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Aprendizado Estatístico Relacional explora um espaço de busca complexo de ob-
jetos, relações e parâmetros probabilísticos para otimizar um modelo. Para reduzir
a complexidade da busca e os requisitos de disponibilidade de dados, trabalhos rela-
cionados exploraram a transferência de um modelo aprendido em um domínio de
origem para um domínio de destino. No entanto, esses modelos nem sempre estão
disponíveis, e um aprendizado imperfeito no domínio de origem pode prejudicar
o desempenho no domínio de destino. Este trabalho propõe utilizar as instâncias
de um domínio de origem ao invés de um modelo aprendido nesse domínio. Uma
solução simples, como concatenar instâncias de ambos os domínios, pode ser inefi-
caz devido ao impacto potencial de instâncias irrelevantes ou de baixa qualidade.
Para abordar essa questão, nós tratamos a seleção de instâncias como sendo uma
tarefa de alocação justa de recursos, onde as utilidades associadas às instâncias são
parametrizadas para capturar a relevância de cada instância. Nós introduzimos o
método chamado UTIL-BRDN, que aplica essa abordagem baseada em utilidades
às Redes de Dependência Relacional com Boosting (RDN-Boost). Nossos resultados
experimentais mostram que o UTIL-BRDN transfere conhecimento de forma eficaz
reutilizando instâncias de outros domínios e é robusto contra negative transfer. Nos-
sas contribuições incluem a introdução do aprendizado por transferência baseado em
instâncias no contexto do aprendizado estatístico relacional, o desenvolvimento de
uma abordagem baseada em utilidades para a seleção de instâncias, a extensão do
RDN-Boost para lidar com múltiplos domínios e utilidades, e a realização de uma
extensa avaliação empírica do método proposto.
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Statistical Relational Learning explores a complex search space of objects, their
relationships, and probability parameters to find an optimal model. To reduce search
complexity and data availability requirements, previous work has explored taking
advantage of a learned model in a source domain and transferring it to a target
domain. However, these models are not always available and imperfect learning in
the source domain can hinder the performance in the target domain. This work
proposes to leverage the instances of a source domain instead of its learned model.
A simple solution, such as concatenating instances from both domains, is likely inef-
fective due to the potential negative impact of irrelevant or poor-quality instances.
We address this by framing instance selection as a task of fair resource allocation,
where utilities associated with instances are parameterized to capture the relevance
of each instance. We introduce a method called UTIL-BRDN, which applies this
utility-driven approach to Boosted Relational Dependency Networks (RDN-Boost).
Our experimental results show that UTIL-BRDN effectively transfers knowledge by
reusing instances from other domains and is robust against negative transfer. Our
contributions include introducing instance-based transfer learning to statistical rela-
tional learning, developing a utility-driven approach to instance selection, extending
RDN-Boost to handle multiple domains and utilities, and conducting an extensive
empirical evaluation of the proposed method.
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Chapter 1

Introduction

Statistical Relational Learning (SRL) is a machine learning subarea that considers
the relationships between objects when building statistical models to solve a given
task [1, 2]. However, to effectively incorporate those relationships into the model,
SRL must traverse a complex search space of possible connections and interactions
between the objects [3]. Finding a model in those circumstances demands large vol-
umes of data describing the object’s properties and possible relations among them.
On the other hand, relational data from different domains can share common pat-
terns or features, which is a key principle in transfer learning [4]. Transfer learning
leverages this shared information to transfer knowledge learned from one domain
to another, enabling models to generalize more effectively across different tasks or
contexts, even when training data are limited in the target domain.

1.1 Prior Art

Previous works have relied on model-based transfer learning to induce SRL models
using limited data [5–7]. Although these approaches utilize different SRL languages
as the backbone, they share the common assumption that a learned source model
can be adapted to fit the target domain. However, because the source model is
optimized for the source domain, it may not effectively capture features that are
relevant to both the source and target domains. Moreover, the adaptation process
is often computationally expensive [6].

In contrast, instance-based transfer learning [4, 8, 9] focuses on reusing or
reweighting instances from the source domain for the target task, allowing the target
model to adapt directly from actual examples. A key advantage of this approach is
that it does not depend on a pre-trained model but instead adjusts the relevance of
individual instances. However, a critical challenge arises: How can we numerically
define the importance of source and target instances when learning the target model?
In this work, we address this challenge by designing an instance selection mechanism
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inspired by the framework of utility maximization, which is typically used to solve
problems of fair resource allocation [10–14].

Fairness is a key dimension in the learning process and has been incorporated into
classical problems such as fair bandwidth allocation in computer networks and, more
generally, fair resource allocation in computer systems. Different fairness definitions
are captured by utility functions. A notable utility function in this context is the
α-fairness [15, 16]. To the best of our knowledge, no previous work has applied a
utility-based framework to instance-based transfer learning in relational domains.

1.2 Goals and Research Questions

This work aims to leverage instance-based transfer learning and utilities to effec-
tively transfer knowledge across relational domains to improve the performance of
a target SRL model. To this end, we propose a two-stage transfer approach called
UTIL-BRDN. UTIL-BRDN first maps and combines data from two distinct rela-
tional domains and then uses the combined data to fit a SRL model, augmented
with utilities, for the target task. In particular, we focus on Boosted Relational
Dependency Networks (RDN-Boost), an alternative strategy to learning Relational
Dependency Networks (RDNs).

Throughout this work, we aim to answer the following research questions re-
garding the properties of UTIL-BRDN and its relation to the baseline consisting of
learning from scratch:

• Q1. Does UTIL-BRDN learn accurate models that outperform learning from
scratch, by transferring instances from another domain?

• Q2. Does the proposed utility-based objective function impact transfer learn-
ing?

• Q3. Does UTIL-BRDN learn accurate models despite poor mapping choices?

• Q4. Which aspects of a mapping contribute to successful transfer to a target
domain?

• Q5. Which mechanisms does UTIL-BRDN have to mitigate negative transfer?

• Q6. Does balancing across instance groups effectively enhance performance?

• Q7. How sensitive is UTIL-BRDN to the amount of data available for the
target domain?

This work does not address the problems of best mapping search and source
selection.
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1.3 Key Results

We conducted several experiments to address our research questions. First, we
established baselines by evaluating RDN-Boost in learning from scratch on seven
widely used real-world relational datasets, considering scenarios with both large
and limited data availability. We then performed three different sets of transfer
experiments to evaluate the properties of UTIL-BRDN, aiming to understand how
the model’s performance relates to the use of utilities, the selected mapping, the
instance weighting strategy, and the amount of data available in the target domain.

Our results indicate that UTIL-BRDN effectively transfers knowledge by lever-
aging instances from the source domain (Q1). With appropriate parameterization,
found via grid search, UTIL-BRDN significantly outperforms the baseline in cer-
tain transfer scenarios, such as from IMDB to Cora, with an improvement of 0.31
in AUC-PR, and from Twitter to Yeast, whose improvement in AUC-PR is 0.18.
Interestingly, Cora and Yeast are the domains most affected by data scarcity in
learning from scratch and also benefit the most from transfer with UTIL-BRDN. In
other scenarios, our method achieves results comparable to learning from scratch.
We demonstrate that this capability is closely related to the use of utilities (Q2). In
particular, the UTIL-BRDN variant without these utilities incorporated into RDN-
Boost is less robust and efficient.

We also find evidence indicating that UTIL-BRDN presents some robustness
to poor mapping choices (Q3). We visually illustrate this property, showing that
certain mappings consistently yield models superior to the baseline. In contrast,
other mappings are much more dependent on the model parameterization and often
result in worse models. Despite that, under an appropriate parameterization of
UTIL-BRDN, even bad mappings can lead to models as good as those obtained
with high-quality mapping. We also provide empirical evidence on the relation
between source-target similarity, which depends on the mapping, and UTIL-BRDN
performance (Q4).

Moreover, we found that utilities and instance weights provide UTIL-BRDN with
both implicit and explicit mechanisms for instance selection, respectively. This is
instrumental in mitigating the negative transfer and enhancing the performance [8]
(Q5 and Q6). On the other hand, the amount of target data mainly impacts UTIL-
BRDN models with poor parameterization but is not enough to significantly improve
learning from scratch (Q7).

1.4 Contributions

In summary, our main contribution is threefold.
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Figure 1.1: SRL transfer learning taxonomy.

1. Instance-based transfer learning for the relational domain: We intro-
duce the approach known as instance-based transfer learning into relational
domains, focusing on statistical relational models. In particular, our approach
leverages the data from a source domain instead of leveraging a pre-trained
model.

2. Utility-based learning for the relational domain: This work focuses on
RDN-Boost and extends it to accommodate a broader class of utility func-
tions beyond its traditional objective function consisting of the conditional
log-likelihood (CLL). We achieve this by introducing α-fair utilities, which
have max-throughput fairness, proportional fairness, and max-min fairness as
special cases. In particular, CLL corresponds to proportional fairness under
our design. Utilities can vary across domains and capture non-linear weights,
reflecting that the cost of errors can be tuned in an instance-based fashion.

3. Assessment of the impact of utilities on classification accuracy and
robustness: Given a target metric of interest, such as AUC-ROC or AUC-
PR, we report experimental results indicating how utilities impact such metrics
over a broad set of domains. In particular, we experimentally indicate that
utility functions can compensate for bad mappings between source and target
domains. Indeed, utilities build robustness into the learning process, providing
a flexible mechanism to mitigate negative transfer.

Figure 1.1 identifies our key contributions (dark blue) among related literature
approaches for SRL transfer learning.
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1.5 Outline

The remainder of this work is organized as follows. Chapter 2 reviews the literature
on statistical relational learning and other relational learning approaches, trans-
fer learning, and utility maximization. Next, we introduce some basic background
on these fields in Chapter 3. We also introduce Relational Dependency Networks
(RDNs) and its learning algorithm based on functional gradient boosting (RDN-
Boost). Chapter 4 describes UTIL-BRDN, our utility-driven approach to instance-
based transfer learning for statistical relational learning. The experiments and their
results are presented and discussed in Chapter 5. Finally, Chapter 6 concludes this
work and suggests possible directions for future work.
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Chapter 2

Related Work

2.1 Relational Learning

For a long time, much of the focus in machine learning was on propositional tech-
niques. However, due to the complexity of relational data, propositional models
are unable to effectively learn from this type of data. To address this limitation,
several areas of machine learning have developed strategies to enable learning from
relational data. Figure 2.1 provides an overview of key contributions in this field,
including Propositionalization, Knowledge Graph Embeddings, Graph Neural Net-
works, Inductive Logic Programming, and Statistical Relational Learning.

Propositionalization. Propositionalization [17–19] involves pre-processing rela-
tional data to reduce it into a propositional representation, typically starting with
multiple tables (relational databases) or First-Order Logic (FOL) knowledge bases.
In the propositional format, instances are characterized by a fixed-length vector of
attribute-value pairs, which forms a single table that can be used to train traditional
machine learning models, such as neural networks and decision trees. The ability to
leverage traditional models makes propositionalization an attractive alternative for
learning in relational domains. However, the conversion of data representation typ-
ically results in a loss of information, which can be detrimental to the performance
of the resulting model.

Knowledge Graph Embeddings and Graph Neural Networks. Rather than
framing relational data into a propositional representation to fit traditional models,
some approaches extend propositional models to the relational domain. Knowledge
Graph Embeddings (KGE) and Graph Neural Networks (GNNs) both process graphs
as input and learn vector representations (embeddings) for nodes and edges.

In KGE [20–22], the learned representations allow inferences to be made through
algebraic operations on the embeddings, such as vector addition and projection.
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Figure 2.1: Comparison of Relational Learning Strategies

These methods are commonly used in tasks like knowledge graph completion, where
missing relationships are inferred based on the learned patterns in the embeddings.

On the other hand, GNNs [23] are a category of deep neural networks designed
to operate on graph structures using special convolution operators based on the
message-passing framework. Stacking GNN layers, such as Graph Convolutional
Network (GCN) [24] and Graph Attention Network (GAT) [25], allows for the ex-
traction of expressive embeddings for the graph’s nodes and edges. GNNs have
proven effective in tasks such as node classification, link prediction, graph-level pre-
diction, community detection, and anomaly detection. While these methods typi-
cally achieve high accuracy, one limitation is their lack of interpretability compared
to logic-based approaches.

Inductive Logic Programming. Inductive Logic Programming (ILP) [26–29]
extends First-Order Logic (FOL) to enable the learning of rules from relational data,
typically represented in a Prolog-like format. Prominent ILP models include FOIL
(First-Order Inductive Learner) [27], Progol [28], and TILDE [29], which extends
decision trees to relational domains. One of the key strengths of ILP methods is
their interpretability. However, ILP does not account for uncertainty, which can be
a limitation in many real-world applications.

Statistical Relational Learning. To overcome the limitations of ILP in handling
uncertainty, SRL [1, 2] incorporates probabilistic reasoning into relational models.
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SRL methods usually extend graphical models to relational domains, learning proba-
bilistic distributions over attributes of different objects in the domain, as specified in
the framework of Probabilistic Relational Models [30]. Examples of SRL models in-
clude Relational Bayesian Networks [30] and Relational Dependency Networks [31],
which assume relational data is represented across multiple tables in a relational
database. Other models, such as Markov Logic Networks [32] and Boosted Rela-
tional Dependency Networks [33], are designed to operate over First-Order Logic
knowledge bases. SRL models offer high expressiveness and can typically be inter-
preted, but they often face scalability challenges due to the large search space, the
complexity of model structure learning, and the inference procedures involved.

This work focuses on the field of Statistical Relational Learning, particularly on
Boosted Relational Dependency Networks, as it provides an efficient alternative for
learning both the structure and parameters of Relational Dependency Networks [33]
and achieved superior results compared to other state-of-the-art approaches [33].

2.2 Instance-Based Transfer Learning

Instance-based transfer learning is an alternative approach to performing transfer
learning [8, 9, 34]. In this approach, instances from the source domain are integrated
with the dataset from the target domain, and a model is fitted using the combined
data.

