
SIMULATING REAL PROFILES FOR SHILLING ATTACKS: A GENERATIVE
APPROACH

Julio César Barbieri Gonzalez de Almeida

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia de Sistemas e
Computação, COPPE, da Universidade Federal
do Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Doutor em
Engenharia de Sistemas e Computação.

Orientador: Geraldo Zimbrão da Silva

Rio de Janeiro
Agosto de 2024

SIMULATING REAL PROFILES FOR SHILLING ATTACKS: A GENERATIVE
APPROACH

Julio César Barbieri Gonzalez de Almeida

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientador: Geraldo Zimbrão da Silva

Aprovada por: Prof. Geraldo Zimbrão da Silva
Prof. Geraldo Bonorino Xexéo
Prof. Eduardo Soares Ogasawara
Prof. Ronaldo Ribeiro Goldschmidt
Prof. Julio Cesar Duarte

RIO DE JANEIRO, RJ – BRASIL
AGOSTO DE 2024

Barbieri Gonzalez de Almeida, Julio César
Simulating real profiles for shilling attacks: a generative

approach/Julio César Barbieri Gonzalez de Almeida. – Rio
de Janeiro: UFRJ/COPPE, 2024.

XVIII, 136 p.: il.; 29, 7cm.
Orientador: Geraldo Zimbrão da Silva
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2024.
Referências Bibliográficas: p. 102 – 116.
1. Recommendation systems. 2. Collaborative

filtering. 3. Shilling attack. 4. Variational autoencoder.
I. Zimbrão da Silva, Geraldo. II. Universidade Federal
do Rio de Janeiro, COPPE, Programa de Engenharia de
Sistemas e Computação. III. Título.

iii

To everyone who supported me
throughout these past years.

iv

Acknowledgments

I would like to start by thanking my entire family, especially my mother, who
has always provided invaluable support and encouraged me to do my best. I am
also deeply grateful to my Mariana Kosiba Furtado, who supported me through the
most challenging moments of this journey. Without her, this research would have
been significantly more difficult.

I want to thank my advisor, Geraldo Zimbrão da Silva, for the wealth of knowl-
edge shared during this entire period under his guidance. I must also acknowl-
edge the contributions of Filipe Braida do Carmo and Leandro Guimarães Marques
Alvim; without their support, this work would not have been possible.

Additionally, I extend my gratitude to my research colleagues and friends who
supported the first three years of this work with advice, ideas, and meaningful
conversations on a wide range of topics: Ygor de Mello Canalli and Christian da
Silva Cabral Cardozo. I also want to thank my longtime friends Yuri Almeida de
Rezende, Vinicius Costa de Lima, and Felipe Bonomi de Lima for their enduring
friendship and support during the challenging periods of this work.

Special thanks go to the examination board for accepting the invitation and for
their contributions to this work.

I also want to thank the professors, staff members, and my colleagues from PESC
and Universidade Federal do Rio de Janeiro (UFRJ).

Last but not least, I am grateful to Conselho Nacional de Desenvolvimento Cien-
tífico e Tecnológico (CNPq) for funding this research.

v

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

SIMULANDO PERFIS REAIS PARA SHILLING ATTACKS: UMA
ABORDAGEM GENERATIVA

Julio César Barbieri Gonzalez de Almeida

Agosto/2024

Orientador: Geraldo Zimbrão da Silva

Programa: Engenharia de Sistemas e Computação

Filtragem Colaborativa (CF) é vulnerável a Shilling Attacks, onde usuários mal-
intencionados injetam perfis falsos para manipular recomendações. Modelos atuais
frequentemente usam técnicas estatísticas simples, resultando em perfis com padrões
de avaliação distintos dos dados reais, o que facilita a detecção e requer um número
maior de perfis para ser eficaz. Para resolver esse problema e criar perfis mais realis-
tas, propomos o uso de um modelo generativo, Variational Autoencoder (VAE), que
mapeia a distribuição dos dados reais. O VAE gera novos perfis baseados em dados
reais sem copiar diretamente as avaliações, e esses perfis gerados são transformados
em perfis maliciosos ao adicionar a avaliação do item alvo. Validação da proposta
foi feita com diferentes bases de dados, comparando nosso modelo com os da liter-
atura. Os resultados mostram que nosso modelo supera outros, especialmente em
ataques menores (3% a 5%) no MovieLens 100k. A análise dos perfis gerados rev-
elou que eles têm padrões de avaliação semelhantes aos perfis reais. Experimentos
subsequentes com técnicas de detecção confirmaram que nosso modelo é menos de-
tectável no MovieLens 100k. Também verificamos que abordagens de limpeza de
dados são eficazes quando o administrador tem um conjunto confiável de usuários.
Nosso modelo representa um avanço em Shilling Attacks, oferecendo resultados su-
periores e maior indistinguibilidade, sendo útil para testar técnicas de detecção e
outras tarefas na área.

vi

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)

SIMULATING REAL PROFILES FOR SHILLING ATTACKS: A GENERATIVE
APPROACH

Julio César Barbieri Gonzalez de Almeida

August/2024

Advisor: Geraldo Zimbrão da Silva

Department: Systems Engineering and Computer Science

Collaborative Filtering (CF) systems are vulnerable to Shilling Attacks, where
malicious users inject fake profiles to manipulate recommendations. Existing Shilling
Attack models often use simplistic statistical templates, resulting in profiles with
distinct rating patterns that are easier to detect and require more profiles to be
effective. To address this issue, we propose using a Variational Autoencoder (VAE)
to generate profiles that closely resemble real system data. Unlike traditional meth-
ods, VAE maps the original data distribution to create new profiles without directly
copying actual ratings. These generated profiles are then modified to become mali-
cious by altering the target item’s rating. We validated our approach across different
datasets and compared it with existing attack models. Our results demonstrate that
our model outperforms others in model-based CF systems, especially with smaller
attack sizes (3% to 5%) using the MovieLens 100k dataset. A correlation analysis
of the generated profiles shows they have rating patterns similar to real profiles,
and detection experiments confirm our model is less detectable. Furthermore, we
found that Data Cleansing approaches can mitigate attacks when the system admin-
istrator has a reliable user set. Our model advances Shilling Attack techniques by
producing more realistic profiles and achieving superior results, making it a valuable
benchmark for testing detection methods and exploring further research in Shilling
Attacks.

vii

Contents

List of Figures x

List of Tables xiv

List of Symbols xv

List of Achronyms xvii

1 Introduction 1
1.1 Contextualization . 1
1.2 Problem Definition . 3
1.3 Objectives . 3
1.4 Contributions . 4
1.5 Document Structure . 4

2 Shilling Attacks in Collaborative Filtering 6
2.1 Recommender Systems . 6

2.1.1 Collaborative Filtering . 8
2.1.2 Datasets . 15

2.2 Shilling Attack . 17
2.2.1 Shilling Attack Types . 18
2.2.2 Mounting Attacks . 19
2.2.3 Attack Models . 20
2.2.4 Metrics . 21

2.3 Artificial Neural Networks . 22
2.3.1 Convolutional Networks . 25
2.3.2 Autoencoders . 27
2.3.3 Variational Autoencoders . 28
2.3.4 Generative Adversarial Networks 30

3 Malicious Profiles Using Generative Models 31
3.1 Attack Models Issue . 31

viii

3.2 Related Work . 32
3.3 Proposal . 37

3.3.1 Simulate Real Profiles . 38
3.3.2 Attack Construction . 40

3.4 Empirical Results . 40
3.4.1 Setup . 41
3.4.2 Results . 43

4 Shilling Attack Perspective as Label Noise 51
4.1 Noise . 51
4.2 Methods to Deal with Label Noise . 52

4.2.1 Data Cleansing . 53
4.2.2 Label Noise-Robust Models 57

4.3 Empirical Results . 61
4.3.1 Metrics . 61
4.3.2 Setup . 61
4.3.3 Results . 63

5 Evaluating Detection Models for Shilling Attacks 75
5.1 Detection Models . 75

5.1.1 Supervised . 75
5.1.2 Semi-Supervised . 78
5.1.3 Unsupervised . 80

5.2 Detection Models Evaluation . 85
5.2.1 Metrics . 86
5.2.2 Setup . 86
5.2.3 Results . 87

6 Conclusion 98
6.1 Proposal Summary . 98
6.2 Results Summary . 99
6.3 Future Works . 100

References 102

A Additional Experimental Results 117
A.0.1 Item Correlation Analysis . 118
A.0.2 Attack Models Evaluation . 120
A.0.3 Data Cleansing . 121
A.0.4 Label Noise-Robust Algorithms 129

ix

List of Figures

2.1 Illustration based on latent variables interpretation in a movie dataset
context. 12

2.2 Multilayer Perceptron of Neural Collaboraive Filtering. 15
2.3 Fused model of Neural Collaboraive Filtering. 15
2.4 The MovieLens 100k dataset histogram. 16
2.5 The Yahoo! Music dataset histogram. 17
2.6 The Amazon review dataset histogram. 17
2.7 A general form of an attack profile. 19
2.8 An example of a perceptron. 23
2.9 An example of multilayer artificial neural network. 24
2.10 Example of convolution using 3 × 3 kernel applied to a 5 × 5 input

padded with a 1× 1 border of zeros using 2× 2 strides. 26
2.11 An example of the autoencoder. 27
2.12 An example of variational autoencoder. 29

3.1 Our proposal to generate malicious profiles closer to real ones. 37
3.2 An example of pre-processing of the training data. 39
3.3 CA (a) and CA distribution (b) of item pairs in the MovieLens 100k

dataset. 44
3.4 CA of item pairs for different shilling attack models. For instance (a)

Segment, (b) PIA-NR, (c) GAN, and (d) our model. 44
3.5 CA distribution of item pairs for different shilling attack models. For

instance (a) Segment, (b) PIA-NR, (c) GAN, and (d) our model. . . . 45
3.6 Prediction shift, hit ratio and average rank for different attacks sizes

using Improved Regularized SVD as collaborative filtering technique. 46
3.7 Prediction shift, hit ratio and average rank for different attack sizes

using User-based as collaborative filtering technique. 48
3.8 Hit ratio for different ranks and attack sizes using both SVD and

User-based as collaborative filtering technique. 50

x

4.1 A probabilistic model illustrating the cyclic dependency between
users, items and ratings, as seen in collaborative filtering problems. . 52

4.2 Learning procedure for dataset cleaning models. 53
4.3 Prediction shift, hit ratio, and average rank for different attack sizes

comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using random target items from MovieLens 100k data set
and with attackers injected in the base estimator training data. . . . 64

4.4 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using random target items from Yahoo! Music data set and
with attackers injected in the base estimator training data. 66

4.5 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using random target items from MovieLens 100k data set
and no attackers in the base estimator. 67

4.6 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using random target items from Yahoo! Music data set and
no attackers in the base estimator. 68

4.7 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using ran-
dom target items from MovieLens 100k data set. 70

4.8 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques
using random target items from MovieLens 100k data set. 71

4.9 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using ran-
dom target items from Yahoo! Music data set. 73

4.10 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques
using random target items from Yahoo! Music data set. 74

5.1 Precision, recall, F1, and False Alarm Rate for supervised detection
methods using MovieLens 100k data set. 89

5.2 Precision, recall, F1, and False Alarm Rate for unsupervised detection
methods using MovieLens 100k data set. 91

5.3 Precision, recall, F1, and False Alarm Rate for SemiSAD using Movie-
Lens 100k data set. 92

xi

5.4 Precision, recall, F1, and False Alarm Rate for supervised detection
methods using Yahoo! Music data set. 93

5.5 Precision, recall, F1, and False Alarm Rate for unsupervised detection
methods using Yahoo! Music data set. 95

5.6 Precision, recall, F1, and False Alarm Rate for SemiSAD using Yahoo!
Music data set. 96

A.1 CA of item pairs of Yahoo! Music (a), and for different shilling attack
models (b-e) and the proposal (f). 118

A.2 CA distribution of item pairs of Yahoo! Music (a), and for different
shilling attack models (b-e) and the proposal (f). 119

A.3 Prediction shift, hit ratio and average rank for different attacks sizes
using Improved Regularized SVD as collaborative filtering technique. 120

A.4 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using least-rated target items from MovieLens 100k data set
and with attackers injected in the base estimator training data. . . . 121

A.5 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using most-rated target items from MovieLens 100k data set
and with attackers injected in the base estimator training data. . . . 122

A.6 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using least-rated target items from MovieLens 100k data set
and no attackers in the base estimator. 123

A.7 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using most-rated target items from MovieLens 100k data set
and no attackers in the base estimator. 124

A.8 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using least-rated target items from Yahoo! Music data set
and with attackers injected in the base estimator training data. . . . 125

A.9 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using most-rated target items from Yahoo! Music data set
and with attackers injected in the base estimator training data. . . . 126

xii

A.10 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using least-rated target items from Yahoo! Music data set
and no attackers in the base estimator. 127

A.11 Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing
approach using most-rated target items from Yahoo! Music data set
and no attackers in the base estimator. 128

A.12 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using least-
rated target items from MovieLens 100k data set. 129

A.13 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques
using least-rated target items from MovieLens 100k data set. 130

A.14 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using most-
rated target items from MovieLens 100k data set. 131

A.15 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques
using most-rated target items from MovieLens 100k data set. 132

A.16 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using least-
rated target items from Yahoo! Music data set. 133

A.17 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques
using least-rated target items from Yahoo! Music data set. 134

A.18 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using most-
rated target items from Yahoo! Music data set. 135

A.19 Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques
using most-rated target items from Yahoo! Music data set. 136

xiii

List of Tables

2.1 Example of a user-item ratings matrix fragment for a movie recom-
mender system. 7

2.2 Attack models classified according to intent. 20
2.3 Attack models summary. 21

3.1 Status of the literature on shilling attack models and the associated
issues. 37

5.1 Top results of different shilling attack detection techniques in Amazon
review dataset. 97

xiv

List of Symbols

R Set of ratings
U Set of users
I Set of items
rui Actual rating of a user u to an item i

r̂ui Model prediction of a rating from a user u to an
item i

wuv Similarity between users u and v

wij Similarity between items i and j

Ni(u) k nearest neighboors of user u that rated the item
i

r̄u Average rating for a user u

r̄i Average rating for an item i

pu k latent variables of a user u

qi k latent variables of an item i

λ Regularization term
γ Learning rate
|Ui| Number of users that rated item i
|Ui,j| Number of users that rated both i and j items
xi Ratings for user profile i
z Sample drawn from encoder
qΘ Encoder
pΘ Decoder
p(z) Distribution to be approximated

KL(∗ | ∗) KL-divergence between two distributions
|i| Number of items within the data set
iLF Lowest factor of the number of items in data set
pu,i Prediction before an attack
p′u,i Prediction after an attack
UT Set of tested users
IT Set of tested items

xv

∆u,i Prediction shift of an user u related to the target
item i

∆i Prediction shift for all tested items
Ru Top-N recommendation list for an user u

Hui Scoring function returning 1 if i is in Ru and 0
otherwise

HRi Hit Ratio for a given target item i

HR Average Hit Ratio over all target items
τ threshold

xvi

List of Achronyms

CF Collaborative Filtering
CA Cosine Association
GAN Generative Adversarial Network
GCN Graph Convolutional Network

IRSV D Improved Regularized SVD
MLP Multilayer Perceptron
KNN k-Nearest Neighboors
PIA Power Item Attack
PUA Power User Attack

PIA−NR PIA Number of Ratings
PUA−NR PUA Number of Ratings

SV D Singular Value Decomposition
V AE Variational Autoencoder

xvii

Chapter 1

Introduction

In this chapter, we introduce and contextualize our study, outline its primary
objectives, discuss the hypothesis addressed, and outline the structure of this work.

1.1 Contextualization

Recommendation systems popularity has grown exponentially in the last decades
with many companies such as Amazon.com1, Netflix 2 and Youtube3 relying on these
systems as a business competitive differential. These systems’ goal is to recommend
products and services to its users in order to increase the amount of sales for its
companies (ZHOU et al., 2010).

In order to construct a recommendation system, the recommendation problem
may be addressed in many ways. Among the most popular approaches to deal with
it, collaborative filtering emerged as one of the most successful in both academia and
industry with its so mentioned and used memory-based and model-based algorithms
(SCHAFER et al., 1999; HUANG & GONG, 2008). For example, the competition
named Netflix Prize drove improvements in the accuracy of model-based algorithms
and popularized its use in the 2000s (KOREN et al., 2009).

One of the discussed issues in collaborative filtering is shilling attacks, also re-
ferred to as malicious noise. These attacks may be performed by malicious people
or organizations, seeking to inject a large number of malicious profiles into a system
to somehow manipulate its recommendations, promote their products, or degrade a
competitor’s product (BURKE et al., 2006). Usually, attack models are engineered
towards memory-based algorithms and rely on simple heuristics, trying to mimic
the actual systems rating distribution, e.g., high or low rating on the target item,
while selecting items at random and rating them with values around the system

1http://www.amazon.com
2http://www.netflix.com
3http://www.youtube.com

1

mean. There is an indication that while detection approaches may easily detect
these classical shilling attack-crafted malicious profiles, they struggle to detect real-
world malicious profiles (ZHANG et al., 2018).

Moreover, these naïve attack models need a substantial number of malicious
profiles required to achieve the desired effect. It is often unrealistic to assume that
injecting 10% of the database volume can go unnoticed (WILLIAMS et al., 2007),
which underscores the need for more sophisticated attack models that accurately
replicate the subtleties of legitimate user behavior while evading detection algo-
rithms. By better understanding and simulating how malicious actors might manip-
ulate with these systems, researchers can develop more robust defenses and detection
strategies to safeguard against evolving threats in recommendation systems.

Variational autoencoders, introduced in KINGMA & WELLING (2013), are a
powerful generative tool able to learn a probability distribution from data and gener-
ate new samples from it. It has been used to replicate complicated distributions and
generate new data from noise in many tasks, such as handwritten digits (KINGMA &
WELLING, 2013), faces (REZENDE et al., 2014), images (GREGOR et al., 2015),
semantic segmentation (SOHN et al., 2015) and even forecasting from static images
(WALKER et al., 2016). Using this generative model, it may be possible to mimic
existing users’ rating patterns to create a more realistic attack instead of simple
statistical templates.

While introducing more realistic attack models is indispensable for advancing the
security and reliability of collaborative filtering systems, ways of evaluating attack
effectiveness that are not commonly used should also be explored alongside stan-
dard detection techniques to provide alternative defense options. In this context,
various methods for handling label noise in collaborative filtering systems have been
developed, offering possible solutions such as data cleansing and robust approaches.
Label noise is relevant in a collaborative filtering setting because the entire recom-
mendation process relies on user ratings and the quality of this data. While similar
to malicious noise, label noise refers to naturally occurring misclassified data that
can affect model accuracy (ZHU & WU, 2004). Robustness, on the other hand, de-
notes a model’s resilience to data corruption, which is crucial for maintaining stable
predictions (HUBER, 2004). Given these similarities, it is essential to investigate
whether techniques for handling label noise can also effectively prevent malicious
noise, just as they are used to addressing natural noise.

Given the discussed issues, making meaningful advances in the protection of
collaborative filtering systems against shilling attacks, a novel model that moves
away from straightforward statistical templates and can deceive detection methods is
necessary. Using a generative-based attack model, more realistic and less detectable
profiles can be crafted, and further advances can be made regarding the protection

2

of these systems, either by using detection approaches or robust models. These
challenges are directly related to the objectives of this work and are formalized in
the following sections.

1.2 Problem Definition

Based on the contextualization presented in the previous section, assuming the
context of machine learning, collaborative filtering, and shilling attack, we present
the following hypothesis to be evaluated in this thesis:

Hypothesis 1. It is possible to develop a shilling attack model that deceives litera-
ture detection approaches.

In addition to the hypothesis, the premise that realistic users can be crafted by
utilizing existing users’ profile information is also considered.

1.3 Objectives

Based on the problem definition, the main objective of this work is to create a
new shilling attack model able to craft realistic malicious profiles. This is done in
order to provide a new tool for the evaluation of robust algorithms and detection
approaches. A secondary objective is to critically assess shilling attack models across
various scenarios, encompassing both traditional detection methods and label noise-
robust models. Summarizing, our general objectives are presented as follows:

i) Propose a realistic attack model: A novel attack model based on the
generative power of a variational autoencoder is proposed. We aim to mimic
the original data rating patterns in order to generate malicious profiles as close
as possible to real ones to efficiently attack model-based collaborative filtering
systems. Analysis indicates that the proposed model is effective in learning
original rating patterns;

ii) Empirical analysis of data cleansing and label noise-robust propos-
als: We experiment with our method at MovieLens 100k, and Yahoo! Music
datasets and compare these results against attack models in the literature. At-
tacks of different attack sizes are crafted using existing users on these datasets,
and data cleansing and label noise-robust proposals are used to defend the
system. Experiments indicate that data cleansing can be useful to correct
malicious ratings, but label noise is not as successful;

3

iii) Empirical analysis of Shilling Attack detection models: We perform
experiments to validate if our proposal is less likely to be detected by the liter-
ature shilling attack detection techniques using the aforementioned datasets.
In order to have baseline metrics of acceptable levels of detectability, we also
carry out experiments using the Amazon product review dataset, a dataset
containing malicious profiles crafted by real-world attackers. Experiments in-
dicate that our approach can craft attack profiles that are less detectable,
and closer to real-world attackers than other attack models in the MovieLens
dataset.

1.4 Contributions

This thesis is contextualized in the field of recommender systems, more precisely
in collaborative filtering and shilling attack. The full list of contributions in this
area is enumerated as follows:

i) A paper proposing a novel attack model (BARBIERI et al., 2021);

ii) Experiments analyzing the rating patterns distribution of literature attack
models and the proposal;

iii) Experiments comparing our proposed model against literature attack models
in both memory-based and model-based algorithms;

iv) Experiments investigating the performance of data cleansing approaches
against shilling attacks in two different scenarios;

v) Experiments investigating the performance of label noise-robust algorithms in
the presence of malicious noise;

vi) Experiments comparing the performance of shilling attack detection techniques
when applied to literature attack models;

vii) Experiments comparing the performance of shilling attack detection techniques
when applied to attackers in a real-world dataset.

1.5 Document Structure

This work is structured as follows: In Chapter 2, we discuss the theoretical con-
cepts that will give a basis to understand this work, that is, recommender systems,
collaborative, shilling attack, machine learning, neural networks, and autoencoders;

4

In Chapter 3, we discuss the issues with current attack models, present our propo-
sition to use generative models to produce malicious profiles in the shilling attack
context, and evaluate it against well-known shilling attack models; In Chapter 4,
we present the concept of label noise, review some solutions proposed to deal with
this problem, and evaluate how they behave in the presence of malicious noise; In
Chapter 5, we present the most common classification of detection methods, some
classic and recent approaches to detect shilling attacks, and test them against well-
known attack models from the literature; Finally, in Chapter 6, we present our final
considerations and future research directions.

5

Chapter 2

Shilling Attacks in Collaborative
Filtering

This chapter provides a theoretical background on recommendation systems,
shilling attacks, machine learning, neural networks, and variational autoencoders.
This foundational knowledge is essential for a comprehensive understanding of our
proposal and the methodology used to validate it through experiments.

2.1 Recommender Systems

The emergence of recommendation systems dates from the beginning of the his-
tory of computing itself (EKSTRAND et al., 2011) when a system named Grundy
was proposed in 1979 (RICH, 1998). This system incorporates some concepts in-
trinsically linked with the recommendation as we know it today, modeling users
through a short interview and using pre-codified stereotypes of book preferences to
make recommendations.

Later, the first recommendation system arrived in the early 1990s, Tapestry
(GOLDBERG et al., 1992), an email system projected to deal with an excess of
online information. It allowed users to manually create filters to receive emails ac-
cording to their preferences. The relationship between the message and its response
was modeled using a concept known as collaborative filtering, which would later be
one of the main classes of recommender system algorithms.

The late 1990s showed a massive increase in the popularity of recommendation
systems, and commercial implementations began to emerge. Systems such as Ama-
zon.com1 began to use purchase history, browsing history, and currently browsed
items in order to make recommendations of new items to the user (EKSTRAND
et al., 2011). The field became more important over the years, with studies show-

1http://www.amazon.com

6

Table 2.1: Example of a user-item ratings matrix fragment for a movie recommender
system.

User Star Wars Harry Potter The Shining The Avengers
John Smith 5 3 ∅ 1
Jane Doe ∅ 4 5 4
Mary Sue 3 5 ∅ 5
Gary Stu 3 1 5 ∅

ing how recommender systems impacted positively item sales (ZHOU et al., 2010),
mainly on less popular products, such as technical books (CHEN et al., 2004).
Currently, besides Amazon.com, many other companies use recommendation as a
business differential, such as Netflix 2 and Youtube3.

Finally, in the mid-2000s, ADOMAVICIUS & TUZHILIN (2005) formally for-
mulated the recommendation problem as: Let U be the set of all users of the system,
and I be the set of all items that can be recommended in the system, such as books,
movies, or music. Let r be the utility function able to measure the usefulness of
item i to the user u, this is, r : U × I → R, where R represents the sorted set of user
preferences for each item present in I. In equation 2.1 we show it more formally.

∀u ∈ U, i′u = arg max
i∈ I

r(u, i). (2.1)

Each element of the user set U needs to contain at least a unique user ID for
identification purposes. However, it does not prevent the definition of a profile
containing more information, such as age, gender, and monthly income, among
others. Similarly, each element of the item set I should have a set of features with
a unique item ID as well.

Usually, in recommender systems, the utility of an item is represented by a rating,
which indicates the level of appreciation of a user for a particular item, e.g., a user
rated the movie “Star Wars” by a value of 4 (out of 5). The main problem is that the
utility function u is commonly not defined on the whole U × I space, but on some
subset of it, which means that the main task is to extrapolate it to the whole space
U × I. Table 2.1 shows an example of a user-item preference matrix fragment for a
movie recommendation system, where the rating scale varies between 1 and 5 and
the symbol ∅ represents that the user did not assign a rating to this particular item.
Therefore, the recommender system should be able to predict ratings for unassigned
user-item pairs and present its recommendations based on these predictions.

Predictions can be made through two different approaches, according to ADO-
MAVICIUS & TUZHILIN (2005): using heuristics to define and validate empirically

2http://www.netflix.com
3http://www.youtube.com

7

the utility function, or estimating the utility function through optimization of some
performance metric. Besides predicting user rantings, we have another common
problem discussed in recommender systems, which is the prediction of the system
items’ ranking for the users. In other words, one must provide a list of top-N rec-
ommendations to a given user in order of importance (HERLOCKER et al., 2004).

BURKE (2007) proposed a taxonomy presenting five different classes of recom-
mender systems. Later, RICCI et al. (2011) extended their work, proposing a new
class along with the previous five:

• Content-based: Learning is given by the recommendation of items similar
to those that users liked in the past; this is, using content information about
users and items.

• Collaborative Filtering: Learning is given based on the past preferences of
most similar users to the user in question.

• Demographic: A recommendation given by the demographic profile of each
user. In other words, the system assumes that people from the same demo-
graphic niche share similar tastes.

• Knowledge-based: Learning is given by domain-specific knowledge, which
tries to infer user preferences from a particular domain.

• Community-based: Models social relationships by recommending items
based on user friend preferences.

• Hybrid Recommender Systems: Learning given by combinations between
classes listed above, e.g., a system mixing concepts of collaborative filtering
and content-based.

In the next subsection, we will present collaborative filtering and some of your
main algorithms.

2.1.1 Collaborative Filtering

Collaborative filtering is a class of recommendation algorithms that mimics a
concept used by humans for centuries: searching for other people’s opinions for
recommendations that will help in their own decision-making process regarding an
item. SCHAFER et al. (2007) described collaborative filtering as the process of
filtering or evaluating items using opinions provided by others.

For example, if John has sufficient acquaintances who like a particular product,
John must be inclined to consume it, and, if his acquaintances dislike it, John may

8

be influenced by them to not consume it. Another important point is that people
have different tastes, so John will receive different feedback from his acquaintances
about items, that may interest him or not. Thus, John will realize which people
have similar tastes to him, which do not, and which may have mixed tastes between
what John likes and what he does not like; hence he will learn who he must seek to
get recommendations that will satisfy his tastes.

In other words, using a more formal approach, the utility function r(u, i) of an
item i for a user u is estimated based on the utilities r(uj, i) assigned to the same
item i by all users uj ∈ U who are most similar to the user u (ADOMAVICIUS &
TUZHILIN, 2005).

Collaborative filtering algorithms provide some advantages over other ap-
proaches. Unlike content-based recommendation, this class of algorithms did not
require any additional information about users or items to perform its recommenda-
tions, making its recommendation quality not compromised by the lack of data. This
particular property leads to another remarkable advantage over other content-based
recommendations, that is, providing unexpected recommendations and avoiding ob-
vious indications. This concept is known as serendipity (GE et al., 2010).

Despite its advantages, collaborative filtering still suffers from some issues and
provides some research challenges. One of the main issues is the user-item matrix
sparsity, since the recommendation systems’ datasets are usually large, but with
very few evaluations per user. SARWAR et al. (2001) estimates that users rated
only 1% of the items presented in the system.

Another drawback regarding sparsity is a common problem named cold-start.
This issue refers to a new user in the system who still has not provided evalua-
tions for any item, or a new item that has not received any evaluations yet. Since
there is no information regarding the preferences of this user, it is difficult to make
recommendations to him in this scenario (SCHEIN et al., 2002).

There are some challenges regarding the performance of the systems, called scal-
ability. As more users and items are included in the system, the computational cost
grows as well. That said, a recommendation system with many users and items may
suffer great scalability issues (SARWAR et al., 2001).

It is also important to note that recommendation systems are prone to shilling
attacks, and as a subclass of it, collaborative filtering is not different. Malicious
people or organizations can decide to inject numerous malicious profiles into a system
in order to promote their products or degrade a competitor’s product (GUNES et al.,
2012).

There are several approaches in the literature to address the recommendation
problem within the scope of the collaborative filtering class of algorithms. These
approaches are commonly divided into two categories: memory-based and model-

9

based algorithms (ADOMAVICIUS & TUZHILIN, 2005).

Memory-based

Memory-based algorithms, also known as neighborhood-based, are heuristics
used to make predictions for a user u based on the collection of his closest neighbors’
previous ratings. In other words, the unknown rating value r̂u,i, which represents
the value that a user u would give to an item i, will be computed as an aggregation
of the most similar user’s ratings for item i or an aggregation over the most similar
users (ADOMAVICIUS & TUZHILIN, 2005)

Equation 2.2 shows how the prediction is made, where the k nearest neighbors
of user u are denoted by Ni(u). The unknown rating r̂u,i is then predicted by the
average rating given to i by these neighbors. Note that this equation does not take
into equation different similarity levels that neighbors have with user u, an issue
that can be solved using a weighted average rather than a simple average (RICCI
et al., 2011).

r̂ui =
1

|Ni(u)|
∑

v∈Ni(u)

rvi (2.2)

There are two variants of memory-based collaborative filtering methods: user-
based and item-based. In the user-based variant, the system uses the most similar
users to a user u to calculate the user rating prediction for an item i. Similarly,
for the item-based variant, the system uses the most similar items to an i item to
predict a user’s u preference for this same item.

