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Magnetic Particle Imaging (MPI) é uma nova técnica desenvolvida para detectar
nanopartículas magnéticas (magnetic nanoparticles, ou MNPs) no espaço, com di-
versas aplicações em potencial, desde imagens biomédicas até mapeamento térmico.
A reconstrução de imagens é uma parte essencial do MPI, pois é responsável por
traduzir os sinais medidos de magnetização gerados pelas MNPs em mapas discre-
tos de concentrações em uma, duas ou três dimensões. O processo de reconstrução
requer a solução numérica de grandes sistemas de equações, e a velocidade de com-
putação é um fator limitante para a obtenção de imagens em tempo real com altas
exatidão e resolução.

Esta tese apresenta o desenvolvimento de algoritmos paralelos para a recon-
strução de imagens de MPI em GPU utilizando a plataforma CUDA. É mostrado
como a adoção de algoritmos paralelos pode acelerar as reconstruções em até três
ordens de grandeza, em comparação com algoritmos seriais tradicionais executados
na CPU. Este documento também descreve o desenvolvimento de um novo algo-
ritmo paralelo para o cálculo da matriz de calibração de MPI, com acelerações da
ordem de 37× em comparação com a implementação serial, e como a combinação
do cálculo paralelo da matriz de calibração e a reconstrução paralela de imagens
podem fornecer medições de MPI flexíveis e em tempo real.
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Magnetic Particle Imaging (MPI) is a novel technique developed for detecting
magnetic nanoparticles (MNPs) in space, with several potential applications, rang-
ing from biomedical imaging to temperature mapping. Image reconstruction is an
essential part of MPI, as it is responsible for translating the measured magnetization
signals generated by the MNPs into discretized concentration maps in one, two or
three dimensions. The reconstruction process requires numerically solving massive
systems of equations, and the computation speed is a limitation factor for achieving
real-time images with high accuracy and resolution.

This thesis presents the development of parallel algorithms for executing MPI
image reconstructions in GPU using the CUDA framework. It is shown how the
adoption of the parallel algorithms can speed up the reconstructions by up to three
orders of magnitude, in comparison to traditional serial algorithms executed in the
CPU. This document also describes the development of a novel parallel algorithm
for calculating the MPI calibration matrix, with speedups of the order of 37× in
comparison to the serial implementation, and how the combination of the paral-
lel calculation of the calibration matrix and the parallel image reconstruction can
provide flexible and real-time MPI measurements.
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Chapter 1

Introduction

2D micro and nanoscale imaging techniques comprise some well established tech-
nologies, such as optical microscopy and scanning electron microscopy. The first
technique is limited by the wavelength of the light, which allows observing sam-
ples with dimensions bigger than about 100 nm; the second one obtains higher
resolutions, but the cost of it are big investments to purchase and maintain such
equipment, and the need of qualified personnel, special infrastructure and previous
preparation of samples. Scanning probe microscopy allows obtaining 3D images of
surfaces in nanoscale, but it doesn’t provide any volumetric information about the
sample, only its topography from 2D data.

3D volumetric imaging techniques are useful in applications where information
about the internal structure of bodies or objects are required. In this context,
computer tomography (CT), positron emission tomography (PET) and magnetic
resonance imaging (MRI) constitute three of the most well established technologies
that play a very important role in many applications, specially in medicine. The
latter has the advantage over the previous two of not using ionizing radiation. Once
again, the cost and expertise required to operate these equipment are the main
disadvantages of these technologies.

Magnetic particle imaging (MPI) then arises as a promising alternative 3D imag-
ing technique, with potential applications in biomedical imaging and materials re-
search. It relies on the nonlinear response of magnetic nanoparticles (MNPs) when
exposed to oscillating magnetic fields [1]. MPI allows determining the spatial dis-
tribution of these particles, used as tracers, with the important advantage of not
employing ionizing radiation like CT and PET, allowing then the detection of par-
ticles in vivo for long periods of time without any harm due to radiation exposure.
Also, in comparison to the other biomedical imaging techniques, MPI shows high
sensitivity, better resolution, excellent response times, and the advantage of allowing
particle quantification, since the measured signal is proportional to the concentra-
tion of the particles at a certain region inside the sample [2]. These characteristics
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turn MPI into a technique suitable for real-time biomedical imaging, with numerous
applications.

1.1 MPI Historical overview

MPI was first introduced in an article published in 2005 by Gleich and Weizenecker,
from Philips Research group in Hamburg, Germany [1]. In this seminal paper, the
authors describe how to employ contrast agents constituted of superparamagnetic
iron oxides (SPIOs) nanoparticles, such as the ones used in MRI, to obtain stronger
signals – and thus better image resolutions – by exploiting their nonlinear magneti-
zation response when exposed to oscillating magnetic fields. They also introduced
the concept of the field-free point (FFP), which allows measuring the response of
the MNPs located in small limited regions of space. Since the signal strength is
proportional to the concentration of MNPs within the FFP region, moving the FFP
over the 2D or 3D space – either by mechanically moving the sample or moving the
FFP itself by employing drive fields – allows obtaining images that describe the dis-
tribution of MNPs throughout the sample. The work described two scanner designs
that allowed obtaining 1D, 2D or 3D images of samples containing MNPs. Image re-
construction, i.e., obtaining the MNP concentration map from the measured signal,
is obtained by numerically solving an inverse problem where the variables are the
MNP concentration map (the unknown), the measurement values, as well as the sys-
tem response to a reference sample (later known as the Calibration Matrix, System
Matrix or System Function) obtained through the calibration of the measurement
system, leading to images with resolutions of the order of 1 mm.

After demonstrating the feasibility of the new technique, the Philips Research
group performed a simulation study in 2007 in which they investigated the impact of
changing parameters like the field strength, particle diameter and concentration, as
well as the sampling time, over the output image quality (in this case, a 2D image),
demonstrating the feasibility of MPI for monitoring biological processes through fast
acquisition and encoding, aiming for future human applications [3]. In the sequence,
they presented in 2008 experimental results of 2D MPI images obtained in 4 ms –
even though showing low signal to noise ratios (SNRs) – with a resolution better
than 1 mm [4] and, in 2009, the first results of 3D real-time in vivo imaging of the
flow of a contrast agent injected into a mouse’s bloodstream, showing good level of
details – such as its beating heart – demonstrating that the technique is suitable for
biomedical applications [5].

The first successful results of this new technique encouraged other groups to join
the efforts towards the development of MPI. In 2008, the University of Lübeck’s
research team published a study where they investigated the use of the singular value
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decomposition (SVD) method for MPI image reconstructions employing Tikhonov
regularization [6]. In 2009, they simulated different FFP sweep trajectories and their
influence over the sweep density, speed and over the quality of the reconstructed
images [7], and also proposed a new design for MPI scanners [8]. Later in 2010, they
proposed a MPI image reconstruction method based on modeling the measurement
system (particle, excitation and receive coils, dimensions, scanning trajectory etc)
in the so-called model-based approach [9, 10].

In the meantime, both groups studied a different measurement approach, based
on experience gained from MRI and CT measurement techniques. In 2008, Philips
research group published an article describing a simulation of MPI measurements
employing a field-free line (FFL) rather than a FFP [11], and in 2010 another ap-
proach for generating a FFL, as well as experimental results obtained with a FFL
MPI scanner [12] have been presented by the University of Lübeck. Both approaches
resulted in better signal-to-noise ratios (SNR), when compared to the FFP ap-
proach.

In 2009, the Department of Bioengineering of the University of California, Berke-
ley, published the simulations and experimental results of a so-called Narrowband
MPI scanner, which employed the concept of intermodulation to reduce the band-
width requirements and improve the measurement SNR [13]. In the following years,
they established the X-Space method, which employs the same instrumentation and
measurement techniques employed in the Philips method described in [1] and [5],
but with different scanning and reconstruction strategies; while the latter employs a
method that later would be known as the system function method, which is based on
a previous calibration of the measurement system, the former relies on the analytical
modeling of the system, as well as on a procedure for recovering the fundamental
frequency response, lost due to signal filtering [14, 15]. The Berkeley group also
designed and implemented a FFL (or Projection) MPI scanner [16], demonstrating
3D reconstructions using the new Projection X-Space formulation [17].

The Department of Experimental Physics of University of Würzburg, Germany,
published in 2014 the concepts, scanner design and experimental results of an new
MPI method called Traveling Wave MPI (TWMPI), based on an alternative setup
of drive field coils, called dynamic linear gradient array – or dLGA – that generates
not only one but two FFPs simultaneously, with opposite gradient directions [18].
In the following year they showed the design and preliminary results of a micro-MPI
(µMPI) scanner, with resolutions lower than 0.1 mm [19], by employing higher field
gradients, and in 2019, the results obtained by joining both TWMPI and µMPI
concepts while employing an optimized tracer in order to reach resolutions lower
than 0.5 mm [20].

Philips Research group investigated other MPI-related techniques, and in 2015
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released the first results of a method that allowed detecting different particles within
the same sample, allowing them to be displayed in the final image with different
colors – a method they called multi-color MPI [21]. The method requires prior
calibration of the system for each individual particle to be detected.

Magnetorelaxometry (MRX) has also been investigated as an option for mag-
netic particle imaging. Germany’s national metrology institute, PTB (Physikalisch-
Technische Bundesanstalt) research team conducted experiments where the 3D dis-
tribution of MNPs was estimated by measuring their magnetic relaxation after re-
moving external fields generated by a set of coils, with a measurement system con-
sisted of a large number of SQUID (Superconducting Quantum Interference Device)
magnetometers. The results, however, demonstrated that MRX imaging cannot
compete with MPI in terms of spatial and temporal resolution [22].

Some studies also employed both MRI and MPI techniques, combined for more
detailed biomedical images, since MRI is less sensitive but able to perform body
tissue imaging, whereas MPI is more sensitive but it is only able to perform tracer
imaging. In [5] and [16], MRI and MPI images were obtained using different scan-
ners, and they were combined by using small MNP sample points that could be
detected by both scanners. In 2014, a bimodal MRI-MPI scanner has been pre-
sented in [23]. In addition to body imaging, the technique also allows imaging of
medical devices, such as guide wires and catheters during interventions [24].

Another recent development is the possibility of moving magnetic material by
employing MPI techniques. It has been demonstrated that it is possible to use the
gradient field to apply forces over MNPs and remotely manipulate them [25]. This
approach could be used, for instance, to deliver drugs to a known position, or to
move instruments during a procedure, without the need of direct intervention.

The measured signal-to-noise ratio (SNR) and the spatial resolution of MPI im-
ages is highly dependent on the magnetization dynamics of MNPs. Researchers from
the University of California, Berkeley, presented a MNP system in which the parti-
cles exhibit strong magnetic response, as shown by regular ferromagnetic materials,
with the reversibility characteristic of superparamagnetic materials. This new form
of magnetism was called superferromagnetism, and is resulting from the alignment
of MNPs within a fluid to form chains when exposed to certain magnetic fields. It
has been demonstrated that superferromagnetic (SFM) particles can yield at least
one order of magnitude of gain in the SNR and spatial resolution when used under
certain conditions [26–28].

An emerging technique is MPI thermometry, or T-MPI. By exploiting the fact
that the nonlinear response of MNPs is temperature-dependent, they could be used,
in principle to generate temperature maps. This is particularly useful for searching
for tumors, inflammations or any lesion that causes a local change in the body

4



temperature. Moreover, the same effect can be exploited also to generate heat by
applying high-frequency magnetic fields over the MNPs inside the body, allowing a
targeted magnetic hyperthermia therapy, heating up only the tissue that contains
MNPs while preserving healthy tissues [24]. This approach could also be employed
to promote targeted drug delivery [29] by, for example, covering the drug with
a thermal sensitive coating which would release the drug only when heated to a
certain temperature.

The first demonstration of the use of MNPs for temperature measurement dates
back to 2009, in an article from the Dartmouth College, USA, where the authors
proposed a method based on the ratio of different harmonics that compose the full
MNP magnetic response spectrum, through magnetic particle spectroscopy (MPS)
[30]. The work showed that the MNPs can be calibrated, and then used to determine
temperature with an accuracy of about 0.3 K, being at least an order of magnitude
better than the best previous attempts of remote temperature measurements. A
similar approach was presented shortly after [31], in which AC and DC fields are
combined for obtaining an accuracy of 0.79 K.

Their initiative was followed by Huazhong University of Science and Technology,
China, in 2012, when they proposed a method of both concentration and tem-
perature estimation based on the measurement of the MNPs susceptibilities when
exposed to several different field intensities, solving then a system of equations for
both variables with an accuracy of about 0,5 K [32]. Later in 2014, they explored
different calculation methods, reporting accuracies lower than 0,1 K [33].

These first temperatures measurement attempts were performed employing MPS,
which is a non-imaging technique. Philips’ research group then investigated tem-
perature measurements with MNPs, and proposed in 2016 an approach based on
their recently proposed multi-color MPI method [34]. This was accomplished by
calibrating the system with the MNPs at different temperatures, assuming that the
MNPs at different temperatures show different properties so the signals can be sepa-
rated and interpolated in order to calculate the temperature of the sample. Through
this method, they were able to reconstruct a temperature map of a sample with an
accuracy of about 0.5 K using a commercial MPI scanner.

PTB also investigated the influence of the temperature over the magnetization of
different types of MNP suspensions using both MPS and MPI (but without imaging)
systems, reporting strong agreement between measurements performed with both
methods, and confirming the impact of temperature over the MNPs response spectra,
specially the ratio between the fifth and third harmonic amplitudes, being the impact
dependent on the particle and on the media in which it is diluted (air, liquid or solid)
[35].

Another study performed at the Technical University of Braunschweig, Germany,
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in 2018 employed a MPS system together with a mechanical scanner in order to per-
form MNP concentration and temperature imaging with an accuracy of about 1 K,
stating that temperature accuracy may improve with the excitation frequency, and
that even though temperature measurement is not dependent on the MNP concen-
tration, since the harmonic ratio remains unchanged, it affects the measurement’s
SNR and thus temperature accuracy [29].

The National Institute of Standards and Technology (NIST, USA) is currently
developing a project that aims to establish the instrumentation and techniques for
remotely mapping and controlling temperature in 3D employing MPI [36] tech-
niques. The Thermal MagIC project includes the development of novel MPI scan-
ners, high-precision magnetic detectors, as well as MNP tracers tailored to maximize
the thermal sensitivity of the measured signals [37–41]. The project also includes
the development of MPI simulation and reconstruction methods [42–44] for allowing
3D temperature imaging, including the first uncertainty estimation for MPI recon-
structions [45]. Other examples of temperature measurement techniques can also be
found in the references [46–50].

As MPI studies advanced, researchers have also started to focus on two different
but very important aspects: standardization and accessibility. In 2016, the first ver-
sion of what can be considered a first attempt to create a standard for MPI data file
format was published by a group of researches from several German institutes, being
periodically revised and upgraded since then [51]. This initiative has been followed
by the publication of an open-source software package written in Julia in 2019 [52]
and the release of publicly available MPI measurement data to support the develop-
ment of new reconstruction strategies, as well as CAD schematics of the phantoms
used as samples for the measurements also in 2019 [53]. More recently, another
initiative led by Harvard University and the Massachusetts Institute of Technology
(MIT) introduced an open-source project, called OS-MPI, that aimed supporting
new research teams to join the MPI field, by providing a "starter kit": schematics of
a low-cost FFL MPI scanner, a spectroscopy platform and an electromagnet winding
jig, including several designs, cost estimates and discussions regarding the chosen
designs [54].

The main focus of MPI research is on its great potential as a biomedical imaging
tool. Currently, commercial MPI setups are limited to pre-clinical scanners em-
ployed for imaging small rodents and phantoms. Recently a few head-sized MPI
scanners were developed [55, 56], but scaling up MPI to human size is still challeng-
ing. Limiting factors include the increase of power needed for generating gradient
fields strong enough for obtaining high spatial resolutions, the cooling that such
increase of power demands, and concerns about the increase of the specific absorp-
tion rate (SAR) and magnetostimulation resulting from this increase of power [57].
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MPI is still a relatively young technology, and is evolving at a remarkable speed.
Additional research efforts focus on new MNP tracers, new applications and new
image reconstruction algorithms [58, 59].

1.2 Image reconstruction: speed versus accuracy

Regardless of the method chosen for the signal measurement and data acquisition,
image reconstruction plays a critical role in MPI. The measured signals have to
be translated into discretized representations of the distribution of MNPs in space
(or their temperatures, in the case of T-MPI). The reconstruction step involves the
solution of systems of equations for optimal accuracy, which have the form Ax = b,
where A is a calibration matrix or a convolution kernel representing a point spread
function (PSF) scanning the sample, b is the measured signal vector and x is the
unknown concentration vector. Depending on the scanning frequency, the sampling
rate and the resolution of the resulting image, the matrix A can grow very large
and occupy several gigabytes in the computer’s memory. In addition, the measured
signals contain noise, so the system is Ill-posed and its solution requires the use of
regularization schemes such as the Tikhonov functional, and the reconstruction can
take from minutes to hours to be executed.

Over the years that followed the development of MPI, several image reconstruc-
tion algorithms have been studied. Amongst the most popular ones, we can cite
the singular value decomposition (SVD), the Kaczmarz algorithm, and the conju-
gate gradient normal residual (CGNR) method [6, 12, 15], implemented to deliver
the most accurate reconstructions more efficiently. Usually the reconstruction is a
trade-off between accuracy and speed, since more accurate reconstructions require
bigger systems of equations and/or more iterations, compromising the execution
times. Reconstruction speed and real-time applications have been the focus of sev-
eral studies [5, 60–63], and after almost two decades of research, the Kaczmarz
algorithm remains the most adopted one for MPI reconstructions, due to its fast
convergence.

Even though real-time image reconstructions is clearly one of the main objectives
in MPI research [5], no high-performance parallel approach had been proposed for
MPI image reconstruction until the development of this work. High-performance
parallel image reconstruction approaches are already a reality for several other
biomedical imaging techniques [64], like MRI [65, 66] and CT [67], but that was
not true for MPI yet. A number of authors acknowledged the potential of paral-
lel approaches, suggesting C/C++ parallel implementations of the reconstruction
algorithms using either OpenMP for multi-core CPUs or CUDA (Compute Unified
Device Architecture, developed by Nvidia) for GPUs [63, 68, 69], and this potential
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is explored in this work.
In early 2023, the first parallel implementations of MPI image reconstruction

algorithms were reported in [70], as part of the research developed for this thesis.
In the work, it was shown that the parallel CGNR algorithm can be executed 10×
faster than the serial Kaczmarz algorithm, when reconstructing 2D MPI images from
simulated data. It was also shown in that work that the parallel implementation
of the Kaczmarz algorithm does not result in any acceleration, due to the highly
sequential nature of the algorithm. Later in the same year, the poor performance
of the parallel Kaczmarz algorithm was confirmed in a parallel implementation for
accelerating multi-frame MPI reconstructions [71]. Finally, the parallel implementa-
tion of the CGNR algorithm for the reconstruction of 3D temperature images using
the multi-color method was presented in [72].

1.3 Objectives

The main objective of this work is the development of strategies for accelerating
MPI image reconstructions by implementing a number of algorithms to be executed
in parallel in GPUs using the CUDA architecture. The parallel implementation is
not limited to the reconstruction algorithms, but also includes the calculation of the
model-based calibration matrix, which requires the proper modelling of MPI mea-
surement systems. It will be shown how the parallelization of the calculation of the
calibration matrix and a combination of it with parallel reconstruction algorithms
can yield fast, accurate and memory efficient MPI image reconstructions.

1.4 Structure of the text

This document is organized as follows: chapter 2 presents the fundamentals of MPI,
chapter 3 describes the reconstruction algorithms studied in this work, chapter 4
introduces parallel programming using the CUDA architecture, while chapter 5 de-
scribes the development stages of this research, chapter 6 presents and discusses the
results and chapter 7 concludes this thesis.
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Chapter 2

MPI principles

2.1 Magnetic nanoparticles and superparamag-

netism

The first principle that supports MPI is the particular magnetic response of certain
MNPs to an applied magnetic field. These particles are said to be superparam-
agnetic, meaning that they behave like ordinary paramagnetic materials, but with
more pronounced magnetization responses. Under no external field, the magnetiza-
tion directions of the particles (or their magnetic moment directions) are randomly
oriented so the resulting magnetization - the total magnetic moment per unit volume
- is zero [2]. Once an external field is applied, the moments progressively align with
it as the field magnitude increases, until they reach saturation when all the moments
are fully aligned. Figure 2.1 illustrates how the particles align with an increasing
magnetic field. As the vertical applied field H increases, the particles align more
with the field direction and the magnetization M increases. In the figure, MS is
the particle’s saturation magnetization, and HS is the field necessary to align the
particles up to 99% of saturation. Once the external field is removed, the particles’
moments scatter again and the magnetization returns to zero.

Figure 2.1: Illustration of the superparamagnetic behaviour of magnetic
nanoparticles. The arrows show the orientation of the MNPs.
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The particles are constituted by a magnetic core – usually iron-oxides like mag-
netite, which is why those particles are also know as superparamagnetic iron oxides
(SPIOs). These cores are surrounded by an organic and magnetically neutral coating
that prevents the particles from aggregating [2] due to mutual interactions. When
the particle cores are sufficiently small (usually of the order of 20 nm or smaller),
the core is composed of a single domain (i.e., there are no domain walls) and the
thermal agitation is sufficiently strong to promote spontaneous moment reversals
(and hence the superparamagnetic behaviour). The magnetization of such MNPs is
well described by [73]:

M⃗(H⃗, T ) = ρmL

(
µ0m|H⃗|

kT

)
H⃗

|H⃗|
(2.1)

where L denotes the Langevin function:

L(x) = coth(x)− 1

x
(2.2)

and ρ is the particle concentration in (m−3), µ0 is the vacuum permeability in
(N/A2), m is the particle’s magnetic moment in (A ·m2), H is the applied field in
(A/m), k is the Boltzmann constant in (J/K) and T is the absolute temperature in
(K). The magnitude of the magnetic moment is given by:

m = Msat

(π
6

)
d3 (2.3)

where Msat is the material’s bulk saturation magnetization in (A/m) and d is the
particle core diameter in (m). The magnetization according to equation 2.1 can then
be seen as a balance between the magnetic Zeeman energy µ0mH that tries to align
the particles with the field and the thermal energy kT that tries to scatter them.

