 is marked as a re-

vision point and move(p12, king, black, e, 9, king, black, b, 2) is one of the relevant

examples. The intermediate instance kingmove in check(p12, king, black, e, 9, b, 2)

would be generated by the procedure, by first calling clause corresponding tomove/7

predicate, next calling clause with kingmove/7 in its head and finally instantiating

the intermediate instance.

FORTE also uses a similar procedure to generate extensional definitions for

lower level recursive predicates, when revising theories with recursive clauses. In

(Muggleton and Bryant, 2000) the procedure we employ here to abduct the inter-

mediate instance is used to obtain “contra-positive examples” to the intermediate

predicates and then construct a Bottom Clause for them.

Note that we can only reach an intermediate predicate from higher level clauses.

In case there already exists a correct clause defining such a predicate, there is no

need to further refine it and such a literal is a candidate to be included in the body

of higher level clauses (clauses where the intermediate predicate is in the second

term of a determination definition). However, if there is no clause defining this

predicate, and also it does not belong to the body of a higher level clause, currently

the revision process has no means of reaching this predicate and consequently pro-

pose the creation of a clause for it. This happens because, in order to make some

modification in the provability of the example, the revision would have to be able

to include the intermediate predicate in the body of some clause taking part in the

proof of the example, and at the same time to create a clause for the intermediate

predicate. Nowadays, the revision system is not capable of proposing modifications

to more than one revision point at the same time. On the other hand, if there is

a definition of the intermediate predicate, even if it is not correct for all required

examples, but it solves the problems of some of them, the revision would be able

to include such a predicate in the body of a clause. In a future iteration, the pred-

icate should be marked as revision point and have its definition modified, so that

the missing examples before become correctly proved. To sum up, although we do

not escape from the limitations of inverse entailment (Yamamoto, 1997) with this

procedure, it is enough to attend this class of requirement when revising a chess
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theory.

To finish, it is worth mention there is great interest on learning concepts from

non-observed predicates in ILP community, by handling two strategies of logical

reasoning: induction and abduction (Flach and Kakas, 2000b; Inoue, 2001; Moyle,

2003; Ray et al., 2004).

Algorithm 4.3 Algorithm for Refining a Clause whose Head Corresponds to an
Intermediate Predicate
Input: A theory T and FDT BK, a positive instance pi, a clause C = l : −Body0,

where l corresponds to an intermediate predicate, and Body0 is a (possible
empty) set of literals

Output: A possibly refined clause C ′ = l : −Body0 +Body1
1: ipi← Algorithm 4.4
2: BC ← Bottom clause created from ipi, T and BK
3: C ′ ← C refined with literals in BC
4: return C ′

Algorithm 4.4 Algorithm for fabricating an intermediate instance

Input: A theory T and FDT BK, a positive instance pi, a clause C = l : −Body0,
where l corresponds to an intermediate predicate, and Body0 is a (possible
empty) set of literals

Output: An intermediate instance ipi
1: repeat
2: choose a clause to start the proof of pi
3: while l /∈ the derivation path or the proof does not finish, with a failure or

a success do
4: continue to build the proof tree
5: if l is the atom in the leaf of the proof path then
6: try to prove l : −Body0, accordingly unified
7: if it is possible to prove l : −Body0 then
8: ipi← ground atom coming from the proof of l
9: until ipi is found

Abducting Atomic Facts to be Part of the Theory The simpler way of

employing abduction in theory revision is to include in the theory assumptions

that would allow positive examples become provable. Thus, the need for intro-

ducing an abducible predicate is identified during the search for generalization re-

vision points. Suppose, for example, the extracted piece of the chess theory in

Table 4.4. Assume the goal is to modify the theory so that it is possible to represent
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a game of chess played in a larger board, say a 9X9 board. The positive instance

move(p12, [king], black, e, 8, e, 9) will fail, since it would not be possible to prove

rank(9).

We let any failing predicate to be a candidate to be abducted, once it obeys

three additional requirements: (1) the predicate must have a modeh definition in

modes declaration, so that it can become a clause whose body is empty, (2) there

must have at least one modeh definition with only constants as its terms, and

(3) the predicate must be defined as abducible. To abduct rank(9), as necessarily

demonstrated in the example above, a modeh(1, rank(#rank)) would be required

to be in modes definitions.

There is a maximum number of abducible predicates allowed in the theory,

in order to prevent it to have several predicates maybe proving only one positive

example. Note that this abduction is part of the add new rule operator, which

acts on predicates, by creating an explanation for it. Because of that, an abducted

predicate is only proposed as a revision if there is no way of creating a clause with

such a predicate in its head. Thus, what really happens is: if the add new rule

operator is unable of creating a clause defining the predicate, it is checked if it is

abducible and if the maximum number of abducible predicates has not yet been

reached. If the answer is affirmative, the operator looks for the modeh definition

mentioned above and from it and an instance indicating the necessity of abduction,

the atomic fact is created. As it is a proposed revision, the fact is only abducted

if it brings an improvement to the current theory. Note that it is necessary to call

Algorithm 4.4 so that the final atomic fact is found out. The algorithm performing

this task is exhibited as Algorithm 4.5.

Note that if the abducible predicate becomes a faulting point in the theory, it

may eventually be generalized/specialized in the next iterations.

Look-ahead abduction The last abduction approach addressed in this thesis is

to use a strategy called here as look-ahead abduction, acting under the search for revi-

sion points. It works as follows. When searching for generalization revision points,

it is assumed that faulty abducible predicates are true and the search continues,
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Algorithm 4.5 Atomic Facts Abduction Algorithm

Input: Modes definitions M , abducible predicate pred/N , maximum number of
abducible maxabd, Theory T , FDT BK, a positive instance pi

Output: An atomic fact pred(t1, ..., tn), proposed to be included in T
1: if number of abducible predicates so far is less than maxabd then
2: pred(t1, ..., tn)← Algorithm 4.4
3: if pred(t1, ..., tn) matches a modeh definition, where the terms are constants

only then
4: return pred(t1, ..., tn)

looking for further revision points, possibly depending on the abducible predicate.

In this way, it is possible to fix a clause with at least two problematic literals, since

the first one failing is considered as proved.

Suppose, for example, we have the positive instance a(1, 2), the negative in-

stance a(1, 3), the clause a(X, Y ) : −b(X,Z), c(X, Y, Z) and BK d(1, 2, 4), d(1, 2, 5).

The positive instance a(1, 2) is unprovable and then generalization revision points

must be found. When doing that, it is noticed the literal b(1, Z) cannot be proved.

Thus, originally, the search for revision points finishes, marking that clause and the

literals b(X,Z) and a(X, Y ) as generalization revision points. Notice that the revi-

sion points search procedure has no means to verify whether c(1, 2, Z) could or not

be proved, since the literal before it has already failed.

Although there are two revision points (the single clause and predicate b/2) it

may be the case that no revision is able to fix the misclassification of the positive

instance, without also making the negative instance provable. Considering the most

common delete antecedent and add rule operators, note what the revision operators

could propose:

1. Deleting either antecedent b(X,Z) or c(X, Y, Z): this does not make the po-

sitive instance become provable.

2. Creating the most general rule a(X, Y ) would make the negative instance

provable. Only the most general rule could be created to this case.

3. Creating a rule capable of proving b(1, ) does not solve the problem of the

non-proof for c(1, 2, ) and therefore does not bring any benefits to the theory.

However, if we assume b/2 as an abducible predicate during the search for
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revision points, c(X, Y, Z) is also marked as a generalization revision point and a

rule could be created to explain c(1, 2, ), say c(X, Y, Z) : −d(X, Y, Z). Later, either

b(X,Y ) would have to be removed from the clause or a definition would be created

for it (possibly including the single assumption b(1, 2)).

For a more concrete example regarding the chess revision problem, consider

the case of a game that has a different piece, say a counselor, that moves exactly

like the bishop, but it cannot move backwards, only forward. Consider a simplified

version of the move concept, in Table 4.5. The revision system cannot define the

basic move for such a new piece, as it is required that the piece itself is known by

the theory. However, if one abducts the literal piece(counselor) during the search

for revision points, the system would be able to mark basic move as revision point,

and then propose a definition for it. The abducted literal piece(counselor) is going

to be part of the proposed revision, besides the possibly created definition for basic -

move(BoardID, counselor, ...).

Table 4.5: An extracted piece of the chess theory, to exemplify the need of abducting
predicates when searching for revision points

move(BoardID, Piece, Co lour, File1, Rank1, Piece, Co lour, File2, Rank2):-
file(File1), rank(Rank1),
file(File2), rank(Rank2),
color(Co lour), piece(Piece),
% the piece is on the board
board(BoardID, Piece, Co lour, File1, Rank1),
% any others necessary verifications
...
basic move(BoardID, Piece, Co lour, File1, Rank1, File2, Rank2).

% how a bishop moves
basic move(BoardID, bishop, Co lour, File1, Rank1, File2, Rank2) :-

% abs fdiff(File1, File2, Diff), abs rdiff(Rank1, Rank2, Diff).

Thus, to outline the problem of more than one faulty literal in a clause, we

take advantage of abduction and consider abducible predicates (up to a maximum

number of predicates) in the theory under revision. To do so, if a failing abducible
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literal is found during the search for generalization revision points (points failing

on proving positive examples), it is assumed as correct and kept around in the

revision point structure as a pending abducible predicate. Note that in this moment

the literal must be an atomic fact. The search for revision points proceeds, by

possibly including other abducible predicates as pending facts, until the proof tree

reaches either a leaf or a failing literal not considered as abducible. In the first

situation, the proposed revision is to include the abducible literals in the theory,

as they were new rules, similar to what is done in the previous subsection. In the

second case, the system marks the failing literal as a generalization revision point

with pending abducible literals. When proposing modifications to such a point, the

abducible predicates are considered as part of the theory. Eventually, in case the

revision is chosen to be implemented, besides the generalization performed in the

revision point, the system must also include the abducible predicates, otherwise the

generalized revision point would continue failing.

Note that if the abducted predicate prevents some positive example of being

proved or helps a negative example to be proved, the next iterations are going to

mark them as generalization/specialization revision points. The process of obtaining

abductive explanations and possibly generalizing them later is performed in (Moyle,

2003), but to learn clauses (completing definitions of background predicates) and

not to revise them.

4.3.3 Using negated literals in the theory

YAVFORTE and FORTE MBC are neither able to introduce negated literals in the

body of the clause nor to revise negated literals. Negation is essential to elegantly

model the chess problem, since we need to represent concepts such as the king is

not in check or a piece is not landing on another piece, among others.

In order to add negated literals in body of clauses it is required that the Bottom

Clause construction procedure is able to elicit them. Therefore, it is necessary to

explicitly specify modeb and determination declarations for them. In the first case,

the modeb declaration must be in the format:

modeb(RecallNumber, not(literal(Modes)))

89



4.3. MODIFYING YAVFORTE TO ACQUIRE RULES OF CHESS
VARIANTS

stating that not(literal(...)) can appear in the body of some clause. Determination

declaration must be in the format

determination(HeadPredicate/Arity, not(BodyPredicate/Arity))

stating that not(BodyPredicate/Arity) is allowed to be in the body of the clause

whose head has HeadPredicate/Arity. In contrast to Aleph, we explicitly define

the arity of the negated literal in determination definitions.

Inclusion of negation into logic programs is traditionally considered as a hard

task since the incorporation of full logic negation tends to super-exponential time

complexity of the prover. One of the most successful and widely alternative to full

negation is the procedural approach of Negation as Failure (NAF) (Clark, 1978).

One of the major drawbacks of NAF is that it cannot produce answer substitutions

(new bindings) to negated query variables, requiring the negated literal is ground

in order to be proved. If one wants more than a simple “yes” or “no” as answer,

it is better not to apply negation as failure, since it may result in floundering of

the goal (Marriott et al., 1990; Drabent, 1996). As a result, to use pure NAF

inside the bottom clause construction procedure it is necessary to ensure there are

no free variables in any not(Goal) that might be called. To do so, the mode type

of all variables of negated literals must be of input so that it is guaranteed when

not(Goal) is called, all terms are ground, since they should had been instantiated

by previous literals.

The initial theory learned for the game of chess used in this work makes use

of negated literals with output variables, since in some cases it is necessary to check

out the negation of a concept. For example, it could be necessary to verify whether

a king is not in check through the clause defining the check concept itself. Normally,

such a clause should provide as output the piece responsible for putting the king in

check. To address this problem the work presented in (Goodacre, 1996) made a spe-

cial provision: a redefinition of not was introduced to the general proof which, after

succeeding on the fail of the literal, it skolemises the variables so that they cannot be

used again. We add the further requirement in the bottom clause construction pro-

cedure to guarantee the output variables of such literals are singleton (they appear

only once in the clause) and therefore they must not be used as input variables of
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others literals. Although we have re-learned some concepts so that output variables

in negated literals become dispensable (subsection 4.2.2), we let the implementations

above in the system, to attend a situation where this re-learn process would not be

possible. Constant modes are not allowed in both works, since this would involve

generating literals with all possible values, leading to a very inefficient process.

In case it is essential to bind variables in a negated query, the alternative

most used to overcome the drawbacks of NAF is to employ constructive negation

techniques (Chan, 1988; Drabent, 1995). It extends the NAF to handle non ground

negative subgoals so that it is possible to construct new bindings for query variables.

It works as follows: after running the positive version of the negated literal in the

same way NAF does, the solution of the possibly non ground goal is collected as a

disjunction and then this disjunction is negated to get a formula equivalent to the

negative subgoal. The chess problem addressed here has not showed necessary to

use constructive negation, since the initial theory does not need to bind variables

from negated literals to answer some query. However, it would be nice to implement

such an approach to the general case of negation in the revision process. We leave

this question to future work.

In addition to inserting negated literals in the body of clauses, it may be

the case that a negated literal is the culprit for the misclassification of examples.

Remember from the laws of chess that a king cannot move next to the other king,

in such a way that this last king can reach the former after a basic move. In the

theory we tackle here, this is verified through a negated literal, as exemplified in

line 6 of Table 4.6.

Now, suppose a variant of chess that is more restricted to obey this rule: a king

cannot move to a position that is reachable by the other king after two basic moves.

In this case, a positive example would be unprovable, since king next king/9 would

succed, making its negation to fail. To fix this problem, one could modify the second

clause in the table, so that it becomes more specific. One possible modification is

to add a second basic move/7 predicate in the body of the rule. Note that the

clause is going to be specialized, even though we want to solve the problem of a

positive example. Because the revision has been indicated by a negated literal, it
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Table 4.6: An extracted piece of the chess theory, to exemplify the need of marking
a negated literal as a revision point

kingmove1(BoardID, king, Color, File1, Rank1, File2, Rank2):-
not(any land on(BoardID, king, Color, File1, Rank1, Color, File2, Rank2)),
color(Color), nequal color(Color,Color2),
board(BoardID, king, Colour2, Filek, Rankk),
basic move(BoardID, king, Color, File1, Rank1, File2, Rank2),
not(king next king(BoardID, king, Color2, Filek, Rankk, king, Color, File2, Rank2)).

king next king(BoardID, king, Color1, File1, Rank1, king, Color2, File2, Rank2):-
basic move(BoardID, king, Color1, File1, Rank1, File2, Rank2).

is necessary to reverse the proposed modifications: a clause corresponding to the

negated literal must be specialized to fix the misclassification of positive examples,

since this is going to make the clause not to be satisfied and therefore its negation

succeed. Similarly, in situations where a negative example has been proved because

the negation of a literal succeeds, it is necessary to generalize such a clause so that

it can be satisified and its negation fails.

We thus introduced a procedure for handling a faulty negated literal during

the revision process. Roughly speaking, if the negated literal is responsible for a

failed proof of positive examples, it is treated as a specialization revision point. On

the other hand, if the negated literal conducts to a proof of a negative example,

it is treated as a generalization revision point. This is a preliminary attempt at

introducing non-monotonic reasoning in YAVFORTE.

4.4 Experimental Results

Experimental methodology To show experimental results obtained with the frame-

work discussed in the paper, we generated datasets for 3 different chess variants.

The variants are described as follows, selected from (Pritchard, 2007).

� Gardner minichess. Minichess comprises a set of chess variants played with

regular pieces and standard rules, but on smaller boards. There are games

played on boards of size 3X3, 4X4, 4X5, 5X5, 5X6 and 6X6. The goal of this

family of games is to make the game simpler and shorter than international
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chess. Figure 4.5 shows several initial boards for minichess games. Here we

focus on Gardner’s minichess, which is the smallest chess game (5X5) in which

all original chess pieces and legal moves are still used, including pawn double

move, castling and en-passant.

� Reform chess, also known as Free capture chess differs from the international

chess because either side may capture its own men, as well as the opponent’s.

Only the friendly king cannot be captured.

� Neunerschach chess is played on a board 9X9, with two extra pieces but re-

moving the queen. The first one is called Marshall and moves like a queen.

The second extra piece moves like a queen, but only two squares and it is

named Hausfrau. The pieces are arranged in the board following the order:

Rook-Knight-Knight-Marshall-King-Hausfrau-Bishop-Bishop-Rook.

Figure 4.5: Initial boards of minichess games, taken from Wikipedia

We employed the framework described in this chapter to obtain theories de-

scribing each one of the above variants. We performed 5X2-fold cross validation

and scored the revisions using f-measure. The datasets are arbitraly composed of 5
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simulated game (example), where each round has 1 positive and 5 negative examples

and the maximum round for each game is 25.

Next we present the evaluation measures obtained from each variant in Ta-

ble 4.7.

Table 4.7: Evaluation of the revision on chess variants
Variant # Pos. # Neg. # Facts in # Initial # Final Initial Final

examples examples Context clauses clauses Acc (%) Acc (%)
Gardner 97 500 3294 151 147 59 99.83
minichess
Reform chess 100 500 3360 151 154 93 100
Neunerschach 100 500 12651 151 160 87 100
chess

Note that the variant with a smaller board had the size of the theory decreased

but the others variants, which include all the rules of chess and also additional ones,

had the size of the theory increased. We could say that the first case is a specialized

version of the chess while the others are a more general version of the game. The

number of clauses include the initial (revised) theory and the FDT, which is fixed.

Notice that using only the initial theory can still achieve a good accuracy, as most

rules are shared between different variants. On the other hand, accuracies were

significantly improved through revision in every case, suggesting that the revision

makes the dataset be correctly reflected.

The next subsection discusses specifically the revisions performed by the sys-

tem in each variant together with remarks about them.

4.4.1 Discussions about the automatic revisions performed
by the revision system

Gardner’s Mini-chess

The system performed the following revisions on the initial theory to obtain a correct

theory for Gardner minichess:

1. The delete rule step was able to remove the following clauses from the theory:

file(f), file(g), file(h), rank(6), rank(7), rank(8). After that, any negative

example coming from an invalid position or going to an invalid position be-

comes non-proved, since they do not attend one of the conditions 1.(a) , 1.(f),
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2.(a) or 2.(h) of section 4.2.2.

2. The add rule generalization operator added the following clauses to the theory:

� basic move(pawn, black, F ile, 4, F ile, 2), that allows the black pawn to

move 2 squares. This is necessary because in the chess theory the black

pawn moves 2 squares only from rank 7 (within the condition 2.(i)), which

is not a valid rank in the Gardner Chess.

� promotion zone(pawn,white, F ile, 5), that allows the white pawn be pro-

moted when reaches the last rank of the Gardner mini-chess board.

Remarks about the revision/learning process in Gardner Mini-chess

� The final accuracy was on average 99.83%, since not all folds contained exam-

ples for promotion and black pawn moving 2 squares, as these moves are

scarcely executed during the game.

– Promotion occurs rarely in both chess and in Gardner mini-chess, since

usually the pawn is captured before reaching the last rank.

– The initial double moves of pawns are difficult in Gardner’s smaller board,

since, and differently from chess, the intended positions (rank 4 for white

pawn and rank 2 for black pawn) are already occupied by opponent pieces

and the pawn cannot capture a piece through its usual move.

� The best final theory is able to correctly classify all the moves of this variant,

although it did not remove the clauses defining pawn double move from rank 7

to rank 5 and black pawn promotion when it reaches the rank 8, as to perform

the former moves the pawn would have to be on rank 7. As previously stated,

the clause defining this rank was removed from the theory and therefore it

became an invalid rank. In this way, the condition 2.(a) of section 4.2.2 is not

satisfied and the piece cannot move anyway. A post-pruning procedure should

remove such useless clauses from the theory, so that the best final theory would

perfectly correspond to the target theory of Gardner Mini-chess.
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� We have tried to run Aleph and Progol 5 to find the rules of Gardner’s

minichess. As they do not revise a theory, we let the initial theory and FDT

be the background knowledge. Aleph abduction procedure was not working

properly. Progol, on the other hand, was able to abduct predicates basic move

and promotion zone. However, it did not let such a predicate be in the final

theory, as according to its evaluation function, there had been no improvement

in score. The revision system is more fortunate in this question, since it fo-

cuses on the misclassified examples to propose revisions. Progol could neither

delete rules, as this is not one of its refinements operators.

Reform chess: Unusual capture rule

The system performed the following revisions on the initial theory:

1. According to condition 1.(e) of section 4.2.2, the king must not go to a position

where there is already a friendly piece. This is declared through subgoals of the

form not(land on(.., Colour, ..., Colour, ...)) in the clauses defining how a king

may move. As free capture chess allows the king to capture a friendly piece, the

delete antecedent operator removed these literals from their respective clauses.

2. In the original theory, a piece may move to an occupied position only if an

opponent piece is there. This is defined as a move by the attack concept. In

Reform chess the piece is also allowed to attack a friendly piece. Because of

that, the revision chosen to be implemented in most of the folds is proposed

by the add rule operator. The main literals in the body of such a rule, allows

an attack to a piece of the same color, only if such a piece is not a king. Note

that the original rule defining the attack concept remains on the theory.

3. Progol does not proposed to create new rules for the same predicate as the

revision. Instead, it tried to learn a new definition of the top-level move

predicate, without success.

Unusual pieces and larger board: Neunerschach

The system performed the following revisions on the initial theory:
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1. The delete rule step discussed in section 4.3.1 removed the clause piece(queen)

from the theory;

2. Abduction when searching revision points (third introduced type) added the

facts piece(marshall) and piece(hausfrau) to the theory and, just after that,

3. From the rules defining the basic moves of the queen, the add rule operator

created rules for the marshall by replacing the constant queen from the head

of such rule by marshall. This was done by first treating the constants in the

clause, substituting them by equality predicates. FORTE always does that

before searching for revision points. Then, the literal was deleted and the

constant marschall was made to replace queen;

4. The add new rule operator included the following new rules in the theory

� Rules defining the basic move of hausfrau, so that this piece can move

diagonally and orthogonally, but only two squares;

� New ground clauses, produced by abduction of the second type, to make

the last file and rank valid, namely, file(i) and rank(9).

Remarks about the revision process in Neunerschach chess Note that

without the abduction procedure it would be difficult for the revision process to

induce the rules for the new pieces, since first of all, the piece must be valid to

match condition 2.(a) of section 4.2.2 and only after that the piece can try to move.

Thus, only including the clauses defining the pieces would not bring any benefit to

the theory, since there were not any clauses defining how such pieces should move.

Additionally, as the pieces did not exist on the theory, the search for revision points

procedure would not be able to reach the literals defining the basic moves of the

pieces and then identify them as revision points. Even if it could, defining the basic

moves of the clauses is not enough for they to move, since they must be valid in the

theory.

The move generator procedure was not able to generate games with promotion

cases for this dataset, probably due to the size of the board X maximum number
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of rounds in the game. Thus, the revision process failed on correcting the rules of

promotion, which would allow the pawn to be promoted to the new pieces and the

white pawn be promoted in rank 9, instead of in the rank 8. We expect that using

games with a larger number of rounds will allow us to represent them, but at the

cost of much larger datasets.

Finally, Progol was able of proposing abduction of predicates file/1, rank/1

and piece/1, but it could not create clauses defining basic moves of the new pieces.

4.5 Conclusions

We presented a framework for learning variants of a game through automatic theory

revision from examples. The framework is composed of a Theory Revision system,

the chess initial rules (expressed as the initial theory which is allowed to be modified)

and fundamental domain theory (assumed to be correct) and a move generator for

obtaining the examples. We described the modifications performed on the revision

process to best address the revision of chess problem, including (1) the introduction

of an initial step for deleting rules responsible for misclassified negative examples, (2)

the use of abduction in three different moments and (3) the use of negation. The

experimental results encompassed 3 variants of chess, ranging from a specialized

version of chess (minichess) to a more general version of chess (including a larger

board and new pieces). The revision was able to return final theories correctly

describing most of the rules of the variants. The missing cases were due to the lack

of examples of rare events during a game, such as the promotion. Also, the final

theory would benefit from a post pruning procedure to remove clauses that have

become useless after the revision.

We are aware that the datasets were generated in a quite arbitrary way, since

the number of examples and depth of the games were chosen according to the need

of generating situations necessary for the revision. A better experimental setting

should include several datasets of at least varying sizes. Notice however that our

primary goal was to demonstrate the capability of the revision system acquiring the

rules of variants of the game, using the rules of the traditional game as starting

point. Also, we would like to show that it was necessary to change the base revision
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system to achieve that. In this way, new issues were introduced in the revision

system that can also be useful for others domains besides chess.

Thus, as future work, we intend to further experiment the framework with

datasets varying on the number of maximum rounds and simulated games. We

would like to apply the framework to other more complex variants, namely regional

variants, such as Shogi. Shogi and several others variants of chess require the know-

ledge of an entirely new concept. The Einstein chess variant, for example, has the

concept of demotion, where each time a piece moves without capturing it is “de-

moted” to a less valuable piece. This concept does not exist in international chess

and if one would like to obtain the theory for this variant, literals for demotion would

have to be included in the language by hand. This is not the best scenario, since it

is assumed the previous knowledge concerns the situations occurring in traditional

chess only. Therefore, the revision system would greatly benefit from predicate

invention operators (Muggleton and Buntine, 1988).

A more ambitious future work is learning playing strategies (Bain and Muggle-

ton, 1994). In this case, we would like to obtain strategies for playing the variants of

chess from strategies of chess. To do that we believe we would benefit from probabi-

listic theory revision, so that uncertainty about the strategies could be represented.

Finally, we would like to apply theory revision to others tasks involving transfer

learning, such that the domains share the same predicates language. We believe in

this way it would not be necessary to map between predicates of one domain to

predicates of another domain.
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Chapter 5
Stochastic Local Search

Searching over large spaces is a recurrent problem in Computer Science. In

order to get good hypotheses while still keeping the search feasible, one may take

advantage of local search algorithms, which start generating candidate hypothesis

at some location of the search space and afterward moving from the present location

to a neighbouring location in the search space. Each location has a relatively small

numbers of neighbours and each move is determined by a decision based on local

knowledge (Hoos and Stützle, 2005). In this way, they abandon completeness to

gain efficiency.

It is also possible to further improve efficiency and also escape from local op-

tima by making use of randomised choices when generating or selecting candidates in

the search space of a problem, through the Stochastic Local Search Algorithms(SLS).

One major motivation and successful application of SLS has been in satisfiability

checking of propositional formulae, namely through the well-known GSAT (Selman

et al., 1992) and WalkSAT (Selman et al., 1996) algorithms. A large number of tasks

in areas such as planning, scheduling and constraint solving can be encoded as a

satisfiability problem, and empirical observations show that SLS often can substan-

tially improve their efficiency (Chisholm and Tadepalli, 2002; Rückert and Kramer,

2003).

Randomisation may also be used to improve other search strategies, such as

backtracking search. For example, Rapid Randomised Restarts (RRR) introduces a

stochastic element intro backtrack-style search in order to introduce restart search

from scratch if we are not making progress (Gomes et al., 1998; Gomes et al., 2000).
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This led to an interest in applying such techniques on data-mining applications,

and more specifically on multi-relational data-mining. Initial work on the area has

indeed shown promising results for stochastic techniques when learning theories

from scratch in ILP systems (Paes et al., 2006b; Železný et al., 2006). For two very

different algorithms, results showed very substantial improvements in efficiency, with

little or no cost in accuracy.

Motivated by these work, this thesis also contributes in the development of

SLS methods when revising first-order logical theories. Thus, in order to ground the

contributions of next chapter, this chapter presents an overview of SLS algorithms

and SLS methods employed in Inductive Logic Programming. The chapter starts by

describing standard SLS methods in section 5.1. Then, well-known and vastly used

SLS algorithms, such as GSAT and WalkSAT, are reviewed in section 5.2. Finally,

in section 5.3, SLS algorithms designed to efficiently learn first-order logic theories

are discussed. In this last section it is included one technique developed with our

contribution, where first-order logic theories are learned using propositionalization

combined with a SLS algorithm (Paes et al., 2006b).

5.1 Stochastic Local Search Methods

The key ideas of the search process performed by a Stochastic Local Search Algo-

rithm are as follows.

1. Initialisation: An initial candidate solution is selected, usually by generating

a candidate at random;

2. Move step: Iteratively, the process (at random) decides to move from the

present candidate solution to a local neighbouring candidate solution, usually

(but not always) considering a function to evaluate the neighbours.

3. Stop criteria: The process is finished when it attends a termination criteria,

which could be a maximum number of iterations or a solution has been found.

Suppose for example, a Stochastic Hill Climbing (or Iterative Descent) strat-

egy (Russell and Norvig, 2010). It starts from a randomly selected point in the
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search space (initialisation) and tries to improve the current candidate solution by

choosing with uniform probability distribution a neighbour of the current candidate

(move), but requiring the value of the evaluation function is improved. The process

finishes when none of the neighbours improves the evaluation function (stop crite-

ria). A Greedy Stochastic Hill Climbing strategy (or Discrete Gradient Descent)

would try to perform the best move by choosing uniformly the next candidate solu-

tion in the set of maximally improving neighbours (the best possible improvement).

As such a method requires a complete evaluation of all neighbours in each iteration,

one may prefer a First Improvement neighbour selection strategy, which moves to

the first neighbour encountered improving the value of the evaluation function.

5.1.1 SLS Methods Allowing Worsening Steps

It is easy to note that the performance of a SLS algorithm (as it also occurs in other

local search methods) strongly depends on the size of the neighbourhood. The larger

is the neighbourhood, the more potentially better candidate solutions it contains. In

fact, the ideal case is to have an exact neighbourhood: the neighbourhood relation for

which any locally optimal candidate solution is guaranteed to be the globally optimal

solution. Obviously, taking into account an exact neighbourhood relation prevents

the search method to be stuck in very low-quality local optima. However, it is also

much more expensive to determine search improving steps in exact neighbourhoods.

It is possible to escape from local optima and avoid an expensive search con-

sidering a fairly simple neighbourhood and allowing the search strategy to perform

worsening steps. Usually, a strategy following this idea alternates with a fixed

frequency between selecting an improving neighbour and selecting a neighbour at

random. In order to avoid cycles, which may happen if the random walk is undone

in subsequent improvement steps, the algorithm can probabilistically decide in each

step whether to apply an improvement step or a random walk step. The family of

algorithms following this strategy is called Randomised Iterative Improvement (RII)

and its top level search step is exhibited as Algorithm 5.1. A RII algorithm does

not terminate as soon as a local optima is encountered. Instead it may stop the exe-

cution when it reaches a number of iterations or when a number of search steps has
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been performed without making progress in improvement. It is proved that when

the search process runs long enough, eventually an optimal solution to any problem

instance is found with arbitrarily high probability (Hoos and Stützle, 2005).

This method had been successfully applied to SAT problems, through the

WalkSAT algorithm (Selman et al., 1996), which we will discuss more thoroughly in

next sections.

Algorithm 5.1 Top-level Step Function Performed by an Algorithm using Ran-
domised Iterative Improvement method (Hoos and Stützle, 2005)

Input: problem instance π, candidate solution s, walk probability wp
Output: candidate solution s′

1: u← random(0,1) # returns a number between zero and one
2: if u ≤ wp then
3: s′ ← random walk step(π, s)
4: else
5: s′ ← improvement step(π, s)
6: return the result of step 3

Another mechanism for allowing worsening steps it to accept a worsening step

depending on the deterioration in the evaluation function value, i.e., the worse a

step is, the less likely it would be performed. The algorithms following such strategy

compose the family of Probabilistic Iterative Improvement (PII). In each step of the

search process a PII algorithm selects a neighbour according to a given function

p(g, s), which determines a probability distribution over neighbouring candidate

solutions of s based on their evaluation function values g.

A vastly used strategy, which is closely related to PII is the Simulated Anneal-

ing (SA) method (Kirkpatrick et al., 1983; Geman and Geman, 1984; Cerny, 1985;

Laarhoven and Arts, 1987) (Top-level algorithm in 5.2). SA starts from a random

initial solution s and in each iteration of the search a neighbour s′ of s is selected at

random. Usually, the search makes the decision of moving to s′ or staying in s based

on a value T , which is adjusted at each step t by an scheduling function. Standard

SA always accepts the candidate s′ in case it has a score better than s. When it

does not happen, s′ is accepted with a probability calculated as the exponential of

difference between both scores divided by T . Thus, the worse is the move and the

less is the value T , the less exponentially is the probability. Thus, bad moves are
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chosen more frequently at the beginning of the search, when the value of T is high,

and they become more difficult to be accepted as the value of T decreases. It has

been proved that if the value of T is reduced slowly enough, the algorithm finds a

global optima with probability close to 1 (Russell and Norvig, 2010).

