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Abstract

In this note, we ensure that the dislocation hyperbolic augmented Lagrangian
algorithm converges to a global minimizer, we assuming nonconvexity assump-
tions. The subproblem generated by this algorithm is solved with the DIRECT
algorithm. Finally, we present computational experiments to show the good
performance of the proposed algorithm.
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1 Introduction

In this note, we are interested in solving the following inequality constrained
nonconvex optimization problem:

(P ) min f(x) s.t. g(x) ≤ 0, x ∈ Ω,

where the functions f : Rn → R and g : Rn → Rm are continuously differentiable, and
let a1, a2 ∈ Rn such that Ω = {x ∈ Rn : −∞ < a1 ≤ x ≤ a2 < ∞}, is a nonempty
closed subset in Rn. In particular, augmented Lagrangian type algorithms solve the
problem (P), examples are: Lagrangian function based on the quadratic penalty [2]
and class of nonquadratic Lagrangian functions [7]. In [7], an interesting feature of
these algorithms is the detection of infeasibility. The study of this class of Lagrangian
algorithms can be seen in paper [10].

The hyperbolic penalty function was used in the hyperbolic penalty algorithm pro-
posed by [14]. The dislocation hyperbolic augmented Lagrangian function (DHALF)
was proposed in [15]. This type of hyperbolic function caught the attention of dif-
ferent researchers, thus, works appeared from the computational point of view, see
[1], [5] and [13]; and theoretical works, see [6] and [4]. All this motivates us to con-
tinue investigating this function and propose our dislocation hyperbolic augmented
Lagrangian algorithm to find global solutions to nonconvex optimization problems.
Some characteristics of our algorithm are that we consider a nonquadratic penalty,
and the safeguard technique to update the Lagrange multipliers is not considered. The
contributions of our work are as follows:

• This work contributes to ensuring that the sequence generated by our proposed
algorithm converges to a global solution of the problem (P) using DHALF. To solve
the box-constrained subproblem generated by our algorithm, we use the global
deterministic optimization algorithm called DIRECT (see [8] and [9]).

The note is organized as follows: In Section 2, we state some definitions and basic
results that are used during this work and we present our proposed algorithm. In
Section 3, a convergence result is proposed. In Section 4, some computational examples
are presented in order to show how our proposed algorithm works.

2 Deterministic Global Dislocation Hyperbolic
Augmented Lagrangian Algorithm (DGDHALA)

The Lagrangian function of problem (P) is defined by L : Rn × Rm
+ → R,

L(x, λ) = f(x) +

m∑
i=1

λigi(x),

for x ∈ Ω and where λi ≥ 0, i = 1, ...,m, they are the Lagrange multiplier. We
define the dislocation hyperbolic penalty function (DHPF) related to the constraints
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of problem (P), as follows, p : R× R++ × R++ → R

p(gi(x), λi, τ) = τ

λigi(x)

τ
+

√(
λigi(x)

τ

)2

+ 1− 1


= τh

(
λigi(x)

τ

)
, i = 1, ...,m, (2.1)

where the function h : R → R, is defined as h(t) = t +
√
t2 + 1 − 1. This func-

tion is a smoothing of the exact penalty function studied by [16]. Henceforth, we
will call the h function as dislocation hyperbolic function (DHF). In the following,
we are going to present some properties of h: (H1) h(0) = 0 and h′(0) = 1; (H2)
h′(t) = 1 + t√

t2+1
> 0, ∀t ∈ R; (H3) h′′(t) = 1

(t2+1)
3
2
> 0, ∀t ∈ R.

We are going to consider function (2.1) to define the DHALF of problem (P) by
lH : Rn × Rm

++ × R++ → R,

lH(x, λ, τ) = f(x) +

m∑
i=1

p(gi(x), λi, τ) = f(x) +

m∑
i=1

τ h

(
λigi(x)

τ

)
. (2.2)

Next, we introduce our algorithm DGDHALA.