Figure 2.2 shows a plot of the magnetization as function of the applied field ac-
cording to the Langevin function. In the dynamic region near zero applied field, the
magnetization changes almost linearly. As the applied field increases in magnitude,
the plot moves to the saturation region, and the changes in the magnetization are
significantly smaller.

Due to the non-linear magnetization response of the MNPs, if an oscillating
excitation field is applied, the particles will exhibit a particular magnetization over
time, M(t), which will contain not only the excitation frequency, but also a series
of harmonics, which can easily be analyzed in the Fourier domain, and separated by
filtering. Usually the excitation field intensity is several orders of magnitude stronger
than the magnetization response, so the excitation frequency (or base frequency)
signal is often filtered out and the remaining signal is analyzed as the MNP response.
Unfortunately, the magnetization response also contains information at the base
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Figure 2.2: Magnetization as function of the applied field according to the
Langevin function (blue), and the derivative of the magnetization (orange)

representing the point spread function (PSF).

frequency, which means that part of the information is lost during the filtering, but
there are some approaches to deal with this challenge.

On the other hand, if the MNPs are already exposed to a static magnetic field,
with enough intensity to saturate them, then they will exhibit no harmonic response
when exposed to an oscillating field, provided that the sum of the superimposed
fields remains above the saturation limit. Therefore, controlling the offset field and
consequently the saturation level means being able to turn on and off the harmonic
response, and is the first key to Magnetic Particle Imaging [1].

2.2 Selection field, field-free point and field-free line

The second key element for MPI is the concept of selection field. As seen before, if
the whole sample is subject to an offset field, it is possible to control the saturation
level of the sample and thus its harmonic response. By employing two identical
and opposite constant magnetic fields, generated by two electromagnets driven by
DC currents, or two cylindrical permanent magnets placed in opposite directions,
it is possible to generate a static gradient field that vanishes at the center. Such a
field is called selection field and the region where the field is null is called field free
point (FFP). The particles inside the FFP will exhibit their characteristic nonlinear
magnetic response when an oscillating excitation field is applied, while the particles
outside of it will remain saturated. Figure 2.3 illustrates this approach. This allows
selectively measuring the signals generated by particles within a limited region of
space, instead of the whole sample. Spatial encoding, i.e., the FFP movement
relative to the sample in one, two or three dimensions, covering the desired field of
view (FOV), is achieved by either mechanically moving the sample or magnetically
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Figure 2.3: MPI FFP operating principle. Inside the FFP the MNPs will exhibit a
magnetic response to an oscillating excitation field, whereas the particles outside it
will not since they are all saturated by the gradient selection field (adapted from

[12] and [74]).

moving the FFP using orthogonal sets of drive fields – homogeneous fields generated
by two identical coils aligned with the same direction that superimpose with the
selection field, changing then the position where the sum of intensities reaches zero,
allowing then one, two or three-dimensional coverage, and consequently a map of
particle concentration over the space [73]. A number of FFP trajectory patterns can
be implemented for MPI scanning through the use of drive field coils [7], but the
most widely employed are Cartesian (mostly used with x-space reconstructions, see
3.1.3) and Lissajous (mostly used with system function reconstructions, see 3.1.1)
trajectories.

The use of drive fields to move the FFP yields a drastic increase in the scanning
speed, allowing for real-time MPI signal acquisition [5]. Also, the fast movement
of the FFP itself causes a rapid change in the MNPs magnetization in the covered
regions, resulting in a measurable magnetic response, seen as harmonics of the drive
field scanning frequency, turning the use of modulation fields unnecessary. Figure
2.4 illustrates a FFP measurement setup.

In addition to the FFP, another configuration that is widely used is the so-called
field-free line, or FFL. Initially proposed in a simulation study in 2008 [11], its feasi-
bility was demonstrated in 2010 [12]. In this approach, instead of generating a single
region with zero intensity in the middle of a gradient field, a linear region is created,
inside of which the field intensity is also zero. This region can be generated in a
similar way the FFP is generated, but instead of using a pair of coils or permanent
magnets in opposite directions, two orthogonally aligned pairs are used to generate
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Figure 2.4: 3D MPI FFP setup example.

a gradient field that vanishes in a central linear region, resulting in a FFL that is
orthogonal to both pairs main axis. Alternatively, a FFL can be also generated by
a pair of rectangular permanent magnets, as shown in [16]

The greatest advantage of using a FFL over a FFP is that the signal-to-noise
ratio (SNR) increases by a factor of

√
N , where N is the number of voxels covered

by the FFL [11]. This leads to better image resolutions, as well as better results
with lower MNP concentrations. However, the FFL should be rotated with relation
to the sample in order to provide the extra degree of freedom necessary for image
reconstructions, which requires accurately moving big and heavy sets of magnets.

One particular configuration is the so-called travelling wave magnetic particle
imaging (TWMPI) method. It is based on the concept of what the authors named
dynamic Linear Gradient Array - dLGA, constituted by an array of coils driven by
sinusoidal currents. Each coil’s current has a specific phase shift with relation to the
other in such way that a full current wavelength is described along the array’s length.
As the currents of the coils oscillate, not only one, but two FFPs are generated, with
opposite gradient directions and separated by half of the array’s length [18]. Figure
2.5 illustrates the TWMPI design.

One of the advantages of employing two FFPs instead of one is the possibility of
generating twice the amount of data due to the opposite gradient directions. When
using drive fields to displace the two FFPs in the perpendicular directions, they move
in opposite directions, scanning then two lines at a time. It happens because the
FFPs are created by gradient fields with opposite directions. Figure 2.5 illustrates
the two FFPs within the dLGA.
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Figure 2.5: TWMPI design (adapted from [18] and [20]).

2.3 Signal detection

In order to perform the signal detection, inductive coils are employed. They obey
Faraday’s law of induction:

u(t) =

∮
∂S

E⃗(l) · dl = − d

dt

∫
S

B⃗(r⃗, t) · dA⃗ (2.4)

where B⃗(r⃗, t) is the magnetic flux density in (T) at the position r⃗, integrated over
the coil’s surface S, with normal vector dA⃗ expressed in (m2). The flux density B⃗

is composed of the excitation field flux density B⃗E and the flux density generated
by the MNP’s magnetization B⃗M . The signal generated by the MNPs is given by:

u(t) = − d

dt

∫
V

M⃗(r⃗, t) ·R(r⃗)d3r (2.5)

where R(r⃗) is the receive coil sensitivity in (T/A), which is equivalent to the mag-
netic flux density generated by the receive coil per unit current at the position r⃗, in
other words:

R(r⃗) =
B⃗(I, r⃗)

I
=

µ0

4π

∫
d⃗l × (r⃗ − l⃗)

| r⃗ − l⃗ |
2 (2.6)

where r⃗ and l⃗ are the vectors pointing to the MNPs location and the coil’s center,
respectively. The sensitivity is conveniently employed for modeling the signal gen-
eration based on the principle of reciprocity [2]. Drive fields steer the FFP over the
FOV, so the resulting applied field over the sample can be expressed as a function
of the FFP trajectory r(t):
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H⃗(x⃗, t) = G(x⃗) (x⃗− r⃗(t)) , (2.7)

where G is the static gradient field in (T/m). The time-dependent signal generated
by the particles can then be expressed as a convolution of the time derivative of the
Langevin function over the spatial distribution of MNPs in space:

s⃗(t) = m

∫
R3

ρ(x⃗)R(x⃗)
d

dt
L

(
µ0m||H⃗(x⃗, t)||

kT

)
H⃗(x⃗, t)

||H(x⃗, t)||
dx (2.8)

Since multiple coils can be used for the signal detection, in general oriented in
orthogonal directions for 2D and 3D measurements, the signal is then expressed as a
vector-valued function. Equation 2.8 can be seen as a convolution that denotes the
influence of the point spread function (PSF), here represented by the first derivative
of the Langevin function, as shown in figure 2.2, over the sample being measured.
As the FFP is rapidly steered over the FOV, the changes in magnetization at the
FFP and in the surroundings of it are detected by the inductive coils and therefore
images obtained by direct gridding of the measured signals (as shown in [14, 75, 76])
are blurred. The width of the PSF, and therefore the amount of blurring observed, is
inversely proportional to both the gradient field strength and the particle’s magnetic
moment magnitude. The PSF blurring can be removed by deconvolution, which
requires numerically solving a linear system of equations, as will be demonstrated
in chapter 3.

2.4 Excitation field feedthrough and signal filtering

Equation 2.8 describes the signal induced by the MNPs over the receive coils. How-
ever, as described in 2.3, the flux density B⃗ over the receive coil is composed of
the excitation field flux density B⃗E and the flux density generated by the MNP’s
magnetization B⃗M . The signal induced by the drive field over the receive coil is then

s⃗d(t) = −
d

dt

∫
S

B⃗E(r⃗, t) · dA⃗ (2.9)

which, for orthogonally-oriented drive and receive coils and uniform drive fields can
be reduced to

s⃗d(t) = −
d

dt
B⃗E(t) · A (2.10)

Therefore, the measured signal is the result of the superposition of the signals
induced by the particles and by the drive field. The signals due to the excitation
field are, however, several orders of magnitude stronger than the signals due to the
particles, and consequently the desired MNP signal is usually lost in the digitizing
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process due to truncation. Therefore, the signal induced by the drive field must be
removed before the signal is digitized, in order to allow the detection of the MNP
response only.

One strategy could be the use of a compensation signal, but since the signals
induced by the drive fields are several orders of magnitude bigger than the ones
induced by the MNPs, implementing such compensation accurately is extremely
difficult. An equivalent approach would be to simultaneously measure the back-
ground signal with a coil away from the particles (but still inside the uniform drive
field region) and then subtract it from the full signal by connecting the coils in series
with opposite polarities, in a gradiometric configuration, before digitizing the signal.
Even though this strategy yields better results, this compensation method is also
challenging in 3D, due to the complex coupling between the three drive fields and
the receive coils [2].

The most common method for dealing with the drive field feedthrough is filtering
the measured signals. Since the excitation fields are mostly sinusoidal, they have
only one frequency component in the spectrum, the base frequency. The signals
generated by the MNPs, on the other hand, are composed of several frequencies,
or harmonics. Therefore, employing high-pass or band-stop analog filters would
remove the base frequency and the remaining signal would contain only the MNP
harmonics. The drawback of this method is that the MNP harmonic response also
contains a component at the base frequency, and then a significant part of the signal
is lost during the filtering process. Methods for dealing with the loss of the base
frequency will be discussed in chapter 3.

2.5 Particle dynamics and relaxation

The process by which the MNPs align with the external field is not instantaneous as
the ideal model suggests. Instead, it takes place in a finite time, and this relaxation
time depends on a series of factors which include the core material and its volume,
the hydrodynamic diameter (the diameter of the MNP’s coating layer), and the
viscosity of the media where the MNPs are immersed [2]. The alignment of the
particles with the applied field follows two mechanisms. In the Brownian relaxation,
the particles physically rotate to align with the field, and the characteristic relaxation
time is given by:

τB =
3ηVH

kT
(2.11)

where η is the fluid viscosity in (Pa · s) and VH is the particle’s hydrodynamic volume
in (m3) [77]. In the Néel relaxation, on the other hand, only the particle’s magnetic
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Figure 2.6: Differences between the Brownian (left) and Néel (right) relaxation
mechanisms. The plot in the right shows how both relaxation times scale with
different diameters for magnetite.

moment rotates to align with the field. In this case, the relaxation time is given by:

τN = τ0 · eKVC/kT (2.12)

where τ0 is the attempt time in (s), K is anisotropy constant in (J/m3) and VC is the
particle’s core volume in (m3). Figure 2.6 illustrates how the two mechanisms work,
and how the relaxation times relate to the particle size. Notice that both equations
2.11 and 2.12 show the temperature-dependence of the relaxation times, denoted by
the thermal energy kT . In solid media, the particles are fixed in space, and only Néel
relaxation is possible. In liquid media, both mechanisms take place simultaneously,
and usually the fastest one prevails. When the relaxation times are of the same
order of magnitude, the resulting relaxation can be expressed as a combination of
both mechanisms, and the effective relaxation time can be expressed as:

τeff =
τB · τN
τB + τN

(2.13)

Particle relaxation has a strong influence on the measured signals, and thus on
the reconstructed images. Relaxation has been modeled for x-space image recon-
structions as a convolution of the measured signal with a relaxation kernel [78], which
in principle can be removed through deconvolution. A number of studies investigate
the numerical modeling of both Néel and Brownian relaxation mechanisms, in or-
der to incorporate them in model-based MPI signal generation and reconstruction
methods [79–81]. It has been shown that relaxation shifts the PSF, and this is key
for multi-color MPI [21] and T-MPI [72].

The MNP’s dynamics properties are characterized by means of magnetic particle
spectrometry (MPS). Sometimes referred as a "zero-dimensional" MPI technique,
since it is not an imaging technique (even though some imaging studies were per-
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formed with MPS, see [29]), it is more often used to perform characterization of
MNPs to be used in MPI applications. The measurement is performed by apply-
ing an oscillating homogeneous field over the sample and then measuring the MNP
magnetization response. The signals measured under different excitation frequencies
allow determining the sample’s dynamic properties.
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Chapter 3

Image reconstruction

Image reconstruction is an essential step in magnetic particle imaging, since it al-
lows translating the measured voltage signals into discretized representations of the
spatial distribution of MNPs within a sample. Since the invention of MPI, a number
of reconstruction methods have been developed. Those methods can be divided in
algebraic and analytical, and/or in calibration-based and model-based.

Over the almost two decades of MPI development, two modeling and reconstruc-
tion methods became dominant within the MPI comunity. The system function
method is an algebraic method that usually relies on the calibration of the measure-
ment system, but can also be employed in a model-based approach. The x-space
method, on the other hand, is an analytical and model-based method that relies
on a simplification of the signal generation model, that allows a fast approximation
of the MNP spatial distribution. The methods are discussed in more details in the
following sections.

3.1 Modeling methods

3.1.1 System function MPI

This is the first approach employed by Gleich and Weizenecker [1, 3], and has been
widely used by nearly all German institutes, where MPI research was more concen-
trated in its early days. The concentration reconstruction is based on the so-called
system function, or system matrix, which is a matrix that contains the characteristic
response of the measurement system to a a particular MNP sample. The image re-
construction is performed by finding the numerical solution of the following system
of equations:

S · c = v (3.1)
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where S is the M×N system function (or system matrix, or calibration matrix),
c is the unknown concentration vector of size N , and v is the measured signal vector
of size M . In a measurement sequence, the FFP is moved either mechanically
or magnetically over the sample following a specific trajectory, while the induced
signals are measured in regular intervals, such that the number of rows M of the
calibration matrix represents the number of measurements per full scan, and the
number of columns N represents the number of elements (voxels) of the 1D, 2D or
3D imaging grid.

Both the measurement vector v and the system matrix S may contain data
generated by multiple receive coils – adding orthogonally-oriented receive coils im-
proves the signal sensitivity in each coil’s direction, at the expense of additional data
and computational effort – in this case the data are concatenated in the same vec-
tor/matrix. Depending on the desired resolution and the measurement parameters,
the system matrix can be extremely large, occupying several GB of data in the mem-
ory in some cases [53]. This is a major drawback when adopting this method, since
the amount of available memory required to handle this data is considerably large,
which is a limitation factor for end users. Additionally, the computational effort
necessary to solve such massive systems of equations results in execution times that
can range from minutes to hours. Since the measurement vector contains noise (as
well as the system function, in the case of the calibration-based method, see ahead),
solving the system for obtaining the particle distribution is an ill-posed problem [6],
and regularization is required in order to achieve stable solutions (see ahead some
reconstruction methods). The calibration matrix can be obtained by two methods,
as follows.

Calibration-based

This is the method that results in the most accurate system functions and state-
of-the-art reconstructions, and has been successfully employed by several authors
[1–12, 73]. The determination of the system matrix consists of recording the signals
generated by a small MNP reference sample, as it is placed at different positions
within the FOV, representing the voxels of the image to be reconstructed. This
sample is usually small enough to fit inside a voxel and concentrated enough to
be considered an approximation of an impulse function (and this is why it is often
referred as the delta sample in the literature [1, 3]). At each calibration position,
a full measurement sequence is performed, scanning all the field of view (FOV) as
the FFP is steered over it; the measured data is transformed from time to frequency
domain through a Fourier transform (this allows for filtering undesired frequencies,
such as the excitation frequency and higher harmonics with lower SNR), and the
data are then stored as a column in the matrix. The process is repeated until all
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Figure 3.1: MPI measurement (color) of a living mouse injected with MNPs.
Grayscale image is an MRI acquisition overlapped in order to identify the path of

the MNPs inside the body [5]

positions are measured (i.e., all the system matrix’s columns). The delta sample
can be moved along the grid manually or by using a robot (the faster and most
frequently used method).

The greatest advantage of this approach – responsible for the most accurate re-
sults – is the fact that the measured calibration matrix intrinsically accounts for the
non-ideal behaviour of the whole measurement system, including imperfections or
misalignment of components such as field coils and magnets, receive coils, electronics
or even the particle’s dynamic magnetic response, that could lead to any departure
from the expected measurement result. Figure 3.1 exhibits the results of a measure-
ment performed with this method. Another major advantage of the system function
method is that it can be employed the same way using either FFP or FFL - each
method requires a specific calibration, as the system’s response would be different.

Among the disadvantages, the most significant one by far is the tedious calibra-
tion process. Consider, for example, a sampling sequence time of 1 second, followed
by a repositioning procedure that takes 1 s in average. For a 10 x 10 x 10 3D
grid, the calibration time would be about 30 minutes; for a 30 x 30 x 30 grid, the
calibration is 15 hours; for a 100 x 100 x 100 grid, the calibration takes more than
23 days – clearly scaling is a major issue when adopting a calibration-based system
function measurement method. In addition, the calibration matrix describes the
characteristic response of the MPI system to a specific set of parameters that in-
cludes the coils, detectors, electronics, filters, FOV, scanning sequence and sampling,
the MNP’s dynamic response and even the sample’s temperature. This means the
system is "locked" for all these parameters, and every measurement must be per-
formed in exactly the same way the calibration was done. One single change in
any parameter would require a new system calibration in order to keep optimum
accuracy.
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Model-based

This method was proposed by Knopp et al [9, 10], based on a simulation study
performed in [3], and is based on modeling the whole MPI system, including the
magnetic fields (selection field, drive fields, focus fields etc), the magnetic response of
the MNPs, as well as the receive chain and the system electronics (filters, amplifiers,
ADCs etc). It is known to provide worse results in comparison to the calibration-
based method, but it has, as the main advantages, the significantly reduced time
to obtaining the system matrix, as well as the possibility of generating parts of the
system function during the reconstruction, avoiding the storage of big matrices in
the memory (at the expense of the computation time). Also, the model-based system
function is not limited by the voxel size employed during measurements, which means
it is straightforward to generate system functions with higher resolutions. The main
drawback is the lack of information about the imperfections of the system, especially
about the particle dynamic response, which is often modeled using the Langevin
function – real particles do not behave exactly as described by this model. More
accurate MNP behavior models would address this issue [24], and more recently a
mathematical model for the MPI signal generation that accounts for both Néel and
Brownian relaxation mechanisms has been proposed in [81].

In order to benefit from the advantages and overcome the challenges of both
calibration-based and model-based methods, a hybrid solution was proposed by
Gruettner et al [82]. The method consists of modeling the magnetic fields, since
they can be more accurately modeled, and measuring the MNPs magnetization
response in a separate step. The main advantages of this method is the fact that
the calibration sample does not need to be moved over the FOV and it can be
measured with higher SNR, since it is possible to use larger MNP samples even
when modeling system matrices with high spatial resolutions. The results showed
that the hybrid approach provided better results than the full model-based method,
but the calibration-based system function method still delivers the most accurate
reconstructions.

3.1.2 Multi-color MPI

First demonstrated by Rahmer et al. in 2015, the method is based on the fact
that different particles, particles immersed in different medias with different viscosi-
ties, or even particles at different temperatures will exhibit different magnetization
responses [21]. They were able to demonstrate that it is possible to perform a
numerical reconstruction that allows detecting different particles within the same
sample, and display them in a way that the user is able to distinguish them, usually
by plotting them in different colors, hence the name multi-color MPI.
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Figure 3.2: Multi-color MPI measurement. The same particle (MM4) was used
both dry (green) and diluted in liquid suspension (blue) in order to demonstrate

the different responses in different media. Adapted from Rahmer et al. (2015) [21].