Equation 2.3 shows how the prediction is calculated for the used-based case. Let
wuv be the similarity between two users u and v, let Ni(u) be the set of k most
similar users to the user u and considering that item i has already been rated by a
set of users previously, the recommendation is the weighted average of the ratings
given by the most similar users to the user u that rated the item i.

r̂ui =

∑
v∈Ni(u)

wuvrvi∑
v∈Ni(u)

|wuv|
(2.3)

Similarly, equation 2.4 shows how the prediction is calculated for the item-based
case. Let wij be the similarity between two items i and j, and let Nu(i) be the set
of k most similar items to the item i that have been rated by user u previously,
the recommendation is the weighted average of the ratings given to the items most
similar to item i.

r̂ui =

∑
j∈Nu(i)

wijruj∑
j∈Nu(i)

|wuj|
(2.4)

10

Different users may have different approaches to evaluating items, i.e., each user
introduces a personal bias when evaluating every item. However, equations 2.3 and
2.4 does not consider this bias when making predictions. In order to solve this
issue, each neighbor rating must be converted to a normalized value according to
some normalization form. The most common normalization form reported in the
literature is mean centering (RICCI et al., 2011), which seeks to determine if the
rating is positive or negative with respect to the nearest neighbors’ average rating set,
making the algorithm predict the deviation instead of the rating itself. Equations 2.5
for the user-based and 2.6 for the item-based shows how the prediction is computed
using this solution.

r̂ui = r̄u +

∑
v∈ηi(u) wuv(rvi − r̄u)∑

v∈ηi(u) |wuv|
(2.5) r̂ui = r̄i +

∑
j∈ηu(i) wij(ruj − r̄j)∑

j∈ηu(i) |wuj|
(2.6)

A critical step in building a memory-based recommendation system is the chosen
similarity metric. The metric has a significant impact on the quality of the recom-
mendations delivered by the system and its performance, as it will be responsible
for the selection of the more reliable neighbors (RICCI et al., 2011). A similarity
measure sim(u, v) between a user u and another user v is commonly a distance
metric used as a weight in the weighted average during the recommendation pro-
cess. This measure is usually calculated using only rating values rated in common
between the pair of items or users (ADOMAVICIUS & TUZHILIN, 2005). Among
the most common measures for this task, we highlight cosine similarity and pearson
correlation (RICCI et al., 2011).

Cosine is an angle between two vectors and can be interpreted as a similarity
measure between two objects in a vectorial space. In the recommendation scenario,
these two objects consist of a representation in the form of two rating vectors x and
x. Equation 2.7 shows how the similarity is computed between these two vectors
using cosine.

sim(x, y) = cos(x⃗, y⃗) =
x⃗ • y⃗

∥x⃗∥ × ∥y⃗∥
=

∑
s∈ rxy

rxs rys√∑
s∈Sxy

r2xs

√∑
s∈Sxy

r2ys

, (2.7)

Despite this usefulness, cosine similarity does not take into account differences
between each rating average and variance, needing an additional normalization for
that. These undesirable effects are not present in the Pearson correlation, given by
equation 2.8.

11

sim(x, y) =

∑
s∈Sxy

(rxs − r̄x) (rys − r̄y)√∑
s∈Sxy

(rxs − r̄x)2
∑

s∈Sxy
(rys − r̄y)2

(2.8)

Model-based

Model-based algorithms use the evaluation set to learn a model that can be used
to predict the rating that a user u would give to an item i. Usually, machine learning,
data mining, dimensionally reduction and many other techniques are applied to
reach that goal and improve performance beyond regular memory-based methods
achieved.

One of the most recognized model-based techniques was proposed by FUNK
(2011) during the Netflix Prize, a competition hosted in 2006 by Netflix4 with the aim
of improving the state-of-the-art Recommendation Systems. This model relied on
a concept named latent factors, which assumes that there is some latent knowledge
within the user-item matrix that can be extracted in order to explain the user
relationship with the system items. For instance, items’ latent factors, in a movie
recommendation system context, can explain whether a certain movie is geared
towards male or female spectators, or whether characters are better constructed or
not. In contrast, users’ latent factors in the same context may measure how a user
identifies herself with the corresponding latent factor characteristic (KOREN et al.,
2009). Figure 2.1 illustrates this concept.

Funk’s proposal is one of the first in a class of techniques known as matrix fac-
torization. His method was later named Regularized Singular Value Decomposition
by PATEREK (2007). It consists of associating a latent variable vector qi ∈ Rf to
each item i and, in the same way, associating a latent variable vector pu ∈ Rf to
each user u. Vectors initialization is given by Singular Value Decomposition (SVD)
dimensionally reduction technique, where the user-item matrix m×n is decomposed
in PSQT , being that P is m ×m, i.e., latent factors’ matrix of users, Q is n × n,
i.e., latent factors’ matrix of items, and S the singular values m× n.

Therefore, rating prediction may be performed according to equation 2.9, where
qi and pj are the K-dimensional latent factors’ vectors and the dot product qTi pu

between latent factors of user u and item i predicts the rating that user u would
give to item i.

r̂ui = qTi pu (2.9)

The cost function proposed in order to perform training for the model is the
squared error between its prediction and the actual rating value. Equation 2.10

4http://www.netflix.com

12

Male orientedFemale oriented

Serious

Funny

Jane

Gary

John

Mary

The Avengers

Star Wars

The Shining

Harry Potter

Figure 2.1: Illustration based on latent variables interpretation in a movie dataset
context (KOREN et al., 2009).

shows the function that should be minimized during the learning step, where λ is a
regularization constant used to prevent overfitting.

min
q∗,p∗

∑
(u,i)∈K

(rui − qTi pu)
2 + λ(||qi||2 + ||pu||2) (2.10)

The model may be trained using a stochastic gradient descent algorithm, i.e.,
iterating over the training set ratings rui and calculating the error with respect to
the predicted rating r′ui. Equation 2.11 illustrates how it works.

eiu = riu − r̂iu (2.11)

Parameters qi and pu are adjusted for each training example according to the
equations 2.12 and 2.13, where γ is the learning rate, which controls the size of the
step for each iteration during optimization.

qik+ = γ(eiupuk − λqik) (2.12)

puk+ = γ(eiuqik − λpuk) (2.13)

Following this work, the widespread adoption of latent factor models led to the
development of various enhancements that built upon the initial proposals made by
Funk (KOREN et al., 2009; PATEREK, 2007; TAKÁCS et al., 2008). For instance,
PATEREK (2007) proposed adding user and item biases to the cost function of

13

the model, naming it Improved Regularized Singular Value Decomposition. This
approach explores biases in recommender systems that are independent of the in-
teractions within the system itself, e.g., an item with a good critical reception may
receive higher ratings from users, while some users may be more or less critical, etc.

Given this rationale, the system aims to determine the portion of the values of
qTi pu that can be explained by user or item biases relative to the global average
rating µ. This process is illustrated in equation 2.14, where bu and bi represent the
biases associated with the user and the item, respectively.

bui = µ+ bu + bi (2.14)

As an example, suppose a movie recommender system needs to predict the rating
that a user named Jane would give to the movie Wonder Woman. Assume the global
average rating µ is 3.5 stars. Since Wonder Woman is a well-received movie, it tends
to be rated 0.3 stars above the average. Jane is a rather uncritical user who generally
rates movies 0.5 stars above the average. Thus, the predicted rating Jane would give
to Wonder Woman is 4.3 stars (3.5 + 0.3 + 0.5). Therefore, equation 2.9 is extended
to equation 2.15 by incorporating information about user and item biases.

r̂ui = µ+ bu + bi + qTi pu (2.15)

With the addition of the new parameters to the model, the updated cost function
is given by:

argmin
b∗,q∗,p∗

∑
(u,i,r)∈R

(rui − µ− bu − bi − qTi pu)
2 + λ(µ+ bu + bi + ||qi||2 + ||pu||2). (2.16)

The cost is also optimized using gradient descent in the same manner proposed by
FUNK (2006). Accordingly, the parameters are updated as follows:

bi+ = γ(eui − λbi) (2.17)

bu+ = γ(eui − λbu) (2.18)

qi+ = γ(euipu − λqi) (2.19)

pu+ = γ(euiqi − λpu) (2.20)

More recetly, artificial neural networks have been successfully applied in collab-
orative filtering to model the interaction between users and items. One of the most
widely used models is Neural Collaborative Filtering, proposed by HE et al. (2017),
which is a framework that aims to capture the non-linear relationship between these
two entities. This work proposed two models, as well as a combined model that in-

14

tegrates both, providing the last neural network layer with more information about
the relationship between a user and an item.

The first model is a general form of Neural Collaborative Filtering that uses a
multilayer perceptron to learn the non-linear relationship between two vectors, each
representing a user u and an item i. The unique identifiers of the user and item are
used as input features in the input layer, where they are transformed into sparse
binary vectors and encoded. Following this layer, there is an embedding layer for
each vector, fully connected to the sparse layer, which represents the latent variables
of the user and item. These embedding layers are then fed into a multi-layer neural
network, which maps the latent variables to predicted ratings. This model can be
seem in Figure 2.2.

Layer X

……

Layer 2

Layer 3

Output Layer

Neural CF Layers

User Latent Vector

0 0 0 1 0 0 ……

Item Latent Vector

0 0 0 0 1 0 ……

Embedding Layer

Input Layer (Sparse)

Training
Score Target

Figure 2.2: Multilayer Perceptron of Neural Collaboraive Filtering (HE et al., 2017).

MLP Layer X

……

MLP Layer 2

MLP Layer 3

ReLU

MF User Vector

0 0 0 1 0 0 ……

Concatenation

User (u)

Training
Score Target

NeuMF Layer X

GMF Layer

MLP User Vector MF Item Vector

0 0 0 0 1 0 ……

MLP Item Vector

ReLU
Element-wise

Product

Concatenation

Log loss

Item (i)

Figure 2.3: Fused model of Neural Collaboraive Filtering (HE et al., 2017).

The second model is a different instantiation of the framework that emulates
matrix factorization techniques, termed Generalized Matrix Factorization by the

15

authors. In this method, the two embedding layers are combined through element-
wise multiplication to generate a new vector, which is subsequently fed into a neural
network for further processing. This model and the fused model are presented in
Figure 2.3.

2.1.2 Datasets

Several datasets have been used for collaborative filtering research over the
years. Among them, the MovieLens 100k dataset, collected from the MovieLens5

(HARPER & KONSTAN, 2015) online recommender system, is one of the most
common. It is composed of a total of 100,000 ratings given by 943 users to 1682
movies and the ratings are integers varying from 1 to 5. Besides the ratings, there is
additional information regarding users, e.g., age and gender, and movies, e.g., title
and release date, which are usually discarded to not mischaracterize collaborative
filtering context in the proposal.

It should be noted that this data has been cleaned up, removing users who rated
less than twenty movies or did not have complete demographic information. Another
important fact is that in the MovieLens system, users are required to rate at least
fifteen movies at registration; that is, the rating is given after item consumption. In
Figure 2.4, MovieLens 100k histogram.

1 2 3 4 5

1

2

3

·104

Rating

Q
ua

nt
ity

Figure 2.4: The MovieLens 100k dataset histogram.

Another common dataset is the R3 Yahoo! Music ratings for User Selected and
Randomly Selected songs, version 1.0, available through Yahoo! Webscope data
sharing program6. This dataset was collected from two different sources: normal

5https://movielens.org/
6http://research.yahoo.com/Academic_Relations

16

interaction with Yahoo! Music services and randomly chosen songs for a survey
conducted by Yahoo! Research, which consists of 365,704 ratings given by 15400
users to 1000 songs, with the ratings varying between 1 and 5. In Figure 2.5, R3
Yahoo! Music histogram.

1 2 3 4 5

0.6

0.8

1

1.2

·105

Rating

Q
ua

nt
ity

Figure 2.5: The Yahoo! Music dataset histogram.

Additionally, in an e-commerce context, there is the Amazon review dataset
(XU et al., 2013), a dataset crawled from Amazon.cn until August 2012. This
data is composed of 1,205,125 ratings from 645,072 users on 136,785 items. The
distinguishing feature of this dataset is that it labels users as either attackers or
genuine users. Labeled data consists of 60,000 ratings from 4,902 users on 21,394
items, with ratings ranging from 1 to 5. In Figure 2.6, we can see the Amazon review
histogram.

17

1 2 3 4 5

0

1

2

3

·104

Rating

Q
ua

nt
ity

Figure 2.6: The Amazon review dataset histogram.

2.2 Shilling Attack

Collaborative filtering proposals avoid the use of additional information about
users or items, which makes this class of algorithms very dependent on data quality
in order to provide good recommendations to its users (GUNES et al., 2012). Since
we have this clear dependency, it is not unrealistic to state that a system based
on collaborative filtering may be vulnerable to some kind of attacks. In the past
two decades, various studies have emerged to analyze different aspects of attacks
in recommender systems, making the interest on this topic grow and become more
relevant (BHAUMIK et al., 2006; MOBASHER et al., 2007a; BURKE et al., 2011).

With a wide range of products available in e-commerce stores, it’s natural for
companies to want their products to be more often recommended to potential buyers
than their rival ones. However, while some companies seek to improve their prod-
ucts to reach their goals, others may go for a more dishonest decision. That said,
malicious users or companies may develop and insert malicious profiles into a system
in order to manipulate its recommendations and promote their product, demote a
rival product, or just create chaos within the system. These attacks are known as
shilling attacks (LAM & RIEDL, 2004), and are performed by the injection of fake
profiles with similar rating patterns to the users of the real system. These attacks
vary among different approaches, intents, and information required from the system
itself. There are also adversarial attacks, which focus on manipulating the data sta-
tionary assumption by learning and injecting additive perturbations into the system,
changing its recommendations in the process (ANELLI et al., 2022).

Therefore, it is important to handle shilling attacks in order to achieve the success
of collaborative filtering schemes. In the next subsection, we will present attack

18

intents, the general form of a malicious profile, and the main literature on classic
attack models.

2.2.1 Shilling Attack Types

Shilling attack models are, usually, classified according to two dimensions: attack
intent and the amount of knowledge necessary to perform the attack (MOBASHER
et al., 2007a). According to GUNES et al. (2012), attacks can also be classified
by rating types, application, and collaborative filtering algorithms, while LAM &
RIEDL (2004) uses three more different dimensions beyond the two previously men-
tioned: targets, cost, algorithm dependence, and detectability. However, we will
primarily focus on the MOBASHER et al. (2007a) categorization since it is the
most used in the literature.

Despite attack goals being related to the manipulation of the recommendation
results of a system, different attacks may have different intentions behind them. The
most common intents of an attack model are push and nuke (LAM & RIEDL, 2004).
Push attacks refer to these attacks that seek to push an item to be recommended to
more users inside the system, i.e., increase this particular item’s popularity, while
nuke attacks refer to attack models that seek to make an item to be recommended
to fewer users, i.e., decrease this particular item’s popularity (MOBASHER et al.,
2007b).

According to the amount of knowledge needed to mount the attack, ap-
proaches may be classified as a low-knowledge attack, a high-knowledge attack,
and an informed attack. Low-knowledge indicates that the attack requires system-
independent knowledge, i.e., knowledge that might be acquired from public sources,
while high-knowledge requires much more detailed information regarding the system
and its rating distribution (MOBASHER et al., 2007b). Lastly, informed attacks
require the most information possible regarding the system, needing high amounts
of domain knowledge in order to mount an effective attack (BURKE et al., 2011).
Commercial recommender systems often make specific information regarding their
ratings database available to the user, such as the average rating of an item. The
more information available to mount the attack, the more likely the attack will be
to succeed.

2.2.2 Mounting Attacks

Generally, a shilling attack is performed by the injection of malicious profiles into
a system in order to mislead it and achieve its intent. According to GUNES et al.
(2012), this can be done by malicious users or companies acting as authentic users,
creating multiple fake profiles on the recommender system she wants to attack, and

19

sending the fake information to its database. Each attack profile contains biased
user preferences about items and is denoted by a vector. The number of malicious
profiles injected is denoted as a proportion of the number of profiles in the system
before an attack, e.g., if the system contains 1,000 user profiles, an attack of 1% will
be composed of 10 malicious profiles (MOBASHER et al., 2007a). Figure 2.7 shows a
general form of an attack profile, which consists of four sets of items: selected items,
filler items, unrated items, and target item (BHAUMIK et al., 2006; MOBASHER
et al., 2007a).

... ...

null

...

null null

Rating for k
selected items

Rating for l
filler items

Unrated items in
the attack profile

Rating for
the target item

Figure 2.7: A general form of an attack profile (GUNES et al., 2012).

Selected Items

This set IS is responsible for forming the characteristics of the attack. Frequently,
the items contained in it are selected carefully to make the malicious profile similar
to the real profiles the attacker wants to mislead. Its ratings are assigned using a
rating function δ.

Filler Items

This set IF obstructs the detection of the attack by preventing the profile from
containing only the items used to characterize it. Usually, the items contained in
it are selected randomly and their ratings are assigned using a rating function θ.
Filler item set size can be considered a parameter and is commonly reported as a
proportion over the size of I, i.e., the total number of items (MOBASHER et al.,
2007a).

Unrated Items

This set I∅ represents the remaining items in the system, that are left unrated
in the malicious profiles crafted.

20

Target Item

Normally, a single target item it is chosen, i.e., the item that the attacker wants to
nuke or push, and its ratings are assigned using a rating function Υ. Recently, some
works proposing multiple target items emerged as well (SEMINARIO & WILSON,
2014a).

2.2.3 Attack Models

Several attack models have been proposed over the years, and almost all of them
rely on simple heuristics to mount their attacks. Most of them can be classified as
low-knowledge attacks in the amount of knowledge dimension, despite a few more
effective as a whole being classified as high-knowledge attacks. Regarding intent,
some attacks are tailored to be used only for push or nuke attacks. However, others
can actually be used for both intents. Table 2.2 shows attack models classified
according to intent and required knowledge.

Table 2.2: Attack models classified according to intent.

Attack model Intent Knowledge
Push Nuke Low High

Random ✓ ✓ ✓
Average ✓ ✓ ✓
Bandwagon ✓ ✓
Segment ✓ ✓

Below we will present the most common attack models used in the literature:
random attack, average attack, bandwagon attack, and segment attack.

• Random: Also known as RandomBot attack (LAM & RIEDL, 2004), this at-
tack model is easy to implement, despite not being very effective (MOBASHER
et al., 2007a,b). Attacks crafted using this model randomly choose filler items
around the system’s overall mean and assign rmax or rmin, depending on the
intent, push, or nuke, respectively, to the target item.

• Average: Also known as AverageBot attack (LAM & RIEDL, 2004), this at-
tack required high-level knowledge, such as, all system items mean and stan-
dard deviation, in order to be implemented (MOBASHER et al., 2007b). Using
this model, attacks can be crafted by randomly choosing filler items around
the item mean and assigning rmax or rmin, depending on the intent, push, or
nuke respectively, to the target item.

21

• Bandwagon: This low-knowledge attack model aims to increase the similarity
between fake profiles and the real ones through well-known popular items
(O’MAHONY et al., 2005). That said, the selected item set for its model is
filled with popular items with rmax as the assigned rating value; the filler item
set is filled with randomly chosen items around the system’s overall mean, and
the the target item is set to rmax since it is a push-only attack model.

• Segment: Also known as segmented attack, it aims to target a particular
group of users that would be likely to buy a particular niche product. The
selected items set is filled with high ratings on items that this group of users
would like while the filler items set is filled with randomly chosen items with
low rating values. The target item is set to rmax since it is a push-only attack
model.

Table 2.3 shows a summary of the attack models presented in this section.

Table 2.3: Attack models summary.

Attack model IS IF I∅ it
Items Rating Items Rating

Random Not used Random System mean I − IF rmax / rmin

Average Not used Random Item mean I − IF rmax / rmin

Bandwagon Popular items rmax Random System mean I − {IF ∪ IS} rmax

Segment Segment items rmax Random rmin I − {IF ∪ IS} rmax

2.2.4 Metrics

To evaluate the performance of attack models, several metrics have been used
over the years. The most commonly employed in this area are three key robust-
ness metrics: Prediction shift, hit ratio, and average rank (BURKE et al., 2011;
SEMINARIO & WILSON, 2014b).

Consider UT as a set of users in the test data and IT as a set of items in the
same data. Prediction shift is denoted by:

∆u,i = p′u,i − pu,i, (2.21)

such that p and p′ are the pre-and-post-attack predicted ratings, respectively, for
each user u and item i pair (u, i). We can compute the average prediction shift for
an item i over all users, as shown:

∆i =
∑
u∈UT

∆u,i/|UT |, (2.22)

22

and for all items tested, as shown:

∆̄ =
∑
i∈IT

∆i/|IT |. (2.23)

This metric denotes the difference between the model before and after an attack,
e.g., in push attacks, if the value is positive, it means that the attack was successful
and the item is more positively rated (BURKE et al., 2011).

Despite being a good indicator of the attack effect on an item prediction, pre-
diction shift will not give any information regarding performance in the recommen-
dation list. To get an insight into it, another metric can be used: Hit Ratio. Let Ru

be the top-N recommendation list for a user u and i be the target item, Hit Ratio
(HR) is denoted by equation 2.24, where Hui is a scoring function that returns 1 if
i appeared in Ru for user u, and 0 otherwise.

HRi =
∑
u∈UT

Hui/|UT | (2.24)

Usually, it is computed as the Average Hit Ratio (HR), which is the sum of the
hit ratio after an attack for every target item i averaged over the number of target
items selected. Equation 2.25 shows how it is computed.

HR =
∑
i∈IT

HRi/|IT | (2.25)

Higher values of Hit Ratio, i.e., close to 1, indicate that our target item is on
the recommendation list of many users in the test set, while low values, e.g., close
to 0, indicate that our target item is on the recommendation list of only a few users
in the test set. Push attacks aim to achieve higher values of Hit Ratio, while nuke
attacks target lower values of this same metric.

More recently, the target item Rank in the recommendation list after an attack
began to be used as a robustness metric (SEMINARIO & WILSON, 2014b). The
Average Rank is the sum of each target item’s rank averaged over the number of
target items selected.

2.3 Artificial Neural Networks

Artificial neural networks are a learning model inspired mainly by the observation
of the human biological learning model. It consists of interconnected units, namely
neurons, where each neuron’s output is the direct input of another neuron.

The origins of this model date to the early 1940s, when MCCULLOCH & PITTS
(1943) were the first that tried to model an artificial neuron. However, the first

23

successful model came with ROSENBLATT (1958), which modeled a simple artificial
neuron for binary classification problems. In Figure 2.8, we show an example of this
model, named Perceptron.

I1

I2

I3

O1

Input
layer

Output
layer

Figure 2.8: An example of a perceptron.

The Perceptron model consists of receiving a vector of real-valued inputs x1

to xn, calculating a linear combination of these input vectors. Therefore, if the
resulting value is above a certain threshold, the output o(x1, ..., xn) will be 1 and
−1 otherwise. Equation 2.26 illustrates that process, where weights wi determine
the input xi contribution level to the output value.

o(x1, ..., xn) =

{
1 if w0 + w1x1 + w2x2 + ...+ wnxn > 0

−1 otherwise
(2.26)

Usually, we can simplify equation 2.26 by adding a constant input x0 = 1, called
bias, allowing us to write this equation as

∑n
i=0 wixi > 0, or in a vectorized form

w⃗.x⃗ > 0 (MITCHELL, 1997). The activation function is then written as:

o(x⃗) = sgn(w⃗.x⃗),

where

sgn(y) =

{
1 if y > 0

−1 otherwise.

The perceptron model is trained by choosing values for weights w0, ..., wn. Many
ways may be used to achieve that goal, MITCHELL (1997) highlights initialization
of weights by random values and iterating over the training set modifying weights
each time one training example is missclassified. Equations 2.27 and 2.27 shows this
process, where t is the actual value for the training example output, o is the output
value predicted for the same example, and γ is the learning rate that controls the
size of the step for each iteration during the training process.

24

∆ wi = γ(t− o)xi (2.27)

wi ← wi +∆ wi (2.28)

As previously stated, a perceptron model is unable to perform well enough on
non-linear data, since it is designed to approximate only linearly separable functions.
Despite this, if we use multiple neurons, interconnecting them, we may learn more
complex functions. Figure 2.9 shows an example of a multilayer neural network, also
known as a multilayer perceptron.

I1

I2

I3

I4

H1

H2

H3

H4

O1

Input
layer

Hidden
layer

Output
layer

Figure 2.9: An example of multilayer artificial neural network.

Besides adding neurons to create a more complex architecture, it is important
to use a non-linear activation function since the activation function used by the
perceptron would still only be able to approximate linear functions independently
of the network architecture. That said, we could use a non-linear function such as
sigmoid, as shown in equation 2.29.

f(z) =
1

1 + exp(−z)
(2.29)

The training algorithm is also modified to perform a more efficient approximation
of non-linear functions. The most popular algorithm used, namely Backpropagation,
minimizes the cost function by computing the gradient of it for each weight and
updating it (MITCHELL, 1997). Several gradient descent types can be used, such as
Adam (KINGMA & BA, 2014), and Root Mean Square Prop (RMSProp) (GRAVES,
2013), among others.

Artificial neural networks need to rely on regularization techniques in order to
avoid overfitting. One of these techniques is dropout, which consists in dropping out
random neurons from a neural network to deal with that issue. During the training

25

phase, each neuron from the network is retained or dropped with a fixed probability
p independently of the other neurons. In general, p is set in 0.5 to be close to
the optimal value associated with a wide range of applications of the network for
different tasks. Thus, during the test time the neuron dropped is always present,
and the weights are multiplied by the probability p (SRIVASTAVA et al., 2014).

2.3.1 Convolutional Networks

Fully connected architectures may be sufficient for some problems; however, the
topology of the input is ignored. Convolutional Neural Networks address this prob-
lem for data, such as images, that have a strong 2D local structure, allowing the
network to extract and combine these features (LECUN & BENGIO, 1998). De-
spite being initially most applied to image problems, convolutional neural networks
are currently being used in diverse areas such as Speech Processing (PALAZ et al.,
2013) and Natural Language Processing (KIM, 2014).

Convolutional networks are very similar to the regular multilayer perceptron
in their general structure. However, their layers are slightly different from their
interconnected counterparts. There are various proposed architectures, but most
of them rely on three types of layers: convolutional, pooling, and standard fully
interconnected.

A convolutional layer consists of several convolutional kernels used to compute
different feature maps, this process is done by the convolution of all spatial locations
of the input with the learned kernel and applying a non-linear activation function.
Equation 2.30 shows how to calculate feature value at (i, j) in the feature map k of
the l-th layer (GU et al., 2018), where wl

k are the vector of weights, blk is the bias
term for filter k of layer l and x is the input on location (i, j) of layer l.

zli,j,k = wlT

k xl
i,j + blk (2.30)

Figure 2.10 shows how convolution works using a 3× 3 kernel applied to a 5× 5

input padded with a 1× 1 border of zeros using 2× 2 strides. Note that strides can
be seen as a form of subsampling and padding allows this kernel to be applied to
the wedges of the data (DUMOULIN & VISIN, 2016).

Besides convolutional, we could also have a deconvolutional layer or transposed
convolution layer, which works like a backward pass of the convolutional layer. Thus,
it associates a single activation with multiple output activations, upsampling the
input by a factor of the stride value with padding before performing the convolution
on it (GU et al., 2018).

Being a(.) the non-linear activation function, we can compute the activation of
value ali,j,k of the obtained convolutional feature zli,j,k by equation 2.31.

26

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

0 1 2

2 2 0

0 1 2

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

6.0 17.0 3.0

8.0 17.0 13.0

6.0 4.0 4.0

0 0 0 0 0 0 0

0 3 3 2 1 0 0

0 0 0 1 3 1 0

0 3 1 2 2 3 0

0 2 0 0 2 2 0

0 2 0 0 0 1 0

0 0 0 0 0 0 0

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

0 1 2

2 2 0

0 1 2

Figure 2.10: Example of convolution using 3 × 3 kernel applied to a 5 × 5 input
padded with a 1 × 1 border of zeros using 2 × 2 strides (DUMOULIN & VISIN,
2016). Note that the white area around the original data (blue) is the padding
added in order to apply the kernel (gray) using 2× 2 strides.

ali,j,k = a(zli,j,k) (2.31)

The regular sigmoid function can be used as an activation function for convo-
lutional neural networks; however, as the number of layers increases, this function
suffers from a saturation problem, where the gradient starts to get close to zero (LE-
CUN et al., 2012). Thus, currently, the most used functions include rectified linear
unit (ReLU) and leaky rectified linear unit (Leaky ReLU) (MAAS et al., 2013) which
are computed faster and do not suffer from this problem. Equations 2.32 and 2.33
show these functions applied to a convolutional network.

ali,j,k = max(zli,j,k, 0) (2.32)

ali,j,k = max(zli,j,k, 0) + λmin(zli,j,k, 0) (2.33)

Between two convolutional layers, pooling layers are commonly used to reduce
the resolution of feature maps in order to achieve shift-invariance. Equation 2.34
shows how it works, where pool is the pooling function, Rij is the local neighborhood

27

around the location (i, j).

yli,j,k = pool(ali,j,k),∀(m,n) ∈ Rij (2.34)

On top of a stack of these layers, it is usually placed an interconnected layer and,
afterward, the output layer, just like a regular neural network (GU et al., 2018).

2.3.2 Autoencoders

Autoencoders are neural networks where x(i) = y(i), which means that training
examples and labels are the same. This type of network is trained in an unsupervised
way in order to learn a latent representation of the data fed to it. Figure 2.11 shows
an example of an Autoencoder with one hidden layer, where the leftmost layer is
the input layer, the center layer is the hidden layer, and the rightmost layer is the
output layer.

I1

I2

I3

I4

I5

I6

H1

H2

H3

O1

O2

O3

O4

O5

O6

Input
layer

Hidden
layer

Output
layer

Figure 2.11: An example of the autoencoder.

More formally, an autoencoder may be seen as a non-linear generalization of
Principal Component Analysis (PCA). It consists of a multilayer encoder capable of
transforming high dimensional data into low dimensional code, and a decoder, with
aims to reconstruct the original data from the code, ultimately learning the iden-
tity function (HINTON & SALAKHUTDINOV, 2006). The smaller representation
learned from data can be seen as latent variables.

28

The encoder layer consists in

y = fθ(x) = s(Wx+ b).

Parametrized by θ = W.b, where W is its d′ × d weight matrix and b is its bias
unit. The decoder layer can be expressed by

z = gθ(y) = s(W ′y + b′).

Similarly, parametrized by θ = W ′.b′.
The parameters of the model can be optimized by minimizing the average re-

construction error through the backpropagation algorithm, like in a regular neural
network:

θ∗, θ′∗ = argmin
θ,θ′

=
1

n

n∑
i=1

(
x(i), z(i)

)

= argmin
θ,θ′

=
1

n

n∑
i=1

(
x(i), gθ′(fθ(x

(i)))
)

where L is the cost function such as squared error, as show in equation 2.35, or
cross entropy cost, as shown in equation 2.36 (VINCENT et al., 2008).

L(x, z) = ||x− z||2 (2.35)

L(x, z) = −
d∑

k=1

[xk log zk + (1− xk) log(1− zk)] (2.36)

2.3.3 Variational Autoencoders

A standard autoencoder can efficiently learn a smaller representation of the input
data and reconstruct it. However, it is very limited when it comes to generating
new data since each entry in the original data is mapped to a single data point in
the latent space. A variational autoencoder (KINGMA & WELLING, 2013) is a
generative model designed to overcome this drawback, allowing a sampling process
directly from its learned distribution without the need to use Markov chain Monte
Carlo methods as performed in (BENGIO et al., 2013).