TrAdaBoost [9] is an instance-based transfer learning extension of AdaBoost.
Like AdaBoost, it dynamically adapts the weights of instances based on model pre-
dictions. However, TrAdaBoost introduces a mechanism to differentiate between
instances from different domains: misclassified instances in the source domain are
punished, while those in the target domain have their weights increased. This ap-
proach aims to prevent the model from learning spurious patterns from the source
domain while encouraging it to improve predictions for misclassified instances in the
target domain.

Our work shares similarities with TrAdaBoost [9] in at least two aspects. First,
both methods fall within the category of instance-based transfer learning, trans-
ferring instances from the source to the target domain. Second, our method also
includes hyperparameters that determine how to handle poor instances from each
domain, particularly those with large prediction errors. Consequently, our approach
can similarly punish misclassified instances from the source domain or emphasize
those from the target domain. Other strategies are also feasible under our approach.
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Figure 2.2: Typical transfer learning pipeline in SRL: learn a model from source
data, map it to the target domain, and refine with target data.

2.3 Transfer in Statistical Relational Learning

Figure 2.2 shows the pipeline usually employed in the literature of transfer learning
for statistical relational learning. It consists of the following separate and inde-
pendent stages: model learning from source domain, model mapping, and revision.
In the first stage, the structure of a model trained on the source domain data are
mapped to the target domain. Next, this mapped model is refined using a theory
revision method using the target domain data. The strategy of reusing a model
pre-trained in another domain to learn a task in the target domain is also known as
model-based transfer learning. Works following this pipeline vary primarily in their
choice of the predictive model for the transfer process (step 1, in Figure 2.2), the ap-
proach used to map the model structure (steps 2 and 3, in Figure 2.2), and the tech-
niques employed for the model refinement (step 3, in Figure 2.2). Most of the existing
approaches are tailored to work with Markov Logic Networks (MLNs) [5, 32, 35–38]
or RDN-Boost [6, 7, 39, 40].

Transfer of Markov Logic Networks. To our knowledge, TAMAR (Transfer
via Automatic Mapping And Revision) [5, 32] is the pioneering approach in transfer
learning for SRL models. Using a best-mapping heuristic, TAMAR autonomously
maps the clauses of a MLN learned from the source domain to a target domain.
For each clause, it exhaustively searches all valid predicate mappings and selects
the one that maximizes the weighted pseudo-log-likelihood (WPLL) on the target
data. Following this, it refines the mapped model on the target domain using an
algorithm similar to FORTE [41].

SR2LR (Short-Range to Long-Range) [35] adapts TAMAR for scenarios with
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extremely limited target data, where all available information pertains to a single
entity. SR2LR omits the model revision step and instead focuses on mapping predi-
cates from clauses directly applicable to the single target entity (short-range clauses)
before addressing the remaining clauses (long-range clauses). This method has been
shown to significantly improve performance compared to mTAMAR, which handles
only the mapping phase of TAMAR.

Other transfer approaches involve learning domain-independent patterns from
the source domain and encoding them as second-order Markov logic formulas, which
are then instantiated with target domain predicates [36, 37]. Unlike first-order logic
formulas specific to a domain, second-order formulas include predicate variables that
can be instantiated across domains. By using this approach, DTM (Deep Transfer
via Markov logic) DAVIS e DOMINGOS [36] addresses TAMAR’s scalability issues
by avoiding exhaustive searches during clause mapping.

TODTLER (Two-Order-Deep Transfer Learning) [37] builds on the concepts
of learning and transferring second-order formulas, outperforming DTM in both
accuracy and efficiency. TODTLER employs a three-level dataset sampling process:
(1) second-order model (M (2)) for selecting second-order templates, (2) first-order
model (M (1)) for instantiating second-order formulas into first-order ones, and (3)
dataset (D) for sampling ground facts from M (1). The transfer strategy updates the
prior of the second-order model with its posterior from the source domain, thereby
biasing the learning of the first-order model in the target domain.

In [38], transfer learning is also explicitly conceptualized as the introduction of
bias. Their Language-bias Transfer Learning (LTL) method constructs a matching-
type tree from clauses learned in the source domain, using this tree to constrain the
search space in the target domain. The search tree is then converted into clauses,
which are refined through a theory revision step to improve performance in the
target domain. This approach ensures that the transferred knowledge effectively
guides the learning process in the target domain.

Transfer of Boosted Relational Dependency Networks. The use of Rela-
tional Dependency Networks for SRL transfer learning was first introduced by the
method TreeBoostler [6]. This method adapts the mapping and revision processes
to account for the specific structure learned by RDN-Boost, consisting of a series of
Relational Regression Trees (RRTs). Unlike MLNs, where predicate mappings are
independent across clauses, TreeBoostler maps predicates within each tree node ac-
cording to their order in the tree and adjusts subsequent nodes based on the already
mapped predicates. The revision process involves pruning or expanding nodes to
enhance the model.

TransBoostler [7] offers an alternative mapping strategy to TreeBoostler by lever-
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aging word embeddings. This approach uses pre-trained word embeddings to extract
vector representations for predicates and performs mapping based on vector simi-
larity. This method not only achieves strong performance but also tends to be more
time-efficient by utilizing the contextual information encoded in the embeddings.

GROOT (Genetic algorithms to aid tRansfer learning with bOOsTsrl) [39] ex-
tends TreeBoostler by incorporating genetic algorithms for transfer learning. Unlike
local search methods, GROOT uses genetic algorithms to transfer the source model
structure to the target domain while simultaneously refining the model. Each in-
dividual in the genetic algorithm’s population represents a mapping of trees, with
operators such as mutation (pruning or expanding branches) and crossover (exchang-
ing subtrees between individuals) driving the evolution of the model.

Despite all these works focusing on transfer learning in SRL, little attention has
been given to investigating how to determine the utility of a source domain for a
given target domain before even performing the transfer. The work of [40] aims
to fill this gap, indicating how to choose the source domain in case one has the
flexibility to do so.

Our work: Instance-Based Transfer Learning for Relational Domains.
Similar to the works discussed in this section, we also address the problem of transfer
learning in relational domains using SRL models. In particular, we follow recent
works on the literature [6, 7, 39, 40] and build our approach upon RDN-Boost.

However, we introduce a novel framework that transfers instances from the source
domain to the target domain, rather than transferring the structure of a model
learned from the source domain. In the relational realm, this strategy, known as
instance-based transfer learning, still relies on mapping but eliminates the need
for a revision step, as the target model is simultaneously learned from both target
and source instances. This is possible because we design a utility-based objective
function for the RDN-Boost algorithm that integrates instances from both domains,
allowing us to control the influence of each instance on the learning process. Unlike
some of the previous work, we do not propose or explore different mechanisms to
find the best mapping. Instead, we assess the properties of our approach.

Moreover, we conduct an investigation complementary to the work of LUCA
et al. [40], examining how the similarity between source and target data impacts
model performance in a transfer learning setting. Unlike their approach, which pro-
poses a new algorithm to select the best source domain, we evaluate the robustness of
our transfer method in the presence of source data with very disparate distributions.
Additionally, we introduce the interpretation of mappings as different source data.
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Chapter 3

Background

This chapter introduces some of the key concepts used in this work. Section 3.1
introduces the basic concepts of First-Order Logic and characterizes a knowledge
base. Next, Section 3.2 provides an overview of transfer learning, specifically focus-
ing on instance-based transfer learning. Then, Section 3.3 presents the ILP model
called Relational Regression Tree (RRT). In Section 3.4, we show how RRTs are used
by RDN-Boost, a gradient-based boosting approach used to learn RDNs. Finally,
Section 3.5 describes the utility maximization framework.

3.1 First-Order Logic

First-Order Logic is a powerful extension of propositional logic, well-suited for cap-
turing the complexity of relational domains and enabling reasoning. Objects from
the domain, such as the object mary, are represented by constants, which are de-
noted by lowercase letters. A variable, such as X, is represented by an uppercase
letter and corresponds to a generic object that can be replaced by a constant. Both
constants and variables are referred to as terms. Each term is associated with a
type.

A predicate defines a relationship between terms. It is denoted by the predi-
cate name in lowercase letters, followed by its arity (e.g., parent_of/2 ). The arity
specifies the number of terms the predicate takes as arguments. For instance, in
parent_of/2, the arity is 2, meaning the predicate expects two terms: the parent
and the child. Predicates of arity 1 and 2 are called unary and binary predicates,
respectively. Unary predicates, such as actor/1, typically assign a label to an object,
while binary predicates can encode either the attributes of that object (e.g., age/2 )
or relationships between different objects (e.g., parent_of/2 ).

An atom is a predicate with explicit terms, such as in parent_of(sheila, X).
An atom is also called a positive literal. When preceded by a negation operator
(e.g., ¬parent_of(sheila, X)), it is referred to as a negative literal. Literals (or
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atoms) without variables (e.g., parent_of(cynthia, mary)) are called ground literals
(or ground atoms).

A knowledge base for a predictive task is built of a set of labeled instances and
a background knowledge about the domain. The labeled instances include positive
and negative examples of the target relation. In turn, the background knowledge
records logical facts characterizing the objects and relationships within the domain.
Additionally, a set of mode specifications is typically required by First-Order Logic-
based learning algorithms to efficiently explore the model search space [28, 29]. A
mode specifies the types of terms for each predicate and how the variables can be
bound in the rules the model explores during learning.

Table 3.1 provides an example of such a base, where the task is to predict whether
one person is the sister of another (sister_of/2 ), using information about their
genders (male/1 or female/1 ), parents (parent/2 ), and workplaces (works_at/2 ).

Table 3.1: A toy example of a First-Order Logic knowledge base

Positives Negatives Facts Modes
sister_of(sheila, eva). sister_of(sheila, peter). female(sheila). female(+person).

sister_of(sheila, david). sister_of(david, jessica). female(eva). male(+person).
sister_of(sheila, ron). sister_of(zula, amanda). female(cynthia). parent_of(+person, +person).

sister_of(cynthia, steven). sister_of(donald, cynthia). male(ron). parent_of(-person, +person).
sister_of(mary, mark). sister_of(jessica, ron). parent_of(jessica, sheila). parent_of(+person, -person).
sister_of(zula, clevend). sister_of(mark, cynthia). parent_of(jessica, eva). sister_of(+person, +person).

... ... parent_of(cynthia, mark). sister_of(-person, +person).
parent_of(cynthia, mary). sister_of(+person, -person).

works_at(ron, google) works_at(+person, +company).
works_at(jessica, microsoft) works_at(-person, +company).

... works_at(+person, -company).

3.2 Transfer Learning

Transfer learning [42–45] focuses on transferring knowledge gained from a task on
a source domain to improve the performance of another task, often related to the
first one, on a target domain. It is particularly useful when the target domain
lacks sufficient data to effectively train an accurate model using traditional machine
learning methods, and augmenting the dataset is either expensive, time-consuming,
or infeasible. In this work, we refer to traditional learning methods as learning from
scratch, where a new model is trained independently for each task without leveraging
knowledge from other tasks.

Beyond the assumption that the number of samples in the target dataset is much
smaller than in the source dataset, other common assumptions are summarized in
the following categorization of transfer learning methods:

• Homogeneous transfer learning. this category applies when the source and
target domains share some common features and their tasks have the same set
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of possible labels. Although the tasks or domains are related, they still differ
in terms of how the data is distributed or how the labels are associated with
the features. For example, the same features may behave differently in the
two domains, or the relationship between the features and the labels might
change.

• Heterogeneous transfer learning. This occurs when the source and target
domains do not share any common features or their tasks have different sets
of possible labels.

Transferring between relational domains falls under heterogeneous transfer learn-
ing, as the feature spaces differ. In relational domains, the feature space is defined
by the domain vocabulary. By vocabulary, we mean the set of predicates and term
types used to describe instances in the domain.

Transfer Strategies. One of the key questions in designing a transfer learning
algorithm is “how to transfer? ”. In what follows, we present different transfer ap-
proaches to address this question.

• Feature-based transfer learning. Involves projecting the source and target
data into a shared feature space to reuse the labeled data from the source
domain. The key challenge lies in learning a new feature space of high quality.
This category is recommended when there is little feature overlap between the
source and target domains.

• Model-based transfer learning. Reuse a pre-trained model learned from
the source domain. Typically, the target model is initialized with the pre-
trained model’s parameters and is then fine-tuned using a small set of labeled
data from the target domain.

• Relation-based transfer learning. It is a more recent approach to transfer
learning. It assumes that certain relationships between objects are common
to both domains. Therefore, it transfers rules learned for these relationships
in the source to the target domain.

• Instance-based transfer learning. Assumes that reusing labeled instances
from the source domain can effectively support learning in the target domain.
To reuse source instances successfully, these methods usually rely on an in-
stance reweighting or resampling strategy. This category is recommended
when the source and target feature spaces significantly overlap.
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These categories for transfer strategies are not mutually exclusive. For example,
our work is built mainly on the instance-based category. However, it also fits into the
relation-based category, as our key motivation for reusing instances from the source
domain to the target domain is the expectation that both of them share similarities
in how objects are related.

Negative Transfer Regardless of the transfer strategy, all transfer learning meth-
ods should aim to avoid transferring inappropriate or irrelevant knowledge from the
source domain to the target domain. Failing to do so can result in models that
perform worse than those learned from scratch, a phenomenon known as negative
transfer [46]. Negative transfer is closely related to two key challenges in designing
a transfer learning algorithm: when to transfer and what to transfer.

The first challenge concerns whether the transfer will benefit the learning process.
This is relevant when choosing the source domains from which knowledge will be
transferred. If the source domain is not closely related to the target domain, the
transfer may lead to negative transfer. Thus, one mechanism to mitigate negative
transfer is selecting an appropriate source domain [40, 47]. The second challenge
focuses on identifying which parts of the source domain knowledge can effectively
support learning in the target domain. For example, in instance-based transfer
learning, this could involve determining which instances are relevant to transfer [8,
34].