The technique is based on the system function methodology. It relies on the
principle of superposition of the MPI signals, and consists of generating one full
system matrix per particle, and concatenating them for building an extended system
of equations. Consider, for instance, that three different particles, p1, p2 and p3 are
to be measured within a sample, so equation 3.1 can be rewritten as:

Sp1 · cp1 + Sp2 · cp2 + Sp3 · cp3 = v (3.2)

or

∣∣∣Sp1 Sp3 Sp3

∣∣∣ ·
∣∣∣∣∣∣∣
cp1

cp2

cp3

∣∣∣∣∣∣∣ = v (3.3)

where Sp1, Sp2 and Sp3 are the particles’ system functions, and cp1, cp2 and cp3 are
their individual concentrations. The solution of the inverse problem determines these
three vectors based on the system functions and the measurement vector v. Figure
3.2 illustrates the result of a multi-color MPI measurement. The different dynamic
responses of the different particles in different solutions result in different PSFs, and
consequently calibration matrices with columns linearly independent with relation
to other samples, which allows the solution of the extended system of equations.

Multi-color MPI temperature measurement

The System Function and Multi-color MPI methods were also employed for temper-
ature measurements. In [34], the method was used for estimating both concentration
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Figure 3.3: Multi-color MPI temperature measurement, where [a] and [b] represent
the cold channel measurements, [c] and [d] the warm channel ones, and [e] and [f]
are the temperature estimations for two different measurements. Adapted from

[34].

and temperature. The procedure was similar to the one explained in 3.1.2, the differ-
ence was that instead of using different particles, two system matrices were acquired
for the same particle sample at two different temperatures. The temperature then
was determined by interpolating the reconstructed concentrations in the two chan-
nels, normalized by the total concentration i.e., the sum of both channels. Despite
the lack of data for a quantitative analysis, the ratio of signal variation suggests a
temperature precision of about 0.5 K. Figure 3.3 shows the results obtained with
this method.

The system function method was also employed in [50], where it was demon-
strated that a single system function can be used for temperature calculation, by
using a sample with a known quasi-uniform MNP distribution, and assuming that
inside the sample, any changes in the measured signals could be directly attributed
to changes in temperature. The use of a single system matrix minimizes the calibra-
tion effort, as well as the computation time required for temperature calculation, in
comparison to the multi-color approach. Temperatures then were determined from
changes in the reconstructed concentrations, since it was known that the actual con-
centration was constant. The temporal and spatial temperature distributions were
compared with an infrared camera, with a mean absolute deviation of about 1 K.

More recently, it has been shown that the multi-color T-MPI method has serious
limitations on determining temperatures between the calibration points [72]. The
extended system of equations can be solved to efficiently determine the amount of
particles at the calibration temperatures, but cannot resolve it for intermediate ones.
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Therefore, the temperature resolution of the method depends on the ability of hav-
ing several calibration matrices more closely spaced in temperature, which would
significantly increase the computational complexity of the reconstruction process.
Additionally, this would require MNP samples extremely sensitive to temperature
changes, in order to provide distinguishable PSFs and consequently linearly indepen-
dent system matrices. This investigation is part of this work, and will be described
in more details in 5.3.

3.1.3 X-Space

This analytical method was developed in 2010 by Goodwill and Conolly at the Uni-
versity of California Berkeley [14], initially for 1D reconstructions, but soon adapted
for 2D and 3D [15]. By taking some simplifications such as linear gradient field, uni-
form drive fields and coil sensibilities, negligible relaxation time with relation to the
scanning frequency, and adopting the superparamagnetic Langevin function as the
particle’s magnetic response model, the x-space method is formulated assuming that
the total magnetization can be modeled by a convolution of the function describing
the MNP concentration in space ρ(x) with a point spread function (PSF), given by
the first derivative of the Langevin equation L̇[kGx] with relation to time, as shown
in 2.3. The signal s(t) generated by the receive coil with sensitivity −B1 in the 1D
approach is described by:

s(t) = B1
dΦ

dt
= B1mρ(x) ∗ L̇[ξGx]

∣∣
x=xs(t)

ξGẋs(t) (3.4)

where ξ = µ0m/kT and xs(t) is the position of the FFP in the space. It is possible to
notice that, in addition to the magnetic moment magnitude, which depends on the
particle’s characteristics, the signal intensity is proportional to the selection field’s
gradient and the FFP scan speed, as the voltage induced in the coils is proportional
to the change in the magnetic flux caused by both the fast FFP movement and steep
gradient, that magnetize and demagnetize the MNPs along the FFP scanning path.
The x-space image is then given by:

IMG(xs(t)) =
s(t)

B1mξGẋs(t)
= ρ(x) ∗ L̇[ξGx]

∣∣
x=xs(t)

(3.5)

Similar approaches are adopted for 2D and 3D measurements. It is important to
note that the image contains information about the distribution of MNPs in space,
but is still blurred by the PSF. The actual MNP concentration map may be obtained
by deconvolution of x-space image with the PSF by, for example, Wiener filtering
[15].

The main advantage of this method is that it doesn’t require any previous cali-
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bration to be run, as it analytically computes the magnetization of the system simply
by weighting the signal with relation to the FFP speed and then gridding it to fit
the data to the FFP position in space, which can be performed in short time. In
addition to its simplicity, all the analysis is performed in time domain, which means
no Fourier transform is required.

A major drawback of the method is the loss of the fundamental (or excitation,
base, or drive) frequency component through filtering, as discussed in 2.4. In the sys-
tem function method, this issue is naturally addressed by filtering the fundamental
frequency during both in the calibration and the measurement, but for the x-space
method it was shown that the loss of the base frequency is equivalent to having a
dc offset in the MPI image [83, 84]. An algorithm for recovering this offset using
prior information has been implemented, with reasonable results. It has also been
shown in [43] that adopting a constant bias term in the formulation of a numerical
reconstruction also allows recovering the offset caused by filtering.

Another great disadvantage of the X-Space method is that, similarly to other
model-based methods, the analytical reconstruction does not account for the mea-
surement system imperfections. The gradient field is assumed as being linear, the
drive field is assumed as being uniform over the whole FOV, the receive coil sensi-
tivity is assumed as being uniform as well, and the particle response is assumed as
being adiabatic – meaning that the particle’s magnetic moment vector aligns imme-
diately with the applied field, without any energy loss or relaxation. Non-adiabatic
behavior has also been studied and relaxation has been added to the x-space model,
resulting in slightly better results [78, 85].

Even though the system function method is recognized as the more accurate one,
is has been demonstrated in [86] that both system function and x-space methods are
mathematically equivalent, since both methods are based on the same fundamental
equation.

3.1.4 Alternative approaches

The biggest challenge for model-based approaches is accurately accounting for non-
ideal behavior of the elements that compose the measurement system: active and
passive coils, permanent magnets, base frequency filtering, particle magnetization
and its dynamics. Most methods aim to compute the elements of the system ma-
trix, which saves calibration time but potentially add systematic errors to the re-
constructed concentration maps, in addition to the ones resulting from the algebraic
reconstruction methods. Still, they do not address one of the biggest issues involving
the system function method, which is the size of the calibration matrix.

The formulation of a forward MPI operator that allows direct deconvolution
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without the use of the system matrix is highly desirable. A 1D convolution kernel
derived from the conventional modeling, which could be extended to 3D, is shown
in [75], while the formulation for a spatial model in terms of a MPI core opera-
tor and the corresponding reconstruction methods applicable to any arbitrary FFP
trajectory are shown in [76]. This last approach was further improved in [43] by
accounting for non-uniform receive coil sensitivity in the analytical model, as well
as non-adiabatic MNP magnetization response through the inclusion of a relaxation
kernel, and the recovery of the signal lost due to base frequency filtering.

Additional methods include AI approaches that makes use of neural networks. In
[87] the authors propose a model-based image reconstruction method with additional
learning during execution. The use of deep neural networks combined over publicly
available calibration and measurement data (see [53]) is studied in [88]. Recent
approaches also include the use of Bessel functions [89] and splines [90].

3.2 Inverse problem formulations: Tikhonov regu-

larization, L1 norm and Total Least Squares

As discussed in section 3.1.1, since the measurement contains noise, regularization
is required in order to obtain a more stable solution for the system function inverse
problem. Equation 3.1 is then rewritten as:

S · c = ṽ (3.6)

where ṽ = v + η, for an additive noise η. The presence of noise requires the use
of regularization techniques, such as Tikhonov regularization. In this case, the
extended system of equations can be given by

∣∣∣S λI
∣∣∣ · ∣∣∣∣∣cr

∣∣∣∣∣ = ṽ (3.7)

when using Craig’s method, where I is the identity matrix and r is an auxiliary
residual vector, or can also be given by∣∣∣∣∣ SλI

∣∣∣∣∣ · c =
∣∣∣∣∣ṽ0
∣∣∣∣∣ (3.8)

in a traditional regularized least squares assembly. The least squares solution is then
given by minimizing the functional:

argmin
c≥0

∥S · c− ṽ∥22 + λ ∥c∥22 (3.9)
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where λ is a regularization parameter, which is employed to balance noise and def-
inition — if it is too low the solution will be noisy, whereas if it is too high the
reconstructed image will be blurred, resulting in definition loss. It has been shown
in [91] that both extended system of equations 3.7 and 3.8 are equivalent. Even
though the regularization parameter is most often tuned manually, and checked
by visual inspection of the reconstructed image, it has been shown that it can be
automatically determined using the L-curve method [6].

The above solution includes a regularization term to penalize solutions with
high Euclidean norm (or L2 norm), an indicative that the solution might be fitted
to noise. An alternative regularization approach, based on an absolute norm (or L1
norm) penalty term is presented in [68], where a non-negative fused lasso model is
employed:

argmin
c≥0

∥S · c− ṽ∥22 + λ ∥c∥1 + βTV(c) (3.10)

where TV(c) is a total variation term introduced to preserve the edges of the recon-
structed volumes, resulting in images with reduced noise and sharper edges. The
scaling β > 0 term is employed to control the weight of TV(c) in a similar way λ is
employed to weight ∥c∥1.

Another L1 norm approach was proposed in [92], in which the authors instead
propose replacing the least-squares term by a L1 norm term:

argmin
c≥0

∥S · c− ṽ∥1,ϵ + λ ∥c∥21 (3.11)

where ϵ is a very small smoothing term employed to keep the above equation dif-
ferentiable. According to the authors, the L1 fitting is said to be statistically more
robust to outliers than the L2 fitting.

The above regularization methods assume that only the measurement vector
contains noise. However, in real-life applications the system matrix also contains
noise – especially the calibration-based one. In order to account for potential model
errors and noise in the system matrix, the Total Least Squares (TLS) method was
proposed in [93]. In this approach, a deviation matrix δS is included in eq. 3.6:

(S + δS) · c = ṽ (3.12)

The reconstruction requires minimizing the below Tikhonov-like functional for
both δS and c:

argmin
c,δS

∥(S + δS) · c− ṽ∥22 + ∥δS∥
2
F + λ ∥c∥1 (3.13)

where ∥·∥F denotes the Frobenius norm. The functional is iteratively minimized by
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an alternating algorithm which computes, at each iteration, the new estimates for c
and for δS.

3.3 Reconstruction algorithms

Over the relatively short lifetime of MPI since its inception, a number of algorithms
has been investigated to provide fast and accurate image reconstructions. Among
them, the most popular ones are the singular value decomposition (SVD), the Kacz-
marz algorithm, and the conjugate gradient normal residual (CGNR) method. All
these algorithms aim to find the solution of the Tikhonov regularization functional
in 3.9, and they are discussed in more details in the following sections.

3.3.1 Kaczmarz algorithm

The main goal when choosing a reconstruction algorithm is to provide (if possible)
real-time reconstructions, so speed and efficiency are of great importance. In this
sense, the simplicity and fast convergence of the Kaczmarz algorithm granted it the
position of most widely adopted MPI reconstruction algorithm. It is also known in
the literature as Algebraic Reconstruction Technique – ART (even though ART can
be considered a particular case of the Kaczmarz method for some authors), and it
consists, for each row of the system matrix S, on projecting the current solution
onto it, finding then the correction to derive an updated solution. One sweep over
all the system matrix’s rows is considered one Kaczmarz iteration, and the process
is repeated until convergence is reached [94]. Applied to the regularized system of
equations 3.7, the updated estimate c(i+1) is given by:

c(i+1) = c(i) +
ṽi − Si · c(i) − λ · ri
||Si||2 + λ2

ST
i (3.14)

where Si is a row of the system matrix, vi is the corresponding element of the
measured signal vector, and ri is the corresponding element of an auxiliary vector.
It is also possible to add constraints at the end of each update, such as non-negativity,
in order to improve the accuracy of the reconstruction. A typical implementation
of the Kaczmarz algorithm is shown in Algorithm 1. For nearly orthogonal rows,
the solution converges very quickly, but it can be extremely slow for nearly parallel
rows (which fortunately is not the case for MPI), with complexity O(N2), where N

is the number of columns of the calibration matrix. One solution could be randomly
choosing the rows to be projected to compute the new estimate, so sweep sequences
would be different at each iteration, which has been proposed in [95]. Examples of
the use of this algorithm can be found in [5, 10, 82].

29



Algorithm 1 Regularized Kaczmarz algorithm
1: c(0) ← 0 ▷ Initialize solution vector
2: r ← 0 ▷ Initialize residual vector
3: for i = 0→M do
4: βi ←

(
si − Si · c(i) − λ · ri

)
/ (||Si||2 + λ2)

5: c(i+1) ← c(i) + βi · ST
i ▷ Update solution

6: if c(i+1) < 0 then
7: c(i+1) ← 0 ▷ Positivity constraint (optional)
8: end if
9: ri ← ri + βi · λ ▷ Update residual vector

10: end for

As variants of the Kaczmarz algorithm, there are the Cimmino algorithm (or
simultaneous iterative reconstruction technique - SIRT) and the block-ART or block-
Cimmino algorithm [70, 94, 96]. The Cimmino algorithm averages the corrections
obtained by the projections of all the rows of S before updating the solution, in-
stead of updating after each projection, while the block-Cimmino runs the Cimmino
algorithm over blocks that contains subsets of rows of S.

3.3.2 Conjugate Gradient Normal Residual

The Conjugate Gradient (CG) was developed in 1952 at the National Bureau of
Standards (NBS) as an iterative solver applied to finding the solution of positive
definite systems of equations [97], which is not the case of the regularized least
squares problem defined in equation 3.8. In this situation, the CG method is applied
to the normal equation:

STSc = ST ṽ (3.15)

in the so-called conjugate gradient normal residual (CGNR) method. Also known
as conjugate gradient least squares (CGLS) or conjugate gradient normal equation
(CGNE), the algorithm works by iteratively finding a sequence of vectors p(i) that
are mutually conjugate with relation to S, used as the search directions [94, 98].
The new estimate c(i+1) for the regularized least squares problem 3.8 is given by:

c(i+1) = c(i) + α · p(i), (3.16)

where:

α =
||S̃T · r(i)||2

||S̃ · p(i)||2
(3.17)
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p(i) = S̃T · r(i) + ||S̃T · r(i)||2

||S̃T · r(i−1)||2
p(i−1) (3.18)

r(i) = s− S̃ · c(i) (3.19)

and S̃ is the augmented system matrix accounting for regularization:

S̃ =

∣∣∣∣∣ SλI
∣∣∣∣∣ (3.20)

The CGNR method has complexity O(N2), where N is the number of columns of
the calibration matrix, and is detailed in Algorithm 2. One of the biggest advantages
of the method is the fact that the explicit calculation of STS is unnecessary, saving
memory space and computation time, as well as avoiding additional round-off errors.
In addition, for optimum performance, the residuals do not need to be recalculated
at every iteration, being updated together with the estimated solution (see lines 11
and 12 of Algorithm 2), which saves one matrix vector multiplication per iteration.
Ideally, the method would converge in n iterations, where n is the largest dimension
of S, but in real applications round-off errors slow it down. One disadvantage of the
method is the fact that it relies on the conjugacy between search directions for proper
convergence, which prevents the implementation of additional constraints, such as
positivity. Convergence can be improved by the adoption of matrix preconditioning
and/or the use of a weighting matrix [98, 99].

Algorithm 2 Regularized CGNR
1: c(0) ← 0 ▷ Initialize solution vector
2: r(0) ← s− S · c(0) ▷ Initialize residual vector
3: r

(0)
λ ← −λ · c(0) ▷ Initialize λ-residual vector

4: z(0) ← ST · r(0) + λ · r(0)λ

5: p(0) ← z(0) ▷ Define first search direction
6: for i = 0→ Niter do
7: w(i) ← S · p(i)
8: w

(i)
λ ← λ · p(i)

9: α(i) ← ||z(i)||2/(||w(i)||2 + ||w(i)
λ ||2)

10: c(i+1) ← c(i) + α(i) · p(i)
11: r(i+1) ← r(i) − α(i) · w(i)

12: r
(i+1)
λ ← r

(i)
λ − α(i) · w(i)

λ

13: z(i+1) ← ST · r(i+1) + λ · r(i+1)
λ

14: β(i) ← ||z(i+1)||2/||z(i)||2
15: p(i+1) ← z(i+1) + β(i) · p(i)
16: end for
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3.3.3 Steepest Descent

The steepest descent method is an iterative algorithm widely employed in deep-
learning applications [100]. It is a first-order method that uses the inverse of the
residuals of the function (or the gradient) as search direction. Similarly to the ap-
proach employed with the conjugate gradient method, the steepest descent method
is applied in this work to the normal equation (3.15), and when applied to minimize
the regularized least squares problem (3.8), the next iteration is given by:

c(i+1) = c(i) + α · z(i), (3.21)

where

α =
||z(i)||2

||S̃ · z(i)||2
, (3.22)

and
z(i) = S̃T · (s− S̃ · c(i)) (3.23)

The regularized steepest descent method is shown in algorithm 3. For optimal
performance, the residuals are updated together with the solution estimate, without
the need of the calculation of new residuals, which saves computation time, as also
implemented in the conjugate gradient method. If one wishes to enforce a constraint,
such as non-negativity, the new residuals must be computed, adding a matrix-vector
multiplication to the algorithm and slowing down its execution. The complexity of
the steepest descent method is also O(N2).

Algorithm 3 Regularized Steepest descent
1: c(0) ← 0 ▷ Initialize solution vector
2: r(0) ← s− S · c(0) ▷ Initialize residual vector
3: r

(0)
λ ← −λ · c(0)

4: for i = 0→N do
5: z(i) ← ST · r(i) + λ · r(i)λ ▷ Update search direction
6: w(i) ← S · z(i)
7: w

(i)
λ ← λ · z(i)

8: α(i) ← ||z(i)||2/(||w(i)||2 + ||w(i)
λ ||2)

9: c(i+1) ← c(i) + α(i) · z(i)
10: r(i+1) ← r(i) − α(i) · w(i)

11: r
(i+1)
λ ← r

(i)
λ − α · w(i)

λ

12: end for
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3.3.4 Singular Value Decomposition (SVD)

The SVD was one of the first methods proposed in the literature for MPI image
reconstructions [6]. It is a direct solver, rather than an iterative method like Kacz-
marz and CGNR, which works by decomposing the M×N system matrix into three
matrices, U , Σ and V , where U (M ×M) and V (N × N) are unitary orthogonal
matrices, and Σ (M × N) is a rectangular diagonal matrix containing the singular
values of S, or σi. These three matrices can be used to calculate the pseudoinverse
(or the Moore-Penrose inverse) of S for the solution of systems of equations. The
SVD would provide the exact solution for consistent system of equations, but it is
extremely sensitive to noise in the input data. In this case, regularization can be
applied, and then the approximate solution is given by:

cλ =
M∑
i=0

σ2
i

σ2
i + λ2

UT
i · s
σi

Vi (3.24)

where U.,i is the ith column of U and V.,i is the ith column of V . The first term
inside the sum is the filter factors fi:

fi =
σ2
i

σ2
i + λ2

(3.25)

For σi ≫ λ, fi ≈ 1, and for σi ≪ λ, fi ≈ 0. In practice, the regularization
parameter λ acts like a low-pass filter, allowing only large singular values at lower
frequencies, in an approach similar to the truncaded SVD (TSVD) [94]. A simple
implementation of the regularized SVD reconstruction is shown in algorithm 4.

The complexity of the SVD is O(N3), but fortunately the decomposition has to
be performed only once for a single system function. Once it is done, the solution is
calculated with complexity O(N2), for a given λ. Examples of the use of SVD can
be found in [3, 6, 62].

Algorithm 4 Regularized SVD reconstruction
1: Input matrices: Um×m, Vn×n, Σm×n ▷ SVD decomposition
2: c(0) ← 0 ▷ Initialize solution vector
3: Begin reconstruction:
4: p = UT · s
5: for i = 0→M do
6: fi = σi/(σ

2
i + λ2)

7: pi = pi · fi
8: end for
9: c = V · p ▷ Compute solution vector
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Chapter 4

GPU parallel programming with
CUDA

Most of the technological advances seen in the last decades are due mainly to the in-
crease of processing capacity of computers. Since the early 80’s personal computers,
this improvement is a result of the increase of the processor operating frequencies,
or clocks. Since then, the clock rates increased from a few MHz to about 4 GHz
in the early 2000’s, an acceleration of the order of thousands in processing speed.
Until then, the increase in CPU processing power depended on two main factors:
reducing the size of the transistors that compose the CPUs (and therefore increasing
the number of transistors per chip) and increasing the clock speeds. Historically,
the number of transistors per chip has doubled since the 1960’s, in accordance with
Moore’s law [101, 102], but the same cannot be said about the CPU clocks. The
acceleration of the CPU frequencies drastically declined in the early 2000’s, as the
CPU transistor sizes and overheating became major constraints on obtaining higher
clocks [103], forcing the CPU manufacturers to explore other alternatives. As a
consequence, the first dual- and multi-core architectures were released, fostering
the development of applications using parallel approaches – something that until
then was mostly restricted to large applications running in supercomputers, or to
graphical processing executed in GPUs.