Algorithm 5.2 Simulated Annealing algorithm (Geman and Geman, 1984)

Input: Integer number k and limit; a float number lam
Output: a solution s

1: s← random generated candidate solution
2: for t from 1 to ∞ do
3: T ← scheduling(t, k, limit, lam)
4: if T == 0.0 then
5: return s
6: s′ ← a neighbour of s, chosen at random from the neighbourhood relation
7: ∆ E ← score(s′) - score(s)
8: if ∆ E > 0 then
9: s← s′

10: else
11: s← s′ only with probability e∆ E/T

5.1.2 Rapid Random Restarts

Another way of escaping from local optima is to simply restart the search algorithm

whenever it reaches a local minimum (maximum). Such a strategy works reasonably

well when the number of local optima is rather small or reinitialising the process is

not very costly. The development of this approach was motivated by the recognised

variability in performance found in combinatorial search methods (Gomes et al.,

1998; Gomes et al., 2000), such as satisfaction constraint problems. Often, the cost

distributions of a complete backtracking search have very long tails and an average

erratic behaviour. Search algorithms with RRR include a stochastic component

in backtracking style search. The key idea is to restart the search, possibly from

another random initial seed, if it is not making any progress after a number of tries.

To do so, a cutoff specifies a number of attempts of finding the best solution before

restarting from another point.

A simple example of RRR strategy applied to a hill-climbing algorithm con-

ducts a series of improving moves from a random initial candidate solution. The
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algorithm is complete with probability close to 1 for the simple reason that it will

eventually generate the goal solution as the initial solution. If each iteration of

the hill climbing has a probability p of success, the expected number of restarts is

1/p (Russell and Norvig, 2010).

5.1.3 Other SLS approaches

Others SLS methods exist.ILS (Lourenćo et al., 2002) combines two types of SLS

methods, one in each step. One step reaches local optima as fast as possible and the

other step escapes from local optima. At each iteration, Iterated Local Search (ILS)

first applies a perturbation to the current candidate solution s, yielding a modified

candidate solution s′. A local search is performed from s′ until a local optimum s′′ is

obtained. Finally, an acceptance criteria decides if the next candidate solution is s′

or s′′. Greedy Randomised Adaptive Search Procedures (GRASP) (Feo and Resende,

1995) randomise the construction method of candidate solutions such that it can

generate a large number of good starting points for a local search procedure. Evolu-

tionary algorithms are a large and diverse class of stochastic search methods strongly

inspired by models of the natural evolution of biological species (Bäck, 1996). Gene-

rally speaking, evolutionary algorithms such as genetic algorithms (Mitchell, 1996)

start with a set of candidate solutions and repeatedly apply three genetic operators,

namely selection, mutation and recombination, replacing partially or completely

the current population by a new set of candidate solutions. For the knowledge of

the much many others SLS approaches and a better understanding of the methods

briefly described in this section, we refer the reader to (Hoos and Stützle, 2005).

5.2 Stochastic Local Search Algorithms for Satisfiabil-
ity Checking of Propositional Formulae

Stochastic local search has been used since the early nineties to solve hard combina-

torial search problems, starting from the seminal algorithm published independently

by Selman (Selman et al., 1992) and Gu (Gu, 1992). This SLS algorithm was able

to solve hard satisfiability problems in only a fraction of the time required by the

most sophisticated complete algorithms. The satisfiability problem in propositional
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logic (SAT) must decide whether there exists an assignment of truth values to the

variables of a formula F under which F evaluates to true (a model of F). SLS are

among the most successful methods for solving the search variant of SAT, i.e., to

find models for a given formula rather than to decide if such a model exists. In the

following we discuss the seminal GSAT algorithm (Selman et al., 1992) and its most

arguably prominent derivative, the WalkSAT algorithm (Selman et al., 1996).

5.2.1 The GSAT Algorithm

GSAT (Selman et al., 1992) original algorithm is a SAT solver based on a greedy hill

climbing procedure with a stochastic component. It is based on a one-flip-variable

neighbourhood in the space of all complete truth values assignments of a given

formula, written in conjunction normal form (CNF), i.e., a conjunction of clauses,

where each clause is a disjunction of literals. Thus, two variable assignments are

neighbours iff they differ in the truth assignment of exactly one variable. GSAT

uses an evaluation function g(F, va) that maps each variable assignment va to the

number of clauses of the given formula unsatisfied under va. At each iteration of

the algorithm, g(F, va) must be minimised by flipping the value of one variable,

since the goal is to find a model of F, therefore evaluated to zero under g(F, va).

The variable to be flipped is selected at random from the neighbourhood of current

candidate solution minimising the number of unsatisfied clauses (Hoos and Stützle,

2005).

Algorithm 5.3 presents the basic GSAT algorithm. It has two nested loops,

with the inner loop starting from a randomly chosen truth assignment of the vari-

ables in CNF formula F . Then, it iteratively flips the variable resulting in a maximal

decrease in the number of unsatisfied clauses. If there is a tie, the variable to be

flipped is chosen at random from the set of variables improving the score at most.

The inner loop continues until it finds an assignment of variables satisfying F or

when it reaches a user defined number of steps. In case no model is found after

a maximum number of steps, GSAT reinitialises the search at another randomly

chosen truth assignment of F . This is strictly necessary, since the inner loop gets

easily stuck in local minima. The outer loop follows trying to find a model of F
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until a user defined number of tries. After the maximum number of tries without

finding a solution, the algorithm ends with “no solution found”.

Algorithm 5.3 GSAT Algorithm (Selman et al., 1992)

Input: Positive integers maxFlips and maxTries; a CNF formula F
Output: model of F or “no solution found”

1: for try from 1 to maxTries do
2: va← a randomly generated assignment of the variables in formula F
3: for step from 1 to maxSteps do
4: if va satisfies F then
5: return va
6: v ← randomly selected variable flipping which minimises the number

of unsatisfied clauses
7: t← t with v flipped
8: return “no solution found”

Due to the greedy hill climbing nature of GSAT, it suffers from a severe stagna-

tion behaviour, getting easily stuck in local optima for any fixed number of restarts.

Thus, GSAT has been extended into to other search strategies in order to improve

its performance. One of the most prominent is the GWSAT algorithm (Selman and

Kautz, 1993) which decides at each step with a fixed probability np whether to do

a standard GSAT step or to flip a variable selected uniformly at random from the

set of all variables occurring in unsatisfied clauses. The probability np is called walk

probability, noise setting or noise level. The WalkSAT algorithm, which we discuss

next is derived from GWSAT.

5.2.2 The WalkSAT Algorithm

WalkSAT (Selman et al., 1994; Selman et al., 1996; Selman et al., 1997) changes

GSAT based algorithms mainly by considering only a dynamically determined sub-

set of the GSAT static neighbourhood relation. This is effectively done by first

considering only variables occurring in unsatisfied clauses. Then, in order to find

the next assignment, the variable to be flipped is selected from that set in two steps.

In the first step, a clause c, which is unsatisfied under the current assignment of

truth values, is selected at random. Next, in a second step, the new assignment

results by flipping one of the variables appearing in c. This general procedure of the
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WalkSAT architecture is exhibited as Algorithm 5.4. Note that as GSAT, WalkSAT

starts from a randomly generated assignment of the variables in initial formula. Also

as GSAT, it considers a maximum number of tries and a maximum number of steps

in order to find the solution.

Algorithm 5.4 WalkSAT General Algorithm (Selman et al., 1994)

Input: Positive integers maxFlips and maxTries; a CNF formula F; a heuristic
function hf

Output: model of F or ”no solution found”

1: for try from 1 to maxTries do
2: va← a randomly generated assignment of the variables in formula F
3: for step from 1 to maxSteps do
4: if va satisfies F then
5: return va
6: unsat← the set of all unsatisfied clauses under va
7: c← a randomly selected clause from unsat
8: v ← a variable selected from c according to the heuristic function hf
9: t← t with v flipped
10: return ”no solution found”

The general procedure requires a heuristic function as input to decide which

variable is going to be selected, in line 8 of the algorithm. The most commonly used

heuristic function applied into the WalkSAT architecture first scores each variable

v by counting the number of currently satisfied clauses that will become unsatisfied

by flipping the variable. Then, it tries to perform a zero damage step: if there is

a variable with score equal to zero, that is, if the the clause c becomes satisfied by

flipping the variable v without damaging another clause, then v is flipped (if there is

more than one variable in this situation, one of them is chosen at random). In case

it is not possible to follow the zero damage step, WalkSAT must decide which step

to follow: a random walk step or a greedy step. The decision is taken considering a

walk probability wp as follows:

� With a certain probability wp one of the variables from the clause c is selected

at random to be flipped (random walk step);

� With probability 1 − wp the variable with the minimal score calculated as

above is selected to be flipped (greedy step)
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This heuristic function is presented as Algorithm 5.5.

Algorithm 5.5 Most Used Heuristic Function into WalkSAT Architecture

Input: va a variable assignment of a formula F ; a clause c; wp, a walk probability
Output: v a variable to be flipped

1: scores← for each variable in c, the number of clauses that are currently satisfied,
but become unsatisfied if the variable is flipped

2: if min(scores) = 0 then
3: v ← a random variable from c whose score is min(score)
4: else
5: with probability wp do
6: v ← a random variable from c
7: otherwise
8: v ← a random variable from c whose score is min(score)

Following the success of GSAT/WalkSAT based algorithms to check the sat-

isfiability of propositional formulae, a large number of randomised strategies were

derived from them to solve tasks in areas such as planning, scheduling and constraint

solving. Empirical observations show that SLS often can substantially improve their

efficiency (Chisholm and Tadepalli, 2002; Rückert and Kramer, 2003; Rückert and

Kramer, 2004).

5.3 Stochastic Local Search in ILP

Most Inductive Logic Programming algorithms perform search on a large search

space of possible clauses, leading to huge time and storage requirements and urging

for clever search strategies (Page and Srinivasan, 2003). It is therefore unsurprising

that research on stochastic search has taken place since early ILP days (Kovacic

et al., 1992). Many of the ILP algorithms indeed include a limited amount of

stochastic search. As an example, GOLEM system randomly select examples as

seeds to start their search (Muggleton and Feng, 1990). Next we present recent

work on stochastic search in ILP.
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5.3.1 Stochastic Local Search for Searching the Space of In-
dividual Clauses

A recent study in ILP implemented and evaluated the performance of several ran-

domisation strategies in the ILP system Aleph (Železný et al., 2002; Železný et al.,

2004; Železný et al., 2006), using Aleph deterministic general-to-specific search as

reference. Aleph runs a covering algorithm which obtain hypotheses inducing clauses

one by one, until all the positive examples are covered. Roughly, Aleph’s covering

procedure is composed of two nested loops. The inner loop starts with the gen-

eration of the bottom clause from a seed example. Then, a clause with the best

score is generated by adding antecedents from the bottom clause. The outer loop

of the covering algorithm removes already covered positive examples from the set of

examples and the inner loop restarts with this new set of examples. The procedure

continues until there are no move not-covered positive examples or it is not possible

anymore to generate clauses obeying the setting of parameters defined by the user.

Note that the inner iteration returns a single clause generated independently from

the clauses previously added to the theory. Thus, the stochastic strategies developed

in that study were framed in terms of a single clause search algorithm.

They designed four randomised restart strategies to search the ILP subsump-

tion lattice, namely (1) A simple randomised search strategy (RTD); (2) A Rapid

Random Restart strategy (RRR); (3) A GSAT based strategy and (4) a WalkSAT

based strategy. The randomised strategies differ on how to choose the saturated

example, on which clause to start from, on which clause to try next, on whether

to do greedy or full search, and on whether to do bidirectional refinement or not,

following the main properties:

1. the saturant example is chosen at random in all randomised algorithms, instead

of being the first positive example as in the deterministic reference strategy;

2. the search starts from a clause selected with uniform probability from the set

of allowable clauses, except for the RTD search which which starts from the

most general definite clause (Srinivasan, 2000);

3. GSAT and WalkSAT strategies update the list of possible modifications in the
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current hypothesis greedily, i.e., only the newly explored nodes are retained,

whereas RRR and RTD maintain a list of all elements.

4. the selection of next clause follows a random choice in WalkSAT and in RTD,

according to the following criteria: with probability 0.5 the clause with the

highest score is chosen at random and otherwise a random clause is chosen

with probability proportional to its score. The others strategies choose the

clause with the highest score.

5. GSAT, WalkSAT and RRR perform bidirectional refinement, combining spe-

cialisation and generalisation, instead of only performing specialisations of the

clause being refined.

6. All strategies include restarts based on a cutoff parameter, defined as the

maximum number of clauses evaluated on any single restart.

It was observed that if a near-to-optimal value of the cutoff parameter (the

number of clauses examined before the search is restarted) is used, then the mean

search cost (measured by the total number of clauses explored rather than by cpu

time) may be decreased by several orders of magnitude compared to a determinis-

tic non-restarted search. It was also observed that differences between the tested

randomised methods were rather insignificant.

There are others approaches of SLS methods for searching the space of candi-

date clauses. Particularly, Muggleton and Tamaddoni-Nezhad have been conducting

research based on the stochastic search performed by genetic algorithms (Tamaddoni-

Nezhad and Muggleton, 2000; Muggleton and Tamaddoni-Nezhad, 2008). Their ap-

proach is built on the fact that to find desirable consistent clauses in ILP systems it

is necessary to evaluate a large number of inconsistent clauses, and such consistent

clauses are located at the fringe of the search space. The approach is composed

of two components. The first one, called Quick Generalisation (QG), carries out a

random-restart stochastic bottom-up search to efficiently generates a population of

consistent clause on the fringe of the refinement graph search without needing to

explore the graph in detail. The second component is a Genetic Algorithm which

evolves and re-combines those seeded clauses, instead of performing the A* of Progol
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system. The experiments performed in that work indicate that QG/GA algorithm

can be more efficient than the standard refinement graph search of Progol system,

while generating similar or better solutions.

The approaches just reviewed were both framed in a single clause search algo-

rithm. One consequence of this is that the statistically assessed performance ranking

of individual strategies may not be representative of their performance when used for

an incremental entire-theory construction due to the statistical dependence between

the successive clause search procedures.

Another issue concerns the time spent to evaluate a candidate hypothesis.

Even though the search space is reduced because of SLS methods, there is a large

amount of time used to check whether a hypothesis should be chosen as the next

candidate solution. In the next section we present methods to learn theories which

try to overcome both covering and hypothesis evaluation pitfalls.

5.3.2 Stochastic Local Search in ILP for Searching the Space
of Theories and/or using Propositionalization

The standard greedy covering algorithm employed by most ILP systems is a short-

coming of typical ILP search. There is no guarantee that greedy covering will yield

the globally optimal hypothesis; consequently, greedy covering often gives rise to

problems such as unnecessarily long hypothesis with too many clauses. To over-

come the limitations of greedy covering, the search can be performed in the space

of entire theories rather than clauses (Bratko, 1999). However, there is a strong

argument against this: the search space composed of theories is much larger than

the search space of individual clauses. It is interesting then to apply an efficient

search strategy such as SLS for searching hypothesis in the space of theories and

hence uniting the benefit of both techniques.

Stochastic local search algorithms for propositional satisfiability benefit from

the ability to quickly test whether a truth assignment satisfies a formula. As a result,

many possible solutions (assignments) can be tested and scored in a short time. In

contrast, the analogous test within ILP—testing whether a hypothesis covers an

example—takes much longer, so that far fewer possible solutions can be tested in
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the same time.

Thus, considering both motivations above, in a recent work (Paes et al., 2006b)

we have applied stochastic local search to ILP, but not to the usual space of first-

order Horn clauses. Instead, we used a propositionalization approach that trans-

forms the ILP task into an attribute-value learning task. In this alternative search

space, we can take advantage of fast testing as in propositional satisfiability. Addi-

tionally, we use a non-covering approach to search in the space of theories since now

we are dealing with a more efficient search strategy and we also turn the relational

domains into a simpler propositional one. Then, we use a SLS algorithm to induce

k-term DNF formulae, which performs refinements on an entire hypothesis rather

than a single rule (Rückert and Kramer, 2003).

Propositionalization

Propositionalization is a method to compile a relational learning problem to an

attribute-value problem, which one can solve using propositional learners (Lavrac

and Dzeroski, 2001; Krogel et al., 2003). During propositionalization features are

constructed from the background knowledge and structural properties of individuals.

Each feature is defined as a clause in the form fi(X) := Liti,1, ..., Liti,n where the

literals in the body are derived from the background knowledge, and the argument

in the clause’s head is an identifier of the example. The features are the attributes

which form the basis for columns in single-table (propositional) representations of

the data. If such a clause defining a feature is called for a particular individual and

this call succeeds, the feature is set to “true” in the corresponding value column of

the given example; otherwise it is set to “false”.

There are several propositionalization systems such as RSD (Železný and

Lavrac, 2006) and SINUS (Lavrac and Dzeroski, 1994), among others. In this

work we used RSD as the base propositionalization system. RSD constructs fea-

tures by discovering statistically interesting relational subgroups in a population of

individuals1.

1RSD is publicly available at http://labe.felk.cvut.cz// zelezny/rsd
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Stochastic Local Search in k-term DNF Relational Propositionalised Do-
main Learning

After propositionalising the relational domain, we apply an SLS algorithm to learn

k-term DNF formulae from the feature-value table. The aim in k-term DNF learning

is to induce a formula of k terms in disjunctive normal form, where each term is a

conjunction of literals (Kearns and Vazirani, 1994). k-term DNF learning is a NP-

hard problem of combinatorial search. The SLS algorithm designed in (Rückert and

Kramer, 2003) to solve k-term DNF learning is reproduced here in Algorithm 5.6.

The algorithm starts generating randomly a hypothesis, i.e., a DNF formula

with k-terms and then refines this hypothesis in the following manner. First, it picks

a misclassified example at random. If this example is a positive one the hypothesis

must be generalised. To do so, a literal has to be removed from a term of the

hypothesis. Now, with probability pg1 and pg2 respectively, the term and a literal

in this term are chosen at random. Otherwise the term in the hypothesis which

differs in the smallest number of literals from the misclassified example and the

literal whose removal from the term decreases the score at most are chosen. On

the other hand, if the example is a negative one, it means that the hypothesis must

be specified. Therefore, a literal has to be added in a term. The term is chosen at

random from those ones which cover the misclassified negative example. In a similar

way to the last case, either with probability ps the literal to be added in this term

is chosen at random or a random literal which decreases the score at most is taken.

This iterative process continues until the score is equal to zero or the algorithm reach

a maximum number of modifications. All the procedure is repeated a pre-specified

number of times.

It is important to mention that Algorithm 5.6 performs refinements of an

entire hypothesis rather than a single rule. A detailed analysis of SLS performance

compared to WalkSAT shows the advantages of using SLS to learn a hypothesis as

short as possible (Rückert and Kramer, 2003).

Experiments and remarks about them Two ILP benchmarks were considered

in the paper (Paes et al., 2006b): the East-West Trains (Michalski and Larson, 1977)
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Algorithm 5.6 A SLS algorithm to learn k-term DNF formulae (Rückert and
Kramer, 2003)

Input: Integers k and maxSteps; probability parameters pg1, pg2 and ps; a set of
examples E in attribute-value form

Output: A k-term DNF formula

1: H ← a random generated DNF formula with k terms
2: steps← 0
3: while score(H) 6= 0 and steps < maxSteps do
4: steps++
5: ex← a incorrectly classified example under H, get at random from E
6: if ex is a positive example then
7: with probability pg1 do
8: t← a random term from H
9: otherwise
10: t ← the term in H that differs in the smallest number of literals

from ex
11: with probability pg2 do
12: l← a random literal in t
13: otherwise
14: l← the literal in t whose removal decreases scoreL(H) most;
15: H ← H with l removed from t
16: else if ex is a negative example then
17: t← a (random) term in H that covers ex;
18: with probability pS do
19: l← a random literal m so that t ∧m does not cover ex;
20: otherwise
21: l← a literal whose addition to t decreases scoreL(H) most
22: H ← H with l added to t

and Mutagenesis Data (Srinivasan et al., 1996). They were both propositionalised

by RSD, producing a set of features in attribute-value form. Then, the K-term

DNF SLS learner were compared to Aleph in its default mode and to Aleph using

GSAT search as explained in section 5.3, both using the original relational dataset.

Additionally, the propositionalised domains were given as input to Part (Frank and

Witten, 1998) and Ripper (Cohen, 1995), two popular rule learners algorithms. Be-

sides the fact that they do not use SLS, they also differ from K-term DNF learner

in the use of a covering approach. The results were compared in terms of com-

pression achieved, cpu time consumed and predictive accuracy. They indicated that

DNF/SLS performs faster w.r.t. all other tested methods when it comes to short

theories (in number of rules). Comparing to relational methods, the performance

115



5.3. STOCHASTIC LOCAL SEARCH IN ILP

gap was significantly large (in orders of magnitude), while corresponding predictive

accuracy does not favor either of SLS/DNF or the relational methods. Comparing to

the propositional methods, this performance gap is much smaller, while SLS/DNF’s

short theories exhibit slight superiority in terms of predictive accuracy.

There are other approaches to induce hypothesis using SLS with or without

propositionalization. For instance, (Serrurier and Prade, 2008) employs Simulated

Annealing to induce hypothesis directly - do not using neither propositionalization

nor covering. The candidate hypothesis are generated by a neighbourhood relation-

ship derived from a refinement operator defined over hypothesis. In this case, the

neighbourhood of a current hypothesis H is composed by adding or removing clauses

from H or still by applying a refinement operator (downward or upward) on each one

of its clauses. In (Joshi et al., 2008; Specia et al., 2009) was developed an approach

to construct features randomly in order to build modes to assist the task of Word

Sense Disambiguation. A randomised search procedure based on GSAT and using

theory-error-guided sampling is designed for dynamically construct the features and

generate the output model. The procedure is composed of two nested steps: the

outer loop iterates R times, where R is a pre-defined number of restarts and the

inner loop executes M times, where M is a pre-defined number of local moves. In

the outer loop, a sample of n acceptable features is generated, where a feature is

considered as acceptable it covers at least s examples, has a minimal pre-defined

precision p and obeys constraints of the language. A model is then constructed from

this set of features. The inner loop iteratively selects a new subset of features based

on the errors made by the current features on the current model.
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Chapter 6
Revising First-Order Logic Theories
through Stochastic Local Search

6.1 Introduction

Usually, a First-Order Theory Revision system perform search in three steps. First,

it searches for points in the theory responsible for misclassifying an example. Sec-

ond, it searches for possible modifications to be implemented within each revision

operator, including addition and deletion of antecedents in the body of clauses.

And finally, it searches from a number of available revision for the one which will

be responsible for implementing a modification to the theory. In each one of these

searches, a system such as FORTE and its descendants systems follow an enumer-

ative strategy, engendering large search spaces that may grow to be intractable,

according to the factors below.

1. The number of misclassified examples, since the revision system traverses each

example’s proof looking for faulty points;

2. The size of the initial theory, since every clause on it might be potential revision

points;

3. The number of clauses responsible for misclassifying an example, since the

revision system proposes modifications to each one of them;
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4. The size of the knowledge base and background knowledge, since antecedents

must have to be generated and added to the body of clauses, as possible

modifications to be implemented on the theory.

Additionally, theory revisions systems do tackle whole theories instead of step-

wise search for individual clauses as most ILP systems do. Search over whole theo-

ries is known to be a hard problem (Bratko, 1999). As a result, traditional theory

revision systems must search over extremely large spaces, and can become rather

inefficient and even intractable.

The last years have shown that stochastic local methods, originally designed

to solve difficult combinatorial propositional problems (Selman et al., 1992; Selman

et al., 1996; Rückert and Kramer, 2003), can also perform well in a variety of

applications. Moreover, combining Stochastic Local Search with inductive Logic

Programming has shown very substantial improvements in efficiency, with little or

no cost in accuracy (Srinivasan, 2000; Paes et al., 2006b; Železný et al., 2006;

Muggleton and Tamaddoni-Nezhad, 2008). Such results motivate the contribution

of this chapter. Further, we take Trefheten’s Maxim No. 30 into high consideration,

which states that if the search space is huge, the only reasonable way to explore

it is at random (Trefethen, 1998). Thus, we aim to achieve a balance between

efficiency and efficacy, by decreasing the negative impact of the mentioned factors

on the running time of theory revision. To do so, we sacrifice completeness in favor

of finding good solutions rather than optimal ones, by means of SLS techniques.

Stochastic components are included in the key searches of the revision process,

namely:

1. Search for revision points: A random decision may return a subset of the

revision points instead always returning all of them.

2. Search for literals: as the proposals of modifications are dominated by addition

and deletion of antecedents, one may benefit from randomising antecedent

search (Paes et al., 2007a; Paes et al., 2007b).

3. Revision search: rather than proposing all revisions, one might enumerate the

possible modifications and choose one to implement at random (Paes et al.,
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2007b).

Preliminary experiments with the theory revision system FORTE showed good

promise from introducing stochastic search at the last two searches above (Paes

et al., 2007a; Paes et al., 2007b). This chapter revisits that work enhancing it

by designing a number of stochastic search in every step of YAVFORTE system.

Note that in (Paes et al., 2007a; Paes et al., 2007b) stochastic components were

introduced in original FORTE system and in the present work they are built upon

YAVFORTE system, including the bottom clause to bound the search space and

mode declarations as the language.

The outline of this chapter is as follows. Firstly, section 6.2 brings the stochas-

tic algorithm developed to search for the revision points. Next, stochastic algorithms

applied within the revision operators, for choosing literals to be added to or removed

from a clause, are devised in section 6.3. Then, we present a number of SLS algo-

rithms for deciding which revision operator will be responsible for modifying the

theory in section 6.4. Finally, experimental results are presented in section 6.5,

followed by conclusions in section 6.6.

6.2 Stochastic Local Search for Revision Points

FORTE-based systems follow the key steps below in order to generate revision

points:

1. Identify the misclassified instances;

2. Through the misclassified examples, find the clauses and/or antecedents re-

sponsible for such misclassifications. These points will compose the set of

revision points;

3. Calculate the potential of each revision point. Remember that the potential is

the number of examples which identify the necessity of modifying the revision

point;

4. Identify the relevant examples for each revision point, i.e., the examples whose

provability can be affected after proposing some revision in that point. This
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is essential to make the evaluation of revision operators more efficient by not

proving every example at each modification, since only the proofs of relevant

examples must be re-done when proposing modifications on specific points of

the theory.

It can be seen from the steps above that there are two major factors working

together to possibly increase the cost of searching for revision points: the set of

examples and the size of the theory. This happens because each example must be

tested on the theory, either to identify faulty clauses or literals or to check whether

the example is relevant to the revision point. Moreover, each clause in the theory

may be tested as a potential revision point. Therefore, what it is done in this

thesis is to decrease the work performed in those tests by introducing a stochastic

component within the search for revision points. Rather than always looking for all

revision points in the theory, the stochastic component allows only a subset of that

group to be sought.

The strategy developed in this chapter does not only avoid searching in the

whole theory for revision points but also avoids considering all misclassified exam-

ples. It works by alternating between stochastic and complete moves according to

a certain probability, a method that can be seen as an instance of Randomising

Iterative Improvement and WalkSAT techniques. Thus, with a probability prp the

stochastic move is taken and the procedure will look for only a subset of all the pos-

sible revision points. The size of the subset is previously defined by the user, with

its default value as 1. Otherwise, a complete move is taken just as in the original

algorithm.

The stochastic move works as follows to gather the subset of revision points.

First, it selects a misclassified example at random. Then, revision points are col-

lected from such an example. In case this single misclassified instance already pro-

duces the required number of revision points, the procedure stops. If it produces

more than that, the number is chosen at random from them. If the instance does

not have enough revision points, the procedure proceeds to collect more revision

points by choosing another misclassified example at random. After collecting the

subset of random revision points, it is time to find out the relevant examples. This
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is necessary to compute the potential and also to consider only those examples to

be proved again when evaluating a modification on the revision point. Note that in

case the probability prp is 100% and the subset is required to be composed of only

one revision point, the approach employed here follows the same line of thought

of (Rückert and Kramer, 2003), although there they address propositional learning.

Algorithm 6.1 brings the procedure for collecting revision points using a stochastic

component.

Algorithm 6.1 SLS Algorithm for generating revision points

Input: A set of positive and negative examples E, divided into ECC, the correctly
classified examples and EIC, the incorrectly classified examples, Theory T ,
probability p1, A integer k

Output: A set of revision points RP

1: RP ← ∅
2: with probability p1 do
3: while #RP < k do
4: ex← a misclassified instance chosen at random from EIC;
5: num rp = k −#RP
6: RPex ← at most num rp revision points generated from ex;
7: RP ← RP ∪RPex;
8: otherwise
9: RP ← the revision points generated from all misclassified examples in E
10: for each revision point rp ∈ RP do
11: identify the relevant examples for RP ;
12: calculate the potential of RP ;
13: sort RP by potential;
14: return rps;

It is important to stress that examples from both classes have the same chance

to be chosen at random. This is particularly important when we have skewed

datasets, with one class largely dominating the other on the number of examples.

Algorithm 6.1 introduces the stochastic component as an alternative path in Al-

gorithms 2.2 and 2.3, by avoiding in stochastic moves to search for revision points

at each clause of the theory and not considering all misclassified examples. In this

way, roughly speaking, instead of getting a complexity time bounded by the num-

ber of training examples times the size of the theory, we get for stochastic moves

a time complexity limited to the number of required revision points, which in the

best case is only 1. Note that in the complete case, the theory is traversed even
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to the correctly classified examples, because it is in this moment that the relevant

examples are collected. Although the stochastic search still has to find the relevant

examples for the revision points in the set of all training examples, this is also a

reduced search, since it is restricted to the set of revision points instead of traversing

the whole theory. Additionally, in case the search returns only one kind of revision

points, two distinct cases be addressed: (1) the revision point is a generalisation one

and then only unprovable examples are considered (true negative and false negative)

or (2) the revision point is a specialisation one and only provable examples (true

positive and false positive) are considered.

6.3 Stochastic Local Search for Literals

The main goal of introducing antecedents to a clause is to stop proving negative

examples while continues covering as much of the originally proved positive examples

as possible. To do so, the operator can proceed from two approaches. Either it uses

a hill-climbing procedure, where at each iteration the antecedent which improves the

score at most is chosen to be added in the clause or it uses the relational pathfinding

algorithm, where more than one antecedent can be added to a clause at once. These

two approaches can also be combined, with the relational pathfinding algorithm

being executed and, next, antecedents being added to a clause through the hill-

climbing algorithm. Both approaches consider the bottom clause generated from a

covered positive example as their search space.

Similarly, the delete antecedents operator has the goal to make the clause to

start proving positive examples while still does not proving as much of the negative

examples as possible. To achieve its goal, this operator either removes one antecedent

at once from the clause, using a hill-climbing approach, or it can delete multiple

antecedents at once to escape from maxima local. However, this last approach is

only used when the latter does not produce any results, since it is expensive to list

and test the combination of all possible literals to be removed from the clause. Both

approaches require the modes language to be obeyed after a removal.

Add antecedentes and delete antecedents are the basic operations performed

into all operators of YAVFORTE with the exception of delete rule: Specialisation
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is performed either by adding antecedents to a clause or deleting clauses from the

theory; generalisation is achieved by either deleting antecedents from a clause or

creating new clause. In this last case it is possible to create a clause from another

one, by leaving the original one in the theory and deleting antecedents followed by

adding antecedents from its copy. It is also possible to create a completely new

using the add antecedents operator in a clause with a predicate in its head, properly

defined in a modeh declaration.

Regarding addition of antecedents there are three main factors impacting the

search space of the bottom clause: (1) the size of the intentional and extensional

background knowledge, (2) the amount of different modeb definitions to the predi-

cates together with the recall of each one of them, and (3) the value set to variables

depth. In fact, as it was shown in Algorithm 5.3, the cardinality of a bottom clause

is bounded by r(|M |j + j−)ij+ , where |M | is the cardinality of the set of modes

declarations, j+ is the number of + type occurrences in each modeb in M plus the

number of – type occurrences in each modeh, j− is the number of – type occurrences

in each modeb in M plus the number of + type occurrences in each modeh, r is the

recall of each mode m ∈ M , and i is the maximum variable depth. Thus, the bot-

tom clause generates a search space of exponential size w.r.t. the maximum variable

depth. In case the recall r is defined as ∗, which is the most common case, all the

possible instantiations of a literal are going to be collected in the BK. Because of

that, the size of the BK also influences the cardinality of the bottom clause.