Although the mathematical reasoning behind variational autoencoders is slightly
different from regular ones, it can be viewed as such, since it is also composed of
an encoder and a decoder. Its encoder, however, is modified to output a vector of
means µ and a vector of standard deviations σ rather than an encoding vector like its
standard counterpart. Figure 2.12 shows an example of a variational autoencoder.

29

�

�

Encoder Decoder

Sampling
from distributions

Figure 2.12: An example of variational autoencoder. Note that the encoder defines
the latent distributions µ and σ, while the decoder samples from them instead of
reconstructing the code like a regular one.

Another important difference lies in the cost function. Besides the regular cost
present in the standard autoencoder consisting of the reconstruction error, varia-
tional autoencoder, in order to regularize the latent space and be able to generate
meaningful new data, incorporates a new term named Kullback–Leibler divergence
(KL divergence), which is, intuitively, a standard measure of how a distribution
diverges from another (KULLBACK & LEIBLER, 1951). Equation 2.37 shows the
variational autoencoder cost function.

L(Θ, ϕ) = −Ez∼qϕ(z|xi)[logpΘ(xi | z)] +KL(qΘ(z | xi) | p(z)) (2.37)

The first term represents the reconstruction error, which encourages the encoder
to accurately reconstruct the original data. The second term is the KL divergence,
which measures the distance between encoder output qΘ(z | xi) and a given p(z)

distribution. Please note that large values of this term may indicate strong reg-
ularization effects, which may be undesirable (HOFFMAN & JOHNSON, 2016).
Typically, the Gaussian distribution is chosen as p(z).

KL divergence is used to ensure the regularity of the latent space by making sure
that, once decoded, every data point may be meaningful (HOFFMAN & JOHNSON,
2016). Let u and v be users of a system. It is possible to assume that u likes horror
movies, while v likes thrillers based on their ratings. Without KL divergence as
a regularization term, these two users may be mapped into two completely distant
probability distributions, and then, if a data point is sampled in latent space between
these two distributions, we may end up with a meaningless user after decoding, since
both distributions would be too apart from each other. Therefore, KL divergence
stimulates the returned distributions to overlap in the latent space, making them

30

closer to each other in order to address these cases and make sure that meaningful
data can be sampled thereafter. This process is carried out by feeding the decoder
with a new vector sampled from the latent space, which is then mapped to the same
format as the data used to train the model, thereby mimicking the source data.

2.3.4 Generative Adversarial Networks

Generative adversarial networks (GAN) (GOODFELLOW et al., 2014) are a
type of generative model based on an adversarial process, where two neural net-
works, called the generator and the discriminator, are trained simultaneously. The
generator network creates synthetic data from random noise without explicit knowl-
edge of the original data distribution. Its goal is to produce data as similar as
possible to the real data and to trick the discriminator into classifying the gener-
ated data as real. The discriminator network evaluates data samples and attempts
to distinguish between real data and data generated by the generator, outputting
a probability indicating whether a given sample is real or fake. Given this archi-
tecture, both networks compete against each other during the training process to
improve their performance, which defines the adversarial process.

In order to train this model, let pg denote the distribution of the samples gen-
erated by G(z; θg), where G is the generator with parameters θg, and z is the input
noise. G is denoted by a differentiable function represented by a neural network.
The discriminator is a second neural network, denoted as D(x; θd), with parameters
θd, and x is the sample to be evaluated. D outputs a scalar value representing the
probability that a sample x belongs to the real dataset rather than fabricated by G.
Thus, D is trained to maximize the probability of correctly classifying both real and
generated samples, while G is trained simultaneously to minimize log(1−D(G(z))).
The full cost function can be seen in equation 2.38, where D and G play a two-player
minmax game.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (2.38)

To better grasp this architecture, consider an analogy where the generator net-
work is akin to a forger attempting to create counterfeit items that closely mimic
real ones. Meanwhile, the discriminator network functions as an evaluator tasked
with identifying and distinguishing between the authentic items and those produced
by the forger.

31

Chapter 3

Malicious Profiles Using Generative
Models

This chapter will address the main issues with proposed attack models in shilling
attacks. Initially, we will elucidate the most common flaws found in the literature
regarding the most widely used attack models. Later, we will review the key works
that propose solutions to mitigate these issues. Finally, we will introduce a new
attack model based on a variational autoencoder, which aims to address many of
these problems, and perform an experimental evaluation to validate this proposal.

3.1 Attack Models Issue

As stated in Chapter 2, recommender systems are prone to attacks either to push
or nuke a product, or just to create chaos in the system and disrupt it. So, it is very
important to understand these attacks and study ways to better protect different
systems. One way to do this is to propose novel attack models and investigate
their impact on different recommendation algorithms in order to study new ways to
improve prediction algorithms robustness (O’MAHONY et al., 2002) and detection
of more complex attack approaches.

Several attack models have been proposed and evaluated over time. However,
most of them were designed to attack memory-based recommender systems, where
users are grouped by their similarities and the predictions are given by the weighted
average over the ratings of the most similar users (RICCI et al., 2011). That is,
memory-based algorithms have many differences from model-based ones, indicat-
ing that attacks designed for memory-based algorithms may not work correctly on
model-based algorithms. In addition, GUNES et al. (2012) identified a lack of works
proposing attacks on model-based algorithms such as Regularized SVD.

Another issue regarding current attack models is that most attack models need to

32

inject too many profiles to have the desired effect on a system. In a real scenario, it
is very unrealistic to inject a lot of profiles, e.g., 10% of the database, into a system.
The attack may be easily detected or the systems may have countermeasures to
ignore ratings given by spamming-like profiles; that is, the attack becomes too easy
to spot (WILLIAMS et al., 2007).

There is also an issue related to the rating distribution between real users and
malicious profiles. As stated in CHEN et al. (2019), attack models rating patterns
usually differ by a large margin when compared with real users, making these attacks
more easily to be detected by many techniques.

Considering the points mentioned earlier, developing an attack model that ad-
dresses all the listed issues is crucial for better understanding how to protect various
systems more effectively. This is important whether the focus is on the robustness
of prediction algorithms or the accuracy of detection algorithms.

3.2 Related Work

Several works proposed solutions to some of the issues reported above. RAY
& MAHANTI (2009) proposed different strategies to mount attacks against user-
based and item-based collaborative filtering algorithms. These strategies consist of
varied methods to perform filler item selection in classic attack models using target
item rating distribution, where the target item can be categorized into two distinct
categories:

• TL: Most of the ratings are located at the lower end of the rating range (items
with 60% in the lower range).

• TH : Most of the ratings are located at the higher end of the rating range (items
with 60% in the higher range).

Note that range varies from dataset to dataset, e.g., in a dataset with a rating
range of 1 to 5, a lower range implies ratings 1 or 2, and a higher range implies ratings
of 4 or 5. After categorizing the target item, several strategies can be employed:

• UL: Focused on attacks on user-based collaborative filtering systems, this
strategy involves randomly selecting a filler item and assigning it the average
rating given by users who rated the target item in the lower range.

• UH: Focused on attacks on user-based collaborative filtering systems, this
strategy involves randomly selecting a filler item and assigning it the average
rating given by users who rated the target item in the higher range.

33

• IL: Focused on attacks on item-based collaborative filtering systems, this strat-
egy involves randomly selecting filler items highly rated by users who rated
the target item in the lower range and assigning the maximum rating to these
filler items.

• IH: Focused on attacks on item-based collaborative filtering systems, this
strategy involves randomly selecting filler items highly rated by users who
rated the target item in the higher range and assigning the maximum rating
to these filler items.

• SUL: Focused on attacks using the Segment attack model on user-based col-
laborative filtering systems, this strategy involves randomly selecting a filler
item and assigning it the average rating given by users who rated any of the
items in the segment, as well as the target item, in the lower range.

• SUH: Focused on attacks using the Segment attack model on user-based col-
laborative filtering systems, this strategy involves randomly selecting a filler
item and assigning it the average rating given by users who rated any of the
items in the segment, as well as the target item, in the higher range.

• SIL: Focused on attacks using the Segment attack model on item-based col-
laborative filtering systems, this strategy involves randomly selecting a filler
item and assigning it the average rating given by users who rated any of the
items in the segment, as well as the target item, in the lower range.

• SIH: Focused on attacks using the Segment attack model on item-based col-
laborative filtering systems, this strategy involves randomly selecting a filler
item and assigning it the average rating given by users who rated any of the
items in the segment, as well as the target item, in the higher range.

WILSON & SEMINARIO (2013), in order to create more real attack profiles,
studied the concept of power users in the context of collaborative filtering, defining it
as "those who can exert considerable influence over the recommendations presented
to other users". They proposed an attack model named Power User Attack, tailoring
three variations of it based on different ways to select power users :

• InDegree: Power users selected as users appearing in the highest number
of other users’ neighborhoods, a.k.a In-Degree Centrality, using significance
weighting to encourage strong connections between users with commonly rated
items.

• Number of Ratings: Power users are selected as users with the highest
number of ratings in the system.

34

• Aggregated Similarity: Power users are selected as users with the highest
aggregate similarity to other users.

They found out that using Number of Ratings or InDregree was the best way to
select power users. Another interesting finding is that inserting power users’ profiles
with biased ratings can be an effective way to attack a system with a user-based
collaborative filtering algorithm. The authors extended this work with many others
(SEMINARIO & WILSON, 2014b; WILSON & SEMINARIO, 2014; SEMINARIO &
WILSON, 2015; WILSON et al., 2015) proposing a methodology to create synthetic
power user profiles and finding out that Power User Attacks could be successful
in SVD-based algorithms, though they did not achieve the same success in a user-
based collaborative filtering algorithm. Despite the advantages, the authors did not
present a way to create power user profiles from scratch, that is, using as little system
knowledge as possible, which may classify this approach as an informed attack.

Following up the research based on power users, SEMINARIO & WILSON
(2014a) investigated the concept of power items, defined as influential items in the
system. They proposed the same selection methods used in the previous works to
select power items in a novel attack model named Power Item Attack. The rating
value for each selected power item is selected randomly from a normal distribution
over the item mean and standard deviation in the whole dataset. The results indi-
cated that Power Item Attack is effective against user-based collaborative filtering
and SVD-based algorithms. In order to be effective against item-based collabora-
tive filtering, the authors performed an additional experiment using multiple target
items.

FANG et al. (2018) studied attacks against graph-based collaborative filtering
systems in an adversarial attack setting. The authors formalized attacks as an opti-
mization problem, where the filler item ratings are optimized in order to maximize
the target item hit ratio. Although their results outperforms all approaches in the
adversarial setting, the black-box setting, where the optimization to generate pro-
files is performed using a collaborative filtering algorithm and the actual attack is
executed with a different one, making it closer to a standard shilling attack problem,
shows results close to classical attack models, such as Average and Bandwagon.

CHEN et al. (2019) performed a rated item correlation analysis, using Cosine
Association (CA), in real users and artificial profiles generated by classic attack
models in order to show the difference in rating patterns between each other. CA
is an association rule in data mining and can be applied to measure the correlation
between two items, which indicates the possibility of a user rating a pair of items
at the same time. This function can be defined by equation 3.1 for items i and j,
where |Ui,j| denotes the number of users who rated both i and j while |Ui| denotes
the number of users that rated i.

35

CA(i, j) =

√
|Ui,j|2
|Ui||Uj|

(3.1)

Based on the results of this analysis, they proposed an attack model that takes
into account rated item correlation and item popularity in order to choose the items
that would be rated in the generated profiles. In the proposed approach, filler items
are chosen using the rated item correlation of real users instead of randomly. A
parameter λ is used as a trade-off between the influence of rated item correlation
and popularity on item selection. The authors performed experiments mounting
attacks against user-based collaborative filtering. Additionally, they evaluated how
classic shilling attack detection approaches performed against their attack model
and compared them with classic attack models.

CHRISTAKOPOULOU & BANERJEE (2019) proposed a formulation of a
machine-learned adversarial attack on a collaborative filtering system. It consisted
of using GAN as a first step to generate profiles similar to real ones, then perform
a repeated general-sum game between an adversary and the recommender, using
an algorithm based on zero-order optimization techniques to compensate for the
fact that the recommender’s gradient is unknown to the attacker. Note that the
recommender is not aware of the attacker’s existence. The authors targeted top-K
recommendations or subsets of users or items in the experiments and identified some
vulnerabilities in model-based recommender system.

ANELLI et al. (2020) proposed SAShA, an attack strategy that leverages seman-
tic features from knowledge graphs. SAShA enhances the baseline attack models
by exploiting semantic information to manipulate user interaction patterns, rather
than merely sampling random filler items. The study provides a comprehensive ex-
perimental evaluation comparing SAShA to baseline attacks, demonstrating a slight
improvement in the evaluated metrics.

LIN et al. (2020) presented Augmented Shilling Attack (AUSH), a framework
designed to attack recommender systems based on GAN and capable of tailoring
attacks against specific user segments. It is done by sampling item templates from
real users and using a framework generator to produce ratings for these selected
items. Authors mounted attacks against matrix factorization and autoencoder-based
recommender systems, reporting competitive results.

At the time of our paper’s publication (BARBIERI et al., 2021), this was the
state of the literature regarding shilling attack models. Since then, several attack
models based on similar reasoning have been developed, as shown below. Note that
some of these subsequent works cite our paper.

WU et al. (2021) proposed Graph cOnvolution-based generative shilling ATtack
(GOAT) which aims to strike a balance between the simplicity of primitive shilling

36

attacks and the sophistication of advanced methods. It utilizes a GAN to produce
fake ratings and incorporates a graph convolution structure to refine these ratings
based on co-rated item correlations. The experimental evaluation provides insights
into the model’s technical feasibility and suggests directions for further investigation
into preventive measures.

WANG et al. (2022) presented the GSA-GANs model, a gray-box shilling attack
approach utilizing generative adversarial networks to craft fake user profiles. The
authors proposed two GAN modules, each designed to enhance the similarity of
generated fake profiles to real ones and to make these profiles more detrimental
to recommendation results. Experimental results on three public datasets show
improvements in attack effectiveness, transferability, and camouflage compared to
baseline models.

REN et al. (2022) studied the impact of semantic information on attack effective-
ness, proposing the Semantic Shilling Attack (SSA), a heuristic approach designed to
exploit high-level semantic information in heterogeneous information network (HIN)
recommender systems. The approach focuses on injecting specific scores into items
based on their semantic relationships to the target, showing improved effectiveness
compared to existing baseline algorithms.

A different scenario was explored by HUANG & LI (2023), involving a single fake
user profile, as opposed to multiple profiles. The proposed SUI-Attack conceptualizes
the attack as a node generation problem within the user-item bipartite graph of the
recommender system. By generating user features and connections that integrate
the fake profile into the existing graph, SUI-Attack seeks to enhance stealthiness.
The authors report competitive results for this single-user attack scenario.

The work of LIN et al. (2024) introduces Leg-UP, an approach utilizing GANs
to create fake user profiles. The authors aimed to develop an attack model capable
of mounting successful and less detectable attacks across various recommendation
algorithms. Leg-UP generates fake profiles by learning from real user behavior
and optimizes the generator using a surrogate recommendation system to improve
transferability. A discriminator is employed to mitigate the detectability of the
generated profiles.

Finally, LU & GAO (2024) proposed the use of Variational Graph Auto-encoders
in a similar fashion of our work, i.e., aiming to create user profiles that align with
original rating patterns. This approach utilizes spectral clustering to select users
from the original dataset as templates, dispersed according to a specified attack scale.
These templates are then matched with similar fake users within the reconstructed
profiles. The next step involves inserting ratings for popular items and target items
into these fake profiles. The final step involves generating and injecting these fake
profiles into the recommendation system to promote target items to users.

37

In the previous section, we presented some of the issues with the current attack
models, lack of experiments with model-based collaborative filtering algorithms (I1),
weak results with less attack profiles injected into the system (I2), and non realistic
rating patterns (I3). Considering the works published up to the time of our paper,
the general status of the literature indicates that very few studies have addressed
all the enumerated issues, either by mentioning them or demonstrating significant
improvements in their experimental evaluation. WILSON & SEMINARIO (2013)
and his subsequent works (SEMINARIO & WILSON, 2014b; WILSON & SEMI-
NARIO, 2014; SEMINARIO & WILSON, 2015; WILSON et al., 2015) address all
the issues; however, they do so by directly copying influential realistic profiles to
mount an attack. In contrast, LIN et al. (2020) can be considered the only work
directly comparable to ours in terms of addressing all the listed issues. The table 3.1
shows the proposed works and the issues they address. Note that, although related,
we did not include the work of CHRISTAKOPOULOU & BANERJEE (2019) in the
comparison because it focuses on adversarial attacks rather than shilling attacks.

Table 3.1: Status of the literature on shilling attack models and the associated
issues.

Work I1 I2 I3

(RAY & MAHANTI, 2009) ✓
(WILSON & SEMINARIO, 2013) ✓ ✓ ✓
(SEMINARIO & WILSON, 2014a) ✓
(FANG et al., 2018) ✓ ✓
(CHEN et al., 2019) ✓ ✓
(ANELLI et al., 2020) ✓ ✓
(LIN et al., 2020) ✓ ✓ ✓

3.3 Proposal

In this section, we will discuss our proposed approach to crafting profiles closer
to real ones and mount an attack to convert these profiles to malicious ones. In order
to simplify the understanding of our proposal, we divided our method into two main
steps: the simulation of profiles and the construction of an attack. In the first step,
a generative model is trained using real data to learn how to simulate profiles whose
behaviors resemble those of real users, while in the second step, we construct an
attack using the profiles generated in the first step. Figure 3.1 illustrates how our
method works.

The novel attack model is expected to replicate real profiles accurately, while
strongly impacting the recommendation result on model-based systems, but without

38

Simulate
Real Profiles

Attack
Construction

Train
Model Decode

Data Profiles Attack

Model

Noise

Profile

Figure 3.1: Our proposal to generate malicious profiles closer to real ones. The first
step is to simulate real profiles using a generative technique, and the second one
focuses on converting the generated profiles into malicious ones.

losing efficiency on memory-based systems. We will briefly describe each step before
going into details:

(i) Simulate real profiles : Step denoting the process for creating real-like profiles.
It is subdivided into two stages:

(i.i) Train model: Pre-processed data is used for training our proposed model
in order to learn the data probability distribution.

(i.ii) Decode: The sampling process consists of feeding noisy inputs into the
model decoder. The network decoder maps these inputs into synthetic
profiles.

(ii) Attack construction: Synthetic profiles are generated to be identical to the
real ones. Thus, to construct an attack, it is necessary to add an intent and
convert them into malicious profiles.

The next subsections will give a motivation and describe these two steps.

3.3.1 Simulate Real Profiles

Most current shilling attack models focus on defining an attack strategy in order
to push or nuke a certain item in the system, which already has a particular data dis-
tribution that characterizes it. In the past, real users present on this system defined
how this data distribution looks like by rating items, in a natural interaction be-
tween customers and products. Commonly, these strategies do not take into account
how their crafted malicious profiles will fit into system data, that is, their behaviors
are completely different from authentic users. In addition, injecting profiles that
deviate from the dataset pattern may significantly change this distribution, hinting
that these new data are not coming from authentic users (ZHANG et al., 2006) and
making them easy to detect by attack detection approaches (CHEN et al., 2019).

39

Thus, in order to create malicious profiles focused on solving the previously listed
issues, we must ensure that they appear like real ones, that is, they need to look
like they came from the same distribution as the actual data to remain unnoticed.

Authentic user rating patterns are the key to constructing a malicious profile
that fits into real data without raising suspicion. Advances in machine learning
allow the learning of these patterns, to make it possible to apply them to construct
malicious profiles. As explained in the previous section, discriminative models seek
to learn a predictive model that may be possibly used to predict the future behavior
of the users within the system. Our intent; however, is to learn the distribution and
replicate similar natural behaviors, making generative models more suitable for this
task.

A variational autoencoder, as previously mentioned, is a generative model that
instead of learning an encoding vector, learn a vector of means and a vector of
standard deviations. This property makes it possible to generate new data for the
mean and standard deviations learned, which makes it a powerful generative tool.
Recently, it has been used to replicate distributions and generate new data from noise
in many tasks, such as handwritten digits (KINGMA & WELLING, 2013), faces
(REZENDE et al., 2014), images (GREGOR et al., 2015), semantic segmentation
(SOHN et al., 2015) and even forecasting from static images (WALKER et al., 2016).

Based on it, we propose a variational autoencoder with convolution layers as
an automatic generator of simulated profiles. Our intent is to learn the probability
distribution of real profiles to be able to generate our counterfeit ones to look as
real as possible and remain undetected by attack detection approaches. Convolu-
tional layers are being applied to shilling attack showing promising results (CHRIS-
TAKOPOULOU & BANERJEE, 2019; TONG et al., 2018).

Collaborative filtering problem data may be seen as an undirected bipartite graph
(MELLO et al., 2010), where the vertex represents users or items and the edges
are relations between them. In this context, it is reasonable that another option to
model this problem is using Graph Convolutional Networks (GCN), which introduces
a graph to model user-item interactions within the system (ZHANG et al., 2020),
instead of simple convolutional layers. This investigation; however, is left for future
work.

In order to prepare training data to train our proposed model, we need to create
a rating matrix from it. In this matrix, the users are represented by rows and the
items are represented by columns, while missing ratings are represented by zeros.
In addition, each row x ratings are rescaled to the 0-1 range. After matrix creation,
it needs to be converted into a tensor in order to be in suitable format for the
convolutional layers. This process is done by reshaping each row into a matrix that

40

has its dimensions given by

|x|LF ×
|x|
|x|LF

, (3.2)

where |x| is the number of elements of row x and xLF is the lowest factor of |x|. For
numbers with a square root,

√
|x| ×

√
|x| may be used instead. An example of the

data pre-processing can be seen in Figure 3.2.

0 3 2 0 0
5 0 2 1 0
4 0 0 4 5
4 2 0 0 0

Item

User

0 0.6 0.4 0 0
1 0 0.4 0.2 0

0.8 0 0 0.8 1
0.8 0.4 0 0 0

Item

User

Range conversion Conversion to tensor1
2
5
0

0.2
0.4
1
0

0 0.6 0.4
0 0 0.2 00.2 0.4

1 0 0.4

0.8 1 1
0.8 0 0

0 0 0
0.8 0.4 0

Training Tensor

Figure 3.2: An example of pre-processing of the training data.

Afterward, the sampling process is fairly simple: Latent-space-sized vectors are
sampled around normal distribution and fed to the decoder. Our model is able to
turn these factors into meaningful profiles with behaviors and characteristics similar
to the real ones.

3.3.2 Attack Construction

After the first step, we need to convert our simulated real profiles into malicious
ones in order to mount an efficient attack. The generative power of a variational
autoencoder may be able to generate profiles that look like a real one; however,
it will not be a malicious profile since, by default, the first step of our method is
unable to generate profiles with an attack intent. Thus, we need to post-process our
generated profiles in order to add intent and affect the attacked system in the way
intended.

As previously stated, an attack intent is usually to make an item more, push, or
less, nuke, recommended within the system. However, there are other intents, such
as: improving or degrading a particular item’s performance inside a user segment.

To make it simple and evaluate the generative power of variational autoencoder
itself, rather than the post-process strategy, we chose a naïve approach: add a target
item and rate it according to our intent, e.g., max rating value for push attack or min
value for nuke attacks. In this work, we evaluated push attacks only; however, similar
results could be obtained by analyzing nuke attacks. A straightforward strategy
similar to the majority of attack models proposed in the literature (MOBASHER
et al., 2007b). A study of more efficient methods to post-process our simulated
profiles is out of the scope of this work and left for future work.

41

3.4 Empirical Results

In this section, we detail our experiments, results of our attack model, and
compare with well-known methods.

Our experiments are carried out to assert three main assumptions: Our model
can create malicious profiles closer to the real ones than other approaches; our model
is able to outperform other approaches in most of the cases attacking model-based
algorithms, and our model achieves competitive results in most of the cases against
other approaches in memory-based algorithms. Firstly, we analyze how close our
and other approaches’ malicious profiles are to real ones in terms of correlated rated
items. Secondly, we compare our approach performance in model and memory-
based systems against several methods, including: Random, Average, Bandwagon,
Segment, Power User NumRatings (PUA-NR), and Power Item NumRatings (PIA-
NR). In addition, we trained a GAN model and used its generator as a generative
model in your workflow in order to compare its generative power to our proposal.

3.4.1 Setup

We will carry out several experiments to validate our proposal in different sce-
narios. We compare our attack model performance against classic and some of the
proposed attack models in model-based and memory-based collaborative algorithms.

That said, our first experiment will be a rated item correlation analysis using
cosine association, in order to evaluate how close malicious profiles generated using
our approach are to the real profiles in real-world datasets.

Afterward, we will perform two more similar experiments to evaluate our attack
model. The first one will compare our proposed model against several models with
respect to its effectiveness at attacking a model-based algorithm. The second one will
compare our approach against the same attack models; however, this time, attacking
a memory-based algorithm in order to evaluate how our proposal performs in this
kind of system.

In both experiments, we will compare our attack model with well-known attack
models which are: Random, Average, Segment, Bandwagon, PUA-NR, and PIA-NR.
Additionally, we will compare it with a GAN generator.

The first experiment will use the whole data in order to generate the malicious
profiles. Therefore, the attack size will be set to 100% in order to have the same
number of users as the actual data and make the comparison possible. For the
MovieLens 100k dataset, using the Power Item Attack, we set the number of power
items to 100 to match the number of ratings in our malicious dataset more closely to
that in the real profiles. In attack models that require filler size, we set it to 7% for
the same reason. The same logic was applied for the For Yahoo! Music R3, where

42

we set the number of power items to 23, and for attack models using filler size, to
7%.

As well, we will conduct our second and third experiments using a hold-out
strategy, that is, partitioning the data into two sets: 70% for training and 30% for
testing. The train data is used to create the malicious profiles, while the test data
is used only during the evaluation of the attack model.

In order to evaluate the models from different perspectives, we selected 30 distinct
target items: ten randomly chosen among all items; ten chosen among established
items, that is, the top-50 most-rated items, and ten chosen among new items, that
is, items with only one rating (SEMINARIO & WILSON, 2014a). Since our attack
intent is push, the target item rating was set to max value (which is 5 regarding the
MovieLens 100k dataset). We averaged the results for each category of target item
and each chosen metric and reported the results. For the HR metric, we computed it
using the top 10, 20, 30, 40, and 50 recommendations (N) and reported the average
over the results and their individual values (NOH et al., 2014).

Parameters for the variational autoencoder were chosen using hold-out valida-
tion. The MovieLens 100k dataset was split into three parts: train, validation, and
test. All experiments were conducted using the train and validation partitions, while
the test partition was reserved to validate the best parameters identified during the
tuning process. In general, it was found that good results may be achieved by vary-
ing the learning rate and kernel size. We also compared the model with convolutional
layers to the same configuration with dense layers, finding that the convolutional
layers provided superior results and faster training times. We used Adam optimizer
with a learning rate of 0.0005 and eight latent dimensions. Regarding the network
architecture, the encoder was composed of three convolutional layers with 64 filters,
with kernel size of four and two strides, while the decoder was composed of three
convolutional layers with 64 filters, a kernel size of four and two or one strides, two
for the first layer, one for the second and the third layers. The chosen activation
function for the model was the leaky rectified linear unit (Leaky ReLU) (MAAS
et al., 2013) and dropout was applied to each layer.

Regarding the attack models parameters, we varied the attack size by 1%, 3%,
5%, 10%, and 20%, and filler size, for the models that require it, by 1%, 3%, 5%,
7%, and 10%. In addition, for the selected items set in the Segment attack, we
chose the popular horror movie segment (BURKE, 2007) and for the Bandwagon,
we selected movies (IDs) {50, 56, 100, 127, 174, 181, 258, 286, 288, 294} as popular
movies, which are movies rated by more than 300 users (LI & LUO, 2011). For
Power User Attack and Power Item Attack, we chose the NumRatings approach
for power user or item selection, since it yields similar results to those of InDegree
approach, but with a better overall performance. In Power Item Attack there is a

43

parameter that controls the number of power items used to construct each malicious
profile, we varied it by 50, 40, 30, 20, 10, 5, 3, and 2. GAN parameters were taken
from CHRISTAKOPOULOU & BANERJEE (2019).

For evaluating attack model performance against model-based systems, we chose
Improved Regularized SVD (IRSVD)(PATEREK, 2007) as the collaborative filter-
ing algorithm, with 100 latent factors, 20 epochs, and 0.005 learning rate. Being
popular among works in the literature, SVD-based algorithms are the choice regard-
ing evaluating model-based approaches against attack strategies by some works in
shilling attack area (SEMINARIO & WILSON, 2014b, 2015).

For attack models performance against memory-based systems, we applied a
user-based collaborative filtering algorithm, with Pearson correlation as the similar-
ity measure and 40 as the maximum number of neighbors. We choose the user-based
variation because the item-based is well-known for its robustness against most shiling
attack models (GUNES et al., 2012).

In resume, three experiments are carried out to evaluate the proposed method:

Experiment I
Item correlation analysis (CA) comparing real data with our approach and
classical approaches using MovieLens 100k and Yahoo! Music datasets. This
analysis may indicate how close our attack model ratings patterns are to the
ones in real data. It may also hint at how easily an attack model may be
detected by detection approaches CHEN et al. (2019).

Experiment II
Comparison with seven shilling attack models: Random, Average, Segment,
Bandwagon, PUA-NR, PIA-NR and GAN using MovieLens 100k and Yahoo!
Music datasets on an IRSVD system.

Experiment III
Comparison with seven shilling attack models using MovieLens 100k dataset
on a classic user-based collaborative filtering system.

3.4.2 Results

In this subsection, we present and discuss the obtained results from the evaluated
experiments. Additionally, we compare the proposed attack model with several well-
known shilling attack models.

In Experiment I we analyze how close rating patterns from malicious profiles are
from real users. That said, Figure 3.3 shows the CA for all item pairs in MovieLens
100k dataset for reference, where both axis represents the movies sorted in ascending
order by the times each one is rated, while each point denotes the CA value between

44

its correspondent pair of movies, with darker red denoting that the pair is highly
correlated (CA value equals to 1), darker blue denoting that the pair is almost
uncorrelated (CA value close to 0), and white denoting no user rating this item pair
at the same time. Note that CA = 0 was left white as well in order to illustrate
other values more clearly.

1 500 1000 1500
1

500

1000

1500

0.0

0.2

0.4

0.6

0.8

1.0

(a) Item pair

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

12000

14000

(b) Distribution

Figure 3.3: CA (a) and CA distribution (b) of item pairs in the MovieLens 100k
dataset.

In the top-left corner, this figure indicates that popular items are highly corre-
lated to each other with some yellow and green areas. It is interesting to note as
well that there are some unpopular items highly correlated in the bottom-right area
showing a similar pattern to the popular ones, despite the lack of ratings.

Besides CA values for each pair, in Figure 3.3b, we show the CA values dis-
tribution. These results indicate that the majority of items in the system are not
strongly correlated, despite having some item pairs highly correlated. As one may
see, the most common value is close to 0.1, decreasing as the correlation increases
until around 0.7.

Aiming to compare every malicious profile generated by each attack model, we
generated seven different datasets using each presented attack model and performed
the same evaluation used in the real data in each of these datasets. Figure 3.4
presents the results obtained for each fake dataset.