Utility-driven approach to instance selection. The method proposed in this
work is based on instance-based transfer learning [8, 9, 34]. The goal is to reuse in-
stances from a source domain to improve data quantity and quality before training a
model for the task of interest in the target domain. Instead of just concatenating the
datasets, we use the concept of utilities to identify relevant instances. Specifically,
the instance selection problem is framed as a fair resource allocation problem, where
the model’s predictive capability is allocated to instances based on their relevance to
learning. We hypothesize that this approach can help mitigate the negative transfer
effect and improve the performance of the resulting models.

3.3 Relational Regression Trees

Motivated by the success of decision trees in the propositional domain, BLOCKEEL
e DE RAEDT [29] introduced their relational extension, First-Order Logical Decision
Trees (FOLDTs), and adapted the C4.5 algorithm [48] to induct FOLDTs. RRTs
are the regression counterpart of FOLDTs and are considered an ILP model. In the
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literature, this model is commonly referred to as TILDE, which denotes both the
learning model and the system that implements learning and inference for FOLDTs.

Structure of a FOLDT. Figure 3.1 illustrates a FOLDT to predict the relation
sister_of/2 from the domain described in Table 3.1. Unlike traditional decision
trees, a FOLDT is necessarily a binary tree in which branches indicate the success
(left branch) or failure (right branch) of tests at internal nodes. The internal nodes,
represented by ellipses, contain conjunctions of logical literals rather than attributes
or attribute-value pairs. Additionally, these nodes may share logical variables, but
a variable introduced in an internal node must not appear on its right branch. This
is because the right subtree of a node is only relevant when the test performed on
that node fails. Since each variable introduced in a node is existentially quantified,
it follows that there is no such value for the recently introduced variable that makes
the example succeed in the test, and it should not be referred to again in the subtree.

female(X), X\=Y

parent_of(Z,X)

parent_of(Z,Y)

sister_of(X,Y)

False

True False

True False

True False

True False

works_at(X,C)

False False

True False

Figure 3.1: A suboptimal first-order logical decision tree encoding the relation sis-
ter_of/2 of Table 3.1.

Performing inference in FOLDT. Inferences with a FOLDT are performed
by traversing the tree from the root node to a leaf, using the facts describing an
example and the tests at internal nodes. Due to the dependencies among variables
in different internal nodes, a test at a specific node is based on a query that combines
the conjunctions of literals from higher-level nodes, where the test succeeds for the
example, along with the conjunction of literals from the current node. Depending
on the result of the test, the example is sorted to either the left (success) or the right
(failure) subtree, continuing this process until a leaf is reached. Leaves, represented
by rectangles, provide the predictions, which may be either a regression value, as in
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RRTs, or a class label, as in TILDE for classification. Figure 3.1 is an example of a
TILDE for classification tasks.

Learning a FOLDT. A FOLDT is learned in a recursive process that starts with
an empty tree and progressively finds the best split for each internal node based on
the training examples reaching that node and a predefined split criterion, such as
entropy or weighted variance. The examples used to build the tree consist of logical
facts describing instances, similar to those in Table 3.1. The tree stops growing
when examples reaching a node are insufficient to be split into subtrees or when it
meets a stopping condition, such as the maximum tree depth.

The search space in relational domains is very large. To reduce this space and
make learning feasible, the set of candidate conjunctions of literals to be evaluated
as tests for splitting a node is determined by a refinement operator. This operator
generates a set of specializations of the query associated with the node where the
split is performed by adding new literals according to user specifications, similar to
the PROGOL system [28]. These specifications, consisting of mode declarations,
guide the search by indicating which literals can be added as refinements of a query,
which variables can appear in those literals, how variable types should be bound,
and how many times the same predicate can be used in the query.

An example of mode declarations is provided in the last column of Table 3.1.
The literals listed there are those allowed to be added to a query by the refinement
operator when generating candidate conjunctions of literals to form the new internal
nodes. Furthermore, each term is associated with a type and a symbol “+”, “−”, or
“#”, indicating the type of the term in the new literal and whether it should be an
input variable, output variable, or constant, respectively.

FOLDTs are deterministic. Due to their deterministic nature, we do not use
RRT directly in this work. Instead, we rely on RDN-Boost, an approach to learning
RDNs that employs RRTs to capture complex and uncertain dependencies among
logical atoms. The details of this approach are discussed in the following section.

3.4 Boosted Relational Dependency Networks

In this section, we introduce RDNs followed by a boosting algorithm to learn those
networks.

Relational Dependency Networks

Relational Dependency Networks (RDN) [31] extends Dependency Networks
(DNs) [49] to the relational domain. Instead of using the original formulation based
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on relational databases, this work adopts the logical perspective of RDNs as intro-
duced in [33]. Based on that, an RDN is defined as an approximate model in which
the joint probability distribution of a set of logical atoms is modeled as the product
of their conditional probability distributions (CPDs), which can be learned inde-
pendently. Thanks to this, RDNs present features that make them more interesting
compared to other related models, including interpretability and efficient learning
of the model’s parameters and structure.

As in DNs, RDNs are formalized as a directed graph G(V,E) whose nodes vℓ ∈ V
represent atoms πℓ containing logical variables (e.g., works_at(Person, Company))
that can be instantiated to generate ground atoms (e.g., works_at(ron, google)),
and edge emℓ ∈ E encodes the dependency between atoms πm and πℓ. We denote by
MB(πℓ) the Markov blanket of πℓ, i.e., the set of atoms that make πℓ conditionally
independent to other atoms, P (πℓ | Π \ {πℓ}) = P (πℓ | MB(πℓ)), where Π denotes
the set of all atoms. Note that an edge emℓ ∈ E implies that πm ∈ MB(πℓ).
Each node is associated with a CPD of the form P (πℓ | MB(πℓ)) and captures the
probability of an atom πℓ given the set of all atoms on which it depends (MB(πℓ)).

Learning an RDN is the same as learning the CPDs. Although learning CPDs
was initially addressed with relational probability trees [31], the approach based
on functional gradient boosting using RRTs introduced in [33] proved to be more
efficient. For this reason, we dedicate a more detailed description of this learning
method, also known as Boosted Relational Dependency Networks (RDN-Boost).

Functional Gradient Boosting

Let Dπ = {(xi, yi)}Ni=1 be a relational dataset relative to the target predicate π. Each
instance i ∈ Dπ represents a negative or a positive sample of a predicate π and is
characterized by xi, the set of facts that influence it (which may also influence other
instances), and by yi ∈ {0, 1}, the label associated with it. Recall from the previous
section that MB(π) represents the set of all atoms that π directly depends on. Thus,
xi represents the observed values of the atoms influencing π (i.e., of MB(π)) and yi
represents the observed value of the target predicate π. As pointed in the previous
section, observed values of atoms are also referred to as ground atoms.

We define the model inspired by the framework of logistic regression, for binary
classification. Let Yi be a random variable, produced by the model, representing
whether the target predicate is predicted to be positive for the i-th instance. The
model estimates the probability of the target predicate π being positive (i.e., Yi = 1)
based on the facts xi, applying a sigmoid function to a learnable function ψ.

The learnable function is given by ψ : X → R, where X is the space of all
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possible groundings of predicates in MB(π). For each instance i, we have

P (Yi = 1 | xi;ψ) =
1

1 + e−ψ(xi)
. (3.1)

Moreover, letting
ϕ(xi) = P (Yi = 1 | xi;ψ) (3.2)

we can express the likelihood of observing yi given the facts xi as:

P (yi | xi;ψ) = ϕyi(xi)(1− ϕ(xi))1−yi =

ϕ(xi) if yi = 1

1− ϕ(xi) if yi = 0.
(3.3)

Learning the desired function ψ is achieved by optimizing an objective function,
which normally is the conditional log-likelihood (CLL) of the dataset Dπ, given by

L(Dπ;ψ) = ln
N∏
i=1

P (yi | xi;ψ) =
N∑
i=1

yi lnϕ(xi) + (1− yi) ln(1− ϕ(xi)). (3.4)

Under the objective of maximizing the above function, we will argue that its partial
derivatives relative to improvements on ψ is yi − ϕ(xi).

An iterative two-stage process to determine ψ. Next, we aim to determine
ψ, implicitly defined by Eq. (3.1). Unlike the case of logistic regression, ψ is a
nonparametric function. Following the functional gradient boosting method, we
approximate ψ by the sum of K regression functions, also known as regressors, for
some K > 0. The regressors are computed iteratively and incrementally, and for
k ∈ {1, . . . , K} the k-th iteration produces both the increment ∆k and the regressor
ψk, as in

ψk = ψ0 +∆1 + · · ·+∆k, (3.5)

where ψk : X→ R.
Stage 1. Under the objective of maximizing Eq. (3.4), the partial derivative

of the objective function with respect to ψk−1(xi), at the i-th instance, is given by

δk,i =
∂L({(xi, yi)};ψk−1)

∂ψk−1(xi)
(3.6)

=
∂(yi lnϕk−1(xi) + (1− yi) ln(1− ϕk−1(xi)))

∂ψk−1(xi)
= yi − ϕk−1(xi), (3.7)

where
ϕk−1(xi) = P (Yi = 1 | xi;ψk−1) =

1

1 + e−ψk−1(xi)
. (3.8)
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Equation (3.7) corresponds to the difference between the actual label for each data
point and the model prediction. Such difference is the error, used to update the
model in the next iteration, allowing the model to gradually become more accurate.

At each iteration k, the above parameters are computed using instance-based
computations, capturing the specific relationships between features and the target
variable for every data point. Once these parameters are determined at the instance
level, as indicated above, they are generalized using RRTs [29, 33], an extension of
regression trees to the relational domain, as detailed in the sequel.

Stage 2. Let Dδ be the collection of available samples produced at stage
1, Dδ = {((xi, yi), δk,i)}Ni=1, where δk,i is given by Eq. (3.7). We denote by ĥk the
regressor to the samples in Dδ. Typically, ĥk consists of a RRT and is obtained by
minimizing the squared error between its estimates and δk,i,

ĥk = argminh
N∑
i=1

(h(xi, yi)− δk,i)2 .

Then,

ψk = ψ0 + η1ĥ1 + · · ·+ ηkĥk, (3.9)

where ηk is the learning rate at the k-th step, and ∆k = ηkĥk (see Eq. (3.5)). In the
realm of boosted models, the RRT ĥk is also referred to as a weak learner, that is
fitted to the error at the k-th iteration. The model is built iteratively, where each
weak learner focuses on the errors made by the previous one.

In summary, Eq. (3.7) computes the error at each step, while Eq. (3.9) uses this
error information to iteratively update and improve the model. The model becomes
more accurate over time by learning from its mistakes at each step, improving its
performance gradually by focusing more on difficult cases.

After the iterative process is concluded at step K, we let ψ in Eq. (3.1) be
approximated by ψK . This iterative process ensures that the model, at every step,
balances detailed instance-level accuracy (stage 1) with the ability to generalize
across diverse data points (stage 2), as further detailed in [50–55]. Stages 1 and 2
are summarized in Algorithm 1.

Accounting for utilities and multiple domains. In the remainder of this work,
we will indicate how to adapt the above framework to account for utilities and
multiple domains, such as a source and a target domain in the realm of transfer
learning. In particular, we will generalize Eq. (3.4) and then show how to adapt
Eq. (3.7) accordingly.
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Algorithm 1 Learn P (π |MB(π)) using RDN-Boost
Require: Initial guess ψ0, dataset Dπ, number of iterations K, and learning rates

ηk
Ensure: The CPD P (π |MB(π)) for the target predicate π
1: for k = 1 to K do
2: Dδ ← ∅ ▷ Stage 1 begins here
3: for i ∈ Dπ do
4: δk,i ← yi − ϕk−1(xi) ▷ See Eq. (3.7)
5: Dδ ← Dδ ∪ {((xi, yi), δk,i)}
6: end for
7: ĥk ← Fit a RRT from Dδ ▷ Stage 2 begins here
8: ψk ← ψk−1 + ηkĥk
9: end for

10: return ϕK ▷ ϕK is a function of ψK , see Eq. (3.8)

3.5 Utility Maximization

Utility maximization is a mathematical tool widely used to address the problem
of fair resource allocation in the realm of Economics, Computer Networks [10, 56]
and Federated Machine Learning [12]. In that task, R units of a given resource
(e.g., link bandwidth) should be allocated to N agents (e.g., users). The total of
resources allocated to the i-th agent is denoted by ri ≥ 0 and the user’s level of
satisfaction with this allocation is measured by u(ri), where u : R → R is called a
utility function. A utility function is required to be a continuously differentiable,
increasing and concave function. Given the allocation r = (r1, . . . , rN) ∈ RN , the
total satisfaction is defined as

U(r) =
N∑
i=1

wiu(ri), (3.10)

where wi is the weight associated with the i-th agent. The goal of utility maximiza-
tion is to solve the following optimization problem:

max
r

U(r) s.t.
N∑
i=1

ri ≤ R. (3.11)

We provide further details on how we use the utility maximization framework in
Chapter 4. Broadly speaking, in our instance-based approach to transfer learning,
each agent represents a data point (instance) from a domain of interest. The learner
should learn how to allocate its predictive capacity to instances. In particular,
we consider ri as the predicted probability mass associated with the actual class
of the instance. Additionally, we tackle the optimization problem without explicit
constraints, given our choice of model design. Finally, we rely on α-fairness [15, 16].
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Utility functions usually allow for the implementation of different notions of
fairness. In particular, often three definitions of fairness stand out, namely: max-
throughput fairness (which in [12, 57] is referred to as utilitarianism), proportional
fairness [10], and max-min fairness (referred to as egalitarianism in [12, 57]). All
these variations are encompassed by α-fairness, defined as

u(x) =

x1−α

1−α if α ̸= 1

lnx if α = 1.
(3.12)
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Chapter 4

Methodology

This chapter outlines our methodology. We begin by formalizing the problem in
Section 4.1. Section 4.2 introduces our general framework for instance-based transfer
learning in statistical relational learning, applying it to RDN-Boost. We discuss
source and target datasets preprocessing in Section 4.3. Section 4.4 introduces the
use of utilities in the learning process of RDN-Boost and extends it to account for
multiple domains. Next, we propose an instance weighting strategy to mitigate
strong imbalance among groups of instances in Section 4.5.

