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A ampla adoção de aprendizado de máquina em decisões de impacto social ex-
pandiu sistematicamente a aplicação de padrões discriminatórios já existentes. As-
sim, técnicas de aprendizado de máquina justas tornaram-se uma fronteira para
pesquisadores e profissionais de IA. Abordar a equidade é complexo, não se pode
depender apenas dos dados usados para treinar modelos ou das métricas que os
avaliam, pois esses dados frequentemente são a principal fonte de viés, similar a
dados ruidosos. Exploramos a convergência entre equidade e ruído no aprendizado
de máquina, destacando semelhanças e diferenças. Apresentamos “Fair Transition
Loss”, um novo método para classificação justa inspirado em técnicas de robustez
contra ruído de rótulo. Funções de custo convencionais ignoram a distribuição dos
dados sensíveis e seu impacto nas previsões. Nossa abordagem utiliza matrizes de
transição para ajustar as previsões utilizando estes dados ignorados. Nossa avaliação
empírica usando o teste de significância de ordem quase-estocástica indica que esse
método supera muitas abordagens clássicas e de ponta na maioria dos conjuntos de
dados de referência e objetivos de otimização. Além disso, a abordagem proposta
se mostrou a única a manter resultados competitivos em todos os cenários.

Além disso, apresentamos uma abordagem de regularização inovadora denom-
inada “Redlining Penalty Regularization”, que penaliza proporcionalmente a de-
pendência do modelo de preditores indiretos dos atributos sensíveis de acordo com
suas correlações. Nossos resultados experimentais demonstram que a técnica pro-
posta melhora os resultados tanto em redes neurais convencionais quanto naquelas
treinadas usando o “Fair Transition Loss” em uma variedade de conjuntos de dados
e objetivos de otimização para classificação justa.
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The Machine learning widespread adoption has inadvertently led to the amplifi-
cation of societal biases and discrimination, with many consequential decisions now
influenced by data-driven systems. In this scenario, fair machine learning techniques
has become a frontier for AI researchers and practitioners. Addressing fairness is
intricate; one cannot solely rely on the data used to train models or the metrics that
assess them, as this data is often the primary source of bias — akin to noisy data.
This work delves into the convergence of these two research domains, highlighting
the similarities and differences between fairness and noise in machine learning. We
introduce the Fair Transition Loss, a novel method for fair classification inspired
by label noise robustness techniques. Traditional loss functions tend to ignore dis-
tributions of sensitive features and their impact on outcomes. Our approach uses
transition matrices to adjust predicted label probabilities based on this ignored data.
The empirical evaluation using Almost Stochastic Order significance test indicates
that this method outperforms many classical and state-of-art approaches in most of
benchmarked datasets and optimization objectives to fair classification. Addition-
ally, the proposed approach remains as the only to keep competitive results on all
compared scenarios.

Also, we present the Redlining Penalty Regularization, a novel regularization
approach that proportionately penalizes model’s dependency on sensitive feature
proxies according their correlations. Our experimental results demonstrates that
this proposed technique improves both results on standard neural networks and
those trained using Fair Transition Loss on a variety of datasets and optimization
objectives to fair classification.
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Chapter 1

Introduction

1.1 Contextualization

Brisha Borden was running late to pick up her god-sister from school. She and her
friend, both 18-year-old girls, took an unlocked kid’s bicycle and scooter and ride
for a while. They were arrested and charged with theft. Meanwhile, Vernon Prater,
a seasoned criminal with prior history of armed robbery and years in prison, was
caught by theft tools. A computer program predicted their future criminal behavior:
Borden, a black woman, was rated high risk; Prater, a white man, was rated low risk.
However, the algorithm got it wrong. Borden remained crime-free, while Prater was
again serving an eight-year prison term for a subsequent theft.

This famous case revealed by a ProPublica’s investigative reporting evidenced
the biased behavior of Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS), a criminal risk assessment tool owned by Northpointe and
used by Florida’s criminal justice system (JULIA ANGWIN e KIRCHNER, 2016).
Examples like that are not extraordinary, decision making systems are incurring in
bias by reproducing prejudices and disparities from society all around the world.
Although the machine learning bias can not be resolved only by computing science
and statistics solutions, we delve into this issue in order to provide tools for decision
makers, civil society and other stakeholders to tackle this humongous problem.

In the vain of these issues, the subject of fairness in machine learning has recently
risen to prominence due to its implications in real-world decision-making systems.
Addressing biases and discrimination is a relevant frontier in decision-making sys-
tems, as equitable outcomes across various demographic groups is both an ethical
imperative and often a legal requirement. Though fairness is a multifaceted concept,
it has been deeply examined within the context of machine learning. The literature
presents a variety of fairness definitions, drawing concepts from political philosophy
and computational techniques. Choosing an equitable machine learning model re-
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quires the selection of a fitting definition of fairness, tailored to the specific problem
at hand. Many such definitions can be precisely articulated, allowing models to be
evaluated based on their predictions. (MEHRABI et al., 2021; CATON e HAAS,
2023; HUTCHINSON e MITCHELL, 2018)

One inherent challenge in fair machine learning is the balance between fair-
ness and predictive performance. Efforts to mitigate unfairness often compro-
mise the model’s predictive performance, a trade-off that has been well docu-
mented (MEHRABI et al., 2021; CATON e HAAS, 2023). Predictors that are less
biased against marginalized groups may deviate from the true class, resulting in sub-
optimal performance. Also, introducing fairness considerations adds constraints to
the model, further complicating the optimization process (ZAFAR et al., 2017a).

In this context sounds intuitive the idea of just removing protected attributes
such as race, sex and age, so that the model would be unable to produce outcomes
using these information in a biased way. Unfortunately this approach not only does
not work, as the model will probably infer these characteristics using proxy features
available on data, but also it can accentuate disparities due lack of information. This
tricky phenomena is know as Redlining Effect (PEDRESCHI et al., 2008) and was
extensively documented (MEHRABI et al., 2021; CATON e HAAS, 2023; HORT
et al., 2023).

Thus, a fair machine learning technique capable of properly handling the intri-
cate trade-off between predictive performance and fairness meanwhile avoiding the
model’s reliance on sensitive feature’s proxies would be a valuable tool in order to
tackle algorithmic bias. In light of referred challenges, we introduce the Fair Transi-
tion Loss (CANALLI et al., 2024) and The Redlining Penalty Regularization, a loss
and penalization approaches that can be combined to boost model’s robustness to
unfair data.

1.2 Objectives

Although noise and unfairness in the context of classification are not identical phe-
nomena, there are relevant similarities, especially in their effects on data. Both
changes the appropriate or expected values of an instance’s attributes or label.
While noise corrupts the observable value of an attribute or class without affect-
ing the true value, unfairness acts directly on the social reality that generates these
values, corrupting both the observable and true values. Considering the succeeds ap-
proaches to produce label noise robustness through loss correction (PATRINI et al.,
2017), which uses different levels of uncertainty according observed label, we raise
the following hypothesis:

2



Hypothesis 1. A loss correction approach that considers different levels of corrup-
tion according individual’s sensitive attribute and available class reduces unfairness.

Thus, the main objective of this study is to produce a loss correction tailored to
reconsider the predicted outcomes of a binary classifier taking into account different
levels of unfairness according individual’s social group and available class, addressing
Hypothesis 1.

Another relevant topic tackled by this work is the Redlining Effect, which
perversely penalizes individuals of socially marginalized groups, even on well-
intentioned approaches to mitigate unfairness. Intuitively, reducing model’s reliance
on those sensitive feature’s proxies would promote fairness. Thus, in order to achieve
a Redlining Effect robustness, we raise the following hypothesis:

Hypothesis 2. A regularization approach that penalizes model’s dependency on
sensitive attribute proxies reduces the effects of redlining an thus promoting fairness.