In Figure 3.4, we show the CA for each item-pair generated by each attack model.
The models are: Random, Average, Bandwagon, Segment (3.4a), PUA-NR, PIA-NR
(3.4b), GAN (3.4c), and our model (3.4d). Notice how different each attack behaves
in the data, except for PUA-NR (not shown, since its profiles are just copies from
the original dataset). Random (not shown), Average (not shown), Bandwagon (not
shown) and Segment attack models delivered pairwise correlations in very similar
patterns since the filler items are selected randomly, with almost all areas filled
with low correlated pairs. On the other hand, malicious profiles constructed using
PIA-NR are based on Power Items selection. Hence, only a small number of items

45

1 500 1000 1500
1

500

1000

1500

0.0

0.2

0.4

0.6

0.8

1.0

(a) Segment

1 500 1000
1

500

1000

0.0

0.2

0.4

0.6

0.8

1.0

(b) PIA-NR

1 500 1000 1500
1

500

1000

1500 0.0

0.2

0.4

0.6

0.8

1.0

(c) GAN

1 500 1000 1500
1

500

1000

1500

0.0

0.2

0.4

0.6

0.8

1.0

(d) VarAuto

Figure 3.4: CA of item pairs for different shilling attack models. For instance (a)
Segment, (b) PIA-NR, (c) GAN, and (d) our model.

is rated and correlated, showing a small area in a dark red color while, no other
items are rated. Lastly, the GAN model delivers highly correlated items; however,
is unable to resemble the same patterns found in the original data.

Regarding our approach, despite the correlated area appearing to be smaller,
there is a similar pattern compared to the original data. These results indicate that
our approach builds profiles that follow similar patterns when compared to the real
ones, even without directly copying them as the Power User method. It may also
indicate that our malicious profiles may remain unnoticed for detection approaches.

Figure 3.5 shows the distribution of CA values. Note how it actually differs
greatly from the actual values depicted in Figure 3.3b. Random (not shown), Aver-
age (not shown), Bandwagon (not shown), and Segment (3.5a) also reach their peak
at 0.1, but decrease as the correlation increases much faster until around 0.2 for
Random and Average; and after 0.3 for Bandwagon and Segment, since its attacks
also have the selected items set, which are present in all malicious profiles crafted
by these attack models. GAN (3.5c) sampled highly correlated items, showing its
peak at the maximum correlation value. On the other hand, our model (3.5d) has
the most similar distribution of CA values taken from original MovieLens data.

Figures A.1 and A.2 respectively show the CA for each item pair and the distri-
bution of CA values in the Yahoo! Music dataset. The results are largely similar to
those obtained using the MovieLens 100k dataset, except that the correlation area

46

0.0 0.2 0.4 0.6 0.8 1.0
0

2500

5000

7500

10000

12500

15000

17500

(a) Segment

1
0

1000

2000

3000

4000

5000

(b) PIA-NR

0.0 0.2 0.4 0.6 0.8 1.0
0

20000

40000

60000

80000

100000

120000

140000

(c) GAN

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

12000

(d) VarAuto

Figure 3.5: CA distribution of item pairs for different shilling attack models. For
instance (a) Segment, (b) PIA-NR, (c) GAN, and (d) our model.

is sparser in the Variational Autoencoder model rather than smaller.
In both CA values and its distribution for all datasets, PUA-NR manages to

faithfully replicate the original data distribution. However, we must emphasize that
this attack model consists of directly copying selected power user profiles and then
infecting them to achieve the desired effect. Therefore, it was an expected result.
In the second experiment, we will evaluate if this strategy is enough to disrupt
model-based systems and how it differs from our approach.

Experiment II is performed to evaluate our attack model against several models
using Improved Regularized SVD as a collaborative filtering technique. Figure 3.6
shows complete results for (a) random items, (b) the least-rated items, and (c) the
most-rated items using the MovieLens 100k dataset. In this overall view, the results
show how our attack model performs against the other models for each of these
categories of target items. For the least-rated items (Figure 3.6b), it is possible to
note that all models behave similarly regarding all three metrics, with our proposal
achieving the best results in both metrics, followed closely by Average attack and,
surprisingly, in case of hit ratio and average rank, Segment attack (not shown).
Regardless of which model has the best performance, the results also indicate that
it is easier to push an item with fewer ratings than expected.

For most-rated items (Figure 3.6c), as expected, we can spot a different scenario,
where all models have difficulties to push the target item since it already has a lot of

47

0 0.1 0.2

0.00

1.00

2.00
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.50

1.00

1.50

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.20

0.40

0.60

0 0.1 0.2

0

500

1,000

Av
er

ag
e

ra
nk

(a) Random items

0 0.1 0.2

0

100

200

300

(b) Least-rated items

0 0.1 0.2

0

200

400

600

800

(c) Most-rated items

PIA-NR PUA-NR Random Bandwagon
GAN Average VarAuto

Figure 3.6: Prediction shift, hit ratio and average rank for different attacks sizes
using Improved Regularized SVD as collaborative filtering technique. Note that it
only shows the best result of filler size among the attack models that require it.

ratings. This time Segment attack is unable to repeat the same results achieved with
least-rated items, while our approach consistently improves results for smaller attack
sizes, e.g., attack size of 1% to 5%, which was one of our main goals. Although the
Average attack model outperforming our approach when a large number of malicious
profiles are injected, e.g., attack size of 20%, we can remark that a larger attack is
difficult to mount in larger datasets and are more easily spotted.

For random items (Figure 3.6a), which can include any items rated in the sys-
tem, we found similar observed patterns. Considering the three used metrics, our
proposed attack model outperformed the other models, mounting more successful
attacks from the attacker’s standpoint. PUA-NR and PIA-NR reported results sim-
ilar to the Random attack model, while the Segment model, once again, failed to
perform on par with the best models, as it did with the least-rated items.

Figure A.3 presents results for (a) random items, (b) the least-rated items, and
(c) the most-rated items using the Yahoo! Music dataset. These results show that
Average, Random, and PUA-NR produce outcomes very similar to our proposal.
This suggests that, even without specifically tuning our proposal for the Yahoo!

48

Music dataset, it can be as competitive as PUA-NR, which directly copies real pro-
files from the dataset. There is a possibility of improving these results to outperform
the current attack model with proper tuning.

In short, for least-rated items, even with 1% attack size, that is 9 profiles, our
approach can influence the model-based recommender, giving higher values of pre-
diction shift and hit ratio while giving lower values of rank. For most-rated items,
we still have the best performance with lesser attack sizes, indicating that our attack
model behaves as intended in all studied scenarios. It is also important to remark
that our attack model is capable of achieving good results in model-based systems
without directly copying profiles as approaches like the PUA-NR. GAN model on the
other hand, for all types of target items, is unable to get consistent results among
all metrics. We noted that the model had some trouble balancing generator and
discriminator costs in a few scenarios, which may explain the lack of performance
compared to the variational autoencoder.

0 0.1 0.2

0.00

1.00

2.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2
1.00

1.50

2.00

0 0.1 0.2

0.00

0.50

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2
0.40

0.60

0.80

1.00

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0

500

1,000

Av
er

ag
e

ra
nk

(a) Random items

0 0.1 0.2

0

50

100

150

200

(b) Least-rated items

0 0.1 0.2

0

200

400

600

800

(c) Most-rated items

PIA-NR PUA-NR Random Bandwagon
GAN Average VarAuto

Figure 3.7: Prediction shift, hit ratio and average rank for different attack sizes
using User-based as collaborative filtering technique. Note that it only shows the
best result of filler size among the attack models that require it.

After the indication that our method can outperform the current attack mod-
els when the system attacked is a model-based algorithm, finally, Experiment III

49

is performed to evaluate our attack model against the same previous approaches.
However, now we are using user-based collaborative filtering technique to provide
recommendations.

For least-rated items (Figure 3.7b), results for prediction shift and average rank
metrics indicate that our model may be competitive in memory-based environments,
coming very close to the performance of models crafted to attack KNN-based systems
and even outperforming some of them, such as PIA-NR. For Hit Ratio, on the other
hand, our approach failed to achieve good results against the intended user-based
collaborative filtering crafted attacks. Despite achieving results comparable to PUA-
NR and PIA-NR, and even slightly outperforming them in some attack size values,
our model did not achieve good results against Average, Bandwagon, and Random
attack models with this metric.

For most-rated items (Figure 3.7c), a different context emerges where all ap-
proaches struggle to push items that already have a large number of ratings. None
of the approaches are able to achieve good enough results for all metrics. The best
results achieved are when using Average and Random attacks with a 20% attack
size, which may be an inefficient and easily detectable mounted attack. Despite the
poor performance in Prediction Shift and Hit Ratio, our approach achieves results
close to the Bandwagon attack regarding average rank, indicating that we may have
room for improvement.

For random items (Figure 3.7a), the results were very close to the reported for
least-rated items. Variational autoencoder-crafted malicious profiles achieve com-
petitive results in terms of prediction shift and average rank without being explicitly
engineered toward memory-based systems. For hit ratio; however, the results are on
par with PIA-NR and PUA-NR, while Average, Bandwagon, and Random attacks
reported the best results.

In short, it is possible to spot that our method achieves good results for average
rank; however, the values obtained are almost, always around ten average rank,
explaining why other models have an advantage over ours in Hit Ratio. Prediction
shift values are also competitive, except for most-rated items. Note that none of
the models, including ours, were able to achieve truly meaningful results for the
most-rated items, indicating that popular items, i.e., those receiving a high number
of ratings, are very difficult to push. It is also important to note that our attack
model is capable of achieving results in memory-based systems on par with PIA-NR
and PUA-NR, models crafted to mount attacks against memory-based approaches.

In memory-based systems, GAN performance was stronger than previously re-
ported results mounting attacks against IRSVD. However, it was not good enough
compared to the other models, indicating that this model may be more sensitive to
hyperparameters than our proposal since we did not perform extensive hyperparam-

50

eter tuning in our model as well.

20 40

−0.20

0.00

0.20

0.40

0.60

0.80

0.
01

20 40
−0.20

0.00

0.20

0.40

0.60

20 40

0.00

0.50

1.00

0.
03

20 40

−0.20

0.00

0.20

0.40

0.60

20 40

0.00

0.50

1.00

0.
05

20 40

0.00

0.50

20 40

0.00

0.50

1.00

0.
1

20 40

0.00

0.50

1.00

20 40

0

0.5

1

0.
2

(a) SVD

20 40

0

0.5

1

(b) User-based KNN

PIA-NR PUA-NR Random Bandwagon
GAN Average VarAuto

Figure 3.8: Hit ratio for different ranks and attack sizes using both SVD and User-
based as collaborative filtering technique. Note that it only shows the best result of
filler size among the attack models that require it.

Finally, we present results for different top-N values of the Hit Ratio. For SVD
as collaborative filtering technique (Figure 3.8a), results, one more time, corroborate
how our approach is able to outperform state-of-the-art attack models considering
all attack sizes. One may note the superior performance of our method using only
3% attack size, greatly outperforming all methods in all cases. For User-based

51

KNN as collaborative filtering technique (Figure 3.8b), it is possible to see where
our approach may be improved. We achieved results closer to the state-of-the-
art technique with 3% attack size and even outperformed all models using 20%

attack size and larger recommendation lists; however, in other scenarios, Bandwagon
attacks still achieve the best results of Hit Ratio for these kinds of systems.

52

Chapter 4

Shilling Attack Perspective as Label
Noise

This chapter introduces the concept of label noise in the collaborative filtering
context, comparing it with shilling attack, also considered malicious noise, and dis-
cusses how the proposed techniques in this area can be applied to mitigate this issue.
Initially, we will describe each solution and how its authors envisioned mitigating
the label noise problem. Later, we will apply each solution to the malicious noise
problem, in order to check if these algorithms can be used as such. Finally, we will
analyze the results and show our considerations about this important topic.

4.1 Noise

The performance of a learning model is typically measured by its ability to ac-
curately predict new instances, which often depends on the quality of the data used
to train the model. According to ANGLUIN & LAIRD (1988), real-world data is
highly susceptible to noise or corruption, e.g., training examples misclassified, which
may degrade the quality of the data, thus degrading the learning model’s perfor-
mance. Noise is common in real-world datasets and can be considered, anything
that hinders the relationship between attributes and their respective label.

According to ZHU & WU (2004), there are two categories of noise: label noise
and attribute noise. Label noise refers to manually misclassifying data, which can
occur when instances are labeled incorrectly or when the same instances are given
different labels. Attribute noise is related to errors during the data collection process,
leading to erroneous, missing, or incomplete attribute values. Due to the presence
of only one label instead of multiple attributes, label class is generally considered
more harmful than attribute noise (ZHU & WU, 2004; SÁEZ et al., 2014).

FRENAY & VERLEYSEN (2014) introduces label noise as an inherently stochas-

53

u

v

r

Figure 4.1: A probabilistic model illustrating the cyclic dependency between users,
items and ratings, as seen in collaborative filtering problems (CARMO, 2018).

tic process, disregarding cases where errors in the labeling process are maliciously
introduced by external agents. On the other hand, VAN DEN HOUT et al. (2002)
shows label noise as a stochastic process in an application where noise can be gen-
erated intentionally to protect the privacy of users.

In a noise context, robustness indicates the capacity of a model to be insensitive
to data corruption, thus suffering less from the effects of noise (HUBER, 2004). The
more robust the algorithm is, the more similar the model will be to one trained
without noise.

Moving on to the recommendation context, noisy instances affect collaborative
filtering models differently. In collaborative filtering, the rating is unique and de-
pends on both user u and item v entities, while there is also a relationship between
the user and the item, since the evaluation will depend on the opinion of a user
regarding an item. Figure 4.1 illustrates this cyclic dependency.

Thus, collaborative filtering systems use a different learning structure than the
one used on supervised learning problems, where labels are not used to predict
other instances. In a collaborative filtering scheme, the label, user ratings on items,
is used to predict another user’s ratings, which means that a single noisy rating can
indirectly disturb numerous relationships, impacting users and items not directly
related to this particular noisy instance. In short, it is possible to conclude that
the collaborative filtering scheme is inherently noisy, with noisy instances having a
larger impact when compared to supervised models (CARMO, 2018).

Another form of noise in collaborative filtering is the shilling attack, which is
considered malicious noise and differs from label noise, as defined in this thesis,
because it is not a natural occurrence. Therefore, the main research question of this
chapter is to evaluate label noise proposals on malicious noise and analyze if it can
mitigate it.

4.2 Methods to Deal with Label Noise

According to FRENAY & VERLEYSEN (2014), there are three ways to deal
with label noise. The first approach is to rely on algorithms that are naturally more

54

Noisy
Traning Set

Filter Cleansed

Traning Set

Learning
Algorithm

Figure 4.2: Learning procedure for dataset cleaning models (BRODLEY & FRIEDL,
2011).

robust to the noise, which means that the algorithm is not too sensitive when trained
on the presence of label noise. The main idea of these models is that predictions
remain stable even in the presence of noisy instances, i.e., training data corrupted
by label noise. These approaches are also referred to as robust algorithms.

The second one focuses on filtering the data on the training set in order to
improve its quality. In these kinds of approaches, mislabeled instances are usually
dropped or relabeled according to some procedure. The downside of this approach
is that it may result in the removal of large amounts of data during the filtering
process. These approaches are referred to as data cleansing.

Lastly, there are algorithms that model the label noise directly or have been
modified to consider it. FRENAY & VERLEYSEN (2014) argue that, in this way,
it is possible to include information about the nature of the label noise, since the
classification model and the label noise model are separated.

In the following subsections, we will present additional concepts regarding data
cleansing and label noise-robust learning algorithms as well as some solutions pro-
posed in the literature that fall into these categories.

4.2.1 Data Cleansing

Data cleaning refers to solutions that focus on cleaning the training data, being
similar to an outlier or anomaly detection approaches (FRENAY & VERLEYSEN,
2014). The whole process can be seen in Figure 4.2, instances of the noisy training
set are filtered before being inputted into the learning algorithm. This subsection
describes several methods that apply this concept to detect and remove mislabeled
instances from the recommendation perspective.

O’MAHONY et al. (2006) proposed a framework to detect noise in Collaborative
Filtering datasets, considering two classes of noise: natural and malicious. Let U

be the set of users of the system, Ug ⊂ U be the set of genuine user profiles in a
system, and Ua ⊂ U be the set of attack profiles present. The proposed approach
consists of training a recommendation algorithm G with a training set T ⊂ Ug to
verify the consistency of the actual rating for a user-item pair compared with the
prediction from this given model. The consistency c of a rating ru,i is defined as the
Mean Absolute Error between the actual rating and the G prediction:

55

c(G, T)u,i =
|ru,i − r̂ui|
rmax − rmin

,

where r̂ui is a prediction given by the model G to a user u and an item i, while
rmax/rmin is the maximum and minimum ratings allowed in the system. A rating
ru,i is perceived as noise and removed from the recommendation, if:

c(G, T)u,i > th,

where th is a threshold value. The intuition behind the approach is that G will be
accurate within a threshold th and the c(G, T)u,i for every user-item pair above this
value indicates the presence of noise in the rating.

Another data cleansing approach applied in collaborative filtering is the one
proposed by TOLEDO et al. (2015) which focus on both detection and correction of
the noise. It consists of classifying both users and items based on their ratings and
assuming that a contradiction may represent evidence of noise. This process assumes
that each user has their own tendency when rating items, while, in a similar manner,
each item has its tendency to receive ratings. For user tendencies, they formulated
the following categories: Positive, Average, Negative, and Hesitating. For item
tendencies, the authors proposed a similar scheme: Preferred, Av-Preferred, No-
Preferred, and Doubtful.

Later, each user rating for an item is classified into three different categories
based on its value:

• Weak: if rui < k.

• Mean: if k ≤ rui < v.

• Strong: if rui ≥ v.

The constants k and v are, respectively, a weak-average threshold and an average-
strong threshold, where both values must satisfy the k < v condition. Being U the
set of users and I the set of items, the authors proposed grouping the preferences
for each user u in the following sets Wu, Au, and Su.

• Set of weak ratings of the user u, Wu: Wu = {rui|∀i ∈ I where rui < ku}

• Set of average ratings of the user u, Au: Au = {rui|∀i ∈ I where ku ≤ rui < vu}

• Set of strong ratings of the user u, Su: Su = {rui|∀i ∈ I where rui ≥ vu}

Similarly, for each item i, the preferences are grouped in the following sets Wi,
Ai, and Si.

• Set of weak ratings of the item i, Wi: Wi = {rui|∀u ∈ U where rui < ki}

56

• Set of average ratings of the item i, Ai: Ai = {rui|∀u ∈ U where ki ≤ rui < vi}

• Set of strong ratings of the item i, Si: Si = {rui|∀u ∈ U where rui ≥ vi}

Considering these and the previously mentioned rating classes, the authors classi-
fied each user according to their biases: Benevolent, Average, Critical, and Variable.
And similarly, they defined a classification for items as follows: Strongly-preferred,
Averagely-preferred, Weakly-preferred, and Variably-preferred.

Each user or item is, then, classified according to the cardinality of each of the
sets: Wu, Au, Su or Wi, Ai, Si. Once this classification is performed, this information
can be used to identify contradictions in the classes of the data and mark rating as
noise. Algorithm 1 summarizes this approach to noise detection.

Algorithm 1 Detection of noisy ratings, as proposed by TOLEDO et al. (2015).
Input: R = {rui} – set of available ratings, ku, vu, ki, vi, k, v, - classification thresholds
Output: possible noise = {r(u, i)} – set of possible noisy ratings
Wu = {}, Wi = {}, Au = {}, Ai = {}, Su = {}, Si = {}
possible_noise = {}
for rating rui ∈ R do

if rui < ku then
Add rui to the set Wu

else if rui ≥ ku and rui < vu then
Add rui to the set Au

else
Add rui to the set Su

end
if rui < ki then

Add rui to the set Wi

else if rui ≥ ki and rui < vi then
Add rui to the set Ai

else
Add rui to the set Si

end
end
for each user u and item i do

if |Wu| ≥ |Au|+ |Su| then
Classify u as critical

else if |Au| ≥ |Wu|+ |Su| then
Classify u as average

else if |Su| ≥ |Wu|+ |Au then
Classify u as benevolent

else
Classify u as variable

end
if |Wi| ≥ |Ai|+ |Si| then

Classify i as weakly − preferred
else if |Ai| ≥ |Wi|+ |Si| then

Classify i as averagely − preferred
else if |Si| ≥ |Wi|+ |Ai| then

Classify i as strongly − preferred
else

Classify i as variably − preferred
end

end
for rating rui ∈ R do

if u is critical, i is weakly-preferred, and rui ≥ k then
Add rui to the set possible_noise

if u is average, i is averagely-preferred, and rui < k or rui ≥ v then
Add rui to the set possible_noise

if u is benevolent, i is strongly-preferred, and rui < v then
Add rui to the set possible_noise

end

The next step formulated by the authors is the correction of the detected noisy
ratings. The proposed algorithm is similar to the one proposed by O’MAHONY

57

et al. (2006), where a threshold τ is used to determine if a rating will be replaced
by the one predicted using the model. Algorithm 2 shows how the process is carried
out.

Algorithm 2 Filtering process for noisy ratings, as proposed by TOLEDO et al.
(2015)
Input: R

′ ⊆ R - set of noisy ratings, τ - threshold, φ - predictive model.
Output: R∗ - noiseless set of ratings.
R∗ ← {}
for (u, i, r) ∈ R

′ do
r̃ ← φ(u, i)
if |r̃ − r| < τ then

R∗ ← R∗ ∪ {(u, i, r)}
else

R∗ ← R∗ ∪ {(u, i, r̃)}
end

end

In order to determine the classification thresholds κu, νu, κi e νi, that are highly
domain-dependant, TOLEDO et al. (2015) proposed three different methods. The
first idea is named global-pv, where the threshold values are selected according to the
data divided into three equal bins. In this approach, the threshold τ is defined as the
difference between two ratings. The equations 4.1 and 4.2 shows how to calculate
the values of all κ and ν, using the round function to determine the nearest value
for n.

κ = κu = κi = min(P) + ⌊1
3
· (max(P)−min(P))⌉ (4.1)

ν = νu = νi = max(P)− ⌊1
3
· (max(P)−min(P))⌉ (4.2)

The next approach chooses values based on the distribution of each user and
item; that is, the thresholds vary according to the distribution of each user or item
and are calculated using the mean x̄ and the standard deviation σ. Using this
approach, the thresholds are defined as follows:

κu = x̄u − σu (4.3)

νu = x̄u + σu (4.4)

κi = x̄i − σi (4.5)

νi = x̄i + σi (4.6)

This approach considers two alternatives to calculate the values of κ and ν:
user-based (κ = κu e ν = νu), named as user-based-pv, and item-based (κ = κi e

58

ν = νi), named as item-based-pv. Finally, the threshold τ is defined as τ = σu for
the user-based-pv method and τ = σi in the case of the item-based-pv method.

4.2.2 Label Noise-Robust Models

Label noise-robust refers to algorithms that are naturally robust to label noise,
i.e., they suffer less influence in the presence of label noise than others (FRENAY
& VERLEYSEN, 2014). These models have a learning process that is assumed to
be not too sensitive to the presence of noisy instances, which means that they are
less influenced by it. This subsection describes several methods that are robust to
mislabeled instances.

GOLDBERGER & BEN-REUVEN (2016) models the noise as an additional soft-
max layer, namely a noise channel, on top of the network output. SUKHBAATAR
& FERGUS (2014) propose a similar approach; however, their training process has
two steps instead of the regular one commonly used in neural networks.

Being p(y = i|x;w) a multi-class neural network classifier, where x is the feature
vector, w the network weights, and i an element of the set of classes 1, ..., k, they
assume that, in the training process, the network can only directly observe a noisy
version z of the correct label y. This noise distribution is unknown and the proposal
consists of learning it during the training phase using the Expectation Maximization
(EM) algorithm.

During the training process, the model receives n feature vectors x1, ..., xn and
its corresponding noisy labels z1, ..., zn, which are the noisy versions of the correct
labels y1, ..., yn. Equation 4.7 shows the log-likelihood of the model parameters.

L(w, θ) =
n∑

t=1

log(
k∑

i=1

p(zt|yt = i; θ)p(yt = i|xt;w)) (4.7)

From those inputs, the model aims to maximize with respect to the noise dis-
tribution θ and the model parameters w. The EM algorithm is, then, applied to
estimate the hidden true labels y1, ..., yn and update the neural network and the
noisy channel parameters. Each E-step of an iteration is responsible for the former
and may be defined as:

cti = p(yt = i|xt, zt;w0; θ0), i = 1, ..., k, t = 1, ..., n, (4.8)

where w0 and θ0 are the current parameters. On the other hand, each M-step of an
iteration is responsible for the latter and thus can be defined in two different phases.
To update the noise distribution, the following function can be used:

θ(i, j) =

∑
t cti1zt=j∑

t cti
, i, j ∈ 1, ..., k, (4.9)

59

where the k×k matrix θ can be viewed as a confusion matrix between the estimated
true labels cti and the noisy labels zt. The second phase is to update the neural
network parameters. For this end, the following function is maximized:

S(w) =
n∑

t=1

k∑
i=1

cti log p(yt = i|xt;w), (4.10)

where h is the final hidden layer and u1, ..., uk are the parameters of the softmax
output layer.

REED et al. (2015) proposes different approaches consisting of modifying the
cost function to deal with noisy labels. One of their proposals, referred to as boot-
strapping, avoids the direct modeling of the noise distribution by using a convex
combination of the training labels and the model’s predictions during a given model
iteration. The main idea of this approach is that the model improves over time,
making its predictions more reliable and, therefore, hindering the effect of the noisy
label by giving less importance to them. In practice, they extended the cross-entropy
cost function to generate new regression targets for each SGD mini-batch based on
the model’s current state.

The authors evaluated two types of bootstrapping. The soft bootstrapping gen-
erates regression targets for each batch using the predicted class probabilities q as
follows,

Lsoft(q, t) =
L∑

k=1

[βtk + (1 + β)qk] log(qk). (4.11)

The hard bootstrapping modifies the regression targets using the MAP estimate of
q given x as follows,

Lhard(q, t) =
L∑

k=1

[βzk + (1 + β)qk] log(qk), (4.12)

where β is a scalling factor, and zi = 1, i = argmax ỹi, i = 1...C with C standing
for the number of labels.

PATRINI et al. (2016a) proposed two domain-independent procedures for loss
correction in order to make supervised models more resistant to noise. However,
both approaches need knowledge about the noise distribution to work properly, i.e.,
it needs a stochastic square matrix T showing the probability of one class being
flipped into another. The main idea is to use those procedures along with a learning
model, e.g., artificial neural network, to increase its robustness.

Considering the asymmetric noise, where each training set instance label y may
be flipped into ỹ ∈ Y with a probability of p(ỹ|y), while the feature vectors remain

60

unaltered. The sample distribution may be calculated as follows:

p(x, ỹ) = p(ỹ|x)p(x) =
∑
y∈Y

p(ỹ|y)p(y|x)p(x).

Thus, the noise transition matrix T ∈ [0, 1]c×c can be defined, denoting the
probability of one label i being flipped into another label j. This row stochastic
matrix is defined as:

Tij = p(ỹ = ej|y = ei),

where ei means the i-th standard canonical vector Rc, i.e., ei ∈ {0, 1}c,1⊤ei = 1.
The basis of both noise correction methods proposed by PATRINI et al. (2016b)

is to incorporate matrix T into the loss function ℓ, e.g., cross entropy for artificial
neural network models. There are two processes: the backward process and the
forward process.

In the backward process, an unbiased estimator using the corrected loss function
equals the original loss computed in clean data. The theorem by (PATRINI et al.,
2016b), which is based on previous work by PATRINI et al. (2016a), shows that,
under specific characteristics, the minimizers will be the same for the data with
or without the noise. In practice, the corrected loss can be considered as a linear
combination of the loss values for each row of T−1. One of the drawbacks of this
method is that, in practice, T must be invertible.

Alternatively, the forward procedure focuses on correcting the model’s predic-
tions themselves. The process is formalized as follows:

ℓ→(p(y|x)) = ℓ(T Tp(y|x)) (4.13)

To analyze the behavior of this process, we will introduce concept of a family of
losses called proper composite (REID & WILLIAMSON, 2010). Given an invertible
link function ψ : ∆c−1 → Rc, the cost function, will be considered a composite loss
and denoted by ℓψ : Y × Rc → R, if it can be expressed using ψ−1, which is,

ℓψ(y,h(x)) = ℓ(y,ψ
−1(h(x))) . (4.14)

For the cross-entropy loss, the softmax function is the invertible link function. A
composite loss may also be a proper loss, i.e., proper composite, which means that
their minimizer has the particular shape of the link function applied to the class-
conditional probabilities p(y|x):

argmin
h

Ex,y ℓψ(y,h(x)) = ψ(p(y|x)) . (4.15)

61

Cross-entropy and square functions are proper composite losses, for example.
The forward procedure uses the same minimizers using appropriate composite cost
functions.

Both approaches suppose the knowledge of a noise transition matrix; however, in
real-life problems, this matrix is usually unknown. PATRINI et al. (2016b) estimates
this matrix, assuming that there is a perfect example for each class in the training
data; however this solution is unsuitable for the collaborative filtering problem since
user preferences are subjective and can change depending on many factors, such as
social influences and context. CARMO (2018) extended PATRINI et al. (2016b)
work and proposed an efficient way to construct this noise transition matrix for the
collaborative filtering problems.

Since there is no way to determine a perfect example for collaborative filtering
problem, CARMO (2018) approach focuses on selecting ratings with a low degree
of inconsistency, i.e., ratings given by a user that are close to their actual values.
Formally:

Definition 1. Being a rating ruv given by a user u to an item v and r̆uv his actual
preference to this item, ruv is considered an anchor, if and only if,

|r̆uv − ruv| < τ , (4.16)

where τ is a threshold close to zero.

To select the ratings to be part of the anchors set, the user’s actual preferences
are unknown and must be estimated. In order to estimate the unknown value of r̆uv,
CARMO (2018) proposed the use of a probability estimator. The procedure can be
seen in the algorithm 3.

Algorithm 3 Determine anchors for the collaborative filtering problem.
Input: ratings set - R, threshold - τ , prediction model - φ.
Output: anchors set - A.
A = {}
for (u, i, r) ∈ R do

r̃ ← φ(u, i)

if |r̃ − r| < τ then
A ← A∪ {(u, i, r)}

end

end

Using the obtained anchors set, it is possible to calculate an approximation of
the noise transition matrix. The proposal uses a probabilistic estimator to calculate
each anchor probability. The procedure is summarized in the algorithm 4.

62

Algorithm 4 Estimating transition matrix T proposed by CARMO (2018).
Input: A|A ⊂ R – set of anchor’s ratings, P – ratings set, p̂ – probability estimator
Output: T – noise transition matrix
for c ∈ P do
Ac ← {∀(u,i,r) ∈ A|r = c} for w ∈ P do

for (u, i, r) ∈ Ac do
T ← p̂(ỹ = c|u, i, w) · ||Ac||−1

end

end

end

4.3 Empirical Results

In this section, we detail our experiments and results using label noise applied
to the malicious noise problem.

Our experiments are carried out to assert our two main assumptions: data cleans-
ing can detect and filter malicious instances and diminish the impact of a shilling
attack, and label noise approaches are robust to malicious noise and can be applied
successfully to the shilling attack problem in collaborative filtering. Firstly, we an-
alyze how data cleansing approaches can filter noisy instances and mitigate shilling
attacks and how these results can be compared to the ones obtained previously.
Secondly, in the same way, we compare each label noise-robust learning algorithm
against each other, evaluating its performance and determining if it is a feasible al-
ternative in the presence of a shilling attack as it is in the presence of natural noise.
In experiments, we use the following attack models to evaluate the data cleansing
and Robust techniques: Variational Autoencoder, Random, Average, Bandwagon,
Segment, PUA-NR, and PIA-NR.