4.1 Problem Statement

In this work, we leverage instance-based transfer learning to enhance the perfor-
mance of a predictive model in a target relational domain where training data are
limited. This strategy involves reusing instances from a source dataset sampled from
another relational domain to build a target model. This requires instances from dif-
ferent domains to be expressed in a common vocabulary. Next, we can employ our
augmented version of RDN-Boost to learn from multiple domains and identify which
instances benefit or negatively impact the model.

4.2 UTIL-BRDN

We propose UTIL-BRDN, a utility-driven approach to transfer instances for learn-
ing RDN-Boost. It comprises two stages, as illustrated in Figure 4.1. The first stage
combines instances from two distinct relational domains into a single dataset, all
mapped to the vocabulary of the target domain. Then, a predictive model is fitted
from the combined dataset instances. Using source and target data to train a model,
we expect to improve the performance of the target task compared to learning from
scratch. To achieve this, we must prevent negative transfer. This is tackled in the
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Figure 4.1: Utility-driven approach to Transfer Instances for Learning Boosted Re-
lational Dependency Networks (UTIL-BRDN).

second stage, where we use an instance selection mechanism to prevent transferring
poor instances. This mechanism is inspired by the problem of fair resource alloca-
tion. UTIL-BRDN 1 is built on the implementations of BoostSRL2 and on srlearn3.
In the following sections, we discuss each stage in more detail.

4.3 Combining Instances from Source and Target

Domains

This section describes steps 1-3 of Figure 4.1. We use the term vocabulary to
refer to the high-level data structure describing which entities, relationships, and
attributes constitute the domain of interest. From the perspective of First-Order
Logic, a vocabulary consists of a set of template atoms, each of which corresponds
to a predicate from the domain applied to its term types instead of objects. The
difference between a regular atom and a template atom relies on terms, which in
regular atoms represent objects in the domain and in template atoms correspond to
object types (entities). Therefore, one needs to map the vocabularies appropriately
before integrating the datasets. Compared with the propositional case, mapping
vocabularies is equivalent to reducing instances from different domains to the same
feature space.

To establish a mapping from source instances to the target domain, the first
1UTIL-BRDN is available on GitHub: https://github.com/cainafigueiredo/util-brdn.
2BoostSRL is a Java-based system specialized in SRL models powered by gradient-based boost-

ing, including RDN-Boost.
3srlearn is a Python package which provides an interface based on scikit-learn for BoostSRL

models.
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step involves mapping their respective vocabularies, i.e., finding a correspondence
between the predicates and the term types from the source and target domains.
A mapping from a source template atom p(s1, . . . , sn) to a target template atom
q(t1, . . . , tn) is denoted as

Mp7→q = (p/n 7→ q/n, {s1 7→ t1, . . . , sn 7→ tn}) . (4.1)

In this expression, the first element of the tuple specifies the mapping between two
predicates of the same arity, while the second one comprises the mapping of their
respective term types. A source atom can also be mapped to an “empty” atom, e.g.,
when it lacks a corresponding target atom of the same arity.

As source atoms are mapped, it is imperative to maintain consistency across all
term mappings. For instance, if s1 7→ t1 after performing Mp 7→q, then subsequent
mappings such as Mp′ 7→q′ = (p′/1 7→ q′/1, {s1 7→ t2}), with t2 ̸= t1, are prohibited,
as s1 7→ t2 contradicts the prior assignment. A mapping is then said to be legal if all
source atoms are mapped either to a valid target atom or an empty atom, without
violating global term mappings.

Moreover, except for mappings to the empty atom, we enforce one-to-one pred-
icate mappings, similarly to what is done in [6, 7]. This means that each source
predicate is mapped to a single target predicate (or to the empty predicate), and
vice-versa. Unlike previous work, which typically requires a match between the tar-
get predicates from the source and target domains to transfer the structure of a
pre-trained model, our approach does not force such a mapping. Instead, any pred-
icate from the source domain can be mapped to the target predicate in the target
domain, provided they are compatible with each other, which provides greater flex-
ibility in finding higher-quality mappings. However, this flexibility also introduces
increased complexity due to the expanded search space.

Algorithm 2 outlines the process of generating all valid mappings under these
assumptions. The procedure FindAllValidMappings serves as an initialization step
to ensure that the mappings always map a predicate from the source vocabulary to
the target predicate in the target vocabulary. This ensures that new positive and
negative instances for the target predicate are added to the dataset, allowing the
UTIL-BRDN objective function to account for these new instances in the learning
process. Then, ExpandMappings is called recursively until all predicates in the
source vocabulary are mapped to predicates in the target vocabulary.

After finding a legal mapping between the vocabularies, all source instances are
mapped to the target domain and concatenated to the target dataset. To prevent
collisions between constants from the mapped and target instances, we prefix all
constants from the mapped instances with the word source. In addition, we track
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the origin of each example within the combined dataset to effectively control its
impact on the final model.

Mapping Selection Strategy. Multiple legal mappings may exist between a pair
of vocabularies. The challenge of identifying the best mapping has been addressed
in previous work (see Section 2.3). However, most of these approaches consist of
greedy methods relying on pre-trained models to build the mappings, making them
unsuitable for our instance-based transfer learning method, which leverages source
data instead of a pre-trained model.

This work does not aim to adapt existing mapping search approaches or to
develop new methods. Instead, we introduce an instance-based transfer learning
method within the context of statistical relational learning and empirically analyze
its properties. Future research could extend our approach to propose new algorithms
that enhance the mapping process.

In our experiments, we employ a simple mapping selection method based on ran-
dom sampling, where a mapping is uniformly selected from the set of all legal map-
pings generated by Algorithm 2. While random search can be inefficient and may
struggle to find optimal solutions, it is often used as a baseline in search problems,
providing a valuable comparison point for future strategies associated with UTIL-
BRDN to enhance mapping selection. Additionally, this straightforward approach
allows us to gain meaningful insights into transfer learning using UTIL-BRDN.

4.4 Augmenting RDN-Boost to Account for Multi-

ple Domains

RDN-Boost was originally designed to learn a RDN from a single domain. To en-
hance its capability to utilize data from another domain when learning a target task,
one could preprocess the data using our instance combination strategy introduced
in the previous section. Then, the combined data can be fed into the original RDN-
Boost algorithm described in Section 3.4. However, this straightforward approach
does not assess the relevance of instances from different domains, which can lead to
irrelevant or low-quality instances negatively impacting the model’s performance.

To address this issue, we introduce steps 4 and 5 in Figure 4.1. More details
about step 4, which involves instance weighting, are provided in Section 4.5. In what
follows, we focus on step 5, where we introduce a modified version of RDN-Boost.
In this version, the CLL maximization used to learn the RDN in the original RDN-
Boost is replaced by an alternative optimization problem described in Section 4.4.2.
We also illustrate how our approach generalizes the original RDN-Boost. Specifically,
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our novel objective function integrates instances from both the source and target
domains and is built on the utility maximization formalism. Rather than introducing
our final proposal immediately, we first demonstrate how to incorporate utilities into
a single-domain scenario in Section 4.4.1. Then, in Section 4.4.2, we explicitly extend
our approach to simultaneously account for both the source and target domains.

4.4.1 Incorporating Utilities into RDN-Boost

Let

zi = P (yi | xi;ψ) =

ϕ(xi) if yi = 1

1− ϕ(xi) if yi = 0
(4.2)

be the probability mass function evaluated at instance i = 1, . . . , N . In the same
spirit that led from the definition in Eq. (3.3) to the objective function in Eq. (3.4),
we use the definition of zi in Eq. (4.2) to define our new objective function, which
is an adaptation of Eq. (3.10) to our approach to instance-based transfer learning.
This adaptation consists in substituting z = (z1, . . . , zN) for r and results in

U(Dπ;ψ) = U(z) =
N∑
i=1

wiu(zi). (4.3)

Consequently, the partial derivative in Eq. (3.7) becomes

δk,i =
∂U({(xi, yi)};ψk−1)

∂ψk−1(xi)
(4.4)

= wi
∂u(zi)

∂ψk−1(xi)
(4.5)

= wi
∂u(zi)

∂zi

∂zi
∂ϕk−1(xi)

∂ϕk−1(xi)

∂ψk−1(xi)
(4.6)

= wiz
1−α
i (yi − ϕk−1(xi)). (4.7)
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The derivatives appearing in Eq. (4.7) are as follows:

∂u(zi)

∂zi
=


∂

∂zi

(
z1−αi

1− α

)
if α ̸= 1

∂

∂zi
ln(zi) if α = 1

(4.8)

=

z−αi if α ̸= 1

z−1
i if α = 1

(4.9)

= z−αi , (4.10)

∂zi
∂ϕk−1(xi)

=


∂ϕk−1(xi)

∂ϕk−1(xi)
if yi = 1

∂(1− ϕk−1(xi))

∂ϕk−1(xi)
if yi = 0

(4.11)

= (−1)1−yi , (4.12)

∂ϕk−1(xi)

∂ψk−1(xi)
= ϕk−1(xi)(1− ϕk−1(xi)). (4.13)

Putting them together, we can proceed with the calculation of δk,i:

δk,i = wiz
−α
i (−1)1−yiϕk−1(xi)(1− ϕk−1(xi)) (4.14)

= wi(yi − ϕk−1(xi))(ϕ
1−α
k−1(xi))

yi((1− ϕk−1(xi))
1−α)1−yi (4.15)

= wi(yi − ϕk−1(xi))(ϕ
yi
k−1(xi)(1− ϕk−1(xi))

1−yi)1−α (4.16)

= wiz
1−α
i (yi − ϕk−1(xi)). (4.17)

This expression for δk,i allows us to use RDN-Boost to learn a model under the
alternative objective function given in Eq. (4.3). In Section 4.4.2, we augment the
model to simultaneously accommodate instances from both a source and a target
domain.

Derivatives, fairness, and instance selection. In Eq. (4.17), the derivative
δk,i for iteration k and instance i corresponds to the prediction error yi − ϕk−1(xi)

modulated by the factor wiz1−αi . This factor is influenced by the instance weight
wi, the prediction ϕk−1(xi), the instance class yi, and the modulation parameter
α. Figure 4.2 illustrates how different values of α implicitly affect the derivatives
and, consequently, the relevance of each instance for learning. Solid lines represent
positive instances (yi = 1), dashed lines represent negative instances (yi = 0), and
we consider wi = 1. The derivative captures different notions of fairness depending
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Figure 4.2: Derivative associated with the instance i at iteration k for our utility-
driven version of RDN-Boost, letting wi = 1.

on the value of α:

• Throughput-Maximization Fairness: α = 0, and more generally any
α ∈ [0, 1), reduces the influence of instances with large prediction errors by
decreasing the absolute value of their derivatives compared to the original
RDN-Boost. The smaller the value of α, the less significant these instances
become. In the context of transfer learning, which will be discussed in the next
section, this approach is justified by the fact that source domain instances that
are difficult to predict in the target domain may not actually be relevant for
the latter [9].

• Max-Min Fairness: α = 1.3, and more generally any α ∈ (1,∞), amplifies
the influence of instances with large prediction errors by increasing the absolute
value of their derivatives compared to RDN-Boost. This causes the model to
focus more on these instances in the subsequent learning iteration.

• Proportional Fairness: for α = 1, the original RDN-Boost becomes a special
case of our method, as by Eq. (3.7), the derivatives of RDN-Boost and the
proposed approach become equivalent when setting α = 1 and wi = 1 for
every instance i.

4.4.2 Integrating Utilities From Source and Target Domains

By incorporating utilities into the optimization objective of RDN-Boost, we obtained
a mechanism to determine the relevance of each instance during the learning process.
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In particular, the weight wi and the term z1−αi in Eq. (4.17) provide a handle on
instance selection relative to i (an explicit one in the former case, an implicit one
in the latter), in the form of instance reweighting. This is of particular interest to
instance-based transfer learning, but it cannot distinguish between instances from
different domains.

There are several reasons to change model behavior based on the instance do-
main. For example, one could expect to perform better in the target task by tuning
the model to improve its predictions for misclassified instances in the target domain
while ignoring instances with poor predictions in the source domain. This would be
based on assuming that the source domain has several noisy instances, and, conse-
quently, on trying to filter them out based on how hard it is to predict their classes
using the partially fitted model. Likewise, it would attempt to reduce the prediction
error for instances in the target domain, assuming that such instances are important
and that the model needs to learn novel patterns to accommodate them. This sort of
approach is followed by TrAdaBoost [9], which does transfer learning on AdaBoost.

Let Dπ = Dπ,S ∪ Dπ,T be a dataset for target predicate π combining source
instances Dπ,S mapped to the target vocabulary and target instances Dπ,T. Then,
τ(i) ∈ {S,T} denotes the domain (source or target, respectively) of the i-th instance,

τ(i) =

S if i ∈ Dπ,S

T if i ∈ Dπ,T.
(4.18)

We extend the objective function in Eq. (4.3) to explicitly account for both domains:

U(Dπ;ψ) =
∑
i∈Dπ,S

wiuS(zi) +
∑
i∈Dπ,T

wiuT(zi) =
∑
i∈Dπ

wiuτ(i)(zi), (4.19)

where uτ(i)(·) corresponds to the α-fairness utility function with α = ατ(i).
The partial derivative associated with this new objective function is then calcu-

lated as follows:

δk,i =
∂U({(xi, yi)};ψk−1)

∂ψk−1(xi)
= wi

∂uτ(i)(zi)

∂ψk−1(xi)
= wiz

1−ατ(i)

i (yi − ϕk−1(xi)). (4.20)

Note that the above partial derivative can be derived from Eq. (4.7), replacing α by
its domain-specific counterpart, ατ(i).