Therefore, to accomplish Hypothesis 2 this study pursue this secondary objective
of developing a regularization approach capable of properly identifying and penal-
izing the proxies of sensitive feature.

1.3 Contributions

In light of referred challenges, we introduce the Fair Transition Loss, a novel ap-
proach to fair classification. This method estimates the influence of historical and
societal biases on outcome probabilities for distinct groups within dataset. For in-
stance, individuals from marginalized groups might have lower chances of favorable
outcomes compared to their counterparts from privileged groups. Such disparate
probabilities can be represented by transition matrices. Drawing inspiration from
label noise robustness, we incorporate these transition matrices information into
the loss function to promote fairness. The proposed method has some hyperaram-
eters, chosen by a Multi-Objective Optimization approach combining both fairness
and model performance with a linear objective. This objective function is defined
in such a way that the proposed approach is suitable to optimize a wide range of
fairness and performance metrics.

The primary contribution of this study is the conceptualization of the Fair Tran-
sition Loss, a novel loss function influenced by label noise methodologies. The
novelty of this work lies in applying label noise techniques directly within the model
to mitigate unfairness. As far as we know, this is the first work to adopt label noise
techniques directly to address fairness in machine learning. Additionally, the pro-
posed method achieves state-of-art results in benchmark tests across common fair
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classification tasks. Our empirical results indicates that this method consistently
outperforms many leading fair classification techniques in a variety of scenarios.
This conceptualization and results are also published at CANALLI et al. (2024).

Although we draw some comparison between unfairness and noise concepts, de-
lineating similarities and differences, it is important to emphasizes that this works
does not describes bias and discrimination issues as a noise phenomena. Instead,
we use some transition-matrix-based robust loss function from label noise literature
in order to create a loss correction approach suitable to fair classification problems.
The core concept here is to adjust the individual’s probabilities according social
group, i.e., protected and privileged, achieving the favorable or unfavorable out-
come on a binary classification problem, which is attained trough a custom loss
function considering the unfairness information from data in a transition matrix
format.

Another contribution of the present study is a novel regularization approach
to fair classification named Redlining Penalty Regularization, which uses feature’s
Chatterjee’s xi correlation (CHATTERJEE, 2021) to the sensitive attribute in or-
der to proportionately penalize model’s dependency on it. Our empirical evaluation
indicates that this approach effectively mitigate unfairness while keeping predictive
performance, with benefits corresponding to redlining level on dataset. Also, our
results indicates that this approach can reduce bias while keeping predictive perfor-
mance on a variety of scenarios, enhancing performance-fairness trade-off on both
standard neural networks and those trained with Fair Transition Loss. To the best
of our knowledge this is the first regularization approach to penalize model’s de-
pendency proportionately to feature’s correlation to protected attribute in order to
mitigate unfairness.

1.4 Results summary

Our empirical evaluation compares the proposed methods with its counterparts
on the fair classification benchmark datasets Adult Income (BECKER e KO-
HAVI, 1996), Bank Market (S. MORO e CORTEZ, 2012), COMPAS Recidi-
vism (JEFF LARSON e ANGWIN, 2016), and German Credit (HOFMANN, 1994)
under multiple optimization objectives, each of them targeting maximize a predic-
tive performance metric while minimizing a fairness metric. In every comparison we
optimize all methods through an extensive hyperparameter tuning process, in order
to guarantee that each one has the same competitive conditions. After the hyperpa-
rameter tuning phase the method is than retrained with the best hyperparameters
and evaluated using a test set not used on tuning, whose metrics are reported in
results. This complete process is then repeated over multiple runs through dataset
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resampling and an Almost Stochastic Order (DROR et al., 2019) comparison is per-
formed, which is a significance test suitable to compare complex machine learning
models under hyperparameter optimization. The comparative studies are conducted
under 4 datasets to 6 optimization objectives, which lead us to 24 evaluation scenar-
ios each. A complete description of these experimental evaluations are available at
Section 3.3 and Section 4.3, while the computational implementations, results and
analysis are available at CANALLI (2024) as supplementary material.

In order to properly attend to Hypothesis 1 we compare the proposed loss cor-
rection named Fair Transition Loss (Section 3.2) with a standard Multi-Layer Per-
ceptron and with classical and state-of-art fair classification approaches. The exper-
imental results available at Section 3.4 can be summarized as follow:

• The proposed model achieves the best result on most of evaluated scenarios;

• The proposed model is the only one with competitive results in all evaluated
scenarios.

Also, to attend to Hypothesis 2 we compare the proposed regularization approach
named Redlining Penalty Regularization (Section 4.2) applied on a standard Multi-
Layer Perceptron and on a Multi-Layer Perceptron with Fair Transition Loss. The
experimental results available at Section 4.4 can be summarized as follow:

• The proposed regularization approach enhances the results on most of evalu-
ated scenarios;

• The proposed regularization approach performs according the redlining level
of the dataset, the higher the redlining effect higher the improvement.

1.5 Thesis structure

The remainder of this Thesis is structured as follows: Chapter 2 delves into Fair
Machine Learning describing core concepts, some related research topics, sources
and types of algorithmic unfairness, definitions, metrics and fair classification ap-
proaches; Chapter 3, describes and evaluates Fair Transition Loss and its underlying
principles, delineating related works encompassing multi-objective optimization in
fair machine learning, classifications in the presence of label noise and studies bridg-
ing fairness and label noise. Chapter 4, describes and evaluates Redlining Penalty
Regularizer and its fundamentals, describing some correlation coefficients suitable to
this use and related works that applies a regularization approach to promote fairness;
Chapter 5 presents conclusions drawn from our study, fashioning some considera-
tions on the proposed methods, delineating the contributions and some insights to
further research.
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Chapter 2

Fair machine learning

The field of Machine Learning (ML) has experienced significant growth and is in-
creasingly applied in various societal domains such as healthcare, finance, and crim-
inal justice. This growth raises important ethical and operational concerns, partic-
ularly regarding the principles of Fairness, Accountability, and Transparency (FAT)
(MEMARIAN e DOLECK, 2023). As ML algorithms increasingly influence a wide
array of societal domains, including criminal justice, healthcare, finance, and em-
ployment, the requirement to ensure these systems are designed and implemented
responsibly has become paramount. This chapter aims to delineate the significance,
scope, and prevailing challenges associated with integrating FAT principles into ML,
providing a foundation for the subsequent discussion.

2.1 Fairness, accountability, and transparency

Fairness in ML concerns the equitable and just treatment of all individuals, par-
ticularly those from historically marginalized or disadvantaged groups (MEHRABI
et al., 2021; CATON e HAAS, 2023). It seeks to ensure that ML algorithms do
not perpetuate existing biases or create new forms of discrimination. However, the
multifaceted nature of fairness, encompassing various definitions and metrics, poses
substantial challenges in operationalizing it within algorithmic frameworks. Further
in this section we will explore these complexities, examining different conceptions of
fairness and the inherent trade-offs they entail.

Accountability in ML pertains to the obligation of designers, developers, and
maintainers of ML systems to be answerable for the outcomes of these systems
(HUTCHINSON et al., 2021). It involves establishing mechanisms that allow for
the tracing of decisions back to the entities responsible for the deployment of the
ML algorithms. Accountability also encompasses the adherence to ethical stan-
dards, legal requirements, and societal norms. This discussion frequently involves
mechanisms and practices that can promote accountability in ML, like auditing,
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documentation, and regulatory compliance.
Transparency, the third pillar, refers to the clarity and openness with which ML

systems operate (BURKART e HUBER, 2021). It involves the ability of stakehold-
ers, including end-users, regulators, and the broader public, to understand how ML
systems make decisions. Transparency is mandatory property of any automated de-
cision making system to achieve trustworthiness, facilitating informed consent, and
enabling the scrutiny necessary to identify and rectify biases. However, achieving
transparency, particularly with complex models, presents its own set of technical
and ethical challenges. This research topic includes issues as the trade-off between
explainability and model performance, and discussing emerging approaches to tackle
interpretability without sacrificing effectiveness.

