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Abstract

In this note, we extend the hyperbolic augmented Lagrangian algorithm (HALA)
for solving the nonconvex programming problems, that is, we guarantee that the
sequence generated by HALA converges under mild assumptions to a Karush-
Kuhn-Tucker (KKT) point.

Keywords: Nonlinear programming, First-order optimality, Convergence

1 Introduction

We are interested in the following nonconvex programming problem

(P ) min f(x)

s.t. gi(x) ≥ 0, i = 1, ...,m,

1



where f : Rn → R and gi : Rn → R, i = 1, ...,m are continuously differentiable
functions. There is a variety of algorithms that solve the problem (P) when it is
nonconvex, such as: [16], [5], [6], [1], [7] and [8]. In particular, the following augmented
Lagrangian function is studied in [13] to solve the problem (P)

Lρ(x, λ) = f(x) +
ρ

2

∥∥∥∥max

{
0, z(x) +

λ

ρ

}∥∥∥∥2 , (1.1)

where the function z(x) = −g(x), ρ > 0 is the penalty parameter and λ ≥ 0 is the
Lagrange multiplier. In [13] the authors study two augmented Lagrangian methods
(ALM), they are: Standard ALM and Modified ALM, in both methods, the penalty
parameters have an update formula. The main difference of these methods is the
updating formula of the Lagrange multipliers. The authors comment that it is conve-
nient to use the Modified ALM, since this method uses the safeguards technique to
update the Lagrange multipliers. It is known that the algorithm ALGENCAN uses
the safeguards technique, see, [1] and [4]. In [13], the authors present a computational
result comparing the Standard ALM and the Modified ALM. On the other hand,
HALA solves the problem (P) and its convergence to a Karush-Kuhn-Tucker (KKT)
point is guaranteed recently in the work [14] when the problem has convexity assump-
tions. A characteristic of HALA is that it uses a nonquadratic penalty function. On
the other hand, other studies of nonquadratic penalty functions can be seen in [10],
[8] and [9]. The first studies on HALA can be seen in the thesis of Xavier [19]. The
algorithm HALA belongs to the class of Standard ALM, that is, HALA does not
use the safeguards technique. In this work the algorithm HALA has a fixed penalty
parameter. The contribution of our work is to guarantee convergence towards a KKT
point using HALA to solve problem (P) with nonconvexity assumptions.

The paper is organized as follows: Section 2, we present some basic results. Section
3, we will remember the characteristics of the hyperbolic penalty function and we
propose the algorithm HALA and guarantee the convergence of this algorithm. In
Section 4, we present a computational illustration to see the performance our proposed
algorithm.

2 Preliminaries

In this chapter we consider some basic definitions of nonlinear programming. The
Lagrangian function for the problem (P) is L : Rn × Rm

+ → R,

L(x, λ) = f(x)−
m∑
i=1

λigi(x), (2.2)

where λi ≥ 0, i = 1, ...,m, is the vector of Lagrange multipliers. The first-order KKT
conditions for the problem (P) hold at the point x∗, if there exists λ∗, called a Lagrange
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multiplier vector, such that

∇L(x∗, λ∗) = ∇f(x∗)−
m∑
i=1

λ∗
i∇gi(x

∗) = 0, (2.3)

λ∗
i gi(x

∗) = 0, i = 1, ...,m, (2.4)

gi(x
∗) ≥ 0, i = 1, ...,m, (2.5)

λ∗
i ≥ 0, i = 1, ...,m. (2.6)

The hyperbolic penalty method was introduced in [17] and is meant to solve the
problem (P). The penalty method adopts the hyperbolic penalty function (HPF),
defined as

P (y, λ, τ) = −λy +

√
(λy)

2
+ τ2, (2.7)

where P : R × R+ × R++ → R. For more details of this function, see [18]. HPF is
equivalent to a smoothing of the penalty studied by Zangwill, see [20].

3 Hyperbolic Augmented Lagrangian Algorithm

The algorithm HALA is studied in [14] for the convex case.