This new expression for δk,i enables us to use RDN-Boost to learn a model un-
der the multi-domain, utility-driven objective function in Eq. (4.19). Unlike CLL,
our method to learn RDNs extends RDN-Boost to multiple domains and provides
a flexible mechanism to determine the relevance of each instance, accounting ex-
plicitly for its domain. In particular, αS and αT indicate whether the model should
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improve its performance on misclassified instances or just filter them out by decreas-
ing their derivatives according to their domain. For example, a heuristic similar to
TrAdaBoost [9] can be achieved by selecting αS ∈ [0, 1) and αT ∈ (1,∞).

Warm-up iterations. We introduce an additional hyperparameter Kw ∈
{1, . . . , K} to indicate the number of so-called warm-up iterations. To motivate
this, consider the term z

1−ατ(i)

i in Eq. (4.20). This term modulates the original par-
tial derivative from RDN-Boost, given by yi − ϕk−1(xi). Its value depends on the
prediction corresponding to instance i, given by ϕk−1(xi), noting that zi is defined
by Eq. (4.2). During the earliest learning iterations, zi is likely uninformative and,
as such, may not warrant being used for modulation purposes. To mitigate this
issue, we set αS = 1 and αT = 1 during iterations k = 1, . . . , Kw. The remaining
iterations employ the user-defined αS and αT values.

Learning algorithm. Algorithm 3 extends Algorithm 1 to accommodate our pro-
posed multi-domain, utility-driven version of RDN-Boost. Whereas Algorithm 1 can
only learn from single-domain datasets, the dataset Dπ in Algorithm 3 comprises
instances from both the source and target domains, allowing it to learn from both.
While doing so, the computation of δk,i in Algorithm 3 accounts for utilities, which
modulate the impact of each instance on the final model.

Approaches to set α-values. Our multi-domain, utility-driven version of RDN-
Boost is inspired by the literature on utility maximization and fair resource allo-
cation. Consequently, setting αS and αT can be interpreted as choosing a fairness
criterion for each of the domains. This provides the user with a tool that can be
leveraged for two purposes: to learn a fair model or to optimize the model’s predic-
tive performance.

In the first scenario, the goal is to learn a model that meets a specific fairness
criterion. The model designer sets the values of αS and αT to achieve this criterion,
prioritizing fairness over maximal accuracy. Thus, the chosen model may not be
the most accurate overall, but it aligns with the desired fairness criterion, which is
enough. In the second scenario, the designer tunes the hyperparameters to achieve
the most accurate model possible, for example through grid search. By evaluating
different values of αS and αT, the designer identifies a fairness regime where the
model achieves the highest accuracy within the explored search space. In other
words, the utility function used as the optimization objective to obtain the most
accurate model is selected after considering a range of fairness criteria. In this work,
we explore the latter strategy to set the α-values.
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Table 4.1: Use cases for UTIL-BRDN

Source Data RDN-Boost Version Transfer Instance Selection
no original (αS = 1, αT = 1, wi = 1) no no
no multi-domain, utility-driven no yes
yes original (αS = 1, αT = 1, wi = 1) yes no
yes multi-domain, utility-driven yes yes

4.4.3 Use Cases for UTIL-BRDN

Table 4.1 summarizes the different learning scenarios that can be addressed by UTIL-
BRDN. When no source data is provided, UTIL-BRDN performs learning from
scratch. In contrast, when source data is available, it performs transfer learning.
Additionally, when utilizing our multi-domain, utility-driven version of RDN-Boost,
instance selection is employed. Notably, if we set αS = 1, αT = 1, and wi = 1 for
every instance i, our method becomes equivalent to the original version of RDN-
Boost and loses the ability to select instances.

4.5 Instance Weighting Strategy

Weights have been widely used in machine learning to address cost-sensitive learn-
ing, where the risks associated with prediction errors vary across classes, or to mit-
igate class imbalance issues. In such cases, weights are often assigned at the class
level. Additionally, instance-level weighting is employed in traditional models such
as Support Vector Machines (SVMs) and Logistic Regression, as well as in boosting
models [58] and instance-based transfer learning methods [9].

Our proposed maximization problem incorporates explicit instance weights wi,
which can be utilized to enable differentiated treatment for each instance. In par-
ticular, this work leverages these weights to mitigate the impact of imbalance across
different instance groups. We propose a weighting strategy called instance group
soft balance. This strategy allows for a smooth transition between no balancing and
full balancing by adjusting a hyperparameter we call balance factor.

To define the instance groups, we rely on the observation that the source domain
typically has a large amount of data, while the target domain data are very limited.
Furthermore, relational datasets usually exhibit high imbalance ratios, with more
negative instances than positive instances. Based on that, we partition the instances
into four disjoint groups according to their domain and label: Source Negative (GSN),
Source Positive (GSP), Target Negative (GTN), and Target Positive (GTP).

Let G ∈ {GSN,GSP,GTN,GTP} denote an instance group, NG = |G| denote the
number of instances in group G, and Gmax ∈ {GSN,GSP,GTN,GTP} be the group
with the largest number of instances. Let also β ∈ [0, 1] be the balance factor, the
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hyperparameter that controls the level of balancing. For each group G, we define a
group weight WG as

WG =
βNGmax + (1− β)NG

NG

. (4.21)

Finally, each instance i belonging to group G is assigned a weigth wi equal to the
weight of its group:

wi = WG, for each instance i ∈ G. (4.22)

When β = 0, we have WG = 1 for all groups, so wi = 1 for all instances.
This corresponds to no balancing. In other extreme, when β = 1, we have WG =
NGmax

NG
, instances in smaller groups receive higher weights. This corresponds to full

balancing. By adjusting β, we can smoothly transition between these two extremes,
allowing for partial balancing.

We envision the possibility of designing different weighting strategies to improve
model performance. For example, an alternative approach could involve weighting
instances based on a metric that reflects their relevance or pertinence level to the
target domain. This could be particularly useful in transfer learning scenarios where
some source instances are more relevant to the target task than others. However,
this is a topic for future research.
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Algorithm 2 Find all valid mappings between source and target domains
1: function FindAllValidMappings(source vocabulary VS, target vocabulary
VT , target predicate π)

2: Remove π and its recursive version from VT
3: Initialize mappingsM← ∅
4: for each predicate pS ∈ VS do
5: if pS is compatible with π then
6: Partial mapping µ← {MpS 7→π}
7: Unmapped source predicates V ′

S ← VS \ {pS}
8: Expanded mappingsM′ ← ExpandMappings(V ′

S, VT , µ)
9: M←M∪M′

10: end if
11: end for
12: returnM
13: end function
14: function ExpandMappings(source vocabulary VS, target vocabulary VT , par-

tial mapping µ)
15: if VS = ∅ then
16: return {µ}
17: end if
18: Initialize mappingsM← ∅
19: Select the next predicate pS ∈ VS
20: Unmapped source predicates V ′

S ← VS \ {pS}
21: VT ← VT ∪ {ε} ▷ ε is the empty predicate
22: for each predicate pT ∈ VT do
23: if pS is compatible with pT then
24: New partial mapping µ′ ← µ ∪ {MpS 7→pT }
25: if pT ̸= ε then
26: Unmapped target predicates V ′

T ← VT \ {pT}
27: else
28: V ′

T ← VT
29: end if
30: Expanded mappingsM′ ← ExpandMappings(V ′

S, V ′
T , µ′)

31: M←M∪M′

32: end if
33: end for
34: returnM
35: end function
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Algorithm 3 Learn P (π | MB(π)) using the multi-domain, utility-driven version
of RDN-Boost
Require: Initial guess ψ0, dataset Dπ = Dπ,S ∪Dπ,T, instance weights wi, number

of iterations K, number of warm-up iterations Kw, learning rates ηk, and utility
hyperparameters αS and αT

Ensure: The CPD P (π |MB(π)) for the target predicate π
1: for k = 1 to K do
2: Dδ ← ∅ ▷ Stage 1 begins here
3: for i ∈ Dπ do
4: if k ≤ Kw then
5: ατ(i) ← 1
6: else
7: ατ(i) ← αS if i ∈ Dπ,S, otherwise αT

8: end if
9: δk,i ← wiz

1−ατ(i)

i (yi − ϕk−1(xi)) ▷ See Eq. (4.20)
10: Dδ ← Dδ ∪ {((xi, yi), δk,i)}
11: end for
12: ĥk ← Fit a RRT from Dδ ▷ Stage 2 begins here
13: ψk ← ψk−1 + ηkĥk
14: end for
15: return ϕK ▷ ϕK is a function of ψK , see Eq. (3.8)
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Chapter 5

Experiments and Results

We conducted a set of experiments to evaluate the properties of our approach from
different perspectives. In particular, we aim to answer the following research ques-
tions:

• Q1. Does UTIL-BRDN learn accurate models that outperform learning from
scratch, by transferring instances from another domain?

• Q2. Does the proposed utility-based objective function impact transfer learn-
ing?

• Q3. Does UTIL-BRDN learn accurate models despite poor mapping choices?

• Q4. Which aspects of a mapping contribute to successful transfer to a target
domain?

• Q5. Which mechanisms does UTIL-BRDN have to mitigate negative transfer?

• Q6. Does balancing across instance groups effectively enhance performance?

• Q7. How sensitive is UTIL-BRDN to the amount of data available for the
target domain?

Question Q1 evaluates whether it is feasible to perform transfer learning by
transferring instances from a source domain, and whether our proposed method al-
lows for learning a more accurate model compared to those learned from just a few
target data. The purpose of Question Q2 is to discuss the benefits of adopting a
utility-based strategy for integrating the source and target domains in the learn-
ing process, as opposed to simpler methods. Questions Q3 and Q4 focus on the
role of mappings, specifically examining the model’s robustness to different map-
pings and identifying the characteristics that make a mapping effective for transfer,
respectively. Since preventing negative transfer is a common challenge in transfer
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learning, Question Q5 investigates the effectiveness of UTIL-BRDN for its mitiga-
tion. Question Q6 assesses the efficiency of our instance weighting strategy. Finally,
Question Q7 examines the performance of our models as more data become available
for the target domain.

To answer these questions, we perform four types of experiments. In Section 5.2,
we learn the baseline models from scratch using the original RDN-Boost algorithm.
The next set of experiments, detailed in Section 5.3, evaluates UTIL-BRDN in
transferring between different pairs of datasets. We also evaluate the impact of
progressive exposure to more target domain data in Section 5.4. Finally, transferring
from progressive noisy source data are carried out in Section 5.5.

The following hyperparameters are set using the same values of [6, 7, 39]. The
number of learning iterations is K = 10. For each k = 1, . . . , K, the corresponding
RRT ĥk is constrained to having up to 8 leaves, no more than 2 literals per node,
and a maximum depth of 3. We also set ψ0 = −1.8, meaning that the model initially
assigns a probability of approximately 0.14 to all instances. Finally, the ratio of the
number of negative examples to that of positive examples is 2. These values are
used in all the experiments, and other hyperparameters values are evaluated with
grid search.

We evaluate model performance using the area under the receiver operating char-
acteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-
PR). Each metric is averaged across multiple experimental runs, typically associated
with cross-validation iterations. The CLL metric, commonly used in experiments
with the original RDN-Boost, is omitted from this study. Metrics such as accuracy,
precision, recall, and F1 score are not reported due to their dependence on thresh-
old selection. Training and inference times are also excluded from the analysis, as
the experiments were conducted on a cluster with heterogeneous machines, making
direct time comparisons impractical.

More detailed descriptions of the experimental methodology for each set of ex-
periments are provided in their respective sections.

5.1 Datasets

As usual in the SRL transfer learning literature, for our experiments we consider
the following relational datasets:

• IMDB. This dataset [59] describes a movie domain and includes facts char-
acterizing directors, actors, and movies. It is divided into five independent
groups of facts, known as mega-examples. The goal is to predict the worke-
dunder relation, which indicates if two people have worked together.
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• Cora. This dataset consists of a collection of citations to computer science
papers [60]. Each citation is described by facts about its author, venue, and
title. Relations such as sameauthor and sametitle indicate when two entities
are the same. It is organized into five mega-examples, and the target task is
to de-duplicate venues by predicting the samevenue relation.

• UW-CSE. Introduced in [61], this dataset is used to evaluate the SRL model
named Markov Logic Network (MLN). It describes an academic domain, con-
taining facts about professors, students, courses, publications, advisories, etc.
It is organized into five mega-examples, representing the areas of artificial
intelligence, programming languages, theory, systems, and graphics from the
Department of Computer Science and Engineering at the University of Wash-
ington. The target relation is advisedby.

• Twitter. This dataset [37] consists of tweets about Belgian soccer matches
and is divided into two independent folds. The facts represent the Twitter
follower network and the words of each tweet. The goal is to predict the
accounttype relation, which categorizes an account as either a club, fan, or
news account.

• Yeast. This dataset is derived from the MIPS 1 Comprehensive Yeast Genome
Database [62]. It includes information on protein location, function, pheno-
type, and enzymes. The goal is to predict the proteinclass relation. The data
are grouped into four independent folds.

• NELL. The Never-Ending Language Learner (NELL) [63] is a machine learn-
ing system that continuously reads the web, improving its ability to extract
structured knowledge from hundreds of thousands of pages. We consider two
domains of NELL: Finances and Sports. NELL Finances leverages different
types of evidence, such as information about companies, offices, and persons,
to predict the companyeconomicsector relation, which links a company to an
economic sector. Conversely, NELL Sports uses facts from the sports domain,
including data about athletes, sports, teams, and leagues, to predict the team-
playssport relation. Following [6, 7], we randomly split the examples of the
target relation into three different folds while retaining all facts from other
predicates within each fold.