2.1 Algorithm DGDHALA

Step 1. Let x0 ∈ Rn, λ0 = (λ0
1, ..., λ

0
m) ∈ Rm

++, τ
0 ∈ R++, 1 < α, and 0 < θ < 1. Compute

W 0
i = max{gi(x0), 0}. Set k = 1.

Step 2. Find xk ∈ Rn as an approximate global solution of the problem

minx∈Ω lH(x, λk, τk). (2.3)

Step 3. Updating of Lagrange multiplier. Compute

λk+1
i = λk

i h
′
(
λk
i gi(x

k)

τk

)
, i = 1, ...,m. (2.4)

Step 4. Update penalty parameter. Compute

W k
i = min{−gi(x

k), λk
i }, i = 1, ...,m.

If, ∥∥W k
∥∥
∞ ≤ θ

∥∥W k−1
∥∥
∞ , (2.5)

set, τk+1 = τk. Otherwise, set τk+1 = ατk.
Step 5. k := k + 1. Go to Step 2.
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In Step 2, we are going to consider the DIRECT algorithm to solve the subprob-
lem (2.3), which is a global deterministic optimization algorithm for box-constrained
problems. In Step 3, the new estimates of the multipliers are updated. In Step 4,
the condition (2.5) considered to update the penalty parameter, this condition is also
studied by [5]. Throughout our work, we will consider the following assumption

lim
k→+∞

τk = τ̃ > 0,

that is, the sequence {τk} converges to a strictly positive point.

2.2 Characteristics of DGDHALA

For x ∈ Rn, we define the following sets of indices
I0 = {i ∈ {1, ...,m} | gi(x) = 0} and I− = {i ∈ {1, ...,m} | gi(x) < 0} . Let us con-
sider the following cases: (c1) If i ∈ I0, then we have at the k-th iteration gi(x

k) = 0,
then by (2.4) and (H1), we get, λk+1

i = λk
i ; (c2) If i ∈ I−, then we have at the k-th

iteration gi(x
k) < 0, then by (2.4), (H3), (H1), and by a development similar to the

previous case we can obtain λk
i > λk+1

i . The following result ensures the feasibility of
the estimated multipliers.

Proposition 1. Let
{
λk = (λk

1 , ..., λ
k
m) | k = 1, 2, ...

}
⊂ Rm. If

λk ∈ Rm
++ then λk+1 ∈ Rm

++.

Proof. See Remark 3.3 of [12].

3 Convergence

In this section, we present our main results. Let us consider the following assump-
tion:

(A1) For all k ∈ IN, we obtain xk ∈ Ω such that

lH(xk, λk, τk) ≤ lH(x, λk, τk) + ϵk, ∀ x ∈ Ω,

where the sequence of tolerances {ϵk} ⊂ R+ is bounded.

The assumption (A1) is considered in Chapter 5 of [3], to ensure global mini-
mization. The following results are similar to Theorem 5.1 and Theorem 5.2 of [3]
(see also [2] and [5]). In the following result, we ensure that the sequence generated
by the algorithm DGDHALA converges to a feasible point.

Theorem 2. The sequences {xk} and {λk} are generated by DGDHALA. Suppose
that the sequence {λk} is bounded and the whole sequence {xk} is convergent, i.e.,
limk→∞ xk = x∗. Then, every limit point x∗ is a feasible point.
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Proof. Let xk ∈ Ω and we know that the set Ω is closed, then x∗ ∈ Ω. Since that {τk}
is bounded, then there exists k0 ∈ IN such that τk = τk0 = τ̃ > 0 for all, k ≥ k0.
Then the condition (2.5) is verified for all k ≥ k0. Thus,∥∥W k

∥∥
∞ → 0, (3.6)

so,
−gi(x

k) → 0, or λk
i → 0, with, gi(x

k) < 0, i = 1, ...,m, (3.7)

this implies
gi(x

k)+ → 0, i = 1, ...,m,

and we obtain that the limit point is feasible.