The triad of Fairness, Accountability, and Transparency along with data privacy
forms the cornerstone of Trustworty Artificial Intelligence (TwAI). These principles
are pivotal in ensuring that AI systems are developed and deployed in a manner that
respects human rights, promotes social well-being, and maintains public trust. While
accountability ensures that entities behind Artificial Intelligence (AI) systems can
be held responsible for their outcomes, transparency allows stakeholders to produce
and maintain environments where AI systems can be scrutinized, understood, and
corrected, thereby aligning their functionality with societal norms and values.

In this context of Trustworthy AI the European Union’s High-Level Expert
Group on Artificial Intelligence has outlined seven key principles that aim to en-
sure that AI systems are designed and used in a way that is ethically sound and
trustworthy (HLEG, 2019). These principles are fundamental for developing and
maintaning decision making systems that are beneficial and avoid unintended harm.
The seven principles are as follows:

Human agency and oversight AI systems should empower human beings, allow-
ing them to make informed decisions and fostering their fundamental rights.
At the same time, proper oversight mechanisms need to be ensured, which
can be achieved through human-in-the-loop, human-on-the-loop, and human-
in-command approaches

Technical Robustness and safety AI systems need to be resilient and secure.
They need to be safe, ensuring a fall back plan in case something goes wrong,
as well as being accurate, reliable and reproducible. That is the only way to
ensure that also unintentional harm can be minimized and prevented.

Privacy and data governance besides ensuring full respect for privacy and data
protection, adequate data governance mechanisms must also be ensured, tak-
ing into account the quality and integrity of the data, and ensuring legitimized
access to data.
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Transparency the data, system and AI business models should be transparent.
Traceability mechanisms can help achieving this. Moreover, AI systems and
their decisions should be explained in a manner adapted to the stakeholder
concerned. Humans need to be aware that they are interacting with an AI
system, and must be informed of the system’s capabilities and limitations.

Diversity, non-discrimination and fairness Unfair bias must be avoided, as it
could have multiple negative implications, from the marginalization of vulner-
able groups, to the exacerbation of prejudice and discrimination. Fostering
diversity, AI systems should be accessible to all, regardless of any disability,
and involve relevant stakeholders throughout their entire life circle.

Societal and environmental well-being AI systems should benefit all human
beings, including future generations. It must hence be ensured that they are
sustainable and environmentally friendly. Moreover, they should take into
account the environment, including other living beings, and their social and
societal impact should be carefully considered.

Accountability Mechanisms should be put in place to ensure responsibility and
accountability for AI systems and their outcomes. Auditability, which en-
ables the assessment of algorithms, data and design processes plays a key role
therein, especially in critical applications. Moreover, adequate an accessible
redress should be ensured.

Although there are many aspects to consider to an ethical automated decision
system with social impacts, the present text will concentrate predominantly on
the aspect of fairness and negative social bias. Fairness is not only desirable for
the development of just and equitable technological solutions but an obligation for
maintaining the trustworthiness and acceptability of AI systems in diverse societal
contexts.

2.2 Sources and types of algorithmic unfairness

In classical texts in machine learning bias has an specific meaning, from
bias–variance decomposition. Although they are closely related, the bias from clas-
sical texts and the social bias from fair machine learning literature are not the same.
Henceforward, the use of word bias in this work means the social bias or prejudice
in data or model.

The comprehensive survey conducted by MEHRABI et al. (2021) elucidates the
multitude of biases that can pervade artificial intelligence applications, potentially
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leading to unfair outcomes. This analysis categorizes the various sources of bias, il-
lustrating the multifaceted ways in which such biases can infiltrate different stages of
machine learning processes, ranging from the initial data collection phase to the final
algorithmic processing. The discussion here is with the purpose of proper describing
the complexity and multifaceted nature of unfairness in machine learning models,
not an exhaustive approach on the subject. The following exposition provides a
short delineation of possible sources of bias.

Historical Bias is the existing societal bias that reflects past and present inequal-
ities and prejudices. Historical bias is present in the data even before any
machine learning model has interacted with it, due to inherent social and
cultural inequalities;

Representation Bias occurs when the data sample does not accurately represent
the entire population or certain subgroups within it. This can lead to ma-
chine learning models that perform well on majority groups but poorly on
underrepresented groups;

Measurement Bias arises when the data collected does not accurately measure
the real-world constructs it purports to measure. This type of bias can oc-
cur due to flawed data collection instruments or processes that systematically
misrepresent certain groups;

Evaluation Bias occurs during the performance evaluation of machine learning
models, where the evaluation criteria or methods may favor one group over
others, leading to biased assessments of model performance;

Aggregation Bias happens when incorrect assumptions are made about the ho-
mogeneity of groups within the data. Aggregation bias can lead to misleading
conclusions if the differences within and between groups or subgroups are not
properly accounted for;

Population Bias is similar to representation bias, occurs when statistics, demo-
graphics, representatives, and user characteristics are different in the user pop-
ulation represented in the dataset, leading to models that are not generalizable
across different demographic groups;

Simpson’s Paradox is a statistical phenomenon where a trend appears in several
different groups of data but disappears or reverses when these groups are
combined;

Longitudinal Data Fallacy occurs when cross-sectional data is treated as longi-
tudinal, leading to incorrect conclusions about data trends over time;
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Sampling Bias introduced by non-random sampling procedures, where certain
members of the intended population are less likely to be included in the sam-
ple than others, leading to skewed data that does not accurately represent the
entire population;

Behavioral Bias arises from variations in user behavior that differ across different
platforms or contexts, affecting the data’s representation of real-world phe-
nomena;

Content Production Bias results from differences in how content is generated by
different groups, with structural, lexical, semantic, and syntactic differences,
influencing the data available for machine learning models;

Linking Bias occurs in networked data, where the connections between nodes can
misrepresent the true attributes or behavior of the nodes;

Temporal Bias reflects changes in data characteristics over time, due changes in
representation or behaviors, which may not be accounted for in static machine
learning models;

Popularity Bias occurs when popular items are more likely to be recommended
or rated highly, not necessarily because of their quality but simply because
of their initial, higher visibility and these popularity metrics are subject of
mapinupation;

Algorithmic Bias introduced by the algorithms themselves, when they add bias
that was not present in the input data:

User Interaction Bias results from the way system design influences user behav-
ior in biased ways. This source of bias can be influenced by other types or
subtypes, such as Presentation and Ranking Biasese:

Presentation Bias occurs when the way information is presented influences
the outcomes. In machine learning, this can manifest through the design
of user interfaces or the manner in which data is displayed, affecting user
decisions and interactions;

Ranking Bias arises when algorithms prioritize certain data points over oth-
ers in ranked lists or search results, which can distort visibility and per-
petuate certain preferences or discriminations;

Social Bias is the preconceived notions and stereotypes held by societies, where
individual actions or contents are socially influenced. These biases often find
their way into data through collective social behaviors and decisions, influenc-
ing the training data used for machine learning models;
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Emergent Bias arises during the operation of a system, particularly as a result of
changes in population, cultural values, or societal knowledge in the data over
time. This type of bias is dynamic and can occur even if the initial model was
unbiased, due to changes in the underlying data or context;

Self-Selection Bias occurs when the individuals selected for a study or dataset
have self-selected in some way, producing a sample that is not representa-
tive of the general population. This can skew results and make the data less
generalizable;

Omitted Variable Bias happens when a model overlooks certain relevant vari-
ables that are correlated with both the independent and dependent variables.
Omitting these variables can lead to incorrect inferences about correlations
and effects;

Cause-Effect Bias is a misunderstanding in the determination of causation; it can
occur when correlations are mistaken for causal relationships without proper
justification through causal inference techniques;

Observer Bias is introduced by the expectations or preconceptions of those col-
lecting or processing data, which can influence the outcomes subconsciously.;

Funding Bias refers to the influence that the source of funding can have on the
conduct of research or development of algorithms. This type of bias can lead
to results that favor the interests of the funding source, consciously or uncon-
sciously.