Table 5.1 and Table 5.2 summarize some characteristics of these datasets. Each
dataset is originally divided into a dataset-dependent number of folds, ranging from
2 to 5. In Table 5.2, the Positive Examples column indicates the number of positive

1Munich Information Center of Protein Sequence
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Table 5.1: Dataset domain, target predicate, and recursion

Dataset Domain Target Predicate Recursion
IMDB Movies/Entertainment workedunder/2 No
Cora Academic/Publications samevenue/2 No
UW-CSE Academic/University advisedby/2 No
Twitter Social Media accounttype Yes
Yeast Biology/Genomics proteinclass/2 Yes
NELL Finances Economics/Business companyeconomicsector/2 Yes
NELL Sports Sports teamplayssport/2 Yes

Table 5.2: Dataset statistics

Dataset Folds Constants Types Predicates Facts Positive Examples
IMDB 5 297 3 6 696 382
Cora 5 2457 5 10 38336 2640
UW-CSE 5 914 9 14 2274 113
Twitter 2 273 3 3 2312 221
Yeast 4 2470 7 7 15015 369
NELL Finances 3 3340 5 10 4579 762
NELL Sports 3 4538 4 8 9236 392

instances of the target predicate, while the Facts column indicates the number of
groundings of other predicates. The table also includes the total count of distinct
predicates (in the Predicates column) and other relevant statistics. As indicated
in Table 5.1, our experiments always allow recursion for Twitter, Yeast, NELL Fi-
nances, and NELL Sports.

5.2 Setting the Baseline: Learning From Scratch

From Target Dataset

In this section, we set our baselines, called RDN-B* and RDN-B, and assess their
performances with the datasets presented above. Each baseline consists in learning
the CPD of the target predicate for the respective dataset from scratch using the
original RDN-Boost. Learning from scratch consists in learning a model using only
the target dataset. RDN-B* and RDN-B differ in the size of the target training
dataset: RDN-B* is trained on a large dataset, while RDN-B is trained on a sig-
nificantly smaller one. In transfer learning, the target dataset is typically small,
as seen in RDN-B. However, we also report the results of RDN-B* to demonstrate
the extent to which the model’s performance is influenced by the amount of data
available in each domain.
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Table 5.3: Predictive performance of models learned from scratch from large training
datasets (RDN-B*) and from small training datasets (RDN-B).

Dataset RDN-B* (Large Data) RDN-B (Small Data)
AUC-ROC AUC-PR AUC-ROC AUC-PR

IMDB 1± 0 1± 0 1± 0 1± 0
Cora 0.76± 0.19 0.61± 0.23 0.65± 0.15 0.47± 0.15

UW-CSE 0.93± 0.04 0.83± 0.10 0.92± 0.04 0.78± 0.10
Twitter 0.989± 0.009 0.98± 0.02 0.993± 0.004 0.98± 0.01
Yeast 0.95± 0.04 0.92± 0.06 0.87± 0.09 0.81± 0.11

NELL Finances 0.74± 0.04 0.66± 0.05 0.72± 0.05 0.63± 0.07
NELL Sports 0.988± 0.004 0.984± 0.007 0.989± 0.006 0.97± 0.03

Experimental methodology. RDN-B* is evaluated using traditional cross-
validation. In this method, the dataset is divided into F folds, as defined in Table 5.2,
and the model is iteratively trained on F − 1 folds while being evaluated on the fold
of the respective iteration. This process is repeated for F iterations, with perfor-
mance metrics such as AUC-ROC and AUC-PR being averaged over all iterations.
Additionally, the standard deviation of these metrics is reported.

In contrast, RDN-B is evaluated using a variant of traditional cross-validation
that is more suited to evaluate transfer learning methods. This version of cross-
validation forces the model to be trained on a small training set in each iteration.
Specifically, at each iteration, the model is fitted using only the fold corresponding
to that iteration, and it is evaluated on the remaining F − 1 folds. After all itera-
tions, the average and standard deviation for AUC-ROC and AUC-PR are reported.
Throughout this work, we refer to this method as cross-validation for transfer learn-
ing.

Limited data leads to underperforming models. Table 5.3 summarizes the
performance of the baseline models on the considered datasets, noting that they
neither account for transfer learning nor incorporate utilities; these aspects will be
addressed in subsequent sections. In summary, the impact of restricting the size
of the datasets used for learning varies across domains. A comparison between the
performance of the RDN-B and RDN-B* models in Table 5.3 shows that the Cora
and Yeast domains are the most affected, experiencing decreases of 0.14 and 0.11 in
AUC-PR, respectively. In such cases, one can leverage transfer learning to overcome
the challenges associated with limited training data. Interestingly, learning from
scratch in the IMDB domain consistently achieved optimal performance in both
AUC-ROC and AUC-PR, even under data availability constraints.

Our key insight for benefiting from knowledge transfer without incurring the costs
of negative transfer involves parameterizing utility functions, as further discussed in
the following sections.
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Table 5.4: Performance of UTIL-BRDN(B).

Scenario AUC-ROC AUC-PR
Cora → IMDB 1± 0 (0%) 1± 0 (0%)
IMDB → Cora 0.912± 0.005 (+40.3%) ♢ 0.78± 0.02 (+65.9%) ♢

IMDB → UW-CSE 0.94± 0.02 (+2.2%) 0.84± 0.06 (+7.7%)
Yeast → Twitter 0.995± 0.004 (+0.2%) ♢ 0.987± 0.009 (+0.7%)
Twitter → Yeast 0.996± 0.002 (+14.5%) 0.990± 0.007 (+22.2%) ♢

NELL S → NELL F 0.79± 0.01 (+9.7%) 0.72± 0.01 (+14.3%)
NELL F → NELL S 0.997± 0.002 (+0.8%) 0.992± 0.004 (+2.3%)

5.3 Transferring Knowledge Across Domains

The next set of experiments evaluates UTIL-BRDN.

Experimental methodology. Following previous work [6, 7], the transfer scenar-
ios are: (1) IMDB → Cora, (2) Cora → IMDB, (3) Twitter → Yeast, (4) Yeast →
Twitter, (5) IMDB→ UW-CSE, (6) NELL Finances→ NELL Sports, and (7) NELL
Sports→ NELL Finances. Grid search is performed with the following hyperparam-
eter choices: αS ∈ {0, 0.3, 0.6, 1, 1.3}, αT ∈ {0, 0.3, 0.6, 1, 1.3}, Kw ∈ {1, 3, 5, 7}, and
β = 0. We also select five mappings uniformly at random from the set of legal map-
pings, following the definition given in Section 4.3. In total, each pair of domains is
evaluated in 500 different settings, corresponding to all possible combinations of αT,
αS, KW, and mappings. Out of these 500 settings, we refer to the model associated
with the setting that led to the best average AUC-PR as UTIL-BRDN(B). Similarly,
UTIL-BRDN(W) refers to the model learned with the setting associated with the
worst average AUC-PR.

Each setting in the grid search is evaluated under cross-validation for transfer
learning. For each cross-validation iteration, the entire source dataset is first mapped
using the considered mapping. Then, it is merged with the training fold of the target
dataset for that iteration. Next, the merged dataset is used to fit a model, which
finally is evaluated on the test folds. Thus, the metrics are averaged and reported
with their standard deviation.

Results. Tables 5.4 and 5.5 report the performances of UTIL-BRDN(B) and
UTIL-BRDN(W), respectively, for each transfer scenario. The hyperparameter set-
tings of UTIL-BRDN(B) and UTIL-BRDN(W) are reported in Appendix A. The
gains reported in parentheses in the AUC-ROC and AUC-PR columns in Tables 5.4
and 5.5 are relative to RDN-B. Additionally, we indicate statistical significance ac-
cording to a paired t-test at the 0.05 significance level by the symbol ♢.
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Table 5.5: Performance of UTIL-BRDN(W).

Scenario AUC-ROC AUC-PR
Cora → IMDB 0.78± 0.26 (−22%) 0.68± 0.33 (−32%)
IMDB → Cora 0.57± 0.01 (−12.3%) 0.39± 0.01 (−17%)

IMDB → UW-CSE 0.67± 0.23 (−27.2%) 0.52± 0.25 (−33.3%)
Yeast → Twitter 0.96± 0.02 (−3.3%) 0.85± 0.12 (−13.3%)
Twitter → Yeast 0.56± 0.01 (−35.6%) ♢ 0.487± 0.009 (−39.9%) ♢

NELL S → NELL F 0.531± 0.005 (−26.2%) ♢ 0.385± 0.008 (−38.9%) ♢
NELL F → NELL S 0.93± 0.03 (−6%) 0.85± 0.06 (−12.4%)

Effectiveness of transfer learning with UTIL-BRDN. Next, our focus is to
answer question Q1, which asks whether instances from another domain can be
transferred to effectively learn a better model in the target domain. Table 5.4,
reporting performances for UTIL-BRDN(B), indicates that UTIL-BRDN can signif-
icantly outperform RDN-B, especially for IMDB to Cora and for Twitter to Yeast,
achieving an increase in AUC-PR of 0.31 and 0.18, respectively. Thus, even though
Table 5.5 suggests the opposite, it must be kept in mind that UTIL-BRDN(W)
refers to the worst setting evaluated. Consequently, the answer to question Q1 is
affirmative, provided the hyperparameters are appropriately tuned.

The role of utilities. Our next focus is on question Q2, which aims to explore
the relevance of the utilities introduced in our augmented version of RDN-Boost.
In our framework, instance-based transfer learning could be performed by simply
preprocessing the source and target data using the first three steps in Figure 4.1,
and then feeding these preprocessed data to the original RDN-Boost rather than
following steps 4 and 5 (see Section 4.4.3). In this case, RDN-Boost would learn
from data by maximizing CLL. This is equivalent to learning using UTIL-BRDN
with αS = 1, αT = 1, and wi = 1 for every instance i. The model associated with
the mapping which led to the best average AUC-PR under this naive approach is
referred to as UTIL-BRDN*.

Figure 5.1 compares UTIL-BRDN* against UTIL-BRDN(B), UTIL-BRDN(W),
and the baseline RDN-B, noting that the former two are now redefined to be the
best and the worst setting given the mapping being used. UTIL-BRDN(B) and
UTIL-BRDN(W) follow the entire pipeline in Figure 4.1, i.e., they also use our
augmented version of RDN-Boost introduced in Section 4.4. This version replaces
the maximization of CLL used in the original RDN-Boost and introduces a multi-
domain, utility-driven maximization problem. Consequently, the hyperparameters
introduced by our approach provide a mechanism for instance selection. Each vertex
in the radar plots of Figure 5.1 corresponds to a learned model, its angle indicates the
vocabulary mapping used in that model, and its distance to the center indicates the
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(a) IMDB → Cora (b) Twitter → Yeast (c) Yeast → Twitter

(d) NELL S. → NELL F. (e) NELL F. → NELL S. (f) Cora → IMDB

(g) IMDB → UW-CSE

Figure 5.1: Average AUC-PR of models under different mappings and transfer sce-
narios.

resulting average AUC-PR. Each polygon contains five vertices, each corresponding
to one of the five random legal mappings evaluated in the grid search for each pair
of domains. Mappings are identified in the plots by a short ID (e.g., M015).

Our first observation from these plots is that UTIL-BRDN(B) (green polygon)
consistently outperforms or matches the performance of RDN-B (yellow polygon)
and UTIL-BRDN* (blue polygon) across all pairs of domains and evaluated map-
pings. On the other hand, UTIL-BRDN(W) (red polygon) indicates that UTIL-
BRDN can also be strongly affected by negative transfer. This further highlights
the importance of an adequate tuning of the UTIL-BRDN hyperparameters. Unex-
pectedly, though, UTIL-BRDN* performed poorly in most of the considered settings,
the main exception being the case of transference from IMDB to Cora. We now focus
on scenarios IMDB → Cora (Figure 5.1(a)), Twitter → Yeast (Figure 5.1(b)), and
NELL Sports→ NELL Finances (Figure 5.1(d)), aiming to highlight the importance
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of utilities beyond data preprocessing.
In the case of transferring from IMDB to Cora, UTIL-BRDN* outperforms RDN-

B for most of the mappings, but the improvements are marginal. This indicates that
some instances in the source domain are relevant to the target domain. However,
the transference of poor instances prevented the model from achieving significant
performance gains, as the original RDN-Boost cannot select instances. The neg-
ative impact of such poor instances is even more evident when transferring from
Twitter to Yeast and from NELL Sports to NELL Finances, where UTIL-BRDN*
underperforms RDN-B for most of the evaluated mappings.

In summary, answering question Q2 is conditioned on whether hyperparameters
can be effectively tuned. We have demonstrated this with the redefined UTIL-
BRDN(B), so the answer is affirmative.

Performance and robustness of mappings. Question Q3 focuses on how map-
pings impact the performance of UTIL-BRDN. To answer this question, we consider
the transfer from Twitter to Yeast. Among the considered pairs of domains, this
case is particularly interesting due to the existence of a mapping that stands out for
its remarkable quality compared to others mappings.

Figure 5.2(a) shows the cumulative distribution function (CDF) of models (y-
axis) concerning AUC-PR (x-axis). Each curve corresponds to a different mapping
and encompasses all models learned with this mapping during the grid search. Thus,
for each AUC-PR value on the x-axis, the corresponding value on the y-axis is the
proportion of models achieving up to that AUC-PR value. A vertical dashed line
indicates the AUC-PR of RDN-B. This plot illustrates that the mapping M015 is
more robust than the remaining mappings. In particular, it consistently outper-
forms learning from scratch for almost all the evaluated hyperparameter settings,
as its CDF curve is mostly to the right of the baseline in AUC-PR metrics. In con-
trast, models learned with the other mappings (red, orange, blue, and purple) are
challenging to tune, with almost 60% of the evaluated settings resulting in models
worse than the baseline. Despite this, the remaining 40% models learned for each
of these mappings indicate that UTIL-BRDN can extract useful patterns even with
low-quality mappings, thereby answering question Q3 affirmatively. This ability to
learn efficient models despite poor mappings represents a significant contribution of
our work.