Possibly, each element of the bottom clause may be tested on each example

relevant to the clause being specialised, excluding those who does not have vari-

ables compatible to the mode declarations of the clause (although they also slightly

influence the running time since they must be tested to check the compatibility).

Additionally, in the worst case, to specialize one single clause it is necessary to

pick up literals from the bottom clause as many times as the maximum size set

to a clause. Considering all these factors, addition of antecedents is an expensive

operation and still performed many times during the whole revision process. Not

counting the relational pathfinding algorithm which is expensive for itself (Richards

and Mooney, 1992). Therefore, we intend to make the add antecedents operator,
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and consequently the revision process, more efficient by introducing stochastic com-

ponents on this. Once again, we sacrifice completeness to gain efficiency when

proposing modifications on the theory by adding antecedents to clauses or creating

new rules.

Deleting antecedents is obviously a less expensive operation than adding an-

tecedents. The search space is composed of only the literals in the clause. Because

of that at each iteration an antecedent is deleted the search space of the next iter-

ation is reduced. Thus, in the worst case the search space of tested literals at each

iteration has all antecedents in the body of the current clause. Note that sometimes

the search space is is less than the size of the clause because some literals can make

the clause incompatible to the modes definitions when removed from it. However,

they still increases the running time, although slightly, since it is necessary to check

if they can or cannot be a candidate to be deleted. Additionally, in the worst case,

the operation of deleting antecedents may be performed |clause| times in case dele-

tions always improve the score. Thus, although benefiting less than when adding

antecedents, we can also improve running time of the proposals of modifications

by making the delete antecedent operator more efficient. Aiming this goal, we also

introduce stochastic search when deleting antecedents, either when proposing gen-

eralisations on a single clause or when generalising the theory by creating a new rule

from an existing one.

Stochastic versions of the delete antecedents and add antecedents algorithms

were developed, performing according to the following strategy. They may perform

either a random or a greedy move, depending upon a fixed probability. While the

greedy move is the same for both approaches, since in this case the original algorithm

is maintained, the random move differs for each approach. Next we devise each

approach separately.

6.3.1 Stochastic Component for Searching Literals

The algorithm introducing a stochastic component follows a stochastic hill climbing

technique and adopts a conservative strategy even when performing a random move,

by maintaining the requirement of improving the value of the evaluation function,
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and by refining clauses in the same way as it is done in the original algorithm. The

stochastic component is employed for choosing the next candidate clause. The de-

cision of not allowing bad moves to escape from local maxima is arguably justified

because adding/deleting a sequence of literals at once, using the relational pathfind-

ing algorithm or the algorithm for deleting multiple antecedents, may already be

able of escaping from local maxima. Basically, a random walk is carried out by tak-

ing a random step for choosing the next candidate clause with a fixed probability pl,

In case the probability pl is not achieved, the original greedy hill climbing algorithm

is performed. This algorithm is built upon the following decisions.

� Defining the search space: Candidate clauses are formed by adding/deleting

a single literal or a sequence of literals in the current clause, depending on the

algorithm employed (greedy hill climbing or relational pathfinding/deletion of

multiple antecedents). The literals to be added/deleted are elected differently,

depending upon the move is greedy or stochastic. In case the move is greedy,

the approach is pure hill climbing in the sense the current clause and candidate

clauses differ by only one literal and the goal is to add antecedents, the set of

possible antecedents to be added to a clause is composed by literals taken from

the bottom clause. Similarly, when adding a sequence of literals, the paths

are created considering the literals of the bottom clause. When deleting an-

tecedents in the greedy move, candidate clauses are created either by removing

a single literal or by removing a combination of literals. In case the move is

random and the goal is to add single antecedents, a literal picked at random

from the bottom clause is added to the current clause to form a candidate

clause. Similarly, a path created from the literals of the bottom clause in rela-

tional pathfinding algorithm is chosen at random. To delete antecedents from

a clause in a stochastic move, the body of the clause is randomised and then

a literal is chosen. In a similar way, combinations of literals are randomised

and one of them is taken at random. In all of the cases, the candidate clause

must be valid according to the modes declarations.
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� Choosing the next clause: Since this conservative approach requires the

next clause improves the current score, in all cases listed above this demand

must be attended. However, in greedy moves, all candidate clauses are tested

on the examples in order to calculate their score and the one improving the

score at most is the chosen one, while in random moves, the first randomly

generated candidate clause improving the score is chosen. In others words,

to choose at random the next clause, a single candidate clause formed as ex-

plained in the last topic has its score computed using the set of examples.

If this clause already improves the score, it is going to be the next clause.

Otherwise, it is necessary to choose another candidate clause, which is clearly

formed as explained above, by selecting a random literal or a sequence of lit-

erals. This procedure continues until finding a candidate clause improving the

score or to find out that there is no clause able to do that, finishing the ope-

rator procedure. The only exception is the relational pathfinding algorithm,

since its procedure allows a path to be chosen if the score is not changed (nei-

ther increased nor decreased). It only allows that because after it runs, hill

climbing is employed to further specialize the resulting clause. Note that in

the best case only one candidate clause is evaluated, which makes the run time

of the procedure independent on the size of the bottom clause in case of spe-

cialisations, or on the current clause, in case of generalisations. In the worst

case all possible candidate clauses are evaluated as in greedy steps. Choosing

next clause in random moves greatly benefits from do not computing score for

each possible candidate, which is the most expensive task performed inside

the original algorithms since it is necessary to check the provability of each

relevant example.

� Stop criteria: As usual in hill climbing approaches, the algorithm stops when

there are no more candidate clauses improving the score, either because the

set of generated candidate clauses are not able to do that, or because there

are no further valid clause to be evaluated.
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Algorithm 6.2 substitutes hill-climbing addition of antecedents, exhibited as

Algorithm 3.3 in both add-antecedent specialisation operator and second phase of

the add-rule generalisation operator. The algorithm starts by generating the bottom

clause from a covered positive example, as it is done in the original Algorithm.

After that, it performs a random walk, following the approach of algorithms such

as WalkSAT, and decides the type of the move, based on a fixed probability pls. In

case pls is not reached, the algorithm performs a greedy hill climbing step, exactly as

it done in the original algorithm: all valid (according to modes) candidate clauses

formed by adding the literals from the bottom clause to the current clause are

evaluated on the examples. Then, the candidate clause improving the score at most

is selected. If there is no such improving clause, the procedure returns nothing.

If the probability pls is reached, a random step is taken: a literal is selected at

random from the bottom clause and added to the current clause. After the candidate

clause is validated relative to the modes, it is evaluated using the examples. In

case such a clause improves the current score, it is chosen to replace the current

clause. Otherwise, it is discarded and another candidate clause is selected. This

procedure continues until finds a clause improving the score or until exhausting all

the possibilities. Finally, the candidate clause replaces the current clause (if there is

one) and the algorithm proceeds to the next iteration. This procedure is performed

until there is no further clause improving the score or if is reaches the maximum

size defined to clauses.

Relational pathfinding algorithm provides a sequence of antecedents to be in-

troduced in a clause. The algorithm searches for all possible sequences and chooses

the one with the highest score. In case of a tie, the smallest sequence is chosen.

A stochastic version of this algorithm selects the sequence to be added to the cur-

rent clause according to a stochastic decision: with a probability pls it chooses a

sequence at random from all the possible generated paths; otherwise it proceeds as

in the original algorithm. We do not generate paths at random, since this algorithm

tries to find a sequence of literals connecting the variables in the head of the clause,

and to introduce a randomness component into this process could either disregard

a possible valid sequence or to force the procedure to backtrack to several previ-
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Algorithm 6.2 Algorithm for adding antecedents using hill-climbing SLS

Input: A clause C, CL, maximum size of a clause, pls, the probability for deciding
which move is going to be taken

Output: A (specialised) clause C ′

1: repeat
2: currentScore← compute score of C;
3: BC ← createBottomClause(...);
4: with probability pls do
5: repeat
6: ante ← an antecedent chosen at random from BC, whose input

variables are already in C (therefore it obeys modes);
7: C ′ ← C with ante added to it;
8: candidateScore score of C ′;
9: if candidateScore > currentScore then
10: C ← C ′

11: currentScore← candidateScore
12: else
13: BC ← BC − ante
14: until C = C ′ or BC 6= ∅
15: otherwise
16: for each antecedent ante ∈ BC do
17: C ′ ← C with ante added to, in case C + ante obeys the modes

declarations;
18: candidateScore score of C ′;
19: bestClause← candidate clause with the highest candidateScore
20: if candidateScore > currentScore then
21: C ← bestClause
22: currentScore← candidateScore
23: remove ante from BC
24: FPC ← FPC−instances in FPC not proved by C;
25: until FPC = ∅ or there are no more antecedents in BC or it is not possible to

improve the score of the current clause or |C| = CL
26: return C
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ous points. As it was said before, this algorithm is quite expensive by itself and

therefore introduce more backtracks on it goes contrary to our primary objective of

reducing run time. Therefore, the benefit the stochastic algorithm brings is to avoid

computing score considering the set of examples for each possible sequence, which

is obviously an expensive task. Algorithm 6.3 shows such procedure.

Algorithm 6.3 Stochastic Relational-pathfinding

1: generate all possible sequence of antecedents through relational pathfinding al-
gorithm and the Bottom clause;

2: with probability pl2 do
3: choose a sequence at random;
4: otherwise
5: choose a sequence with the highest score or the one with less antecedents

in case of a tie;

The delete-antecedent operator benefits less from stochastic local search than

add-antecedent, since the search space is restricted to goals in the clause, and is

therefore much smaller. The hill-climbing stochastic algorithm for antecedent dele-

tion is shown in Algorithm 6.4. Notice that delete-antecedent is also part of add-rule,

with the latter using it in its first phase. The algorithm follows exactly the same

random walk approach as previous algorithms seen in this section. First, it decides

which type of move it is going to take, namely, a greedy move or a random move,

based on a fixed probability plg. In case the move is greedy, it uses the original

algorithm to propose deletions of antecedents. Otherwise, it selects at random a

literal to be removed from the clause. Both cases require an improvement on the

score to indeed remove a literal from the clause.

A stochastic version of the delete multiple antecedents algorithm was also

developed. However, this algorithm is executed only when the hill-climbing approach

for deleting antecedents is not capable of deleting any antecedent. It is quite simple

and it only differs from the original one by the stochastic decision introduced to

decide which movement to make, greedy or random. A greedy move previews all

possible combinations of literals from the body of the clause to choose the best

among them, while a random move chooses the first combination improving the

current score. Note that both cases only delete antecedents if after the deletion the
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Algorithm 6.4 Algorithm for deleting antecedents using hill-climbing SLS

Input: A clause C, plg, the probability for deciding which move is going to be taken
Output: A (generalised) clause C

1: repeat
2: currentScore← compute score of C;
3: antes← antecedents from the body of C;
4: with probability plg do
5: repeat
6: ante ← an antecedent chosen at random from antes, whose re-

moval from C still makes it valid relative to modes;
7: C ′ ← C with ante deleted from it;
8: candidateScore← compute score of C ′;
9: if candidateScore > currentScore then
10: C ← C ′

11: currentScore← candidateScore
12: else
13: antes← antes− ante
14: until C = C ′ or antes = ∅
15: otherwise
16: for each antecedent ante ∈ antes do
17: C ′ ← C with ante deleted from;
18: candidateScore← compute score of C ′;
19: bestClause← candidate clause with the highest candidateScore
20: if candidateScore > currentScore then
21: C ← C ′

22: currentScore← candidateScore
23: until no antecedent can improve the score;
24: return C
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clause continues to obey modes declarations. This algorithm is better visualised

in 6.5.

Algorithm 6.5 Stochastic version of the algorithm for deleting multiple antecedents

1: with probability plg do
2: generate all possible sequence of antecedents from the clause;
3: choose a sequence at random;
4: otherwise
5: choose a sequence with the highest score;

6.4 Stochastic Local Search for Revisions

YAVFORTE employs two specialization revision points, namely delete rule and add

antecedent, and three generalisation revision points, namely delete antecedent, add

rule (creating a rule by an existing one, by copying the original, deleting antecedents

from it, followed by adding antecedents on it) and add new rule (creating a clause

from scratch). Even employing all those revision operators, it may be the case

that the set of revision points has only few components, either because the theory

has only few failure points or because the stochastic search for revision points was

applied and only a subset of the revision points is given back. In such a situation, the

search space for selecting the operator which will be indeed responsible for modifying

the current theory can be small enough to not largely influence the runtime of the

revision process. However, this small search space does not always occur, making

the choice of the revision operator be an important factor of cost during the revision

process, since it is necessary to evaluate each possible revision yielded by the proposal

of each revision operator on each matching revision point.

In this way, the revision process can also benefit from stochastic search to

reduce runtime when selecting the revision operator which will be the responsible for

implementing some modification on the theory. Additionally, the revision can also

take advantage of stochastic local search techniques to escape from local maxima.

Aiming that goals, we designed four stochastic version of the top level algorithm

of YAVFORTE. They differ mainly in the decision made to implement a revision,

since in some algorithms a bad move can be executed. The algorithms are called as

follows.
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1. Stochastic greedy search with random walk

2. Stochastic hill-climbing search with random walk

3. Stochastic hill-climbing with stochastic escape

4. Simulated annealing search

Next we discuss each one of these algorithms.

6.4.1 Stochastic Greedy Search for Revisions with Random
Walk

This approach follows Randomised Iterative Improvement technique and its most

famous instance, namely WalkSAT algorithm, and accordingly, it performs random

walks, alternating between greedy and stochastic moves, based on a fixed probabil-

ity. In case this fixed probability is not reached, the algorithm performs a greedy

move, by proposing all possible modifications on the theory though the application

of each matching revision operator to each found revision point, in the same fash-

ion the original algorithm does. Then, the best proposed revision is chosen to be

implemented. Note that this move is greedy only, rather than greedy hill climbing

as in original algorithm and therefore the score may be worse than the current one.

In case the fixed probability is reached, the algorithm performs a stochastic

move, selecting at random a revision to be implemented from all the possible ones.

There is no requirement on the selected revision: it is neither mandatorily the best

possible revision nor it is required to improve current score. It is just a revision

proposed on a revision point by a matching revision operator. Because of that, it is

not necessary to explicitly propose and evaluate all the possible revisions, since no

assumptions are made on the score. Thus, it is enough to enumerate the possible

revisions through the revision points and the revision operators suitable to be ap-

plied on each of those revision points. For each revision point, the list of possible

revisions gets an entry containing a tuple with the revision point plus a matching

revision operator. For instance, regarding a single specialisation revision point SRP

and assuming both revision operators are employed in the revision process, there is
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going to be two tuples in the list: one containing SRP plus add-antecedent and an-

other containing SRP plus delete-rule. The same is done for generalisation revision

points. From such enumeration, a revision can be chosen at random and then be

implemented.

Note that bad moves are always allowed in this greedy stochastic approach.

On one hand, this ability makes the algorithm capable of always escaping from

local maxima. On the other hand, some moves can conduct the theory to such a

damaged state that the revision process will not be able to recover from it. However,

modifications are performed on failure points and revision operators are designed

to propose worthwhile revisions on those points, which makes the risk of really

deteriorating the theory very small. To summarise, the key ideas of Stochastic

Greedy Search with Random Walk algorithm are:

� Composing the space of candidate hypothesis: the search space is

formed differently depending on the type of the move. If the move is greedy,

the search space is composed of all possible proposals of revisions applied on

each revision point by the matching revision operators. If the move is stochas-

tic, the candidate hypothesis are also all the possible revisions, however, as

one of them are going to be chosen at random, the candidates are not in fact

proposals of revisions, but instead a representative tuple of the real revision.

Each tuple contains the revision point and a possible revision operator to be

applied on it.

� Choosing the revision to be implemented: In a greedy move, all revi-

sions composing the search space of candidate hypothesis are evaluated by an

evaluation function and the best revision is indeed implemented on the cur-

rent theory. In a stochastic move, a tuple representative of one real revision

is chosen at random to be implemented. As the revision has not been already

proposed before to be chosen as it happens in greedy moves, it is necessary to

check if it is really possible to modify the theory with that revision. In other

words, it may be the case the chosen revision cannot produce any modification

in the theory. This is the case, for example, of trying to delete a rule and it
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is the last one for a top level predicate, or still if is not possible to delete or

add antecedents on the clause. In such a situation, the procedure must choose

another revision from the list until the list is empty. If it is possible to propose

a revision from the tuple, then it is implemented on the theory.

� Stop criteria: The revision process stops under three circumstances: (1)

when there are no more revisions to be implemented, (2) when the revision

reaches a maximum score on the training set (for example, in case the evalu-

ation function is accuracy, the maximum score could be 1.0) or (3) when the

procedure implements a maximum number of revision (performs a maximum

number of steps).

The procedure is exhibited in Algorithm 6.6 as a simplified and replacing

version of Algorithm 3.1. By simplified version we mean some lines are omitted,

specially those concerning the application of only required revision operators. The

algorithm starts by computing the score of the current theory, since one of the

stop criteria is the score reaches a maximum value. Next, it starts a loop which

is going to stop according to the criteria established just above. Inside the loop,

the first matter to worry about is finding revision points. Note that either the

original algorithm or the stochastic algorithm may be used to this task, depending

on the user preference. Then, as usual, the move must be chosen. In a stochastic

move, it is necessary to find a random ”implementable” revision. To do so, the

revisions are enumerated considering each revision point and revision operators that

are applicable on them. A revision is then selected at random and the system tries

to implement in on the current theory. If it is possible, the procedure proceeds to

the next iteration. On the contrary, another revision is chosen at random, until

one of them can indeed be implemented or there are no more possible revisions. In

case the move is greedy, proposals of revisions are generated and scored in the same

way the YAVFORTE top-level algorithm does. However, here the best revision is

implemented even though the score is not improved.

While Stochastic Greedy strategy is able to escape from local maxima, it is

also a risky approach, since as we discussed before there is a chance of the theory de-
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Algorithm 6.6 Stochastic Greedy Search for Revisions with Random Walk

Input: An initial theory T , A Background Knowledge FDT , a set of examples E,
integer maxSteps, real maxScore

Output: A revised theory T ′

1: score← score of T
2: steps← 0
3: repeat
4: generate revision points
5: with probability prev do
6: possibleRevisions possible revisions enumerated from the revision

points and respective revision operators
7: repeat
8: nextRevision ← a revision chosen at random from

possibleRevisions
9: T ′ ← implements nextRevision
10: until T 6= T ′ or possibleRevisions = ∅
11: otherwise
12: generate all possible revisions from the revision points and respective

revision operators
13: compute score of each proposed revision
14: nextRevision← revision with the highest score
15: T ← implements nextRevision
16: score← score of T
17: steps ++;
18: until score >= maxScore or steps = maxSteps or T has not been modified
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teriorates in one iteration and never recover again. Next section we present a second

algorithm for selecting a revision to be implemented that is based on a Stochastic

Hill-Climbing strategy, and therefore does always request a revision improving the

current score.

6.4.2 Stochastic Hill-Climbing Search for Revisions with Ran-
dom Walks

The Stochastic Hill Search with RandomWalks algorithm, as the previous algorithm,

also alternates between greedy and stochastic moves. However, However, whatever

the move is, it is required an improvement in the score to go ahead. In this way, it is

the most similar to the original algorithm comparing to all the approaches designed

in this section. As usual, with a fixed probability prev the algorithm chooses at

random a revision to be implemented from the list of possible revisions. Such a list

is an enumeration of revision point − operator tuples formed exactly in the same

way that the previous discussed algorithm.

In order to guarantee the improvement in the score the revision chosen at

random is evaluated according to some function and it is verified if its score is

better than the current one. If so, the revision is implemented. If do not, another

revision is chosen at random until the procedure finds a revision with a score better

than the current one, or there are no more possible revisions to be implemented.

The benefit in runtime brought by this approach relies on the fact that in random

moves it is not necessary to explicitly propose and compute the score of all possible

revisions. Proposing and computing all revisions in random moves will only happen

in very unlikely cases where there is only one revision improving the score and it is

the last to be chosen.

When the fixed probability prev is not reached, the move is greedy. As the

approach is greedy hill climbing, it is necessary to propose and evaluate all the

possible modifications on the theory and then to choose the best one, just as the

original algorithm does. The revision process stops when there are no more revisions

capable of improving the score. The key components of the strategy are as follows.

� Composing the space of candidate hypothesis: The set of candidate
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hypothesis is composed of the same elements as in the previous stochastic

algorithm.

� Choosing the revision to be implemented: In a greedy move, all revisions

composing the search space of candidate hypothesis are evaluated and the best

revision is indeed implemented on the current theory, only if it improves the

current score. In a stochastic move, a tuple representative of one real revision

is chosen at random to be implemented. As the revision has not been already

proposed before to be chosen as it happens in greedy moves, it is necessary to

check if it is really possible to modify the theory with that revision and also if

it is able of improving the current score. In case a revision chosen at random is

implementable and improves the score, it is indeed implemented. Otherwise,

another revision must be chosen from the list of possible revision, until the list

is empty.

� Stop criteria: The revision process stops under two circumstances: (1) when

there are no more revisions to be implemented so that the score is improved

or (2) when the revision reaches a maximum score on the training set.

The algorithm is exhibited as Algorithm 6.7 and as before we omit some obvi-

ous lines concerning the applicability of revision operators. It starts by computing

the score of the current theory, since is is the base for verifying any improvement.

Then, it performs an iterative hill climbing procedure, where at each iteration the

revision points are generated and either a greedy or a stochastic move is accom-

plished, depending on a fixed probability prev. If a stochastic move is selected, then

representatives of possible revisions are collected, encompassing each revision point

together with each revision operator applicable to that point. An element from

that collection is chosen at random and after proposing the selected revision in a

temporary variable, the new score is computed. In case there is an improvement

on the score, the proposed revision is accepted as next revision. On the contrary,

it is required to pick up another revision, until finding one able of improving the

score or giving up because there is no such a revision. If the move is chosen to be

greedy, then, as in the original algorithm, the revisions are generated by a number of
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matching revision operators and scored with an evaluation function, until the max-

imum potential of a revision point is achieved by some revision. Afterwards, the

revision with the highest score is selected and implemented in case the current score

is improved with that revision. The procedure stops when the theory under revision

reaches a maximum score or when there are no revision capable of modifying the

current theory so that the score is improved.

Algorithm 6.7 Stochastic Hill-climbing Search for Revisions with Random Walk

Input: An initial theory T , A Background Knowledge FDT , a set of examples E,
integer maxSteps, real maxScore

Output: A revised theory T ′

1: score← compute score of T
2: repeat
3: generate revision points
4: with probability prev do
5: possibleRevisions possible revisions enumerated from the revision

points and respective revision operators
6: repeat
7: nextRevision ← a revision chosen at random from

possibleRevisions
8: T ′ ← T after implementing nextRevision
9: scoreNextRevision← score of T ′

10: if scoreNextRevision > score then
11: T ′ ← T
12: score← scoreNextRevision
13: else
14: possibleRevisions← possibleRevisions− nextRevision
15: until T ′ = T or possibleRevisions = ∅
16: otherwise
17: generate all possible revisions from the revision points and respective

revision operators
18: compute score scoreNextRevision of each proposed revision
19: nextRevision← revision with the highest score
20: if scoreNextRevision > score then
21: T ← implements nextRevision on T
22: score← scoreNextRevision
23: until score = maxScore or T has not been modified

Next section we present an intermediate strategy between both of the stochas-

tic algorithms discussed here. It is able to perform bad moves aiming to escape from

local maxima, but only under a stochastic move.
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6.4.3 Hill-Climbing Search for Revisions with Stochastic Es-
capes

The stochastic greedy algorithm first presented here may deteriorate the theory since

it always allows bad moves to be performed. The previous algorithm, on the other

hand, never allows a bad move, which can not avoid it gets stuck in local maxima.

Besides, even when the move is stochastic it has to search for a revision improving

the score, adding an extra factor of cost, compared to the former algorithm. Aiming

to overcome those issues, a third stochastic version of the algorithm 3.1 is designed

on this section. The strategy exploited here is to try escape from local maxima

when performing a stochastic move and implement the best candidate otherwise.

Thus, as usual, with a certain probability prev, the algorithm performs a stochastic

escape, choosing a revision to be implemented at random even if its score is not

better than the current one. On the other hand, when the move is greedy, this

algorithm proceeds as originally, selecting the revision with the highest score and

demanding such a score is better than the current one. If there is no such a revision,

the algorithm continued to the next iteration in an attempt to reach the probability

prev and then to perform a stochastic move. The procedure stops when it reaches

a maximum number of steps or when it reaches a maximum score. As before, we

summarise the key components.

� Composing the space of candidate hypothesis: The set of candidate

hypothesis is composed of the same elements as in the previous stochastic

algorithms.

� Choosing the revision to be implemented: In a greedy move, it behaves

as the greedy component of Stochastic Hill-Climbing and hence the original

revision algorithm. Thus, all revisions composing the search space of candidate

hypothesis are evaluated and the best revision is implemented on the current

theory, only if it improves the current score. However, in case no revision

improves the score, instead of terminating like those algorithms, Hill-climbing

with Stochastic Escape continues to the next iteration. In a stochastic move,

it may implement a revision with a bad score, but only if it does not degradate
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that much the score. To decide how much degradation it is allowed, we use

a function based on a pertubation strategy (Hoos and Stützle, 2005), defined

as score+0.5 ∗ (Potential+ score). Potential is the number of examples that

indicated the need of revising a point and therefore is the maximum score that

a revision could have.

� Stop criteria: The revision process stops under two conditions, namely:

(1) when the revision reaches a maximum score or (2) when the procedure

performs a maximum number of steps.

Algorithm 6.8 exhibits the Hill-climbing with Stochastic Escape procedure.

The first component of the main loop, which is executed when the move is stochastic,

chooses a revision at random. In case its score obeys the ”perturbation” constraint,

it is implemented. Otherwise, the algorithm proceeds to a next iteration. The second

component, the greedy move, behaves as the Stochastic Hill-climbing. Nevertheless,

the algorithm has a stopping criteria differing from previous algorithms, as it stops

only when a maximum score is reached or when a maximum number of iterations

is executed. Such a criteria consents the procedure proceeds to a next iteration

without implementing any revision, which happens when the greedy move cannot

find any revision capable of improving the current score or a randomized revision

degradating the score more than it is allowed.

Finally, we would like to have an algorithm which does not take greedy deci-

sions and also accepts bad moves under a certain condition. As this idea is quite

similar to what is achieved with Simulated annealing techniques, we implemented a

version of this strategy on the base of the top-level revision algorithm.

6.4.4 Simulated Annealing Search for Revisions

Simulated annealing chooses at each iteration a candidate hypothesis at random and

in case the current score is not improved, it uses a scheduling function to decide if

such a hypothesis can be accepted as next hypothesis. As simulated annealing always

selects a revision at random, it can be arguably faster than the previous algorithms

developed in this section, since it never evaluates all the possible modifications on
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Algorithm 6.8 Hill-Climbing Search for Revision with Stochastic Escape

Input: An initial theory T , A Background Knowledge FDT , a set of examples E,
integer maxSteps, real maxScore

Output: A revised theory T ′

1: score← compute score of T
2: steps← 0
3: repeat
4: generate revision points
5: possibleRevisions possible revisions enumerated from the revision points

and respective revision operators
6: with probability prev do
7: repeat
8: nextRevision ← a revision chosen at random from

possibleRevisions
9: score′ ← compute score of nextRevision
10: if score′ + 0.5(Potentil + score′) ¿ 0 then
11: T ′ ← implements nextRevision
12: else
13: T ′ ← T
14: possibleRevisions← possibleRevisions− nextRevision
15: until T 6= T ′ or possibleRevisions = ∅
16: otherwise
17: generate all possible revisions from the revision points and respective

revision operators
18: compute score scoreNextRevision of each proposed revision
19: nextRevision← revision with the highest score
20: if scoreNextRevision > score then
21: T ← implements nextRevision on T
22: score← scoreNextRevision
23: steps++
24: until score >= maxScore or steps = maxSteps
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the theory. However, it can take more iterations to converge. It is proved that, if the

value returned by the scheduling function is reduced slowly enough, the algorithm

will find the optimal global (Russell and Norvig, 2010). Here we follow exactly the

same idea and implement the simulated annealing as one of the stochastic algorithms

for selecting revision to be implemented. The key components of the algorithm are

as follows.

� Defining the search space of candidate hypothesis: Candidate hypoth-

esis are exactly the same of the stochastic components of previous algorithms.

Thus, the candidate hypothesis are all the possible revisions applied to each

revision provided revision point, but without proposing them to compose the

search space. Instead, they are representative tuples of each real revision,

where each tuple is a revision point and a possible revision operator to be

applied on it.

� Choosing the revision to be implemented: The revision to be imple-

mented is chosen at random from the search space of candidate hypothesis.

A proposal of the revision is generated and its score is computed. If such a

score is better than the current one, the revision is implemented on the current

theory. Otherwise, the revision is implemented only if a certain probability

is reached. This probability is defined from the difference between the cur-

rent score and the score of the revision, divided by the value computed with

the scheduling function. The scheduling function, among others parameters,

takes into account the number of steps performed so far. It may be the case

that an iteration gets to the end without implementing any revision, precisely

when a revision got at random neither can improve the current score, nor it is

acceptable as a bad move.

� Stop criteria: The revision process stops under three conditions, namely:

(1) when there are no possible revision to be implemented or (2) when the

scheduling function returns zero or (3) when the theory achieves a maximum

score.
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Algorithm 6.9 brings Simulated strategy performed on the search for revisions.

Besides the usual parameters, it requires a parameter indicating the maximum num-

ber of iterations limit and a reduction factor lam. The main loop starts by gener-

ating the revision points as usual, followed by the enumeration of tuples of possible

revisions to be implemented upon such revision points. As the revisions are not

really proposed before one of them has been chosen, it is necessary to check out

whether it is possible to implement that revision on the theory. In possession of

an implementable revision, the algorithm must decide whether it is going indeed

be implemented on the current theory. To do so, first it is verified if the score can

be improved after implementing the revision, which in an affirmative case, makes

the revision be implemented. If the score is not improved the revision might be

implemented anyway, but only when a scheduling function returns a value higher

than a random probability. The scheduling function guarantees that the more iter-

ations the algorithm performs the less is the chance of a bad move be selected. The

algorithm may proceed without implementing any revision on that iteration and it

finishes the revision process when the scheduling function return 0.0.

6.5 Experimental Results

In this chapter, we would like to investigate if it is possible to reduce runtime of

the revision process, even when the search space is larger than usual, by the use

of Stochastic Local Search techniques. Thus, the major question we would like to

answer is whether the runtime of the revision process guided by SLS algorithms, can

be faster than the traditional revision but without harming accuracy. A secondary

question is if we can also be comparable to learning from scratch in terms of learning

time, while reaching better accuracies than this approach. In this way, we have se-

lected three ILP datasets that YAVFORTE had a hard time to revise and compared

accuracy and runtime obtained from Aleph (Srinivasan, 2001b), YAVFORTE (see

chapter 3) and stochastic algorithms. The datasets are as follows.
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Algorithm 6.9 Simulated Annealing Search for Revisions

Input: An initial theory T , A Background Knowledge BK, a set of examples E
Output: A revised theory T ′

1: score← score of T
2: S ← 1
3: repeat
4: generate revision points
5: T ′ ← T
6: possibleRevisions possible revisions enumerated from the revision points

and respective revision operators
7: repeat
8: nextRevision← a revision chosen at random from possibleRevisions
9: if it is possible implement nextRevision on T then
10: T ′ ← implements nextRevision
11: else
12: possibleRevisions← possibleRevisions− nextRevision
13: until possibleRevisions = ∅ or T ′ 6= T
14: if T ′ 6= T then
15: scoreNextRevision← compute score of T ′

16: ∆ E ← scoreNextRevision− score
17: if ∆ E > 0 then
18: T ← T ′

19: score← scoreNextRevision
20: else
21: S ← scheduling(t, limit, lam)
22: if S 6= 0.0 then
23: with probability e∆ E/S do
24: implements nextRevision
25: score← scoreNextRevision
26: t++
27: until S = 0
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6.5.1 Datasets

� Pyrimidines: this is a Quantitative Structure Activity Relationships (QSAR)

problem, concerning the inhibition of E. Coli Dihydrofolate Reductase by

pyrimidines, which are antibiotics acting by inhibiting Dihydrolate Reduc-

tase, an enzyme on the pathway to forming DNA (King et al., 1992; Hirst

et al., 1994a). The dataset we used in this work is composed of 2361 positive

examples and 2361 negative examples.

� Proteins: This is a task of secondary structure protein prediction. The task

is to learn rules to identify whether a position in a protein is in an alpha-

helix (Muggleton et al., 1992). We considered a dataset with 1070 positives

and 970 negatives.

� Yeast sensitivity (Spellman et al., 1998; Kadupitige et al., 2009): This is a

dataset concerning the problem of gene interaction of the yeast Saccharomyces

cerevisiae. It is composed of 430 positive examples and 680 negative examples.

It has a huge background with approximately 170,000 facts.