Now, we ensure that the sequence generated by the algorithm DGDHALA con-
verges to a global solution.

Theorem 3. The sequence {xk} and {λk} are generated by DGDHALA. Assume that
the sequence {λk} is bounded, limk→∞ ϵk = 0, the problem (P) has a non-empty set
of feasible solutions and the whole sequence {xk} is convergent, i.e., limk→∞ xk = x∗.
Then, x∗ is a global minimizer of the problem (P).

Proof. The whole sequence is convergent, i.e., limk→∞ xk = x∗, where x∗ is feasible
by Theorem 2 since the problem (P) has a non-empty set of feasible solutions. Since
{τk} is bounded, then there exists k0 ∈ IN such that limk≥k0 τ

k = τk0 = τ̃ > 0, for
all, k ∈ K ⊂ IN, k ≥ k0 (with x ∈ Ω), By (A1) we have,

f(xk) +

m∑
i=1

τk0h

(
λk
i gi(x

k)

τk0

)

≤ f(x) +

m∑
i=1

τk0h

(
λk
i gi(x)

τk0

)
+ ϵk, ∀k ≥ k0. (3.8)

Since we have g(x) ≤ 0, we can get,

λk
i gi(x)

τk0
≤ 0, i = 1, ...,m, ∀k ≥ k0,

we apply (H2) in the inequality above, so

τk0 h

(
λk
i gi(x)

τk0

)
≤ τk0 h(0), i = 1, ...,m, ∀k ≥ k0,

by (H1), it follows τk0 h
(

λk
i gi(x)

τk0

)
≤ 0, i = 1, ...,m, ∀k ≥ k0, we rewrite as follows

m∑
i=1

τk0 h

(
λk
i gi(x)

τk0

)
≤ 0, ∀k ≥ k0. (3.9)
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By (3.9) in (3.8), we have

f(xk) +

m∑
i=1

τk0h

(
λk
i gi(x

k)

τk0

)
≤ f(x) + ϵk, ∀k ≥ k0. (3.10)

Since {λk} is bounded, then there exists a infinite subset of indices K1 ⊂ K, and
by Proposition 1 we have

lim
k∈K1

λk
i = λ∗

i ≥ 0, i = 1, ...,m.

We know that gi(x
∗) ≤ 0, i = 1, ...,m, and taking limits in the inequality above

(3.10) for k ∈ K1, we have

f(x∗) +

m∑
i=1

τk0h

(
λ∗
i gi(x

∗)

τk0

)
≤ f(x).

We rewrite the above as

f(x∗) +
∑

i∈I−(x∗)

τk0h

(
λ∗
i gi(x

∗)

τk0

)
+

∑
i∈I0(x∗)

τk0h

(
λ∗
i gi(x

∗)

τk0

)
≤ f(x),

considering (H1) in the case i ∈ I0(x
∗), in the inequality above, therefore we only have

f(x∗) +
∑

i∈I−(x∗)

τk0h

(
λ∗
i gi(x

∗)

τk0

)
≤ f(x), ∀k ≥ k0. (3.11)

On the other hand, since that {τk} is bounded and since we have gi(x
∗) < 0 in

(3.11) and by (2.5) we obtain

lim
k∈K1

λk
i = λ∗

i = 0. (3.12)

Then, from (3.11) and (3.12) we obtain

f(x∗) +
∑

{i:gi(x∗)<0}

τk0h(0) ≤ f(x),

from (H1) and the inequality above it follows that f(x∗) ≤ f(x), where x is an arbitrary
feasible point.