The methodology used here to carry out our experiments will closely follow the
one presented in section 3.4.

4.3.1 Metrics

In order to keep the consistency between all experiments carried out on this
work and facilitate comparisons, we will be using the same metrics set used in the
subsection 2.2.4: prediction shift, hit ratio, and average rank.

63

4.3.2 Setup

We will carry out two different experiments to verify the effectiveness of some
label noise proposals when attacked using several well-known attack models on dif-
ferent scenarios. Therefore, two similar experiments will be performed to evalu-
ate those label noise approaches. The first one will use different attack models to
mount attacks against a multilayer perceptron (MLP)-based recommender system
(HE et al., 2017), using data cleansing methods to clean the training set in order
to compare these methods’ efficiency on malicious data. The second one will com-
pare several label noise-robust algorithms by mounting attacks against MLP-based
systems using the modifications proposed by each of these works.

In both experiments, we will attack the MLP system using well-known attack
models, including Random, Average, Segment, Bandwagon, PUA-NR, and PIA-
NR. Additionally, we will attack it with the Variational Autoencoder, which is our
proposal from the previous chapter.

Both experiments will be conducted using a hold-out strategy, that is, partition-
ing the data into two sets: 70% for train and 30% for testing. The train data is used
to create the malicious profiles, while the test data is used only during the evaluation
of the attack model. For the first experiment, we will assume two different scenarios:
the first will assume no knowledge about malicious users and the entire training set
will be used to perform the data cleansing approach, while the second will assume
that the system administrator has a set of trusted users and only the real users will
be used to perform data cleansing.

Similarly to section 3.4 experiments, in order to evaluate the models from dif-
ferent perspectives, we selected the same 30 distinct target items from these exper-
iments: ten randomly chosen among all items, ten chosen among established items,
that is, top-50 most-rated items, and ten chosen among new items, that is, items
with only one rating (SEMINARIO & WILSON, 2014a). Since our attack intent
is to push, the target item rating was set to the maximum value, which is 5 in
the MovieLens 100k and Yahoo! Music datasets. We averaged the results for each
category of target item and each chosen metric, and reported the results.

The MLP architecture was composed of two hidden layers with 128 neurons and
a dropout of 0.1 in each. We used the Adam optimizer and stopped the training
if no improvement was detected for five consecutive epochs. The batch size chosen
was 128 samples per batch. We modified the cross-entropy cost function according
to each proposal to increase the label-noise tolerance of the model.

Regarding the attack models parameters, we varied the attack size by 1%, 3%,
5%, 10%, and 20%, and filler size, for the models that require it, will be fixed in
7% for the MovieLens 100k dataset and 3% for the Yahoo! Music dataset. We

64

chose this approach because it means sampling 118 items as filler items in case of
MovieLens 100k and 25 items in case of Yahoo! Music, which is around the average
of items composing a genuine profile in each of these datasets. In addition, for
the selected items set, in segment attack, only carried out for MovieLens 100k, we
selected popular horror movies segment (BURKE, 2007) and for the bandwagon
attack, we selected movies (IDs) {50, 56, 100, 127, 174, 181, 258, 286, 288, 294}
as popular movies for MovieLens 100k, which are movies rated by more than 300
users (LI & LUO, 2011), while opting for the 10 most rated songs for Yahoo! Music.
For Power User Attack and Power Item Attack, we chose the NumRatings approach
for power user/item selection, since it yields similar results to those of InDegree
approach, but with better performance overall. In Power Item Attack there is a
parameter that controls the number of power items used to construct each malicious
profile, we varied it by 50, 40, and 30. Parameters for the Variational Autoencoder
were the same chosen in the previous chapter.

Regarding the data cleansing parameters, O’Mahony used a threshold th ob-
tained from previous experiments conducted with the same methodology described
in subsection 3.4.1 for selecting parameters for the Variational Autoencoder. Specif-
ically, a threshold of 0.37 was chosen for MovieLens 100k, and 0.15 was chosen for
Yahoo! Music. For Toledo, the global approach was used for both datasets, which
means the threshold th = 0.25, κ = 0.25, and µ = 0.25.

In short, two experiments are carried out to evaluate data cleansing and label
noise-robust methods:

Experiment I
Comparison with seven shilling attack models: Variational Autoencoder, Ran-
dom, Average, Segment, Bandwagon, PUA-NR and PIA-NR using MovieLens
100k and Yahoo! Music datasets on two MLP -based system. One with noisy
instances treated using O’MAHONY et al. (2006) method, while the other
uses TOLEDO et al. (2015) proposal as the noise treatment.

Experiment II
Comparison with seven shilling attack models: Variational Autoencoder, Ran-
dom, Average, Segment, Bandwagon, PUA-NR and PIA-NR using MovieLens
100k and Yahoo! Music datasets on Carmo (using the forward method), Noise
Channel, Bootstrapping Soft and Bootstrapping Hard systems.

4.3.3 Results

In this subsection, we present and discuss the obtained results from the evalu-
ated experiments. Additionally, we compare data cleansing and label noise-robust
approaches against several well-known shilling attack models.

65

Experiment I

In Experiment I we analyze how data cleansing approaches are able to protect
collaborative filtering-based recommender systems from shilling attacks in two dif-
ferent scenarios. The first scenario presented will consider that the system does not
have access to a set of trusted users.

Figures 4.3, A.4, and A.5 shows the comparison between (a) MLP without any
data cleansing step applied, (b) MLP with O’MAHONY et al. (2006) applied before
training the model, and (c) MLP with TOLEDO et al. (2015) applied using Movie-
Lens 100k dataset with, respectively, selected random target items, the least-rated
target item, and the most-rated target items. For all these experiments, it is possi-
ble to see relevant results from multiple approaches in all metrics, such as PIA-NR,
Variational Autoencoder, PUA-NR, and Average attacks, while Bandwagon shows
weak results, but still causes a lesser impact on the recommender. Regarding the
treatments applied, in comparison, O’Mahony (b) and Toledo (c) approaches do not
seem to alleviate the effects of any attack models under these conditions, reporting
results similar to the baseline without any data cleansing treatment (a).

As expected, the results indicate that data cleansing approaches are highly de-
pendent on the quality of the data used to train the estimator, which is then used to
predict and replace the noisy ratings in the dataset. Consequently, when the data
is already contaminated with attacks, the predictions made by the estimator for the
attacked items are close to the biased injected values and fall below the selected
threshold. This results in nearly identical outcomes regardless of the treatment ap-
plied. The conclusion thus far is that data cleansing approaches are ineffective as a
defense mechanism for the MovieLens 100k dataset in the absence of a set of trusted
users.

Following the evaluation using the Movielens dataset, the Figures 4.4, 4.4,
and A.8 shows the same comparative results between (a) the baseline MLP, (b)
O’Mahony applied to the data before running th MLP, and (c) Toledo applied under
the same circunstances. However, using the R3 Yahoo! Music dataset with, respec-
tively, selected random target items, the least-rated target item, and the most-rated
target items. Please note that due to the lack of information about the items, it was
not possible to evaluate the segment attack using this data. For all three method-
ologies for selecting target items, the baseline shows that PUA-NR stands out and
causes significant damage to the system, while the other attacks have a lesser effect.
The situation remains the same for both the O’Mahony and Toledo approaches, as
they are unable to mitigate the effects of the attacks, similar to what was observed
during the MovieLens 100k evaluation.

Similar to the previous experiment with the MovieLens 100k data under the same

66

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

500

1,000

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

500

1,000

(b) O’Mahony

0 0.1 0.2

0

500

1,000

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure 4.3: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using random target items from MovieLens 100k data set and with attackers injected
in the base estimator training data. Note that it only shows the best result of filler
size among the attack models that require it.

conditions, the reported results reinforce the high dependency on the data, indicating
that this setup will not produce favorable outcomes regardless of the domain. In all
scenarios studied, the differences in the reported results are minimal. Thus, it can
be concluded that data cleansing approaches are ineffective in defending the system
against malicious noise in the music domain as well under these conditions.

Given the results obtained in all scenarios using both datasets, it is possible to
argue that these data cleansing approaches cannot prevent shilling attacks at all
given a scenario where the system administrator does not have access to a set of
trusted users. With the training data already biased by attack profiles inserted in the
ratings database, the results indicate that data cleansing schemes have difficulties
filtering malicious instances from the data.

After the initial evaluation and conclusion that data cleansing methods are in-
effective without a set of trusted uses, the second scenario assumes that the system
has access to these trusted consumers in its database. In this case, the estimator is

67

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0.50

1.00

0 0.1 0.2

0

200

400

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

(b) O’Mahony

0 0.1 0.2

0

200

400

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure 4.4: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using random target items from Yahoo! Music data set and with attackers injected
in the base estimator training data. Note that it only shows the best result of filler
size among the attack models that require it.

trained using only the set of actual users, excluding the attackers. In Figures 4.5,
A.6, and A.7, we display (a) the baseline results, (b) the results applying O’Mahony’s
method, and (c) the results applying Toledo’s approach, using the MovieLens 100k
dataset with random, least-rated, and most-rated target items selected, respectively.
This time; however, it is possible to note how O’Mahony’s technique is able to ef-
fectively reduce the effects of the attack to the bare minimum. The prediction shift
is near zero, and all attack models have difficulties pushing the item up the rec-
ommendation list. Toledo’s technique, on the other hand, does not show major
improvements over the baseline, reporting similar results to the ones found earlier.

Based on the results obtained, there is strong indication that the simple detection
approach formulated by O’Mahony is more effective for detecting malicious noise
compared to the classification-based detection proposed by Toledo. In shilling attack
schemes, the entire malicious profile can be considered noise; however, data cleansing
approaches might need to focus on detecting and correcting only the target item

68

to mitigate the effects of the attack. Analyzing Toledo’s algorithm, for a rating
to be considered noise in our push attack scenario, the user-item pair must meet
specific criteria. Therefore, it is reasonable to suggest that malicious ratings for
the target item may be rarely detected, depending on the user and item individual
classification.

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

−0.50

0.00

0.50

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.20

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

500

1,000

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

500

1,000

1,500

(b) O’Mahony

0 0.1 0.2

0

500

1,000

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure 4.5: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using random target items from MovieLens 100k data set and no attackers in the
base estimator. Note that it only shows the best result of filler size among the attack
models that require it.

After the evaluation with the MovieLens 100k dataset, we will move on to eval-
uate the same experiment using Yahoo! Music dataset. The figures 4.6, A.10, and
A.11 displays the comparative results for (a) baseline, (b) O’Mahony, and (c) Toledo,
this time, for Yahoo! Music dataset and, respectively, randomly selected, randomly
selected among the least-rated, and randomly selected among the most-rated target
items. All figures show that the baseline and Toledo method report similar results,
with PUA-NR causing the most damage to the system. However, the O’Mahony ap-
proach reduces the impact of all attack models to minimal levels, with a prediction
shift of at most 0.4. This indicates that, under the right conditions, this approach

69

can effectively protect the recommender system also with music domain data.
Please note that the same behavior observed during the MovieLens 100k eval-

uation is also noted here with a dataset from a different domain and distribution.
This suggests that having too many rules for classifying users and items may hinder
the identification of malicious noise using Toledo’s global approach. Thus, we can
conclude that a simpler ruleset is more effective for addressing the shilling attack
problem in the settings presented in this experiment.

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

0.50

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.50

1.00

0 0.1 0.2

0

200

400

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2
200

400

600

800

(b) O’Mahony

0 0.1 0.2

0

200

400

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure 4.6: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using random target items from Yahoo! Music data set and no attackers in the base
estimator. Note that it only shows the best result of filler size among the attack
models that require it.

In short, having a set of trusted users is essential for achieving good results
with data cleansing approaches. While Toledo’s approach yields weak results,
O’Mahony’s approach effectively nullifies the effects of the selected attack model,
proving to be an effective method for protecting a recommender system against at-
tacks, provided the system’s administrator has access to a set of trusted users. In
more realistic scenarios, where it is not possible to identify trusted users a priori,
these techniques are unable to distinguish attackers from genuine users. While we

70

cannot pinpoint exactly why Toledo’s approach did not achieve results as compet-
itive as O’Mahony’s, it is possible to argue that a different set of rules tailored to
better address various types of malicious noise could improve the approach’s effec-
tiveness. Experiments to confirm this hypothesis; however, are left for future work.

Experiment II

In Experiment II we analyze how well label noise-robust techniques maintain
their predictions stable in the presence of shilling attacks. In Figures A.12 and
A.13, we show comparative results for (A.12a and A.13a) baseline without any
modifications to deal with label noise in the cost function, (A.13b) Bootstrapping
Hard cost function, (A.13c) Bootstrapping Soft cost function, (A.13b) Noise Chan-
nel, and (A.13c) the solution presented by CARMO (2018) using the MovieLens
100k dataset with the least-rated target items selected. With this setup, most of
the attack models report similar results regarding all three metrics, easily moving
the target items up in the recommendation list. Notably, Variational Autoencoder,
PUA-NR, PIA-NR, and Average report the best results, while Segment is not able
to cause enough damage, which is expected since this attack is designed to attack a
subset of the items in the recommender system. Comparing the two Bootstrapping
approaches, Noise Channel, and Carmo with the baseline, it is possible to note that
the effects of each attack are not alleviated at all, with the modifications in the cost
function yielding similar results to the baseline.

These results indicate that the selected robust approaches do not have the desired
effect when applied to the malicious noise problem. In general, the only attack that
shows any difference between the treatments is Segment, where the Carmo approach
seems to reinforce the attack effects.

The comparison for target items sampled from the most-rated items set of the
MovieLens 100k is shown in Figures A.14 and A.13, comparing once more results for
(A.14a) baseline MLP with the default cost function, (A.14b) Bootstrapping Hard
cost function, (A.14c) Bootstrapping Soft cost function, (A.13b) Noise Channel,
and (A.13c) Carmo’s proposal. As usual, all attack models show some difficulties
in pushing already established items up the recommendation list, which explains
why the impact is less noticeable when trying to affect items in this set. Despite
the difficulties, PUA-NR, PIA-NR, and Random attacks manage to achieve good
results, while Variational Autoencoder achieves the best results using fewer profiles
despite not being able to improve with more profiles injected. One more time,
Segment is unable to shift predictions up. When comparing the modifications to
the cost function with the baseline, once more, the two Bootstrapping approaches,
and Noise Channel cannot prevent the undesirable effects of the attack models,
reporting results on par with the baseline. While all approaches yields unfavorable

71

results, Carmo’s approach actually reinforces the effects of the attacks when applied
to malicious noise, showing that this approach ends up achieving the opposite effect
under these conditions and confirming our initial analysis.

Finally, the last comparison is using target items sampled from the whole universe
of possible items in the MovieLens 100k dataset. The results for the approaches are
shown in Figures 4.7 and 4.8, comparing (4.7a) the baseline with (4.7b) the Boot-
strapping Hard cost function, (4.7c) the Bootstrapping Soft cost function, (4.8b)
Noise Channel layer, and (4.8c) Carmo’s approach. In general terms, most of the
attack models report high values of prediction shift and hit ratio as the attack size
grows while reporting low values of average rank. Note that PUA-NR, PIA-NR,
Average, Random, and Variational Autoencoder are able to shift the target items
without any issues. When focusing on the comparison between the baseline and
the two Bootstrapping approaches, it is noted that Variational Autoencoder shows
slightly better results against the Bootstrapping Soft and Hard cost functions, indi-
cating that this solution may reinforce the attack’s expected behavior rather than
mitigate it. The same can be said for Carmo, though with greater intensity, as
observed earlier. This suggests that the anchors algorithm should be reworked to
better prevent shilling attacks and replicate the success of the approach against
natural noise.

In short, for the MovieLens 100k dataset, it is possible to assume that label
noise-robust techniques do not show competitive results when applied against ma-
licious noise, not showing the same results reported against natural noise and even
reinforcing attack behaviors in some cases. The results are still limited to the movie
domain; however it is possible to argue that the different nature of the malicious
noise problem compared with the natural noise plays an important part since, in a
traditional natural noise setting, the algorithms are designed to correct local noisy
occurences in data, not whole profiles.

Following the MovieLens 100k dataset evaluation, we move on to evaluate if label
noise-robust techniques are able to keep predictions stable in the presence of shilling
attacks using Yahoo! Music dataset. In Figures A.16 and A.17, we show comparative
results for (A.16a) baseline without any modifications to deal with label noise in the
cost function, (A.16b) Bootstrapping Hard cost function, (A.16c) Bootstrapping Soft
cost function, (A.17b) Noise Channel and (A.17c) the solution presented by Carmo
using Yahoo! Music dataset with least-rated target items selected. Please note
that, once again due to the lack of information about the items in this dataset, the
Segment attack could not be carried out. PUA-NR achieves the best results, followed
by the Average attack. Except for Bandwagon, which fails to push the target item,
all other models show acceptable performance against the baseline, Bootstrapping-
based techniques, and the Noise Channel. This indicates that neither modification

72

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

1.00

2.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

500

1,000

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

500

1,000

(b) Bootsrap Hard

0 0.1 0.2

0

500

1,000

(c) Bootsrap Soft

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure 4.7: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using random target items
from MovieLens 100k data set. Note that it only shows the best result of filler size
among the attack models that require it.

of the cost functions alleviates the effects of the attack models in the music domain.
The approach introduced by Carmo, on the other hand, reinforces the impact of
all attacks, resulting in considerably worse performance compared to the baseline,
Bootstrapping methods, and the Noise Channel.

The comparison for target items sampled from the most-rated items set of the
Yahoo! Music is shown in figures A.18 and A.19, comparing again the results for
(A.18a) baseline MLP with the default cost function, (A.18b) Bootstrapping Hard
cost function, (A.18c) Bootstrapping Soft cost function, (A.19b) Noise Channel and
(A.19c) Carmo’s proposal. Once more, PUA-NR attack model stands out, this time
being the only attack able to obtain results above the average levels. However,
it is important to note that in MovieLens 100k, none of the approaches managed
to reach these levels with items already established in the dataset. Regarding the
comparison between the baseline and the Bootstrapping approaches, channel, and
Carmo, there is not much difference between the treatments, supporting the initial
claim that Label Robust techniques do not seem to make a difference when applied

73

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

1.00

2.00

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

500

1,000

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

500

1,000

(b) Noise Channel

0 0.1 0.2

0

500

1,000

(c) Carmo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure 4.8: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques using random
target items from MovieLens 100k data set. Note that it only shows the best result
of filler size among the attack models that require it.

to malicious noise. The comparison between the baseline and Carmo’s proposal
shows similar results to the ones reported earlier, with the second reinforcing the
effects of the attack models.

Lastly, we will compare using target items sampled from the whole universe of
possible items of the Yahoo! Music dataset. For the first two approaches, the re-
sults are shown in figures 4.9 and 4.10, with the comparison of (4.9a) the baseline
with (4.9b) the Bootstrapping Hard cost function, (4.9c) the Bootstrapping Soft cost
function, (4.10b) the Noise Channel layer, and (4.10c) Carmo’s approach. Similar to
the previously reported results, the PUA-NR attack models achieve the best results
across all treatments with minimal differences, indicating that in the music domain,
Bootstrapping-based approaches and the Noise Channel are also ineffective at pre-
venting the effects of shilling attacks. When comparing the baseline with Carmo’s
approach (see Figure 4.10c), the same pattern is observed: Carmo’s approach rein-
forces the effects of the attacks, with only Bandwagon failing to cause damage to
the system in this case.

74

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2
0.00

0.50

1.00

0 0.1 0.2

0

200

400

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

(b) Bootsrap Hard

0 0.1 0.2

0

200

400

(c) Bootsrap Soft

PIA-NR PUA-NR Random
Bandwagon Average VarAuto

Figure 4.9: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using random target items
from Yahoo! Music data set. Note that it only shows the best result of filler size
among the attack models that require it.

In general, it is evident that power users can push target items further up the
recommendation list on Yahoo! Music compared to MovieLens 100k. This may be
attributed to the unique characteristics of music recommendations, where users tend
to either strongly like or dislike a song, often assigning the minimum or maximum
rating. Another important point is that, while other approaches do not achieve the
same level of impact as the PUA-NR attack, the results are still significant. They
indicate that none of the collaborative filtering robust algorithms presented in this
chapter are robust against malicious noise.

Additionally, these results highlight fundamental differences between natural and
malicious noise problems. Natural noisy data in a collaborative filtering setting
might include a misclicked rating or preferences saved by different family members
using the same profile. In contrast, malicious noise often involves an entire set of
multiple profiles used to inject noise in a coordinated way, making it challenging
for label noise-robust models to handle. These models are designed to correct small
perturbations in the data, rather than deal with multiple coordinated ratings for

75

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.50

1.00

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0

200

400

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

(b) Noise Channel

0 0.1 0.2

0

200

(c) Carmo

PIA-NR PUA-NR Random
Bandwagon Average VarAuto

Figure 4.10: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques using random
target items from Yahoo! Music data set. Note that it only shows the best result of
filler size among the attack models that require it.

the same item. Specifically, for Carmo’s MLP method, shilling attacks not only
avoid detection but also exacerbate the effects of the attack, regardless of the do-
main. This occurs because the algorithm treats the ratings of the malicious target
items as anchors and calculates the probabilities in the transition matrix based on
them, effectively telling the model that these ratings are close to their true values.
Therefore, this approach is currently unsuitable for preventing shilling attacks.

76

Chapter 5

Evaluating Detection Models for
Shilling Attacks

This chapter introduces and reviews shilling attack detection models, one of the
main strategies to diminish the effects of attacks. At the end of the chapter, we will
apply the presented detection models to well-known shilling attacks in the literature,
as well as, our proposal presented in Chapter 3. We will also discuss and compare
these results with results obtained by applying the same detection techniques to a
real-world dataset, with real attackers.

5.1 Detection Models

Detection models are important to protect recommender systems against attacks
and mitigate their effects. According to GUNES et al. (2012), detection models ac-
counted for 29% of the published works until 2012, being one of the most researched
topics in shilling attack. There have been various models proposed for detection
over the years, such as statistical techniques, classification, unsupervised clustering,
and variable selection (GUNES et al., 2012). In the following subsections, we will
present and discuss several detection approaches separated into three distinct cate-
gories: supervised, semi-supervised, and unsupervised techniques (LI et al., 2016).

5.1.1 Supervised

In general, supervised detection models involve deriving features for each profile
based on user rating patterns and training a classifier to predict whether a profile is
an attacker. This subsection will present several supervised methods for detecting
shilling attacks.

DegreeSAD (LI et al., 2015) is a supervised approach that proposes running a
classifier on top of statistical features derived from the data. The authors presented

77

a set of three features based on the popularity degree distribution of items rated by
real users: User’s popularity average (MUD), User’s popularity extreme difference
(RUD), and User’s popularity upper quartile (QUD).

MUD represents the average popularity degree of the items rated by each user
in the whole dataset. It can be calculated as follows, where d′k is an element of the
user u popularity vector, and Gu is the list of the popularity of each item u rated:

MUDu =

∑Gu

k−1 d
′
k

Gu

, u = 1, 2, 3, ..., N (5.1)

RUD represents the difference between the maximum and minimum values in
each user’s popularity vector, where d′max represents the maximum popularity value
on the set of items rated by u and d′min represents the minimum popularity value on
the set of items rated by u:

RUDu = d′max − d′min, u = 1, 2, 3, ..., N. (5.2)

The last metric, QUD, is the upper quartile of the popularity vector for each
user, where d′k represents user u popularity vector from the 4th quartile onwards,
sorted in ascending order:

QUDu = d′k, u = 1, 2, 3, ..., N. (5.3)

Each of these features is calculated for each user in the dataset, and a supervised
classifier is trained on top of the generated data.

PopSAD (LI et al., 2016) is another supervised approach focusing on feature
extraction and detection through machine learning-supervised models. Like De-
greeSAD, this work also proposes exploring popularity-based features, this time
using selected user patterns, in order to differentiate shilling profiles from real ones.
Basically, the authors argue that attackers and real users rate items using different
mechanisms, where real users rate according to their preferences while fake profiles
logically use rules determined by the attack models themselves.

The authors first defined a user u popularity profile PPu as a set of item popu-
larity values for rated items, i.e., PPu = (du,1, du,2, ..., du,Nu), where Nu is the total
number of items rated by user u and du,i is the popularity of the i-th rated item in
user u’s profile. Then, they introduced the popularity distribution of a user, which
is the probability distribution of item popularity values in a user’s popularity profile,
i.e., each element in the distribution is a probability of items in PPu that is equal
to a value. This probability is calculated as pu,i = Nd=iNu, where Nu is the number
of items in the user’s popularity profile, and Nd=i is the number of elements with
the popularity of i. For a user u then, the probability distribution is defined as

78

Du = (pu,1, pu,2, ..., pu,dmax), where dmax is the maximum popularity value within the
recommender system.

In order to define the width of the intervals to transform the probability distri-
bution into usable features, the authors proposed using the lower boundary of the
Mean Popularity of a User (MPU) to divide it into bins, which means the mean
value of the popularity profile:

MPUu =

∑Nu

u=1 du,i
Nu

, (5.4)

where Nu is the number of items rated by user u and du,i is the popularity of the i-th
rated item for the user u. With the interval bins defined as features, a supervised
classifier is trained on top of these extracted features.

CoDetector (DOU et al., 2017) is a supervised approach that focuses on exploit-
ing interactions between users and items. The core concepts of this approach involve
matrix factorization (MF) and user embedding techniques, which jointly decompose
both the rating matrix and the user-user co-occurrence matrix, sharing latent factors
between the two.

As already mentioned in section 2.1.1, matrix factorization is a class of collabora-
tive filtering techniques based on the extraction of underlying interactions between
users and items, through latent factor extraction, which maps users and items into
a low-dimensional space (KOREN et al., 2009).

Word embedding refers to models where each word in a phrase is embedded
into a continuous vector space, while context is defined by the words surrounding
a center word. Bridging the two concepts, SGNS (skip-gram neural embedding
model) (MIKOLOV et al., 2013) is a neural model trained with a negative sampling
procedure, equivalent to the factorization of a word-context matrix, where the rows
are the pointwise mutual information (PMI) between each word and its respective
context (LEVY & GOLDBERG, 2014). The PMI of a word w and a context c can
be calculated as follows, where #(i, j) is the number of times word j is in the context
of the word i, and |D| is the total number of word-context pairs.

PMI(i, j) = log
#(i, j)|̇D|
#(i)#̇(j)

(5.5)

LEVY & GOLDBERG (2014) proposed SPPMI (Shifted Positive PMI), which
improves the embedding using different negative sample count k as follows.

SPPMI(i, j) = max{PMI(i, j)− log k, 0} (5.6)

In the context of recommender systems, the context of a user u is defined as the
set of other users who have rated the same items as user u. Specifically, if another

79

user j has rated the same items that user u has rated, then user j is considered
part of user u’s context. Thus, the user-user SPPMI matrix M ∈ Rm×m can be
constructed by computing #(i, j), the number of items that both users i and j

rated. User embedding is obtained by factorizing M .
Putting it all together, the CoDetector cost function can be defined as follows,

where pu is the shared user latent factors, muj is the shifted positive point-wise
mutual information between users u and j, gj is the context of user u and wu and
cj are, respectively, the biases of the user and the context:

L =
∑
u,i

(yui − pTu qi)
2 +

∑
u,j

(muj − pTu gj − wu − cj)
2

+ λ(
∑
u

||pu||2 +
∑
i

||qi||2 +
∑
j

||gj||2)
(5.7)

The model parameters can be updated by using the stochastic gradient descent
as normal. The updated rules are denoted as follows:

∂L

∂pu
= λpu − (yui − pTu qi)qi − (muj − pTu gj − wu − cj)gj

∂L

∂qi
= λqi − (yui − pTu qi)pu

∂L

∂gj
= λgj − (muj − pTu gj)pu

∂L

∂wu

= muj − pTu gj − wu − cj

∂L

∂cj
= muj − pTu gj − wu − cj

(5.8)

5.1.2 Semi-Supervised

Semi-SAD (CAO et al., 2013) is a semi-supervised detection technique that com-
bines a naïve Bayes classifier with an EM-λ algorithm to improve the initial results.
The proposal’s first step is to define multiple metrics that will be used to construct
the classification dataset from rating data to train the model and predict if a profile
is an attacker or not. The authors selected multiple well-established metrics pro-
posed in previous works, such as Entropy, DegSim, LengthVar, RDMA, and FMTD
(BURKE et al., 2006; CHIRITA et al., 2005; WILLIAMS & MOBASHER, 2006).

Entropy is used to measure the level of dispersal or concentration of a profile
(CAO et al., 2013). Attack profiles’ ratings are often generated using a Gaussian
distribution, which means that the entropy of attackers tends to be smaller than
real users. Given Xu = ni, i = 1, 2, ..., rmax as a statistical set for user u, where ni is
the time when the i-th rating occurred for this particular user, the entropy of u can
be calculated as follows:

80

H(u) = −
rmax∑
i=1

ni

S
log2

ni

S
, where S =

rmax∑
i=1

ni (5.9)

Degree of Similarity with Top Neighbors (DegSim) represents the average simi-
larity of a profile’s top-K neighbors. This metric can be computed as follows:

DegSimu =

∑
v∈neighbors(u)Wu,v

k
(5.10)

Length Variance (LengthVar) was proposed to measure the difference between
the length of a given profile and the average length of the profiles within a system.
Larger profiles tend to be constructed by attackers, since it is unlikely that a user
has entered all that rating data manually (BURKE et al., 2006). This metric is
computed using the following equation:

LengthV aru =
|nu − n̄u|∑

u∈U(nu − n̄u)2
(5.11)

Rating Deviation from Mean Agreement (RDMA) (CHIRITA et al., 2005) rep-
resents the average deviation of ratings assigned by a user compared to the mean
rating of the item given by other users, weighted by the total number of ratings
given by that user. It can be calculated by the following equation:

RDMAu =

∑Nu

i=0
|ri,u−Avgi|

NRi

Nu

(5.12)

Filler Mean Target Difference (FMTD) was proposed to detect Bandwagon and
Segment attacks, where an attacker assigns the maximum rating value to a selected
group of items. This metric focuses on detecting the difference between these profiles
from the average rating received by the item in question. It can be calculated as
follows:

FMTDu =

∣∣∣∣∣
(∑

i∈Pu,T
ru,i

|Pu,T |

)
−

(∑
k∈Pu,F

ru,k

|Pu,F |

)∣∣∣∣∣ (5.13)

After the metrics definition and extraction, a naïve Bayes classifier is trained
using the small set of labeled data available, estimating its initial parameters, i.e., the
mean and the standard deviation of the probability distribution from both attackers
and normal users classes. For this learning process, the authors assumed that the
i-th metric from the set of extracted metrics Mi follows a Gaussian distribution
with a mean of µi and a standard deviation of ρi. This way, the probability P (xi|C)

represents the probability of a user belonging to class C if its i-th metric is Mi = xi.

P (xi|C) = g(xi, µCi
, ρCi

), where g(x, µ, ρ) =
1√
2πρ

e
− (x−µ)2

2ρ2 (5.14)

81

Where µCi
is the mean and ρCi

is the standard deviation of the i-th metric in
class C and g(xi, µ, ρ) the probability density function of the gaussian distribution.
Thus, the probability of a user belonging to class C may be given as follows:

P (u|C) =
n∏

i=1

P (xui|C) (5.15)

The final phase consists of using EM-λ (NIGAM et al., 2000) to take advantage of
the unlabeled data and improve the naïve Bayes classifier parameters. EM basically
re-estimates parameters using two steps, the E-step, and the M-step.