These biases can pervade various stages of machine learning, from data collection
to model evaluation and deployment, highlighting the importance of understanding
and mitigating bias to achieve fairness in AI systems. Furthermore, the presence of
biases can lead to feedback loops that exacerbate these inequalities over time. When
biased data influence the decisions made by an AI system, these decisions can then
be used to generate more data, which, if used to retrain the model, may reinforce
and even amplify the existing biases. This cycle can create a self-perpetuating loop,
making initial biases more entrenched and difficult to correct. Addressing feedback
loops is critical, as they can progressively deteriorate the fairness of the system, lead-
ing to increasingly skewed outcomes that are harder to rectify. Effective strategies to
break these loops include rigorous monitoring of model decisions, regular updates to
training datasets to ensure diversity and representativeness, and the implementation
of mechanisms that can detect and correct for emerging biases

Having outlined the various sources of unfairness in machine learning, MEHRABI
et al. (2021) also explores different types of discrimination that arise from these bi-
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ases. Understanding these types of discrimination is pivotal as they elucidate how
biases, whether direct, indirect, systemic, statistical, explainable, or unexplainable,
can culminate in unfair outcomes. Each type of discrimination indicates a distinct
pathway through which biases embedded in data or algorithms manifest in prac-
tices and decisions, thus potentially perpetuating unfairness in AI systems. This
comprehensive analysis helps in identifying targeted strategies to mitigate these dis-
criminatory effects and underscores the importance of developing automated decision
systems that are both just and equitable.

Direct Discrimination occurs when outcomes are directly affected by sensitive
attributes such as race, gender, or age. This type of discrimination happens
explicitly and is frequently legally prohibited;

Indirect Discrimination manifests when proxy attributes indirectly linked to sen-
sitive attributes influence outcomes. For example, using zip codes in decision-
making processes might inadvertently reflect racial biases because residential
areas often correlate with racial demographics. This phenomena is also refered
as redlining effect (PEDRESCHI et al., 2008);

Systemic Discrimination involves policies or practices entrenched within an or-
ganization that perpetuate disadvantage for certain groups. This can stem
from cultural biases embedded in the decision-making processes, often reflect-
ing the preferences or biases of dominant groups;

Statistical Discrimination refers to the use of general statistics on a group to
make inferences about individuals from that group. This type of discrimination
might arise when decision-makers use visible characteristics as proxies for other
traits, leading to biased assessments;

Explainable Discrimination is considered legally permissible if the differences
in treatment or outcomes can be justified through legitimate and relevant
attributes. For instance, differences in pay might be justified by the number
of hours worked if this factor significantly influences earnings;

Unexplainable Discrimination occurs when there is no justifiable reason for the
disparate treatment or outcomes, making it illegal and ethically unaccept-
able. This type of discrimination requires interventions to ensure fairness and
equality in decision-making processes.
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2.3 Fairness definitions and metrics

This section aims to present some widely used definitions and metrics of fairness, as
described by VERMA e RUBIN (2018) and summarized by MEHRABI et al. (2021)
and CATON e HAAS (2023), providing a comprehensive overview for understanding
and navigating the multifaceted dimensions of fairness in ML systems. Initially, we
explore general considerations and intuitive aspects of fairness, setting the stage
for a deeper understanding. This preliminary discussion lays the groundwork for
understanding the nuanced nature of fairness notions within the context of ML.
Following this, we will transition into formal definitions, where we dissect and explain
those metrics and concepts.

Even before this discussion, we emphasizes that no single fairness definition uni-
versally applies to all scenarios. The choice of a particular fairness definition and
metric should be informed by ethical considerations grounded in the social context
in which the model would be deployed (ALER TUBELLA et al., 2022). Selecting
a fairness definition is not a purely technical matter, as it inevitably requires eth-
ical and social considerations that should not be neglected (ALVES et al., 2023).
Building fair machine learning models requires an interdisciplinary approach that
engages all stakeholders, including specially those who are typically marginalized
or underrepresented (WEINBERG, 2022). Additionally, a fine grained exploratory
data analysis should be consider when dealing with data problems susceptible to
unfairness.

A prevalent fairness definitions taxonomy classifies fairness notions onto group
metrics and individual metrics. Group fairness metrics refers to those that stands on
the principle that common predictive performance metrics — such as error tares, ac-
curacy, precision and recall — should be equitable across social groups from sensitive
attribute.

Demographic Parity, for example, mandates uniformity in the rate of positive
algorithmic outcomes across different groups, independently from base rates within
each population segment. On the other hand, Equal Opportunity and Equalized
Odds introduce a nuance to this concept by conditioning fairness measure to the
true value of outcomes. This refinement delineates a central differentiation within
group fairness metrics: some are based solely on predicted values, such as Demo-
graphic Parity, while others derive from the scope of the confusion matrix (Table 2.1)
incorporating true value conditions, as seen in Equal Opportunity and Equalized
Odds.

Individual fairness metrics, in contrast, introduce a more granular perspective to
fairness, advocating that similar individuals should be treated similarly by the ML
system. This approach diverges from group-level considerations, focusing instead on
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ensuring that the algorithm’s treatment is consistent for individuals who are similar
in relevant aspects, independently from their membership in different social groups.
This concept emphasizes the notion that fairness extends beyond group identities to
recognize and respect the uniqueness of individual experiences and qualifications.

To establish the foundation for discussing fairness definitions and metrics, we
commence with an examination of the confusion matrix, which is an essential in-
strument in machine learning to assessing the performance of classification algo-
rithms. It constitutes a tabular visualization that delineates the correspondence
between the true labels and the predicted outcomes generated by a model. For
binary classification tasks, the confusion matrix is structured into four principal
components: True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN), as outlined in Table 2.1. By providing a clear breakdown
of these outcomes, the confusion matrix allows to calculate many key performance
metrics such as accuracy, precision, recall, and the F1 score, providing comprehen-
sive insights into the strengths and weaknesses of the classification model. Also, the
computation of those metrics forms the basis for evaluating group fairness across
distinct demographic groups.

Table 2.1: Confusion matrix of binary classification outcomes

Predicted
Positive Negative

Actual Positive TP FN
Negative FP TN

True Positives (TP) can be defined as the probability that the predictor cor-
rectly identifies a positive outcome when the true condition is positive. Using the
conditional probability notation, it is expressed as P (Ŷ = 1|Y = 1), indicating the
probability that the predicted class Ŷ is positive given that the actual class Y is
positive.

False Positives (FP) represent the probability that the predictor incorrectly
identifies a positive outcome when the true class is negative. It is denoted as
P (Ŷ = 1|Y = 0), reflecting the probability that the predicted class Ŷ is positive
when the actual class Y is negative.

False Negatives (FN) are defined as the probability that the predictor incorrectly
identifies a negative outcome when the true class is positive. This is given by P (Ŷ =

0|Y = 1), the probability that the predicted class Ŷ is negative given that the actual
class Y is positive.

True Negatives (TN) correspond to the probability that the predictor correctly
identifies a negative outcome when the true condition is negative. In conditional
probability terms, it is P (Ŷ = 0|Y = 0), indicating the probability that the predicted
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class Ŷ is negative given that the actual class Y is negative.
Now we proceed to more complex metrics that provides complementary insights

into the performance of the classifier. These derived metrics, such as Positive Pre-
dictive Value (PPV), False Discovery Rate (FDR), and others, constitutes the basic
elements of the confusion matrix to quantify the reliability of the predictions in
various ways. By expressing these metrics in terms of conditional probabilities and
confusion matrix components, we facilitate a comprehensive analysis of the clas-
sifier’s behavior, providing resources to a proper evaluation of its fairness across
different demographic groups.