4 Computational Examples

Let us consider the following examples to verify the performance of our proposed
algorithm.
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Example 1. See Problem 2 of [18], Example 3 of [17].

min
x∈R2

f(x) = −x1 − x2

s.t. g1(x) = −2x4
1 + 8x3

1 − 8x2
1 + x2 − 2 ≤ 0,

g2(x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 ≤ 0,

x ∈ Ω = {x ∈ R2 : 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4}.

The global solution is x̃ = (2.3295, 3.1783)T with optimal value f(x̃) = −5.5079.
Example 2. See Example 2 of [17].

min
x∈R3

f(x) = −x1x2x3

s.t. g1(x) = x1 + 2x2 + 2x3 − 72 ≤ 0,

g2(x) = −x1 − 2x2 − 2x3 ≤ 0,

x ∈ Ω = {x ∈ R3 : 0 ≤ xi ≤ 42, i = 1, 2, 3}.

The global solution is x̃ = (24, 12, 12) with function value f(x̃) = −3456.
Example 3. See Example 6.1 of [11]

min
x∈R5

f(x) = cTx− 0.5xTQx

s.t. g1(x) = 20x1 + 12x2 + 11x3 + 7x4 + 4x5 − 40 ≤ 0,

x ∈ Ω = {x ∈ R5 : 0 ≤ xi ≤ 1, i = 1, ..., 5},

where c = (42, 44, 45, 47, 47.5)T , Q = 100I, and I is the identity matrix. The global
solution is x̃ = (1, 1, 0, 1, 0)T with function value f(x̃) = −17.
Example 4. See Problem 2 of [7].

min
x∈R2

f(x) = −x1 − x2

s.t. g1(x) = x1x2 − 4 ≤ 0,

x ∈ Ω = {x ∈ R2 : 0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 4}.

The problem possesses two strict local minima at points x̃ = (1, 4) and x̃ =
(6, 0.666667) with objective function values of −5 and −6.66667, respectively.
Example 5. See Problem 5 of [7]

min
x∈R2

f(x) = x4
1 − 14x2

1 + 24x1 − x2
2

s.t. g1(x) = −x1 + x2 − 8 ≤ 0,

g2(x) = x2 − x2
1 − 2x1 + 2 ≤ 0,

x ∈ Ω = {x ∈ R2 : −8 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10}.

The global solution is x̃ = (−3.173599, 1.724533) with f(x̃) = −118.704860.
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4.1 Results

The algorithms were coded in Python and run on a Compaq, Microsoft Windows
10 home, with Intel(R) Core(TM) i3-5005U CPU@2.00GHz, 2000 Mhz. We con-
sider as stopping criteria, the condition of feasibility and complementarity, as follows:∥∥λk+1g(xk)

∥∥
l1
≤ ϵcom and

∥∥g(xk)
∥∥
l1
≤ ϵcons, where ϵcom and ϵcons are tolerances.

• Example 1:
Initial values: x0 = (0, 0), λ0 = (1, 1), ϵcons = 10−7 and ϵcom = 10−5,
τ0 = 0.000002, θ = 0.5 and α = 2.5.

The results obtained were the following:
Number of iterations used: 1,
x∗ = (2.32952576, 3.17846635),
λ∗ = (3.83943892× 10−4, 7.21484914× 10−1),
τ = 4.9999999999999996× 10−6,
f(x∗) = −5.50799210699463,
∥x̃− x∗∥2 = 0.0001683327065662843,
f(x̃)− f(x∗) = 9.21069946295816× 10−5,
time (s) : 0.09375.

• Example 2:
Initial values: x0 = (0, 0, 0), λ0 = (1, 1), ϵcons = 10−5 and ϵcom = 10−3,
τ0 = 0.000002, θ = 0.25 and α = 2.

The results obtained were the following:
Number of iterations used: 9,
x∗ = (24.06582669, 11.92485902, 12.04221917),
λ∗ = (1.76677387, 1.11022301× 10−16),
τ = 0.000512,
f(x∗) = −3455.89520954783,
∥x̃− x∗∥2 = 0.10845173261504679,
f(x̃)− f(x∗) = 0.10479045217016392,
time (s) : 1.328125.