The E-step is used to calculate the probability of a user belonging to any of the
classes, where probability P (C) represents the probability of the sample being an
attacker or not, which can be uniform or estimated based on the cardinality of the
classes in the labeled set:

P (uk ∈ C) = P (c|uk) =
P (C)P (uk|C)

P (uk)
(5.16)

The M-step calculates the estimated parameters based on the probability calcu-
lated from the previous step as follows. The mean of the i-metric of the data that
belongs to the C class can be computed as:

µCi
=

1

|C|

|C|∑
u=1

ωuxui (5.17)

While the standard deviation of the i-metric of the data that belongs to the C

class can be computed as:

ρCi
=

√√√√ 1

|C|

|C|∑
u=1

ω2
u(xui − µCi

)2 (5.18)

In both mean and standard deviation, each class number |C| is computed using
weight ωu, where |Lc| is the number of labeled C users in L.

|C| = |LC |+
|U |∑
u=1

ωu (5.19)

The weighting factor ωu can be computed as follows:

ωu = Λ(u)
P (u ∈ C)∑
j P (u ∈ Cj)

(5.20)

Please note that the weighting factor Λ controls the influence of the unlabeled
data in the results.

82

5.1.3 Unsupervised

PCAVarSelect (MEHTA & NEJDL, 2009) is an unsupervised detection technique
proposed to exploit the high correlation between attack profiles to find such a group
of profiles in a CF dataset. As previously discussed, attack profiles are usually
correlated in order to cause the desired effect in the recommendation algorithm,
so it is possible to use Principal Component Analysis (PCA) to compute principal
components, i.e., orthogonal linear combinations, and, therefore, select those which
shows the highest covariance with all other dimensions.

PCA is a linear dimensionality reduction technique that computes and uses the
principal components to perform a change of basis in data. The process is equivalent
to an eigendecomposition of the original data covariance matrix. More formally,
suppose that Xm×n is a matrix representing the input data, where each column
is an observation xi = {xi,1, xi,2, ..., xi,m}. Note that, for simplifying purposes, we
assume that the data is zero-centered, thus the covariance matrix C is defined as:

C =
1

n− 1
XẊT , (5.21)

The symmetric covariance matrix C can be decomposed using spectral decompo-
sition theorem (JOLLIFFE, 2002), where Lambda is a diagonal matrix of eigenvalues
of C and U are the eigenvectors:

C = UλUT , (5.22)

hence, the principal components are given by the rows of the S matrix, as follows:

S = UTX, (5.23)

the principal components can be sorted in ascending order, where the ith row will
represent the i principal component. To accomplish this, the rows of U are ordered
according to the eigenvalues of C.

The full process is carried out according to Algorithm 5 below. First, the data
is normalized using z-scores. Next, the resulting matrix is transposed, and the
covariance matrix is calculated. Then, eigendecomposition is performed to extract
the first three principal components.

83

Algorithm 5 Calculating distances between users using PCA MEHTA & NEJDL
(2009).
Input: D – ratings matrix (user × item)
Output: T – r users with smallest distance values
D = z-scores(D)

D = DT

COV = DTD

UλUT = Eigen-value-Decomposition(COV)

PCA1 = U(:, 1)

PCA1 = U(:, 2)

PCA1 = U(:, 3)

for user ∈ D do
Distance(user) = PCA1(user)

2 + PCA2(user)
2 + PCA3(user)

2

end
Sort(Distance)

Fraudulent Action Propagation (FAP) (ZHANG et al., 2015) is an unsupervised
detection framework designed to identify shilling attacks without relying on spe-
cific details about various attack strategies. The authors noted that many existing
detection methods are typically based on identifying particular characteristics of
known attack strategies. In contrast, their proposal focuses solely on the ratings
that malicious profiles assign to target items.

Given a bipartite graph G = (U ,P , E), where U is the set of users, P is the set of
items, and E is the set of edges ⟨ui, pj⟩, and a set Us of seed attackers detected and
labeled manually, the proposed framework consists on a label propagation algorithm
to estimate the probability P (ui) of a user ui ∈ U being an attacker.

In order to apply it to the rating data, the bipartite graph G needs to be con-
structed using a methodology to estimate the weight of each edge wij, which links a
particular user ui and a particular item pj. Each weight is estimated considering the
rating count, user rating bias, item rating bias, and global rating bias, as follows:

wij = 1 +

∣∣∣∣rij − r̂i
r̂i

∣∣∣∣+ ∣∣∣∣rij − r̂j
r̂j

∣∣∣∣+ ∣∣∣∣rij − r̂

r̂

∣∣∣∣ (5.24)

To propagate the probability of a user/item being an attacker, it is necessary to
estimate the user-to-item transition probability tuipj and the item-to-user transition
probability tpjui

using the bipartite graph G. This probability is calculated by
dividing a particular edge weight by the total edge weight of a user as follows:

tuipj =
wij∑

i′:⟨ui,pj′ ⟩∈E
Wij′

(5.25)

In the same way, it can be calculated for items:

84

tpjui
=

wij∑
i′:⟨ui′ ,pj⟩∈E

Wi′j
(5.26)

If there are no edges connecting the user ui and the item pj, we have tuipj =

tpjui
= 0.

Supposing m = U and n = P , the user-to-item transition matrix can now
be defined as Tup = (Tuipj)m×n, while the item-to-user transition matrix is Tpu =

(Tpjui
)n×m.

The user probability vector Pu and the item probability vector Pp are constructed
using the respective probabilities of each user and item being attackers as follows:

Pu = [P (u1), P (u2), P (u3), ..., P (um)]
T (5.27)

Pp = [P (p1), P (p2), P (p3), ..., P (pn)]
T (5.28)

Finally, the probability vectors can be estimated using the transition matrices,
the next equations show how the propagation is performed for the i-th iteration:

P i
p = TpuP

i−1
u (5.29)

P i
u = TupP

i
p (5.30)

One should note that labeled users should have their probabilities set to their
initial values, i.e., P (ui) = 1, before each iteration in order to achieve convergence.

UD-HMM (ZHANG et al., 2018) is a shilling attack detection method based on
the hidden Markov model (HMM) and hierarchical clustering. It was proposed to
overcome the limitations of the existing techniques, which in general require prior
knowledge to properly achieve competitive results.

The model consists of two different stages: the first stage uses an HMM to gen-
erate the users’ preference sequence, calculating a metric called the user’s matching
degree, while the second stage calculates the entropy of each item, combining it
with the user’s matching degree to form the item’s suspicious degree and, then, cal-
culating the user’s suspicious degree from the previous metrics. The last step is to
apply hierarchical clustering to the user’s suspicious degree and obtain the detection
results.

The core idea is based on the difference in the rating patterns of real and shilling
users, where the item sequence is the main trait analyzed. For instance, it’s possible
to define the User Rating Item Sequence (URIS) as the observation sequence, where
jun1,t1 represents the item jn1 rated by the user u at the time t1.

URISu = jun1,t1, j
u
n2,t2, ..., j

u
ns,ts (5.31)

85

Using the rating sequences, it is possible to train an HMM to generate the user’s
preference sequence where the items rated in the sequence are the observed variables
and the hidden states are regarded as the user’s preferences. The number of hidden
states N is the number of different interests of users and the number of observations
M or T is regarded as the number of items rated by each user.

With the model trained, a metric named User Matching Degree (UMD) can be
derived from it. This metric aims to measure the difference in rating patterns be-
tween real and shilling profiles. For every user in the user’s set U , Ou = O1, O2, ..., OT

represents the observation sequence of a user u, and Qu = q1, q2, ..., qT represents
the same user hidden state sequence, it is defined as:

UMDu = t

√√√√Π̂(q1)β̂(q1, O1)
T∏
i=2

α̂(qi−1, qi)β̂(qi, Oi), (5.32)

where T is the number of items rated by user u, α̂ is the station transition probability
matrix, Π̂ is the initial state probability matrix, and β̂ is the observation probability
matrix.

Following this step, in order to calculate the Item Suspicious Degree (ISD), it is
necessary to define the Item Entropy (IE). Begin H a set of possible ratings provided
by users in the system, e.g., 1, 2, 3, 4, 5 for MovieLens dataset, Pj,d the probability
of all users giving d points for item j, the entropy for item j is calculated as follows

IEj = −
∑
d∈H

Pj,d log2 Pj,d, (5.33)

Pj,d =

∑
r
tk
uk,j∈IRSj

γ(rtkuk,j
, d)∑

d∈H
∑

r
tk
uk,j∈IRSj

γ(rtkuk,j
, d)

, (5.34)

where IRSj is the Item Rating Sequence (IRS), i.e., rt1u1,j
, rt1u1,j

, ..., rtmum,j a series of
item j’s ratings given by users u1, u2, ..., um at the time t1, t2, ..., tm and, γ(rtkuk,j

, d)

is the discriminator function.
The Item Suspicious Degree (ISD) of an item j can be calculated using the

normalized representation of the reciprocal of user u’s matching degree Φu and, the
normalized representation of the reciprocal of item j’s matching degree ζj:

ISDj =

∑
u∈UH

Φu

|UH |
× ζj, (5.35)

Φu =
1/UMDu − 1/UMDmax

1/UMDmin − 1/UMDmax

, (5.36)

ζj =
1/IEj − 1/IEmax

1/IEmin − 1/IEmax

, (5.37)

86

where UH is the set of users who gave high ratings to the item j, e.g., greater than
3 for MovieLens dataset, UMDu is the matching degree for the user u, UMDmax

and UMDmin are, respectively, the maximum and minimum values computed for
the UMD, while, in the same way, IEj is the item entropy for item j and, IEmax

and IEmin are the maximum and minimum computed values for the IE. A user is
regarded as more suspicious as greater is the deviation of her preferences.

Suspicious Degree Range of Items (SDRI) of an user u is defined by subtracting
the minimum ISDu

min from the maximum ISDu
max value within the items the user

u have rated.

SDRIu = ISDu
max − ISDu

min (5.38)

Finally, the User Suspicious Degree (USD) for an user u is defined as the linear
weighted combination of Φu, the normalization of reciprocal user matching degrees,
and ϕu, the normalizing representation of the suspicious degree range of items rated
by u, with α as a weight factor and, SDRImax and SDRImin as the maximum and
minimum values of SDRI rated by these users.

USDu = α× Φu + (1− α)× ϕu (5.39)

ϕu =
SDRIu − SDRImin

SDRImax − SDRImin

(5.40)

After the metrics are calculated for all users, a hierarchical clustering technique
can be applied. The cluster with the highest mean is chosen as the shilling attack
users cluster.

5.2 Detection Models Evaluation

In this section, we detail our experiments and results comparing different state-
of-the-art shilling attack detection approaches.

Our experiments are focused on asserting if the selected state-of-the-art detection
techniques can successfully detect shilling attackers and prevent significant damage
to the recommender system. A secondary goal is to assess the number of genuine pro-
files that are misclassified as attackers, as this could be problematic when applying
these techniques in real-world scenarios. Additionally, we can compare real-world
attacks with the shilling attacks described in the current literature and evaluate
the effectiveness of the techniques. In our experiments we compare the following
shilling attack detection approaches against each other, evaluating its assertiveness:
CoDetector, DegreeSAD, PopSAD, FAP, PCAVarSelect, SemiSAD, and UD-HMM.
In the same way, the following attack models are used to evaluate these techniques:

87

Variational Autoencoder, Random, Average, Bandwagon, Segment, PUA-NR, and
PIA-NR.

5.2.1 Metrics

For the upcoming experiments, we use precision, recall, and F1-measure to eval-
uate the detection approaches reviewed in this chapter. These are classic metrics
when evaluating detection algorithms, and are defined as follows:

Precision =
tp

tp+ fp
(5.41)

Recall =
tp

tp+ fn
(5.42)

F1−measure =
2tp

tp+ fp+ tp+ fn
. (5.43)

Additionally, we use the False Alarm Rate (FAR), which is a metric being used in
similar experiments in previous works CHUNG et al. (2013). This metric captures
the real profiles falsely detected as attackers:

FAR =
fp

fp+ tn
, (5.44)

where tp is the number of true positives, which, in a shilling attack context means
the total attack profiles correctly detected, fp is the number of false positives, i.e.,
real profiles misclassified as attackers, fn are false negatives, the shilling attackers
misclassified as real profiles, and tn is the number of true negatives, which means
the real profiles correctly classified.

5.2.2 Setup

We will carry out an experiment to verify the effectiveness of the shilling attack
detection approaches. This experiment will compare several state-of-the-art detec-
tion algorithms using the previously presented datasets, including Amazon review,
a dataset containing real-world spammer users.

Due to the different nature of the tested models, experiments for supervised and
semi-supervised detection techniques require a different setup compared to experi-
ments for unsupervised detection techniques. For the former, the experiment uses
a hold-out strategy, partitioning the users into two sets: 50% for training and 50%
for testing. Both partitions are used to create malicious profiles, which are then
injected into their respective partitions. For the latter, the entire dataset is used
to create attack profiles, which are injected into the full dataset and subsequently

88

labeled by the unsupervised technique. Please note that regardless of the technique
type, attackers are generated for MovieLens 100k and Yahoo! Music datasets, while
for the Amazon dataset, there is no need to generate attackers since this dataset
was already attacked previously, and the users are labeled.

Different from the previous chapters’ experiments, for MovieLens 100k and Ya-
hoo! Music we selected ten randomly chosen items among all items for these ex-
periments. Please note that the items chosen here are the randomly chosen in the
previous experiments. Since our attack intent is to push, the target item rating
was set to maximum value (which is 5 in the MovieLens 100k and Yahoo! Music
datasets). We averaged the results for each chosen metric and reported the results.
The attack model parameters remain the same as reported previously in subsection
4.3.2.

The parameters for each shilling attack detection technique are chosen empiri-
cally, using a random partition of the data and a random target item in MovieLens
100k and Yahoo! Music cases. The parameters of the attack models are the same
as reported in the previous experiment in subsection 4.3.2.

In resume, two experiments are carried out to evaluate the detection approaches
and the attack models:

Experiment I
Comparison with well-known detection approaches: DegreeSAD, PopSAD,
CoDetector, SemiSAD, PCAVarSelect, FAP, and UD-HMM (only for Movie-
Lens 100k) running on seven shilling attack models: Variational Autoencoder,
Random, Average, Segment, Bandwagon, PUA-NR and PIA-NR using Movie-
Lens 100k and Yahoo! Music datasets.

Experiment II
Comparison with well-known detection approaches: DegreeSAD, PopSAD,
CoDetector, SemiSAD, PCAVarSelect, FAP, and UD-HMM (only for Movie-
Lens 100k) running on the Amazon Review dataset, a database containing
labeled real-world attackers.

5.2.3 Results

In this subsection, we present and discuss the obtained results from the evalu-
ated experiments. In addition, we compare state-of-the-art shilling attack detection
approaches against several well-known shilling attack models.

89

Experiment I

In Experiment I, we analyze how detection approaches perform when faced with
well-known shilling attack models. Note that approaches from different categories
are not directly comparable.

In Figure 5.1, we show the results for the supervised detection techniques: (a) De-
greeSAD, (b) PopSAD, and (c) CoDetector using MovieLens 100k dataset. Among
these techniques, DegreeSAD (Figure 5.1a) shows competitive results across almost
all shilling attack approaches, demonstrating high F1 scores and low False Alarm
Rates for every attack size, except for Variational Autoencoder and PUA-NR at-
tacks. These results suggest that both of these approaches are particularly effective
at creating profiles that are closer to real ones. The reason for the PUA-NR case is
more apparent, as it directly copies real users from the database. However, Varia-
tional Autoencoder aims to generate ratings similar to those from real users without
directly copying profiles, and the results here support this hypothesis.

The second detection approach evaluated, PopSAD (Figure 5.1b), shows some
difficulties with smaller attack sizes across nearly all approaches using the Movie-
Lens 100k dataset, with the exception of PIA-NR. However, it manages to improve
results as the number of injected attack profiles increases. From an attack size of
5% of the total number of profiles, i.e., 47 profiles, the results become comparable to
those reported by DegreeSAD, with Variational Autoencoder and PUA-NR manag-
ing to evade detection of several profiles. PIA-NR, however, avoids detection almost
entirely. Since PopSAD focuses on constructing features based on the popularity of
items in the database, this attack constructs shilling profiles using the most popular
items in the system, which allows it to bypass detection by real users without issues.

The last supervised technique evaluated is the CoDetector (Figure 5.1c), which
shows perfect results on all metrics against Segment attacks and good precision levels
defending the system from Variational Autoencoder and PIA-NR attacks. On the
other hand, recall values are not competitive at all, indicating that some attackers
might pass as genuine profiles when using this detection technique. It is also impor-
tant to note that this technique also fails to detect most of the other approaches,
such as Average and Bandwagon attacks. In any case, except for Segment attacks,
this approach performs poorly with smaller attacks, i.e., lower than 5% of the total
profiles, indicating limitations in the area where Variational Autoencoder typically
excel in latent factor-based systems.

These initial reports indicate that our model is able to evade detection by most of
the supervised detection approaches on the MovieLens 100k dataset. Additionally,
there are strong indications supporting the hypothesis that replicating real users’
rating patterns is sufficient to create an attack model capable of avoiding detection.

90

0 0.1 0.2

0.50

1.00
P

re
ci

si
on

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

R
ec

al
l

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2
0

0.5

1

F
1

0 0.1 0.2

0

0.5

1

0 0.1 0.2

0

0.5

1

0 0.1 0.2

0

0.1

0.2

FA
R

(a) DegreeSAD

0 0.1 0.2

0

0.2

0.4

(b) PopSAD

0 0.1 0.2

0

0.1

0.2

0.3

(c) CoDetector

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure 5.1: Precision, recall, F1, and False Alarm Rate for supervised detection
methods using MovieLens 100k data set. Note that it only shows the best result of
filler size among the attack models that require it.

In Figure 5.2, we present the results for the unsupervised detection techniques:
(a) PCAVarSelect, (b) FAP, and (c) UD-HMM, using the MovieLens 100k dataset.
The first technique discussed is PCAVarSelect (Figure 5.2a), which generally strug-
gles to detect all approaches across various attack sizes, exhibiting the poorest perfor-
mance compared to other shilling attack detection techniques. Notably, the number
of false alarms is at most 20%, which, while smaller than that of the supervised tech-
niques, is still relatively high. This indicates that PCAVarSelect is not competitive
even against the most basic shilling attacks.

The second approach evaluated is FAP (Figure 5.2b), which achieves good recall
results for smaller attack sizes tested, e.g., 1% of the total users in the dataset.
However, as the size of the attack set grows, FAP does not improve on these results

91

and misclassifies several genuine users as attackers, as indicated by the False Alarm
Rate. This technique also struggles with PUA-NR and Variational Autoencoder
attacks, failing to distinguish between shilling profiles and genuine ones. This is
another important result in the comparison between our approach and PUA-NR,
indicating that the malicious profiles generated from samples are sufficiently similar
to the original data.

Finally, the results for the UD-HMM approach (Figure 5.2c) demonstrate the
most competitive performance among the unsupervised techniques. It effectively
detects almost all attack sizes from Random and Average approaches without issues
and shows competitive, though less effective, results against Segment and Band-
wagon attacks. However, when it comes to detecting more realistic profiles, the ap-
proach struggles with PUA-NR and Variational Autoencoder, exhibiting high False
Alarm Rates and lower precision, recall, and F-measure. A special case occurs with
the PIA-NR attack, where UD-HMM reports high recall but low precision, indicat-
ing that while attackers are not misclassified as real profiles, a significant number of
genuine profiles are incorrectly identified as attackers, which represents a meaningful
drawback for this technique.

The reported results for the unsupervised approaches strongly suggest that the
hypothesis is valid for the MovieLens 100k dataset, corroborating our previous as-
sumptions. So far, the Variational Autoencoder attack model presents a greater
threat than most other attack models due to its ability to remain less detectable
and its tendency to provoke a higher rate of false alarms.

The last technique evaluated is the only semi-supervised technique, SemiSAD.
Figure 5.3 shows the results reported for this detection approach using MovieLens
100k dataset. Apart from the attack mounted using only 9 profiles (1% of the total
users in the dataset), the results indicate that this approach seems to detect effec-
tively most of the attack models, with the exception of, once more, PUA-NR and
Variational Autoencoder. Despite good precision results for the Variational Autoen-
coder, average recall values indicate that several profiles are able to pass undetected
to this technique, dragging the F1 metric value down and, thus, compromising using
this detection approach against this attack model. It is also possible to highlight
the high False Alarm Rate when evaluating the detection technique against the
PUA-NR, which is understandable since PUA-NR copies real profiles as previously
stated.

Based on the experiments reported above, the hypothesis can be accepted as valid
under the conditions presented in this section. The Variational Autoencoder model
successfully avoids detection in most scenarios, except when using the SemiSAD
approach. However, it is important to note that in this case, the reported recall val-
ues are low, indicating that several attack profiles are misclassified as genuine ones.

92

0 0.1 0.2

0.00

0.50

P
re

ci
si

on

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

R
ec

al
l

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

0.5

F
1

0 0.1 0.2

0

0.5

0 0.1 0.2

0

0.5

1

0 0.1 0.2

0.05

0.1

0.15

FA
R

(a) PCAVarSelect

0 0.1 0.2

0

0.05

0.1

(b) FAP

0 0.1 0.2

0

0.5

1

(c) UD-HMM

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure 5.2: Precision, recall, F1, and False Alarm Rate for unsupervised detection
methods using MovieLens 100k data set. Note that it only shows the best result of
filler size among the attack models that require it.

This suggests that the rating patterns replicated by the Variational Autoencoder
are indeed an effective way to avoid detection.

After the evaluation of detection techniques using the Movielens dataset, we
will present results for the R3 Yahoo! Music dataset. Thus, in Figure 5.4, we
run the comparative results between the supervised techniques (a) DegreeSAD, (b)
PopSAD, and (c) CoDetector using this dataset. The first technique evaluated is
the DegreeSAD (Figure 5.4a) which shows near-perfect results for the PIA-NR and
Bandwagon attack models and competitive results for most other attack models.
When dealing with Variational Autoencoder-crafted profiles, DegreeSAD’s precision,
recall, and F1 scores are slightly less competitive compared to the other attack
models, and it also misclassifies a small number of genuine profiles as attackers.

93

0 0.1 0.2

0.00

0.50

1.00

P
re

ci
si

on
0 0.1 0.2

0.00

0.50

1.00

R
ec

al
l

0 0.1 0.2

0

0.5

1

F
1

0 0.1 0.2

0

0.2

FA
R

(a) SemiSAD

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure 5.3: Precision, recall, F1, and False Alarm Rate for SemiSAD using Movie-
Lens 100k data set. Note that it only shows the best result of filler size among the
attack models that require it.

Despite this, PUA-NR is the only attack model that manages to evade detection
when confronting this approach.

We also conducted experiments using PopSAD for this dataset. The Figure
5.1b shows that the Bandwagon attack is easily detected by this detection method.
However, for the Average and Variational Autoencoder attacks, the method requires
a large number of injected profiles to avoid incorrectly classifying genuine profiles.
The PIA-NR attack remained undetected in our experiments, while the PUA-NR
attack resulted in a good number of fake profiles being detected but also produced
many false positives, causing confusion. Overall, the approach does not consistently
achieve competitive results.

The last supervised technique evaluated is the CoDetector (Figure 5.1c), which

94

also requires a large number of injected profiles to accurately detect attack profiles
and avoid misclassifying genuine profiles. However, for the Variational Autoencoder,
the results remain consistent even with a low number of profiles, suggesting that
with the right formulation, matrix factorization methods can effectively detect this
attack model in music domain datasets. It is important to note that the Variational
Autoencoder parameters are not fully optimized for this dataset, which may be one
reason why this attack was detected so easily in this case. PUA-NR, once again,
manages to bypass this detection approach, which is expected given that this attack
model is based on genuine profiles.

0 0.1 0.2

0.40

0.60

0.80

1.00

P
re

ci
si

on

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.40

0.60

0.80

1.00

R
ec

al
l

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.4

0.6

0.8

1

F
1

0 0.1 0.2

0

0.5

1

0 0.1 0.2

0

0.5

1

0 0.1 0.2

0

0.1

0.2

FA
R

(a) DegreeSAD

0 0.1 0.2

0

0.2

0.4

(b) PopSAD

0 0.1 0.2

0

0.1

0.2

(c) CoDetector

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure 5.4: Precision, recall, F1, and False Alarm Rate for supervised detection
methods using Yahoo! Music data set. Note that it only shows the best result of
filler size among the attack models that require it.

In Figure 5.5, we show the results for the unsupervised detection techniques: (a)
PCAVarSelect, and (b) FAP using R3 Yahoo! Music dataset. Note that due to the

95

lack of timestamps on this dataset, we could not run and obtain UD-HMM results
to include in the comparison. The first unsupervised detection technique presented
is the PCAVarSelect (Figure 5.5a), which does not achieve competitive results at all
for the music domain. The best performance is observed for the Bandwagon attack
model with 20% attack size, where the technique achieves precision, recall, and F1
scores above 0.5. However, these results are still not competitive, particularly due
to the high number of false alarms detected.

This time, the second and last technique evaluated is the FAP (Figure 5.5b),
where it is possible to see competitive results for most of the attack models mount-
ing attacks with 7% attack size or above. In our experiments, as the attack size
increases, the detection results improve across all reported metrics, indicating that
more examples are needed to effectively propagate the correct labels for this tech-
nique. The Variational Autoencoder produces results similar to most other attack
models. Once more, the only attack model in which this technique is not able to
be competitive enough is the PUA-NR, which is understandable given the circum-
stances where this attack is mounted.

Following the evaluation of supervised and unsupervised techniques, we will now
present the only semi-supervised technique, SemiSAD. Figure 5.6 shows the results
for this detection approach using the R3 Yahoo! Music dataset. The results indi-
cate that SemiSAD can detect most attack models effectively without major issues,
except for PUA-NR and the attack model based on Variational Autoencoders. It
is evident that SemiSAD encounters difficulties, resulting in a higher number of
false negatives than expected, as reflected in the recall values for these attacks. For
PUA-NR, the attack model easily evades detection, which is anticipated due to its
use of real user profiles as a basis. The Variational Autoencoder model also poses a
challenge for this technique, though its effect is much less pronounced.

While the Variational Autoencoder can confuse some detection techniques, the
reported results do not favor it at all. CoDetector and, given enough samples, FAP
manages to rather easily detect the profiles crafted using Yahoo! Music dataset.
With these results, it is not possible to entirely accept the hypothesis for this sec-
ond experiment. It is important to note that, the Yahoo! Music dataset has 2.4%

sparsity, thus, sparser than MovieLens 100k (6.3%), which in turn makes the profile
have fewer ratings available to learn than the movie dataset. This may be a possi-
ble cause for the lack of good results using convolutional architecture in this case.
Another relevant explanation for this behavor is the lack of proper tuning of the
Variational Autoencoder model for the Yahoo Music! dataset.

96

0 0.1 0.2

0.00

0.50

P
re

ci
si

on
0 0.1 0.2

0.00

0.50

0 0.1 0.2

0.00

0.50

1.00

R
ec

al
l

0 0.1 0.2

0.00

0.50

0 0.1 0.2

0

0.5

1

F
1

0 0.1 0.2

0

0.5

0 0.1 0.2

0.1

0.2

FA
R

(a) PCAVarSelect

0 0.1 0.2

0

0.05

0.1

(b) FAP

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure 5.5: Precision, recall, F1, and False Alarm Rate for unsupervised detection
methods using Yahoo! Music data set. Note that it only shows the best result of
filler size among the attack models that require it.

Experiment II

In Experiment II we analyze how detection approaches perform confronted
against real-world attackers using Amazon review dataset. Please note that ap-
proaches from different categories are not directly comparable.

In the Table 5.1, we present the results for each shilling attack detection tech-
nique on the Amazon review dataset. Among the supervised techniques, CoDetector
demonstrates the best performance, successfully detecting most of the shilling pro-
files while misclassifying only 11% of genuine profiles as attackers. This is followed
by DegreeSAD, which misclassifies double that amount (22%). The semi-supervised
technique, SemiSAD, shows good recall but poor precision, resulting in 37% of pro-
files being falsely detected. Finally, among the unsupervised ones, which are applied

97

0 0.1 0.2

0.50

1.00

P
re

ci
si

on
0 0.1 0.2

0.00

0.50

1.00

R
ec

al
l

0 0.1 0.2

0

0.5

1

F
1

0 0.1 0.2

0

0.05

0.1

FA
R

(a) SemiSAD

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure 5.6: Precision, recall, F1, and False Alarm Rate for SemiSAD using Yahoo!
Music data set. Note that it only shows the best result of filler size among the attack
models that require it.

to the full dataset, FAP outperforms PCAVarSelect, showing average performance
despite a relatively high number of false alarms. Please note that UD-HMM could
not be tested due to the lack of timestamp information available for ratings in this
dataset.

The results for the real-world attackers highlight the ongoing challenges that
many techniques face in detecting shilling attacks in commercial recommender sys-
tems. These findings suggest that further research is needed to develop more effective
methods for addressing realistic shilling attacks. Additionally, it is noteworthy that
some attack models, such as PUA-NR and our proposal, yield results comparable
to real-world attacks. This supports the objective of our work to propose an attack
capable of simulating real-world scenarios without explicitly copying real profiles.

98

Table 5.1: Top results of different shilling attack detection techniques in Amazon
review dataset.

Technique Type Precision Recall F1 False Alarm Rate

CoDetector Supervised 0.83 0.85 0.84 0.11
DeegreeSAD Supervised 0.64 0.61 0.62 0.22

PopSAD Supervised 0.33 0.57 0.42 0.73
SemiSAD Semi Supervised 0.58 0.8 0.67 0.37

PCAVarSelect Unsupervised 0.13 0.17 0.15 0.71
FAP Unsupervised 0.57 0.67 0.62 0.3

In summary, the results of the experimental evaluation in this chapter high-
light how our attack model represents an advancement over current models in the
literature. Our proposal proves to be a valuable tool for assessing robust models
and detection strategies, as it exhibits superior performance in evading detection
compared to baseline attack models, akin to attacks encountered in real-world rec-
ommender systems.

99

Chapter 6

Conclusion

This chapter presents the summary of the proposal and results, the contributions,
and future works envisioned during the conception of this work.

6.1 Proposal Summary

Shilling attacks are attacks performed by malicious individuals or companies that
wants to promote their products or demote rival products within a recommender
system. One problem is that most of the attack models currently proposed are based
on straightforward statistical templates, which may allow an attack to be easily
detected and may take a lot of malicious profiles to achieve its goals. In addition,
these models are tailored toward memory-based systems and remain untested in
model-based ones. Generative models began to be applied as powerful tools for
learning probability distributions and generating new data from them, replicating
data with a high level of complexity.

Another interesting aspect of the shilling attack area is the protection of the col-
laborative filtering systems themselves, either by the robustness of the collaborative
filtering system, i.e., the predictions remain stable no matter how noisy the instances
in the database, or detection approaches, where statistical, machine learning, etc.,
are applied to detect attackers among the set of users of the collaborative filtering
system.

In this work, we approach the general state of the shilling attack research field,
focusing at first on the current attack models issue and evaluating ways to mitigate
the models. We propose using a variational autoencoder, a generative model, to learn
the rating patterns of real data in order to craft more realistic malicious profiles.
In addition, we test our approach against several well-known detection models to
check how well it can remain undetected as well as perform experiments with data
cleansing and label noise robust algorithms to evaluate if they can be applied to
shilling attack.