3.1 Hyperbolic Augmented Lagrangian

We define the hyperbolic augmented Lagrangian function of problem (P) by LH :
Rn × Rm

++ × R++ → R,

LH(x, λ, τ) = f(x) +

m∑
i=1

P (gi(x), λi, τ)

= f(x) +

m∑
i=1

(
−λigi(x) +

√
(λigi(x))

2
+ τ2

)
, (3.8)

where τ > 0 is the penalty parameter and it is fixed. Note that this function belongs
to class C∞ if the involved functions f(x) and gi(x), i = 1, ...,m, are too. Next, we
propose HALA.

The multiplier updating formula (3.10) are derived by noticing the following fact

∇xLH(xk+1, λk, τ)

= ∇f(xk+1)−
m∑
i=1

λk
i

(
1− λk

i gi(x
k+1)√

(λk
i gi(x

k+1))2 + τ2

)
∇gi(x

k+1)

= ∇f(xk+1)−
m∑
i=1

λk+1
i ∇gi(x

k+1). (3.11)

For any x ∈ Rn, we define the index sets I0(x) = {i ∈ {1, ...,m} | gi(x) = 0} , and
I+(x) = {i ∈ {1, ...,m} | gi(x) > 0} .
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Algorithm 1 (HALA)

Step 1. Let k := 0. Let (x0, λ0) ∈ Rn × Rm
++ and τ > 0.

Choose a positive sequence
{
ϵk
}
k∈IN ⊂ R+ satisfying limk→∞ ϵk = 0.

Step 2. If (xk, λk) is a KKT point of the problem (P): Then Stop.

Step 3. Find an approximate minimizer xk+1 ∈ Rn of LH(x, λk, τ), such that∥∥∇xLH(xk+1, λk, τ)
∥∥ ≤ ϵk. (3.9)

Step 4. Updating of Lagrange multipliers:

λk+1
i = λk

i

1− λk
i gi(x

k+1)√(
λk
i gi(x

k+1)
)2

+ τ2

 , i = 1, ...,m. (3.10)

Step 5. k := k + 1. Go to Step 2.

Remark 3.1. Let {λk} be a sequence generated by HALA such that λk
i > 0, i =

1, ...,m and let τ > 0 fixed. Let us consider the following cases:

(c1) If, i ∈ I0(x
k+1), then we have at the k-th iteration that gi(x

k+1) = 0, then by
(3.10), we get, λk+1

i = λk
i .

(c2) If, i ∈ I+(x
k+1), then we have at the k-th iteration that gi(x

k+1) > 0, then by
(3.10), we get, λk

i > λk+1
i .

Proposition 3.1. Let
{
λk = (λk

1 , ..., λ
k
m) | k = 1, 2, ...

}
⊂ Rm. If

λk ∈ Rm
++ then λk+1 ∈ Rm

++.

Proof. See Proposition 3.2.1 of [14].

3.2 Convergence

Theorem 3.1. Let us consider problem (P). The whole sequences generate by HALA
are convergent, i.e.,

lim
k→∞

λk = λ∗ (3.12)

and limk→∞ xk = x∗ where x∗ is a feasible point, then (x∗, λ∗) is a KKT point of the
problem (P).

Proof. We know that gi(x
∗) ≥ 0, i = 1, ...,m by hypothesis. By Proposition 3.1

and (3.12) we get
lim
k→∞

λk
i = λ∗

i ≥ 0, i = 1, ...,m. (3.13)

Now, let us see the following cases:
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(i) If, i ∈ I0(x
∗), we have gi(x

∗) = 0, and by (3.13) then we can get

λ∗
i gi(x

∗) = 0, ∀i ∈ I0(x
∗).

(ii) If, i ∈ I+(x
∗), we have gi(x

∗) > 0, then there exists k̄ such that for all k ≥ k̄, we
have gi(x

k+1) > 0, then by (c2) of the Remark 3.1, Proposition 3.1 and (3.10), we
get

0 < λk+1
i = λk

i

1− λk
i gi(x

k+1)√(
λk
i gi(x

k+1)
)2

+ τ2

 < λk
i , ∀k ≥ k̄, ∀i ∈ I+(x

∗). (3.14)

By the squeeze theorem and (3.12), we obtain

lim
k≥k̄

1− λk
i gi(x

k+1)√(
λk
i gi(x

k+1)
)2

+ τ2

 = 1, ∀i ∈ I+(x
∗),

it immediately follows that

λ∗
i gi(x

∗) = 0, ∀i ∈ I+(x
∗).