GPUs had a significant role in the development of parallel computing. In the
early 1990’s, the demand for applications with improved graphical performance in-
creased significantly, mainly driven by the development of 3D games, which required
rendering scenarios at high frame rates and demanded massive arithmetic opera-
tions to determine the color of each pixel on the screen. At that time, the employed
parallelism was based on graphical pipelines, which could be configured but not
programmed [104]. In 2001, in response to an increasing demand from developers,
NVIDIA released the first GPU with programmable pipeline, and shortly after the
developers realized that it could be used not only over graphical data, but also over
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any kind of data that could benefit from the GPU parallel architecture. However,
exploring the potential of the GPUs was not straightforward; the developers needed
to be familiar with graphics libraries such as OpenGL or DirectX that allowed in-
teracting with the GPUs, as well as shading languages like GLSL or Shader. These
limitations were an obstacle to the acceptance of the GPUs as general parallel com-
puting tools.

Finally, in 2006, NVIDIA releases the first GPU developed with the CUDA
(Compute Unified Device Architecture) architecture, followed in 2007 by a program-
ming language that extended the traditional C language (the CUDA C language)
by defining a set of keywords that allowed accessing the GPU resources, a specific
compiler for this extended language, and a driver to explore the GPU features.
The CUDA architecture was developed to be applied to either graphics and general
applications, and revolutionized the field of high-performance computing (HPC).
After the release of CUDA, it was no longer necessary to be familiar with graphics
libraries or shading languages to use GPUs for general purpose computing, which
boosted the popularity of the architecture. These graphic cards, and the ones that
followed this new paradigm became known as General-Purpose Graphical Process-
ing Units (GPGPUs). Currently, NVIDIA’s GPUs are employed in a wide range of
applications, including data analysis and visualization, signal processing, database
management and machine learning. Among the 500 fastest supercomputers in the
world, 165 of them employ CUDA-enabled GPUs as accelerators, six of them among
the top ten systems, according to the November/2023 release of the TOP500 list
[105]. Currently, several other programming languages offer support for exploring
the CUDA features, such as C++, Python, Fortran, Julia and Matlab.

4.1 The CUDA architecture

CUDA is based on the SIMT (Single Instruction, Multiple Thread) architecture,
which is similar to the SIMD (Single Instruction, Multiple Data) one, and was de-
signed to execute the same set of instructions by thousands of threads concurrently.
While a regular CPU is highly specialized on data processing and execution control,
a GPU is highly specialized on parallel computations [106]. Figure 4.1 illustrates
how the CPU dedicates more transistors to execution control than the GPU. The
computations over the pixels of an image are a good example of a highly parallel
application suitable to be executed in a GPU.

The architecture is based on the concept of Streaming Multiprocessors (SMs),
specialized processors composed of multiple cores. Each SM manages the creation
and executions of warps, groups of 32 threads that run in parallel. The threads
within a warp execute the same program simultaneously, but each thread has its own
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Figure 4.1: Comparison between the CPU (left) and GPU (right) architectures.
Source: NVIDIA (2024) [106].

program counter and state registers, so they can run independently, even though the
maximum performance is obtained when all the threads execute exactly the same
instructions, so conditional branching should be avoided, if possible. The threads
are sent to the SM for execution in blocks ; the SM organize the threads within the
block into warps and execute each one of them according to the available number of
cores. The blocks can also be organized into clusters, which in turn are organized as
grids. This organization ensures the scalability of the architecture, since GPUs with
different number of SMs and cores can execute the same program, and also ensures
an efficient memory usage by implementing different memory levels and access rules
for each group.

A CUDA program is called a kernel, which is called during the execution of the
main program to run a number of threads in parallel. The execution of a CUDA
kernel is asynchronous, and the main program is not interrupted by the kernel call
unless synchronization is explicitly requested. This heterogeneous programming
model is advantageous because even though many tasks can be accelerated by the
GPU, others are more efficiently executed in the CPU, so the workload can be
distributed accordingly. Additionally, the asynchronous kernel execution can be
combined with asynchronous memory transfers so different kernels can be executed
simultaneously. The main CUDA program may contain one or more kernels that are
invoked during its execution, which can be assigned to different streams and then
also be executed concurrently.
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4.2 Thread and memory hierarchy

The smallest instance of a CUDA program is a thread, which is executed in a CUDA
core. Each core contains its own on-chip registers with the lowest access times, typ-
ically of the order of one clock cycle. Each thread has its own identification register,
which can be accessed through the variable threadIdx. This identification is unique
within the thread block, and the threads can be organized in one, two or three-
dimensional blocks for programming convenience. In this case, the thread IDs are
determined by the indexes threadIdx.x, threadIdx.y, threadIdx.z and the block
dimensions, which are user-defined and can be accessed within the kernel through
the blockDim variable. When the threads are organized as an one-dimensional array,
the ID is simply given by threadIdx.x.

The threads are organized into blocks, which can also be organized as one, two
or three-dimensional grids, and analogously, the indexes of the blocks can be ac-
cessed through the variables blockIdx.x, blockIdx.y and blockIdx.z. Therefore,
a unique thread in a kernel call can be identified as a combination of the thread
indices, block indexes and the block dimensions. For example, when the thread and
blocks as organized as an one-dimensional array, the unique thread identification can
be determined by blockIdx.x * blockDim.x + threadId.x. The threads within
a block can all access an on-chip, high bandwidth and low latency shared memory,
similar to a L1 cache memory. The shared memory is divided into equally-sized
modules called banks that can be accessed simultaneously. The threads within a
block are always executed in a single SM, so they can cooperate within each other
through the shared memory and in-block synchronization.

The blocks can also be organized into block clusters. Analogous to the blocks
and threads, the clusters can also be organized in one, two or three dimensions, and
the blocks within a cluster are always executed in a single GPU processing cluster,
or GPC. The thread blocks within the cluster have access to the distributed shared
memory, which is the set containing the shared memory of all thread blocks that
compose the cluster. Together with a built-in cluster synchronization capability, the
threads within a cluster can also cooperate on a higher level.

All threads have access to the GPU global memory, which has lower bandwidth
in comparison to the shared memory. The access to the global memory is optimized
through a L2 cache, provided the locality of the data accesses is respected. Each
thread has access to its own local memory, that resides in the device memory and
have the same access times as the global memory. Finally, two additional read-only
memory spaces are available, the constant and texture memory spaces. The constant
and texture memories are cached in independent constant caches, for improved data
throughput, being the texture cache optimized for 2D spatial locality.
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Figure 4.2: Threads and memory hierarchy in the CUDA architecture. The arrows
in the image represent the threads. Adapted from NVIDIA (2024) [106].

Figure 4.2 illustrates the thread and memory hierarchy. The lifetime of the
data in the registers, shared memory and distributed shared memory are the same
of their respective threads, blocks and clusters. The global, constant and texture
memory data are maintained between kernel launches, persisting during the whole
application. The GPUs can also access and manipulate data allocated in the host
(the CPU) main memory. This operation, however, is very expensive, with very
high latency, and should be avoided if possible.

4.3 Best practices for programming with CUDA

CUDA is a powerful parallel architecture which can deliver, if properly used, orders
of magnitude in execution speedup. Even though many applications can benefit from
parallel implementations, it is important to keep in mind that some applications are
not suitable to be executed in parallel, and will exhibit poorer performance (an
example of such application is shown in 5.2.2). Often a sequential algorithm will
have to be completely rewritten to be executed in parallel, and this can be done
in several different ways. In general, algorithms containing mostly for loops are
good candidates for being executed in the GPU, while others containing many if

statements usually are more suitable for being executed in the CPU.
CUDA-enabled GPUs are composed of hundreds to thousands of cores. There-

fore, optimal parallel performance is obtained when the GPU utilization is maxi-
mized. This means exposing the application to the parallelism of the system in such
a way that all the components are kept busy most of the time. The granularity of
the algorithm must be such that all the GPU cores are employed for the computa-
tion, so the more the problem can be broken into smaller and (possibly) independent
steps the better is the performance gain.

Having the device idle should be avoided at all costs. Even though all the threads
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within the SM are running exactly the same code, the threads can diverge if the
code has conditional statements. In the case of conditional branching, the branches
will be executed in sequence, so while a group of threads runs through one branch,
the remaining threads will remain idle, which represents a significant impact on
the application throughput. Therefore, conditional statements should be avoided
as much as possible. Often conditional branching can be successfully replaced by
logical operations.

Cooperation between threads often requires access to shared data and synchro-
nization. A race condition is created when two or more threads try to access the
same memory location, and memory fence functions help ordering these accesses.
However this causes threads to remain idle while waiting for access to the resources.
Similarly, synchronization points force threads within a block to remain idle while
other threads don’t reach the same point. Memory fences and synchronization points
should be used only if strictly necessary, and should be avoided as much as possible.
When the threads within a warp are idle, the SM warp scheduler replaces the warp
by another one that is ready to be executed, so having enough warps to keep the
SM busy while some are idle is a good strategy for hiding latency times.

Data transfers between CPU and GPU are a major bottleneck of most CUDA
applications, and should be minimized for optimum performance. Sometimes it is
worthwhile running segments of code that cannot be completely parallelized in the
GPU rather than transferring the data to the CPU for a more efficient computation,
since the cost of the transfer is significantly higher. Because the overhead associated
to memory transfer functions calls can add up, batching many small data transfers
into larger transfers is always preferred. On systems with a front-side-bus (FSB), it
is sometimes advantageous to allocate space in the CPU memory as pinned or page-
locked host memory, which prevents the host operating system from changing the
position of the memory block and increases data transfer speeds. Additionally, when
using mapped page-locked memory on the host, there is no need to allocate memory
on the device and copy the data to it, the data transfers are implicitly performed
when a kernel accesses the mapped memory. This is particularly advantageous in
systems where the the CPU and GPU memory is shared, such as in some laptop
models.

When threads access data from the global memory, the data locality must be
considered to leverage from caching. Accesses on which sequential threads read data
from contiguous memory addresses are said to be coalesced, and maximize the data
instruction throughput by masking the high wait times for data from the global
memory. Shared memory and registers should be prioritized as much as possible,
since the access to them is significantly faster. On the other hand, using the shared
memory adds more complexity to the algorithm, and the amount of available shared
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memory is a limiting factor on defining the number of threads within a block. The
developer should balance the accesses to each memory in order to maximize the
overall performance of the system.

4.4 CUDA specialized libraries

In addition to the core CUDA library, NVIDIA developed a number of specialized
libraries that efficiently explore the GPU architecture, and support the develop-
ment of high-performance applications. This work employs two of these libraries
to accelerate MPI image reconstruction algorithms, the cuBLAS and cuSOLVER.
The cuBLAS library provides a GPU-accelerated implementation of basic linear
algebra subroutines (BLAS) like matrix-matrix multiplications, dot products and
norms, among several other useful functions [107]. The cuSOLVER library provides
a collection of functions implementing linear algebra solvers using SVD, Cholesky,
LU, and QR decompositions in parallel in the GPU [108]. Since both cuBLAS and
cuSOLVER – and also the CUDA core – are proprietary libraries, their implementa-
tion is completely transparent to the user, and there is no control over the workload
distribution within the GPU.
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Chapter 5

Parallel MPI reconstruction
strategies using CUDA

Ever since MPI was developed, image reconstruction was always a major focus of
research. As a potential biomedical imaging method, the main goal was to provide
the most accurate image reconstructions as fast as possible. Regardless of the chosen
modeling method (system matrix or x-space), the complexity and the size of the
optimization problem that involves obtaining high accuracy MPI images requires
the adoption of signal processing and/or numerical techniques. Examples of such
techniques include the reduction of the data set by analog filtering or row selection
[63], data compression [60] and low-rank approximations [109]. However, until this
work was developed and the first results were published in [70], no high-performance
computing approach had been proposed in the literature for dealing with such large
and complex problem. This work, therefore, is the first one to deal with the MPI
image reconstruction by means of parallel algorithms running in GPUs.

The programs developed for this work were written using standard C/C++ lan-
guage and the CUDA framework [106], for optimum performance in both serial and
parallel implementations, allowing then a fair and reliable evaluation of speedups.
For the development of the parallel algorithms, the cuBLAS library [107] was em-
ployed for most matrix and vector operations, while the cuSOLVER library [108]
was used for the SVD factorization. A number of customized kernels were developed
for specific applications, for which neither specialized libraries were suitable.

5.1 Preliminary MPI simulations

This work was carried out as part of the efforts of NIST’s Thermal MagIC project, to
develop the instrumentation and techniques for remotely measuring and controlling
temperature using MNPs and MPI techniques. By the time the project started,
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Figure 5.1: Simplified class diagram of the MPI simulation software.

no instrumentation was available for generating data, and the only data available
was the OpenMPIDataset, generated and maintained by the Technical University
of Hamburg [53, 110]. The data was generated to be used employing the system
function method only – the calibration and measurement signals were acquired in
frequency domain using a preclinical MPI scanner that measured the samples with a
FFP following 2D and 3D Lissajous trajectories. At that time, the instrumentation
design and the measurement strategies (FFP or FFL, system function or x-space,
time domain or frequency domain) were not yet defined. Therefore, in order to allow
the development and testing of different designs and strategies, and to support the
development of image reconstruction strategies while the instrumentation was not
ready, a simulation framework was developed to provide realistic MPI data [42].

The framework is able to simulate a whole MPI scanner by modeling the in-
dividual components that compose the scanner. An object-oriented programming
approach was adopted, in which the individual components – permanent magnets,
electromagnets, receive coils and particles – were modelled by specific classes. Fig-
ure 5.1 shows a simplified class diagram of the simulation software, illustrating the
classes and how the communicate. Cylindrical permanent magnets and solenoids
employed for generating the FFP and drive fields were modelled in terms of a gen-
eralized elliptic integral, as described in [111]. The fields generated by rectangular
magnets used to generate FFLs were modelled using an approach adapted from [112].
Figure 5.2 illustrates the field generated by a pair of cylindrical magnets creating a
a FFP, and the validation of the simulation against COMSOL Multiphysics, a com-
mercial finite element analysis (FEA) software [113]. The same numerical model
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Figure 5.2: Cross section of a simulated FFP generated by a pair of cylindrical
permanent magnets (left) and the same simulation executed with COMSOL (right).
Figure adapted from [42].

employed for computing the fields generated by solenoids was used to compute the
induced signals measured by the receive coils, following the principle of reciprocity
[2]. Consequently, the space-dependent receive coil sensitivity R(x) can be defined
as the field the coil would produce at the position x when driven by an unitary
current, and then be employed for either computing the field generated by a current
I or the voltage induced by a time-varying magnetization M(t) at the position x, in
accordance to equation 2.6.

The particles were modelled to behave according to the superparamagnetic
Langevin equation. Voxel objects hold the information related to the particles within
them, their concentration, temperature and relaxation time, as well as the voxel po-
sitions relative to the center of the sample. Discrete arrays of voxel objects compose
the grid that represents the simulated 1D, 2D or 3D MNP sample to be scanned.
This structure allows each voxel to respond individually to an applied magnetic
field, providing enough flexibility to simulate samples with different particles, parti-
cles at different concentrations, and also at different temperatures within the grid.
Particle relaxation is implemented within each voxel by employing a magnetization
array, which stores a time series containing the adiabatic magnetization values (i.e.,
without relaxation) given by the Langevin model for ideal nanoparticles. At every
simulation time step, an external magnetic field – the sum of the fields generated by
the permanent magnets and drive coils – is applied to the voxel, and the adiabatic
magnetization resulting from this field is calculated and stored in the array. The
non-adiabatic (or relaxed) magnetization is given by the convolution of a relaxation
kernel over the adiabatic magnetization time series:
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Figure 5.3: 1D MPI simulation. The simulated grid is shown in the left, is 10
mm long, and is composed of 51 voxels containing 20 nm magnetite particles at
different concentrations. The plot at the right show the simulated signals for different
relaxation times. Figure adapted from [42].

M(t) = Madiab(t) ∗ r(t) (5.1)

where
r(t) = e

− t
τeff (5.2)

is the relaxation kernel. The size of the array depends on the sampling frequency,
and is expected to store up to seven times the particle’s relaxation time, which is
equivalent to 99.9% of the exponential magnetization decay, so the size of the array
is int(7 · τeff · fS) + 1. An auxiliary array stores the values of the relaxation kernel
normalized by the sum of elements (so no magnitude is added or subtracted), and the
computation of the non-adiabatic magnetization is then straightforward. Figure 5.3
shows the 1D simulated signals for different particle relaxation times. The receive
coils compute the induced electromotive forces (emfs) by detecting the changes in
the magnetic flux density resulting from the combination of the magnetization values
returned by the voxels. In setups with more than one receive coil, such as 2D and 3D
scanners that feature coils oriented in orthogonal directions, this process is repeated
for each coil, since the detected magnetic fluxes will be different. The execution flow
can be summarized as:

• For each time step t:

1. For each voxel:

– Compute field vectors over voxel

– Compute magnetization vector

– Compute contribution to the flux across the receive coil(s)

2. Compute total magnetic flux for each coil

3. Compute emf(s) as the time derivative of the magnetic flux
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Figure 5.4: Validation of the simulation framework against a real MPS measurement
[38]. The MPS setup with its components is shown on the left, and the comparison
between simulated (thick lines) and measured (thin lines) is shown on the right.
Figure adapted from [42].

The biggest advantage of the simulation software is that it allows simulating
different setups, including 1D, 2D and 3D MPI scanners, and also MPS systems.
The accuracy of the simulation software as a whole was validated by comparing the
simulated and measured emf values for a gradiometric MPS setups, as described
by [38]. Additionally, it allows accounting for non-ideal behavior of the elements
that compose MPI scanners, such as non-uniform drive fields, non-linear gradient
fields and space-dependent receive coil sensitivity, since the realistic modeling of the
scanner components would produce such design-dependent features. The simulation
framework provided valuable insights about the signal generation process, and sup-
ported the development of earlier versions of image reconstruction algorithms, as
reported in [42, 43, 45].

5.2 2D MPI reconstructions

With a better understanding of the signal generation process, it was possible to
start the investigation of MPI image reconstruction methods and potential algorithm
optimizations in GPU. Regardless of the method chosen for the image reconstruction,
optimal accuracy requires solving linear systems of equation of the form K · c = s,
where the matrix K ∈ Rm×n is analogous to the system matrix of equation 3.1, or
to a sequence of PSFs given by equation 3.5. This matrix contains, in each row, the
characteristic response of the MNP grid for a specific FFP position in space, given
by the scanning trajectory as function of time.

In this evaluation, a model-based calibration matrix was employed, represent-
ing a FFP scanning a 2D sample following a Lissajous trajectory. The numerical
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Figure 5.5: Validation of the 2D model-based calibration matrix. A circular 2D
MNP phantom (left) was scanned by a FFP following a Lissajous trajectory to
generate the signals shown in the top right plot. The plot in the bottom right is a
zoom in time to illustrate the signal features resulting from the FFP moving over
the phantom.

method implemented for the calculation of the calibration matrix was based of the
method shown in [76], and has been validated against the rigorous simulation model
described in section 5.1. The calculated calibration matrix was employed to simulate
the signals that would be generated by two receive coils, aligned with the x and z

directions, while scanning a simulated 2D phantom grid, as shown in figure 5.5.
The model-based calibration matrix was computed for a selection field gradient

of 8 T/m (in the x direction), a receive coil sensitivity of 8.4×10−4 T/A, a scanning
nominal frequency of 25 kHz and 20 nm magnetite particles. The phantom is a
51 × 51 grid containing particles at a concentration equivalent to 5 mg(Fe)/ml in
a circular pattern. The plot in the bottom right side of figure 5.5 illustrates well
the signal generation process; as the FFP steers over the circular phantom, the
magnetization changes induced in the MNPs cause the measured signals to increase
and create a small valley between the two main peaks. It is important to notice
that the gradient field generated by cylindrical magnets (or electromagnets) is twice
as strong in their symmetry axis directions (as can be implied from figure 5.2), so
the resolution in the x direction is two times better than the resolution in the z

direction, and then features in the z receive coil signal are less pronounced. The
discrete representation of calibration matrix is given by:
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Figure 5.6: Plots of the magnitudes of a 2D scaled PSF (sPSF) following a Lissajous
trajectory at t=0, t=1530 and t=3958 (arbitrary units), for a 51x51 voxels grid.
The white arrow shows the direction of the FFP movement, and the colored area
highlights its area of influence. The sPSF magnitude scale is shown on the right
side, and is normalized by the maximum value.

K⃗i,j = µ0mvRj

M⃗
(
ξ, H⃗(ti + dt, x⃗j)

)
− M⃗

(
ξ, H⃗(ti − dt, x⃗j)

)
2 · dt

(5.3)

where
H⃗(ti, x⃗j) = G

[
r⃗(ti)− x⃗j

]
(5.4)

is the field applied over the position xj at the time ti, based on the FFP position r(ti).
M(x) is the magnetization for a given field magnitude, which can be given by either
the ideal Langevin function L(x) from equation 2.2 or another model that accounts
for particle dynamics effects, such as relaxation, more realistically (in section 5.3 it
will be shown the importance of this for temperature reconstructions). The time
interval dt is arbitrary, and is used to approximate the instantaneous change in
magnetization at the time ti. A good approximation would be obtained by setting
dt as a fraction of 10 or 100 of the sampling time interval. The square matrix Rj

represents the sensitivity of each receive coil over the voxel j, v is the voxel volume,
and m is the particle’s magnetic moment magnitude.