100

6.2 Results Summary

In order to evaluate our proposal, we performed experiments with a few well-
established data sets: MovieLens 100k, R3 Yahoo! Music and Amazon review.
The experiments were divided into several different phases. In the first phase, we
conducted experiments using cosine association analysis to compare how realistic
malicious profiles are between current attack models and our proposal. In the second
one, we compared our approach against other relevant methods using model-based
and memory-based collaborative filtering systems. In the third one, we tested the
previous tested attack models against data cleansing approaches to clean noisy data
before using an artificial neural network-based collaborative filtering system, to see
how effective these algorithms are in preventing malicious noise. In the fourth,
we implemented four label noise-robust proposals using the same artificial neural
network-based collaborative filtering system to evaluate if these methods are effective
against malicious noise. The fifth and final experiment compares how less detectable
is our proposed attack model using well-known shilling attack detection approaches.

Our results indicate that our approach outperforms current attack models in
almost all scenarios for Regularized SVD, a model-based algorithm, for the Movie-
Lens 100k data set. We found that our results are strong and consistent using fewer
malicious profiles in comparison with current attack models as intended. Results for
Yahoo! Music are not so competitive, which seems to be related to the high sparsity
of this data set compared to MovieLens 100k. There are fewer ratings per profile
to learn, making the task more challenging than what was expected. Another inter-
esting finding is that, through rated item correlation analysis, our results indicate
that variational autoencoder may produce profiles realistic enough and close to the
original ones’ distribution, hinting that our attack would be more difficult to spot
than current approaches. On user-based collaborative filtering, the results were less
competitive, however, our model can still perform close to most of the other attack
models, even though it is not designed to work against these kinds of systems. An
interesting finding regarding memory-based techniques is that our attack model per-
formance is paired with approaches such as PUA-NR, which is designed to use real
users as attackers.

Regarding label noise experiments, we found that data cleansing works well when
the system has a set of trusted users. Although it is not always a possible scenario,
this approach works well to prevent shilling attacks under these conditions. On
the other hand, label noise-robust techniques do not achieve the same effect, even
reinforcing the effects of the attack in some cases.

The subsequent detection experiments corroborate the vision that our approach
is less likely to be detected, indicating that our method can be a good tool to evaluate

101

current and novel shilling attack detection techniques, at least for the MovieLens
100k data set. For Yahoo! Music, however, our approach reports results closer to
the other attack models. Finally, we ran a detection experiment on the Amazon
review data set, which focused on evaluating how effective detection approaches are
when facing real-world attack profiles and compare the results with the literature
models. Only CoDetector showed promising results, with the rest of the approaches
falling short and showing results similar to those reported when applied to detect
our approach.

In short, the reported results show enough evidence to support the thesis’ hy-
pothesis for the MovieLens 100k data set. For the Yahoo! Music dataset, the higher
sparsity of this data set is deemed a possible cause; further work needs to be done
to properly evaluate these properties.

6.3 Future Works

Despite the advantages of our method, we have some issues that still need to
be worked on. Firstly, we can appoint the performance against memory-based col-
laborative filtering techniques compared with basic approaches such as average and
random attacks. Even though our attack model is not designed to attack memory-
based collaborative filtering systems, rebuilding the model to also overcome basic
attacks may be promising. Another issue is the high dependence on real data for
learning our model. It may be feasible to use our approach to mount attacks to
evaluate shilling attack detection techniques. However, in other scenarios, it would
be necessary to reduce this real data dependency to be able to develop attacks in
more real-world-like scenarios. It is also important to note that this work evaluated
many of the major attack models up to 2021 across a range of scenarios. Future
research should include novel attack models introduced after 2021 to provide a more
comprehensive comparison.

There are also interesting contributions to be made regarding the profiles used
to train the variational autoencoder. This work utilized all profiles available in the
training set split of the dataset; however, employing a different methodology to
select profiles that are more likely to affect the system could enhance the results
obtained.

Another future work is to model a variational autoencoder architecture based on
graphs in order to generate even more realistic profiles. As mentioned before, GCN
has been successfully explored in recommender systems recently (ZHANG et al.,
2020; FAN et al., 2019) and proved to be well suited to model collaborative filtering
schemes. Besides that, it is important to take this opportunity to run a proper
hyperparameter tuning comparing the GCN-based variational autoencoder with the

102

convolutional one, since this work did not invest enough time to study the effects of
the model’s parameters.

Data cleansing results are promising in this work; however, a future direction is
to apply it to more attack models from the literature, e.g., previously mentioned Ad-
versarial Attacks, to see how well the approach can handle a different methodology
of attack construction.

A final research direction is to use our attack model to evaluate new approaches
for mitigating shilling attacks. One approach is to change the formulation of the
noise transition matrix, presented by CARMO (2018), to alleviate the effects of the
shilling attacks. The possible drawback is the need for a method to detect malicious
profiles beforehand to alleviate the attack effects during the training of the model.
However, given the results of the detection experiments, this approach could still
yield competitive results.

103

References

ZHOU, R., KHEMMARAT, S., GAO, L. “The Impact of YouTube Recom-
mendation System on Video Views”. In: Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, IMC ’10, pp. 404–
410, New York, NY, USA, 2010. ACM. ISBN: 978-1-4503-0483-2. doi:
10.1145/1879141.1879193. Disponível em: <http://doi.acm.org/10.

1145/1879141.1879193>.

SCHAFER, J., KONSTAN, J., RIEDI, J. “Recommender systems in e-commerce”.
In: Proceedings of the 1st ACM conference on Electronic commerce, pp.
158–166. ACM, 1999. ISBN: 1581131763. Disponível em: <http://dl.

acm.org/citation.cfm?id=337035>.

HUANG, C., GONG, S. “Employing rough set theory to alleviate the sparsity issue
in recommender system”. In: Machine Learning and Cybernetics, 2008
International Conference on, v. 3, pp. 1610–1614. IEEE, 2008. ISBN:
9781424420964. Disponível em: <http://ieeexplore.ieee.org/xpls/

abs{_}all.jsp?arnumber=4620663>.

KOREN, Y., BELL, R., VOLINSKY, C. “Matrix Factorization Techniques for
Recommender Systems”, Computer, v. 42, n. 8, pp. 30–37, ago. 2009.
ISSN: 0018-9162. doi: 10.1109/MC.2009.263. Disponível em: <http:

//dx.doi.org/10.1109/MC.2009.263>.

BURKE, R., MOBASHER, B., WILLIAMS, C., et al. “Classification fea-
tures for attack detection in collaborative recommender systems”.
In: Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining - KDD ’06, p.
542, 2006. ISBN: 1595933395. doi: 10.1145/1150402.1150465.
Disponível em: <http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.119.3252{&}rep=rep1{&}type=pdfhttp:

//portal.acm.org/citation.cfm?doid=1150402.1150465>.

ZHANG, F., ZHANG, Z., ZHANG, P., et al. “UD-HMM: An unsupervised method
for shilling attack detection based on hidden Markov model and hierar-

104

http://doi.acm.org/10.1145/1879141.1879193
http://doi.acm.org/10.1145/1879141.1879193
http://dl.acm.org/citation.cfm?id=337035
http://dl.acm.org/citation.cfm?id=337035
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4620663
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4620663
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.3252{&}rep=rep1{&}type=pdf http://portal.acm.org/citation.cfm?doid=1150402.1150465
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.3252{&}rep=rep1{&}type=pdf http://portal.acm.org/citation.cfm?doid=1150402.1150465
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.3252{&}rep=rep1{&}type=pdf http://portal.acm.org/citation.cfm?doid=1150402.1150465

chical clustering”, Knowledge-Based Systems, v. 148, pp. 146–166, may
2018. ISSN: 0950-7051. doi: 10.1016/J.KNOSYS.2018.02.032. Disponível
em: <https://www-sciencedirect-com.ez29.capes.proxy.ufrj.br/

science/article/pii/S0950705118300959>.

WILLIAMS, C. A., MOBASHER, B., BURKE, R., et al. “Defending recom-
mender systems: detection of profile injection attacks”, v. 1, pp. 157–170,
2007. doi: 10.1007/s11761-007-0013-0. Disponível em: <https://link.

springer.com/content/pdf/10.1007{%}2Fs11761-007-0013-0.pdf>.

KINGMA, D. P., WELLING, M. “Auto-Encoding Variational Bayes”.
2013. Disponível em: <http://arxiv.org/abs/1312.6114>. cite
arxiv:1312.6114.

REZENDE, D. J., MOHAMED, S., WIERSTRA, D. “Stochastic Backpropaga-
tion and Approximate Inference in Deep Generative Models”. In: Xing,
E. P., Jebara, T. (Eds.), Proceedings of the 31st International Conference
on Machine Learning, v. 32, Proceedings of Machine Learning Research,
pp. 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR. Disponível em:
<http://proceedings.mlr.press/v32/rezende14.html>.

GREGOR, K., DANIHELKA, I., GRAVES, A., et al. “DRAW: A Recurrent Neural
Network For Image Generation”. 2015. Disponível em: <http://arxiv.

org/abs/1502.04623>. cite arxiv:1502.04623.

SOHN, K., YAN, X., LEE, H. “Learning Structured Output Representation Using
Deep Conditional Generative Models”. In: Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems - Volume
2, NIPS’15, p. 3483–3491, Cambridge, MA, USA, 2015. MIT Press.

WALKER, J., DOERSCH, C., GUPTA, A., et al. “An Uncertain Future: Fore-
casting from Static Images Using Variational Autoencoders”. In: Leibe,
B., Matas, J., Sebe, N., et al. (Eds.), Computer Vision – ECCV 2016,
pp. 835–851, Cham, 2016. Springer International Publishing. ISBN: 978-
3-319-46478-7.

ZHU, X., WU, X. “Class Noise vs. Attribute Noise: A Quantitative Study”, Artifi-
cial Intelligence Review, v. 22, n. 3, pp. 177–210, 2004. ISSN: 0269-2821.
doi: 10.1007/s10462-004-0751-8.

HUBER, P. Robust Statistics. Wiley Series in Probability and Statistics -
Applied Probability and Statistics Section Series. Wiley, 2004. ISBN:
9780471650720.

105

https://www-sciencedirect-com.ez29.capes.proxy.ufrj.br/science/article/pii/S0950705118300959
https://www-sciencedirect-com.ez29.capes.proxy.ufrj.br/science/article/pii/S0950705118300959
https://link.springer.com/content/pdf/10.1007{%}2Fs11761-007-0013-0.pdf
https://link.springer.com/content/pdf/10.1007{%}2Fs11761-007-0013-0.pdf
http://arxiv.org/abs/1312.6114
http://proceedings.mlr.press/v32/rezende14.html
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623

BARBIERI, J., ALVIM, L. G., BRAIDA, F., et al. “Simulating real profiles for
shilling attacks: A generative approach”, Know.-Based Syst., v. 230, n. C,
oct 2021. ISSN: 0950-7051. doi: 10.1016/j.knosys.2021.107390. Disponível
em: <https://doi.org/10.1016/j.knosys.2021.107390>.

EKSTRAND, M. D., RIEDL, J. T., KONSTAN, J. A. “Collaborative Filtering
Recommender Systems”, Found. Trends Hum.-Comput. Interact., v. 4,
n. 2, pp. 81–173, fev. 2011. ISSN: 1551-3955. doi: 10.1561/1100000009.
Disponível em: <http://dx.doi.org/10.1561/1100000009>.

RICH, E. “Readings in Intelligent User Interfaces”. Morgan Kaufmann Publishers
Inc., cap. User Modeling via Stereotypes, pp. 329–342, San Francisco, CA,
USA, 1998. ISBN: 1-55860-444-8. Disponível em: <http://dl.acm.org/

citation.cfm?id=286013.286035>.

GOLDBERG, D., NICHOLS, D., OKI, B. M., et al. “Using Collaborative Filtering
to Weave an Information Tapestry”, Commun. ACM, v. 35, n. 12, pp. 61–
70, dez. 1992. ISSN: 0001-0782. doi: 10.1145/138859.138867. Disponível
em: <http://doi.acm.org/10.1145/138859.138867>.

CHEN, P.-Y., WU, S.-Y., YOON, J. “The impact of online recommendations and
consumer feedback on sales”, ICIS 2004 Proceedings, p. 58, 2004.

ADOMAVICIUS, G., TUZHILIN, A. “Toward the Next Generation of Recom-
mender Systems: A Survey of the State-of-the-Art and Possible Exten-
sions”, IEEE Trans. on Knowl. and Data Eng., v. 17, n. 6, pp. 734–749,
jun. 2005. ISSN: 1041-4347. doi: 10.1109/TKDE.2005.99. Disponível em:
<http://dx.doi.org/10.1109/TKDE.2005.99>.

HERLOCKER, J. L., KONSTAN, J. A., TERVEEN, L. G., et al. “Evaluating
Collaborative Filtering Recommender Systems”, ACM Trans. Inf. Syst.,
v. 22, n. 1, pp. 5–53, jan. 2004. ISSN: 1046-8188. doi: 10.1145/963770.
963772. Disponível em: <https://doi.org/10.1145/963770.963772>.

BURKE, R. “The Adaptive Web”. Springer-Verlag, cap. Hybrid Web Recommender
Systems, pp. 377–408, Berlin, Heidelberg, 2007. ISBN: 978-3-540-72078-
2. Disponível em: <http://dl.acm.org/citation.cfm?id=1768197.

1768211>.

RICCI, F., ROKACH, L., SHAPIRA, B., et al. “Recommender Sys-
tems Handbook”, Media, 2011. doi: 10.1007/978-0-387-85820-3.
Disponível em: <http://www.springerlink.com/index/10.1007/

978-0-387-85820-3>.

106

https://doi.org/10.1016/j.knosys.2021.107390
http://dx.doi.org/10.1561/1100000009
http://dl.acm.org/citation.cfm?id=286013.286035
http://dl.acm.org/citation.cfm?id=286013.286035
http://doi.acm.org/10.1145/138859.138867
http://dx.doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1145/963770.963772
http://dl.acm.org/citation.cfm?id=1768197.1768211
http://dl.acm.org/citation.cfm?id=1768197.1768211
http://www.springerlink.com/index/10.1007/978-0-387-85820-3
http://www.springerlink.com/index/10.1007/978-0-387-85820-3

SCHAFER, J. B., FRANKOWSKI, D., HERLOCKER, J., et al. “The Adaptive
Web”. Springer-Verlag, cap. Collaborative Filtering Recommender Sys-
tems, pp. 291–324, Berlin, Heidelberg, 2007. ISBN: 978-3-540-72078-
2. Disponível em: <http://dl.acm.org/citation.cfm?id=1768197.

1768208>.

GE, M., DELGADO-BATTENFELD, C., JANNACH, D. “Beyond Accuracy: Eval-
uating Recommender Systems by Coverage and Serendipity”. In: Pro-
ceedings of the Fourth ACM Conference on Recommender Systems, Rec-
Sys ’10, pp. 257–260, New York, NY, USA, 2010. ACM. ISBN: 978-
1-60558-906-0. doi: 10.1145/1864708.1864761. Disponível em: <http:

//doi.acm.org/10.1145/1864708.1864761>.

SARWAR, B., KARYPIS, G., KONSTAN, J., et al. “Item-based Collaborative
Filtering Recommendation Algorithms”. In: Proceedings of the 10th In-
ternational Conference on World Wide Web, WWW ’01, pp. 285–295,
New York, NY, USA, 2001. ACM. ISBN: 1-58113-348-0. doi: 10.
1145/371920.372071. Disponível em: <http://doi.acm.org/10.1145/

371920.372071>.

SCHEIN, A. I., POPESCUL, A., UNGAR, L. H., et al. “Methods and Metrics
for Cold-start Recommendations”. In: Proceedings of the 25th Annual In-
ternational ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’02, pp. 253–260, New York, NY, USA, 2002.
ACM. ISBN: 1-58113-561-0. doi: 10.1145/564376.564421. Disponível em:
<http://doi.acm.org/10.1145/564376.564421>.

GUNES, I., KALELI, C., BILGE, A., et al. “Shilling attacks against recom-
mender systems: a comprehensive survey”, Artificial Intelligence Re-
view, v. 42, n. 4, pp. 767–799, 2012. ISSN: 15737462. doi: 10.1007/
s10462-012-9364-9. Disponível em: <https://link.springer.com/

content/pdf/10.1007{%}2Fs10462-012-9364-9.pdf>.

FUNK, S. “Netflix update: Try this at home, 2006”, URL http://sifter. org/˜
simon/journal/20061211. html, 2011.

PATEREK, A. “Improving regularized singular value decomposi-
tion for collaborative filtering”. In: Proc. KDD Cup Work-
shop at SIGKDD’07, 13th ACM Int. Conf. on Knowledge Dis-
covery and Data Mining, pp. 39–42, 2007. Disponível em:
<http://serv1.ist.psu.edu:8080/viewdoc/summary;jsessionid=

CBC0A80E61E800DE518520F9469B2FD1?doi=10.1.1.96.7652>.

107

http://dl.acm.org/citation.cfm?id=1768197.1768208
http://dl.acm.org/citation.cfm?id=1768197.1768208
http://doi.acm.org/10.1145/1864708.1864761
http://doi.acm.org/10.1145/1864708.1864761
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/564376.564421
https://link.springer.com/content/pdf/10.1007{%}2Fs10462-012-9364-9.pdf
https://link.springer.com/content/pdf/10.1007{%}2Fs10462-012-9364-9.pdf
http://serv1.ist.psu.edu:8080/viewdoc/summary;jsessionid=CBC0A80E61E800DE518520F9469B2FD1?doi=10.1.1.96.7652
http://serv1.ist.psu.edu:8080/viewdoc/summary;jsessionid=CBC0A80E61E800DE518520F9469B2FD1?doi=10.1.1.96.7652

TAKÁCS, G., PILÁSZY, I., NÉMETH, B., et al. “Matrix Factorization and
Neighbor Based Algorithms for the Netflix Prize Problem”. In: Pro-
ceedings of the 2008 ACM Conference on Recommender Systems, Rec-
Sys ’08, pp. 267–274, New York, NY, USA, 2008. ACM. ISBN: 978-
1-60558-093-7. doi: 10.1145/1454008.1454049. Disponível em: <http:

//doi.acm.org/10.1145/1454008.1454049>.

FUNK, S. “Netflix Update: Try This at Home”. December 2006. Disponível
em: <http://http://sifter.org/~simon/journal/20061211.html>.
Acesso em: 2014-06-30.

HE, X., LIAO, L., ZHANG, H., et al. “Neural Collaborative Filtering”. 2017.

HARPER, F. M., KONSTAN, J. A. “The MovieLens Datasets: History and
Context”, ACM Trans. Interact. Intell. Syst., v. 5, n. 4, pp. 19:1–19:19,
dez. 2015. ISSN: 2160-6455. doi: 10.1145/2827872. Disponível em:
<http://doi.acm.org/10.1145/2827872>.

XU, C., ZHANG, J., CHANG, K., et al. “Uncovering Collusive Spammers in
Chinese Review Websites”. In: Proceedings of the 22nd ACM Interna-
tional Conference on Information & Knowledge Management, CIKM ’13,
p. 979–988, New York, NY, USA, 2013. Association for Computing Ma-
chinery. ISBN: 9781450322638. doi: 10.1145/2505515.2505700. Disponível
em: <https://doi.org/10.1145/2505515.2505700>.

BHAUMIK, R., WILLIAMS, C., MOBASHER, B., et al. “Securing collabora-
tive filtering against malicious attacks through anomaly detection”. In:
Proceedings of the 4th Workshop on Intelligent Techniques for Web Per-
sonalization (ITWP’06), Boston, v. 6, p. 10, 2006.

MOBASHER, B., BURKE, R., BHAUMIK, R., et al. “Attacks and remedies in
collaborative recommendation”, IEEE Intelligent Systems, v. 22, n. 3,
pp. 56–63, 2007a. ISSN: 15411672. doi: 10.1109/MIS.2007.45.

BURKE, R., O’MAHONY, M. P., HURLEY, N. J. “Robust Collaborative Rec-
ommendation”. In: Ricci, F., Rokach, L., Shapira, B., et al. (Eds.), Rec-
ommender Systems Handbook, pp. 805–835, Boston, MA, Springer US,
2011. ISBN: 978-0-387-85820-3. doi: 10.1007/978-0-387-85820-3_25.
Disponível em: <https://doi.org/10.1007/978-0-387-85820-3_25>.

LAM, S. K., RIEDL, J. “Shilling recommender systems for fun and profit”,
Thirteenth International World Wide Web Conference Proceedings,
WWW2004, pp. 393–402, 2004. doi: 10.1145/988672.988726.

108

http://doi.acm.org/10.1145/1454008.1454049
http://doi.acm.org/10.1145/1454008.1454049
http://http://sifter.org/~simon/journal/20061211.html
http://doi.acm.org/10.1145/2827872
https://doi.org/10.1145/2505515.2505700
https://doi.org/10.1007/978-0-387-85820-3_25

ANELLI, V. W., DELDJOO, Y., DINOIA, T., et al. “Adversarial Recom-
mender Systems: Attack, Defense, and Advances”. In: Ricci, F., Rokach,
L., Shapira, B. (Eds.), Recommender Systems Handbook, pp. 335–379,
New York, NY, Springer US, 2022. ISBN: 978-1-0716-2197-4. doi:
10.1007/978-1-0716-2197-4_9. Disponível em: <https://doi.org/10.

1007/978-1-0716-2197-4_9>.

MOBASHER, B., BURKE, R., BHAUMIK, R., et al. “Toward Trustworthy Rec-
ommender Systems: An Analysis of Attack Models and Algorithm Ro-
bustness”, ACM Trans. Internet Technol., v. 7, n. 4, pp. 23–es, out.
2007b. ISSN: 1533-5399. doi: 10.1145/1278366.1278372. Disponível em:
<https://doi.org/10.1145/1278366.1278372>.

SEMINARIO, C., WILSON, D. “Attacking item-based recom-
mender systems with power items”, RecSys, pp. 57–64,
2014a. doi: 10.1145/2645710.2645722. Disponível em:
<http://delivery.acm.org/10.1145/2650000/2645722/

p57-seminario.pdf?ip=146.164.34.1{&}id=2645722{&}acc=

ACTIVESERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.

4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=

1522776643{_}dbbc11bcb85f668cc80f2f9c5a6badf2http://dl.acm.

org/c>.

O’MAHONY, M. P., HURLEY, N. J., SILVESTRE, G. C. M. “Recommender
Systems: Attack Types and Strategies”. In: IN PROCEEDINGS OF THE
20TH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE
(AAAI-05, pp. 334–339. AAAI Press, 2005.

SEMINARIO, C. E., WILSON, D. C. “Assessing impacts of a power user
attack on a matrix factorization collaborative Recommender Sys-
tem”, Proceedings of the 27th International Florida Artificial In-
telligence Research Society Conference, FLAIRS 2014, pp. 81–86,
2014b. Disponível em: <https://pdfs.semanticscholar.org/0764/

0f89fe3a97c8b6736f609b7c333be795d69a.pdfhttp://www.scopus.

com/inward/record.url?eid=2-s2.0-84923870685{&}partnerID=

40{&}md5=e565253f1f23540135a8de7b442220f9>.

MCCULLOCH, W., PITTS, W. “A Logical Calculus of Ideas Immanent in Nervous
Activity”, Bulletin of Mathematical Biophysics, v. 5, pp. 127–147, 1943.

109

https://doi.org/10.1007/978-1-0716-2197-4_9
https://doi.org/10.1007/978-1-0716-2197-4_9
https://doi.org/10.1145/1278366.1278372
http://delivery.acm.org/10.1145/2650000/2645722/p57-seminario.pdf?ip=146.164.34.1{&}id=2645722{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1522776643{_}dbbc11bcb85f668cc80f2f9c5a6badf2 http://dl.acm.org/c
http://delivery.acm.org/10.1145/2650000/2645722/p57-seminario.pdf?ip=146.164.34.1{&}id=2645722{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1522776643{_}dbbc11bcb85f668cc80f2f9c5a6badf2 http://dl.acm.org/c
http://delivery.acm.org/10.1145/2650000/2645722/p57-seminario.pdf?ip=146.164.34.1{&}id=2645722{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1522776643{_}dbbc11bcb85f668cc80f2f9c5a6badf2 http://dl.acm.org/c
http://delivery.acm.org/10.1145/2650000/2645722/p57-seminario.pdf?ip=146.164.34.1{&}id=2645722{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1522776643{_}dbbc11bcb85f668cc80f2f9c5a6badf2 http://dl.acm.org/c
http://delivery.acm.org/10.1145/2650000/2645722/p57-seminario.pdf?ip=146.164.34.1{&}id=2645722{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1522776643{_}dbbc11bcb85f668cc80f2f9c5a6badf2 http://dl.acm.org/c
http://delivery.acm.org/10.1145/2650000/2645722/p57-seminario.pdf?ip=146.164.34.1{&}id=2645722{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1522776643{_}dbbc11bcb85f668cc80f2f9c5a6badf2 http://dl.acm.org/c
https://pdfs.semanticscholar.org/0764/0f89fe3a97c8b6736f609b7c333be795d69a.pdf http://www.scopus.com/inward/record.url?eid=2-s2.0-84923870685{&}partnerID=40{&}md5=e565253f1f23540135a8de7b442220f9
https://pdfs.semanticscholar.org/0764/0f89fe3a97c8b6736f609b7c333be795d69a.pdf http://www.scopus.com/inward/record.url?eid=2-s2.0-84923870685{&}partnerID=40{&}md5=e565253f1f23540135a8de7b442220f9
https://pdfs.semanticscholar.org/0764/0f89fe3a97c8b6736f609b7c333be795d69a.pdf http://www.scopus.com/inward/record.url?eid=2-s2.0-84923870685{&}partnerID=40{&}md5=e565253f1f23540135a8de7b442220f9
https://pdfs.semanticscholar.org/0764/0f89fe3a97c8b6736f609b7c333be795d69a.pdf http://www.scopus.com/inward/record.url?eid=2-s2.0-84923870685{&}partnerID=40{&}md5=e565253f1f23540135a8de7b442220f9

ROSENBLATT, F. “The perceptron: a probabilistic model for information storage
and organization in the brain”, Psychological Review, v. 65, n. 6, pp. 386–
408, nov. 1958.

MITCHELL, T. M. Machine Learning. 1 ed. New York, NY, USA, McGraw-Hill,
Inc., 1997. ISBN: 0070428077, 9780070428072.

KINGMA, D. P., BA, J. “Adam: A Method for Stochastic Optimization”. 2014.

GRAVES, A. “Generating Sequences With Recurrent Neural Networks”. 2013.

SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., et al. “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting”, J. Mach. Learn. Res.,
v. 15, n. 1, pp. 1929–1958, jan. 2014. ISSN: 1532-4435. Disponível em:
<http://dl.acm.org/citation.cfm?id=2627435.2670313>.

LECUN, Y., BENGIO, Y. “Convolutional Networks for Images, Speech, and
Time Series”. In: The Handbook of Brain Theory and Neural Networks, p.
255–258, Cambridge, MA, USA, MIT Press, 1998. ISBN: 0262511029.

PALAZ, D., COLLOBERT, R., MAGIMAI-DOSS, M. “Estimating Phoneme
Class Conditional Probabilities from Raw Speech Signal using
Convolutional Neural Networks”, CoRR, v. abs/1304.1018, 2013.
Disponível em: <http://dblp.uni-trier.de/db/journals/corr/

corr1304.html#abs-1304-1018>.

KIM, Y. “Convolutional Neural Networks for Sentence Classification”. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1746–1751, Doha, Qatar, out. 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1181. Disponível em:
<https://www.aclweb.org/anthology/D14-1181>.

GU, J., WANG, Z., KUEN, J., et al. “Recent Advances in Convolutional Neural
Networks”, Pattern Recogn., v. 77, n. C, pp. 354–377, maio 2018. ISSN:
0031-3203. doi: 10.1016/j.patcog.2017.10.013. Disponível em: <https:

//doi.org/10.1016/j.patcog.2017.10.013>.

DUMOULIN, V., VISIN, F. “A guide to convolution arithmetic for deep learn-
ing”. 2016. Disponível em: <http://arxiv.org/abs/1603.07285>. cite
arxiv:1603.07285.

LECUN, Y. A., BOTTOU, L., ORR, G. B., et al. “Efficient BackProp”.
In: Montavon, G., Orr, G. B., Müller, K.-R. (Eds.), Neural Net-
works: Tricks of the Trade: Second Edition, pp. 9–48, Berlin, Heidel-

110

http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dblp.uni-trier.de/db/journals/corr/corr1304.html#abs-1304-1018
http://dblp.uni-trier.de/db/journals/corr/corr1304.html#abs-1304-1018
https://www.aclweb.org/anthology/D14-1181
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
http://arxiv.org/abs/1603.07285

berg, Springer Berlin Heidelberg, 2012. ISBN: 978-3-642-35289-8. doi:
10.1007/978-3-642-35289-8_3. Disponível em: <https://doi.org/10.

1007/978-3-642-35289-8_3>.

MAAS, A. L., HANNUN, A. Y., NG, A. Y. “Rectifier nonlinearities improve neural
network acoustic models”. In: Proc. icml, v. 30, p. 3, 2013.

HINTON, G. E., SALAKHUTDINOV, R. R. “Reducing the Dimensionality of
Data with Neural Networks”, Science, v. 313, n. 5786, pp. 504–507, 2006.
ISSN: 0036-8075. doi: 10.1126/science.1127647. Disponível em: <http:

//science.sciencemag.org/content/313/5786/504>.

VINCENT, P., LAROCHELLE, H., BENGIO, Y., et al. “Extracting and Com-
posing Robust Features with Denoising Autoencoders”. In: Proceedings of
the 25th International Conference on Machine Learning, ICML ’08, pp.
1096–1103, New York, NY, USA, 2008. ACM. ISBN: 978-1-60558-205-4.
doi: 10.1145/1390156.1390294. Disponível em: <http://doi.acm.org/

10.1145/1390156.1390294>.

BENGIO, Y., YAO, L., ALAIN, G., et al. “Generalized Denoising Auto-Encoders
as Generative Models”. In: Proceedings of the 26th International Confer-
ence on Neural Information Processing Systems - Volume 1, NIPS’13, p.
899–907, Red Hook, NY, USA, 2013. Curran Associates Inc.

KULLBACK, S., LEIBLER, R. A. “On information and sufficiency”, The annals
of mathematical statistics, v. 22, n. 1, pp. 79–86, 1951.

HOFFMAN, M. D., JOHNSON, M. J. “Elbo surgery: yet another way to carve
up the variational evidence lower bound”. In: Workshop in Advances in
Approximate Bayesian Inference, NIPS, v. 1, 2016.

GOODFELLOW, I. J., POUGET-ABADIE, J., MIRZA, M., et al. “Genera-
tive adversarial nets”. In: Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 2, NIPS’14, p.
2672–2680, Cambridge, MA, USA, 2014. MIT Press.

O’MAHONY, M. P., HURLEY, N. J., SILVESTRE, G. C. M. “Towards Robust Col-
laborative Filtering”. In: O’Neill, M., Sutcliffe, R. F. E., Ryan, C., et al.
(Eds.), Artificial Intelligence and Cognitive Science, pp. 87–94, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg. ISBN: 978-3-540-45750-3.