Experimental Methodology The datasets were splitted up into 10 disjoint folds

sets to use a K-fold stratified cross validation approach. Each fold keeps the rate

of original distribution of positive and negative examples (Kohavi, 1995). The sig-

nificance test used was corrected paired t-test (Nadeau and Bengio, 2003), with

p < 0.05. As stated by (Nadeau and Bengio, 2003), corrected t-test takes into ac-

count the variability due to the choice of training set and not only that due to the

test examples, which could lead to gross underestimation of the variance of the cross

validation estimator and to the wrong conclusion that the new algorithm is signifi-

cantly better when it is not. All the experiments were run on Yap Prolog (Santos

Costa, 2008).

The initial theories were obtained from Aleph system using parameters default,

except for clause length, which is defined as 10 , noise, defined as 30, nodes set to

10000 and minpos, set to 2. The use of those parameters has been inspired on the

work of (Muggleton et al., 2010). To generate such theories, the whole dataset was
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considered but using a 10-fold cross validation procedure. Thus, a different theory

was generated for each fold and each one of these theories is revised considering its

respective fold (the same fold is used to generate and revise the theories). Theories

returned by Aleph have about 200 clauses for each dataset, which makes them

difficult for YAVFORTE to revise. Stochastic algorithms were run 5 times because

of the random choices.

6.5.2 Behavior of the Stochastic Local Search Algorithms
with Different Parameters

First, we would like to observe how the different stochastic strategies behave with

different parameters. To do so, we used the datasets Pyrimidines and Proteins and

plot curves for each individual algorithm, with different appropriate parameters.

Varying Number of Revision Points We start by comparing the revision time

and accuracy results of Algorithm 6.1, which includes a stochastic component when

searching for revision points, with different amounts of maximum revision points

returned. Figures 6.1 and 6.2 exhibit the results for Pyrimidines and Proteins,

respectively, with probability parameters fixed to 100% and 50% and number of

revision points defined as 1, 5, 10 and 20. As expected, runtime increases as more

revision points are returned. However, accuracies are not significantly different

when 5 or more revision points are found out. Accordingly, choosing only one

revision point makes the revision system extremely fast, but at the expense of worse

accuracies. Accuracies are not significantly different when the probability is either

100% or 50%.

Varying Number of Iterations Algorithms Stochastic Greedy(6.6) and Hill

Climbing with stochastic Escape (6.8) considers as stop criteria a maximum number

of iterations. Simulated annealing also takes into account a limit to decide stopping,

which is the parameter limit in Algorithm(6.9). In order to check the performance

of these approaches when facing different maximum iterations, we fixed the prob-

ability of random walks in 100% and 50% for the two first cases and plotted the

accuracy versus runtime achieved by the algorithms. The graphics are exhibited in
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Figure 6.1: Comparing runtime and accuracy of Algorithm 6.1 in Pyrimidines
Dataset, with number of revision points varying in 1, 5, 10, 20. Probabilities are
fixed in 100% and 50%.

Figure 6.2: Comparing runtime and accuracy of Algorithm 6.1 in Proteins Dataset
with number of revision points varying in 1, 5, 10, 20. Probabilities are fixed in
100% and 50%.

Figures 6.3 and 6.4, for Pyrimidines and Proteins datasets, respectively.

In the Pyrimidines dataset, Simulated annealing is the fastest algorithm but

it only achieves accuracy equivalent to the other algorithms when the number of

iterations is 40. We perform some additional tests to see if by increasing the number

of iterations, simulated annealing would perform better, but we only verified higher

runtime, while accuracies were stationed.

Fixing the probabilities as 100% for the two others algorithms makes them to

execute very fast. However, always to perform stochastic moves does not improve
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accuracies of the theories as it could. We see that by looking at the performance of

these algorithms when the probability is fixed in 50%: although the revision process

takes more time, since in greedy moves all revisions are evaluated so that the best

one is chosen, the accuracies are also significantly higher. Hill Climbing stochastic

escape algorithm with 50% of probability is the algorithm achieving best accuracies,

in the same runtime as the second best algorithm, which is the Greedy Stochastic

algorithm, also considering 50% of probability.

In the proteins dataset, it is interesting to see that the best accuracy was

achieved by Simulated Annealing in less time than most of the cases. All the other

algorithms behaves as the Pyrimidines dataset: Considering probabilities of 50%

yields better accuracies, achieved in slower revision time. However, Hill climbing

stochastic escape with 100% in this case is also able to achieve accuracies statistically

equivalent to the 50% cases, in less time.

Those curves suggest that when increasing the number of iterations the systems

are slower, as expected, but their accuracies are not significantly changed.

Figure 6.3: Comparing runtime and accuracy of SLS algorithms in Pyrimidines
Dataset, varying maximum number of iterations, which is set to 10, 20, 30, 40.
Probabilities are fixed in 100% and 50%, when it is the case.

Varying Probability Values Probability parameters are responsible for deciding

the type of the move the algorithm is going to follow: either the move is greedy, and

the best hypothesis found from the set of all generated hypothesis, is chosen to be
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Figure 6.4: Comparing runtime and accuracy of SLS algorithms in the proteins
dataset, varying maximum number of iterations, which is set to 10, 20, 30, 40.
Probabilities are fixed in 100% and 50%, when it is the case.

implemented, or the move is stochastic and possible hypothesis are randomized. All

algorithms but Simulated Annealing follow this strategy. To see the performance

of the algorithms when facing different probability parameters, we plot accuracy

versus runtime curves for each algorithms, considering probabilities as 100%, 80%,

60% and 40%. Maximum number of iterations for Hill climbing with stochastic

escape and Stochastic Greedy algorithms for choosing revisions are set to 20, since

in previous section we see this value has the best balance between accuracy and

runtime. Maximum number of revision points is set to 10.

In Pyrimidines dataset, the performance of Greedy and Stochastic Escape

algorithms follow the same pattern: the smaller is the probability, higher accuracies

are achieved at the expense of higher runtime. However, while Stochastic Escape

can reach accuracy very close to the other algorithms, in the best case, accuracies

of Greedy algorithm are always significantly slower than the other algorithms. The

accuracies achieved by the rest of the algorithms slightly changes, but they are

not significantly different, no matter the probability value is. On the other hand,

the smaller is the chance of choosing a stochastic move, the slower is the revision

process. It is interesting that in these cases, even always following a stochastic

move (probability set to 100%), accuracies are not significantly affected. Thus,

we can conclude from this dataset that, if the stochastic move does not demands
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an improvement on the score, which is the case of Greedy and Stochastic Escape,

probabilities play a fundamental role. On the other hand, if both moves require

improvement on the score (stochastic Hill climbing), high probabilities can yield the

same results as low probabilities, but in less time.

Proteins dataset has similar results. In this case, the stochastic hill climb-

ing search for revisions and stochastic search for literals achieve the best accuracy

results, but at the expense of higher runtime.

Figure 6.5: Comparing runtime and accuracy of SLS algorithms in Pyrimidines
Dataset, with probabilities varying in 100, 80, 60, 40. Maximum number of iterations
is fixed in 20, when it is the case.

Figure 6.6: Comparing runtime and accuracy of SLS algorithms in Proteins Dataset,
with probabilities varying in 100, 80, 60, 40. Maximum number of iterations is fixed
in 20, when it is the case.
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6.5.3 Comparing Runtime and Accuracy of SLS Algorithms
to Aleph and YAVFORTE

In this section we would like to compare the performance of Stochastic Local Search

Algorithms to state-of-the-art learning from scratch and revision systems. We com-

pare the accuracy and runtime of Aleph and YAVFORTE (see chapter 3) to the SLS

algorithms presenting a better trade-off between accuracy and runtime. In addition

to Pyrimidines and Proteins, we also consider here the Yeast sensitivity dataset,

but in this case, concerning the search for revisions, we show the results only for

stochastic Hill climbing, since this has the best accuracy results for the other two

datasets. Besides running individually the stochastic algorithms for each key search,

we also combine stochastic algorithms as follows.

1. Stochastic search for revision points with stochastic search for literals.

2. Stochastic search for revision points with stochastic Hill climbing search for

revisions.

3. Stochastic Hill climbing search for revisions with stochastic search for literals.

4. Stochastic search for revision points with stochastic search for literals and

stochastic Hill climbing search for revisions.

Figures 6.7, 6.8 and 6.8 presents the accuracies returned by the systems for

Pyrimidines, Proteins and Yeast sensitivity datasets, respectively. The parameters

used to each system are presented in parenthesis, where the first value is a prob-

ability parameter and the second value (when it is the case) it is the number of

iterations/revision points. Next, we discuss the most relevant cases observed in the

graphic.

� All revision algorithms in the three datasets achieve accuracies significantly

better than Aleph system.

� Except for Greedy Search for revisions, in Pyrimidines dataset there is no

statistical significant difference between the accuracy returned by YAVFORTE

and the stochastic algorithms.
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� Best accuracy result for Pyrimidines is achieved by stochastic search for literals

combined with Hill climbing stochastic search for revisions, although it is not

significantly better than the others.

� In Proteins dataset, best results are achieved by stochastic search for literals

and stochastic search for literals combined with Hill climbing stochastic search

for revisions.

� In Proteins dataset, stochastic search for revision points and stochastic greedy

search for revisions achieves significantly worse accuracies, compared to YAV-

FORTE and best SLS results.

� There is no significant difference between YAVFORTE and the rest of the SLS

algorithms.

� In Yeast Sensitivity dataset, stochastic search for literals and the combination

of the three stochastic components achieve significantly better accuracies than

YAVFORTE.

� The other SLS algorithms do no present significant difference compared to

YAVFORTE

From these results, we can see that SLS algorithms either provide better or

equivalent accuracies compared to the baseline revision system YAVFORTE. In ad-

dition, they are always significantly better than Aleph system.

Figures 6.10, 6.11 and 6.12 exhibit runtime of Aleph, YAVFORTE and SLS al-

gorithms for Pyrimidines, Proteins and Yeast sensitivity, respectively. The following

issues are observed from the results graphically represented in the figures.

� Pyrimidines Dataset

– Revision time of YAVFORTE is significantly slower than all other algo-

rithms in Pyrimidines dataset.

– In Pyrimidines dataset, the only algorithm significantly slower than Aleph

is SLS with revisions escape. This is likely due to the high number of

iterations.
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Figure 6.7: Comparing accuracy of SLS algorithms to Aleph and YAVFORTE in
Pyrimidines Dataset. Results of SLS algorithms are the ones with a best trade-off
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

Figure 6.8: Comparing accuracy of SLS algorithms to Aleph and YAVFORTE in
Proteins Dataset. Results of SLS algorithms are the ones with a best trade-off
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

– Stochastic Hill climbing search for revisions combined with stochastic

search for literals does not present difference compared to Aleph. In

this case, the combination of these SLS algorithms takes more time to

converge.

– All the other SLS cases are significantly faster than Aleph.
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Figure 6.9: Comparing accuracy of SLS algorithms to Aleph and YAVFORTE in
Yeast Sensitivity Dataset. Results of SLS algorithms are the ones with a best trade-
off between accuracy and runtime. Parameters of probability, number of iterations
and number of revision points are in parenthesis.

– Higher speed of a SLS algorithm, compared to YAVFORTE has a factor

of 17, while smallest speed up is 4.

� In Proteins dataset all SLS algorithms are significantly faster than Aleph and

YAVFORTE, except for stochastic search for literals, which is faster than

YAVFORTE but it is not significantly different than Aleph. Higher speed of

a SLS algorithm, compared to YAVFORTE has a factor of 16, while smallest

speed up is 2.

� In Yeast sensitivity, Aleph is significantly faster than all revision algorithms.

We believe this is due to the huge background knowledge this dataset has, that

makes coverage tests slower and revision must perform much more such kind

of tests than learning from scratch approaches. On the other hand, all SLS

algorithms are significantly faster than YAVFORTE. Higher speed of a SLS

algorithm, compared to YAVFORTE has a factor of 26, while smallest speed

up is 2.

From the results, we can conclude that using stochastic local search algorithms

individually and specially combining them, it is possible to greatly reduce the revi-

sion time and also to be faster or competitive with learning from scratch. Moreover,

accuracies achieved by SLS strategies are always better than learning from scratch
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Figure 6.10: Comparing runtime of SLS algorithms to Aleph and YAVFORTE in
Pyrimidines Dataset. Results of SLS algorithms are the ones with the best trade-off
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

Figure 6.11: Comparing runtime of SLS algorithms to Aleph and YAVFORTE in
Proteins Dataset. Results of SLS algorithms are the ones with the best trade-off
between accuracy and runtime. Parameters of probability, number of iterations and
number of revision points are in parenthesis.

approach and competitive with traditional revision approach. Thus, we positively

answer both questions posed in the beginning of this section.

6.6 Conclusions

In this chapter we designed a set of stochastic local search algorithms for exploring

the key search spaces of the revision process more efficiently. The algorithms aban-
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Figure 6.12: Comparing runtime of SLS algorithms to Aleph and YAVFORTE in
Yeast Sensitivity Dataset. Results of SLS algorithms are the ones with the best
trade-off between accuracy and runtime. Parameters of probability, number of iter-
ations and number of revision points are in parenthesis.

don completeness in favor of finding good solutions in a reasonable time. Most of

all are based on random walks, so that the choice of pursuing a greedy or a stochas-

tic move is made according to a probability parameter. Stochastic algorithms were

implemented in YAVFORTE system (see chapter 3 and (Duboc et al., 2009)) in

every key search of the revision process.

First, a SLS algorithm was built to avoid collecting all revision points from all

misclassified examples. With a probability p, misclassified examples are randomized

and a pre-defined number of revision points is generated. The search is alternated

with greedy moves, since without the probability p all revision points found in the

theory from each misclassified instance are collected. However, through experimental

results we found out that in several cases there is no need of employing greedy moves,

since defining the probability parameter as 100% already achieves good results:

the revision time is greatly reduced and accuracies are not statistically significant

different compared to the baseline system. The performance of stochastic component

in the search for revision points is more influenced by the parameter defining the

number of revision points that should be returned.

Second, SLS components were included in the search for literals to be added

to or removed from a clause. Stochastic search was included in both hill climbing
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and relational pathfinding algorithms for specializing clauses. In the first case, when

the move is stochastic, literals from the Bottom Clause are randomized and the first

literal found that improve the score is added to the clause. In relational pathfind-

ing, paths created from the Bottom Clause and a positive instance are randomized.

In this work, we used both algorithms cooperating to each other, when relational

pathfinding was applicable. We noticed from the empirical evaluation that, although

the stochastic search for literals is able to reduce runtime compared to hill climb-

ing greedy approach of YAVFORTE, if it is executed without the other stochastic

components, it is not much effective as the other SLS algorithms. The reasons for

that are mainly due to the Bottom clause: either it is small and the stochastic com-

ponent does not make a huge difference, or it is large, but in this case the use of

stochastic move takes more iterations to converge than the original approach. Novel

approaches can be investigated to further improve this stochastic component, such

as pre-process literals using Bayesian networks or genetic algorithms (Oliphant and

Shavlik, 2008; Muggleton and Tamaddoni-Nezhad, 2008; Pitangui and Zaverucha,

2011).

Third, four different stochastic components were included to decide which re-

vision is going to be implemented. Three of them are based on random walks and

one of them performs a simulated annealing algorithm. In the results we could see

that the stochastic greedy algorithm for searching revisions, which in both stochastic

and greedy moves allows a revision with score worse than the current one be imple-

mented, does not performs well. As an improvement in score is always not required,

the accuracy deteriorates along the iterations. The stochastic escape approach, that

accepts bad moves but only if it does not degrade so much the score, performs

better than greedy, with good accuracy and runtime results in several cases. How-

ever, the simplest strategy, that with a certain probability randomizes revisions and

implements the first one improving the score, achieved the best overall results.

The three strategies above were compared both individually and combining the

best strategies. The vast majority of the cases showed that stochastic approaches

achieve better accuracies than the learning from scratch Aleph system, with faster

or competitive runtime. Moreover, accuracies in most of the cases are significantly
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equivalent to YAVFORTE but the runtime is always much faster. In the best case,

an SLS algorithm is 25X faster than YAVFORTE, with equivalent accuracy.

We see at least two different topics for further investigation concerning SLS

in first-order logic revision: the use of rapid randomized restart strategies, already

employed in ILP in (Železný et al., 2004; Železný et al., 2006), that would avoid

being stuck in unproductive refinements by restarting after a certain criteria from

another random point; and the use of stochastic component in coverage tests, as it

is done in (Sebag and Rouveirol, 1997; Kuzelka and Zelezný, 2008a).
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Chapter 7
Probabilistic Logic Learning

Traditional statistical machine learning algorithms deal with uncertainty by

assuming the data are independent and identically distributed (i.i.d). On the other

hand, relational learning algorithms have the capability to represent multi-typed

related objects, but they impose severe limitations for representing and reasoning in

the presence of uncertainty. However, in most real-world applications, data is multi-

relational, heterogeneous, uncertain and noisy. Examples include data from web,

bibliographic datasets, social network analysis, chemical and biological data, robot

mapping, natural language, among others (Lachiche and Flach, 2002; Battle et al.,

2004; Getoor et al., 2004; Jaimovich et al., 2005; Davis et al., 2005a; Neville et al.,

2005; Wang and Domingos, 2008; Raghavan et al., 2010). Therefore, in order to ex-

tract all useful information from those datasets it is necessary to use techniques deal-

ing with multi-relational representations and probabilistic reasoning. Probabilistic

Logic Learning (PLL), also called Probabilistic Inductive Logic Programming (PILP)

(De Raedt et al., 2008a) and Statistical Relational Learning (SRL) (Getoor and

Taskar, 2007) is an emerging area of artificial intelligence, lying at the intersection

of reasoning about uncertainty, machine learning and logical knowledge representa-

tion (De Raedt, 2008). As such, PLL is able to deal with machine learning and data

mining in complex relational domains where information may be missed, partially

observed and/or noisy.

A large number of PLL systems have been proposed in the last years, giving

rise to several formalisms for representing logical and probabilistic knowledge. The

formalisms can be divided into several general classes (Getoor, 2007), yet here we
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choose to put them in the two more relevant axes (De Raedt et al., 2008a): Logical

Probabilistic Models (LPM) are extensions of probabilistic models that are able to

deal with objects and relations by including logical or relational elements. Typi-

cally, they build a directed or undirected probabilistic graphical model to reasoning

about uncertainty using logic as a template. Inside this category there is a group

of formalisms based upon directed probabilistic graphical models, composed of Re-

lational Bayesian Networks (Jaeger, 1997), Probabilistic Logic Programs (Ngo and

Haddawy, 1997; Haddaway, 1999), Probabilistic Relational Models (PRM) (Koller

and Pfeffer, 1998; Koller, 1999; Friedman et al., 1999; Getoor et al., 2001), Bayesian

Logic Program (BLP) (Kersting and De Raedt, 2001d; Kersting and De Raedt,

2001b; Kersting and De Raedt, 2001a; Kersting and De Raedt, 2007), Constraint

Logic Programming with Bayes Nets (CLP(BN)) (Santos Costa et al., 2003a), Hi-

erarchical Bayesian Networks (Gyftodimos and Flach, 2004), Logical Bayesian Net-

works (Fierens et al., 2005), Probabilistic Relational Language (Getoor and Grant,

2006), etc, and a group composed of systems built upon undirected probabilistic

graphical models, including Relational Markov Networks (Taskar et al., 2002), Re-

lational Dependency Networks (Neville and Jensen, 2004)and Markov Logic Net-

works (MLN) (Singla and Domingos, 2005; Kok and Domingos, 2005; Richardson

and Domingos, 2006; Domingos and Lowd, 2009).

In the other axis are the Probabilistic Logical Models (PLM), which are for-

malisms extending logic programs with probabilities, staying as close as possible to

logic programming by annotating clauses with probabilities. In this class, the log-

ical inference is modified to deal with the parameters of probabilities. Formalisms

following this approach include Probabilistic Horn Abduction (Poole, 1993) and

its extension Independent Choice Logic (ICL) (Poole, 1997), Stochastic Logic Pro-

gram (SLP) (Muggleton, 1996; Muggleton, 2000; Muggleton, 2002), PRISM (Sato

and Kameya, 1997; Sato and Kameya, 2001), Logic Programs with Annotated Dis-

junctions (Vennekens et al., 2004), SAYU (Davis et al., 2005a; Davis et al., 2005b;

Davis et al., 2007), nFoil (Landwehr et al., 2007), kFoil (Landwehr et al., 2006),

ProbLog (De Raedt et al., 2007; Kimmig et al., 2008; Kimmig, 2010), among others.

The present work aims to contribute to the rule-based formalism using the
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directed probabilistic graphical model of Bayesian networks. BLP was chosen to

conduct the research of theory revision in PLL since it elegantly instantiates both

logic programs and Bayesian networks. Next we bring some details on the fun-

damentals of BLPs, starting from Bayesian Networks in section 7.1, immediately

followed by the ideas behind BLPs in section 7.2. Finally, we review our revision

system PFORTE in section 7.3.

For some basic concepts from probability theory we refer to (Feller, 1970; Ross,

1988; Pearl, 1988; DeGroot, 1989).

7.1 Bayesian Networks: Key Concepts

Complex systems involving some sort of uncertainty may be characterized through

multiple interrelated random variables, where the value of each variable defines an

important property of the domain. In order to probabilistically reason about the

values of one or more variables, possibly given evidence about others, it is necessary

to construct a joint distribution over the space of possible assignments to a set of

random variables. Unfortunately, even in the simplest case of binary-valued vari-

ables, the representation of a joint distribution over a set of not assumed independent

random variables χ = X1, ..., Xn requires the specification of the probabilities of at

least 2n different assignment of values x1, ..., xn. It is obviously unmanageable to

explicitly represent such a joint distribution.

Probabilistic Graphical Models (PGMs) provide mechanisms for encoding such

high-dimensional distributions over a set of random variables, structuring them com-

pactly so that the joint distribution can be utilized effectively (Koller and Friedman,

2009). They use a graph-based representation, where the nodes correspond to the

random variables in the domain and the edges correspond to direct probabilistic

interactions between the variables.

There are two most common used families of PGM, one representing the do-

main through undirected graphs and the other through directed graphs. In the

first case lies the Markov networks (aka Markov random field), consisting of an

undirected graph G and a set of potential functions φk (Pearl, 1988). The graph

has a node for each random variable and the model has a non-negative real-valued
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potential function for each clique in the graph. Markov networks are useful in mod-

eling problems where one cannot naturally define a directionality to the interactions

between the variables. The representative of the second case are the Bayesian net-

works (Pearl, 1991) whose edges of the graph have a source and a target. Next

we describe Bayesian networks thoroughly, since it is the underlying probabilistic

graphical models of BLPs.

In order to review the main concepts of Bayesian networks we use the following

convention: X denotes a random variable, x a state, X a set of random variables

and x a set of states.

Bayesian networks represent the joint probability distribution P (Xi, ..., Xn)

over a fixed and finite set of random variables {Xi, ..., Xn}. Each random variable

Xi has a domain(Xi) of mutually exclusive states. They allow a compact and natural

representation of the set of random variables by exploiting conditional independence

properties of the distribution.

We say a variable X is conditionally independent of a variable Y , given a

variable E, in a distribution P if P (X|Y,E) = P (X|E). Conditional independence

is denoted by (X ⊥ Y |Z).

To represent the connections between random variables, as well as their prob-

ability distributions, a Bayesian network is composed of two components, as follows.

Qualitative or logic component of a Bayesian network : it is an augmented Directed

Acyclic Graph (DAG) G whose nodes are the random variables in the domain and

whose edges correspond to direct influence among the random variables. The par-

ents of a variable Xi are the variables represented by the nodes whose edges arrive

in Xi. Similarly, the children of a variable Xj are variables represented by the

nodes whose edges come from Xj. Henceforward, we use the terms “variables ” and

“nodes ” interchangeably. The local independence assumption in a Bayesian network

states that a variable Xi is conditionally independent of its non-descendants in the

network, given a joint state of its parents, i.e.:

(Xi ⊥ Non−DescendantsXi
|Parents(Xi))

�� ��7.1

where Parents(Xi) denotes the states of the parents of node Xi, and if the
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node has no parents, then P (Xi|Parents(Xi) = P (Xi)

The independence assumption allows it to write down the joint probability

distribution as

P (X1, ..., Xn) =
n∏

i=1

P (Xi| Parents(Xi))
�� ��7.2

by applying the independence assumption to the chain rule expression of the joint

probability distribution.

Quantitative component of a Bayesian network. Because of the independence

assumption, each node is associated to a local probability model that represents the

nature of the dependence of each variable on its parents. Thus, each node has a

Conditional Probability Distributions (CPDs), cpdXi, specifying a distribution over

the possible values of the variable given each possible joint assignment of values to

its parents, i.e, P (Xi|parents(Xi). If a node has no parents, then the CPD turns into

a marginal or prior distribution, since is conditioned on an empty set of variables.

Consider, for instance the following problem from genetics (Friedman et al.,

1999; Kersting et al., 2006): It is a genetic model of the inheritance of a single

gene that determines the blood type of a person. Each person has two copies of

the chromosome containing this gene, one inherited from her mother and another

inherited from her father. Occasionally, a person is not available for testing, and yet

because of the clarification of crime, test of paternity, allocation of (frozen) semen

etc. it is often necessary to estimate the blood type of the person. A blood type can

still be derived for that person through an examination and analysis of the types of

family members.

To represent this domain we would have for each person three random vari-

ables: one representing her blood type (btperson), another one representing the gene

inherited from her father (pcperson) and the last one representing the gene inher-

ited from her mother (mcperson). The possible values for btperson are in the set

domain(btperson) = {a, b, o, ab} and the domain for mc and pc are the same and

composed of {a, b, o}. In this example the independence assumptions are clear due

to the biological rules: once we know the blood type of a person, additional evi-

dence about others members of the family will not provide new information about

the blood type. In the same way, once we know the blood type of both parents,
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we know what each of them can pass on to their descendants. Thus, finding new

information about a person’s non-descendants does not provide new information

about blood type of the person’s children. Those local dependencies are better visu-

alized through the Bayesian network of the Figure 7.1. For example, regarding the

biological point of view, the blood type of Susan is correlated with the blood type

of her aunt Lily, but once we know the blood type of Allen and Brian, the blood

type of Lily is not going to be relevant to the blood type of Susan. Each variable

has an associated CPD, coding the probability of a person has one of the values of

the domain as her blood type, given each possible assignment of the genes inherited

from her parents.

Figure 7.1: Bayesian network representing the blood type domain within a particular
family

7.1.1 D-separation

Independence properties in probabilistic graphical modes can be exploited in order

to reduce the computation cost of answering queries process. If one guarantees that
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a set of nodes X is independent from another set of nodes Y given E, then in the

presence of evidence about the nodes in E, an observation regarding variables in

X cannot influence the beliefs about Y. The independence assumptions satisfied

by a Bayesian network can be efficiently identified using a graphical test called d-

separation (Geiger et al., 1989). The intuition above this test encompasses four

general cases, illustrated in Figure 7.2, from where we would like to analyze whether

knowing an evidence about a variable X can change the beliefs about a variable Y ,

in the presence of evidence about variables E. Naturally, when variables X and Y

are directly connected, they are able to influence each other. Now, consider the four

cases where variables X and Y are connected through E.

� The first case represents an indirect causal effect, where an ancestor X of Y

could pass influence to it via E. Consider, for example, the Bayesian network

of Figure 7.1. If one wants to know the blood type of Susan and do not know

the gene she receives from her mother (mc Susan is unknown), the gene her

mother received from Susan’ grandmother (represented by the known variable

mc Allen) is able to influence the beliefs on which blood type Susan is. On

the other hand, if one already knows the gene Susan received from her mother,

the gene passed from Susan’grandmother to Susan’ mother no longer influences

her blood type. Referring to the general case, X can only influence Y in the

presence of E if E is not observed. In this case, we say the evidence E blocks

influence of X over Y , as stated in Definition 7.1.

� The next case is the symmetrical case of the last one: we want to know whether

evidence above a descendant may affect an indirect ancestor. In our running

example, this is the case of trying to know whether the gene Allen received

from her mother (random variable mc Allen) is affected by the knowledge of

the blood type of Susan (bt Susan). As before, once the gene Susan received

from Allen is known (random variable mc Susan is observed), bt Susan is not

able to affect the beliefs on mc Allen. However, in case mc Susan is missing,

bt Susan has a free path to reach mc Allen and therefore to affect its value.

� A common cause case is represented in Figure 7.2(c), where the node E is a
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common cause to nodesX and Y . In the Bayesian network of the example, this

is the case of variables mc Allen, mc Susan and bt Allen, where mc Allen is a

common cause for the others variables. The bloodtype ofAllen (bt Allens) and

the gene Susan received from her mother Allen (mc Susan) are correlated,

since knowing the bloodtype of Allen helps us to predict the gene she received

from her mother (mc Allen) and consequently, the gene Allen has transmitted

to her daughter Susan. However, in case mc Allen is observed, knowing the

bloodtype of Allen provides no additional information to predict the gene

she transmitted for her daughter, as the information of which gene she has is

stronger than her bloodtype. Thus, in the general case, variables sharing a

common cause are able to influence each other if the path of common causes

between them if free of evidences, i.e, the path is unblocked.

� Figure 7.2(d) represents a common effect trail. Structures in the form X →

E ← Y are called v-structures. The three cases previously discussed share a

pattern: X can influence Y via E is and only if E is not observed. In constrast,

a common effect trail is different as X can influence Y via E if and only if E

is observed. This is easier to see through an example: consider the random

variables mc Susan, pc Susan and bt Susan in Figure 7.1 and suppose we

would want to know the gene Susan received from her father (random variable

pc Susan). If the blood type of Susan is known, the evidence on mc Susan

is able to influence the beliefs on pc Susan. Knowing the gene she received

from her mother and her blood type affects the beliefs about the gene she

received from her father. For example, knowing her blood type is A and the

gene her mother transmitted to her is o, the only possible gene she received

from his father is A. However, if we do not know the blood type of Susan, it is

not possible that the gene she received from her mother affects our beliefs on

the gene she received from her father. Thus, if the common effect variable is

not observed, knowing about a parent variable cannot affect our expectation

about the others parents.

Definition 7.1 Block: Let X and Y be random variables in the graph of a Bayesian
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Figure 7.2: The four possible edge trails from X to Y, via E. Figure (a) is an
indirect causal effect; Figure (b) is an indirect evidential effect; Figure (c) represents
a common cause between two nodes and Figure (d) shows a common effect trail.

network. We say an undirected path between X and Y is blocked by a (set of) variable

E if E is in such a path and influence of X cannot reach Y and change the beliefs

about it because of evidence (or lack of it) of E.

The d-separation test guarantees that X and Y are independent, given E

if every path between X and Y is blocked by E and therefore influence cannot

flow from X through E to affect the beliefs about Y (Koller and Friedman, 2009;

Darwiche, 2010). If the path is not blocked, we say there is an active trail between

the two sets of nodes.

Definition 7.2 Active trail: Given an undirected path X1 
 ... � Xn in the graph

component of a Bayesian network, there is an active trail from X1 to Xn given a

subset of the observed variables E, if

� whenever we have a v-structure Xi−1 → Xi ← Xi+1, then Xi or one of its

descendants are in E;

� in all the others cases no other node along the trail is in E.

An active trail indicates precisely a path in the graph where influence can flow

from one node to another one. Thus, we say that one node can influence another if

there is any active trail between them. The definition below provides the notion of

separation between nodes in a directed graph.
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Definition 7.3 d-separation: X and Y are d-separated by a set of evidence vari-

ables E if there is no active trail between any node X ∈ X and Y ∈ Y given E, i.e,

every undirected path from X to Y is blocked.

Consider, for example the network in Figure 7.1, and the random variables

bt(Lily) and bt(Susan). There is a path between them composed of the nodes

bt(Lily)← mc(Lily)← mc(Gy)→ mc(Allen)→ mc(Susan)→ bt(Susan)

that is an active trail: the path is a common cause trail, and there is no observed

node between them blocking the influence of bt(Lily) over bt(Susan). Note, however,

in case there is an observed node in the path between them, say, mc(Susan), the

path would be no longer an active trail, since this evidence would block the influence

of bt(Lily).

It has been proved that X ⊥ Y|E if and only if E d-separates X from Y in

the graph G (Geiger et al., 1989; Geiger et al., 1990).

Bayes Ball

In order to answer a probabilistic query more efficiently, it is useful to identify the

minimal set of relevant random variables, which are the ones influencing the compu-

tations. (Shachter, 1998) developed a linear time algorithm to identify conditional

independence and requisite information in a Bayesian network, named the Bayes

Ball algorithm, based on the concept of D-separation. Requisite information is

composed of the nodes for which conditional probability distributions or observa-

tions might be needed to compute the probability of query nodes, given evidence.