Therefore, from (i) and (ii), we obtain

λ∗
i gi(x

∗) = 0, i = 1, ...,m, (3.15)

then, the condition of complementarity is assured. Note that from (3.10) and (3.15)
we can get

λ∗
i

1− λ∗
i gi(x

∗)√
(λ∗

i gi(x
∗))

2
+ τ2

 = λ∗
i , i = 1, ...,m. (3.16)

On the other hand, from (3.9), (3.16), (3.11) and since we have limk→∞ ϵk = 0, we
have

lim
k→∞

ϵk ≥ lim
k→∞

∥∥∇xLH(xk+1, λk, τ)
∥∥

= lim
k→∞

∥∥∥∥∥∇f(xk+1)−
m∑
i=1

λk+1
i ∇gi(x

k+1)

∥∥∥∥∥ = lim
k→∞

∥∥∇L(xk+1, λk+1)
∥∥ = 0,

i.e., we obtain ∇L(x∗, λ∗) = 0. In this way we ensure that the sequence generated by
HALA converges to a KKT point.
Remark 3.2. In Theorem 3.1 it is assumed that the primal sequence converges to
a feasible point, this assumption is also considered in the Theorem 5.1 of [2] and
Theorem 2.3 of [13]. Also see [3], [12] and [15].
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Fig. 1 Example 4.1

4 A Computer Illustration

The computational illustration presented below were obtained with a preliminary
Fortran implementation for the HALA. The program were compiled by the GNU
Fortran compiler version 4:7.4.0-1ubuntu2.3. The numerical Experiments are con-
ducted on a Notebook with operating system Ubuntu 18.04.5, CPU i7-3632QM and
8GB RAM. The unconstrained minimization tasks were carried out by means of a
Quasi-Newton algorithm employing the BFGS updating formula, with the function
VA13 from HSL library [11]. Let us now consider the following example which is also
studied by Kanzow and Steck [13].

Example 4.1. See Section 3 of [13].

min
x∈R

f(x) = x

s.t. g1(x) = 1− x3 ≤ 0.

Starting from x0 = −1. The unique solution is x∗ = 1. Moreover (x∗, λ∗) = (1, 1
3 ), see

Fig. 1.
Our algorithm HALA will stop when the point xk+1 is feasible and the stationarity

condition is satisfied, as follows∥∥∇f(xk+1)− λk+1∇g(xk+1)
∥∥ ≤ 10−4. (4.17)

We are going to consider the following initial conditions:

x0 = −1, λ0 = 10 and τ = 0.10E − 09.
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With the initial conditions considered, we report the following obtained values:∥∥∇f(xk+1)− λk+1∇g(xk+1)
∥∥ = 0.1711528E − 04,

x∗ = 0.100000000E + 01 and λ∗ = 0.333339038E + 00,

see, Table 1 and Table 2. From these tables, we can also observe that our algorithm
HALA converges in two iterations. The Modified ALM solves this example in 42
iterations, see Kanzow and Steck [13]. We can also observe that our algorithm HALA
converges in fewer iterations despite considering a fixed penalty parameter.

Table 1 Example 4.1

iteration viavel λ1

0 0 0.100000000E+02
1 0 0.200000000E+02
2 1 0.333339038E+00

Table 2 Example 4.1

iteration x f(x) LH(x, λ, τ) viavel
0 -0.100000000E+01 -0.100000000E+01 0.390000000E+02 0
1 -0.129099445E+00 -0.129099445E+00 0.199139337E+02 0
2 0.100000000E+01 0.100000000E+01 0.100000000E+01 1
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[17] Xavier, A.E.: Penalização Hiperbólica- Um Novo Método para Resolução de
Problemas de Otimização (master’s thesis). Federal University of Rio de Janeiro/-
COPPE, Rio de Janeiro, Brazil (1982)

[18] Xavier, A.E.: Hyperbolic penalty: a new method for nonlinear programming with
inequalities. Intl. Trans. in Op. Res. 8: 659–671 (2001)
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