• Example 3:
Initial values: x0 = (0, 0, 0, 0, 0), λ0 = 1, ϵcons = 10−7 and ϵcom = 10−5,
τ0 = 0.00002, θ = 0.5 and α = 2.5.

The results obtained were the following:
Number of iterations used: 1.
x∗ = (9.99771376 × 10−1, 9.99771376 × 10−1, 6.85871056 × 10−4, 9.99771376 ×
10−1, 2.28623685× 10−4),
λ∗ = 1.99817163×−10,
τ = 5× 10−5,
f(x∗) = −16.920129996661075,
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∥x̃− x∗∥2 = 0.0008243146819810678,
f(x̃)− f(x∗) = 0.07987000333892524,
time (s) : 0.078125.

• Example 4:
Initial values: x0 = (0, 0), λ0 = 1, ϵcons = 10−7, ϵcom = 10−5, τ0 = 0.0000002,
θ = 0.5 and α = 2.5.

The results obtained were the following:
Number of iterations used: 1,
x∗ = (5.99999812, 0.66666667),
λ∗ = 0.01247206,
τ = 5× 10−7,
f(x∗) = −6.666664784990243,
∥x̃− x∗∥2 = 1.908743042017182× 10−6,
f(x̃)− f(x∗) = 5.215009756476263× 10−6,
time(s) : 0.03125.

• Example 5:
Initial values: x0 = (0, 0), λ0 = (1, 1), ϵcons = 10−7, ϵcom = 10−5, τ0 = 0.00001,
θ = 0.5 and α = 2.5.

The results obtained were the following:
Number of iterations used: 3,
x∗ = (−3.17283951, 1.72122901),
λ∗ = (5.06159559× 10−11, 3.36584419),
τ = 6.25× 10−5,
f(x∗) = −118.70483724449679,
∥x̃− x∗∥2 = 0.003390158547944282,
f(x̃)− f(x∗) = 2.275550320973707× 10−5,
time(s) : 0.125.

In work [7], 5 augmented Lagrangian algorithms were studied; in [2] only one
algorithm was studied; in [11] they study 4 algorithms and in [17] they study 4
algorithms. In Table 1, we are only going to place the best results obtained in [7], [2],
[11] and [17]. In Table 1, the symbol “−” means that the respective example was not
solved in the respective work.
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[7] Gonçalves M.L.N., Melo J.G., Prudente L.F.: Augmented Lagrangian methods
for nonlinear programming with possible infeasibility. J Glob Optim, 63, 297–
318 (2015)

[8] Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without
the Lipschitz constant. Journal of Optimization Theory and Applications. 79,
157-181, (1993)

[9] Jones D.R., Martins J.R.: The direct algorithm: 25 years later. Journal of
Global Optimization. 79, 521-566, (2021)

[10] Kort B.W., Bertsekas D.P.: Combined primal-dual and penalty methods for
convex programming. SIAM J. Control and Optimization. 14, 268–294 (1976)

[11] Luo H., Sun X., Wu H.: Convergence properties of augmented Lagrangian
methods for constrained global optimization. Optimization Methods and
Software. 23, 763-778 (2008)

10



[12] Mallma Ramirez L., Maculan N., Xavier A.E., Xavier V.L.: Dislocation
hyperbolic augmented Lagrangian algorithm for nonconvex optimization.
RAIRO-Oper. Res., 57, 2941–2950 (2023)

[13] Rocha A.M.A.C., Costa M.F.P., Fernandes E.M.G.P.: A shifted hyperbolic aug-
mented Lagrangian-based artificial fish two-swarm algorithm with guaranteed
convergence for constrained global optimization. Engineering Optimization.
48, 2114–2140 (2016)

[14] Xavier A.E.: Penalização Hiperbólica: Um Novo Método para Resolução
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