Bayes Ball works by using an analogy of bouncing a ball to visit the relevant nodes

in the net, starting from the query nodes. From there, the ball may pass through the

node from one of its parents to its children and vice-verse, may bounce back from

any parent to all the others parents of the node or from any child to all children

of the node or may be blocked. The move the ball takes also depends whether the

node is observed or not and/or whether the node is deterministic or not. Precisely,

� An observed node, deterministic or not, always bounces balls back from one

parent to all its others parents, in order to identify common effect trails. How-
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ever, such a node blocks balls from children, i.e., if a ball comes from one of

its children it is not passed anymore from this node.

� An unobserved non deterministic node passes balls from parents to its children

and from a child to both its parents and to others children.

� An unobserved deterministic node always passes the ball coming from its child

to its parents and from a parent to its children.

Algorithm 7.1 formalizes what we have just said, with some important ad-

ditions to guarantee that the same action is not repeated and that the algorithm

finishes:

� It marks visited nodes on the top(bottom) when the ball is passed from a

node to its parents(children). When a node is marked in the top (bottom) the

algorithm has no need to visit the node’s parent (children) anymore.

� It maintains a schedule of nodes to be visited from parents and from children,

so that the move of the ball can be determined;

� It makes sure that the ball visits the same arc in the same direction only once.

After visiting all scheduled nodes, the algorithm returns as the minimum set

of requisite information to answer a query P (X|E) the observed nodes which were

visited and all residual nodes marked on the top, with the visit starting from the

nodes in X. It also identifies the nodes not marked on the bottom as irrelevant to

estimate X, that is those nodes conditionally independent on X, given E.

It is proved that X ⊥ Y|E if and only if Y ⊆ I, where I is the set of condi-

tionally independent nodes from X given E, as determined by Algorithm 7.1. As

any edge is traversed at most once in each direction, the complexity of the algorithm

is O(n +m), where n is the number of nodes and m is the number of edges in the

graph.

Figure 7.3 shows an example of the execution of Bayes Ball algorithm in a

Bayesian network extracted from Figure 7.1. The visit starts from the random

variable bt Susan, as it had been visited before from a child. Next,
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Algorithm 7.1 The Bayes Ball Algorithm to Collect Requisite Nodes in a Net-
work (Shachter, 1998)

Input: a Bayesian network B, a set F of deterministic nodes; A set X of query
nodes; A set E of observed nodes

Output: A minimum set R of requisite nodes, which might be needed to compute
P (X|E) and the set I of irrelevant nodes, where X ⊥ I|E

1: Initialize all nodes in B as neither visited, nor marked on the top, nor marked
on the bottom.

2: Create a schedule of nodes to be visited, initialized with each node in X to be
visited as if from one of its children.

3: while there are still nodes scheduled to be visited do
4: Pick any node K scheduled to be visited and remove it from the schedule.

Either K was scheduled for a visit from a parent, a visit from a child, or
both.

5: Mark K as visited.
6: if K /∈ E and the visit is from a child then
7: if the top of K is not marked then
8: mark its top and schedule each of its parents to be visited;
9: if K /∈ F and the bottom of K is not marked then
10: then mark its bottom and schedule each of its children to be vis-

ited.
11: if the visit to K is from a parent then
12: if K ∈ E and the top of K is not marked then
13: mark its top and schedule each of its parents to be visited;
14: if K /∈ E and the bottom of K is not marked then
15: mark its bottom and schedule each of its children to be visited.
16: R← nodes in E marked as visited ∪ nodes marked on top
17: I ← nodes not marked on the bottom
18: return R and I

� As bt Susan is not observed, it is marked in the bottom, in the top and passes

the ball to its parents. Then, nodes mc Susan and pc Susan are scheduled to

be visited. This corresponds to lines 6− 10 of Algorithm 7.1.

� Node pc Susan is picked in the schedule. As it is an observed node, visited

from a child, the ball is not passed anymore from it. In another words, its

evidence blocks influence to its child that could pass through it.

� Node mc Susan is marked in the bottom and in the top and passes the

ball from its child to both its parents (mc Allen and pc Allen) and its child

(bt Susan), since it is not observed.
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Figure 7.3: The ball visiting nodes with Bayes Ball algorithm. Red nodes are
observed and green node is the query node.

� Node bt Susan is visited again, this time from its parent, but there is nothing

further to do, since it has already been marked in both directions.

� Node pc Allen receives the ball, but it does not pass the ball anymore, since

it is an observed node visited from a child.

� Node mc Allen is marked in the top and in the bottom and bounces the ball

to its children, mc Susan and bt Allen.

� Node mc Susan is visited again, this time from its parent, but there is nothing

further to do, since it has already been marked in both directions (bottom and

top).

� bt Allen in an observed node, visited from a parent, and therefore is marked

in the top (line 13 of the algorithm). Then, it bounces the ball back to all its

parents, in an attempt to find out a common effect trail between its parents.

mc Allen is marked in both directions: there is nothing more to do with it.

pc Allen is again visited from a child. As there is no nodes scheduled to be

visited anymore, the algorithm finishes.

Requisite nodes to compute the probability of bt Susan are the set of nodes

{pc Susan,mc Susan, pc Allen,mc Allen, bt Allen}. Note that there is an indirect
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causal effect trail from pc Allen to bt Susan, viamc Susan. Also, there is a common

cause trail between bt Allen and bt Susan via {mc Allen,mc Susan}. Additionally,

pc Allen is able to influence the beliefs in mc Allen via bt Allen, as they form a

common effect trail (v-structure). Influence cannot flow from bt Brian and pc Brian

to bt Susan, as they are blocked by the evidence of pc Susan.

7.1.2 Inference in Bayesian Networks

Typically, a Bayesian network is used to compute marginal distributions of one or

more query nodes, given some of the others nodes are clamped to observed values.

Inference is the computation of these marginal probabilities, defined as

P (X|E) ∝
∑

Y 6=X,E

P(X,E,Y)
�� ��7.3

where E represents a set of observed variables (the evidence), X is the set of

unobserved variables whose values we are interested in estimating, and Y are the

variables whose values are missing (the hidden nodes). For very small Bayesian net-

works it is easy to marginalize sums directly. Unfortunately, the number of terms

in the sum will grow exponentially with the number of missing values in a network,

making the exact computation of marginal probabilities intractable for arbitrary

Bayesian networks, In fact, this is known to be a NP-hard problem (Cooper, 1990;

Dagum and Luby, 1993). The good news is that in some cases it is possible to

exploit the graph structure, so that the exact computation of marginal probabili-

ties has complexity linear in the size of the network. This is precisely the case of

polytree networks. In polytrees, exact inference such as variable elimination (Li and

D’Ambrosio, 1994) can be applied efficiently, by exploiting the chain-rule decompo-

sition of the joint distribution and marginalizing out the irrelevant hidden nodes.

There is also a family of algorithms named junction tree, which work by joining

variables in cluster nodes so that the resulting network becomes a polytree.

7.1.3 Learning Bayesian Networks from Data

Typically, learning in Bayesian networks has as goal to return a model B∗ = (G∗, θ∗),

where G∗ is a Directed Acyclic Graph and θ∗ is a set of probability parameters. They
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both together should precisely capture the underlying probability distribution P ∗

governing the domain. To do so, both the structure of the Bayesian network (the

DAG) and local probability modes (CPDs) may be learned using an Independently

and Identically Distributed (IID) data setD = d[1], ...,d[M] ofM examples sampled

independently from P ∗. However, the ideal goal is generally not achievable because

of (1) computational costs and (2) limited data set providing only an approxima-

tion of the true distribution. Thus, learning algorithms attempt to return the best

approximation to B∗, according to some performance metric. As the metric is of-

ten a numerical criterion function, the learning task can be seen as an optimization

problem, where the hypothesis space is the set of candidate models and the criterion

for qualifying each candidate is the objective function. One common approach is to

find B that maximizes the likelihood of the data, or more conveniently its logarithm,

since the products are converted to summation. The Log-Likelihood (LL) is defined

as

LL(B|D) =
M∑
k=1

logP (d[k]) =
M∑
k=1

V∑
j=1

logP(d[k]j|parents(d[k]j))
�� ��7.4

where each example d[k] is composed of a set of V random variables d[k]j.

Note that the likelihood function has the property of decomposability, where each

variable is decomposed in a separate term. From a statistic point of view, the

higher the likelihood, the better the Bayesian network is of representing P∗. When

the model is learned by maximizing the likelihood or a related function, we have a

generative training, since the models is trained to generate all variables (Friedman

et al., 1997). Alternatively, if it is known in advance that the model is going to

be used to predict values to random variables X from Y, the training may be

done discriminatively (Allen and Greiner, 2000; Greiner and Zhou, 2002; Grossman

and Domingos, 2004), where the goal is to get P(X|Y) to be as close to the real

distribution P ∗(X|Y) as possible. In this case, the objective function typically used

is the Conditional Log-likelihood (CLL), computed as

CLL(B|D) =
M∑
k=1

logP (d[k]i|d[k]1, ..., d[k]i−1)
�� ��7.5

where d[k]i is the class variable and d[k]1, ..., d[k]i−1 are the others variables.
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Notice that

LL(B|D) = CLL(B|D) +
M∑
k=1

logP (d[k]1, ..., d[k]i−1)

Because of that, maximizing CLL leads to better classifiers than when maximizing

LL, since the contribution of CLL(B|D) is likely to be swamped by the generally

much larger (in absolute value) logP (d[k]1, ..., d[k]i−1) term. In fact, (Friedman

et al., 1997) shows that maximizing the CLL is equivalent to minimize the prediction

error, since this metric takes into account the confidence of the prediction. However,

different from LL, CLL does not decompose into a separate term for each variable,

and as a result there is no known closed form for computing optimal parameters.

There are three situations concerning the observability of the dataset one may

encounter when learning Bayesian networks (Koller and Friedman, 2009):

1. The dataset is complete or fully observed in such a way that each example has

observed values for all the variables in the domain.

2. The dataset is incomplete or partially observed, i.e, some variables may not be

observed in some examples.

3. The dataset has hidden or latent variables, whose value is never observed in

any example. It may be the case that we are even unaware of some variables

(we do not know they exist), since it is never observed in the data. Despite of

it, they might play a central role to understand the domain.

In respect to what must be learned from data to result in a Bayesian network,

we have two distinct cases :

1. The graph is known (although it is not necessarily the correct one) and it is

only required that the parameters are learned from data;

2. Both the graph structure and parameters are unknown and it is necessary to

learn them both from the dataset.

Parameters estimation

The problem of CPDs estimation for a Bayesian network is concerned with estimat-

ing the values of the best parameters θ of a fixed graph structure. It is particularly
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important because, although estimating the graph structure is arguably easy for an

expert of the domain, eliciting numbers is difficult for people and may be unreliable.

Besides the graph structure, the random variables and the values they can take are

assumed to be known. The problem is usually solved by finding the Maximum Like-

lihood Estimator (MLE), which is the set of parameters with the highest likelihood.

However, others measure functions can be used.

When the dataset is complete, learning CPDs by MLE decomposes into sepa-

rate learning problems, one for each CPD in the Bayesian network, and maximum

likelihood estimation reduces to frequency estimation. Thus, to calculate the prob-

ability of a variable X assume value x when its parents assume the set of values

parents it is used the formula

P (X = x| Parents(X) = parents) =
N(X = x,Parents(X) = parents)

N(Parents(X) = parents)

�� ��7.6

where N(X = x,Parents = parents) is the number of training instances in

the dataset where X has the value x and its parents have the values parents.

When the dataset is only partially observed, the maximum likelihood estima-

tion cannot be written in a closed form, since it is a numerical optimization problem

with all the known algorithms working under nonlinear optimization. Algorithm

such as Expectation-Maximization (EM)(Dempster et al., 1977), (Lauritzen, 1995),

(McLachlan and Krishnan, 1997) and gradient descent (Binder et al., 1997) are used

in this case. Here we give an overview of the popular EM algorithm.

EM algorithm EM is based on the idea that since it is not possible to calculate

the real frequency counting, because some of the examples may have missing values,

such counting should be estimated from the data. Then, these estimates can be used

to maximize the likelihood. The algorithm assumes an initial set of parameters,

which may be initialized at random, and iteratively performs the two steps below

until convergence:

E-step: Based on the dataset and the current parameters, the distributions

over all possible completion of each partially observed instance are calculated (ex-
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pected counts). In order to calculate such distributions, the procedure must infer

the probability of each variable for each value of its domain, using the current CPDs.

M-step: Each completion estimated above is treated as a fully observed data

case, weighted by its probability. Then, each (weighted) frequency counting is used

to calculate the improved parameters. The log-likelihood is calculated and in case

it converges, the procedure stops. Otherwise, it iterates to E-step, but now using

the newly computed CPDS.

Structure Learning

Often it is easy for a domain expert to provide the structure of the network, since

it represents basic causal knowledge. However, this is not always the case and

sometimes the causal mode may be unavailable or subject to disagreement. In

these situations, it is necessary to search for a graph fitting the dataset. Learning

a whole Bayesian network gets more complicated in the presence of incomplete

data, since inference is necessary to produce the expected counts, and the problem

is compounded in the presence of hidden variables: in this case the domain and

number of hidden variables must also be selected from dataset.

Using a naive approach, structure learning may start with a graph with no

edges and iteratively add parents to each node, learning the parameters for each

structure and measuring how good is the resulting model using an objective function.

Or still, it may start with a random generated initial structure and use a search

approach to modify the current structure, by adding, deleting or reversing edges.

Since the resulting graph structure cannot have cycles, it is necessary to either define

beforehand an ordering to the variables or search for possible orderings (Russell and

Norvig, 2010). To measure how well a model explains the data, one may use a

probabilistic function such as log-likelihood, perhaps penalizing complex structures

by using for example the MDL principle (Lam and Bacchus, 1994). Is is important

to note that for each graph candidate parameters may change and therefore they

will need to be re-estimated. In case the dataset is complete, only the variables

involved with the modification must have theirs CPDs re-learned (decomposability

property). Unfortunately, this does not happen when the dataset is incomplete,
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since local changes in the structure may result in global changes in the objective

function and because of that the parameters of CPDs may change. In this case it is

imperative to apply a heuristic solution such as Structural EM (Friedman, 1998) to

return the final Bayesian network.

The situation gets even worse in the presence of hidden variables. Including

hidden variables in a network can greatly simplify the structure by inducing a large

number of dependencies over a subset of its variables. However, it is important to

analyze the trade-offs, since learning a structure with hidden variables is far from

trivial: it is necessary to decide how many of them are going to be included, their

domains and also where to include them in the structure. If the number of variables

and their domain is previously informed, it is possible to treat this problem as an

extreme case of learning with incomplete data, where such variable(s) are never

observed. There are several approaches developed to learning with hidden variables,

typically based on the idea of using algebraic (Kearns and Mansour, 1998; Tian

and Pearl, 2002) or structural (Elidan et al., 2000) signatures. Recently, we also

contributed with a method for adding hidden variables in the structure of Bayesian

networks, based on a discriminative approach and theory revision (Revoredo et al.,

2009).

7.2 Bayesian Logic Programs: A Logical Probabilistic
Model Extending Bayesian Networks

Although Bayesian networks are one of the most important efficient and elegant for-

malism for reasoning about uncertainty, they are a probabilistic extension of proposi-

tional logic (Langley, 1995). Indeed the qualitative component of a Bayesian network

corresponds essentially to a propositional logic program. Consider, for example, the

network exhibited in Figure 7.1. The influence relations of such a Bayesian network

can be represented trough the propositional logic program in Table 7.1, where the

random variables in the Bayesian network correspond to logical atoms and the direct

influence relation corresponds to immediate consequence operator.

Bayesian networks thus inherit the limitations of propositional logic, namely

the difficulties to represent objects and relations between them. In the example just
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Table 7.1: Propositional Logic Program representing the network in Figure 7.1

bt Susan | mc Susan, pc Susan.
bt Allen | mc Allen, pc Allen.
bt Brian | mc Brian, pc Brian.
bt Lily | mc Lily, pc Lily.
bt Gy | mc Gy, pc Gy.
bt Anty | mc Anty, pc Anty.
mc Susan | mc Allen, pc Allen.
pc Susan | mc Brian, pc Brian.
mc Allen | mc Gy, pc Gy.
pc Allen | mc Anty, pc Anty.
mc Lily | mc Gy, pc Gy.
pc Lily | mc Anty, pc Anty.
mc Brian.
pc Brian.
mc Gy.
pc Gy.
mc Anty.
pc Anty.

discussed, a new family would require a whole new graph. However, if we had the

set of definite clauses in Table 7.2, we can take advantage of the domain regularities,

by applying the rules upon different variables binding.

Table 7.2: First-order Logic Program representing the regularities in the network of
Figure 7.1

bt(X) | mc(X), pc(X).
mc(X) | mother(Y,X),mc(Y ), pc(Y ).
pc(X) | father(Y,X),mc(Y ), pc(Y )

Bayesian Logic Program (BLP) (Kersting and De Raedt, 2001d; Kersting and

De Raedt, 2001a; Kersting, 2006) were developed to combine the advantages of the

elegant and efficient formalism of the Bayesian networks with the expressive powerful

representation language provided by Logic Programming. The goal is therefore to

eliminate the disadvantages of propositionality in Bayesian networks and the lack

of reasoning under uncertainty within ILP. The key idea is to associate the clauses

above to a CPD, that characterizes the probability of the head of the clause, given
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the literals in the body. This is exhibited in Table 7.3.

Table 7.3: First-order Logic Program representing the regularities in the network of
Figure 7.1, where each CPD is represented as a list of probability values.

bt(X) | mc(X), pc(X), [0.97, 0.01, 0.01, 0.01, ..., 0.01, 0.01, 0.01, 0.97].
mc(X) | mother(Y,X),mc(Y ), pc(Y ),

[0.93, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, ..., 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.93].

pc(X) | father(Y,X),mc(Y ), pc(Y ),
[0.93, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, ..., 0.01, 0.01, 0.01, 0.01, 0.01,

0.01, 0.01, 0.93].
mc(X), [0.3, 0.3, 0.4]
pc(X), [0.4, 0.3, 0.3]

Next we define the BLPs language in more details.

7.2.1 Bayesian Logic Programs: Key concepts

Bayesian atoms and predicates A Bayesian predicate p/n is a first-order pred-

icate with arity n and a a set of finite and mutually exclusive states associated to it

(its domain). An atom of the form p(t1, ..., tn) is a Bayesian atom if p/n is Bayesian,

and both share the same domain. A Bayesian predicate p/l is generically a set of

random variables, while a Bayesian ground atom pθ is a random variable over the

states domain(p/l).

Bayesian Clause A Bayesian clause c is an expression of the formA|A1, ..., An, n ≥

0, where A is a Bayesian atom and each Ai is a Bayesian atom or a logical atom.

The symbol | is used to highlight the conditional probability distribution. The set

of Bayesian atoms in the body of c directly influence the Bayesian atom in the head

of c. Thus, there is a CPD cpd(c) associated with each Bayesian clause c, encod-

ing P (head(c)|body(c) and representing the conditional probabilities distributions of

each ground instance cθ of the clause c. Logical atoms do not have probabilistic

influence in the Bayesian atom in the head of c, Note that as logical atoms do not

correspond to random variables they do not have a representation in cpd(c), serving

only to instantiate variables in the clause.
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The clause mc(X)|mother(Y,X),mc(Y ), pc(Y ) in the genetic example is a

Bayesian clause, where mc/1 and pc/1 are Bayesian predicates with domainmc/1 =

domainpc/1 = {a, b, 0} andmother(Y,X) is a logical atom, used to do the connection

between logical variables X and Y . In this context, mc(susan) represents the gene a

person named Susan inherits from her mother as a random variable over the states

{a, b, 0}.

Combining rule It may be the case that several ground clauses have the same

head, for example, there are two clauses c1 and c2 such that head(c1θ1) = head(c2θ2).

The clauses specify cpd(c1θ1) and cpd(c2)θ2) but not the required probability distri-

bution P (head(c1θ1)|body(c1θ1)∪ body(c2θ2). Typically, in order to get such a distri-

bution combining rules are employed. A combining rule is a function that maps finite

sets of conditional probability distributions {P (A|Ai1, ..., Aini)|i = 1, ...,m} onto one

combined conditional probability distribution P (A|B1, .., Bk) with {B1, ..., Bk} ⊆

∪m
i=1{Ai1, ..., Aini}. For each Bayesian predicate p/l there is a corresponding com-

bining rule cr(p/l) such as noisy-or (Jensen, 2001), noisy-max (Dı́ez and Galán,

2002), (weighted)-mean (Natarajan et al., 2008).

Definition 7.4 A BLP consists of a set of Bayesian clauses. For each Bayesian

clause c there is exactly one conditional probability distribution cpd(c)and for each

Bayesian predicate p/l there is exactly one combining rule cr(p/l).

Well-defined BLP As a logical probability model, inference in BLP is executed in

a Bayesian network generated from the BLP B and the least Herbrand model LH(B)

associated to the domain and the BLP. The nodes in the DAG(B) correspond to

ground atoms in LH(B), encoding the direct influence relation over the random

variables in LH(B). Thus, there is an edge from a node X to a node Y if and only

if there is a clause c ∈ B and a substitution θ such that y = head(cθ), x ∈ body(cθ)

and for all ground atoms Z ∈ cθ, z ∈ LH(B). Although indeed the Herbrand base

HB(B) is the set of all random variables we can talk about, only the atoms in the

least Herbrand model constitute the relevant random variables, as they are the true

atoms in the logical sense, and because of that only they are going to appear in the
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DAG(B). Each node in DAG(B) is associated to a CPD cpd(cθ) where head(cθ) =

y, after applying a combining rule of the corresponding Bayesian predicate to the set

of CPDs related to the corresponding variabilized clause. We say a BLP B is well-

defined if and only if LH(B) 6= ∅, the graph associated to B is indeed a DAG and

each node in DAG(B) if influenced by a finite set of random variables. If B is well

defined, it specifies a joint distribution P (LH(B)) =
∏

X∈LH(B) P (X|parents(X))

over the random variables in LH(B).

7.2.2 Answering queries procedure

As well as in Bayesian networks, any probability distribution over a set of ran-

dom variables can be computed in a BLP. A probabilistic query to a BLP B is an

expression of the form

?−Q1, ..., Qm|E1 = ei, ..., Ep = ep

where m > 0, p ≥ 0, Q1, ..., Qm are the query variables and E1, ..., Ep are the

evidence variables and {Q1, ..., Qm, E1, ..., Ep} ⊆ HB(B). The answer for such query

is the conditional probability distribution

P (Q1, ..., Qm|E1 = ei, ..., Ep = ep)

The least Herbrand model and consequently its corresponding Bayesian network may

become too large to perform inference. However, it is not necessary to compute the

whole Bayesian network but instead only a part of it, called the support network .

The support network N of a random variable X ∈ LH(B) is the induced sub-

network of {X} ∪ {y|Y ∈ LH(B) and Y influences X}. The support network of a

finite set {X1..., Xn} ∈ LH(B) is the union of the support networks for each variable

Xi. Thus, the support network constructed to answer a probabilistic query consists

of the union of the support networks for each query variable and each evidence

variable. (Kersting and De Raedt, 2001b) proved that a support network of a finite

set X ⊆ LH(B) is sufficient to compute P (X).

In order to construct the support network of a query variable X it is necessary

to gather all ground clauses employed to prove : −X. The set of all proofs is all
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the information needed to compute the support network. The proofs are typically

constructed by using the SLD-resolution procedure. After that, it may be necessary

to combine multiple copies of ground clauses with the same head using the corre-

spondent combining rule. Finally, to indeed calculate the probability distribution,

the support networks of each Bayesian atom which is part of the probabilistic query

are united, giving rise to a DAG. Such a DAG, together with the CPDs resulting or

not of combining rules, and the states of each evidence variable, can be provided to

any inference algorithm so that the probability of the query is computed.

Algorithm 7.2 Algorithm for Inducing a Support Network from a Probabilistic
Query (Kersting and De Raedt, 2001a)

Input: A probabilistic query ?−Q1, ..., Qn|Ev1 = ev1, ..., Evm = evm
Output: A support network N related to the probabilistic query
1: for each variable Xi ∈ {Q1, ..., Qn, Ev1, ..., Evm} do
2: compute all proofs for Xi

3: extract the set S of ground clauses used to prove Xi;
4: combine multiple copies of ground clauses H|B ∈ S with the same H,

generating the support network Ni for Xi;
5: N ← ∪k

i=1Ni;
6: N ← prune(N);

Consider, for example, the logical part of a BLP in Table 7.4 and the query

?−bt(susan)|bt(brian) =′ a′, pc(brian) =′ a′, pc(susan) =′ o′, pc(allen) =′ o′, bt(allen) =′ a′

Table 7.4: Qualitative part of a Bayesian Logic Program

bt(X)| mc(X), pc(X).
mc(X)| mother(Y,X),mc(Y ), pc(Y ).
pc(X)| father(Y,X),mc(Y ), pc(Y ).
mother(allen, susan).
father(brian, susan).
pc(allen).
mc(allen).
mc(brian).
pc(brian).

Predicates mother and father are deterministic. In order to prove the query

bt(susan), the first clause in the table is instantiated with the substitution X/susan.
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Then, the procedure tries to provemc(susan) and getsmother(Y, susan),mc(Y ), pc(Y ).

The variable Y is substituted by allen, because of ground atommother(allen, susan),

and then the algorithm reaches the ground atoms mc(allen), pc(allen). The same

is done to prove pc(susan). From this set of proofs, the support network in Fig-

ure 7.4(a) is built, by adding one node to each ground Bayesian atom in the proof

and including an edge from an atom directly influencing another atom, following

the Bayesian clauses. Next, following the same procedure, support networks are

built for the evidence atoms, giving rise to the networks (b), (c), (d), (e) and (f)

in Figure 7.4. Next step is to unite all those support networks, which is done by

merging the random variables shared by more than one network. The final network

is exhibited in Figure 7.5.

Figure 7.4: Support networks created from the query variable bt(susan) and evi-
dence variables bt(brian), pc(brian), pc(susan), pc(allen) and bt(allen).
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Figure 7.5: Bayesian network after joining same random variables from different
support networks from Figure 7.4.

7.2.3 Learning BLPs

As usual in machine learning, BLPs are learned from a set of examples D. Each

example Dl ∈ D has two parts, a logical part and a probabilistic part. The logical

part is a Herbrand interpretation, more specifically the least Herbrand model of the

BLP we want to learn. Thus, techniques used in learning from interpretation setting

of ILP can be adapted for learning the qualitative part of the BLP, which implies

that the hypothesis space is composed of sets H of Bayesian clauses such that all

Dl ∈ D is a model of H. Notice that, it is necessary to check whether the candidate

hypothesis H is acyclic on the data, i.e, for each example of the data set the induced

Bayesian network’s graph must be acyclic. The probabilistic part is composed of a

possibly partial assignment of values to the random variables in the least Herbrand

model. One example of data case for the genetics example above would be:

{bt(susan) =?,mc(susan) =?, pc(susan) =′ o′, pc(allen) =′ o′,

pc(brian) =′ a′, bt(brian) =′ a′, bt(allen) =′ a′,mc(allen) =?,

mc(brian) =?,mother(allen, susan), father(brian, susan)}

where ? indicates a missing value for the random variable. Besides the logic

part, a candidate hypothesis must also take into account the joint distribution over

the random variables induced by the probabilistic part of the examples. To match
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this requirement, the conditional probabilities distributions are learned from the

data set and a probabilistic scoring function. Thus, the final goal is to find the

hypothesis H, acyclic on the data, with the examples Dl ∈ D being models of

H in the logical sense and where H best matches the examples according to the

scoring function. To achieve this last requirement, the parameters of the associated

conditional probability distributions inH must maximize the scoring function, which

matches the learning setting of CPDs in Bayesian networks. Next, we see more

details of how to estimate the parameters of BLPs and how to traverse the hypothesis

space using refinement operators from ILP.

Parameter estimation in BLPs

In order to learn the parameters of a BLP, Bayesian networks are built from each

example together with the current BLP. Thus, parameters estimation in BLPs fol-

lows the main ideas of parameters estimation in Bayesian networks. If the induced

data set is completely observed, frequency estimation is achieved by counting. If

there are missing values, it is necessary to use an algorithm capable of estimating

the counts. However, parameters estimation differs from traditional algorithms of

Bayesian networks because of the following reasons:

� In traditional Bayesian network setting, each node in the network has its

separate CPT. In BLPs, CPDs are associated to Bayesian clauses rather than

ground atoms what makes multiple instances of the same rule to share the

same CPT. As a result, more than one node in the network may have the

same CPT. Thus, parameters are learned considering Bayesian clauses instead

of individual nodes in the network. Because of that, more than one node in the

same network may be taken into account to learn the same CPT. This situation

is illustrated in Figure 7.6, where nodes in magenta are yielded from the same

Bayesian clause ci = bt(X)|mc(X), pc(X). Each one of them is going to be

considered as a separate ”experiment” to estimate parameters of the Bayesian

clause that originates them. Thus, considering EM algorithm, parameters are

estimated using the formula

cpd(ci)jk =

∑m
l=1

∑
θ P (head(ciθ) = uj, body(ciθ) = uk|Dl)∑m

l=1

∑
θ P (body(ciθ) = uk|Dl)

�� ��7.7
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where uj stands for the values in the domain of head(ci), uk stands for each

combination of values of the Bayesian atoms in body(ci) and θ denotes substitu-

tions such that the exampleDl is a model of ciθ. The formula represents the ac-

tion of computing the CPD for a clause ci by taking into account each node pro-

duced from a substitution θ applied to the clause. In Figure 7.6 substitutions

θ applied to the Bayesian clause ci are {X/susan}, {X/Allen}, {X/Brian}.

Figure 7.6: Bayesian network representing the blood type domain within a particular
family. Nodes in magenta are yielded by the same Bayesian clause.

� The formula above computes the CPD of an individual clause ci by estimating

the joint probability of the head of the clause together with its body. The

probabilities are computed through the Bayesian network produced by the

examples. Thus, it is required that each node corresponds to a head of exactly

one clause. In case combining rules are not handled properly, this is not going

to happen with the Bayesian network produced from an example. Suppose,

for example, that we have in a BLP the three clauses below:

pred(X)|pred1(X,Y ).

pred(X)|pred2(X,Y ).

pred(X)|pred3(X,Y ).

Then, suppose a substitution θ = {X/1}. After the substitution, we have the

ground clauses
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pred(1)|pred1(1, 2).

pred(1)|pred2(1, 3).

pred(1)|pred3(1, 4).

The support network built from those ground clauses is going to be the one

presented in Figure 7.7(a). Note that, as pred(1) is the same random vari-

able, the support network of each ground clause has been joined to produce

the final network. The problem is, the requirement that each node is pro-

duced by exactly one clause is not attended if the support network is built

like that. Therefore, it is necessary to assume independence of causal influ-

ences (ICI) (Heckerman and Breese, 1994), (Zhang and Poole, 1996), which

allows that multiple causes on a target variable can be decomposed into sev-

eral independent causes, whose effects are combined to yield the final value.

As combining rules are employed to compute the final required probability

distribution of the random variable, it is necessary to assume they are decom-

posable, i.e., they allow to decompose each random variable corresponding to

the same ground head into several possible causes. This is expressed by adding

extra nodes to the induced network, which are copies of the ground head atom.

With this modification in the network, each node is produced by exactly one

Bayesian clause ci and each node derived from ci (the yellow nodes) can be

seen as a separate experiment for computing CPD(ci). Those extra nodes

are considered hidden, since the value given in the example is relative to the

instance itself and not to each representative of a rule. A network with the

extra nodes is exhibited in Figure 7.7(b).

In this work, we follow the representation of combining rules defined in (Natara-

jan et al., 2008), where ground clauses are combined in two levels. The first

level combines different instantiations of the same clause with a common head,

while a second level combines different clauses with the same head. Suppose

for example, in addition to the ground clause above, we would have also

187



Figure 7.7: Figure (a) is a Bayesian network without adding extra nodes to represent
decomposable combining rules. Node pred(1) is produced by three different clauses.
Figure (b) is the induced network reprsenting decomposable combining rules by
adding extra nodes (yellow nodes) so that each node is produced by exactly one
Bayesian clause. Nodes n ?pred(1) has the domain of pred and cpd(c) associated.

pred(1)|pred1(1, 3)

pred(1)|pred1(1, 4)

Then, instances from the first clause are combined in one level and the others

clauses are combined in the second level. Different combination functions may

be applied to each level. The final network is reproduced in 7.8.