Definition 1 (Positive Predictive Value). Also referred as precision, measures the
proportion of correctly identified positive outcomes among all predicted positives. It
is defined as the probability that the true condition is positive given the predicted
condition is positive, P (Y = 1|Ŷ = 1). In terms of the confusion matrix, Positive
Predictive Value (PPV) is calculated as TP

TP+FP
, the ratio of true positives to the sum

of true positives and false positives.

Definition 2 (False Discovery Rate). Quantifies the rate of incorrect positive pre-
dictions. It is the probability that the true condition is negative when the predicted
condition is positive, P (Y = 0|Ŷ = 1). From the confusion matrix, False Discovery
Rate (FDR) is computed as FP

TP+FP
, indicating the proportion of false positives out

of all predicted positives.

Definition 3 (Negative Predictive Value). Assesses the accuracy of negative pre-
dictions, representing the probability that the true condition is negative given the
predicted condition is negative, P (Y = 0|Ŷ = 0). Negative Predictive Value (NPV)
is derived from the confusion matrix as TN

TN+FN
, the number of true negatives over

the sum of true negatives and false negatives.

Definition 4 (False Omission Rate). Indicates the likelihood of a false negative
prediction. It corresponds to the probability that the true condition is positive when
the predicted condition is negative, P (Y = 1|Ŷ = 0). In the confusion matrix
context, False Omission Rate (FOR) is FN

TN+FN
, representing the number of false

negatives relative to all predicted negatives.

Definition 5 (True Positive Rate). Also referred as recall, measures the proportion
of actual positives that are correctly predicted. It is the probability that the predicted
condition is positive given the true condition is positive, P (Ŷ = 1|Y = 1). True
Positive Rate (TPR) is calculated as TP

TP+FN
in the confusion matrix, the ratio of

true positives to the sum of true positives and false negatives.
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Definition 6 (False Negative Rate). Quantifies the rate of missed positive predic-
tions. It is defined as the probability that the predicted condition is negative when the
true condition is positive, P (Ŷ = 0|Y = 1). False Negative Rate (FNR) is derived
from the confusion matrix as FN

TP+FN
, indicating the proportion of false negatives out

of the actual positives.

Definition 7 (True Negative Rate). Also referred as specificity, indicates the accu-
racy of negative predictions, representing the probability that the predicted condition
is negative given the true condition is negative, P (Ŷ = 0|Y = 0). From the confu-
sion matrix, True Negative Rate (TNR) is computed as TN

TN+FP
, the number of true

negatives to the sum of true negatives and false positives.

Definition 8 (False Positive Rate). Assesses the likelihood of incorrect negative
predictions, calculated as the probability that the predicted condition is positive when
the true condition is negative, P (Ŷ = 1|Y = 0). False Positive Rate (FPR) is given
by FP

TN+FP
in the confusion matrix, the ratio of false positives to the sum of true

negatives and false positives.

As we transition from foundational metrics that directly stem from the confusion
matrix, such as PPV and TPR, we now discuss standard performance metrics that
assess classification models in a more comprehensive manner. These metrics, such
as Accuracy and F1 are distinguished by their reliance on both classes to provide a
more holistic evaluation.

Definition 9 (Accuracy). Probably the most widely used performence metric to
classification problems, Accuracy (Acc.) is the proportion of true results, both true
positives and true negatives, among the total number of cases examined. In terms of
conditional probabilities, accuracy reflects the probability that the predicted condition
is correct, both as a positive and negative outcome, given the actual conditions, and
can be expressed as

P (Ŷ = Y ) = P (Ŷ = 1|Y = 1) · P (Y = 1)

+ P (Ŷ = 0|Y = 0) · P (Y = 0).

Using the confusion matrix, accuracy is computed as

TP + TN

TP + TN + FP + FN
.

Definition 10 (Balanced Accuracy). Is an average of the true positive rate (TPR)
and the true negative rate (TNR), which compensates for class imbalance by treating
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both classes equally. Using conditional probabilities, it can be expressed as

1

2

[
P (Ŷ = 1|Y = 1) + P (Ŷ = 0|Y = 0)

]
,

where each term represents the conditional probability of correctly predicting the
respective class. In terms of the confusion matrix, balanced accuracy (Bal. Acc.) is
calculated as

1

2

[
TP

TP + FN
+

TN

TN + FP

]
.

Definition 11 (F1 Score). The F1 score is the harmonic mean of precision and re-
call, providing a balance between the PPV and TPR. It is calculated as 2 · PPV·TPR

PPV+TPR .
Using conditional probabilities and confusion matrix terms, the F1 score can be ex-
pressed as

2 · P (Y = 1|Ŷ = 1) · P (Ŷ = 1|Y = 1)

P (Y = 1|Ŷ = 1) + P (Ŷ = 1|Y = 1)
,

and calculated using terms from confusion matrix as

2 · TP
2 · TP + FP + FN

.

Definition 12 (Matthews Correlation Coefficient). Is a measure of the quality of
binary classifications, producing a value between -1 and 1 where 1 is a perfect predic-
tion, 0 no better than random prediction, and -1 indicates total disagreement between
prediction and observation. The [Matthews Correlation Coefficient (MCC) is defined
as

TP · TN − FP · FN√
(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

.

In terms of conditional probabilities, MCC considers all four quadrants of the con-
fusion matrix, correlating the true and predicted conditions. It can be seen as a
correlation coefficient between the observed and predicted binary classifications, pro-
viding a more informative measure than simple accuracy in the presence of class
imbalance.

Here we describe the most widely used group fairness definitions, including statis-
tical parity, equal opportunity, predictive equality, and equalized odds. Demographic
parity requires that the likelihood of a positive outcome is the same across different
groups, irrespective of their sensitive attributes. Equal opportunity extends this con-
cept to the true positive rate, ensuring that individuals from different groups have
an equal chance of being correctly classified as positive. Predictive equality, on the
other hand, focuses on the true negative rate, ensuring that individuals from differ-
ent groups have an equal chance of being correctly classified as negative. Equalized
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odds combines the principles of equal opportunity and predictive equality, ensuring
that both true positive and true negative rates are equal across different groups.

Definition 13 (Statistical Parity). The likelihood of a positive, i.e., favorable, out-
come should be the same in every group of the sensitive attribute (DWORK et al.,
2012; KUSNER et al., 2017). A binary predictor Ŷ satisfies Statistical Parity (Stat.
Parity, a.k.a. Demographic Parity) if P (Ŷ |A = 0) = P (Ŷ |A = 1), where A is a
sensitive attribute.

For example, the credit approval probability should be the same for the male
and female groups. Demographic Parity does not depend on true class Y , only on
prediction Ŷ . We can measure Demographic Parity for a sensitive attribute A as the
absolute difference between P (Ŷ |A = 0) and P (Ŷ |A = 1), as seen in Equation 2.1.
According Demographic Parity, the predictor is considered fairer when this metric
is lower.

|P (Ŷ |A = 0)− P (Ŷ |A = 1)| (2.1)

Definition 14 (Equal Opportunity). The probability of a person in a positive class
being assigned to a positive, i.e., favorable, outcome should be the same in every
group of the sensitive attribute (HARDT et al., 2016). A binary predictor Ŷ satisfies
Equal Opportunity (Eq. Opp.) if P (Ŷ |A = 0, Y = 1) = P (Ŷ |A = 1, Y = 1), where
Y is true class and A is a sensitive attribute.

Definition 14 claims that protected and unprotected, i.e., privileged, groups
should have equal true positive rates. Mathematically, a classifier with equal
true positive rates will also have equal false negative rates, so we can analyze
the confusion matrix checking whether a predictor has equal (TP )/(TP + FN)

or (FN)/(TP +FN) in each group of the sensitive attribute. Like in Demographic
Parity, we can measure Equal Opportunity as an absolute difference between pro-
tected and privileged groups, as defined in Equation 2.2.

|P (Ŷ |A = 0, Y = 1) − P (Ŷ |A = 1, Y = 1)| (2.2)

For example, the credit approval probability within individuals labeled as good
payer should be the same for the male and female groups, as Equal Opportunity
depends on true class Y .