As can be seen in equation 5.3, each Ki,j element is a vector, and it represents
the characteristic rate of magnetization change in the sensing directions (as given
by Rj) as the FFP moves in the space. The calibration matrix is such that each
line is then the PSF, represented by the derivative of the Langevin function (or
the derivative of any other magnetization function), scaled by the FFP scanning
speed, the receive coil sensitivity, the particle’s magnetic moment magnitude and
the voxel volume. Therefore, each line Ki of the calibration matrix can be seen as a
scaled point spread function, or simply a sPSF, and representing a system matrix in
terms of a scaled PSF is in perfect agreement with [86] in the sense that the system
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Figure 5.7: Reconstructions using only the x coil (left), only the y coil (center), and
both x and y coils (right). The concentration scale is shown on the right side, and
is normalized by the maximum value.

function and x-space methods are mathematically equivalent. Figure 5.6 shows plots
of a 2D sPSF at different times, illustrating how its magnitude changes over space.
The plots highlight the area of influence of the FFP as it steers over the sample –
all the voxels covered by the sPSF will contribute to the measured signal, according
to the magnitude of the sPSF and the concentration of particles within the voxel,
being this the cause of the blurring in the images directly mapped from the signals
and the reason why deconvolution is necessary to remove the PSF blurring. It is
possible to notice that the sPSF is sharper in the direction of the FFP movement,
and much broader in the orthogonal directions, meaning that the both the signal
intensities and the resolution of the images taken with detection coils aligned with
the FFP scanning directions is significantly improved. This is in perfect agreement
with the stated in [15] with respect to the collinear and transverse components
of the x-space 3D PSF, and also explains the use of orthogonally oriented receive
coils when adopting the 2D or 3D Lissajous trajectories typically used in the system
function method scans. Figure 5.7 illustrates the reconstructions of the same circular
phantom using data measured by the x coil only, data from the y coil only, and using
data from both coils, showing how using orthogonally oriented coils improves the
reconstructions.

Once the numerical model for the signal generation has been defined and vali-
dated, the application of the model for image reconstructions started to be investi-
gated. The first step was defining a new simulation phantom that contained more
distinguishable features then a ring one. It should contain curves, corners and void
spaces, and should also have an orientation in space, so any rotation would be no-
ticeable. With these requirements in mind, the new phantom was set as being a
2D question mark (the ’?’ character), as illustrated in figure 5.8. The phantom
grid has a 51 × 51 resolution, 5 mm of side, and is composed of 20 nm magnetite
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Figure 5.8: Illustration of the 2D question mark phantom grid adopted for the
simulations and reconstructions (left). The simulated signals resulting from scanning
the phantom (center) we used to numerically reconstruct the grid (right).

particles at a concentration equivalent to 5 mg(Fe)/ml in the area covering the ’?’
shape. The measurement of the phantom would be done by scanning a FFP over
the sample following a 2D Lissajous trajectory. Table 5.1 provides a summary of
all the parameters adopted for the simulations and reconstructions for this sample.
The simulated signals are also shown in figure 5.8, together with the result of a
reconstruction employing 100 iterations of the Kaczmarz algorithm.

For this preliminary reconstruction investigation, four sets of simulated signals
were generated. The first one contained no noise, while the other three contained
5 µV, 50 µV and 500 µV of Gaussian white noise, that was added to the original
undisturbed signal. Figure 5.9 shows a simplified pipeline of this simulated experi-
ment, while Figure 5.10 shows the signals for these four configurations. Reconstruc-
tions were performed using the Kaczmarz algorithm (see algorithm 1) to solve the
regularized system of equations defined in equation 3.7, for different regularization
levels. Figure 5.11 shows the reconstruction results when no constraints are applied.
The first and most striking conclusion can be taken from the reconstruction with no
noise, and tells about the fast convergence of the Kaczmarz algorithm. In a single
iteration of complexity O(N2) (composed of N projections and updates), the shape
of the question mark is clearly noticeable, meaning that most of the reconstruction
is already done. This is typical for the Kaczmarz algorithm when solving systems in
which the matrix rows are nearly orthogonal, which is the case of the MPI calibration
matrix. It is also evident how regularization acts like a low-pass filter, removing high

Figure 5.9: Simplified execution pipeline.
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Figure 5.10: 2D MPI signals for the ’?’ phantom with different noise levels.

frequency features, such as corners and sharp edges, smoothing the reconstructed
image. As the noise in the signal increases, it causes the algorithm to diverge with
increasing number of iterations, so regularization is required to keep the solution
stable. It is worth noting that, for small noise and large regularization values, the
reconstruction is almost identical to the one obtained from an undisturbed signal,
which means that it managed to suppress all the noise, but also removed part of
the spatial information. With increasing noise, the required regularization to reach
stable solutions also increases, as the level of details in the reconstructed images is
reduced. This is evidenced by the fact that the reconstructions look all the same for
108 of regularization, regardless of the noise level.

Symbol Parameter Value Units
dC Particle core diameter 20 nm
MS Particle saturation magnetization 450 kA/m
c Particle concentration 3.168 · 1020 particles/m3

T Temperature 273 K
G Gradient strength {x,y} {−8, 4} T/m
B Drive field amplitude {x,y} {40, 20} mT
fB Base drive field frequency 250 Hz
fM Lissajous frequency multipliers {x,y} {102, 101} -
SR Sampling frequency 2.5 MHz
R Receive coil sensitivity 8.4 · 10−4 T/A
IR Reconstructed image resolution 51× 51 pixels

Table 5.1: 2D MPI simulation and reconstruction parameters
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Figure 5.11: Reconstructions of signals with different noise levels using the Kaczmarz
algorithm with no constraints for different regularization parameters.
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Figure 5.12: Reconstructions of signals with different noise levels using the Kaczmarz
algorithm with positivity constraint for different regularization parameters.
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Figure 5.13: Comparison between the reconstructed image and the ground truth.
The concentration values over the dotted lines in the reconstructed image on the
left were compared to the real concentration values in the plots on the right.

Figure 5.12 shows the results when a positivity constraint is added to the re-
construction algorithm. It is clear how the constraint improved the accuracy of
the reconstruction, and removed all the artifacts around the phantom. Since the
Kaczmarz is a sequential row projection algorithm, for each iteration the algorithm
perform N updates, and for each one of them the positivity of the solution is en-
sured (see line 7 of algorithm 1). As in the unconstrained resolutions, increasing
noise levels progressively compromised the convergence of the algorithm, and re-
quired the use of larger regularization parameters, resulting in loss of definition in
the reconstructed images.

The accuracy of the reconstruction was also evaluated, by comparing the result-
ing concentration values against the ground truth (i.e., the phantom grid). Figure
5.13 illustrates such comparison for a 51× 51 reconstruction without positivity con-
straint, after 50 iterations of the Kaczmarz algorithm, against the ground truth.
The comparison was done at a number of rows, so certain features such as the lower
point, the void space between the point and the main body of the phantom, and the
curvature at the top, could be properly evaluated. Even an unconstrained recon-
struction provided reasonable results, with the phantom main features consistent
with the ground truth. The void space between the point and the main body still
showed some residuals, and this a result from the strong influence of nearby particles
above and below that region in the measured signals. Such influence would require
more iterations to be removed.

A further step on the evaluation of the reconstruction algorithm is to check
for any bias in the results. Since the same model can be used to generate the
signal and perform the reconstruction, it has to be checked for "inverse crimes"
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Figure 5.14: Reconstructions with different resolutions using the same dataset as
input. Images on the left side were reconstructed with no constraint, while the ones
on the right side were reconstructed with positivity constraint.

[114]. Besides adding random noise to the original signals, one way to avoid it
is to perform the reconstruction using different resolutions. Figure 5.14 show the
results of reconstructions with different resolutions using the same dataset as input,
demonstrating the robusteness of the reconstruction.

5.2.1 Performance considerations

The two parameters that impact the most on the computational performance of
the reconstructions are the measurement sampling rate and resolution of the recon-
structed images. The sampling rate defines the total number of measurements, and
consequently the number of rows of the calibration matrix, while the resolution of
the image defines the number of columns of the calibration matrix. The number
of measurements can be taken from the sampling rate SR and the base excitation
frequency fB through the relation

n = SR/fB (5.5)

This number of measurements is for a single receive coil, and adding more coils
would increase the number of rows proportionally. For the 2D MPI reconstruction
example illustrated in figure 5.8, assuming the parameters informed om table 5.1,
the calibration matrix would have a size of 20, 000× 2, 601 = 52, 020, 000, which is
equivalent to 396 MB of double-precision floating point data, and would take about
1.3 s to run, for example. Increasing the resolution to 100× 100 as shown in figure
5.14 would increase the size of the matrix in the memory to 1.4 GB, and would
increase the execution time to about 4.9 s. Naturally, 3D reconstructions would
increase even more the size of the calibration matrix, and consequently the execution
times, as will be shown in the next sections. These parameters severely impact the
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reconstruction performance, as the execution times increase proportionally to the
size of the calibration matrix, so these parameters should be chosen carefully. Is is
important to keep in mind that simply increasing the sampling rate (and thus the
number of measurements) or the image resolution would not necessarily improve the
quality of the reconstructions. Instead, it could compromise the orthogonality of the
matrix rows and consequently the convergence of the reconstruction, specially if the
Kaczmarz algorithm is the chosen one.

5.2.2 Parallel 2D reconstructions in GPU

Once the signal generation and the reconstruction algorithm were properly char-
acterized, it was time to investigate potential parallel implementations of the MPI
image reconstruction in GPU using CUDA. In this section, the development of par-
allel 2D reconstruction algorithms and the strategies adopted for evaluating these
algorithms is described in details. A summary of the development and evaluation
of the algorithms described in this section can be found in [70].

Parallel Kaczmarz algorithm

Since the Kaczmarz algorithm is the most popular one in the MPI community, it
was the first and natural candidate for parallelization. However, as can be implied
from algorithm 1 and already pointed out in [115], since the Kaczmarz algorithm
operates one row at a time and each update depends on the previous values, the
only operations for which parallelization could be explored were the dot products
Si · c(i) and β · ST

i , as shown in lines 4 and 5 of the algorithm. Therefore, unless the
problem is large enough to compensate the overhead of successively calling level-
one BLAS (Basic Linear Algebra Subprograms) functions, it was very unlikely that
any parallel implementation of the Kaczmarz algorithm would result in significant
speedups. On the other hand, given the popularity of the Kaczmarz algorithm within
the MPI community and the fact that the work described on [115] did not compare
it against other algorithms, the decision during this research was, for completeness,
to implement the parallel Kaczmarz algorithm and compare both serial and parallel
implementations against the other algorithms studied in this work. In a sense, the
serial Kaczmarz algorithm running in the CPU can be seen as the gold standard
to be outmatched. In the parallel implementation of the Kaczmarz algorithm, the
dot products in lines 4 and 5 of algorithm 1 were executed in parallel using Nvidia’s
cuBLAS library [107].
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Parallel Cimmino algorithm

Since each row projection of the Kaczmarz algorithm computes one correction for
the current solution estimate, one interesting parallel approach could be compute all
the corrections in parallel and then average them for computing the new estimate.
This is precisely the idea behind the Cimmino algorithm (or SIRT, see 3.3.1). In this
parallel implementation, each thread would entirely compute the correction factor
βi in line 4 of algorithm 1 for its corresponding matrix row, being this computation
implemented in a customized kernel. A second kernel computes the averages of the
corrections and apply them to each voxel. The next estimate would then be given
by:

c(i+1) = c(i) +
1

M

M∑
j=0

(
ṽj − Sj · c(i)

||Sj||2
ST
i

)
(5.6)

These two kernels are called in sequence in every iteration, and while the first
kernel is executed by M threads over the rows of K, the second kernel is executed
by N threads over the elements of c. The Cimmino algorithm is known for always
converging to the minimum least squares solution, even for noisy data.

Parallel block-Cimmino algorithm

As a hybrid method between Kaczmarz and Cimmino, the block-ART algorithm is
meant to benefit from the fast-converging properties of the Kaczmarz algorithm and
the parallel execution structure of the Cimmino. At each iteration, the calibration
matrix is broken in blocks, and each block computes an new estimate by running
the parallel Cimmino algorithm over the block. The blocks are executed serially,
which compromises the parallelization (and thus the speedups), but increases the
convergence rate. In the implementation adopted for this work, the number of rows
processed in each block is exactly the number of GPU cores (128 in this case), for
optimum throughput. In the limit where the number of rows per block is equal to
one, the algorithm is reduced to the Kaczmarz, and in the limit where the number of
rows is M , the algorithm is reduced to Cimmino. The opposite could also be done,
with each block running Kaczmarz instead of Cimmino. In this case the blocks could
be executed in parallel, potentially with equivalent results in terms of accuracy and
performance.

Parallel CGNR

As can be observed by examining equations 3.17 and 3.16, and also algorithm 2, the
CGNR algorithm works by executing multiple matrix-matrix, matrix-vector and
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vector-vector operations. These are classical BLAS (Basic Linear Algebra Subpro-
grams) operations that are already optimized in Nvidia’s cuBLAS library [107].
Therefore, all the operations of algorithm 2 but the ones of lines 9 and 14 (which
only compute scalars), were implemented in parallel using either cuBLAS or intrin-
sic CUDA functions. A serial version of the CGNR algorithm was also implemented
for comparison purposes.

5.2.3 Experiments

All reconstruction algorithms were evaluated and compared to the serial Kaczmarz
algorithm. Included in the evaluation are both serial and parallel Kaczmarz imple-
mentations, the parallel Cimmino algorithm, the parallel block-Cimmino algorithm,
and both the serial and parallel implementation of the CGNR algorithm. All algo-
rithms were employed to reconstruct a simulated signal, generated as described in
section 5.2, using the hypothetical 51x51 element phantom grid with a "?" shape
descibed in figure 5.8, scanned following a Lissajous FFP trajectory as detailed in
table 5.1. As discussed in 5.2.1, the problem size (i.e., the size of the calibration
matrix) is 20, 000×2, 601 = 52, 020, 000, equivalent to 396 MB of data, either in the
main or GPU memory spaces.

For simplicity of the comparisons, all algorithms were tested using the same signal
in time domain with no noise, no regularization or constraints, such as positivity.
For performance comparisons, the adopted convention was that one iteration was
considered the set of instructions operated over all the rows of the calibration matrix
K, which means, for example, that the Kaczmarz algorithm would run M updates on
c while the CGNR would perform only one. Also for performance evaluation, there
was now filtering or row selection, meaning that all the rows of K were employed in
the reconstructions. The accuracy and performance of the algorithms were assessed
by analyzing the errors and execution times of all algorithms after 1, 10, 20, 30,
40 and 50 iterations. The experiments were executed using a laptop containing an
Intel(R) i7-7700HQ processor, 32 GB of RAM memory, and a NVIDIA GeForce
GTX 1060 GPU equipped with 10 SMs with 128 cores each, and 6 GB of dedicated
RAM memory. The evaluation of the algorithms is explained in details in chapter
6.

5.3 3D multi-color T-MPI reconstructions

As part of the Thermal MagIC project, one of the objectives of this research was
to identify methods for providing fast and accurate 3D temperature imaging using
MPI techniques, or T-MPI [36]. One of the methods proposed in the literature for
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temperature imaging is the so-called multi-color MPI [34], which has been presented
in section 3.1.2. The method is based on calibrating the MPI system at multiple
temperatures, obtaining then two or more calibration matrices. Understanding how
this method can be effectively used for T-MPI is of great importance for the project,
and is also a good opportunity for assessing parallel implementations of reconstruc-
tion algorithms, since the use of multiple calibration matrices increases the problem
size, and consequently the execution times, proportionally. Therefore, this section
will discuss in more details MPI reconstructions using the multi-color method as a
tool for temperature mapping. A summary of the development and evaluation of
the method described in this section, including the evaluation of parallel algorithms,
can be found in [72].

Regardless of the algorithm adopted for the reconstruction, the method consists
on finding the optimal solution of a system of equations with the form:

∣∣∣KT1 KT2

∣∣∣ · ∣∣∣∣∣cT1

cT2

∣∣∣∣∣ = s (5.7)

where KT1 and KT2 are the calibration matrices obtained at the temperatures T1

and T2 during calibration, and cT1 and cT2 are the unknown concentration vectors
at the temperatures T1 and T2, for example. The measurement system can be
calibrated in as many temperatures as desired, keeping in mind that the number
of calibration temperatures proportionally increases the size of the problem to be
numerically solved. The method was developed to estimate both spatially-resolved
particle concentration and temperature. The particle concentration map is simply
given by the sum of the channels cT1 and cT2 , while the temperature map would be
given by a linear interpolation of the concentrations given in the output channels.
So, for 3 calibration points, for example, the temperature at each position would be
given by

Ti =
ci,T1 · T1 + ci,T2 · T2 + ci,T3 · T3

ci,T1 + ci,T2 + ci,T3

(5.8)

where T1, T2 and T3 are the calibration temperatures. Figure 5.15 illustrates the
process; a simulated 3D phantom grid with particles at three different temperatures
is scanned to generate signals on the x, y and z receive coils, these signals are used,
together with the calibration matrices at these temperatures to compute the images
at the channels corresponding to each calibration temperature. The final map is
built in such way that the final particle concentration at each position is the sum
of the concentrations in the three channels at this position, and is represented by
the size of the polygons (each grid element is represented by a diamond-shaped
polygon), and the temperature at each position is determined by equation 5.8 and
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Figure 5.15: Illustration of a simulated multi-color T-MPI measurement, reproduced
from [72]. The magnetization signals generated by the hypothetical 3D phantom
with particles at three distinct temperatures are measured by the x, y and z pickup
coils. These signals are used to reconstruct the concentrations at the calibration
temperatures T1, T2 and T3, and the concentrations of the three channels are used
to compute the reconstructed concentration (represented by the size of the polygons)
and temperatures (represented by the color of the polygons). The image resolution
is 20x20x20 voxels, and the total FOV volume is (10x10x10) mm3.

is represented by the color of the polygons, according to the scale at the right side
of the figure. The simulation parameters are described in table 5.2.

To better understand this temperature reconstruction process, we need to revisit
the work of Rahmer et al. [21], where the foundations of the multi-color method
were established. The method was idealized to allow detecting different particles
within a sample, and the output vectors would contain the concentration of each
specific particle for which the system has been calibrated to detect. It relies on the
fact that each particle type has a specific magnetization response, which depends
on a number of factors, including the particle’s saturation magnetization and its

Symbol Parameter Value Units
dC Particle core diameter 20 nm
MS Particle saturation magnetization 450 kA/m
c Particle concentration 3.168 · 1020 particles/m3

T Temperature range 273-323 K
G Gradient strength {x,y,z} {−8, 4, 4} T/m
B Drive field amplitude {x,y,z} {40, 20, 20} mT
fB Base drive field frequency 250 Hz
fM Frequency multipliers {x,y,z} {101, 100, 99} -
SR Sampling frequency 2.5 MHz
R Receive coil sensitivity 8.4 · 10−4 T/A
IR Reconstructed image resolution 20× 20× 20 voxels

Table 5.2: 3D T-MPI simulation and reconstruction parameters
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Figure 5.16: Temperature-dependent PSFs. Plots were taken from the same rows
of the calibration matrices generated at three different temperatures when account-
ing for particle relaxation, and illustrate how temperature influences the particle
responses. Reproduced from [72].

relaxation time. This combination of factors results in a unique PSF for a specific
particle, and therefore a unique calibration matrix. This is key for the success of
the method, since it results in calibration matrices with linearly independent rows,
allowing then the solution of the extended system of equations.

When applied to T-MPI, the method therefore returns the particle concentra-
tion maps at the calibration temperatures. It relies also on the fact that a single
particle type, at different temperatures, would exhibit different PSFs and there-
fore different calibration matrices, with nearly orthogonal rows. The factors that
allow this distinction are mostly the temperature-dependent saturation magnetiza-
tion and relaxation time. Figure 5.16 plots the magnitudes of the same row of three
calibration matrices generated at three different temperatures. The lines show the
temperature-dependent PSFs, and illustrate how temperature affects their shape in
space. The alignment of the particles with an applied field is not instantaneous, and
this time-dependent alignment, or relaxation, is governed by the Néel and Browni-
nan mechanisms, which are strongly dependent on the temperature (see 2.5 for more
details). According to them, lower temperatures result in longer relaxation times,
and these relaxation times result in phase shifts in the measured signals, which in
turn are represented as shifts of the PSF in space, since it is moving as it scans the
sample.

5.3.1 Parallel 3D T-MPI reconstructions in GPU

The use of multiple calibration matrices has a strong impact on the reconstruction
times due to the increased problem sizes. For reconstructions using the parameters
of table 5.2, for example, the problem size size is 5.4 GB, and the reconstructions
using the Kaczmarz algorithm could easily take from several minutes to a few hours,
depending on the system running the reconstruction, the adopted programming
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language and the chosen algorithm. Therefore, the multi-color T-MPI method is an
excellent candidate for being accelerated in the GPU.

Based on the results obtained with the parallel 2D reconstructions, which will
be presented in section 6.2, the only parallel algorithm analyzed in this scenario was
the CGNR. The parallel CGNR algorithm running on the GPU was compared to
the serial Kaczmarz algorithm running on the CPU. No changes were applied to the
parallel CGNR implementation described in section 5.2.2.