Structure learning in BLPs

The algorithm proposed in (Kersting and De Raedt, 2001b) for learning BLPs

traverse the hypothesis space using two ILP refinement operators: ρs(H), which adds

constant-free atoms to the body of a single clause c ∈ H and ρg(H), responsible for

deleting atoms from the body of a single clause c ∈ H. The algorithm is reproduced
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Figure 7.8: Decomposable combining rules expressed within a support network.
Instantiations of the same clause and different clauses are combined separately.
Nodes l1 n? pred(1) represent different instantiations of the same clause and nodes
l2 n? pred(1) represent different clauses.

as Algorithm7.3 and work as follows. First, a hypothesis H0, possibly generated

from a learning from interpretation algorithm such as CLAUDIEN (De Raedt and

Bruynooghe, 1993; De Raedt and Dehaspe, 1997), is assumed as the starting point

and the parameters maximizing the log-likelihood LL(D,H) are computed. Then,

following a basic greedy hill-climbing, the neighbors of H0 are induced using the

dataset D and the refinement operators ρs(H0) and ρg(H0), requiring that they

induce acyclic Bayesian networks and proves all examples in D. The candidate

hypothesis are scored using the set of support networks and a probabilistic scoring

function and the one with the best evaluation is considered as the next hypothesis

if it has an evaluation better than the current hypothesis. This process continues

until there are no further improvements in the scoring function.

Note that the refinement operators may be applied in all Bayesian clauses of
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7.3. PFORTE: REVISING BLPS FROM EXAMPLES

Algorithm 7.3 Algorithm for learning BLPs (Kersting and De Raedt, 2001b)

Input: A finite dataset D, a set of Bayesian clauses H 0
Output: A BLP B
1: Θ← parameters maximizing LL(D,H)
2: H ← H0 ∪Θ
3: compute ScoreH
4: repeat
5: for each H ′ ∈ ρ g(H) ∪ ρ s(H) do
6: if H ′ proves D then
7: if the Bayesian networks induced from H ′ and D are acyclic then
8: Θ′ ← parameters maximizing LL(D,H ′)
9: compute scoreH′

10: if scoreH′ > score(H) then
11: H ← H ′

12: scoreH ← scoreH′

13: Θ← Θ′

14: until there are no candidate hypothesis H ′ scoring better than H
15: return H

the current hypothesis in order to generate their neighbors, which arguably causes

the structure learning to be very expensive. Next section, we present the first theory

revision system designed to revise logical probabilistic models such as BLPs.

7.3 PFORTE: Revising BLPs from Examples

Revising first-order logic theories aims to start from an initial theory and modify

it in order to return a more accurate model compared to learning from scratch

techniques. Similarly, one may have an initial logic probabilistic model with only

some points preventing it of correctly reflecting the domain. Such a model could be

obtained from the following sources:

� A domain expert elicited the clauses which are not necessarily reflecting the

dataset;

� An ILP or PLL system learned the model considering an old data set and now

there are new examples not necessarily reflected by the old model;

� An ILP or PLL system learned the model considering the current dataset, but

it could still be improved by revision techniques. In case it was learn from an
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7.3. PFORTE: REVISING BLPS FROM EXAMPLES

ILP system, the uncertainty in the domain was not considered and the revision

could improve the model.

Usually, it would be more valuable to search for those revision points and mod-

ify them, instead of discarding the original model or proposing modifications to all

its points, as it is done in BLP structure learning algorithm. This approach should

not only produce more accurate methods but also reduce the cost of searching in

the space of clauses and parameters. In the probabilistic logic case, new questions

arise, since the starting model is composed by two related parts: the clauses and

the probabilistic parameters. Thus, in order to check whether the model should be

revised one must take into account these two components when proposing modifi-

cations. Moreover, as the inference to answer queries is performed in the induced

probabilistic graphical model, it is also through them that we should look for the

problematic points. With this motivation, we developed the first probabilistic first-

order revision system designed to revise Bayesian Logic Programs. It was named

PFORTE since it was built upon FORTE system (Revoredo and Zaverucha, 2002;

Paes, 2005; Paes et al., 2005b; Paes et al., 2005a; Paes et al., 2006a). This section

reviews the PFORTE system as published in (Paes et al., 2006a).

7.3.1 PFORTE: Key concepts

Task definition

• Given: an incorrect initial logical probabilistic logic model, a consistent set of

examples, background knowledge composed of Bayesian and/or logical clauses.

• Find: a revised logical probabilistic model that is complete considering the

given examples and has the highest score given some metric.

In order to find this ”minimally revised” and complete model, PFORTE works

in two steps: the first component addresses theory incompleteness by using gene-

ralization operators only; the second component addresses classification problems

using both generalization and specialization operators.

PFORTE terminology is defined as follows:
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7.3. PFORTE: REVISING BLPS FROM EXAMPLES

Logical probabilistic model: The logical probabilistic model is a BLP, com-

posed of a a set of Bayesian clauses, as defined in 7.2.1.

In the Genetics domain, concepts might include the blood type, bt(person).

Definition 7.5 (PFORTE Example) The schema of an example (Di) is:

Di = {Instances,Deterministic, Evidences}

An instance is an instantiation of a predicate, with an associated value from the

domain of the corresponding Bayesian predicate; Deterministic are literals do not

representing random variables and Evidences are Bayesian atoms with a (partial)

assignment of values from their respective domains.

We built this definition following BLPs, where the logical part (qualitative) is each

ground atom in Instances,Deterministic and Evidences sets and the assignment

of values in Instances and Evidences is the probabilistic part (quantitative). The

dataset might be composed of several examples. Instances and Evidences in one

single example are mutually dependent, while different examples are assumed as

independent from each other. In the Genetics domain, one example could be the

one represented in Table 7.5.

Table 7.5: Format of an example in PFORTE system

[
[bt(susan) =′ o′, bt(brian) =′ a′, bt(allen) =′ a′]
[mother(allen, susan), father(brian, susan)]
[mc(susan) =?, pc(susan) =′ o′, pc(allen) =′ o′, pc(brian) =′ a′,mc(allen) =?,

mc(brian) =?]
]

Note that from a logical point of view all the instances are assumed as positive,

so that the final model must cover them, and the class from which the instance

belongs is indicated by the value associated to such an instance.

Definition 7.6 (Completeness) Given a set of examples D, where Di ∈ D and

Di = {Insts,Dets, Evs} we say that a BLP B is complete considering these exam-

ples if and only if

∀Di ∈ D, ∀Ij ∈ logical part of Insts : B ∪Dets ∪ logical part of Evs ` Ij
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7.3. PFORTE: REVISING BLPS FROM EXAMPLES

Provability is established using standard SLD-resolution, taking the instance to be

the initial goal.

Definition 7.7 (Classification) Given an instance we say that this instance is

correctly classified if the probability value computed to its real class is higher than

a pre-defined threshold. For example, consider Di exemplified above. We say that

the instance bt(susan) is correctly classified, if using an inference method in its

support network, the probability value computed to class a is higher than a pre-

defined threshold. Otherwise we say that this instance was misclassified.

7.3.2 The PFORTE Algorithm

PFORTE is a greedy hill-climbing system composed of two steps. The first step

focuses on generating a theory as complete as possible, by addressing failed examples.

The second step has as goal to induce a theory as accurate as possible, by addressing

misclassified examples. Both steps follow the key ideas below in a greedy hill-

climbing search:

1. Identification of revision points. In the first step, those are the clauses failing

to prove instances and they are called logical revision points. In the second

step, those are the points responsible for the misclassification of instances, dis-

covered through a probabilistic reasoning mechanism (named as probabilistic

revision points.

2. Proposal of modifications to the revision points using revision operators. As all

the instances are positive and the first step aims to make the hypothesis proves

all the examples, only generalization operators are necessary. This differs from

the second step, where both generalization and specialization operators are

applied, in an attempt to make the final hypothesis more accurate.

3. Score the proposed revisions. Each proposed revision, even the ones contem-

plated in the first step, is scored by a probabilistic evaluation function such as

log-likelihood or conditional log-likelihood, since the ultimate goal is to reflect

the joint probability distribution over the random variables in the data set.
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4. Choice of the revision to be implemented. Both steps choose the revision with

the highest score to be implemented, in case its score is better than the score

of the current hypothesis. The first step requires the coverage is improved as

well, while the second step requires the accuracy is also improved.

5. Stop criteria. The first step stops when there are no further generalizations

capable of improving the coverage. The Second step stops the whole procedure

when there are no further revisions proposed to the revision points capable of

improving the accuracy.

Algorithm 7.4 shows how the key ideas are implemented. The first step fo-

cuses on generating a complete hypothesis by only addressing failed examples. To

do so, it revises the initial hypothesis iteratively, using a hill-climbing approach.

Each iteration identifies the logical revision points, where a revision has the poten-

tial to improve the theory’s coverage. A set of revisions generalizing the current

hypothesis are proposed and scored on the training set. The best one is selected

and implemented in case the current coverage is improved. This process continues

until the first step cannot generate any revisions which improve example coverage.

It is expected that the revised hypothesis will be complete considering the data set.

This complete BLP is the starting point to the second step of PFORTE. This

step tries to improve classification by modifying the probabilistic revision points.

Both generalization and specialization operators are applied on such points and as

in the first step, the revisions are scored, the best one is chosen and implemented if

it improves the accuracy. This greedy hill-climbing process proceeds until either no

further revision improves the scoring function or the probabilistic accuracy cannot

be improved.

Next will detail the main parts of PFORTE’s algorithm: generation of revision

points, generation of possible revisions to this revision points and how to score the

proposed modifications.

Generating Revision Points

Revision points are places in a theory where errors may lie. PFORTE considered

two types of revision points:
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Algorithm 7.4 PFORTE Algorithm (Paes et al., 2006a)

Input: An initial logical probabilistic model B, the background knowledge BK,
and a set of examples D

Output: A revised logical probabilistic model B
1: repeat
2: generate logical revision points;
3: for each logical revision point do
4: generate and score possible revisions;
5: update best revision according to the score and also improving cover-

age;
6: if best revision improves coverage then
7: implement best revision;
8: until no revision improves coverage
9: repeat
10: generate probabilistic revision points;
11: for each probabilistic revision point do
12: generate and score possible revisions;
13: update best revision found according to the scoring function and im-

proving the probabilistic accuracy;
14: if best revision improves the probabilistic accuracy then
15: implement best revision;
16: until no revision improves score

• Logical revision points. These points are generated in the same way

FORTE does for generalization revision points, by annotating places in the

theory where proofs of instances fail. These are places where the theory may

be generalized in order to become complete. We follow the annotation process

originally proposed by Richards and Mooney (Richards and Mooney, 1995):

each time there is a backtrack in the proof procedure, the antecedent in which

the clause failed is kept; this antecedent is a failure point. In addition, other

antecedents that may have contributed to this failure, perhaps by binding

variables to incorrect values (the contributing points) are also selected. Both

failure and contributing points are considered logical revision points.

• Probabilistic revision points. These points are generated from misclassi-

fied instances, by following a prediction criteria which takes into account the

probability distribution and the dependency among the Bayesian atoms. Thus,

to generate the probabilistic revision points, the support networks built from

the examples are collected and used to perform inference over the instances,
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now represented as query random variables. The value inferred in the network

for each query variable is compared to the original value from the dataset and,

in case they differ, the instance is considered as misclassified. The probabi-

listic revision points are then any clauses taking part in the network of the

misclassified instance.

Algorithm 7.5 Algorithm for generating Probabilistic Revision Points in a Logical
Probabilistic Model such as BLP

Input: A LPM B; Background knowledge BK; A set of examples D
Output: A set of revision points RP
1: RP ← ∅
2: for each example Di ∈ D do
3: d← Bayesian network built from B,BK,Di

4: for each random variable v in Di which is an instance (query Bayesian atom)
∈ Di do

5: valueNode← class of v inferred by a probabilistic inference engine
6: valueExample← class of the Bayesian atom ∈ Di

7: if ∃ valueExample and valueExample 6= valueNode then
8: GRP ← nodes in d
9: for each Bayesian clause c ∈ B do
10: if head(c) unifies with a random variable in GRP then
11: RP ← RP ∪ c
12: return RP

Revision operators

In order to be able to repair arbitrarily incorrect theories, revision operators must

be able to transform any theory in the language into another. Depending on the

type of revision points different operators can be used.

• Operators for logical revision points. To propose modifications for logical

revision points we use all FORTE generalization operators. The differences are

in delete antecedent and add rule operator.

a) delete antecedent operator in FORTE deletes as many antecedents as

possible while negative examples are not proved. As we do not have ne-

gative examples, this operator stops removing antecedents when examples

became proved or the scoring function cannot be improved.
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b) Original add ruleoperator works in two steps after copying the incorrect

clause. First, it removes the failed antecedents in order to prove previ-

ously unproved positive instances and then it adds new antecedents in an

attempt to not cover negative examples. In PFORTE this operator was

changed so that after removing the failed antecedents in a rule, PFORTE

adds antecedents in an attempt to improve the value of the probabilistic

scoring function.

• Operators for probabilistic revision points. To propose modifications for

probabilistic revision points PFORTE also uses FORTE operators, in this case

generalization and specialization operators, with slight modifications. When

specializing clauses, PFORTE differs from FORTE in three different actions:

1. Antecedents with the highest score are added while they are able to im-

prove the score of the current hypothesis, differing from FORTE which

stops to addantecedents when there are no provable negative examples

and all the provable positive examples continue to be covered.

2. FORTE may create more than one specialized version of the revision

point in one revision, since a refinement of a clause can make provable

positive examples become unprovable. As PFORTE cares for more than

provability, it returns one specialized version of the original clause.

Similarly, when deleting antecedents, the antecedent chosen to be removed

is the one with the highest score. The algorithm for deletion/addition of

antecedents is detailed in 7.6.

Algorithm 7.6 Algorithm for deletion/addition of antecedents in PFORTE

repeat
for each antecedent in a clause/space of possible antecedents do

if after deletion/addition covering of examples still holds then
score this modification

delete/add antecedent with the highest score
until no antecedent can be deleted/added without decreasing the score

Finally, the add rule operator works combining both operators described above:

first it deletes antecedents and then it adds antecedents. All operators for
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probabilistic revision points must also enforce examples covering and range

restriction of the clauses.

PFORTE PI (Revoredo et al., 2006; Revoredo, 2009) was developed to incor-

porate two novel revision operators based on predicate invention (Muggleton and

Buntine, 1988; Stahl, 1993; Muggleton, 1994; Kramer, 1995) in PFORTE system.

The first operator, called Compaction creates new predicates to be head of clauses

by absorbing a set of literals from the body of others clauses, in an attempt to de-

crease the complexity of literals and parameters in the LPM. The other operator,

called augmentation, replaces a literal from the body of a clause by a new invented

predicate, creates a clause with such a literal in the head and tries to specialize

this new clause. As usual, the specialization and implementation of the predicate

invention operators are only implemented if the score is improved.

Scoring possible revisions

Each proposed revision receives a score. Based on this score, PFORTE chooses

the best one to be implemented. Since for each proposed modification the LPM is

changed, it is necessary to re-learn the CPDs of the clauses. To do so, first PFORTE

builds the support networks for each example generating a data set composed by

these support networks. Having the set of support networks, the next step is to learn

the CPDs for each clause, where Maximum Likelihood Estimation(MLE) approach

is employed in the same way it is done in parameters estimation for BLPs. After

learning and updating the CPDs for each clause, PFORTE calculates the score for

the proposed modification using a probabilistic scoring function such as LL or CLL.

The algorithm for scoring possible revision is detailed in 7.7

PFORTE was applied in three artificially generated datasets (Paes et al.,

2005b; Paes et al., 2006a). The two-phase algorithm revising an initial BLP was

successfully compared to the algorithm starting the learning from scratch (without

an initial theory). However, when we tried to run PFORTE with more complex

datasets, such as the ones used in SRL community, the system either could not

finish the revision in reasonable time or it could not finish the revision at all, due
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Algorithm 7.7 Algorithm to Score Possible Revisions in PFORTE

Input: A LPM B, a set of examples D, Background knowledge BK, a scoring
function F

Output: Score ScoreB of B, considering D,BK and F
1: S ← emptyset
2: for each example Di ∈ D do
3: S ← S∪ support network built for Di

4: Θ∗ ← learned CPDs considering S;
5: scoreB compute score using F and considering Theta∗, S;

to memory problems.

In (Mihalkova et al., 2007) it was developed an algorithm for transfer learning

between two Markov Logic Network models, where the first step perform mapping

between predicates and the second step revises the first model learned. The second

step uses revision operators in a fashion similar to PFORTE.
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Chapter 8
BFORTE: Addressing Bottlenecks of
Bayesian Logic Programs Revision

Inference in Bayesian Logic Programs is performed on networks built from all

the proofs of the set of examples. The algorithm for learning BLPs starts from

a maximally general logic program satisfying the logical part of the examples and

proposes refinements to each clause, by adding or deleting literals. In this fashion,

learning BLPs requires searching over a large search space of candidate clauses, on

the one hand, and the construction of all proofs to build the Bayesian networks,

on the other. For each candidate theory one may have to perform full Bayesian

inference, in order to compute scores in the presence of non-observed data.

The PFORTE system was developed to obtain accurate BLPs by revising

an existing BLP and modifying it only in the rules used in Bayesian networks of

misclassified examples. However, despite promising results on artificial domains,

PFORTE faces similar bottlenecks as BLP and other SRL learning algorithms, as it

must also address the large search space of logic programs and also perform inference.

The goal of this chapter is to address these bottlenecks of PFORTE system.

First, the space of possible refinements can be reduced by limiting the candidate lit-

erals to be added to a clause to the ones present in the Bottom Clause (Muggleton,

1995). Second, we show that collecting revision points through Bayes Ball (Shachter,

1998) ultimately reduces the number of clauses marked as candidates for being re-

vised by revision operators, as well as the type of the operator applied on them.
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Third, we do not separate revision points as logical and probabilistic avoiding the

cost of treating them in two separate steps of the revision process. Instead, the

algorithm performs a single iterative procedure by considering all revision points as

probabilistic ones. Fourth, we observe that in SRL example networks can overlap

due to shared entities, resulting in large joint networks. We apply methods to (1) to

overlap ground clauses with identical features, (2) to separate the requisite nodes for

a specific queryand (3) to overlap requisite nodes found for different instances. Such

methods follow the ideas of recent developments in lifted inference (Poole, 2003;

Salvo Braz et al., 2005; Meert et al., 2010). By focusing on the relevant modifica-

tion points and enabling the revision process to explore its full potentialities more

efficiently, we expect to obtain an indeed effective and feasible revision system, as

pointed out in (Dietterich et al., 2008) as a necessary development in SRL area. We

named this new system BFORTE, referring to BLP, Bayes Ball and Bottom clause.

The rest of this chapter is organized as follows. Section 8.1 address search space

of new literals to the ones presented in the Bottom Clause. Section 8.2 address the

search space of revision points by presenting the one step revision algorithm and the

algorithm for collecting revision points with D-separation. Section 8.3 address the

methods developed to reduce inference space, which is most often built to score each

proposed revision. Section 8.4 shows experimental results obtained from BFORTE

system and section 8.5 finally concludes the chapter.

8.1 Addressing Search Space of New Literals

The operators that generate the largest search space are the ones that search for new

literals to be included in the body of clauses. This includes both add-antecedents

and add-rule operators. PFORTE applies FOIL (Quinlan, 1990) top-down strategy

to make new literals. As expected of a top-down approach, the number of generated

literals may be huge, depending on their definitions and the background knowledge.

Moreover, the literals generated will often not be much significative, as no insight is

given on which terms should be an input/output variable or a constant. Whenever

we add a new literal to a body of a clause, each generated literal must be scored so
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that the best is chosen. Adding literals to Bayesian clauses causes a modification to

the qualitative part of the BLP, so it is necessary to re-learn the parameters affected

by the revision. Taking everything into consideration, adding literals to clauses

outweighs the time expended proposing modifications and dominates the runtime of

the revision process.

In BFORTE we use the Bottom Clause to compose the search space of evalu-

ated literals to be added to a clause. The use of the Bottom Clause greatly decreases

the number of possible literals, by limiting the candidate clauses to subsets of the

Bottom clause. The use of the Bottom Clause in BFORTE follows the procedure

devised in (Duboc et al., 2009) with small differences in the implementation. The

most significant difference is in that the Bottom Clause is generated from a positive

example, covered by the current clause, since their goal when specializing clauses

is to continue proving positive examples while making negative examples become

unprovable. Here, the Bottom Clause is generated from a misclassified instance, no

matter its class. It is still required that the instance is covered by the base clause,

since the clause before being refined is a subset of the bottom clause.

As in (Duboc et al., 2009) literals in the clause must obey mode declara-

tions. Additionally, through determinations declarations, it is possible to define

an ordering to random variables. Remember that a determination declaration

determination(pred1/N1, pred2/N2) indicates that pred2/N1 may appear in the

body of a clause whose head comes from pred1/N2. By exploring all determina-

tions, the system can identify which random variables can be a parent to another

random variable. Those are random variables produced by literals in the place of

pred2/N2. Moreover, it can also identify the opposite: which random variables may

to be children of another random variable in the Bayesian network of an example.

Those are random variables generated from predicates in the place of pred1/N1 in

determinations declarations.

Bayesian networks may be used to perform two reasoning strategies: bottom-

up reasoning, when it goes from effects to causes, and top-down reasoning, when

the reasoning goes from causes to effects (Spirtes et al., 2001; Pearl, 2009). We can

compare these reasoning strategies to the steps performed by the operator when
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taking into account the Bottom Clause: first, the bottom clause is generated from

the instance, which is similar to search for causes from an effect (the instance); next,

the literals in the bottom clause may be added to the body of a Bayesian clause – the

algorithm tries to improve the BLP by adding causes to effects. In fact, the causal

relationship is used as a guide to construct the graph structure. Note, however, that

the process of constructing the Bottom Clause and taking literals from it comprises

only one level of reasoning, since only literals directly influencing the instance, i.e.,

the ones with an edge going to the head random variable, are collected. Thus, the

literals in the Bottom Clause representing random variables may be direct causes of

the effect represented by the random variable in the head of the Bayesian clause.

It is important to notice that the Bottom Clause procedure is instance driven.

Literals are collected considering only one instance, making the choice of literals

biased by such an instance. Another instance might point out more worthwhile

literals, i.e., literals whose corresponding random variables would produce a stronger

influence and/or over more instances. One alternative strategy would be to collect

the Bottom Clause for more than one single instance within an example. Arguably,

the space of candidate literals would be larger. Thus, one could consider to reduce

the search space by measuring the volume of information flowing between the two

random variables involved – the one from candidate literals and the one from the

head of the clause (Cheng et al., 2002a). We intend to investigate this strategy in

future work.

8.2 Addressing Selection of Revision Points

8.2.1 Bayesian Revision Point

The key step of the revision process is to identify revision points. BLP classifica-

tion strategy is to build Bayesian networks, grounded from the set of examples and

the current Bayesian clauses, and perform inference on them in order to compute

probabilities for queries. Thereby, it is natural to use the same mechanism to find

the points responsible for a misclassification. PFORTE considers two types of re-

vision points: logical and probabilistic ones. In the first case, in the same fashion
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as logical theory revision, clauses failing to prove an instance are marked to be

generalized. Recall that in PFORTE every instance is positive in the logical sense,

and its evidence value defines the class to which the instance belongs. If the exam-

ple is unprovable, PFORTE could not compute a probability for it. In the present

work we do not consider logical revision points separated from probabilistic revision

points. Instead, in case the example is unprovable, we compute a probability for

it by always including a default node in the Bayesian network, i.e., a node ground

from a most general clause for the instance predicate. If such a default node gives

a probability below a threshold to the correct class, then it will be marked as a re-

vision point. Considering that we may now select revision points from the Bayesian

network constructed to the example, we define Bayesian revision points as follows.

Definition 8.1 (Bayesian Revision Point) Let B be the Bayesian network built

from Bayesian clauses and an example D. In case an instance from D is misclassified

after applying an inference engine in B, there is a maximum set S of nodes together

with their respective CPDs in B relevant to assessing the belief in the instance.

Bayesian revision points are the Bayesian clauses used to yield nodes in S.

Following such a definition, BFORTE requires only one iterative step to fix

the BLP: at each iteration Bayesian revision points are found and revision operators

propose refinements on them. Note that default nodes are only introduced when

there are unprovable instances. They can also lead to Bayesian revision points, but

in this case, the only possible revision proposed to them is to create new rules. Al-

gorithm 8.1 presents the top-level procedure of BFORTE, modified from Algorithm

7.4 by removing its first step (line 1 to line 8). As before, the algorithm follows an

iterative hill climbing procedure, where at each iteration Bayesian revision points

are collected at first, revisions are proposed to the revision points and their score

are computed. The revision with the best score is chosen to be implemented, but

only if it is capable of improving the current score of the BLP.

An observation about score computation is necessary here. As the proposed

revisions are going to modify the qualitative part of the BLP, it is also necessary to

reflect those modifications in the quantitative part of the model. Thus, at each pro-

posed modification we re-learn the parameters involved in the modified structure.
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BLP revision presented in this work has an inherent discriminative behavior: we

are concerned with predictive inference and revision points are found out through

misclassified instances. In this way, it is more appropriate to employ a discrimina-

tive evaluation function such as conditional log-likelihood, root mean squared error

or precision-recall based functions. Additionally, the model would benefit from a

discriminative training of the parameters. Because of that, we implemented the

gradient descent learning of parameters to minimize the mean squared error, as ini-

tially designed in (Natarajan et al., 2008). The method is based on representing

combining rules in two levels: the first one combines different instantiations of the

same rule, where they all share the same ground head, and the second one combines

different clauses with the same ground head, as explained in section 7.2.3.

Algorithm 8.1 BFORTE Top-Level Algorithm

Input: A BLP BP , the background knowledge BK, a set of examples D, a set OP
of revision operators to be considered to revise clauses

Output: A revised BLP BP ′

1: learn probability parameters of BP
2: repeat
3: generate Bayesian revision points;
4: for each Bayesian revision point do
5: for each revision operator ∈ OP do
6: propose revision
7: score revision
8: update best score revision found;
9: if best revision improves the current score then
10: implement best revision;
11: until no revision improves score

8.2.2 Searching Bayesian Revision Points through D-Separation

Originally, PFORTE denoted as probabilistic revision points all clauses whose head

took part in the Bayesian network where an instance had been misclassified. Al-

though the set of candidate clauses to be modified is smaller than in Kersting’s

BLPs learning algorithm, since not all clauses appear in every network, depending

upon the size of the network several Bayesian clauses are going to be marked to

be modified by the revision operators. Howevver, not all clauses that are used to

generate the network may be relevant to the classification of the query.

205



8.2. ADDRESSING SELECTION OF REVISION POINTS

Algorithms for learning Bayesian networks are generally grouped into two cat-

egories: scoring based methods (Heckerman, 1996; Tian, 2000; Chickering, 2002),

which uses a heuristic to construct the graph and a scoring function to evaluate it;

and constraint-based methods (Verma and Pearl, 1990; Spirtes et al., 2001; Cheng

et al., 2002b; Campos, 2006), relying on conditional independece tests to build the

model. There is also a recent effort in getting the best of both worlds, by devel-

oping strategies combining these two approaches (Tsamardinos et al., 2006; Pellet

and Elisseeff, 2008). In this work, we follow the second group of algorithms when

identifying Bayesian revision points, by designing a procedure that analyses the

dependency relationships of a misclassified instance. Accordingly, active paths are

searched to identify the nodes in the network that exerts influence over misclassified

instances. By a path we mean any consecutive sequence of edges, without regarding

their directionalities. A path is active if it carries information or dependence from

one node to another through this sequence of edges. Whenever there is an active

path between two variables, we say they are d-connected. Formally, this concept is

defined as follows.

Definition 8.2 (D-connection for directed graphs (Pearl, 1988)) For disjoint

sets of vertices, X, Y and E, X is d-connected to Y given E if and only if for some

X ∈ X and Y ∈ Y, there is an (acyclic) path U from X, Y such that:

� U is composed of a direct connection for X and Y : X ← Y or X → Y ;

� U indicates an indirect causal/evidential effect: X ← W ← Y or X → W ←

Y , W /∈ E;

� U represents a common cause: X ← W → Y , W /∈ E;

� U represents a common effect (a v-structure): X → W ← Y , W or any of its

descendants ∈ E.

If no path between the set of nodes is active, the variables are d-separated.

In this case, there is a variable in the undirected path blocking influence from one

node to another. To detect the nodes d-connected to the misclassified node, we take
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advantage of linear-time Bayes Ball (Algorithm 7.1), starting from the misclassified

query node. Algorithm 8.2 presents the top-level procedure for collecting revision

points, which is performed as line 3 of Algorithm 8.1. First, it is necessary to

identify the misclassified instances in each example. To do so, each instance at

each example has its marginal probability computed. Note that when computing a

marginal probability for a specific query, others instances in the same example are

considered as evidence, as it is usually done in collective inference (Jensen et al.,

2004). In this case the algorithm proceeds to run Bayes Ball, so that the active paths

leading to the misclassified nodes can be identified, and consequently the relevant

nodes are selected. The set of relevant nodes are considered as the requisite nodes

(observed nodes that had been visited and nodes marked in the top) and also the

nodes marked in the bottom, i.e., all nodes that are not discovered as irrelevant by

the Bayes Ball algorithm. Finally, the clauses corresponding to the relevant nodes

are identified and marked to be revised.

Algorithm 8.2 Top-level Selection of Revision Points

Input: A value of threshold T , A set N of Bayesian networks, each corresponding
to an example

Output: A set of Bayesian Clauses RP , marked as revision points
1: RP ← ∅
2: for each Bayesian network Ni ∈ N do
3: for each query instance id ∈ Ni do
4: compute the probability P (id = class) using an inference engine, where

class is the value of id in the dataset
5: if P (id = class) < T then
6: Relevant← nodes marked as relevant by Bayes Ball Algorithm
7: RP ← RP∪ clauses corresponding to nodes in Relevant set

8.2.3 Analyzing the Benefits Brought by Revision Opera-
tors According to D-Separation

In this section we analyze the behavior of revision operators by considering whether

the modifications they propose are capable of modifying the influence flowing in the

Bayesian network. The question that arises is whether the revision operators are

capable of changing existing influence that is likely to make the instance misclassi-

fied and/or to create new connections influencing such instances. Additionally, to
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check whether the operator really brings benefits to the BLP, this last is scored after

modified using Bayesian networks built from the set of examples. In this way, the

modifications proposed on the BLP form a hybrid mechanism combining indepen-

dence tests and scored heuristic search methods.

To analyze the modifications proposed by the operators, we focus attention

to the directions that the ball is bounced from/to nodes in Bayes Ball algorithm,

aiming to disregard modifications that cannot bring additional or modify current

influence over the query node. Additionally, we must also consider whether the

modification can change the set of Bayesian clauses instantiated by the example to

build the Bayesian network, since this also can change the influence coming to a

node. Remember from section 7.2.2 that a directed edge in included between a pair

of nodes if there is a ground clause whose head is represented by the node where

the edge arrives and whose body contains a representative of the node from where

the edge leaves. We proceed by discussing each possible situation ocurring in nodes

marked as relevant separately.

Non-observed node visited from a child (NOC node) A non-observed node

visited from a child passes ball from the child to (1) its parents, so that additional

indirect causal influence might be brought, and to (2) its children, that can also

bring back further indirect effect influence, as visualized in Figure 8.1. Naturally,

the visiting child is also likely to influence the visited node. The node representing

the misclassified instance itself is such a kind of this node, since the visit starts from

it as it had been visited from a child, according to Algorithm 7.1. In this case,

the set of operators are going to behave as follows, as graphically represented in

Figures 8.2, 8.3, 8.4 and 8.5.

� Delete rule operator. As the clause whose head represents such a NOC node

is deleted, the flow of influence through this path is withdrawn. Thus, this

indirect causal/effect influence to the misclassified instance brought by this

node is removed from the network. While this is a radical approach, it can

reduce the size of the BLP and consequently of the Bayesian networks.

� Add antecedent operator. A NOC node passes ball to its parents, in an attempt
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Figure 8.1: Non-observed node visited from a child, where shadow nodes are ob-
served nodes. Figure (a) shows a non-observed node visited from a child. Figure
(b) shows this node passing the received ball to its parents and children.

Figure 8.2: An example of the effect of deleting a rule corresponding to a non-
observed node visited from a child, in a misclassification node visiting scenario.

to discover further influence to itself. Adding literals to the body of such a

clause is going to add additional parents to clause head, and consequently a

new flow of influence might be brought in, in the case of the examples remain

provable after the modification. On the other hand, influence passing through

this node is removed in the case of an example that becomes unprovable,

similar to what happens in del rule operator. Note that this is different from a

standard Bayesian operation, since here changing the set of clauses covering an
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instance is also going to change the Bayesian network built from the example.

Figure 8.3: An example of the effect of adding antecedentes to a rule corresponding
to a non-observed node visited from a child, in a misclassification node visiting
scenario.

� Delete antecedents operator. In the same spirit to add antecedents might

bring new profitable influence over the node, deleting antecedents may remove

nodes whose influence through it from one of its parents contributes to wrong

prediction.

Figure 8.4: The effect of deleting antecedentes to a rule corresponding to a non-
observed node visited from a child, in a misclassification node visiting scenario

� Add rule. As a new rule shares the set of satisfied examples with the old rule

making rise to a NOC node, two situations may arise: (1) the new rule and

old rule(s) give rise to the same ground atom in their head, which is going
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to be included in the support network. In BLPs, this require that the final

probability value is obtained through a combination function. The second

possible situation (2) happens when the new and old rule do not share the

same ground atom in their heads. In this case, the node coming from the head

of the new rule may bring new influence, as it is likely to become a mate to

the NOC node.