Definition 15 (Predictive Equality). The probability of a person in a negative
class being assigned to a negative outcome should be the same in every group
of the sensitive attribute. A binary predictor Ŷ satisfies Predictive Equality if
P (Ŷ |A = 0, Y = 0) = P (Ŷ |A = 1, Y = 0), where Y is true class and A is a
protected attribute.
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Definition 15 establishes that that both the protected and privileged groups
should have the same true negative rates, which consequently results in equal false
positive rates. Using a confusion matrix definition, we check the absolute difference
of (TN)/(TN +FP ) or (FP )/(TN +FP ) between the groups. So, we can measure
Predictive Equality according Equation 2.3.

|P (Ŷ |A = 0, Y = 0) − P (Ŷ |A = 1, Y = 0)| (2.3)

For example, the credit denial probability within individuals labeled as bad payer
should be the same for the male and female groups.

Definition 16 (Equalized Odds). Both probabilities of the person in a positive class
being assigned to a positive outcome and of a person in a negative class being as-
signed to a negative outcome should be the same in every group of the sensitive
attribute (HARDT et al., 2016). A binary predictor Ŷ satisfies Equalized Odds (Eq.
Odds, a.k.a. Average Odds Difference) if P (Ŷ |A = 0, Y ) = P (Ŷ |A = 1, Y ), where
Y is true class and A is a protected attribute.

Equalized Odds is a combination of the principles from Definition 14 and Defi-
nition 15, i.e., protected and unprotected groups should have equal true positive
and true negative rates, therefore equal false positive and false negative rates.
Using a confusion matrix definition, we check the absolute difference between
(TP )/(TP +FN) and (TN)/(TN +FP ) of predictor in protected and unprotected
groups. Equation 2.4 describes how to measure Equalized Odds as the average be-
tween Equal Opportunity and Predictive Equality. According to Definition 16, the
predictor is considered fairer when this metric is lower.

1

2

[
|P (Ŷ |A = 0, Y = 1) − P (Ŷ |A = 1, Y = 1)|+

|P (Ŷ |A = 0, Y = 0) − P (Ŷ |A = 1, Y = 0)|

]
(2.4)

For example, both credit approval and denial probabilities within individuals
labeled as good and bad payer, respectively, should be the same for the male and
female groups.

Using the same logic, it is possible to define group fairness metrics based derived
from any binary classification metric from confusion matrix. The procedure is the
same, assessing the absolute difference from those metrics between protected and
unprotected groups.

While individual fairness metrics strive to ensure equitable treatment of indi-
viduals based on their specific attributes and circumstances, they may not always
capture broader systemic inequalities that affect entire groups. As we pivot our
discussion towards group fairness, we examine the potential drawbacks and compli-
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cations that can arise when pursuing fairness metrics across different demographic
groups.

In this context a key challenge is the Simpson’s Paradox (BLYTH, 1972), where
trends apparent in separate groups disappear or reverse when these groups are com-
bined. This can lead to misleading conclusions in aggregated data, potentially ob-
scuring significant disparities within subgroups that are averaged out in the analysis.
Furthermore, group fairness metrics may inadvertently mask discrimination within
protected groups. For instance, a model could satisfy group fairness criteria over-
all while still discriminating against specific subgroups within a protected class due
to the heterogeneity within larger groups that isn’t captured by broader fairness
assessments.

Additionally, imposing group fairness constraints often involves predictive perfor-
mance drawbacks GOH et al. (2016); KOMIYAMA et al. (2018); PETROVIĆ et al.
(2021); F.CRUZ et al. (2021); LIU e VICENTE (2022). Balancing fairness with
predictive performance can lead to difficult choices, especially in high-stakes appli-
cations such as healthcare or criminal justice, where the cost of errors is significant.
For example, efforts to reduce false positive rates in one group might inadvertently
increase false negatives in another, adversely affecting the model’s overall predictive
utility. Another issue arises from the conflict between different fairness definitions,
where improving fairness according to one metric might worsen it according to an-
other. Achieving demographic parity, which calls for equal outcomes across groups,
might conflict with ensuring equal opportunity, which demands equal true positive
rates across groups. Such conflicts necessitate careful consideration to determine
which fairness criteria are most appropriate for specific applications.

Lastly, standard group fairness metrics often overlook intersectionality—the com-
plex, cumulative way in which multiple forms of discrimination, such as race, gender,
and class, intersect and affect individuals (KEARNS et al., 2017, 2019). Ignoring
this aspect can result in policies and models that do not fully address the nuanced
ways in which bias manifests. This oversight underscores the importance of indi-
vidual fairness, a principle that seeks to ensure equitable treatment by focusing on
the uniqueness of each individual rather than merely categorizing them into groups.
Individual fairness advocates for algorithms to treat similar individuals similarly,
regardless of theirs social groups MEHRABI et al. (2021), thus acknowledging and
addressing the multifaceted nature of discrimination and ensuring that each person
is considered on their own merits. By integrating individual fairness into our models,
it is possible to better capture and mitigate the intersecting and often overlapping
biases that group fairness metrics might miss, providing a more comprehensive ap-
proach to fairness in AI systems

Fairness Through Awareness (DWORK et al., 2012) is a concept which focuses
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on treating similar individuals similarly. It emphasizes the importance of fairness at
the individual level by defining a metric of similarity between individuals based on
relevant characteristics, and ensuring that the algorithm’s decisions are consistent for
individuals deemed similar by this metric. This approach is rooted in the idea that
fairness can be achieved by explicitly considering the sensitive attributes through
a carefully defined similarity function, ensuring that decisions are justifiable and
tailored to individual circumstances.

Definition 17 (Fairness Through Awareness). A predictor Ŷ satisfies Fairness
Through Awareness if for any two individuals x, x′ ∈ X, where X is the domain of
individuals, the distance metric d(x, x′) under which the individuals are considered
similar enforces that |Ŷ (x)− Ŷ (x′)| ≤ d(x, x′). Here, d is a task-specific metric that
measures similarity relevant to the decision-making process, incorporating sensitive
attributes where necessary.

This definition implies that the algorithm must incorporate a nuanced under-
standing of what it means for two individuals to be similar, which goes beyond
merely ignoring sensitive attributes. Instead, it considers these attributes in a way
that respects individual differences and upholds fairness.

Fairness Through Unawareness CORBETT-DAVIES et al. (2024), on the other
hand, is a more straightforward approach where an algorithm is considered fair if it
does not explicitly use sensitive attributes (such as race, gender, etc.) in the decision-
making process. This method assumes that the exclusion of sensitive attributes will
prevent discriminatory practices. However, this approach can be naive as it fails
to consider that biases can be encoded in other, non-sensitive attributes that are
correlated with the sensitive ones MEHRABI et al. (2021); CATON e HAAS (2023);
HORT et al. (2023).

Definition 18 (Fairness Through Unawareness). A predictor Ŷ satisfies Fairness
Through Unawareness if the decision function Ŷ does not explicitly include any
sensitive attribute A as part of the input. In other words, Ŷ is constructed without
direct knowledge of A.

Another example of Individual Fairness Metric is the notion of Counterfactual
Fairness (KUSNER et al., 2017), which introduce a causal reasoning framework into
the fairness discourse. These metrics are based on the concept that a decision is fair
towards an individual if the same decision would have been made in a counterfactual
world where the individual belonged to a different demographic group but all other
characteristics remained constant. This approach hinges on causal models that spec-
ify how sensitive attributes affect other features and the outcome. Counterfactual
fairness aims to address the individual-level biases that group fairness metrics might
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overlook, providing a nuanced approach that considers the hypothetical scenarios
of individuals belonging to different demographic categories. By employing coun-
terfactual analysis, one can assess whether the disparities in ML predictions stem
from legitimate factors or unjust biases. Relevant works approaching this notion
include WU et al. (2022), MA et al. (2023), and GRARI et al. (2023).