5.3.2 Experiments

In order to investigate the feasibility of the multi-color T-MPI method and to as-
sess the performance gains resulting from running the reconstructions in parallel
in the GPU, both the serial Kaczmarz and the parallel CGNR algorithms were
employed to reconstruct the simulated signals generated by two phantoms. Both
phantoms have the shape of a question mark, as shown in figure 5.15, are composed
of 20 × 20 × 20 = 8, 000 voxels containing 20 nm magnetite MNPs at a 5 mg/ml

concentration. Table 5.2 summarizes the simulation and reconstruction parameters
except for the sampling rate SR, which was reduced to 625 kHz for assessing more re-
alistic reconstruction times, which gives a total of 7, 500 samples per each one of the
x, y and z coils, resulting in a problem size of 3×8, 000×3×7, 500 = 5.4·108. One of
the simulated phantoms had particles at the three calibration temperatures (273 K

at the bottom, 303 K in the middle and 323 K at the top), and the other phantom
had a linear vertical temperature gradient (the temperature increased from 273 K at
the bottom to 323 K at the top). The simulated phantoms had (10× 10× 10) mm3

and voxels with 0.5 mm of size in each side.
The accuracy and performance of the algorithms were assessed by analyzing

the errors and execution times of both algorithms after the first iteration and after
every 10 iterations up to the 100th iteration. Also for simplicity of the comparisons,
both algorithms were tested using the same simulated signals in time domain with
no filtering, no noise, and no regularization was applied. These experiments were
executed using the same laptop described in 5.2.3. The results of the evaluation are
detailed in chapter 6.

5.4 3D MPI reconstructions

The investigations described in sections 5.2 and 5.3 confirmed the potential of par-
allel algorithms, in particular the CGNR algorithm, for accelerating MPI image
reconstructions. However, the previous experiments still lacked important evalua-
tions for demonstrating their feasibility in real life applications. First of all, it was
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still necessary to evaluate the impact of noise of over the accuracy of the parallel
reconstruction methods. Real MPI signals contain a certain degree of noise, which
depends on the measurement system, and therefore, this section describe the evalua-
tion of parallel MPI reconstruction algorithms executed over signals in the presence
of different levels of noise.

As mentioned in section 2.4, one of the biggest challenges in MPI is the drive
frequency feedthrough, and a common strategy for dealing with it is filtering the
fundamental excitation frequency. So far this evaluation dealt only with unfiltered
signals in time domain, and even though the methods proposed in this study are
mathematically suitable for reconstructing signals in both time and frequency do-
mains, the impact of filtering on the parallel reconstructions was still unknown.
Therefore, this section also describes the evaluation of parallel MPI reconstruction
algorithms when applied for reconstructing real measurement signals provided by
the OpenMPIData dataset [110]. The data in this set is in frequency domain, contain
noise, and has been filtered for removing the base frequency signals. The evalua-
tion of the reconstructions performed using this dataset then allowed for a complete
assessment of the parallel algorithms implemented in this work, and for demonstrat-
ing the full potential of the proposed methods. A summary of the development and
evaluation of parallel strategies for real-time 3D MPI reconstructions can be found
in [116].

5.4.1 Parallel 3D reconstructions in GPU

For this investigation, the steepest descent and the SVD were included as potential
parallel alternatives to the serial Kaczmarz algorithm, as follows.

Parallel CGNR

The only difference between the CGNR implementation used in this evaluation in
comparison to the one described in 5.2.2 is the addition of regularization to the
minimization problem. This required adding vectors for dealing with the lambda-
residuals, as can be seen in lines 3, 4, 8, 9, 12 and 13 of algorithm 2. Once more, all
matrix-matrix, matrix-vector and vector-vector operations were implemented using
the cuBLAS library.

Preliminary attempts to add a positivity constraint to the CGNR execution were
unsuccessful. In addition to the need of computing a new residual vector, which
increased the computation time, the loss of conjugacy between the iterations search
vectors would severely compromise the convergence of the algorithm, and therefore
was not included.
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Parallel Steepest Descent

The steepest descent method was included in this investigation due to its simplicity.
It was expected the reduced set of operations would yield a faster execution. Simi-
larly to the CGNR implementation, all linear algebra operations were implemented
using the cuBLAS library. Differently from the CGNR method, the steepest descent
allows implementing a positivity constraint after each iteration, but it also required
computing a new residual vector, which increased the execution times.

Parallel SVD

It is well known in the MPI literature that the truncated SVD method delivers
accurate reconstructions, always converging to the least squares solution when a
proper regularization parameter is chosen. However, since the decomposition if the
calibration matrix requires N3 operations, the executions times are so long that
it would be better to use the Kaczmarz algorithm or CGNR instead of the SVD.
However, as noted in [62, 63], once the calibration matrix is decomposed, storing the
Moore-Penrose pseudoinverse (or its components) in the memory would allow faster
reconstructions, since only a few matrix-vector operations would be required. The
decomposition, on the other hand, requires a significant amount of free memory to
be performed, which is a limitation factor for bigger calibration matrices, and is also
extremely time-consuming (it was reported as being more than 600× slower than
CGNR or Kaczmarz in [99]).

A parallel implementation of the SVD method was also investigated in this sec-
tion. The parallel decomposition of the calibration matrix is executed using Nvidia’s
cuSolver library [108]. Even though the decomposition is not fast enough to allow
its use in real time, the execution times ranged from 0.63 s to 100 s in this study,
being reasonable for practical applications (it could be computed prior to the scan).
Once the calibration matrix is already decomposed and stored in the GPU memory,
the parallel reconstruction if performed by computing the filter factors presented in
equation 3.25 and line 6 of algorithm 4 using a custom kernel, then computing the
product UT ·s of line 4 of the algorithm, and computing the element-wise multiplica-
tion of line 7 with another custom kernel. The solution vector c is finally computed
by another product, as shown in line 9 of the algorithm. Both matrix-vector prod-
ucts shown in algorithm 4 were implemented using cuBLAS functions.

5.4.2 Parallel computation of the calibration matrix

The computation of the calibration matrix for model-based reconstructions requires
computing, for each line, the scaled PSF as function of the FFP position, FFP
speed and receive coil sensitivity. It requires, for each time interval, to determine
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the FFP position and speed, and then derive the fields and induced magnetizations in
order to compute the calibration signals for each grid position, corresponding to the
calibration matrix columns. This is also an expensive operation, with complexity
O(N2). The cost of computing the calibration matrix usually requires it to be
calculated once and then be constantly stored in the memory during the whole
execution. Any change in the measurement parameters, including field magnitudes
and frequencies, sampling rates and even the sample temperature, would require the
calculation of a new calibration matrix for keeping the reconstruction accuracy.

To address this limitation, a simple parallel implementation of the computation
of the calibration matrix is proposed in this work. A custom kernel was implemented
to let M threads simultaneously compute all Ki rows of the calibration matrix, as
shown in equation 5.3. For each row, a thread computes the FFP position based
on the scanning parameters (drive field amplitudes and frequencies, gradient field
strengths and sampling rate) and then determine the magnitudes of the scaled PSF
for each grid position in sequence.

5.4.3 Experiments

The experiments with parallel 3D MPI reconstructions were divided into two groups.
The first groups of experiments assessed the performance of the algorithms while
operating over simulated data. The second group of experiments assessed the accu-
racy of the proposed reconstruction algorithms when applied over real measurement
data. The results of these experiments will be detailed in chapter 6.

Simulated data

The experiments performed with the parallel 3D MPI reconstruction algorithms were
designed to assess the accuracy and the performance of the proposed algorithms in
the presence of noise. Similarly to what has been done in sections 5.2 and 5.3,
the algorithms were employed to reconstruct simulated signals generated by a 3D
phantom consisted of 20× 20× 20 voxels grid containing 20 nm magnetite particles
covering the shape of a question mark, as shown in figure 5.17. The signals generated
by the particles of this phantom were measured when scanned by a simulated 3D
FFP following a Lissajous trajectory. Table 5.3 summarizes the parameters adopted
for these simulations. The data of both the calibration matrix and the measurement
signals were generated and processed in time domain. No filtering or row selection
were used in the reconstructions, since the goal of this evaluation was to assess the
performance of the algorithms while handling large datasets.

For the purpose of this evaluation, this work defines the problem size as the size
of the calibration matrix. Therefore, the problem size is equal to 3×m×n, where m

64



Figure 5.17: Simulated phantom grid adopted for generating the signals used in the
assessment of the parallel reconstruction algorithms. Reproduced from [116].

is the number of rows of the calibration matrix (i.e., the total number of samples),
n is the number of columns of the the calibration matrix (i.e., the resolution, or
number of voxels, of the reconstructed grid), and 3 stands for the number of receive
coils, one for each of the x, y and z axis. The scalability of the parallel algorithms
– the ability of dealing with larger datasets while maintaining the performance –
was assessed by simulating signals and reconstructing images for different sampling
rates and resolutions, which also contributed to not incurring in the systematic error
of reconstructing the data generated by the same model (or avoiding the "inverse
crimes" [114]). The sampling rates adopted were 312.5 kHz, 625 kHz, 1.25 MHz

and 2.5 MHz, which result in 1, 250, 2, 500, 5, 000 and 10, 000 samples per receive
coil, respectively. The resolutions of the reconstructions were 10x10x10, 15x15x15,
20x20x20, 25x25x25 and 30x30x30 voxels. The problem sizes then ranged from
3.75 × 106 to 8.1 × 108, more than two orders of magnitude. Gaussian noise was
added to the simulated signals, and the adopted noise levels were 5 µV (or 0.1 %

of the signal peak, or −60 dB) and 50 µV (or 1 % or −40 dB). The regularization
parameters adopted were 5 × 105 for the signals with 0.1 % of noise and 106 for
the signals with 1 % of noise, and they were chosen by analyzing the reconstruction
errors and by visual inspection of the reconstructed images.

The reconstruction errors and execution times were taken for all algorithms after
1, 5, 10, 20, 30, 40, 50, 100, 150 and 200 iterations for the serial Kaczmarz algorithm,
with and without positivity constraint, running in the CPU in a single thread, and
for the parallel CGNR and steepest descent running in the GPU. Since the SVD
is a direct solver that only needs to be executed once and the calibration matrix
is previously decomposed and stored in the GPU memory, its execution data were
taken after a single execution. The number of iterations was chosen to ensure the
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Symbol Parameter Value Units
dC Particle core diameter 20 nm
MS Particle saturation magnetization 450 kA/m
c Particle concentration (max) 3.168 · 1020 particles/m3

T Temperature 295 K
G Gradient strength {x,y,z} {−8, 4, 4} T/m
B Drive field amplitude {x,y,z} {40, 20, 20} mT
fB Base drive field frequency 250 Hz
fM Frequency multipliers {x,y,z} {101, 100, 99} -
tS Scan time 4 ms
SR Sampling frequency 1.25 MHz
R Receive coil sensitivity 8.38 · 10−4 T/A
S Sample grid size {10,10,10} mm
IR Reconstructed image resolution 20× 20× 20 voxels

Table 5.3: 3D MPI simulation and reconstruction parameters

convergence of the algorithms as much as possible. The times of the serial and
parallel calculation of the calibration matrix were also taken for a single execution
per simulation. The simulations were performed using a desktop configured with
an Intel Xeon W-2145 CPU, 32 GB of RAM memory, and a NVIDIA Quadro RTX
4000 GPU containing 36 streaming multiprocessors with 64 cores each, totaling
2, 304 CUDA cores, and 8 GB of dedicated GPU global RAM memory.

Real measurement data

All experiments in this study were performed over simulated data so far. Even
though the formulations, the methods and algorithms implemented were well sup-
ported by the MPI theory and extensive literature, the accuracy of the reconstruction
algorithms needed, for completeness of this study, to be evaluated when running over
real measurement data.

The OpenMPIData [110] is a public online dataset containing real MPI mea-
surement data, widely adopted in the literature for validating experimental MPI
reconstruction algorithms. The dataset was generated by using a commercial MPI
scanner to measure the signals generated by three MNP phantoms: the shape phan-
tom, the resolution phantom and the concentration phantom, as shown in figure
5.18. The measurement data asociated with these three phantoms can be used to
assess different aspects of the image reconstructions. The shape phantom data al-
lows quickly identifying when the reconstruction algorithm is working properly, the
resolution phantom allows assessing the definition of the reconstructions, and the
concentration phantom allows identifying the detection limit of the reconstructions.
The dataset also include the calibration matrices for the scanner and the measured
signals for different configurations and reconstruction resolutions.
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Figure 5.18: OpenMPIData [110] phantoms: Shape phantom (left), resolution phan-
tom (center) and concentration phantom (right).

The datasets studied in this work corresponded to the experiment number 3 (see
[110] for a list of all experiments and their parameters), and consisted of the calibra-
tion matrix and the signals measured with the three phantoms for a 38x38x19 mm
field of view and a 19x19x19 resolution. The calibration matrix and the measured
signals were digitally filtered to remove frequencies below 80 kHz, i.e., only the rows
at frequencies higher than the cutoff frequency were used. Therefore the reduced
calibration matrix occupied 3.86 GB of memory, which corresponds to 75, 615 rows,
which includes data of all x, y and z receive coils, and 6, 859 columns, resulting in a
problem size of 5.18 × 108. This problem size lies within the range of sizes studied
with simulated data and confirmed that the parameters adopted for the simulations
were reasonable. However, the calibration matrix was too large for the parallel SVD
to be executed in the GPU – it requires an additional memory space to store tem-
porary values during the decomposition – so the SVD reconstruction was evaluated
using the calibration data and signal from the x coil only.

Each measurement dataset containing the measured signals is composed of 1, 000
repetitions of the same scan sequence. The noise level of the measured signals was
estimated by taking the averages of the standard deviations of the repetitions of
each element of the signal vectors. For the shape phantom, the noise was estimated
as being approximately equal to 0.14% of the peak signal, or −56.8 dB, while for
the resolution and concentration phantoms the estimated noise levels were 0.32%

(−49.9 dB) and 0.36% (−48.8 dB), respectively, which also lies within the range of
noises adopted for the simulation experiments.

For the reconstructions with all phantoms, a regularization parameter
λ = 3.5 · 104 was adopted, based on the study of the reconstructions errors and
also by visual inspection of the reconstructed images. The methodology adopted
for the experiments using real measured data was the same adopted for the exper-
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iments with the simulated data, and the reconstruction errors and execution times
were taken for all algorithms after 1, 5, 10, 20, 30, 40, 50, 100, 150 and 200 iterations
for the iterative algorithms, and after a single execution for the SVD reconstruction.
All algorithms were assessed using the calibration matrix and signals from the x

coil only, while the serial Kaczmarz algorithm, the paralle steepest descent and the
parallel CGNR were also assessed using data from all three coils. The experiments
were also performed using the desktop described in section 5.4.3.
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Chapter 6

Results and discussion

6.1 Evaluation metrics

For the assessment of the parallel algorithms implemented in this work, a number
of metrics were adopted. The metrics adopted for assessing the quality of the recon-
structions were used in two spaces (or domains). In signal space, the reconstruction
residuals (s−K · c) were analyzed, and the input signals were used as reference for
the analysis. In image space, on the other hand, a reference image (or the ground
truth) was used for the comparison. The metrics will be discussed as follows.

6.1.1 Mean Squared Error - MSE

The Mean Squared Error (MSE) is given by the following expression:

MSE(x, y) =
1

N

N∑
i=0

(xi − yi)
2 (6.1)

where x is the vector being assessed and y is the reference vector. The MSE can be
used either to analyze either the reconstruction residuals in signal space or the dif-
ferences between the reconstructed images and the ground truth (when it is known)
in image space. An alternative way of expressing the MSE is by taking it with
relation to a reference error. The Relative MSE (or RMSE) can also be seen as the
MSE with relation to the initial solution estimate, when it is set zero (MSE0), and
is given by

RMSE(x, y) =
MSE(x, y)

MSE0(y)
=

MSE(x, y)∑N
i=0 (yi)

2
(6.2)

6.1.2 Peak Signal-to-Noise Ratio - PSNR

The Peak Signal-to-Noise Ratio (PSNR) is usually expressed in decibels (dB) and
is given by
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PSNR(x, y) = 20 · log10

(
max(x)√
MSE(x, y)

)
(6.3)

where max(x) is the peak value of x. In this work the PSNR is used to analyze only
the reconstruction residuals in signal space.

6.1.3 Structural Similarity Index Measure - SSIM

The Structural Similarity Index Measure (SSIM) is a very popular method developed
for comparing images [117]. It gives an index ranging from −1 to 1, where 1 means
that the two images are identical, 0 means that they are completely different, and
−1 means that they are opposite. The index is given by:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6.4)

where µx is the average of the values of the image x, µy is the average of the values
of the reference image y, σ2

x is the variance of the values of x, σ2
y is the variance of

the values of y, σxy is the covariance between x and y, c1 = (k1L)
2 and c2 = (k2L)

2,
where k1 = −0.01, k2 = 0.03, and L is the range of the values of the image pixels
– often determined as 2#Bits, but can also be real-valued. Given the nature of the
index, the SSIM is used to analyze the reconstruction residuals in image space only.

6.1.4 Speedup

The Speedup is simply the ratio between two execution times. When used to deter-
mine the acceleration rate of parallel algorithms with relation to their serial coun-
terparts, it is given by:

SP =
tserial
tparallel

(6.5)

where tserial is the execution time of the serial algorithm and tparallel is the execution
time of the parallel algorithm. The speedup can be used for determining other two
metrics, the Efficiency :

EP =
SP

np

(6.6)

and the Cost :
CP = tparallel · np (6.7)

where np is the number of processors. The efficiency gives a measure of the speedup
relative to the number of processors, and is helpful for comparing results using differ-
ent architectures with different number of cores. The cost, on the other hand, gives
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a measure of the total time spent on the computation, and is useful for comparing
the performance of serial and parallel algorithms.

6.2 Parallel 2D MPI results

The main goal of the experiments with 2D MPI reconstructions was to investigate
the feasibility of parallel implementations of the reconstruction algorithms and their
potential for speeding up the reconstructions. The results of these experiments are
shown below.

6.2.1 Convergence and accuracy

Figure 6.1 shows the reconstructions of the 2D MPI signal using the serial Kacz-
marz algorithm, the parallel Kaczmarz, the parallel Cimmino algorithm, the parallel
block-Cimmino, and the serial and parallel implementations of the CGNR algorithm.
The Kaczmarz algorithm shows excellent convergence, and the shape of the phan-
tom is clearly noticeable after only a single iteration. As expected, the results are
identical for both serial and parallel versions of Kaczmarz. The serial and parallel
versions of the CGNR algorithm also show identical results as expected, but their
convergence is worse than Kaczmarz’s at the beginning, but it improves significantly
with further iterations. The convergence of the Cimmino algorithm is very poor,
and even after 50 iterations only a blurred contour of the phantom is visible. Finally,
the block-Cimmino algorithm shows a better convergence than Cimmino, but still
worse than Kaczmarz and CGNR.

Figure 6.1: 2D MPI reconstruction results after 1 iteration (top line), after 20 iter-
ations (middle line) and after 50 iterations. Reproduced from [70].
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Figure 6.2: Convergence of the 2D MPI reconstruction algorithms in terms of num-
ber of iterations (left) and execution time (right). Reproduced from [70].

The left plot of figure 6.2 illustrates the convergence rate of the algorithms stud-
ied in this experiment in terms of the RMSEs with relation to the imput signal as
funtion of the number of iterations. The Kaczmarz algorithm converges very quickly
until about the 10th iteration, and then it slows down. The CGNR algorithm, on the
other hand, shows a more consistent convergence rate, and after 20 iterations it sur-
passes the Kaczmarz algorithm. The plot also confirms the poor convergence of the
Cimmino algorithm, with RMSE values nearly four orders of magnitude higher than
the Kaczmarz and CGNR, while the block-Cimmino algorithm showed RMSE values
about two order of magnitude lower than the Cimmino algorithm, but still about
two orders of magnitude higher than CGNR and Kaczmarz. While the averaging of
the projections would ensures the solution of the least squares minimization problem
[115], it excessively smooths the convergence, compromising its performance.

6.2.2 Performance

Table 6.1 summarizes the execution times of the algorithms studied in this experi-
ment, as well as their speedups with relation to the serial Kaczmarz algorithm exe-
cuted in the CPU (KACZ CPU), and the reported times correspond to the average
of five independent executions. The first conclusion is that the parallel Kaczmarz
algorithm executed in the GPU (KACZ GPU) is on average 17.4× slower than the
serial Kaczmarz algorithm executed in the CPU. As already discussed in 5.2.2, due
to the nature of the algorithm, only a limited number of operations could be exe-
cuted in parallel, compromising its performance. The Cimmino algorithm (CIMM
GPU) was 1.2× slower than the serial Kaczmarz, on average, and the block-Cimmino
(BLK-CIMM GPU) was 2.5× faster, with none of them showing improvements in
terms of reconstruction accuracy. However, while the serial CGNR (CGNR CPU)
was on average 5.6× slower than the serial Kaczmarz algorithm, the parallel CGNR
(CGNR GPU) accelerated its serial counterpart by 58.2×, resulting in an average
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KACZ KACZ CIMM BLK-CIMM CGNR CGNR
CPU GPU GPU GPU CPU GPU

1 iter. time, ms
Sp

86
-

1, 566
0.06

96
0.89

31
2.7

843
0.10

9
8.9

10 iter. time, ms
Sp

862
-

15, 091
0.06

1, 108
0.78

452
1.9

4, 677
0.18

59
14, 4

20 iter. time, ms
Sp

1, 761
-

29, 918
0.06

2, 074
0.85

744
2.4

9, 921
0.19

211
8.3

30 iter. time, ms
Sp

2, 576
-

45, 281
0.06

3, 038
0.85

1, 006
2.6

13, 277
0.19

307
8.4

40 iter. time, ms
Sp

3, 438
-

60, 164
0.06

3, 966
0.86

1, 288
2.7

17, 588
0.20

382
9.0

50 iter. time, ms
Sp

4, 333
-

75, 454
0.06

4, 913
0.88

1, 559
2.8

21, 827
0.20

429
10.1

Table 6.1: Execution times and speedups Sp of the 2D reconstruction algorithms.
The speedups are relative to the execution time of the serial Kaczmarz algorithm.

speedup of 9.9× with relation to the serial Kaczmarz algorithm, while showing su-
perior accuracy.