Figure 8.5: The effect of adding a new rule from a non-observed node visited from
a child, in a misclassification node visiting scenario. Figure (a) shows a situation
where the old and new rules had to be combined. Figure (b) shows the case where
both rules were not combined.

Observed node visited from a child (OC node) Observe in Algorithm 7.1

that an observed node visited from a child blocks balls from children, i.e., if a ball

comes from one of its children it is not passed anymore from the OC node. This

happens because the evidence of the node makes the path from its children through

it inactive. Therefore, an OC node d-separates its child of the others nodes in the

graph, i.e., nodes which could be reached if it was possible to pass through an OC

node. This is exhibited in Figure 8.6, where the arrows indicate the direction of

the visit. Although OC nodes are marked as a revision point, since they are not

considered as irrelevant for the misclassified instance, not all operators are going to

propose profitable modifications to change/modify the influence exerted by them.
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� In case the rule whose head corresponds to an OC node is deleted from the BLP,

its child would lose its influence. As this last node is considered a requisite

node, this operator may bring benefits to the model, in case the influence of

such a node is bad to most of the query nodes. Therefore, this is an eligible

operator to modify the set of influent connections to the misclassified instances.

� At first sight adding antecedents to the body of a clause whose head makes rise

to an OC node, does not create new flow of influence, since any of its parents

is blocked by its evidence. However, we must pay attention to the fact that

those nodes are originated from Bayesian clauses, which are in essence logical

clauses. In this way, add antecedents operator may remove some instances

from the set of examples proved by the clause. The possible consequence

is that the head of the clause is not able anymore to produce the OC node

indicating a revision point. This is similar to the case of delete rule operator.

� Deleting antecedents from the body of a clause has two possible consequences

in this case. First, the OC node is going to lose a parent. As its parents are

blocked by its own evidence, this brings no changes in the flow of influence.

Second, because a clause that has had one or mode antecedents deleted is more

general than before, additional proof paths from the same clause may arise to

build the Bayesian network. The ground heads of those additional paths either

are the same as the previous OC node, or they induce new ground heads. In

the first case, those equal nodes must be combined but besides sharing the

same CPD (as they come from the same clause), they will also continue to

contribute with the same evidence (as they come from the same ground fact).

On the other hand, in case the modified clause produces new ground heads

there is a chance that they are going to bring new influence to the child from

whom the ball came. Consider, for example, a meaningless ground clause

below that has given rise to an observed node in the network:

pred1(1, 2) : −pred2(1, 3), pred3(3, 2), pred4(2).

Now, suppose pred3(X, Y ) is chosen to be deleted from the original clause.

212



8.2. ADDRESSING SELECTION OF REVISION POINTS

One possible consequence would be the appearance of a new ground clause

with the same ground head as before, say

pred1(1, 2) : −pred2(1, ), pred4(2).

that had not appeared before because there is no pred3(4, 2) in the dataset.

Note that both ground clauses have the same head and accordingly they are

going to be combined. However, the random variable pred(1, 2), continues to

be an observed node visited from a child, therefore, it is still a ”blocking”

node. On the other hand, it may be the case a new ground rule is produced

after the deletion of the antecedent pred3(X,Y ), for example:

pred1(1, 5) : −pred2(1, ), pred4(5).

Such a clause could not be produced before because there is no pred3( , 5) in

the background. This clause has a chance to bring new influence to the node

from which the ball come, as pred1(1, 5) may become an ancestor of it.

� Add rule. Similarly to deleting antecedents case, adding new rules may bring

additional evidence to the network.

Non-observed node visited from a parent (NOP node) Besides collecting

evidence for itself, a non-observed node could be visited from its parent in an attempt

to create an indirect effect path through one of its children, as can be seen in

Figure 8.7. However, if this is really the case such a node would also be marked

as non-observed visited from a child (NOC node) and therefore would attend a

previous discussed case. Thus, deleting the rule corresponding to such a node head

would only make the BLP, and consequently the Bayesian networks more compact.

Similarly, adding antecedents to its body could only bring influence to their children,

but this is also treated by the visit coming from a child case.

The operators left are the ones involving logic generalization. First, one may

try to delete antecedents from such a clause in an attempt to generate new proof
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Figure 8.6: Observed node visited from a child, where shadow nodes are observed
nodes. Figure (a) shows an observed node visited from a child. Figure (b) shows
this node blocking the ball.

paths for some instance and consequently new ground heads forming a ”brother-

hood” relationship with the NOP node. In case the node visiting the NOP node

remains as its parent (it is not one of the deleted antecedents), there will be a link

to the node(s) coming from such new instantiations. There is a chance those new

nodes bring together new evidence, as they are going to represent different ground

facts of the dataset. The exact same situation may happen when adding new rules

from such a NOP node. In this case, the link to the parent will exist if the visiting

parent is also an element in the body of the just created clause.

Consider, for example the ground clause

pred(1, 2)|pred1(1, 3), pred2(3, 4), pred3(4, 2), pred4(2, 2).

and assume the node yielded from pred(1, 2) is a NOP node, visited from the node

produced from pred1(1, 3). Now, consider that the Bayesian predicate pred3 is

deleted from the clause. This could generate a new ground clause, say

pred(1, 4)|pred1(1, 3), pred2(3, 5), pred4(4, 4)

since pred(1, 4) could not be proved by this clause before because there is no
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Figure 8.7: Non-observed node visited from a parent, where shadow nodes are ob-
served nodes. Figure (a) shows a non-observed node visited from a parent. Figure
(b) shows this node passing the ball to its children.

pred3(5, 4) in the dataset. Note in Figure8.8 that there could be a new common

cause trail in the network, due to this modification.

Observed node visited from a parent (OP node) The last case concerns an

evidence node which is visited from a parent and bounces the ball back to its others

parents, in an attempt to produce a common effect scenario, as the one presented

in Figure 8.9. All operators may change the active paths as it is discussed next.

� Deleting the rule represented by such a node is going to cut it off the active

path discovered by the visit. If the OP node contributes to a wrong prediction

in this active path, removing the node from the network can repair misclassified

instances.

� Deleting antecedents is beneficial for two reasons: firstly, as in previous cases,

the generalization of the rule can bring additional active paths built from new

instantiations of the rule, that did not exist before because of the antecedent(s)

deleted. Secondly, deleting antecedents from the rule may remove the link to

the visiting parent and, similar to the delete rule case, withdraw an influence
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Figure 8.8: The effect of deleting antecedents from a clause whose head is a non-
observerd node visited from a parent. Figure (a) is the network before deleting
antecedents. Red node is the visiting parent and yellow node is the visited node.
Figure (b) shows a possible resulting network, after the clause becomes more general.

contributing to the wrong prediction, exerted by the OP node. Moreover,

deleting antecedents from such a node can remove common effect paths.

� Adding new rules has similar effects as the delete antecedents case: proofs not

existing before may bring additional influence to the path, in case active path

are also formed by the instantiations of the new rule and new common effect

paths may arise from the added rule.

� Adding antecedents may bring two different consequences: the first one is

similar to the result of deleting the rule, and may remove the link to the

visiting parent, by making the clause more specific after some antecedents are

added to it. Thus, the previous proof conducting to the parent node would fail.

The second consequence is that adding antecedents in the body of such a clause

might create further common effect influence path, which could be useful in

correcting the misclassification of the example because of new evidence.
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Figure 8.9: Observed node visited from a parent, where shadow nodes are observed
nodes. Figure (a) shows a observed node visited from a parent. Figure (b) shows
this node passing the ball back to its parents.

Remarks about Revision Operators and D-connection

One can see that are several issues concerning the real benefits a revision operator

might bring. For example, some of the modifications are only likely to create/remove

a connection when the set of ground Bayesian clauses changes after the revision.

Moreover, some modifications are likely to bring/remove influence to fix misclas-

sification, but this is not guaranteed, as they can/cannot make new active paths

depending on the evidence. Moreover, some modifications depend whether a literal

continues to be in the body of a clause, making sure a connection in the network

is not removed. This can be true for one instance, but may not happen in other

instances. As to check all possible cases is expensive, encompassing not only con-

nections that are going to be removed but also of the active paths that are going to

be created, we only disregard the operators guaranteed to not change influence that

could fix the misclassified instance. Anyway, by computing the score of the revision

it is verified whether the modification is going to improve the current BLP.

Notice that the revision operators used in this work do not compose a complete

set of possible modifications to the BLP. To give an example, note that new active

paths could be created by adding rules or antecedents leading a parent to visit
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and/or be visited from a child. To achieve this goal, the revision would be able

to mark revision points not only throughout the Bayesian networks but also from

the knowledge base itself, by identifying all possible determinations leading to new

connections coming from children to misclassified instances in the graph. Suppose,

for example, that we have the Bayesian clause below, marked as revision point.

pred1(A,B) : −pred2(A,B).

It would be possible that a non existing clause could provide new information

to pred1/2, say a clause such as

pred3(A,B) : −pred1(A,B).

As pred3/2 does not represent any instance in the examples and there is not an

existing connection between pred3 and pred1, such a clause would not be proposed

by the revision system.

BFORTE and its antecessor PFORTE cannot identify those possible new con-

nections, as Bayesian revision points are identified through paths existing at the

moment that an instance is misclassified. In this way, we cannot guarantee that we

implement the complete set of possible modifications to improve classification in a

BLP.

Finally, the BLP could be compacted by identifying clauses that are completely

useless to any example in the dataset. Those correspond to nodes identified as

irrelevant by Bayes Ball algorithm. To achieve this, Bayes Ball would have to run

for each instance in the dataset. Then, the intersection of irrelevant nodes would

correspond the clauses that could be safely removed from the BLP.

Algorithm 8.3 exhibits the procedure for applying revision operators to revi-

sion points, extended from lines 3-7 of Algorithm 8.1. It brings an optimization on

the use of the four revision operators. First, when looking for revision points, it is

necessary to keep the type each node matches, according to the four groups listed

before. As the marked node is mapped to a Bayesian revision point (a Bayesian

clause), the fact it is observed or not, visited from a child or from a parent, is stored

together with the revision point. From our analysis, only deleting rules and adding

218



8.3. ADDRESSING INFERENCE SPACE

antecedents to a non-observed evidence are guaranteed to not present any chance

to change the connections to the misclassified instance. In all other cases, the pro-

posed revision may change the Bayesian network. Therefore, before proposing the

revision, it is necessary to be sure that a Bayesian revision point is not identified

only through that kind of visit.

Algorithm 8.3 Generation of Revision Points and Revisions Top-Level Procedure

Input: Set of Bayesian networks BN built from the dataset and current BLP
Output: Set of revisions Proposed to Bayesian revision points
1: BRP ← Bayesian revision points identified through Algorithm 8.2, slightly mo-

dified to keep around the type of the node (OC, NOC, OP, NOP)
2: for each Bayesian revision point BR ∈ BRP do
3: if type of BR is not only NOP then
4: propose modification to BR using all four operators
5: else
6: propose modifications to BR using delete antecedents and/or add rules

operator
7: compute the score for each proposed revision

Next section we discuss how to reduce the amount of the time expended in the

revision by reducing the inference space.

8.3 Addressing Inference Space

In order to build Bayesian networks from the set of examples, PFORTE collects all

ground clauses taking part in every possible way of proving instances and evidences

in an example. Those ground Bayesian atoms become nodes in the Bayes net, and

they are connected when there is a direct influence between them. As the instances

and evidences in a single example are not i.i.d, each Bayesian network may have a

large number of nodes and edges connecting evidences, instances and non-evidence

nodes, leading to high inference run times.

Aiming to reduce the space where inference is performed, it is necessary to di-

minish the size of nodes to be considered by the inference engine. Making inference

more efficient in relational probabilistic systems has been pursued by the develop-

ment of lifted inference methods (Poole, 2003; Singla and Domingos, 2008; Milch

et al., 2008; Meert et al., 2010), which mostly reduces the networks by exploring

symmetries and grouping variables with identical behavior. Here, we decrease the
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search space of the inference procedure by disregarding non requisite nodes of an

instance. Non requisite nodes can be deleted from the network and we would still be

able to resolve the query, as they are unable of influencing the instance. In addition,

clauses and networks exhibiting identical behavior are grouped together so that they

dot not have its score and parameters computed repeatedly unnecessarily.

8.3.1 Collecting the Requisite Nodes by d-separation

As said before, the networks built from examples are usually very large, since they

are composed of the union of all possible proofs of each instance and each evidence.

However, it is usually the case that for computing marginal probabilities for one

instance only a subset of that large network is really relevant. We call the network

composed of this subset of nodes as minimum requisite network for a query.

Definition 8.3 The minimum requisite network g for a query node n is a subset

of the original large network G built to the whole example, that contains only the

requisite nodes necessary to compute the marginal distribution of n. All the others

nodes in G can be safely disregard so that the query is still resolved by g.

We make use of Bayes Ball algorithm (Shachter, 1998) to find out which nodes

in the network are required to compose the minimum requisite network. In this

way, instead of performing inference in one large network, the inference takes into

account only a small subset of that network, namely the nodes which are really

relevant for resolving the query. To collect such requisite nodes, the algorithm

starts from one instance id in the original example and uses Bayes Ball to identify

the minimum set of nodes required to compute the probability of id. This set is

composed of visited observed nodes and those nodes marked in the top. Following

collective inference (Jensen et al., 2004), the other queries instances in the example

are treated as evidences when collecting the requisite nodes for id. Algorithm 8.4

brings the top-level procedure to identify requisite nodes and perform inference only

over them.

Algorithm 8.4 is called at each time it is necessary to compute marginal

probabilities, namely, to learn parameters and compute scores, when changes occur

in the structure of the BLP.
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Algorithm 8.4 Top-level Procedure for Performing Inference over Requisite Nodes
Only

1: for each example Di ∈ D do
2: build the graph GDi for Di, joining support networks built from proof tree

for each instance and evidence
3: for each instance id ∈ Di which is a node nid in GDi do
4: consider nid as a query node
5: visit nodes in GDi starting from nid, using Bayes Ball algorithm
6: requisite← visited observed nodes ∪ nodes marked in the top
7: compute probability distribtion for id using only requisite

Bayes ball was also used in SRL context to build up a lifted inference engine

in (Meert et al., 2010). There, they apply the Bayes Ball directly in the ground

graph construction procedure. We are going to investigate in the future whether

that algorithm can save further time to the inference process.

8.3.2 Grouping together Ground Clauses and Networks

When constructing Bayesian networks relative to examples, every successful proof

of an Bayesian atom is gathered together to build the graph of the net. However,

it is often the case that a large number of those ground clauses shares exactly the

same features: they are instantiated from the same Bayesian clause, and therefore

they have the same conditional probability distribution; additionally, they have the

same evidence associated to each of its Bayesian ground atom. In this way, the only

difference among them would be the terms of ground Bayesian atoms. However,

for the Bayesian network, atoms are mapped to nodes, which cannot ”see” those

terms anyway. Therefore, it is a waste of resources to represent each Bayesian atom

obeying these conditions as different nodes in the graph. Consider, for example, the

following meaningless ground clauses.

pred(A,B) : −pred1(C,A), pred1(C,B).

and suppose that for a ground atom t1, t2 we have several possible instantia-

tions for the variable C, producing, for instance

pred(t1, t2) : −pred1(r1, t1), pred1(r1, t2).

pred(t1, t2) : −pred1(r2, t1), pred1(r3, t2).

pred(t1, t2) : −pred1(r3, t1), pred1(r3, t2).

221



8.3. ADDRESSING INFERENCE SPACE

...

pred(t1, t2) : −pred1(r30, t1), pred1(r30, t2).

Now, suppose that, say 25, of these share the same evidence for pred1(X, t1),

pred1(X, t2). Instead of mapping each one of those nodes above to a separate node

in the Bayesian network, we could put together the 25X2 nodes of the same evidence

and 5X2 separate nodes.

Thus, to prevent this waste of resources performed by BLP network construc-

tion, we developed a procedure for grouping together different instantiations of the

same Bayesian clause that behaves in exactly the same way. This group of similar

nodes make rise to a mega node in the network, instead of only a single node.

Definition 8.4 Let SN be the set of nodes originated from different successful proof

paths created using Bayesian clauses Bcc and an instance ins. A mega node is

defined as the grouping of a set of nodes in SN , which are relative to the same Bcc,

and that shares the same evidence.

Because of that, a random variable in the graph is not necessarily a single

ground Bayesian atom, but could be representative of a group of several Bayesian

atoms. The number of atoms mapped to the same node is kept so that it is taken

into account when learning parameters. Notice that we employed the same schema

of combining rules as (Natarajan et al., 2008), where instantiations of clauses with

same head are combined in two levels: one level considers different instantiations

of the same rule, while another level considers different rules with the same ground

head, as explained in section 7.2.3. Thus, the clauses we mapped here to the same

nodes would be combined anyway in the first level we just mentioned. However,

although they would contribute in the same way for the final probability, since

they share the same association of evidence values and CPDs, the inference engine

could not have knowledge on that and it would compute their probability over and

over again. Moreover, as decomposable combining rules are applied in BLPs, each

different instantiation would be seen as a ”separate experiment”, by adding extra

nodes in the network to represent them. By keeping the amount of ground atoms
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overlapped together in a mega node, those nodes are still contributing as a separate

experiment for the computation of parameters.

We also employ another way of overlapping components so that inference en-

gines have to deal with a smaller space. This is the case when more than one graph

have the same properties: the nodes are coming exactly from the same clauses, and

evidence for those nodes are also the same. This is naturally a situation less fre-

quent than the one we discussed immediately before, but still it can also happens

mainly when Bayes Ball is applied to split the original networks in groups of smaller

ones. To map more than one network to the same, it is required that (1) they have

the same number of nodes; (2) they have the same edges connecting each pair of

nodes (3) each group of child + parents are relative to the same Bayesian clause, so

that the probability distribution associated to them in the different graphs are the

same, and (4) the nodes have the same value of evidence, in case they are observed.

The instances relative to networks grouped to one overlapped mega network are kept

around, so that it can be taken into account when learning parameters or computing

probabilities.

We show in Algorithms 8.5 and 8.6 the procedures for detecting and grouping

together groups of nodes with the same behavior.

Algorithm 8.5 Top-level Procedure for Detecting Similar Ground Clauses and
Mapping them to Only One

1: for each ground clause clauseiθ1 ∈ proof trees of the same example do
2: for each ground clause clausejθ2, i 6= j ∈ proof trees of examples do
3: if clausei comes from the same Bayesian clause as clausej then
4: for each Bayesian atom aki ∈ clauseiθ1 and akj ∈ clausejθ2 do
5: if value associated to aki 6= value associated to akj then
6: go to line 2
7: remove clausejθ2 from proof tree
8: increase number of mapped clauses associated to clauseiθ1

8.4 Experimental results

This section we experiment our revision system BFORTE, by comparing each con-

tribution developed in this chapter with a version of the system without the contri-

bution. As there is no current implementation of BLP structure learning algorithm,
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Algorithm 8.6 Top-level Procedure for Detecting Similar Networks and Mapping
them to Only One

1: for each network Ni do
2: for each network Nj, i 6= j do
3: if DAG(Ni) == DAG(Nj) then
4: for each node nki ∈ Ni and node nkj ∈ Nj do
5: if nki comes from a different clause as nkj or nki has an evi-

dence value different from nkj then
6: go to line 2
7: increase number of group of nets associated to Ni

8: associate instance(s) of Nj to corresponding node(s) of Ni

9: disregard Nj

we use our own system to make the due comparisons. We opted by showing each

contribution separately, so that it is possible to know the benefits brought by them.

Datasets We have considered datasets used in ILP and SRL communities. They

are briefly described as follows.

1. UW-CSE is a vastly used dataset in SRL community (Singla and Domingos,

2005; Richardson and Domingos, 2006; Kok and Domingos, 2007). It consists

of information about the University of Washington Department of Computer

Science and Engineering. There are 5 examples, where each one of them con-

tains instances representing a relationship of advisedby for a different research

line of the department. There are 113 instances of the positive class and 2711

instances of the negative class, and 2673 ground facts.

2. Metabolism is based on the data provided by KDD Cup 2001 (Cheng et al.,

2002b). The data consists of 6910 ground facts about 115 positive instances

and 115 negative instances. As part of the facts represents the interaction

between genes, we gathered together in one examples all the positive and

negative instances.

3. Carcinogenesis is a well-known domain for predicting structure-activity rela-

tionship (SAR) about activity in rodent bioassays (Srinivasan et al., 1997).

There are 162 instances from the positive class and 136 instances from the

negative class and 24342 ground facts about them. This dataset is totally
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separable, as each example is composed of only one instance.

Experimental Methodology The datasets were splitted up into 5 disjoint folds

sets to use a K-fold stratified cross validation approach. Each fold keeps the rate

of original distribution of positive and negative examples (Kohavi, 1995). To avoid

overfitting during the revision process, similar to (Baião et al., 2003), we applied 5-

fold stratified cross validation approach to split the input data into disjoint training

and test sets and, within that, a 2-fold stratified cross-validation approach to split

training data into disjoint training and tuning sets. The revision algorithm monitors

the error with respect to the tuning set after each revision, always keeping around

a copy of the theory with the best tuning set score, and the saved ”best-tuning-set-

score” theory is applied to the test set. The significance test used was corrected

paired t-test (Nadeau and Bengio, 2003), with p < 0.05. As stated by (Nadeau and

Bengio, 2003), corrected t-test takes into account the variability due to the choice

of training set and not only that due to the test examples, which could lead to gross

underestimation of the variance of the cross validation estimator and to the wrong

conclusion that the new algorithm is significantly better when it is not.

The initial theories for Carcinogenesis and Metabolism were obtained from

Aleph system using default parameters, except for clause length, which is defined as

5, noise, defined as 30, and minpos, set to 2. As UW-CSE is a highly unbalanced

data, we use m-estimate as evaluation function and noise set for 1000. To generate

such theories, the whole dataset was considered but using a 5-fold cross validation

procedure. Thus, a different theory was generated for each fold and each one of these

theories is revised considering its respective fold (the same fold is used to generate

and revise the theories).

All the experiments were run on Yap Prolog (Santos Costa, 2008) and Mat-

lab. To handle Bayesian networks, we have re-used Bayes Net Toolbox (Murphy,

2001), properly modified to tackle the particularities of BLPs. Combining rules are

represented in two levels, where the first level (different instantiations of the same

clause) uses mean as combining rule and the second level (different clauses with the

same head) uses weighted−mean as combination function. To learn parameters, we
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implemented discriminative gradient descent described in (Natarajan et al., 2008)

that minimizes mean squared error. For the UW-CSE, we use a weighted MSE,

with the weight inversely proportional to the distribution of the classes, so that the

parameters do not totally favor negative class because of its amount of examples.

To perform inference, we adapted variable elimination inference engine to handle

combination rules. We impose a minimum number of misclassified examples as 2 to

a clause be considered as revision point, in order to avoid outliers. Threshold for

indicating if an instance is correctly predicted is defined as 0.5.

8.4.1 Comparing BFORTE to ILP and FOL Theory revision

First of all, we would like to know whether BFORTE achieves better score results

than standard first-order logic systems. We compared BFORTE after learning the

initial parameters (after line 1 of Algorithm 8.1) and BFORTE after revising struc-

ture to Aleph and FORTE. The same theories Aleph learn are provided to both re-

vision systems. The first two columns of Table 8.1 present the results of conditional

log-likelihood achieved after learning initial parameters and after the revision pro-

cess is finished, respectively. Third and fourth column present the score of BFORTE

after learning initial parameters and after the revision process is finished. The last

two columns presents the score of Aleph and FORTE, respectively. Bold faces in-

dicate the best score results obtained from all systems. The symbol ♦ indicates

the cases where score of BFORTE is significantly better than score of Aleph. The

symbol • indicates the cases where BFORTE is significantly better than FORTE.

Finally, ? emphasizes the cases where it was possible to obtain an improvement after

revising the structure.

Table 8.1: BFORTE compared to Aleph and FORTE

System/ BFORTE BFORTE BFORTE BFORTE Aleph FORTE
Dataset Params Struct Params Struct Score Score

CLL CLL Score Score

UW-CSE -0.2142 -0.0746? 0.3504 0.5363♦ ? • 0.3684 0.2864
Metabolism -0.784 -0.6912? 60.00 64.76♦ ? • 56.51 59.57
Carcinogenesis -0.6712 -0.6618 59.38 61.30♦• 55.0 55.70

From the table we can see that BFORTE, by revising the structure, can im-
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prove the probabilities of examples, since conditional log-likelihood has significant

increased in two of the three cases. The final value of the score function is better

than the first-order systems in all cases, showing that it is possible to obtain more

accurate systems when uncertainty is taken into account. Moreover, in two cases

the revision in structure improved the initial score. Although learning parameters

has improved the initial score of Carcinogenesis compared to first-order systems, the

final score is not significantly better than the initial score.

8.4.2 Speed up in the revision process due to the Bottom
clause

Now, we would like to verify whether introducing the Bottom Clause as space of

literals can decrease the runtime without harming the score. To focus on this issue,

we run BFORTE using the Bottom Clause procedure and BFORTE using FOIL al-

gorithm to generate literals. Results of runtime and score are exhibited in Table 8.2.

As expected, UW-CSE performs significantly faster when the Bottom Clause is the

search space of literals. Surprisingly, the score is also better in the Bottom Clause

case, although the difference is not significant. By analyzing the results of each fold,

we found out that one fold has a higher score for the FOIL case, as it adds to a

clause one literal that has not appeared in the Bottom Clause of the chosen example

in BFORTE case. A similar situation also happens in another fold, but this time

the literal added to the clause in one of the iterations makes the theory performs

worse in the validation set. As a result, BFORTE has a better score for this fold.

Unfortunately, we were not able to collect FOIL results in the other two

datasets, as the system runs out of memory after some time running. The rea-

son, besides the much larger search space generated for FOIL approach, is that

differently from UW-CSE, Metabolism and Carcinogenesis have several predicates

with constants defined in mode declarations. The top-down approach of FOIL can-

not generate literals with constants, and then a variable is put in the place of a

possible constant. The problem that arises is the large number of instantiations of

the same literal, yielding a huge amount of different proof paths for the same literal.

Consider, for example, the following mode definition of a predicate in Carcinogenesis
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domain.

modeb(∗, atm(+drug,−atomid,#element,#integer,−charge)).

Types element and integer are defined as constants. Bottom Clause construc-

tion procedure is able to find a constant to the place of such mode, since it is created

from a particular instance. Those constants are going to limit the ground facts that

can be unified with this literal. However, FOIL puts variables in third and fourth

terms. As a consequence, every possible atm/5 ground literal in the dataset is able

to unify with the variabilized new literal, producing in certain cases a huge amount

of different proofs that Matlab cannot handle. Note that, this is an additional com-

plexity of BLPs compared to the first-order case, as in this last it is not necessary

to collect all possible proofs explaining an example.

Table 8.2: Comparison of runtime and accuracy of BFORTE with Bottom Clause
and BFORTE using FOIL to generate literals.

BFORTE BFORTE without BC
Learning Score Learning Score

Dataset Time Time

UW-CSE 8061.07? 0.5363 10884.16 0.5159
Metabolism 7184.15 64.76 N/A N/A
Carcinogenesis 8812.16 61.30 N/A N/A

8.4.3 Selection of Revision Points

In this experiment, we focus on the question of whether the BFORTE approach to

select revision points can decrease learning time. Due to the limitations of PFORTE

and BLP, specially concerning the search space of literals (previous section), we

compare BFORTE to BFORTE simulating those algorithms with regard to the

selection of revision points. Notice that this is necessary, specially because those

systems cannot run in two cases without bounding the search space to the Bottom

Clause, as we can see in Table 8.2. The compared settings are as follows.

� BFORTE: this is the system implemented upon all the contributions presented

in this chapter: the Bottom clause is used to bound the search space of lit-
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erals, revision points are selected using Bayes Ball and inference procedure is

optimized.

� PFORTE-like: this case considers Bottom clause to bound the search space

and optimized inference. However, selection of the revision points follows

PFORTE system, where all clauses appearing in the network of a misclassified

instance are marked as revision points.

� BLP-like: this case considers Bottom clause to bound the search space and

optimized inference. However, selection of the revision points follows BLP

structure learning algorithm, where all Bayesian clauses in the BLP are refined.

We call the last two cases as PFORTE-like and BLP-like because original

PFORTE and BLP learning algorithm have none of the improvements we designed

in this chapter.

Table 8.3 shows the results of runtime, accuracy and number of revised clauses

for each setting. The symbol ? indicates the cases where there is significant difference

between BFORTE and PFORTE-like and symbol • indicates a significant difference

between BFORTE and BLP-like. Runtime of BFORTE is significantly better than

both PFORTE-like and BLP-like. Note that PFORTE performs worse than BLP.

This is due to the size of the network: as the network of UW-CSE is quite large and

PFORTE selects all clauses taking part in a network of a misclassified instance, it

always marks the whole theory as revision points. Thus, it has the same search space

as BLPs. However, as BLPs modifies all Bayesian clauses and PFORTE performs

inference to find out the misclassified instances, it expends more time to finish the

revision process than BLP-like. On the other hand, the score of BFORTE is worse

than PFORTE and BLP, although not significantly. The reason for that difference is

that in one fold different theories are kept by the validation set during the learning.

Unfortunately, we cannot obtain results in reasonable time using either PFORTE

or BLP settings for Metabolism dataset (< 48h). This is mainly due to the large

search space that is explored, since, during the learning time that we could trace,

they mark 18 clauses on average to be modified, which is the same number of

clauses in the initial theory. The same situation of UW-CSE happens here com-
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Table 8.3: Comparison of BFORTE runtime and score with PFORTE and BLP
algorithms for selecting points to me modified.

BFORTE PFORTE-like BLP-like
System/ Learning Score #Revised Learning Score #Revised Learning Score #Revised
Dataset Time clauses Time clauses Time clauses
UW-CSE 8061.07? • 0.5363 4.7 10517.49 0.5669 7.6 10734.23 0.5669 7.6
Metab 7184.15 -64.76 6.3 N/A N/A 18 N/A N/A 18
Carcino 8812.16 ? 61.30 3.8 8812.16 61.30 3.8 26922.49 61.76 8.0

paring PFORTE and BLP: as this dataset yields a single large network, PFORTE

marks every clause to be revised. BFORTE considers only 6.3 clauses on average

to be revised, which is due to the smart selection of revision points conducted by

Bayes Ball algorithm.

A different situation happens with Carcinogenesis. As the instances are not

related in this dataset, there is a Bayesian network for each instance, yielding smaller

individual networks than in previous cases. In this way, BFORTE and PFORTE-

like select the same clauses as revision points. This is also because the clauses

producing ascendant nodes to the top-level instances are derived from clauses in

the fixed background knowledge, and therefore cannot be modified. Additionally,

the ground facts produced by them are considered as non-observed. Hence, even

though they were modifiable, they would non-observed parent nodes whose parents

are observed and therefore Bayes Ball would also consider them as revision points.

Finally, we see that runtime of BLP-like is much worse than revision systems, since

in this case it alone marks all clauses from the theory as revision points.

8.4.4 Inference time

Finally, we show the reduction in runtime of the inference due to the use of Bayes Ball

and the grouping of clauses and networks. Note that all cases previously discussed

takes into account inference with Bayes Ball when learning or revising theories. In-

stead of running the whole revision process, we opted for running only the procedure

that computes the discriminative score for each training set, considering the initial

theories. In this way, we are able to see the improvement in runtime inference alone,
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without taking into account the particularities of the revision process. Additionally,

running original inference of PFORTE and BLP makes the revision/learning process

extremely slow.

Tables 8.4, 8.5 and 8.6 shows the runtime for computing accuracy in UW-

CSE, Metabolism and Carcinogenesis, respectively, of five settings: BFORTE, with

all improvements presented in section 8.3, BFORTE without collecting requisite

nodes with Bayes Ball, BFORTE without detecting similar networks, BFORTE

without overlapping same rules and inference performed in original PFORTE/BLP

i.e, inference is performed without any of the algorithms presented in section 8.3.

Let first focus on UW-CSE dataset. Observe that the runtime is reduced by a factor

of 170 from the full BFORTE setting. The largest reduction is due to Bayes Ball,

although grouping similar nodes also contributes. On the other hand, detecting

similar networks does not help in the reduction of the runtime. In two folds Matlab

runs out of memory for PFORTE/BLP. Metabolism dataset has similar results of

UW-CSE, since they both are highly relational datasets, but in this case we were

able to collect the values for all training sets.