Definition 19 (Counterfactual Fairness). A predictor Ŷ is counterfactually fair
with respect to a protected attribute A if, under any context X = x and A = a, the
distribution of Ŷ is the same in the actual world and a counterfactual world where
A is set to any permissible value. That is,

P (ŶA←a(U) = y | X = x,A = a) = P (ŶA←a′(U) = y | X = x,A = a),

for all y and any value a′ of A, where X are the features not causally dependent on
A, and U denotes the background variables.

This definition roots itself in the idea that fairness should be preserved across
hypothetical alterations of the sensitive attribute, reflecting a robust stance against
biases that might otherwise emerge due to such attributes.

Implementing counterfactual fairness involves constructing a causal model that
maps how inputs (features including sensitive attributes) influence the outputs (pre-
dictions). One must identify which attributes are causally independent of the sen-
sitive attribute and ensure that the predictions are invariant when the sensitive
attribute’s values are modified hypothetically.

This approach is particularly pertinent when decisions have substantial impacts
on individuals, such as in hiring, loan approval, or healthcare settings. By ensuring
that predictions remain consistent regardless of changes to sensitive attributes, mod-
els can be designed to mitigate unfair discriminatory practices that could otherwise
affect outcomes based on irrelevant attributes.

While the concept of counterfactual fairness is intuitive and persuasive, its imple-
mentation poses significant challenges (KASIRZADEH e SMART, 2021). Building
models that reflect the true causal relationships in the data is non-trivial and re-
quires deep domain knowledge. Also, access to good quality data that sufficiently
captures the causal dependencies is necessary, which can be a limiting factor in
many practical scenarios. Finally, the complexity of calculating counterfactuals, es-
pecially in large datasets with many attributes, can be computationally demanding.
Despite these challenges, counterfactual fairness pushes the boundaries of fairness
in machine learning by providing a framework that directly tackles the underlying
causal mechanisms leading to biased decisions.

In the context of fairness definitions and metrics there is a relevant problem to
be considered, the Impossibility Theorem. As elucidated simultaneously by KLEIN-
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BERG et al. (2017) and CHOULDECHOVA (2017) with further contributions by S
(2020), BELL et al. (2023) and BEIGANG (2023), articulates a fundamental chal-
lenge in the domain of algorithmic fairness: the concurrent satisfaction of distinct
fairness metrics is inherently unfeasible under certain conditions. This theorem,
also referred to as the Incompatibility of Fairness Criteria, delineates the intrinsic
conflicts arising amongst prevalent fairness constructs.

The Impossibility Theorem in the context of algorithmic fairness articulates a
fundamental challenge: it is not feasible to simultaneously satisfy multiple fairness
criteria in certain realistic settings. This theorem highlights the inherent conflict
that arises when attempting to meet several well-intentioned fairness metrics such
as counterfactual fairness, equalized odds, and predictive parity at the same time.

According to the theorem, if a predictive model is designed to achieve counter-
factual fairness, it will likely conflict with the criteria of equalized odds or predictive
parity. Counterfactual fairness demands that the model’s prediction for an indi-
vidual would remain unchanged in hypothetical scenarios where the individual’s
protected characteristics (such as race or gender) are altered but all other variables
are held constant. In contrast, equalized odds require that error rates across different
groups are similar, while predictive parity necessitates comparable predictive values
across these groups. When protected characteristics are causally relevant to the
predicted outcomes, aligning the model with one fairness metric may inadvertently
breach another.

This theorem thus underscores the practical dilemmas in fair machine learning
models. Achieving comprehensive fairness in ML systems often requires navigat-
ing complex trade-offs, necessitating a thoughtful prioritization of fairness criteria
tailored to the specific context and ethical considerations of each use case. The
Impossibility Theorem serves as a critical reminder of the limitations and careful
considerations required in the pursuit of fair decision making systems, highlighting
the importance of making informed, contextually sensitive decisions when imple-
menting fairness metrics.

2.4 Fair classification

In this section, we review pertinent literature on fair machine learning, placing a
particular emphasis on in-processing techniques. Fairness intervention methods can
be classified into three categories based on the stage at which they occur, as proposed
by MEHRABI et al. (2021) and ALER TUBELLA et al. (2022):

Pre-processing intervene before learning, modifying the data to reduce existing
biases;
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In-processing intervene during learning by modifying the objective functions or
imposing constraints to the model in order to mitigate discriminatory effects;

Post-processing affects predictions produced by the model after learning to
change possibly unfair outcomes.

One notable pre-processing method is the reweighting approach proposed by
KAMIRAN e CALDERS (2012), which adjusts the weights of different samples in
the training data to ensure that underrepresented groups are fairly represented dur-
ing training. Another significant pre-processing technique is the Fair Representation
Learning by ZEMEL et al. (2013), which learns a latent representation of the data
that obfuscates sensitive attributes while retaining the information necessary for
accurate predictions. An example of a post-processing method is the Reject Option
Classification by KAMIRAN et al. (2012), which changes the decisions of the classi-
fier for individuals near the decision boundary. Another example is Equalized Odds
and Equal Opportunity post-processing technique by HARDT et al. (2016), which
adjusts the classifier’s predictions to equalize the true positive and false positive
rates across different demographic groups.

In this work, we incorporate information about disparities among social groups
in the dataset into our model by modifying the loss function through the use of a
transition matrix. This fairness intervention is thus classified as an in-processing
technique. Other relevant in-processing strategies for fair classification include
Naive Bayes approaches for discrimination-free classification (CALDERS e VER-
WER, 2010), Fairness Through Awareness Framework (DWORK et al., 2012),
Fairness-Aware Classifier with Prejudice Remover Regularizer KAMISHIMA et al.
(2012), α-discriminatory empirical risk minimizer (WOODWORTH et al., 2017),
Disparate Impact and Disparate Mistreatment frameworks for margin-based classi-
fiers (ZAFAR et al., 2017a,b), Weak Agnostic Learning to Auditing Subgroup Fair-
ness (KEARNS et al., 2019, 2018), One-Network Adversarial Fairness (ADEL et al.,
2019), FairGan+ (XU et al., 2019), Monte Carlo policy gradient method (PETRO-
VIĆ et al., 2021), Fairness-accuracy Pareto (WEI e NIETHAMMER, 2022), and
Pareto front stochastic multi-gradient (LIU e VICENTE, 2022) based in original
stochastic multi-gradient (MERCIER et al., 2018) to Multi-Objective Optimization
and the hybrid Adaptive Priority Reweighing approach (HU et al., 2023).

In KAMISHIMA et al. (2012) the authors proposes the Prejudice Remover (PR)
which is a regularizer to logistic regression models. It introduces an additional term
in the loss function to penalize the model for making decisions based on sensitive
features. The objective function to be minimized is available on Equation 2.5, where
Θ is the model parameters, X the dataset features, L(X,Θ) the log-likelihood,
R(X,Θ) the prejudice remover regularizer, η a regularization parameter controlling
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the trade-off between fairness and accuracy, and λ a parameter for the L2 regularizer.

−L(X,Θ) + ηR(X,Θ) +
λ

2
∥Θ∥2 (2.5)

The regularizer R(X,Θ) aims to minimize the mutual information between the
predicted outcomes and the sensitive features, thereby reducing the model’s reliance
on sensitive information. The mutual information is approximated using sample
means to make the computation feasible for large datasets.The authors compared the
proposed method with Calders-Verwer 2-naïve-Bayes method (CALDERS e VER-
WER, 2010), showing that the PR effectively reduced bias, though sometimes at
the cost of decreased accuracy.