Since the algorithms converge differently, a comparison based only on the exe-
cution times of a single iteration is not an appropriate way of estimating the actual
speedups of the reconstruction algorithms, and the quality of the reconstructions
should also be taken into account. The right plot of figure 6.2 shows the RMSE
values of the algorithms studied in this experiment as function of time. Clearly the
parallel CGNR is the most efficient algorithm, reaching a RMSE lower than 10−4

even before the Kaczmarz algorithm finishes its very first iteration. Considering
the time spent by the algorithms to reach a RMSE lower than 10−5, the parallel
CGNR is 11.2× faster than the serial Kaczmarz, a speedup bigger than the average
per-iteration acceleration. It happens because, even though the Kaczmarz algorithm
converges very quickly in the first iterations, its convergence rate slows down after
10 iterations, as shown the left plot of figure 6.2. Even when accounting for the
reconstruction accuracy, the parallel Kaczmarz, the parallel Cimmino, the parallel
block-Cimmino and the serial CGNR showed a worse performance when compared
to the serial Kaczmarz algorithm.

The results with the parallel CGNR algorithm were very promising, and en-
couraged the pursue of parallel implementations for 3D image reconstructions. The
results of this first investigation on parallel MPI reconstruction algorithms were
published in [70], and have already been confirmed by another research group, as
can be seen in [71].

73



6.3 Parallel 3D T-MPI results

The main goal of the experiments with parallel 3D T-MPI reconstructions was to test
the feasibility of the multi-color method for temperature imaging, while investigating
the speedups of the parallel CGNR algorithm for larger 3D MPI datasets. The
results of these experiments are shown in the next pages.

6.3.1 Convergence and accuracy

Figure 6.3 shows the results of the 3D T-MPI reconstructions for two different sig-
nals. On the left side, the reconstruction of the signals simulated for a phantom at
exactly the three calibration temperatures (T1, T2 and T3) is shown. On the right
side is the reconstruction of the signals simulated for a phantom under a vertical
temperature gradient. The ground truth phantoms on the left side of their respec-
tive reconstructions illustrate the actual temperature profiles. The three 2D color
images below the 3D images are the central cross sections of the reconstructions
for each one of the T1, T2 and T3 reconstruction channels. As shown in 5.3, the
resulting particle concentration is given by the sum of the concentrations in the
three channels, while the temperature is given by an interpolation of these values,
according to equation 5.7. Both reconstructions were performed using the same
parameters, including the calibration matrix, reconstruction algorithm (Kaczmarz)
and the number of iterations – 100, in the case illustrated in the figure.

As can be seen in the image, the multi-color T-MPI method worked well when
the particles are at the calibration temperatures, and the reconstructed image shows
clearly the distinct regions, in special the top region. The images at the three
channels confirm that the method successfully detected the particles at the three
temperatures, as expected. The accuracy in both concentration and temperature
is lower in the bottom of the image, and this might be attributed to the fact that
the difference between the PSFs at 273 K and 303 K is smaller than the difference
between the PSFs at 303 K and 323 K, which favors a better distinction between
the two higher temperatures (see image 5.16). Also, the magnitude of the PSF is
smaller at 273 K, and this could contribute to a slower convergence in that region.

However, the same cannot be said when some particles were not exactly at the
calibration temperatures. The reconstruction at the right side of figure 6.3 shows
that the method failed to converge properly for the phantom under a temperature
gradient, even if the gradient lies within the calibration temperatures. The concen-
tration at some points in the central region of the image (represented by the size of
the polygons) are significantly higher than expected. Additionally, the temperatures
of the reconstructed image do not match the temperatures of the phantom. The cross
section images at the three channels support this, showing that the reconstruction
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Figure 6.3: T-MPI reconstruction results with the phantom with the particles at the
three calibration temperatures (left) and with the phantom with a vertical temper-
ature gradient (right). The images in the bottom are cross sections of the central
portion of the 3D image for the channels T1, T2 and T3. The size of the polygons
is proportional to the particle concentration in that specific voxel, while the color is
proportional to the temperature at that position, according to the color scale in the
center of the image. Adapted from [70].

failed to return images of a temperature gradient.
These results suggest that the multi-color MPI method has limited interpolation

capabilities, and it finds support in the fundamentals of the multi-color MPI method
[21]. The method was developed to determine the concentration of particles of
different kinds, as defined by their calibration matrices. In other words, the method
returns how many particles of each kind are present in a specific sample. When
applied to T-MPI, the method then determines how many particles are at each of
the calibration temperatures only, and the results above suggest that the method
cannot resolve intermediate temperatures. What gives the method the ability of
detecting particles at different temperatures are the different PSF, which means
that the temperature range and resolution of the method depends on having several
calibration matrices closely spaced in temperature, which is not computationally
feasible, since the size of the calibration matrices can easily occupy several GB
of memory space. Moreover, the different calibration matrices have to be nearly
orthogonal to allow the algorithm to converge, which requires particles very sensitive
to temperature changes to allow finer resolutions. An alternative to the multi-color
method could be using the recently reported harmonic PSF approach [118] for 3D
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Figure 6.4: Convergences of the serial Kaczmarz algorithm and the parallel CGNR
employed for 3D T-MPI reconstructions. The plots show the RMSE values with
relation to the simulated signals (top) and with relation to the ground truth (bot-
tom), as function of the number of iterations (left) and time (right). Reproduced
from [72].

temperature imaging and it should be investigated.
The left plots of figure 6.4 illustrates the convergence of the serial Kaczmarz

and the parallel CGNR algorithms, denoted by their RMSE values with relation
to the simulated signal (top) and with relation to the ground truth (bottom), as
function of the number of iterations. Similarly to what was seen with the 2D MPI
(see 6.2), The Kaczmarz algorithm converges very quickly in the first iterations,
but the convergence slows down after the 10th iteration. The convergence of the
CGNR is slower than Kaczmarz’s in the first iterations, but is more consistent and
eventually the CGNR reaches the Kaczmarz. In signal space, it happens after 30
iterations, but in image space it happens only after 100 iterations. One explanation
for this is that since the system of equations has 22, 500 rows and 24, 000 columns, it
is underdetermined and therefore has multiple solutions that minimize the residuals
(s−K ·c) and produce similar RMSE values in image space. The differences between
the results in different spaces will be further investigated in the next section, when
the final results with 3D MPI will be shown and discussed in details.

6.3.2 Performance

The right plots of figure 6.4 illustrate the convergences of the serial Kaczmarz algo-
rithm and the parallel CGNR, denoted by their RMSE values with relation to the
simulated signals (top plots) and with relation to the ground truth (bottom plots),
as function of time. In time domain is possible to better visualize the performance
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gains resulting from the adoption of the parallel CGNR algorithm. By the time the
serial Kaczmarz finishes its first iteration, the CGNR nearly finished more than 30
iterations, reaching RMSE values nearly two orders of magnitude lower than Kacz-
marz’s in signal space, and about 50% lower in image space. The average speedup
of the parallel CGNR algorithm with relation to the serial Kaczmarz is 36.6×, and
confirms the potential of the algorithm for providing more efficient MPI or (T-MPI)
reconstructions. The results of this investigation were published in [72].

6.4 Parallel 3D MPI results

The experiments with the parallel CGNR algorithm for the reconstruction of 2D
concentration images and 3D concentration and temperature maps demonstrated
the potential of GPU-accelerated strategies for speeding up MPI image reconstruc-
tions. At this point of the research, the main goal was to fully demonstrate that the
parallel algorithms are suitable for providing real-time reconstructions while ensur-
ing that the accuracy of these reconstructions remain in optimum levels under real
life measurement conditions. The experiments included simulated signals, as well
as real measured signals provided by the OpenMPIData dataset [110]. The results of
the experiments with these data are shown in the next sections.

6.4.1 Simulated data

Convergence and accuracy

Figure 6.5 illustrates the convergence of the 3D MPI reconstruction algorithms in
signal space, denoted by the RMSEs on the left two plots and by the PSNRs on
the right two plots, as function of the number of iterations. The algorithms were
employed for the reconstruction of the simulated signals with a 20x20x20 resolution,
and to these signals, 5 µV (0.1%, top two plots) and 50 µV (1%, bottom two
plots) of Gaussian noise were added to reproduce real measurement conditions and
assess the accuravy of the regularized reconstruction algorithms. As already seen
with the results with 2D MPI and 3D T-MPI, the Kaczmarz algorithm showed
very good convergence in the first iterations – after a single iteration, the RMSE of
the unconstrained Kaczmarz algorithm (KACZ_CPU, blue circles) dropped to less
than 10−2 (or a PSNR higher than 30 dB), and after 10 iterations it reached less
than 10−3 (or a PSNR higher than 40 dB), even for 1% of noise. The convergence of
the constrained Kaczmarz algorithm (KACZ_PC_CPU, blue triangles) was slightly
worse in its first iterations, starting with higher RMSE and lower PSNR values than
the unconstrained Kaczmarz, but after 20 iterations it reached better values. The
parallel CGNR algorithm (CGNR_GPU, green squares), also as shown in the results
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Figure 6.5: Convergence of the 3D MPI reconstruction algorithms in signal space
as function of the number of iterations. The plots show the RMSE values (left) and
PSNR values (right) of the reconstructions with relation to the measured signals,
for 5 µV (0.1% or −60 dB, top) and 50 µV (1% or −40 dB, bottom) of noise. The
points correspond to values after 1, 5, 10, 20, 30, 40, 50, 100, 150 and 200 iterations.

with 2D MPI and 3D T-MPI, showed a modest convergence in its first iteration,
but consistently decreased its RMSE values and increased its PSNR values, and
eventually surpassed the Kaczmarz algorithm after about 40 iterations. The steepest
descent algorithm (SD_GPU, red crosses), on the other hand, showed very poor
convergence, and even after 200 iterations it did not manage to reach the accuracy
of the Kaczmarz algorithm after only 5 iterations, or the accuracy of the CGNR
algorithm after 10 iterations. The reconstructions employing SVD (SVD_GPU,
open purple diamonds) resulted in better metrics (lower RMSEs and higher PSNRs)
regardless of the noise level. Since the SVD is a direct solver, only one iteration of
it is shown in the plots.

One advantage of assessing the reconstruction algorithms using simulated data
is the fact the ground truth (i.e., the actual space-dependent MNP concentration)
is known, which allows the evaluation of the reconstructions also in image space.
Figure 6.6 illustrates the convergence of the reconstruction algorithms in image
space, denoted by the RMSE values on the left plot and the SSIM values in the
right plot, as function of the number of iterations. The plots correspond to the
reconstructions of the signal with 1% of noise generated by the 20x20x20 phantom
of figure 5.17, which was used as ground truth for the calculations of the RMSE and
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Figure 6.6: Convergence of the 3D MPI reconstruction algorithms in image space
as function of the number of iterations. The plots show the RMSE values (left) and
SSIM values (right) with relation to the ground truth for the reconstructions of the
signal with 1% of noise. The points correspond to values after 1, 5, 10, 20, 30, 40,
50, 100, 150 and 200 iterations.

SSIM values. In image space, the reconstructions using the constrained Kaczmarz
algorithm obtained better scores than all other algorithms, including the SVD, which
has shown the best results in signal space. This suggests that even though the SVD
converges to the minimum least squares solution, the inclusion of a constraint to
the system of equations leads to more accurate solution. Figure 6.7 shows the 3D
reconstructions with all algorithms, and also illustrates the improved accuracy of
the constrained Kaczmarz reconstruction in comparison to the unconstrained ones.

It has been found in the course of this study that adding one iteration of the
constrained Kaczmarz algorithm can improve the accuracy of the unconstrained
reconstructions. As can be see in Figure 6.6, adding a single constrained Kacz-
marz iteration after the SVD reconstruction can significantly reduce the RMSE and
increase the SSIM to values close to the values obtained by the full constrained Kacz-
marz reconstruction after 200 iterations, even closer than the values obtained with
the unconstrained Kaczmarz algorithm. Figure 6.7(f) also illustrates how adding a
single constrained Kaczmarz iteration can improve the quality of the reconstruction,
removing unwanted artifacts around the main volume. The same approach can be
adopted for the unconstrained CGNR reconstruction, with the same results. It is
also interesting to notice that all unconstrained reconstructions converge to the same
images, including the Kaczmarz one – the reconstruction with the steepest descent
algorithm would as well, presumably, if the number of iterations were large enough.
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Figure 6.7: 3D reconstructions after 200 iterations for a signal with 1% of noise. The
images correspond to (a) the serial unconstrained Kaczmarz algorithm, (b) the serial
Kaczmarz algorithm with positivity constraint, (c) the parallel CGNR algorithm,
(d) the parallel steepest descent algorithm, (e) the parallel SVD reconstruction,
and (f) the parallel SVD reconstruction followed by one iteration of the Kaczmarz
algorithm with positivity constraint. Reproduced from [116].

Performance

Figures 6.8 and 6.9 illustrate again the convergence of the 3D MPI reconstruction
algorithms studied in this work, but now as function of the execution time instead of
the number of iterations. This analysis is necessary because the algorithms have their
own execution times, and their performance should then be measured in terms of
convergence per time unit. In time domain, it is clear the performance gain resulting
from the adoption of the parallel algorithms, in special the CGNR and SVD. By
the time serial Kaczmarz algorithm finished its very first iteration, more than 30
iterations of the parallel CGNR algorithm had already been executed, resulting in
significantly better RMSE and PSNR values in comparison to Kaczmarz’s results.
The Kaczmarz’s scores after one iteration that took 184 ms are comparable to the
ones of CGNR after five iterations and 39 ms, a speedup of about 3.8×. After 10
iterations of the Kaczmarz algorithm (a number of iterations typically used in the
literature), the accuracy of the reconstruction would be comparable to the one of
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MSE/MSE0 Kaczmarz (CPU) CGNR (GPU) SVD (GPU)
10−3 345 ms 59 ms (5.8×) 6.2 ms (55.6×)
10−4 2.7 s 147 ms (18.4×) 6.2 ms (431×)
10−5 21 s 362 ms (58.0×) 6.2 ms (3, 337×)

Table 6.2: 3D MPI reconstruction times as function of the desired acuracy

the CGNR algorithm after 20 iterations. In this case the speedup of the CGNR
reconstruction would be about 13×. If all 200 iterations are taken into account,
the parallel CGNR algorithm is about 30× faster than the serial Kaczmarz. The
parallel steepest descent showed nearest the same execution times as the parallel
CGNR did, but unfortunately with much poorer convergence.

The parallel SVD-based reconstruction took on average 6.2 ms to be executed,
nearly 30× faster than one single iteration of the serial Kaczmarz algorithm, and
resulted in significantly better metrics, with relation to both the input signal and
the ground truth. Since the SVD is a direct solver, a proper way of comparing its
performance to the ones of iterative solvers is by means of taking the times to reach
a certain error level. Having this in mind, fitting the linear intervals of the top left
plot of figure 6.8 for the serial Kaczmarz algorithm and the parallel CGNR (the
blue and green dashed lines, respectively) reveals that, for 10−3 of desired RMSE,
the serial Kaczmarz algorithm would take 345 ms while the parallel CGNR would
take 59 ms, as speedup of 5.8×. The parallel SVD would therefore run 55.6× faster
than the serial Kaczmarz. For a RMSE of 10−4, the parallel CGNR would run
18.4× faster and the parallel SVD would run 431× faster, and for a RMSE of 10−5,
the speedups of the parallel CGNR and SVD reconstructions would be 58× and
3, 337×, respectively. Table 6.2 shows the executions times for reaching the desired
accuracies.

Even though the constrained Kaczmarz algorithm is less efficient than the parallel
CGNR and SVD, its improved accuracy certainly would justify its use. A shown in
6.4.1, it is possible to improve the accuracy of the CGNR and SVD reconstructions
by adding a single iteration of the constrained Kaczmarz algorithm at the end of
the execution. The plots in figure 6.9 show the improvements in the RMSE and
SSIM values with relation to the ground truth resulting from the addition of one
constrained Kaczmarz iteration after the SVD reconstruction, as well as the increase
in the reconstruction time. In this case, the average execution time would increase
to 298 ms, meaning that this approach would still lead to speedups of 1.2×, 9.1×
and 70× with relation to the Kaczmarz reconstruction, when the desired RMSE
levels were 10−3, 10−4 and 10−5, respectively.

Finally, the parallel calculation of the calibration matrix revealed, for the simu-
lated 20x20x20, an average execution time of 472 ms against 7.6 s taken by the serial
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Figure 6.8: Convergence of the 3D MPI reconstruction algorithms in signal space
as function of the execution time. The plots show the RMSE values (left) and
PSNR values (right) of the reconstructions with relation to the measured signals
as functions of time, for 5 µV (0.1% or −60 dB, top) and 50 µV (1% or −40 dB,
bottom) of noise. The points correspond to values after 1, 5, 10, 20, 30, 40, 50, 100,
150 and 200 iterations. The blue and green dashed lines in the top left plot are the
fits of the relative MSEs of the Kaczmarz algorithm and CGNR, respectively, for
performance analysis. Adapted from [116].

Figure 6.9: Convergence of the 3D MPI reconstruction algorithms in image space
as function of the execution time. The plots show the RMSE values (left) and
PSNR values (right) of the reconstructions with relation to the ground truth for the
reconstructions of the signal with 1% of noise. The points correspond to values after
1, 5, 10, 20, 30, 40, 50, 100, 150 and 200 iterations. Adapted from [116].
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implementation, a speedup of about 16×. This execution time is comparable to the
one of the parallel CGNR reconstruction, and suggests the possibility of calculating
the calibration matrix (or parts of it) in real time, without the need of storing it in
the system memory.

Scalability and speedups of the parallel algorithms

The plot in figure 6.10 illustrates the scalability of the parallel implementation of the
reconstruction algorithms, as well as the parallel implementation of the calculation of
the calibration matrix, by plotting their execution times as function of the problem
size (i.e., the size of the calibration matrix), given by the number of measured
samples times the number of voxels of the reconstructed image. For the iterative
algorithms, the times were the averages of the execution times after 200 iterations.
For the parallel SVD reconstruction and the calculation of the calibration matrix,
the times were averages of the execution times after a single execution. Given
the poor convergence of the parallel steepest descent algorithm, its execution times
would be meaningless and were not included in this figure. Since the parallel SVD
decomposition occupies a significant amount of memory space – it required 5.4 GB

of space for decomposing the calibration matrix for a 20x20x20 reconstruction and
a sampling rate of 1.25 MHz, for example – for bigger problem sizes the GPU would
run out of memory and then the parallel SVD evaluation was limited to a smaller
subset of problem sizes. It is possible to see clearly how the parallel CGNR and SVD
reconstructions consistently outperformed the serial Kaczmarz algorithm, regardless
of the problem size, and the same can be said about the parallel calculation of the
calibration matrix with relation to its serial counterpart.

It is possible to notice in the figure that while the serial algorithms scale perfectly
linearly with the problem size, there is a certain non-linearity in how the parallel
algorithms scale with the program size, but still close enough to be assumed as linear.
For the parallel calculation of the calibration matrix, it can be easily correlated to
the algorithm structure. The orange X’s in the plot can be separated in groups of five
points, each group corresponding to a different sampling rate, or number of rows of
the calibration matrix. Within each group, the points correspond to different image
resolutions, or number of columns of the calibration matrix. The parallel algorithm
for the calculation of the calibration matrix, as described in 5.4.2 is such that each
kernel computes one row of it. Therefore, for a single sampling rate (or number
of rows), the parallel algorithm scales linearly with the image resolution because
the elements within the row are calculated sequentially by its corresponding thread.
Additionally, increasing the sampling rate also increases the degree of parallelism
(number of threads), and therefore the execution speedups. That is why some points
in figure 6.10 seem to have better performance than others with similar problem sizes
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Figure 6.10: Scalability of the parallel implementations expressed as the execution
times of the algorithms implemented in this work as function of the problem size.
Reproduced from [116].

(see the clusters at 3 · 107 and 108, for example). Since the parallel CGNR and
SVD reconstructions were executed using the CUBLAS function calls, there is no
control on the workload distribution in the GPU, and identifying a pattern is not as
straightforward, but it is still possible to notice points with approximate problem
sizes and different performances. Table 6.3 shows the combinations of sampling
rates and image resolutions that produced the problem sizes studied in this work,
and table 6.4 summarizes the speedups of the parallel algorithms. It is important
to note that the table shows speedups for the prallel SVD reconstruction that are
larger than the number of GPU cores (the NVIDIA Quadro RTX 4000 has 2, 304

CUDA cores), and it is only possible because the execution times of the parallel SVD
reconstruction are being compared to the the ones of the serial Kaczmarz algorithm.
Since different algorithms are being compared, speedups larger than the number of
cores are acceptable.