Additionally, the transfer from IMDB to Cora also suggests a high-quality and ro-
bust mapping, which contrasts with the other mappings, whose performance strongly
depends on hyperparameter tuning. On the other hand, all mappings considered in
the transfer from NELL Finances to NELL Sports follow a pattern which is similar
to the red, orange, blue, and purple mappings in Figure 5.2(a). This likely hap-
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(a) CDF of model performance (b) Impact of αS and αT on mapping M027

(c) Impact of αT on the model (d) Impact of αS on the model

Figure 5.2: Various figures showing the impact of different mappings and hyperpa-
rameters on model performance when transferring from Twitter to Yeast.

pened because the random mapping selection method probably ended up selecting
only suboptimal mappings. These results motivate the need for mechanisms to au-
tomatically find good mappings, which as discussed in Section 2.3 has been a central
focus of previous work.

Handling negative transfer. Given the above findings, the question of how
to optimally tune the UTIL-BRDN hyperparameters to achieve maximum transfer
efficiency remains. This is related to question Q5, which addresses how to mitigate
negative transfer. According to Figure 5.2(c), which shows the average performance
across all transfer experiments from Twitter to Yeast given a mapping and a value
for αT, the model almost always benefits from higher values of αT, regardless of
the mapping. Similarly, Figure 5.2(d) suggests that setting αS to a lower value is
preferable in such scenario. In the specific case of transferring from Twitter to Yeast,
the model is seen to be more sensitive to αT than to αS, as variations in αT lead to
more pronounced changes in performance.
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The above behavior aligns with the heuristic introduced in TrAdaBoost [9] and
discussed in Section 4.4.2, as it posits that incorrectly classified instances should be
penalized by reducing their weights if they belong to the source domain, whereas
misclassified instances from the target domain should be given more emphasis by
increasing their weights. That is precisely how low values of αS and high values
of αT work. While the plots in Figures 5.2(c) and 5.2(d) separately analyze the
impact of αS and αT, the overall model performance is ultimately influenced by the
interplay between these hyperparameters and the chosen mapping. We provide an
example of this in Figure 5.2(b), where the value of both αS and αT are varied while
their combined effect on AUC-PR is shown for a low-quality mapping M027. Unlike
what is seen to happen in the case of mapping M027, for a robust mapping such
as M016 the choice of hyperparameters does not significantly impact performance.
Interestingly, not all pairs of domains exhibit the same pattern. For the transfer from
IMDB to Cora, for example, we observed an opposite trend regarding the impact of
αS and αT. Counterintuitively, the model performs better on average with higher
values of αS and lower values of αT.

Based on these discussions, we also answer question Q5 affirmatively. More
specifically, the values of αS and αT can effectively mitigate negative transfer. Sim-
ilarly, we posit that instance weights can also be leveraged for this same purpose.
An evidence for this is given in Section 5.5.

5.4 Tracking the Gains of Continuously Accumulat-

ing Target Data

For each pair of domains, we perform our next experiments with RDN-B, and with
the versions of UTIL-BRDN(B) and UTIL-BRDN(W) defined in Section 5.3. The
goal is to evaluate how the availability of target data affects model robustness and
performance, and thereby to answer question Q7.

Experimental methodology. This time, we adopt an evaluation methodology
that extends traditional cross-validation to simulate learning from datasets with
different sizes. This is achieved by adding an inner loop in the traditional cross-
validation process to simulate a progressive increase in the size of the training set.
At each iteration of the outer loop (which corresponds to the traditional method),
the training set is shuffled and then split into five new folds. The inner loop iterates
over these folds, redefining the training set and learning a new model from it, and
then evaluating the resulting model on the test set associated with the outer loop’s
current iteration. At each iteration of the inner loop, the training set is the union
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Figure 5.3: Learning curves for the average AUC-PR obtained from Twitter →
Yeast.

of all folds used so far in the same iteration of the outer loop.

Benefits of large datasets. Figure 5.3 shows the learning curves for the three
models considered in the transfer from Twitter to Yeast. The average AUC-PR is
given on the y-axis, the number of folds used in the inner loop on the x-axis. This
figure shows that UTIL-BRDN(B) is not impacted by the size of the target dataset.
On the hand, UTIL-BRDN(W) is nearly always affected positively by the increasing
amount of data, but this is never sufficient to make it significantly outperform RDN-
B. For this specific transfer scenario, RDN-B initially benefits from the increase in
the size of the training data, but interestingly this ceases to hold as the number
of added folds continue to increase. As a consequence, RDN-B never outperforms
UTIL-BRDN(B). Similar patterns are observed in the remaining transfer scenarios.

As for question Q7, we conclude that, when UTIL-BRDN is poorly parameter-
ized, the size of the target training set is only useful to prevent the learned model
from being worse than learning from scratch.

5.5 Transferring from a Noisy Source: Visualizing

Mapping Quality

Success in transfer learning approaches is closely related to the selection of a source
domain that is similar to the target domain [40]. In the context of transfer learning
in relational domains, different mappings applied to the same source domain can
produce different mapped source datasets with varying degrees of similarity to the
target domain. Consequently, the mapping selection problem can be reduced to the
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problem of selecting a source dataset, and techniques such as the one introduced
by LUCA et al. [40] could be utilized to find the most suitable mapped source dataset
for transfer to the considered target domain.

In this final set of experiments, we provide empirical evidence demonstrating that
the level of similarity between the mapped source dataset and the target dataset is
decisive when the goal is to learn an accurate model using UTIL-BRDN. Further-
more, we also evaluate our instance weighting strategy to mitigate imbalance among
instance groups.

Experimental methodology. In a typical transfer learning scenario, the source
domain and its corresponding mapping are explicitly chosen, which directly impacts
the relevance of the source data for the transfer process. However, quantifying this
relevance by simply comparing the data, without training a model, is challenging.
In our subsequent experiments, we assess the quality of the source data without
preselecting a specific source domain or mapping. Our strategy involves generating
a source data that is highly similar to the target data and then progressively per-
turbing the source to gradually reduce the similarity. Our hypothesis is that highly
similar source data implicitly reflect an appropriate choice of source domain and
mapping, whereas low similarity indicates a poor choice.

Figure 5.4 illustrates the methodology adopted for these experiments. Broadly
speaking, it simulates transfer learning from source domains with varying levels of
similarity to the target domain, acting as a proxy for differences due to alternative
source domains and mappings. To accomplish this, the simulation starts by leverag-
ing high-quality source data (filled red dataset icon) to complement the target data
(filled green dataset icon), both sampled from the same dataset (blue dataset icon),
and systematically introduces controlled noise to the source aiming to decrease their
similarity.

Then, the noisy version of the source (outlined red dataset icon) is combined with
the training split of the target data to fit a model using the UTIL-BRDN pipeline
depicted in Figure 4.1, which is further evaluated on the test split of the target data.
The training and test sets of the target data are determined using the same variant
of cross-validation for transfer learning used in the previous transfer experiments, in
which each iteration involves selecting one of the F folds as the training set and the
remaining as the test set. All cross-validation iterations see the same noisy version
of the source data. This process is illustrated in the shadowed box at the bottom
of Figure 5.4. Further details on the process of sampling highly similar source and
target datasets and adding noise to the source data are provided in Appendix B.

We perform grid search across the following sets of values: αS ∈
{0, 0.3, 0.6, 1, 1.3}, αT ∈ {0, 0.3, 0.6, 1, 1.3}, Kα = 1, β ∈ {0, 0.5, 1}, and ρ ∈
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Figure 5.4: Experimental methodology to evaluate the robustness of UTIL-BRDN
when learning from noisy source domains.

{1e−5 · 2i | i ∈ [0, 14]}. Here, ρ represents the noise strength used to decrease the
similarity of the source data to the target domain (see Step 3 in Appendix B).
The hyperparameters αS, αT , Kα, and β are associated with UTIL-BRDN, with β

specifically being the balance factor for our instance group soft balance weighting
strategy, introduced in Section 4.5.

This experiment does not involve sampling mappings since the source and target
data are derived from the same domain. We conduct the experiments with Yeast,
NELL Sports, and NELL Finances as initial domains. For each hyperparameter
setting, we repeat the entire experimental pipeline, as outlined in Figure 5.4, four
times using different random seeds to account for randomness in the dataset splitting
when generating source and target data, and in noise addition.

Source-target similarity is key to UTIL-BRDN performance. Fig-
ures 5.5(a) and 5.5(b) show the learning curves of average AUC-PR obtained from
the transfer simulation with noisy source domains under complete imbalance (β = 0)
using NELL Sports. These figures illustrate how the performance varies as a func-
tion of the noise strength ρ for different values of αS and αT , respectively. The
model suffers a performance downgrade, regardless of its parameterization, as the
noise level increases. This occurs because the source data progressively becomes less
similar to the target data, making it difficult to extract useful patterns for transfer.

In addition to this behavior, our experiments also indicate that some domains
are significantly less tolerant to dissimilarities with the source domain. This is
particularly evident in the case of NELL Finances, as shown in Figure 5.5(d), which
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presents the learning curves with respect to noise strength under complete imbalance
(β = 0) for different values of αS. The noise begins to affect NELL Finances much
earlier than NELL Sports. We found it unnecessary to include the learning curves
for NELL Finances separated by αT , as it is very similar to Figure 5.5(d). Most
of the next discussions applicable to NELL Sports also extend to NELL Finances,
except for the rate at which its performance decreases due to increased noise.

As for Question Q4, we empirically demonstrated that the choice of source do-
main and mapping, represented by datasets with varying noise levels in our simula-
tions, directly impacts model performance because it determines the relevance of the
source data to the target domain. Successful transfers are typically achieved when
the mapped source data are similar to the target data, as indicated by low noise
levels in our experiments. In contrast, when the source data become highly dissimi-
lar to the target data, corresponding to higher noise levels, the model’s performance
degrades. The intensity of this effect varies across different target domains.

Benefits of balancing instance groups. Our previous experiments demon-
strated that negative transfer can be mitigated by appropriately tuning αS and
αT. However, Figures 5.5(a), 5.5(b), and 5.5(d) indicate that these improvements
are conditioned by a given noise level, with model performance being negatively im-
pacted on average as noise levels increase, regardless of tuning. In extreme cases of
transferring from highly noisy sources, αS and αT may lose their effectiveness. This
is evident from the strong overlap of curves for different αS values in the high-noise
region of Figure 5.5(d). In such cases, where tuning αS and αT fails to improve the
model, exploring alternative solutions becomes crucial. We believe that instance
weights could provide a viable solution in many of these scenarios.

In fact, Figure 5.5(c), which presents learning curves for the case of intermediate
balancing (β = 0.5) in the experiment with NELL Sports for different values of
αS, suggests that instance weights can further improve the performance of UTIL-
BRDN. Compared to the fully imbalanced scenario in Figure 5.5(a), the model
demonstrates increased robustness to noise under our instance weighting strategy.
However, we did not find evidence that this strategy contributes positively to the
model in simulations with NELL Finances and Yeast, leading us to conclude that
Question Q6 can be answered affirmatively for some domains but not universally.
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(a) NELL Sports: β = 0, grouped by αS (b) NELL Sports: β = 0, grouped by αT

(c) NELL Sports: β = 0.5, grouped by αS (d) NELL Finances: β = 0, grouped by αS

Figure 5.5: Learning curves of performance with respect to noise strength and α-
values for different domains.
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Chapter 6

Conclusion

This work introduced UTIL-BRDN, an instance-based transfer learning approach
specifically designed for statistical relational learning. UTIL-BRDN leverages utili-
ties to enhance the performance of models resulting from the transfer. It operates
within a two-stage framework: first, it preprocesses data by mapping instances from
the source domain and integrating them with instances from the target domain;
then, it feeds this combined data to an SRL model augmented to incorporate the
utilities from both domains. While we focus on RDN-Boost, our approach is general
enough to accommodate alternative SRL models such as MLNs. To our knowledge,
this is the first work in the SRL transfer learning literature to introduce the com-
bined use of instance-based transfer learning and utilities. Previous works typically
concentrate on model-based transfer learning and do not account for utilities. We
also proposed an instance weighting strategy that implements a flexible mechanism
to mitigate the impact of class and domain imbalance.

We extensively evaluated UTIL-BRDN through a series of transfer experiments
using seven widely used real-world relational datasets. Different transfer settings
were tested, and the results were compared against both learning from scratch using
the original RDN-Boost and a variant of UTIL-BRDN without utilities. Addition-
ally, we described several insights regarding how predictive performance relates to
utilities, the chosen mapping, the amount of data available in the target domain,
and the instance weights assigned under our weighting strategy.

Our results demonstrate that UTIL-BRDN effectively transfers knowledge by
leveraging instances from the source domain. Specifically, an appropriate parame-
terization of UTIL-BRDN led to significant improvements in model performance, as
observed in the transfers from IMDB to Cora (an improvement of 0.31 in AUC-PR)
and from Twitter to Yeast (an improvement of 0.18 in AUC-PR). Furthermore, a
proper tuning of how utilities are weighted makes UTIL-BRDN more robust to poor
mappings. This suggests that it has an intrinsic mechanism to mitigate negative
transfer and that properly tuning its hyperparameters acts as an instance selection
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process. This explains why UTIL-BRDN with well-tuned hyperparameters never
performed worse than the baseline in our experiments.

This work opens up a number of directions for further investigation. First, the
methodology can be adapted to other SRL models, such as MLNs. Second, we envi-
sion the design of new search algorithms to find good mappings, or the adaptation
of existing heuristic approaches, such as the ranked-based version of the mapping
search algorithm that uses word embeddings [7]. Third, exploring alternative in-
stance weighting strategies beyond the one proposed in this work to alleviate the
imbalance between different groups of instances seems promising. Additionally, we
envision extending the proposed approach to multiple source domains and incor-
porating utility-based optimization into traditional, propositional transfer learning
methods, particularly for instance selection.
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Appendix A

Additional Experimental Results

In this appendix we provide additional experimental results on the hyperparameters
found when transferring knowledge across domains in Section 5.3.

• Tables A.1 and A.2: transfer between Cora and IMDB.

• Table A.3: transfer from IMDB to UW-CSE.

• Tables A.4 and A.5: transfer between Yeast and Twitter.

• Tables A.6 and A.7: transfer between NELL Sports and NELL Finances.