Table 8.4: Inference runtime in seconds for UW-CSE dataset.
Setting/ BFORTE BFORTE, BFORTE BFORTE PFORTE/
Training set without without without BLP

Bayes Ball similar nets grouping rules

1 18.44 1247.72 20.28 74.62 N/A
2 4.16 89.36 4.40 15.34 443.62
3 4.56 92.80 4.74 23.92 693.98
4 22.86 1880.38 25.30 97.94 N/A
5 3.44 66.76 3.52 15.00 443.72

Table 8.5: Inference runtime in seconds for Metabolism dataset.
Setting/ BFORTE BFORTE, BFORTE BFORTE PFORTE/
Training set without without Without BLP

Bayes Ball similar nets Grouping rules

1 10.98 677.62 676.90 23.30 1505.58
2 9.16 541.82 542.44 19.90 1103.22
3 13.02 827.56 826 29.92 1990.48
4 8.24 487.14 485.78 15.68 958.98
5 11.44 697.44 696.70 21.30 1330.40

The inference runtime of Carcinogenesis it is not different from PFORTE and
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BLP. In fact, in most of the cases, the runtime is slightly worse, due to the cost

of executing Bayes Ball. However, the fourth training set has a particular behavior

when running BFORTE without grouping rules. In this case, one of the Bayesian

clauses yields a large amount of ground clauses to be part of the final network.

Without grouping similar rules, the final Bayesian network is too large for Matlab

to handle.

Table 8.6: Inference runtime in seconds for Carcinogenesis dataset.
Setting/ BFORTE BFORTE, BFORTE BFORTE PFORTE/
Training set without without Without BLP

Bayes Ball similar nets Grouping rules

1 5.24 4.36 4.12 6.66 5.08
2 5.34 4.44 4.30 7.50 5.78
3 4.64 3.92 3.70 6.04 4.68
4 9.70 8.96 8.64 N/A N/A
5 4.48 3.76 3.46 9.48 6.96

8.5 Conclusions

We addressed in this chapter the bottlenecks of Bayesian Logic Programs revision.

We showed through experiments that it is possible to obtain a feasible revision

system that provides more accurate models than first-order logic systems, when the

domain is uncertain.

First we focused on the reduction of new literals search space. The baseline sys-

tem, PFORTE, generates literals following a FOIL’s top down approach: all possible

literals from the language that had at least one common variable with the current

clause were considered to be added to a clause. We were able to reduce the search

space of literals by defining it as the Bottom Clause of a misclassified instance. We

show in the experiments that the search space is reduced without harming the score

achieved by the system. As a single misclassified instance may not carry sufficient

information to produce good literals, in the future we would like to investigate the

use of more several instances to create the Bottom Clause. Additionally, we could

also take into account the probabilistic information to create/remove literals from

the Bottom clause, for example by measuring the information that literals could

pass to the clause (Cheng et al., 2002a; Oliphant and Shavlik, 2008; Pitangui and
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Zaverucha, 2011). The work in (Mihalkova and Mooney, 2007) employs Bottom-

up learning, by considering the network of examples to reduce the search space of

possible refinements. We intend to investigate how such an approach could also be

followed when refining Bayesian Logic Programs. It does not seem that there is a

direct way of doing that, since we construct the Bayesian networks from the ground

clauses, instantiated by the examples, whereas Markov Logical Networks defines the

graph from the constants in the domain.

Next, we addressed the search space of clauses to be refined. BLP learning

algorithm starts from an initial set of Bayesian clauses and proposes modifications

to each one. PFORTE considers all the clauses used to build the Bayesian network

of an example where there was a misclassified instance. Both systems generate a

large search space that can even become intractable. We showed that it is possible

to reduce this search space by marking as revision points only the clauses that

influence the probability distribution computed for the misclassified instance. We

used the Bayes Ball algorithm to identify those clauses. Experiments suggested that

the search space is indeed reduced by proposing refinements only to the clauses

relevant to the misclassified instance. In the future, we would like to investigate in

more details if it is possible to reduce the number of revision operators according to

the revision point, as we started to analyze in this chapter. Additionally, search for

revision points guided by examples may not identify all possible places bringing new

influence to a misclassified instance. In the future, we intend to investigate whether

it is possible to have a good balance on efficiency and score when choosing revision

points in promising places, but still outside the set pointed out by the instance.

Finally, we addressed the large inference search space due to the large Bayesian

networks produced by PLL examples. First, we developed a procedure to only

consider the requisite nodes identified by Bayes Ball algorithm, when performing

inference. Second, we reduced the size of the network by identifying ground clauses

whose only difference are the terms replacing variables. We argue that it is not

necessary to represent them as separate nodes in the network, what would make

the inference procedure to repeat several probabilities computations. Third, we

identified that after selecting the requisite nodes, there are ”subnetworks” with
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exactly the same structure and evidences. We avoid to compute the probabilities

for all those networks, by taking into account only one representative of the group.

Experiments showed that the inference runtime is in fact greatly reduced by the

algorithms we proposed. Note that the we only took a simple step in the direction

of recent work on lifted inference (Poole, 2003; Salvo Braz et al., 2005; Singla and

Domingos, 2008; Milch et al., 2008; Kok and Domingos, 2009; Nath and Domingos,

2010; Meert et al., 2010). There is much more to be done and investigate to fulfill

the advantages of lifted inference. For example, the ground clauses that are grouped

together could represent more than one Bayesian clause, if the information they have

are the same.

Through preliminary experiments, we noticed that the revision greatly depends

on the initial theories. Aleph system may not be appropriate to learn initial theories

for giving rise to BLPs. Indeed, the authors of BLP argued that Claudien system (De

Raedt and Dehaspe, 1997), which learns from interpretations, is more adequate to

produce most general clauses. In the future we intend to create several different

theories, from different first-order systems and compare the revised BLPs, starting

from them.

In the experiments reported here, the threshold for marking an instance as

misclassified was set at 0.5, which is usually considered in binary domains. That

value may not be the best for evaluating the models. Thus, we intend to create curves

showing the behavior of the system with different thresholds. Also, an evaluation

function that is independent from the threshold should be applied, such as the ones

considering the area under the curve. Last, it is essential to compare BLPs to others

SRL languages, such as Markov Logic Networks.

We conclude by observing that as stochastic local search has been showed to be

quite effective in the first-order revision case, we intend to implement in BFORTE

the same SLS techniques considered in YAVFORTE system.
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Chapter 9
General Conclusions and Future work

This chapter summarizes the achievements of the thesis, presents work in

progress that we have been investigating and points directions for future research.

9.1 Summary

The goal of this thesis was to contribute with effective theory revision systems. Ar-

guably, theory revision has been set aside so far due to the cost of searching for

revisions in large search space. With this thesis we have shown that it is possi-

ble to have a theory revision system running in feasible time and achieving better

accuracies than learning from scratch approaches.

In chapter 3 we contributed with a revision system named YAVFORTE, that

had been built over FORTE (Richards and Mooney, 1995) system. YAVFORTE

offers to the user the choice of selecting revision operators, so that the number

of possible modifications to be proposed to a theory is decreased. We empirically

showed that there are several cases where a smaller set of revision operators can

achieve same accuracies than if all operators were in use, in a reduced runtime.

Also, revision operators are employed from the simplest to more complex, so that if

a simpler operator is already able to reach the maximum potential of a revision point,

it is not necessary to appeal to complex operators. Another important contribution

implemented as part of YAVFORTE is the use of the Bottom Clause and mode

declarations to reduce the search space of literals to be scored. This greatly reduced

the runtime of the revision process, compared to the original FORTE system.

In chapter 4 we designed a challenging application of theory revision involving

235



9.1. SUMMARY

the game of Chess. We developed a framework for acquiring the rules of variants of

chess, starting from the rules of traditional chess. It was necessary to include further

abduction strategies and also handle negated literals in theories under revision. We

showed that theory revision is able to yield theories describing variants of Chess,

while a system unable to modify the initial theory fails. This work also showed that

theory revision is able to handle transfer learning tasks where the predicates of the

original and final models are the same.

Although YAVFORTE is able to revise theories faster than an inductive system

learns theories in several cases, this is not always the case. If the dataset has a

large number of examples and/or background knowledge, and moreover, the initial

theory has a large number of clauses, the revision process would struggle. Thus,

in chapter 6 we devised a series of stochastic local search algorithms, implemented

on each key search of the revision process, so that good solutions may be found

instead of optimal ones but in reasonable time. The system built upon YAVFORTE

and including SLS was named ASSERTE. By randomizing revision points, revision

operators and literals to be added/removed to/from a clause we achieved faster

learning time and equivalent accuracies compared to YAVFORTE. In the best case,

a SLS algorithm executed 25X faster than the baseline revision process. Moreover,

better accuracies and competitive runtime are also achieved, compared to a standard

inductive learning system.

In chapter 8 we contributed with a feasible Bayesian Logic Programs revision

system. We addressed the bottlenecks of our previous revision system PFORTE

that made it impractical to handle real world datasets. First, following our algo-

rithm FORTE MBC (Duboc et al., 2009), we defined the Bottom Clause to be the

search space of new literals, either when a hill climbing approach or the relational

pathfinding algorithm is employed. Next, we addressed revision points selection, by

employing Bayes Ball algorithm (Shachter, 1998), so that the nodes influencing a

wrongly predicted instance are identified and the clauses that produced them are

revised. Revision operators intend to either change the present influence or bring

new influence through those points, so that instances become correctly classified.

Last, we developed a procedure to speed up the time expended by the revision pro-
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cess to perform inference. First, we required that only requisite nodes are taken into

account when computing the probability of a node. The set of requisite nodes is

also identified by Bayes Ball algorithm. Second, we overlap nodes present in ground

clauses of an instance, that had been instantiated from the same clause and also have

the same evidence. Finally, we identify sets of requisite nodes that are identical, in

order to avoid performing repeated inference for different instances. We show that

all these optimizations are able to reduce the runtime of the revision process, by

comparing each one of them to the process followed by PFORTE and BLP learning

algorithm.

9.2 Future work: First-Order Logic Theory Revision

First-order revision runtime may be further reduced by using techniques developed

in ILP. For example, strategies transforming queries, devised in (Santos Costa et al.,

2003b) may greatly reduce inference time, by making clauses more efficient to eval-

uate. Also, there is need for efficient scoring of the hypothesis, specially in the

presence of a large set of examples. This can be achieved by more efficient sub-

sumption tests (Kuzelka and Zelezný, 2008a; Kuzelka and Zelezný, 2008b; Santos

and Muggleton, 2011) and by incremental learning techniques (Lopes and Zaverucha,

2009).

Concerning SLS algorithms, their runtime may greatly vary depending on the

various random choices taken along the revision process. To avoid being stuck for

a long time in a search space when looking for a specific modification to be done

in the theory, strategies that restarts the search from a different points raises the

opportunity of abandoning a large and unproductive search and starts over from a

perhaps more promising seed. The strategy followed in (Železný et al., 2006) can be

applied to the revision case, so that after a number of hypothesis are scored without

success, the search procedure chooses another random point to restart. Additionally,

stochastic search may also be used to estimate the coverage of clauses (Sebag and

Rouveirol, 1997).

There still need for real and challenging applications that fits well with theory

revision. We tackle this issue by developing the Chess revision framework. Applica-
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tions from grammar learning, natural language processing and biology, containing

significant coded information, seem also to be good examples of problems for theory

revision to handle.

9.3 Future work and work in progress: Probabilistic
Logic Revision

9.3.1 Revision of Bayesian Logic Programs

Inference performed in Bayesian networks may dominate the runtime of the revision

process, since this is the most executed task in the system. We showed in this thesis

that inference runtime can be greatly reduced by avoiding repeated computations

and by reducing the size of the network. It is necessary to further explore sophis-

ticated techniques developed in the field of lifted inference in probabilistic logical

models (Poole, 2003; Kok and Domingos, 2009; Kersting et al., 2010), so that in-

ference runtime is reduced even more and hence the revision process. Moreover,

similar to the first-order case, stochastic local search may be show very useful to

reduce the runtime of the probabilistic revision process.

In this thesis we have addressed the revision from a discriminative point of

view: instances in examples are classified and in case there are wrongly predicted

instances, Bayesian clauses relevant to the misclassification are revised. The question

that arises is if the revision can be performed from a generative approach. In this

case, the need of revision would be indicated by, for example, a low generative score.

Examples would not be separated in query variables and evidences, but instead they

could be all in the same level, as it is done in learning from interpretations setting.

9.3.2 Revision of Stochastic Logic Programs

Bayesian Logic Programs encode probability distributions over possible worlds by

associating probability distributions to possible values of atoms. Stochastic Logic

Programs (Muggleton, 2002), on the other hand, follows a distributional semantics

based on domain frequency (Halpern, 1989) by associating probability distributions

to ground facts through stochastic proof trees. A SLP is composed of a set of

stochastic clauses in the form p : c, where c is a definite range restricted clause

238



9.3. FUTURE WORK AND WORK IN PROGRESS:
PROBABILISTIC LOGIC REVISION

and p is a probability label. Summing out probability labels of all clauses with the

same predicate in the head must produce the value 1. SLPs combine definite logic

programs with Probabilistic Context Free Grammar, by generalizing this last one.

We have designed a system named SCULPTOR for revising Stochastic Logic

Programs. Examples in SCULPTOR have a probability label as in (Chen et al.,

2008) and this label is used to compute root mean squared error (RMSE). Examples

with high RMSE are chosen to indicate the clauses that should be revised. Revision

operators include revision of the probability labels, deletion and addition of rules.

New clauses are created by unfolding existing clauses (Sato, 1992), guided by a top

theory (Muggleton et al., 2008).

A first prototype of SCULPTOR has already been implemented, but it needs

to be tested and experimentally evaluated. We want to apply SCULPTOR on the

challenge application of revising strategies of games.

In closing, I would like to briefly cite the main achievements of this thesis,

which are: (1) to make the the Theory Revision from Examples as efficient as ILP;

(2) to successfully apply Theory Revision from Examples in a Chess application,

where standard ILP fails; and (3) to improve a Bayesian Logic Programs revision

system we had previously developed so that it could be applied to real world pro-

blems. I believe that the revision of (probabilistic) first-order logical theories has the

potential to handle complex real world applications and reach better results than

simpler machine learning thecniques. With this thesis, we showed that this can be

achieved in feasible time.
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Paes, A., Železný, F., Zaverucha, G., Page, D., and Srinivasan, A. (2006b). ILP

through Propositionalization and Stochastic k-term DNF Learning. In Procee-

dings of the Revised Papers of 16th International Conference on ILP (ILP-06),

volume 4455 of LNAI, pages 379–393. Springer.

Paes, A. M. (2005). PFORTE - Revisão de Teorias Probabiĺısticas de Primeira-
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do VII Encontro Nacional de Inteligência Artificial ENIA-09. XXIX Congresso

Brasileiro de Computação SBC 2009. SBC.

Revoredo, K. and Zaverucha, G. (2002). Revision of First-Order Bayesian Classifiers.

In Proceedings of the 12th International Conference on ILP (ILP-02), pages

223–237.

267



BIBLIOGRAPHY

Richards, B. L. and Mooney, R. J. (1992). Learning Relations by Pathfinding. In

Proceedings of the 10th Annual National Conference on Artificial Intelligence

(AAAI-92), pages 50–55.

Richards, B. L. and Mooney, R. J. (1995). Automated Refinement of First-Order

Horn-Clause Domain Theories. Machine Learning, 19(2):95–131.

Richardson, M. and Domingos, P. (2006). Markov Logic Networks. Machine

Learning, 62(1-2):107–136.

Ross, S. M. (1988). A First Course in Probability. Macmillan, third edition.

Rückert, U. and Kramer, S. (2003). Stochastic Local Search in k-Term DNF

Learning. In Proceedings of the 20th International Conference on Machine

Learning (ICML-03), pages 648–655.

Rückert, U. and Kramer, S. (2004). Towards Tight Bounds for Rule Learning. In

Proceedings of the 21st International Conference on Machine Learning (ICML-

04), volume 69. ACM.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A modern approach. En-

glewook Cliffs, NJ: Prentice-Hall, 3rd edition.

Sadikov, A. and Bratko, I. (2006). Learning Long-Term Chess strategies from

databases. Machine Learning, 63(3):329–340.

Salvo Braz, R., Amir, E., and Roth, D. (2005). Lifted First-Order Probabilistic In-

ference. In Proceedings of the 19th International Joint Conference on Artificial

Intelligence (IJCAI-05), pages 1319–1325. Professional Book Center.

Salvo Braz, R., Amir, E., and Roth, D. (2006). MPE and Partial Inversion in

Lifted Probabilistic Variable Elimination. In Proceedings of the 21st National

Conference on Artificial Intelligence (AAAI-06). AAAI Press.

Sang, T., Beame, P., and Kautz, H. A. (2007). A Dynamic Approach for MPE and

Weighted MAX-SAT. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI-07), pages 173–179.

268



BIBLIOGRAPHY

Santos, J. and Muggleton, S. (2011). When Does It Pay Off to Use Sophisticated

Entailment Engines in ILP? In Revised Papers of the 20th International Con-

ference on Inductive Logic Programming (ILP-10), volume 6489 of LNAI, pages

214–221. Springer.

Santos Costa, V. (2008). The Life of a Logic Programming System. In Proceedings

of the 24th International Conference on Logic Programming (ICLP-08), volume

5366 of LNCS, pages 1–6. Springer.

Santos Costa, V. and Paes, A. (2009). On the Relationship between PRISM and

CLP(BN). In Proceedings of the International Workshop on Statistical Rela-

tional Learning (SRL-09).

Santos Costa, V., Page, D., Qazi, M., and Cussens, J. (2003a). CLPBN: Constraint

Logic Programming for Probabilistic Knowledge. In Proceedings of the 19th

Annual Conference on Uncertainty in Artificial Intelligence (UAI-03), pages

517–524.

Santos Costa, V., Srinivasan, A., Camacho, R., Blockeel, H., Demoen, B., Janssens,

G., Struyf, J., Vandecasteele, H., and Laer, W. V. (2003b). Query Transforma-

tions for Improving the Efficiency of ILP Systems. Journal of Machine Learning

Research, 4:465–491.

Sato, T. (1992). Equivalence-Preserving First Order Unfold/fold Transformation

Systems. Theoretical Computer Science, 105:57–84.

Sato, T. and Kameya, Y. (1997). PRISM: A Language for Symbolic-Statistical Mod-

eling. In Proceedings of the 15th International Joint Conference on Artificial

Intelligence (IJCAI-97), pages 1330–1339.

Sato, T. and Kameya, Y. (2001). Parameter Learning of Logic Programs for

Symbolic-Statistical Modeling. Journal of Artificial Intelligence Research JAIR,

15:391–454.

Sato, T., Kameya, Y., and Zhou, N.-F. (2005). Generative Modeling with Failure in

269



BIBLIOGRAPHY

PRISM. In Proceedings of the 19th International Joint Conference on Artificial

Intelligence (IJCAI-05), pages 847–852.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics,

6:461–464.

Sebag, M. and Rouveirol, C. (1997). Tractable Induction and Classification in First

Order Logic Via Stochastic Matching. In IJCAI (2), pages 888–893.

Sebag, M. and Rouveirol, C. (2000). Any-time Relational Reasoning: Resource-

bounded Induction and Deduction Through Stochastic Matching. Machine

Learning, 38(1-2):41–62.

Selman, B., Kautz, H., and Cohen, B. (1994). Noise Strategies for Improving Local

Search. In Proceedings of the 12th National Conference on Artificial Intelligence,

pages 337–343. AAAI Press/The MIT Press.

Selman, B., Kautz, H., and McAllester, D. (1997). Ten Challenges in Propositional

Reasoning and Search. In Proceedings of the 15th International Joint Conference

on Artificial Intelligence, pages 50–54. Morgan Kaufmann Publishers.

Selman, B. and Kautz, H. A. (1993). Domain-Independent Extensions to GSAT:

Solving Large Structured Satisfiability Problems. In Proceedings of the 13th

International Joint Conference on Artificial Intelligence (IJCAI-93), pages 290–

295.

Selman, B., Kautz, H. A., and Cohen, B. (1996). Local Search Strategies for

Satisfiability Testing. Cliques, Coloring, and Satisfiability: Second DIMACS

Implementation Challenge, October 11-13, 1993. DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 26:521–532.

Selman, B., Levesque, H., and Mitchell, D. (1992). A New Method for Solving Hard

Satisfiability Problems. In Proceedings of the 10th Annual National Conference

on Artificial Intelligence (AAAI-92), pages 440–446.

Serrurier, M. and Prade, H. (2008). Improving Inductive Logic Programming by

Using Simulated Annealing. Information Sciences, 178(6):1423–1441.

270



BIBLIOGRAPHY

Shachter, R. D. (1998). Bayes-Ball: The Rational Pastime for Determining Irrel-

evance and Requisite Information in Belief Networks and Influence Diagrams.

In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,

pages 480–487. Morgan Kaufmann.

Shapiro, E. Y. (1981). The Model Inference System. In Proceedings of the 7th

International Joint Conference on Artificial Intelligence (IJCAI-81), page 1064.

William Kaufmann.

Shapiro, E. Y. (1983). Algorithm Program Debugging. MIT Press.

Singla, P. and Domingos, P. (2005). Discriminative Training of Markov Logic Net-

works. In Proceedings of the 21st National Conference on Artificial Intelligence

(AAAI-05), pages 868–873.

Singla, P. and Domingos, P. (2006). Memory-Efficient Inference in Relational Do-

mains. In Proceedings of the 21st National Conference on Artificial Intelligence

(AAAI-06).

Singla, P. and Domingos, P. (2008). Lifted First-Order Belief Propagation. In

Proceedings of the 23rd AAAI Conference on Artificial Intelligence, (AAAI-

08), pages 1094–1099. AAAI Press.

Specia, L., Srinivasan, A., Joshi, S., Ramakrishnan, G., and das Graças Volpe Nunes,

M. (2009). An Investigation into Feature Construction to Assist Word Sense

Disambiguation. Machine Learning, 76(1):109–136.

Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown,

P., D.Botstein, and B.Futcher (1998). Comprehensive Identification of Cell

Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray

Hybridization. Molecular Biology of the cell, 9(12):3273–3297.

Spirtes, P., Glymour, C., and Scheines, R. (2001). Causation, Prediction, and

Search. MIT Press, 2nd edition.

Srinivasan, A. (1999). A Study of Two Sampling Methods for Analysing Large

Datasets with ILP. Data Mining and Knowledge Discovery, 3(1):95–123.

271



BIBLIOGRAPHY

Srinivasan, A. (2000). A Study of Two Probabilistic Methods for Searching Large

Spaces with ILP. Technical Report PRG-TR-16-00, Oxford University Com-

puting Laboratory, Oxford.

Srinivasan, A. (2001a). Extracting Context-Sensitive Models in Inductive Logic

Programming. Machine Learning, 3(44):301–324.

Srinivasan, A. (2001b). The Aleph Manual. http://web.comlab.ox.ac.uk/oucl/

research/areas/machlearn/Aleph/aleph.html.

Srinivasan, A. and King, R. D. (2008). Incremental Identification of Qualitative

Models of Biological Systems using Inductive Logic Programming. Journal of

Machine Learning Research, 9:1475–1533.

Srinivasan, A., King, R. D., Muggleton, S., and Sternberg, M. J. E. (1997). Carcino-

genesis Predictions Using ILP. In Proceedings of the 7th International Confer-

ence on Inductive Logic Programming (ILP-97), volume 1297 of Lecture Notes

in Computer Science, pages 273–287. Springer.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E., and King, R. D. (1996). Theo-

ries for Mutagenicity: A Study in First-Order and Feature-Based Induction.

Artificial Intelligence, 85(1-2):277–299.

Srinivasan, A., Page, D., Camacho, R., and King, R. D. (2006). Quantitative

Pharmacophore Models with Inductive Logic Programming. Machine Learning,

64(1-3):65–90.

Stahl, I. (1993). Predicate Invention in ILP - an Overview. In Proceedings of the 4th

European Conference on Machine Learning (ECML 94), volume 667 of LNCS,

pages 313–322. Springer.

Sterling, L. and Shapiro, E. (1986). The Art of Prolog: Advanced Programming

Techniques. The MIT Press.

Stone, M. (1977). An asymptotic Equivalence of Choice of Model by Cross-

Validation and Akaike’s Criterion. Journal of the Royal Statistical Society series

B, 39:44–47.

272



BIBLIOGRAPHY

Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A. C., and Muggleton, S. (2006). Appli-

cation of Abductive ILP to Learning Metabolic Network Inhibition from Tem-

poral Data. Machine Learning, 64(1-3):209–230.

Tamaddoni-Nezhad, A. and Muggleton, S. (2000). Searching the Subsumption Lat-

tice by a Genetic Algorithm. In Proceedings of the 10th International Conference

on ILP (ILP-00), pages 243–252.

Tang, L. R., Mooney, R. J., and Melville, P. (2003). Scaling Up ILP to Large

Examples: Results on Link Discovery for Counter-Terrorism. In Proceedings

of the KDD-2003 Workshop on Multi-Relational Data Mining (MRDM-2003),

pages 107–121.

Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative Probabilistic Models

for Relational Data. In Proceedings of the 18th Conference in Uncertainty in

Artificial Intelligence (UAI-02), pages 485–492.

Thrun, S. (1995). Is Learning the n-th Thing any Easier than Learning the First? In

Advances in Neural Information Processing Systems 8, NIPS, pages 640–646.

MIT Press.

Tian, J. (2000). A Branch-and-Bound Algorithm for MDL Learning Bayesian Net-

works. In Proceedings of the 16th Conference on Uncertainty in Artificial In-

telligence, UAI ’00, pages 580–588. Morgan Kaufmann Publishers Inc.

Tian, J. and Pearl, J. (2002). On the Testable Implications of Causal Models with

Hidden Variables. In Proceedings of the 18th Conference in Uncertainty in

Artificial Intelligence (UAI-02), pages 519–527. Morgan Kaufmann.

Titov, I. and Henderson, J. (2007). Incremental Bayesian Networks for Structure

Prediction. In Proceedings of the 24th International Conference on Machine

Learning (ICML-07), volume 227 of ACM International Conference Proceeding

Series, pages 887–894. ACM.

Towell, G. and Shavlik, J. (1994). Knowledge-Based Artificial Neural Networks.

Artificial Intelligence, 70(1–2):119–165.

273



BIBLIOGRAPHY

Towell, G. G. and Shavlik, J. W. (1993). Extracting Refined Rules from Knowledge-

Based Neural Networks. Machine Learning, 13:71–101.

Trefethen, N. (1998). Maxims about Numerical Mathematics, Computers, Science,

and Life. SIAM News.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The Max-Min Hill-

Climbing Bayesian Network Structure Learning Algorithm. Machine Learning,

65(1):31–78.

Valiant, L. G. (1984). A Theory of the Learnable. Communications of the ACM,

27(11):1134–1142.

Van Rijsbergen, C. J. (1979). Information Retrieval. Butterworths.

Vennekens, J., Verbaeten, S., and Bruynooghe, M. (2004). Logic Programs with

Annotated Disjunctions. In Proceedings of the 20th International Conference

on Logic Programming (ICLP-04), pages 431–445.

Verma, T. and Pearl, J. (1990). Equivalence and synthesis of causal models. In

Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intel-

ligence, pages 255–270. Elsevier.

Wang, J. and Domingos, P. (2008). Hybrid Markov Logic Networks. In Proceedings

of the 23rd AAAI Conference on Artificial Intelligence (AAAI-08), pages 1106–

1111. AAAI Press.

Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo Implementation of the EM

Algorithm and the Poor Man’s Data Augmentation Algorithms. Journal of the

American Statistical Association, 85:699–704.

Weiss, Y. (2000). Correctness of Local Probability Propagation in Graphical Models

with Loops. Neural Computation, 12(1):1–41.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik, V.

(2000). Feature Selection for SVMs. In Papers from Neural Information Pro-

cessing Systems (NIPS-00), pages 668–674.

274



BIBLIOGRAPHY

Wogulis, J. (1994). An Approach to Repairing and Evaluationg First-Order Theo-

ries Containing Multiple Concepts and Negation. PhD thesis, University of

California, Irvine, CA.

Wogulis, J. and Pazzani, M. (1993). A methodology for Evaluationg Theory Revision

Systems: Results with Audrey II. In Proceedings of the 13th International Joint

Conference on Artificial Intelligence (IJCAI-93), pages 1128–1134.

Wrobel, S. (1993). On the Proper Definition of Minimality in Specialization and

Theory Revision. In Machine Learning: ECML-93, European Conference on

Machine Learning, volume 667 of LNCS, pages 65–82. Springer.

Wrobel, S. (1994). Concept Formation During Interactive Theory Revision. 14:169–

191.

Wrobel, S. (1996). First-order theory refinement. In De Raedt, L., editor, Advances

in Inductive Logic Programming, pages 14–33. IOS Press.

Yamamoto, A. (1997). Which Hypotheses Can Be Found with Inverse Entailment?

In Proceedings of the 7th International Workshop on Inductive Logic Program-

ming, volume 1297 of LNCS, pages 296–308. Springer.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2000). Generalized Belief Propaga-

tion. In Advances in Neural Information Processing Systems 13, Papers from

Neural Information Processing Systems (NIPS-00), pages 689–695.
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Appendix A
The Laws of International Chess

Here we summarize the main rules of the traditional game of chess, set up by

Fédération Internationale des Échecs (FIDE), also known as the World Chess Or-

ganisation (FIDE, ).

1. Chess is a game played by two people on a chessboard divided into 64 squares

of alternating colour, with 32 pieces (16 for each player) of six types. Each

player has control of one of two sets of coloured pieces (white and black).

White moves first and the players alternate moves. Each type of piece moves

in a distinct way. The goal of the game is to checkmate, i.e. to threaten the

opponent’s king with inevitable capture.

2. At the beginning of the game the pieces are arranged as shown in Figure A.1.

3. Each square of the chessboard is identified with a unique pair of a letter and a

number. The vertical files are labelled a through h. Similarly, the horizontal

ranks are numbered from 1 to 8. Each square of the board is uniquely identified

by its file letter and rank number. The white king, for example, starts the game

on square e1.

4. During the game, a piece may be captured and then removed from the game

and may not be returned to play for the remainder of the game. The king can

be put in check but cannot be captured.

5. Pieces can move as follows:
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� The king can move exactly one square horizontally, vertically, or diago-

nally. At most once in every game, each king is allowed to make a special

move, known as castling (see below).

� The rook moves any number of vacant squares vertically or horizontally.

It also is moved while castling.

� The bishop moves any number of vacant squares in any diagonal direction.

� The queen can move any number of vacant squares diagonally, horizon-

tally, or vertically.

� The knight moves in an “L” or “7” shape (possibly inverted): it moves

two squares like the rook and then one square perpendicular to that.

� A pawn can move forward one square, if that square is unoccupied. If

it has not yet moved, the pawn has the option of moving two squares

forward provided both squares in front of the pawn are unoccupied. A

pawn cannot move backward. Pawns are the only pieces that capture

differently from how they move. They can capture an enemy piece on

either of the two spaces adjacent to the space in front of them (i.e., the

two squares diagonally in front of them) but cannot move to these spaces

if they are vacant.

Figure A.1: Initial position of a Chess board: first row: rook, knight, bishop, queen,
king, bishop, knight, and rook; second row: pawns

6. Castling consists of moving the king two squares towards a rook on the player’s
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first rank, then moving the rook onto the square over which the king crossed.

Castling can only be done if the king has never moved, the rook involved

has never moved, the squares between the king and the rook involved are not

occupied, the king is not in check, and the king does not cross over or end on

a square in which it would be in check (see figure A.2).

Figure A.2: Castling from the queen side and from the king side (figure is due to
http : //www.pressmantoy.com/instructions/instruct chess.html)

7. En-passant happens if player A’s pawn moves forward two squares and player

B has a pawn on its fifth rank on an adjacent file and B’s pawn capture A’s

pawn as if A’s pawn had only moved one square. This capture can only be

made on the immediately subsequent move. In Figure A.3 the black pawn

moves from b7 to b5 and the white at c5 capture it en passant, ending up on

b6.

8. If a pawn advances to its eighth rank it is promoted to a queen, rook, bishop,

or knight of the same colour, according to the players desire.

9. When a player makes a move that threatens the opposing king with capture,

the king is said to be in check. The definition of check is that one or more op-

posing pieces could theoretically capture the king on the next move (although

the king is never actually captured). If a player’s king is in check then the

player must make a move that eliminates the threat(s) of capture. The possi-

ble ways to remove the threat of capture are: (1) Move the king to a square

where it is not threatened. (2)Capture the threatening piece (possibly with
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Figure A.3: En-passant move of a pawn in the Game of Chess. Figure is from
http://www.learnthat.com/courses/fun/chess/beginrules15.shtml

the king, if doing so does not put the king in check). (3) Place a piece between

the king and the opponent’s threatening piece.

10. If the king is in double check, i.e., threatened by two different pieces, the only

piece allowed to move is the king itself, since no other piece is able to take

away the king from the threat.

11. If a piece is protecting the king from a check it is only allowed to move to

another position where it continues protecting the king (the piece is called as

absolute pin).

12. If a player’s king is placed in check and there is no legal move that player can

make to escape check, then the king is said to be checkmated and the game

ends.
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