It has been shown in the literature that previously storing the pseudoinverse of
the calibration matrix in the memory resulted in smaller reconstruction times [63].
The results of that work, however, were limited to problem sizes between 105 and
106. The present work extended this range by two orders of magnitude, and included
parallel algorithms executed in the GPU using CUDA to deliver reconstructions
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Sampling rate
312.5 kHz 625 kHz 1.25 MHz 2.5 MHz

R
es

ol
u
ti

on
10x10x10
15x15x15
20x20x20
25x25x25
30x30x30

3.8× 106

1.3× 107

3.0× 107

5.9× 107

1.0× 108

7.5× 106

2.5× 107

6.0× 107

1.2× 108

2.0× 108

1.5× 107

5.1× 107

1.2× 108

2.3× 108

4.1× 108

3.0× 107

1.0× 108

2.4× 108

4.7× 108

8.1× 108

Table 6.3: Problem size matrix. The matrix shows the problem sizes (number of
elements of the calibration matrix) as function of the sampling rate and the image
resolution.

at rates between 156 and 1, 256 frames per second. This approach is very useful
in situations in which the user needs images a high frame rates and resolution is
not critical, as in search scans, for example. Then, when higher resolutions are
required for revealing details of the sample under investigation, the parallel CGNR
can be used, with reconstructions times about 30× faster than the serial Kaczmarz
algorithm, on average.

The overall results show that it is possible to calculate the calibration matrix
and run a reconstruction using the CGNR algorithm in parallel in the GPU in much
less time than the time spent to run the reconstruction using the serial Kaczmarz
algorithm with the calibration matrix previously stored in the memory. This is a
significant finding, and one implication of it is that it would no longer be neces-
sary to previously store the calibration matrix, allowing for reconstructions with
increased sampling rates and/or image resolutions with no memory space limita-
tions. As an example, taking the simulation and reconstruction parameters adopted
for the analysis in 6.4.1 (1.25 MHz of sampling rate and 20x20x20 of reconstruction
resolution), the problem size would be 1.2 × 108. For a 0.1% of noise level and a
minimum reconstruction RMSE with relation to the input signal of 10−4, the serial
Kaczmarz algorithm would need 15 iterations and take about 2.7 s to be executed.
The parallel CGNR would need 22 iterations and take about 140 ms, being 19×
faster then Kaczmarz. The calculation of the calibration matrix would take 470 ms,
so the total time spent to calculate the matrix and reconstruct with CGNR would

Algorithm Minimum Maximum Average
Calibration matrixa 12.7× 37.2× 21.8×
CGNRb 9.6× 36.8× 29.2×
SVDb 883× 6, 101× 3, 482×
Calibration matrix + CGNRb 7.7× 25.1× 18.1×
a Speedups relative to the serial computation of the calibration matrix
b Speedups relative to the serial Kaczmarz algorithm

Table 6.4: Speedups of the parallel algorithms
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be 610 ms, 4.4× faster than Kaczmarz. Finally, if one wishes to add a single con-
strained Kaczmarz iteration, the total execution time would be 810 ms, 3.3× faster
than the serial Kaczmarz algorithm and showing improved accuracy without the
need of storing the calibration matrix in the memory.

One additional application of a real-time calculation of the calibration matrix
would be being be possible to change the scanning and reconstruction parameters
during execution time. This would allow the user, for example, to start a scan
with a broader field of view, and change the drive field amplitudes to focus in some
point of interest, i.e., zooming in to reveal more details of the sample. It could also
be possible to partially compute the calibration matrix to reconstruct only parts
of the field of view, perhaps combining it with CUDA streams [106] to allow for
the concurrent computation of the calibration matrix and the image reconstruction
for even better performance. This can be applied to any parameters, including
the sampling rate and the resolution of the images to be reconstructed. Another
great potential application of this feature is the fast computation of the temperature-
dependent calibration matrices using the new method for temperature reconstruction
employing the harmonic PSFs method[41]. The potential applications of the real-
time calculation of the MPI calibration matrix are countless, and the implementation
presented in this work is a proof of concept for further development in the future.

6.4.2 Real measurement data

The final stage of the present study was to demonstrate that the parallel reconstruc-
tion algorithms developed in this work are indeed suitable for real life applications.
This was accomplished by running the reconstruction algorithms using the data
provided by the OpenMPIData dataset [110].

As detailed in 5.4.3, the problem size of these reconstructions is 5.18 × 108,
when accounting for the filtering of all frequency components below 80 kHz, and the
resulting calibration matrix was too large to allow running the SVD decomposition in
the GPU. For this reason, the SVD reconstruction was performed using the data from
a single coil only instead of all three coils. To allow for a proper comparison between
the reconstruction algorithms, the Kaczmarz, CGNR and SVD reconstructions were
executed using data from a single coil, and the Kaczmarz and CGNR reconstructions
were also executed using the data from all the three coils.

Accuracy

Preliminary reconstruction images and data revealed that the Kaczmarz algorithm
with positivity constraint showed very poor convergence in comparison to the un-
constrained algorithms. Table 6.5 shows the RMSE and PSNR values of the re-
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construction algorithms when applied to the shape phantom. The results for the
Kaczmarz algorithm, with and without positivity constraint, and for the CGNR
algorithm correspond to 100 iterations. The CGNR and SVD were also assessed
after adding a single iteration of the constrained Kaczmarz algorithm. Clearly all
the constrained reconstructions resulted in very poor metrics in comparison to the
unconstrained ones. To explain this, it is interesting to revisit the work of Lu et al.
in [84], in which the authors describe the impact of the baseline filtering (the removal
of the frequency components correspondent to drive field frequency to remove the
feedthrough, see 2.4) as a DC offset in the reconstructed MPI image. This means
that part of the reconstructed images would have negative concentration values due
to this offset. Therefore, applying a positivity constraint during the reconstruction
of a filtered signal would actually force the algorithm to converge to the wrong
solutions and for this reason, only unconstrained algorithms were analysed in this
section. A possible solution is applying the method described in [43] to recover the
information corresponding to the base frequency, and this should be investigated in
future studies.

Figure 6.11 shows the RMSE and PSNR values with relation to the measured
signals for the shape, resolution and concentration phantoms. The plots show that
both parallel algorithms show better accuracy than the serial (and unconstrained)
Kaczmarz algorithm in all three scenarios. The best metrics were obtained with
the shape phantom, and this can be explained by the lowest noise level (−56.8 dB,
see 5.4.3) of the signals obtained with this phantom among the three of them. The
reconstructions with the concentration phantom obtained the worst results, and this
also can be explained by the noise level of the signals measured with this phantom.
The parallel CGNR algorithm converged to the optimum solution after only 50
iterations, regardless of the noise level of the signal, while the serial Kaczmarz
algorithm failed to converge in most cases, despite the usual good convergence rate
after the first iteration.

Figure 6.12 shows the cross sections of the 3D images reconstructed from the

Algorithm RMSE PSNR
Kaczmarz 1.1× 10−3 66.0 dB
Kaczmarz_PC 5.7× 100 29.0 dB
CGNR 4.1× 10−4 70.5 dB
CGNR + 1× Kaczmarz_PC 1.1× 101 26.0 dB
SVD 4.1× 10−4 70.5 dB
SVD + 1× Kaczmarz_PC 1.0× 101 26.4 dB

Table 6.5: RMSEs and PSNR values of the reconstruction algorithms with (Kacz-
marz_PC) and without positivity constrain applied to the OpenMPIData dataset
signal corresponding to the shape phantom.
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Figure 6.11: RMSE (top) and PSNR (bottom) values of the reconstruction of the
OpenMPIData signals as function of time, for the shape phantom (left), resolution
phantom (center) and concentration phantom (right). Points correspond to the
values after 1, 5, 10, 20, 30, 40, 50, 100, 150 and 200 iterations. Reproduced from
[116].

signals measured with the three phantoms, as well as the cross sections of the recon-
structions presented on the OpenMPIData website [110]. It is possible to see that the
images agree almost perfectly, and that small differences could be attributed proba-
bly to different regularization parameters used during the reconstruction, since the
values adopted in [110] were not informed. Finally, figure 6.13 shows the 3D recon-
structions of the shape, resolution and concentration phantoms in perspective. The
comparison of these three images with the pictures of their corresponding phantoms,
shown in figure 5.18, shows that the reconstruction of the shape phantom was the
most successful one, followed by the reconstruction of the resolution phantom and
then the one of the concentration phantom. For the latter, it is only possible to see
the points with more particles, which is also true for the OpenMPIData reconstruc-
tions shown in figure 6.12 and can be attributed to the lower signal to noise ratio of
the signals measured with this phantom.

Performance

Figure 6.11 also tells the performance of the reconstruction algorithms when applied
to the OpenMPIData dataset. Both parallel CGNR and SVD outperform the serial
Kaczmarz algorithm in all cases, regardless of the phantom being reconstructed or
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Figure 6.12: Cross sections of the reconstructions of the shape (left), resolution
(center) and concentration (right) phantoms presented by the OpenMPIData dataset
in comparison to the ones obtained using the algorithms studied in this work. Re-
produced from [116].

whether data from one or three coils were used for the reconstruction. In all scenar-
ios, the parallel CGNR managed to converge before the serial Kaczmarz algorithm
completed its fifth iteration, a remarkable performance, in special after noticing that
the Kaczmarz algorithm , in most cases, could not reach the solution even after 200
iterations.

In order to estimate the speedups of the parallel algorithms while reconstructing
the OpenMPIData data, the same procedure adopted for the simulated results was
employed, and the linear interval of RMSE plots of figure 6.11 were fitted to provide
estimates of the execution times for a desired RMSE value. The results of this

Desired RMSE
Phantom Algorithm 10−2 5× 10−3 10−3

Shape
CGNR (1 coil)
SVD (1 coil)

CGNR (3 coils)

17.8
210
0.9

31.5
502
4.6

118
3, 820

*

Resolution
CGNR (1 coil)
SVD (1 coil)

CGNR (3 coils)

17.6
297
18.0

54.9
1, 266

*

-
-
-

Concentration
CGNR (1 coil)
SVD (1 coil)

CGNR (3 coils)

82.2
2, 879
22.8

-
-
-

-
-
-

* Serial Kaczmarz algorithm did not reach this RMSE level
- None of the algorithms reached this RMSE level

Table 6.6: Speedups of the parallel algorithms applied to the OpenMPIData dataset,
relative to the serial Kaczmarz algorithm.
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Figure 6.13: 3D reconstructions of the shape (left), resolution (center) and concen-
tration (right) phantoms shown in perspective.

analysis is summarized in table 6.6. The results shown in the table demonstrate
that the speedups of the parallel algorithms depend on the desired accuracy, in
particular when the SNR is high and more accurate reconstructions are possible.

The overall results of the assessment of the performance of the parallel MPI re-
construction algorithms applied for simulated and real measurement data support
the conclusion that the parallel algorithms are more efficient than the serial Kcaz-
marz algorithm even for small data sets, which means that they can be combined to
other data reduction approaches, such as row selection or filtering, to obtain even
better results.

In comparison to the previous parallel implementations, as presented in 6.2.2
and 6.3.2, the results presented in this section managed to significantly improve the
performance of the parallel MPI reconstruction algorithms, obtaining speedups of up
to three orders of magnitude. The methods presented in this work, and published in
[70, 72, 116] are the first to actually accelerate single-frame MPI reconstructions by
executing the algorithms in parallel in GPUs, allowing for real-time, high-resolution
and high-accuracy MPI image reconstructions. It also important to keep in mind
that the results presented in this work were obtained using an average GPU (a Nvidia
Quadro RTX 4000), so much higher speedups are expected to be obtained with
higher performance boards. The adoption of GPUs for MPI image reconstructions
is a considerably low investment in comparison to the whole measurement setup,
and a simple solution for obtaining faster and more accurate reconstructions.
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Chapter 7

Conclusions

This thesis was focused on the development of GPU-accelerated parallel algorithms
for speeding up MPI image reconstructions using the CUDA framework. The main
results of this endeavour were the world’s first parallel algorithms for MPI image
reconstructions and the world’s first parallel algorithm for the calculation of the
calibration matrix. Even though the preliminary results of this project already
motivated the development of other GPU-accelerated methods for high-performance
MPI reconstructions (see [71]), the methods presented in this document remain, at
the date of the publication of this document, as the only parallel strategies for
speeding up the reconstruction of single MPI frames towards real-time imaging.

To reach these goals, a number of studies were performed and the improvements
resulting from them contributed to the fulfilment of the main goals of this research.
It started with the basic modeling of the MPI scanning and signal generation pro-
cess, and the many factors that impact on the accuracy of technique – magnetic
fields, particle magnetization response, particle dynamics, discrete sampling, filter-
ing, temperature, among others. This allowed the development of a software that
performed a rigorous simulation of MPI scanners working in one, two and three
dimensions, and the signals generated by simulation suite allowed understanding
better the capabilities and limitations of MPI systems. The results of this develop-
ment were presented in [42]. The signals generated by the rigorous simulation suite
allowed the validation of an analytical MPI signal generation model employed in the
first MPI image reconstruction algorithms implemented at NIST, and contributed
to the development of a new method for recovering the signal loss due to base fre-
quency filtering [43], the investigation of the impact of the sampling frequency on the
reconstruction accuracy [44] and world’s first method for estimating uncertainties in
MPI reconstructions [45].

In the sequence, the first implementations of parallel MPI image reconstruction
algorithms executed in GPU were investigated. Among the algorithms studied were
the Kaczmarz, Cimmino, block-Cimmino and CGNR. While the parallel Kaczmarz
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showed very poor performance and the parallel Cimmino and block-Cimmino showed
very poor convergence, the parallel CGNR algorithm showed excellent results and
a performance 10× superior to the one of the serial Kaczmarz algorithm executed
in the CPU. However, this study was still limited to 2D images, reconstructed from
simulated signals without noise, and no regularization scheme was included in the
reconstruction algorithms. Nevertheless, these results, published in [70], represent
the first GPU-accelerated parallel MPI image reconstruction method proposed in
the literature.

As part of the Thermal MagIC project developed at NIST [36], the research
presented in this work is part of a greater effort to develop the techniques for 3D
temperature mapping using MPI techniques. Therefore, the next study investigated
the suitability of the parallel algorithms recently developed to speeding up 3D T-MPI
reconstructions using the multi-color MPI method. It was found that, even though
the parallel CGNR algorithm outperformed the serial Kaczmarz algorithm by a
factor of 30, the multi-color method itself showed difficulties to reconstruct regions
where the temperatures are different from the calibration temperature, revealing
limited interpolation capabilities. The results of this study were published in [72].

The next step was to apply the techniques developed in the previous studies to
signals of simulated 3D scans in the presence of noise, to better approximate real MPI
measurement conditions. To allow for the reconstruction of noisy signals, Tikhonov
regularization was integrated to the parallel CGNR algorithm. In addition to the
new regularized algorithm, two new reconstruction approaches were investigated,
employing the steepest descent algorithm and singular value decomposition (SVD),
and a novel parallel algorithm for the calculation of the calibration matrix was
implemented. The results of the tests with the parallel algorithms showed that both
CGNR and SVD managed to reconstruct noisy signals with good accuracy, but
the convergence speed of the steepest descent algorithm was significantly poorer in
comparison to the other algorithms. In terms of performance, it was found that the
CGNR algorithm can be up to 58× faster than the serial Kaczmarz algorithm, and
that the parallel SVD reconstruction can be up to 3, 337× faster, when accounting for
the required accuracy of the reconstructions. It was also shown that the better the
required accuracy, the better is the speedup of the parallel reconstruction algorithms.
The parallel calculation of the calibration matrix was accomplished through the
development of a custom CUDA kernel in which each thread computed one row of
the calibration matrix. The execution times were up to 37× faster than the ones of
its serial counterpart running in the CPU, and it was shown that now it is possible
to calculate the calibration matrix and run the image reconstruction in less time
than the time taken to run the serial reconstruction with the Kaczmarz algorithm
in the CPU. In this case, the speedups could be as high as 25×. Investigations of the
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parallel algorithms running for signals obtained with different sampling rates and
reconstructed with different resolutions revealed that the speedups scale well with
the size of the problem.

The final stage of this investigation was the validation of the proposed methods
using real measurement data. It was accomplished reconstructing images from the
signals provided by the OpenMPIData dataset, widely used by MPI researchers for
the validation and comparison of reconstruction algorithms. The results not only
confirmed that both the parallel CGNR and SVD reconstructions outperform the
serial Kaczmarz algorithm by one to three orders of magnitude in execution speed,
but also revealed that the CGNR algorithm converged much more consistently than
the Kaczmarz algorithm for all three measurement datasets with different noise
levels. Additionally, the reconstruction of real, noisy and filtered signals also revealed
that the adoption of a positivity constraint in the reconstruction algorithms led to
incorrect solutions, and the reason for this is the fact that filtering the signal removes
important information and is reflected in a DC offset in the reconstructed images.
The results of this study were published in [116].

The main individual contributions of this work can be summarized as follows:

1. This work demonstrated that the performance of the parallel Kaczmarz al-
gorithm for MPI reconstructions is worse than the performance of its serial
implementation. The main reason for this is the structure of the algorithm,
which relies in successive row projections in order to converge to the solution.
The operations involved in these projections are mostly dot products, and the
parallelization of such operations do not yield significant performance gains.

2. This work proposed the first parallel implementation of MPI image reconstruc-
tions using the CGNR algorithm using the cuBLAS library, and demonstrated
that it resulted in execution times up to 40x faster when compared to the
serial Kaczmarz algorithm executed in the CPU, in a per-iteration compari-
son. When accounting for the difference convergence rates between different
algorithms, the different noise levels of the signals and the desired level of re-
construction accuracy, the parallel CGNR algorithm obtained execution times
up to 58× faster for simulated data and up to 118× faster for real measured
data. these results were possible because the majority of the operations that
compose the CGNR algorithm are matrix multiplications, which significantly
benefited from the parallel architecture of GPUs and the implementation of
the cuBLAS library.

3. This work proposed the first parallel MPI image reconstruction approach based
on singular value decomposition (SVD). In this approach, the MPI calibration
matrix is decomposed in the GPU memory using the cuSolver library prior
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to the execution. The matrices that compose the pseudoinverse of the cali-
bration matrix are then used to obtain the reconstructed image by means of
parallel matrix multiplication operations in the GPU using the cuBLAS li-
brary and custom kernels that allow obtaining the solution of the regularized
least squares minimization problem. Using this approach, it was possible to
accelerate the MPI image reconstruction by up to about 3, 000× for the recon-
structions using simulated data and up to about 3, 800× for reconstructions
using real measurement data, when accounting for the signal noise and the
required accuracy level. Even though the SVD decomposition is not part of
the reconstruction routine, its execution times are small enough to let it be
part of the initialization of the main measurement program.

4. This work demonstrated that the parallel methods implemented in this study
are suitable for being used with real, noisy and filtered measurement data,
through the execution of the reconstruction algorithms using the signals pro-
vided by the OpenMPIData dataset for three different phantoms.

5. This work demonstrated that the speedups resulting from the use of the paral-
lel algorithms proposed here are directly proportional to the desired accuracy
level, in special when the noise level of the signal is low and greater accuracy
is possible.

6. This work demonstrated that the proposed methods are suitable to recon-
structing signals in both time and frequency domains.

7. This work presented for the first time a parallel algorithm for the calculation
of the MPI calibration matrix. With this approach, it was possible to speed
up this calculation by up to 37×, depending on the problem size. It was also
demonstrated in this work, for the first time, that it is possible to calculate
the calibration matrix and run the parallel CGNR reconstruction in much less
time than running the serial Kaczmarz algorithm in the CPU. The real-time
calculation of the calibration matrix is a significant achievement, which can
potentially eliminate the need of storing the calibration matrix in the mem-
ory and allow changing the scanning and reconstruction parameters during
execution.

8. This work demonstrated the limitations of the multi-color T-MPI method for
resolving interpolated temperatures (temperatures in between the tempera-
tures used for the calibration of the T-MPI system). The solution of the ex-
tended system of equations provides the estimated number of particles at each
calibration temperature, thus the method is more well suited to be employed
as a detector (i.e., a thermostat) rather than as a thermometer.
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9. This work demonstrated that when the MPI signal is filtered to remove the
drive field contribution at the fundamental excitation frequency, the solution
of the MPI system of equations is shifted by a DC offset, and therefore apply-
ing a positivity constraint in the reconstruction algorithm leads to incorrect
solutions.

The results show in this thesis demonstrates that the main goals of this research
were fully achieved. GPU-accelerated parallel algorithms specially tailored for MPI
image reconstructions can already be considered a reality now, and it is expected
that the principles introduced in this work will be applied in future studies and
practical MPI applications. Real-time MPI reconstructions, as proved possible in
this work, can have a huge impact in biomedical imaging, the main goal of the
technique.

The promising results shown in this thesis do not exhaust all the possibilities,
and the algorithms can be further improved to deliver fast and more accurate re-
constructions. The adoption of preconditioned calibration matrices can potentially
improve the convergence of CGNR reconstructions, consequently improving the ac-
curacy and/or reducing the number of iterations necessary for convergence, and shall
be investigated. Additionally, different regularization schemes, including total least
squares, L1 regularization and total variance, for example, can also provide good
results and should also be studied. For the real-time calculation of the calibration
matrix, the use of CUDA Streams for the concurrent computation of the matrix and
the image reconstruction could yield significant performance gains and represents
an interesting topic for further research. Still related to performance, the use of
multiple GPUs, and the use of tensor cores for matrix multiplications could also be
explored in the future.

The techniques developed in this work can potentially impact future studies
on the harmonic-based temperature reconstructions based on the harmonic PSF
principle introduced by NIST as part of the Thermal MagIC project. The parallel
algorithms presented in this thesis have the potential of speeding up the calculation
of temperature-dependent harmonic PSFs, allowing for high-performance and high-
accuracy 3D temperature imaging.

Finally, during the development of this project, it was identified the opportunity
of speeding up Monte Carlo simulations of MNPs, in which the Néel and Brownian
relaxation mechanisms of the particles are activated to reveal details of the particles’
dynamic responses to various applied fields. The adoption of parallel algorithms in
GPU can substantially improve the performance of these simulations, and may result
in better model-based calibration matrices for MPI reconstructions.
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