For each case, we report the hyperparameters in the best (UTIL-BRDN(B)) and
worst (UTIL-BRDN(W)) configurations.
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Table A.1: Hyperparameter settings of UTIL-BRDN(B) and UTIL-BRDN(W) in
the transfer from Cora to IMDB.

UTIL-BRDN(B)
αS 0
αT 1
Kw 1

Predicate Mapping
[sameauthor, samebib, sametitle, samevenue, author,
haswordauthor, haswordtitle, haswordvenue] → null,
venue → workedunder, title → genre

Term Type Mapping
class → person,
venue → person,
title → genre

UTIL-BRDN(W)
αS 0.6
αT 0
Kw 5

Predicate Mapping
[sameauthor, samebib, sametitle, samevenue, author,
venue, haswordtitle, haswordvenue] → null,
title → workedunder, haswordauthor → movie

Term Type Mapping class → person, title → person,
author → movie, word → person

Table A.2: Hyperparameter settings of UTIL-BRDN(B) and UTIL-BRDN(W) in
the transfer from IMDB to Cora.

UTIL-BRDN(B)
αS 0.3
αT 1
Kw 3

Predicate Mapping [female, actor, director, movie] → null,
workedunder → samevenue, genre → haswordvenue

Term Type Mapping person → venue,
genre → word

UTIL-BRDN(W)
αS 0
αT 0.6
Kw 1

Predicate Mapping [workedunder, female, actor, director, movie] → null,
genre → samevenue

Term Type Mapping person → venue,
genre → venue
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Table A.3: Hyperparameter settings of UTIL-BRDN(B) and UTIL-BRDN(W) in
the transfer from IMDB to UW-CSE.

UTIL-BRDN(B)
αS 1
αT 0.6
Kw 1

Predicate Mapping
[workedunder, actor] → null, movie → advisedby,
female → student, director → professor,
genre → yearsinprogram

Term Type Mapping
movie → person,
person → person,
genre → year

UTIL-BRDN(W)
αS 0
αT 0
Kw 1

Predicate Mapping
[female, actor, director] → null,
workedunder → advisedby,
movie → tempadvisedby, genre → hasposition

Term Type Mapping
person → person,
movie → person,
genre → faculty
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Table A.4: Hyperparameter settings of UTIL-BRDN(B) and UTIL-BRDN(W) in
the transfer from Yeast to Twitter.

UTIL-BRDN(B)
αS 0
αT 1.3
Kw 1

Predicate Mapping

[interaction, proteinclass, complex, phenotype]
→ null, recursion_function → recursion_accounttype,
function → accounttype, location → tweets,
enzyme → follows

Term Type Mapping

protein → account,
fun → type,
loc → word,
enz → account

UTIL-BRDN(W)
αS 1.3
αT 0
Kw 1

Predicate Mapping

[interaction, enzyme, complex, phenotype]
→ null, recursion_location → recursion_accounttype,
location → accounttype, proteinclass → follows,
function → tweets

Term Type Mapping

protein → account,
loc → type,
class → account,
fun → word
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Table A.5: Hyperparameter settings of UTIL-BRDN(B) and UTIL-BRDN(W) in
the transfer from Twitter to Yeast.

UTIL-BRDN(B)
αS 0
αT 0.6
Kw 1

Predicate Mapping
accounttype → proteinclass,
recursion_accounttype → recursion_proteinclass,
tweets → phenotype, follows → interaction

Term Type Mapping
account → protein,
type → class,
word → phe

UTIL-BRDN(W)
αS 0.3
αT 0
Kw 1

Predicate Mapping
tweets → enzyme, follows → interaction,
accounttype → proteinclass,
recursion_accounttype → recursion_proteinclass

Term Type Mapping
account → protein,
type → class,
word → enz
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Table A.6: Hyperparameter settings of UTIL-BRDN(B) and UTIL-BRDN(W) in
the transfer from NELL Sports to NELL Finances.

UTIL-BRDN(B)
αS 0
αT 1.3
Kw 7

Predicate Mapping

[athleteledsportsteam, athleteplaysinleague,
teamplayssport] → null,
teamplaysinleague → companyeconomicsector,
recursion_teamplaysinleague → recursion_companyeconomicsector,
athleteplaysforteam → acquired,
athleteplayssport → companyceo,
teamalsoknownas → bankboughtbank,
teamplaysagainstteam → companyalsoknownas

Term Type Mapping

sportsteam → company,
sportsleague → sector,
athlete → company,
sport → person

UTIL-BRDN(W)
αS 0
αT 0
Kw 3

Predicate Mapping

[athleteledsportsteam, athleteplaysinleague,
teamplayssport] → null,
teamplaysinleague → companyeconomicsector,
recursion_teamplaysinleague → recursion_companyeconomicsector,
athleteplaysforteam → acquired,
athleteplayssport → companyceo,
teamalsoknownas → bankboughtbank,
teamplaysagainstteam → companyalsoknownas

Term Type Mapping

sportsteam → company,
sportsleague → sector,
athlete → company,
sport → person
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Table A.7: Hyperparameter settings of UTIL-BRDN(B) and UTIL-BRDN(W) in
the transfer from NELL Finances to NELL Sports.

UTIL-BRDN(B)
αS 0
αT 0
Kw 5

Predicate Mapping

[bankboughtbank, companyalsoknownas, acquired,
companyeconomicsector, recursion_companyeconomicsector,
companyceo] → null,
athleteplaysinleague → teamalsoknownas,
companyeconomicsector → recursion_teamplaysinleague,
companyheadquartercity → teamplaysagainstteam,
companygpeheadquartercity → athleteplaysforteam,
acquired → teamplayssport,
companyceo → athleteledsportsteam,
bankchiefexecutiveofficer → athleteplayssport

Term Type Mapping

company → sportsteam,
sector → athlete,
person → sport,
sector → sport

UTIL-BRDN(W)
αS 0
αT 1.6
Kw 3

Predicate Mapping

[bankboughtbank, companyalsoknownas, acquired,
companyeconomicsector, recursion_companyeconomicsector,
companyceo] → null,
athleteplaysinleague → teamalsoknownas,
companyeconomicsector → recursion_teamplaysinleague,
companyheadquartercity → teamplaysagainstteam,
companygpeheadquartercity → athleteplaysforteam,
acquired → teamplayssport,
companyceo → athleteledsportsteam,
bankchiefexecutiveofficer → athleteplayssport

Term Type Mapping

company → sportsteam,
sector → athlete,
person → sport,
sector → sport
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Appendix B

Controlling Source-Target Similarity
Using Systematic Noise

This section provides additional details on the first four steps of the experimental
methodology adopted in the experiments of Section 5.5, as illustrated in Figure 5.4.
These steps include sampling similar source and target datasets in Step 1, converting
the source dataset into a graph representation in Step 2, systematically adding noise
to the source dataset in Step 3, and converting the perturbed data back into a
FOL knowledge base in Step 4. The resulting source data is expected to be less
similar to the target dataset, with the level of dissimilarity being influenced by a
hyperparameter called noise strength.

Step 1: Sampling Similar Source and Target Datasets. Generating similar
source and target datasets involves selecting an existing dataset (represented by the
blue dataset icon in Figure 5.4), such as one of those considered in this work, and
then uniformly splitting at random this dataset into source and target data in a
proportion of 80% and 20%, respectively. Since both the source and target data are
sampled from the same dataset, they are expected to be similar.

Step 2: Converting Source Dataset to Graph Next, we discuss how the
source data are converted into a directed graph G = (V,E), where V is the set of
vertices and E is the set of directed edges. Let LV and LE denote the sets of node
labels and edge labels, respectively. Node labels LV represent entity types (e.g.,
person and company), while edge labels LE represent different relation types (e.g.,
parent_of and works_at). Each node v ∈ V is associated with a label lv ∈ LV ,
representing an instance of the entity type lv, also referred to as an object. Similarly,
each edge eij = (vi, vj) ∈ E is associated with a label leij ∈ LE, representing an
instance of the relation type leij .

Typically, vertices and edges may have additional attributes to describe proper-
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Figure B.1: A toy example of a graph database.

ties of both objects (e.g., gender) and relationships (e.g., admission_date). How-
ever, we simplify the representation by adding additional nodes to represent these
attributes. For each attribute-value pair of a specific object, we create a new node
that represents the attribute value and add a directed edge from the object node to
the node associated with the attribute value, with the edge labeled by the attribute
name. This design choice prepares the data for the noise addition algorithm pre-
sented in the next step. Figure B.1 provides an example of a dataset converted into
a graph.

Algorithm 4 describes the process of converting a FOL knowledge base into a
graph. The algorithm first converts all predicates to arity 2 using the procedure
ConvertPredicatesToArityTwo. Converting examples from a binary predicate into
graph elements is straightforward: each term in the predicate is mapped to a node
in the graph, and an edge, labeled by the predicate name, is added between these
nodes. After the predicates binarization, the procedure ConvertFOLDatabaseTo-
Graph iterates over each fact and positive example, mapping them to corresponding
nodes and edges in the graph.

Step 3: Adding Noise to Source Data. To motivate our method for introduc-
ing noise into the source data, we first consider how similarities between graphs can
be calculated. Graph similarity can be measured using metrics such as graph edit
distance [64], which defines the similarity between two graphs based on the minimum
number of operations (e.g., additions, deletions, or modifications of edges or nodes)
required to transform one graph into the other. This concept of graph edit distance
guides our approach to systematically introducing noise by progressively editing the
source graph to reduce its similarity to the target graph. Our approach is based
on the graph perturbation approach proposed in [65], in which edit operations are
performed by adding a randomly generated noise graph to the source graph.
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Our extension of the graph perturbation method proposed in [65] involves adding
noise to graphs with typed nodes and edges. Noise is represented by a random graph
Gϵ = (V,Eϵ), where the set of vertices is identical to the set of vertices of the original
graph G = (V,E), whereas the set of edges Eϵ of the noise graph is generated at
random.

For each pair of vertices in the noise graph Gϵ, the types of edges that can be
added are determined based on the types of the vertices in the pair. For example,
if both vertices are of type person, then edges of type sister_of and parent_of are
allowed according to the example dataset in Table 3.1. In such cases, one of these
edge types is uniformly sampled for the respective pair of vertices and added to the
set of edges Eϵ in the noise graph with probability ρ, also called noise strength. In
contrast, if no edge type can connect the respective pair of vertices, such as in pairs
of vertices associated with the type company, they remain disconnected.

Next, we add the noise graph to the original to generate the perturbed version,
denoted as G′ = (V,E ′). The vertices set of the perturbed graph is the same as that
of the original and noise graphs, but its edges are determined using the operator
defined in Table B.1 for each pair of vertices. This operator captures four types
of edge edit operations on the original graph: addition, removal, type change, and
preservation of the original edge state. Thus, adding the noise graph corresponds
to performing a series of random edits on the original graph. The intensity of these
edits is controlled by the hyperparameter ρ.

Table B.1: Definition of the graph addition operator used in graph perturbation.

Noise Graph (Gϵ) Original Graph (G) Perturbed Graph (G′ = G+Gϵ) Edit Operation
no edge no edge no edge preserve edge state
no edge edge of type t edge of type t preserve edge state

edge of type t no edge edge of type t add edge
edge of type t edge of type t no edge remove edge
edge of type t2 edge of type t1, t1 ̸= t2 edge of type t2 change edge type

Step 4: Converting Perturbed Graph into a FOL Knowledge Base. After
adding noise to the source data graph, the next step is to convert the perturbed
graph G′ back into a FOL knowledge base. Algorithm 5 outlines this process. The
algorithm iterates over each edge in the graph and reconstructs the corresponding
binary predicates, effectively reversing the conversion performed in Algorithm 4.
The target predicate π is used to identify positive examples within the database.
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Algorithm 4 Convert First-Order Logic Knowledge Base to Graph
1: function ConvertFOLDatabaseToGraph(FOL knowledge base D)
2: Converted knowledge base D′ ← ConvertPredicatesToArityTwo(D)
3: Background knowledge B ← Extract background knowledge facts from D′

4: Positive examples P ← Extract set of positive examples from D′

5: Set of all facts F ← B ∪ P
6: Set of vertices V ← ∅
7: Set of edges E ← ∅
8: for each fact f ∈ F do Vertices
9: v1, v2 ← Extract the terms in f

10: Vertex types lv1 , lv2 ← Extract the term types in f
11: Edge type l(v1,v2) ← Extract the predicate name of f
12: V ← V ∪ {v1, v2}
13: E ← E ∪ {(v1, v2)}
14: end forGraph G← (V,E)
15: return G
16: end function
17:
18: function ConvertPredicatesToArityTwo(FOL knowledge base D)
19: Initialize converted knowledge base D′ ← ∅
20: for each fact f ∈ D do
21: Predicate name p← extract predicate name from f
22: Arity n← extract arity of predicate p
23: if n = 1 then ▷ Unary predicate
24: Extract term t and its type T from f
25: Converted fact f ′ ← [T ]_has_label([t], [p])
26: D′ ← D′ ∪ {f ′}
27: else if n = 2 then ▷ Binary predicate
28: f ′ ← f
29: D′ ← D′ ∪ {f ′}
30: else ▷ Predicate with arity greater than 2
31: Assign unique identifier If to the fact f
32: for each term t and its type T in f do
33: Converted fact f ′ ← [p]_[T ]([If ], [t])
34: D′ ← D′ ∪ {f ′}
35: end for
36: end if
37: end for
38: return D′

39: end function
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Algorithm 5 Convert Graph to First-Order Logic Knowledge Base
Require: Directed graph G = (V,E) with labeled vertices and edges, target predi-

cate π
Ensure: Database D with background knowledge facts and positive examples
1: Initialize converted knowledge base D
2: for each edge e = (v1, v2) ∈ E and its corresponding type le do
3: Predicate name p← l(v1,v2)
4: Fact f ← p(v1, v2)
5: D ← D ∪ {f}
6: end for
7: Set facts of the target predicate π in D as positive examples
8: return D
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