CHEN, K., CHAN, P. P., ZHANG, F., et al. “Shilling attack based on item popu-
larity and rated item correlation against collaborative filtering”, Interna-

111

https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
http://science.sciencemag.org/content/313/5786/504
http://science.sciencemag.org/content/313/5786/504
http://doi.acm.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294

tional Journal of Machine Learning and Cybernetics, v. 10, n. 7, pp. 1833–
1845, 2019. ISSN: 1868808X. doi: 10.1007/s13042-018-0861-2. Disponível
em: <http://dx.doi.org/10.1007/s13042-018-0861-2>.

RAY, S., MAHANTI, A. “Filler item strategies for shilling attacks against rec-
ommender systems”, Proceedings of the 42nd Annual Hawaii Interna-
tional Conference on System Sciences, HICSS, pp. 1–10, 2009. doi:
10.1109/HICSS.2009.217.

WILSON, D. C., SEMINARIO, C. E. “When power users attack: as-
sessing impacts in collaborative recommender systems”. In: [Rec-
Sys2013]Proceedings of the 7th ACM conference on Recommender
systems, pp. 427–430, New York, New York, USA, 2013. ACM Press.
ISBN: 9781450324090. doi: 10.1145/2507157.2507220. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2507157.2507220http:

//dl.acm.org/citation.cfm?id=2507220{%}5Cnhttp://dl.acm.org/

citation.cfm?doid=2507157.2507220>.

WILSON, D., SEMINARIO, C. “Evil twins: Modeling power users
in attacks on recommender systems”, User Modeling, Adap-
tation, and . . . , pp. 231–242, 2014. ISSN: 16113349. doi:
10.1007/978-3-319-08786-3_20. Disponível em: <http:

//link.springer.com/10.1007/978-3-319-08786-3{_}20http:

//link.springer.com/chapter/10.1007/978-3-319-08786-3{_}20>.

SEMINARIO, C. E., WILSON, D. C. “Nuke ‘ Em Till They Go : Investigating
Power User Attacks to Disparage Items in Collaborative Recommenders”,
RecSys 2015: Proceedings of the 9th ACM conference on Recommender
systems, pp. 293–296, 2015. doi: 10.1145/2792838.2799666. Disponível
em: <http://delivery.acm.org/10.1145/2800000/2799666/

p293-seminario.pdf?ip=146.164.34.1{&}id=2799666{&}acc=

ACTIVESERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.

4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=

1523539577{_}9992d7e4af27e6b61a3800b589cd4cf3>.

WILSON, D. C., SEMINARIO, C. E., CAROLINA, N. “Mitigating Power User
Attacks on a User-Based Collaborative Recommender System”, pp. 513–
518, 2015. Disponível em: <https://www.aaai.org/ocs/index.php/

FLAIRS/FLAIRS15/paper/viewFile/10451/10433>.

FANG, M., YANG, G., GONG, N. Z., et al. “Poisoning Attacks to Graph-Based
Recommender Systems”. In: Proceedings of the 34th Annual Computer

112

http://dx.doi.org/10.1007/s13042-018-0861-2
http://dl.acm.org/citation.cfm?doid=2507157.2507220 http://dl.acm.org/citation.cfm?id=2507220{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2507157.2507220
http://dl.acm.org/citation.cfm?doid=2507157.2507220 http://dl.acm.org/citation.cfm?id=2507220{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2507157.2507220
http://dl.acm.org/citation.cfm?doid=2507157.2507220 http://dl.acm.org/citation.cfm?id=2507220{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2507157.2507220
http://link.springer.com/10.1007/978-3-319-08786-3{_}20 http://link.springer.com/chapter/10.1007/978-3-319-08786-3{_}20
http://link.springer.com/10.1007/978-3-319-08786-3{_}20 http://link.springer.com/chapter/10.1007/978-3-319-08786-3{_}20
http://link.springer.com/10.1007/978-3-319-08786-3{_}20 http://link.springer.com/chapter/10.1007/978-3-319-08786-3{_}20
http://delivery.acm.org/10.1145/2800000/2799666/p293-seminario.pdf?ip=146.164.34.1{&}id=2799666{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1523539577{_}9992d7e4af27e6b61a3800b589cd4cf3
http://delivery.acm.org/10.1145/2800000/2799666/p293-seminario.pdf?ip=146.164.34.1{&}id=2799666{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1523539577{_}9992d7e4af27e6b61a3800b589cd4cf3
http://delivery.acm.org/10.1145/2800000/2799666/p293-seminario.pdf?ip=146.164.34.1{&}id=2799666{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1523539577{_}9992d7e4af27e6b61a3800b589cd4cf3
http://delivery.acm.org/10.1145/2800000/2799666/p293-seminario.pdf?ip=146.164.34.1{&}id=2799666{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1523539577{_}9992d7e4af27e6b61a3800b589cd4cf3
http://delivery.acm.org/10.1145/2800000/2799666/p293-seminario.pdf?ip=146.164.34.1{&}id=2799666{&}acc=ACTIVE SERVICE{&}key=344E943C9DC262BB.36BD8EA867D3A5EB.4D4702B0C3E38B35.4D4702B0C3E38B35{&}{_}{_}acm{_}{_}=1523539577{_}9992d7e4af27e6b61a3800b589cd4cf3
https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS15/paper/viewFile/10451/10433
https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS15/paper/viewFile/10451/10433

Security Applications Conference, ACSAC ’18, p. 381–392, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN: 9781450365697.
doi: 10.1145/3274694.3274706. Disponível em: <https://doi.org/10.

1145/3274694.3274706>.

CHRISTAKOPOULOU, K., BANERJEE, A. “Adversarial atacks on an oblivious
recommender”, RecSys 2019 - 13th ACM Conference on Recommender
Systems, pp. 322–330, 2019. doi: 10.1145/3298689.3347031.

ANELLI, V. W., DELDJOO, Y., DI NOIA, T., et al. “SAShA: Semantic-
Aware Shilling Attacks on Recommender Systems Exploiting Knowledge
Graphs”. In: Harth, A., Kirrane, S., Ngonga Ngomo, A.-C., et al. (Eds.),
The Semantic Web, pp. 307–323, Cham, 2020. Springer International Pub-
lishing. ISBN: 978-3-030-49461-2.

LIN, C., CHEN, S., LI, H., et al. “Attacking Recommender Systems with Aug-
mented User Profiles”. In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, CIKM ’20, p.
855–864, New York, NY, USA, 2020. Association for Computing Machin-
ery. ISBN: 9781450368599. doi: 10.1145/3340531.3411884. Disponível
em: <https://doi.org/10.1145/3340531.3411884>.

WU, F., GAO, M., YU, J., et al. “Ready for emerging threats to recommender
systems? A graph convolution-based generative shilling attack”, Informa-
tion Sciences, v. 578, pp. 683–701, 2021. ISSN: 0020-0255. doi: https:
//doi.org/10.1016/j.ins.2021.07.041. Disponível em: <https://www.

sciencedirect.com/science/article/pii/S0020025521007313>.

WANG, Z., GAO, M., LI, J., et al. “Gray-Box Shilling Attack: An Adversarial
Learning Approach”, ACM Trans. Intell. Syst. Technol., v. 13, n. 5, oct
2022. ISSN: 2157-6904. doi: 10.1145/3512352. Disponível em: <https:

//doi.org/10.1145/3512352>.

REN, Y., LI, Z., YUAN, L., et al. “Semantic Shilling Attack against Heterogeneous
Information Network Based Recommend Systems”, IEICE Transactions
on Information and Systems, v. E105.D, n. 2, pp. 289–299, 2022. doi:
10.1587/transinf.2021BCP0015.

HUANG, C., LI, H. “Single-User Injection for Invisible Shilling Attack against
Recommender Systems”. In: Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, CIKM ’23, p.

113

https://doi.org/10.1145/3274694.3274706
https://doi.org/10.1145/3274694.3274706
https://doi.org/10.1145/3340531.3411884
https://www.sciencedirect.com/science/article/pii/S0020025521007313
https://www.sciencedirect.com/science/article/pii/S0020025521007313
https://doi.org/10.1145/3512352
https://doi.org/10.1145/3512352

864–873, New York, NY, USA, 2023. Association for Computing Machin-
ery. ISBN: 9798400701245. doi: 10.1145/3583780.3615062. Disponível
em: <https://doi.org/10.1145/3583780.3615062>.

LIN, C., CHEN, S., ZENG, M., et al. “Shilling Black-Box Recommender Systems by
Learning to Generate Fake User Profiles”, IEEE Transactions on Neural
Networks and Learning Systems, v. 35, n. 1, pp. 1305–1319, 2024. doi:
10.1109/TNNLS.2022.3183210.

LU, Q., GAO, M. “A Research on Shilling Attacks Based on Variational graph
auto-encoders for Improving the Robustness of Recommendation Sys-
tems”. In: Proceedings of the 2024 International Conference on Gen-
erative Artificial Intelligence and Information Security, GAIIS ’24, p.
120–126, New York, NY, USA, 2024. Association for Computing Machin-
ery. ISBN: 9798400709562. doi: 10.1145/3665348.3665370. Disponível
em: <https://doi.org/10.1145/3665348.3665370>.

ZHANG, S., CHAKRABARTI, A., FORD, J., et al. “Attack detection in time se-
ries for recommender systems”. In: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD
’06, p. 809, New York, New York, USA, 2006. ACM Press. ISBN:
1595933395. doi: 10.1145/1150402.1150508. Disponível em: <http:

//portal.acm.org/citation.cfm?doid=1150402.1150508>.

TONG, C., YIN, X., LI, J., et al. “A shilling attack detector based on convo-
lutional neural network for collaborative recommender system in social
aware network”, The Computer Journal, feb 2018. ISSN: 0010-4620. doi:
10.1093/comjnl/bxy008. Disponível em: <https://academic.oup.com/

comjnl/advance-article/doi/10.1093/comjnl/bxy008/4835634>.

MELLO, C. E., AUFAURE, M.-A., ZIMBRAO, G. “Active Learning Driven by
Rating Impact Analysis”. In: Proceedings of the Fourth ACM Conference
on Recommender Systems, RecSys ’10, p. 341–344, New York, NY, USA,
2010. Association for Computing Machinery. ISBN: 9781605589060. doi:
10.1145/1864708.1864782. Disponível em: <https://doi.org/10.1145/

1864708.1864782>.

ZHANG, S., YIN, H., CHEN, T., et al. “GCN-Based User Representation Learning
for Unifying Robust Recommendation and Fraudster Detection”. In: Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 689–698, 2020.

114

https://doi.org/10.1145/3583780.3615062
https://doi.org/10.1145/3665348.3665370
http://portal.acm.org/citation.cfm?doid=1150402.1150508
http://portal.acm.org/citation.cfm?doid=1150402.1150508
https://academic.oup.com/comjnl/advance-article/doi/10.1093/comjnl/bxy008/4835634
https://academic.oup.com/comjnl/advance-article/doi/10.1093/comjnl/bxy008/4835634
https://doi.org/10.1145/1864708.1864782
https://doi.org/10.1145/1864708.1864782

NOH, G., KANG, Y.-M., OH, H., et al. “Robust Sybil attack defense with in-
formation level in online Recommender Systems”, Expert Systems with
Applications, v. 41, n. 4, pp. 1781–1791, mar 2014. ISSN: 0957-4174.
doi: 10.1016/J.ESWA.2013.08.077. Disponível em: <https://www.

sciencedirect.com/science/article/pii/S0957417413006982>.

LI, C., LUO, Z. “Detection of shilling attacks in collaborative filtering recom-
mender systems”. In: 2011 International Conference of Soft Comput-
ing and Pattern Recognition (SoCPaR), pp. 190–193, Oct 2011. doi:
10.1109/SoCPaR.2011.6089138.

ANGLUIN, D., LAIRD, P. “Learning from noisy examples”, Machine Learn-
ing, v. 2, n. 1984, pp. 343–370, 1988. ISSN: 08856125. doi: 10.1007/
BF00116829.

SÁEZ, J. A., GALAR, M., LUENGO, J., et al. “Analyzing the presence of noise
in multi-class problems: alleviating its influence with the One-vs-One
decomposition”, Knowledge and Information Systems, v. 38, n. 1, pp. 179–
206, 2014.

FRENAY, B., VERLEYSEN, M. “Classification in the Presence of Label Noise: A
Survey”, IEEE Transactions on Neural Networks and Learning Systems,
v. 25, n. 5, pp. 845–869, 2014. doi: 10.1109/TNNLS.2013.2292894.

VAN DEN HOUT, A., VAN DER HEIJDEN, P. G. M., VAN DEN HOUT, A.,
et al. “Randomized Response, Statistical Disclosure Control and Mis-
classification: A Review”, International Statistical Review / Revue In-
ternationale de Statistique, v. 70, n. 2, pp. pp. 269—-288, 2002. ISSN:
03067734. doi: 10.2307/1403910. Disponível em: <http://www.jstor.

org/stable/1403910>.

CARMO, F. B. D. Considerando o ruído no aprendizado de modelos preditivos
robustos para a filtragem colaborativa. Tese de Doutorado, 2018.

BRODLEY, C. E., FRIEDL, M. A. “Identifying Mislabeled Training Data”, CoRR,
v. abs/1106.0219, 2011. Disponível em: <http://arxiv.org/abs/1106.

0219>.

O’MAHONY, M. P., HURLEY, N. J., SILVESTRE, G. C. “Detecting noise
in recommender system databases”. In: Proceedings of the 11th inter-
national conference on Intelligent user interfaces - IUI ’06, p. 109,
2006. ISBN: 1595932879. doi: 10.1145/1111449.1111477. Disponível

115

https://www.sciencedirect.com/science/article/pii/S0957417413006982
https://www.sciencedirect.com/science/article/pii/S0957417413006982
http://www.jstor.org/stable/1403910
http://www.jstor.org/stable/1403910
http://arxiv.org/abs/1106.0219
http://arxiv.org/abs/1106.0219

em: <https://www.researchgate.net/publication/221607786http:

//portal.acm.org/citation.cfm?doid=1111449.1111477>.

TOLEDO, R. Y., MOTA, Y. C., MARTÍNEZ, L. “Correcting Noisy Ratings in
Collaborative Recommender Systems”, Know.-Based Syst., v. 76, n. 1,
pp. 96–108, mar 2015. ISSN: 0950-7051. doi: 10.1016/j.knosys.2014.12.
011. Disponível em: <https://doi.org/10.1016/j.knosys.2014.12.

011>.

GOLDBERGER, J., BEN-REUVEN, E. “Training deep neural-networks using a
noise adaptation layer”, 2016.

SUKHBAATAR, S., FERGUS, R. “Learning from noisy labels with deep neural
networks,” arXiv”. 2014.

REED, S., LEE, H., ANGUELOV, D., et al. “Training Deep Neural Networks on
Noisy Labels with Bootstrapping”. 2015.

PATRINI, G., NIELSEN, F., NOCK, R., et al. “Loss factorization, weakly su-
pervised learning and label noise robustness”, 2016a. Disponível em:
<http://arxiv.org/abs/1602.02450>.

PATRINI, G., ROZZA, A., MENON, A., et al. “Making Deep Neural Networks
Robust to Label Noise: a Loss Correction Approach”, 2016b. doi: 10.
1109/CVPR.2017.240. Disponível em: <http://arxiv.org/abs/1609.

03683>.

REID, M. D., WILLIAMSON, R. C. “Composite Binary Losses”, The Journal of
Machine Learning Research, v. 11, pp. 2387–2422, 2010.

LI, W., GAO, M., LI, H., et al. “Shilling attack detection in recommender systems
via selecting patterns analysis”, IEICE TRANSACTIONS on Information
and Systems, v. 99, n. 10, pp. 2600–2611, 2016.

LI, W., GAO, M., LI, H., et al. “An shilling attack detection algorithm based on
popularity degree features”, Zidonghua Xuebao/Acta Automatica Sinica,
v. 41, n. 9, pp. 1563–1575, 2015.

DOU, T., YU, J., XIONG, Q., et al. “Collaborative shilling detection bridging
factorization and user embedding”. In: International Conference on Col-
laborative Computing: Networking, Applications and Worksharing, pp.
459–469. Springer, 2017.

116

https://www.researchgate.net/publication/221607786 http://portal.acm.org/citation.cfm?doid=1111449.1111477
https://www.researchgate.net/publication/221607786 http://portal.acm.org/citation.cfm?doid=1111449.1111477
https://doi.org/10.1016/j.knosys.2014.12.011
https://doi.org/10.1016/j.knosys.2014.12.011
http://arxiv.org/abs/1602.02450
http://arxiv.org/abs/1609.03683
http://arxiv.org/abs/1609.03683

MIKOLOV, T., CHEN, K., CORRADO, G., et al. “Efficient Estimation of
Word Representations in Vector Space”. 2013. Disponível em: <https:

//arxiv.org/abs/1301.3781>.

LEVY, O., GOLDBERG, Y. “Neural Word Embedding as Implicit Matrix Fac-
torization”. In: Ghahramani, Z., Welling, M., Cortes, C., et al. (Eds.),
Advances in Neural Information Processing Systems, v. 27. Curran Asso-
ciates, Inc., 2014. Disponível em: <https://proceedings.neurips.cc/

paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf>.

CAO, J., WU, Z., MAO, B., et al. “Shilling attack detection utilizing semi-
supervised learning method for collaborative recommender system”, World
Wide Web, v. 16, n. 5, pp. 729–748, 2013.

CHIRITA, P.-A., NEJDL, W., ZAMFIR, C. “Preventing Shilling Attacks in Online
Recommender Systems”. In: Proceedings of the 7th Annual ACM Interna-
tional Workshop on Web Information and Data Management, WIDM ’05,
p. 67–74, New York, NY, USA, 2005. Association for Computing Machin-
ery. ISBN: 1595931945. doi: 10.1145/1097047.1097061. Disponível em:
<https://doi.org/10.1145/1097047.1097061>.

WILLIAMS, C., MOBASHER, B. “Profile injection attack detection for securing
collaborative recommender systems”, DePaul University CTI Technical
Report, pp. 1–47, 2006.

NIGAM, K., MCCALLUM, A. K., THRUN, S., et al. “Text Classification from
Labeled and Unlabeled Documents using EM”, Machine Learning, v. 39,
n. 2/3, pp. 103–134, 2000. Disponível em: <citeseer.nj.nec.com/

nigam99text.html>.

MEHTA, B., NEJDL, W. “Unsupervised strategies for shilling detection and ro-
bust collaborative filtering”, User Modeling and User-Adapted Interaction,
v. 19, n. 1, pp. 65–97, 2009.

JOLLIFFE, I. T. Principal component analysis for special types of data. Springer,
2002.

ZHANG, Y., TAN, Y., ZHANG, M., et al. “Catch the Black Sheep: Unified
Framework for Shilling Attack Detection Based on Fraudulent Action
Propagation”. In: Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI’15, p. 2408–2414. AAAI Press, 2015. ISBN:
9781577357384.

117

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://doi.org/10.1145/1097047.1097061
citeseer.nj.nec.com/nigam99text.html
citeseer.nj.nec.com/nigam99text.html

CHUNG, C.-Y., HSU, P.-Y., HUANG, S.-H. “βP: A novel approach to filter out
malicious rating profiles from recommender systems”, Decision Support
Systems, v. 55, n. 1, pp. 314–325, 2013. ISSN: 0167-9236. doi: https:
//doi.org/10.1016/j.dss.2013.01.020. Disponível em: <https://www.

sciencedirect.com/science/article/pii/S0167923613000481>.

FAN, S., ZHU, J., HAN, X., et al. “Metapath-guided Heterogeneous Graph
Neural Network for Intent Recommendation”. In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’19, p. 2478–2486, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN: 9781450362016. doi:
10.1145/3292500.3330673. Disponível em: <https://doi.org/10.1145/

3292500.3330673>.

118

https://www.sciencedirect.com/science/article/pii/S0167923613000481
https://www.sciencedirect.com/science/article/pii/S0167923613000481
https://doi.org/10.1145/3292500.3330673
https://doi.org/10.1145/3292500.3330673

119

Appendix A

Additional Experimental Results

A.0.1 Item Correlation Analysis

Yahoo! Music

0 200 400 600 800 1000
0

200

400

600

800

1000 0.0

0.2

0.4

0.6

0.8

1.0

(a) Original

0 200 400 600 800 1000
0

200

400

600

800

1000 0.0

0.2

0.4

0.6

0.8

1.0

(b) Random
0 200 400 600 800 1000

0

200

400

600

800

1000 0.0

0.2

0.4

0.6

0.8

1.0

(c) Average

0 200 400 600 800 1000
0

200

400

600

800

1000 0.0

0.2

0.4

0.6

0.8

1.0

(d) PIA-NR
0 200 400 600 800 1000

0

200

400

600

800

1000 0.0

0.2

0.4

0.6

0.8

1.0

(e) PUA-NR

0 200 400 600 800 1000
0

200

400

600

800

1000 0.0

0.2

0.4

0.6

0.8

1.0

(f) VarAuto

Figure A.1: CA of item pairs of Yahoo! Music (a), and for different shilling attack
models (b-e) and the proposal (f).

120

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000

7000

(a) Original

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000

7000

(b) Random

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000

7000

(c) Average

1
0

50

100

150

200

250

300

350

(d) PIA-NR

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000

7000

(e) PUA-NR

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000

(f) VarAuto

Figure A.2: CA distribution of item pairs of Yahoo! Music (a), and for different
shilling attack models (b-e) and the proposal (f).

121

A.0.2 Attack Models Evaluation

Yahoo! Music

0 0.1 0.2

1.00

2.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

0.00

0.50

1.00

1.50

2.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0.20

0.40

0.60

0.80

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) Random items

0 0.1 0.2

0

100

200

(b) Least rated items

0 0.1 0.2

0

100

200

(c) Most rated items

PIA-NR PUA-NR Random Bandwagon Average VarAuto

Figure A.3: Prediction shift, hit ratio and average rank for different attacks sizes
using Improved Regularized SVD as collaborative filtering technique and Yahoo!
Music dataset.

122

A.0.3 Data Cleansing

Movielens 100k

0 0.1 0.2

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) MLP
0 0.1 0.2

0

200

400

600

(b) O’Mahony

0 0.1 0.2

0

200

400

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure A.4: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using least-rated target items from MovieLens 100k data set and with attackers
injected in the base estimator training data. Note that it only shows the best result
of filler size among the attack models that require it.

123

0 0.1 0.2

0.00

0.20

0.40

0.60

0.80
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.20

0.40

H
it

ra
ti

o

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0

200

400

600

800

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

600

800

(b) O’Mahony

0 0.1 0.2

0

200

400

600

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure A.5: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using most-rated target items from MovieLens 100k data set and with attackers
injected in the base estimator training data. Note that it only shows the best result
of filler size among the attack models that require it.

124

0 0.1 0.2

1.00

2.00

3.00
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

−1.00

0.00

1.00

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

−0.20

0.00

0.20

0.40

0.60

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

500

1,000

1,500

(b) O’Mahony

0 0.1 0.2

0

200

400

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure A.6: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using least-rated target items from MovieLens 100k data set and no attackers in
the base estimator. Note that it only shows the best result of filler size among the
attack models that require it.

125

0 0.1 0.2

0.00

0.20

0.40

0.60

0.80
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.20

0.40

H
it

ra
ti

o

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0

200

400

600

800

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

600

800

(b) O’Mahony

0 0.1 0.2

0

200

400

600

800

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure A.7: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using most-rated target items from MovieLens 100k data set and no attackers in
the base estimator. Note that it only shows the best result of filler size among the
attack models that require it.

126

Yahoo! Music

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

H
it

ra
ti

o

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0

200

400

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

(b) O’Mahony

0 0.1 0.2

0

200

400

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure A.8: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach us-
ing least-rated target items from Yahoo! Music data set and with attackers injected
in the base estimator training data. Note that it only shows the best result of filler
size among the attack models that require it.

127

0 0.1 0.2

0.00

0.50

1.00

1.50
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.00

1.00

0 0.1 0.2

0.00

0.50

1.00

1.50

0 0.1 0.2

0.20

0.40

0.60

0.80

H
it

ra
ti

o

0 0.1 0.2

0.20

0.40

0.60

0.80

0 0.1 0.2

0.20

0.40

0.60

0.80

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

100

200

300

(b) O’Mahony

0 0.1 0.2

0

100

200

300

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure A.9: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach us-
ing most-rated target items from Yahoo! Music data set and with attackers injected
in the base estimator training data. Note that it only shows the best result of filler
size among the attack models that require it.

128

0 0.1 0.2

0.00

1.00

2.00

3.00
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

−0.50

0.00

0.50

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0

200

400

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

400

600

800

(b) O’Mahony

0 0.1 0.2

0

200

400

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure A.10: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using least-rated target items from Yahoo! Music data set and no attackers in the
base estimator. Note that it only shows the best result of filler size among the attack
models that require it.

129

0 0.1 0.2

0.00

0.50

1.00

1.50
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.00

0.50

1.00

1.50

0 0.1 0.2

0.20

0.40

0.60

0.80

H
it

ra
ti

o

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.20

0.40

0.60

0.80

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

100

200

300

(b) O’Mahony
0 0.1 0.2

0

100

200

300

(c) Toledo

PIA-NR PUA-NR Random Bandwagon
Average VarAuto

Figure A.11: Prediction shift, hit ratio, and average rank for different attack sizes
comparing the baseline with O’Mahony’s and Toledo’s Data Cleansing approach
using most-rated target items from Yahoo! Music data set and no attackers in the
base estimator. Note that it only shows the best result of filler size among the attack
models that require it.

130

A.0.4 Label Noise-Robust Algorithms

Movielens 100k

0 0.1 0.2

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

(b) Bootsrap Hard

0 0.1 0.2

0

200

400

(c) Bootsrap Soft

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure A.12: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using least-rated target
items from MovieLens 100k data set. Note that it only shows the best result of filler
size among the attack models that require it.

131

0 0.1 0.2

1.00

2.00

3.00
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

0.00

0.50

1.00

H
it

ra
ti

o

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) MLP
0 0.1 0.2

0

200

400

600

(b) Noise Channel

0 0.1 0.2

0

200

400

(c) Carmo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure A.13: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques using least-
rated target items from MovieLens 100k data set. Note that it only shows the best
result of filler size among the attack models that require it.

132

0 0.1 0.2

0.00

0.20

0.40

0.60

0.80
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.50

1.00

0 0.1 0.2

0.00

0.20

0.40

H
it

ra
ti

o

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0

200

400

600

800

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

600

800

(b) Bootsrap Hard

0 0.1 0.2

0

200

400

600

800

(c) Bootsrap Soft

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure A.14: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using most-rated target
items from MovieLens 100k data set. Note that it only shows the best result of filler
size among the attack models that require it.

133

0 0.1 0.2

0.00

0.20

0.40

0.60

0.80
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.00

0.50

0 0.1 0.2

0.00

0.50

1.00

1.50

0 0.1 0.2

0.00

0.20

0.40

H
it

ra
ti

o

0 0.1 0.2

0.00

0.20

0.40

0 0.1 0.2

0.00

0.20

0.40

0.60

0 0.1 0.2

0

200

400

600

800

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2
0

200

400

600

(b) Noise Channel
0 0.1 0.2

0

200

400

600

800

(c) Carmo

PIA-NR PUA-NR Random Bandwagon
Segment Average VarAuto

Figure A.15: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques using most-
rated target items from MovieLens 100k data set. Note that it only shows the best
result of filler size among the attack models that require it.

134

Yahoo! Music

0 0.1 0.2

0.00

1.00

2.00

3.00

P
re

di
ct

io
n

Sh
ift

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.00

1.00

2.00

3.00

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

H
it

ra
ti

o

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0

200

400

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

600

(b) Bootsrap Hard

0 0.1 0.2

0

200

400

600

(c) Bootsrap Soft

PIA-NR PUA-NR Random
Bandwagon Average VarAuto

Figure A.16: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using least-rated target
items from Yahoo! Music data set. Note that it only shows the best result of filler
size among the attack models that require it.

135

0 0.1 0.2

0.00

1.00

2.00

3.00
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2
0.00

1.00

2.00

3.00

0 0.1 0.2

1.00

2.00

3.00

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

H
it

ra
ti

o

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2

0

200

400

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

200

400

(b) Noise Channel

0 0.1 0.2

0

200

(c) Carmo

PIA-NR PUA-NR Random
Bandwagon Average VarAuto

Figure A.17: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques using least-
rated target items from Yahoo! Music data set. Note that it only shows the best
result of filler size among the attack models that require it.

136

0 0.1 0.2

0.00

0.50

1.00

1.50
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.00

0.50

1.00

1.50

0 0.1 0.2

0.00

1.00

0 0.1 0.2

0.20

0.40

0.60

0.80

H
it

ra
ti

o

0 0.1 0.2

0.20

0.40

0.60

0.80

0 0.1 0.2

0.20

0.40

0.60

0.80

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2

0

100

200

300

(b) Bootsrap Hard

0 0.1 0.2

0

100

200

300

(c) Bootsrap Soft

PIA-NR PUA-NR Random
Bandwagon Average VarAuto

Figure A.18: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Bootstrapping techniques using most-rated target
items from Yahoo! Music data set. Note that it only shows the best result of filler
size among the attack models that require it.

137

0 0.1 0.2

0.00

0.50

1.00

1.50
P

re
di

ct
io

n
Sh

ift

0 0.1 0.2

0.00

0.50

1.00

1.50

0 0.1 0.2

0.00

1.00

2.00

0 0.1 0.2

0.20

0.40

0.60

0.80

H
it

ra
ti

o

0 0.1 0.2

0.20

0.40

0.60

0.80

0 0.1 0.2

0.20

0.40

0.60

0.80

0 0.1 0.2

0

100

200

300

Av
er

ag
e

ra
nk

(a) MLP

0 0.1 0.2
0

100

200

300

(b) Noise Channel

0 0.1 0.2

0

100

200

(c) Carmo

PIA-NR PUA-NR Random
Bandwagon Average VarAuto

Figure A.19: Prediction shift, hit ratio, and average rank for different attack sizes
comparing a regular MLP with Noise Channel and Carmo techniques using most-
rated target items from Yahoo! Music data set. Note that it only shows the best
result of filler size among the attack models that require it.

138

	List of Figures
	List of Tables
	List of Symbols
	List of Achronyms
	Introduction
	Contextualization
	Problem Definition
	Objectives
	Contributions
	Document Structure

	Shilling Attacks in Collaborative Filtering
	Recommender Systems
	Collaborative Filtering
	Datasets

	Shilling Attack
	Shilling Attack Types
	Mounting Attacks
	Attack Models
	Metrics

	Artificial Neural Networks
	Convolutional Networks
	Autoencoders
	Variational Autoencoders
	Generative Adversarial Networks

	Malicious Profiles Using Generative Models
	Attack Models Issue
	Related Work
	Proposal
	Simulate Real Profiles
	Attack Construction

	Empirical Results
	Setup
	Results

	Shilling Attack Perspective as Label Noise
	Noise
	Methods to Deal with Label Noise
	Data Cleansing
	Label Noise-Robust Models

	Empirical Results
	Metrics
	Setup
	Results

	Evaluating Detection Models for Shilling Attacks
	Detection Models
	Supervised
	Semi-Supervised
	Unsupervised

	Detection Models Evaluation
	Metrics
	Setup
	Results

	Conclusion
	Proposal Summary
	Results Summary
	Future Works

	References
	Additional Experimental Results
	Item Correlation Analysis
	Attack Models Evaluation
	Data Cleansing
	Label Noise-Robust Algorithms