As an alternative to mitigating unwanted bias, ZHANG et al. (2018) proposes an
adversarial method for reducing bias in machine learning models, namely Adversarial
Debiasing (AD). This technique involves training a neural network predictor to
forecast an outcome variable from inputs while an adversary network simultaneously
attempts to predict a sensitive attribute, which should not influence the outcome.

The method utilizes an adversarial network architecture where the main predic-
tor’s task is complemented by an adversarial model that tries to learn the sensitive
attribute. By integrating the adversarial model’s feedback into the training process,
the predictor learns to make decisions that are increasingly independent of the sen-
sitive attribute. This setup allows the model to attain to fairness constraints like
Statistical Parity (Definition 13), Equal Opportunity (Definition 14), and Equalized
Odds (Definition 16).

In a similar vein, KEARNS et al. (2018) propose a framework for ensuring sub-
group fairness, addressing the issue of fairness gerrymandering. Below, a toy example
given by the authors illustrating a scenario where the referred fairness gerrymander-
ing occurs.

Imagine a setting with two binary features, corresponding to race (say
black and white) and gender (say male and female), both of which are
distributed independently and uniformly at random in a population. Con-
sider a classifier that labels an example positive if and only if it corre-
sponds to a black man, or a white woman. Then the classifier will appear
to be equitable when one considers either protected attribute alone, in the
sense that it labels both men and women as positive 50% of the time, and
labels both black and white individuals as positive 50% of the time. But if
one looks at any conjunction of the two attributes (such as black women),
then it is apparent that the classifier maximally violates the statistical
parity fairness constraint. Similarly, if examples have a binary label that
is also distributed uniformly at random, and independently from the fea-
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tures, the classifier will satisfy equal opportunity fairness with respect to
either protected attribute alone, even though it maximally violates it with
respect to conjunctions of two attributes. (KEARNS et al., 2018)

Their approach involves defining fairness for exponentially or infinitely many
subgroups defined by a structured class of functions over the protected attributes,
not only for a small number of pre-defined groups as considered in hegemonic fair
classification approaches. This framework is formalized as a two-player zero-sum
game between a Learner (the primal player) and an Auditor (the dual player), where
the Learner aims to minimize classification error while the Auditor seeks to identify
and penalize fairness violations. The computational challenges of this approach
are mitigated by connecting it to weak agnostic learning, which allows the use of
practical machine learning heuristics for effective auditing and learning in real-world
applications.

The algorithms derived from this framework, named Gerry Fair Classifier (GFC),
provably converge to the best fair distribution over classifiers, given access to oracles
capable of optimally solving the agnostic learning problem. These algorithms include
a variant based on the no-regret Follow the Perturbed Leader algorithm and another
using Fictitious Play, both of which have been implemented and evaluated on real
datasets, demonstrating their efficacy in achieving subgroup fairness.

The Adaptive Priority Reweighing (APW) proposed by (HU et al., 2023) method
introduces a systematic approach to increase fairness and generalizability of classi-
fiers by dynamically adjusting sample weights based on their proximity to the deci-
sion boundary. Initially, the training samples are divided into subgroups according
to their sensitive attributes and classifier predictions. Each sample’s distance to
the decision boundary is then computed and updated iteratively. During each it-
eration, subgroup weights are recalibrated by comparing the observed probability
of the positive prediction rate within each subgroup to the expected probability
under statistical independence. This comparison helps to assign higher weights to
samples closer to the decision boundary, thereby prioritizing them in the training
process. The weighted loss function is optimized using a stochastic gradient descent
algorithm, which iteratively adjusts the classifier to reduce bias while maintaining
accuracy. By continuously updating the weights and distances, the Adaptive Prior-
ity Reweighing method ensures that the classifier learns to make fairer decisions that
generalize well to unseen data, addressing the limitations of traditional reweighing
methods that often fail to generalize beyond the training set.

The method is evaluated on benchmark datasets, outperforming many state-of-
art pre-processing, in-processing and post-processing fair classification techniques,
promoting fairness on both finetuned pre-trained models and newly trained models.
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This technique can be classified as an hybrid approach, performing the traditional
pre-processing instance reweighing through an adaptive training algorithm.

Recently, special attention has been given in fair machine learning research topics
like addressing multiple sensitive attributes or multiple classes (D’ALOISIO et al.,
2023; LIU et al., 2023), loss balancing techniques (KIM et al., 2023; KHALILI et al.,
2023), where the objective is to balance the loss across different groups instead of
predictive metrics, adversarial approaches (MA et al., 2023; GRARI et al., 2023;
LIANG et al., 2023; ZHANG et al., 2023a; MOUSAVI et al., 2023; WEI et al., 2023),
fairness from a causal perspective (PLECKO e BAREINBOIM, 2024a,b) and the
privacy concerns involving fairness under federated learning settings (CHEN et al.,
2024; VUCINICH e ZHU, 2023). Another relevant research topic in fair machine
learning is learning under censored data (ZHANG e WEISS, 2022; ZHANG et al.,
2023b; ZHANG e WEISS, 2023; ZHANG et al., 2023c), which will be discussed in
section 3.1.
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Chapter 3

Fair loss function from noise
robustness

In this chapter we propose a novel loss function inspired by label noise robustness
methods to fair classification problems. The core of this proposal consists in using
transition matrices as parameters to a proper loss correction (PATRINI et al., 2017),
with matrices values as factors to redistribute unbalanced bias across different groups
within the sensitive feature.

3.1 Preliminaries

The presence of noise in data can substantially decrease model performance in clas-
sification problems. Noise can be defined as non systematic errors that obscures the
relationship between features of an instance and its class (FRÉNAY e VERLEYSEN,
2014; HICKEY, 1996; QUINLAN, 1986). Two types of noise are found in literature,
in features (or attributes) and in labels (or classes). Feature noise affects observed
values, such as adding a small Gaussian noise on each feature during measurement.
Likewise, label noise change the observed label assigned to an instance, such as ran-
domly inverting labels in a binary classification problem. Although feature noise
could affect model performance, label noise is potentially more harmful, since we
frequently have many features and only one label. Note that in label noise only the
observed label of an instance is affected, its true class remains the same.

The label noise taxonomy considers three types of noise: Noisy Completely at
Random (NCAR), Noisy at Random (NAR), and Noisy Not at Random (NNAR),
as described by FRÉNAY e VERLEYSEN (2014). Figure 3.1 presents the statistical
dependency between features X, class Y , observed label Ỹ and the occurrence of er-
ror E, i.e., E = 1 when Y ̸= Ỹ . The simplest type is Noisy Completely at Random,
where the occurrence of error E not depend on X and Y , such as randomly flipping
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labels on a binary classification problem. In Noisy at Random, the occurrence of
error E depends only on Y , such as randomly flipping labels on binary classification
with different rates for positives and negatives classes. Noisy Not at Random con-
siders the occurrence of error E depending on both Y and X, e.g., flipping labels
on binary classification with different rates for each group of instances of a certain
feature.

Figure 3.1: Noise taxonomy from a statistical perspective. (a) completely random
noise (NCAR), (b) random noise (NAR) and (c) non-random noise (NNAR). The
arrows correspond to the statistical dependencies. For clarity, the dependency be-
tween X and Y was placed as a dashed arrow.
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Many label noise robustness methods can be found on literature, in this work we
highlight the backward and forward loss corrections, proposed by PATRINI et al.
(2017) using concepts of loss factorization. Those loss correction techniques consid-
ers a NAR label noise, which is described by a row-stochastic and not necessarily
symmetric across the classes transition matrix T such as

Ti,j = P (Ỹ = yj|Y = yi), (3.1)

where Y = {y1, y2, . . . , yc} is the set of all possible class labels. Transition matrix
includes corruption probabilities for every possible label combination, each value
represents the probability of one label be corrupted onto another.

The backward loss correction is defined by Equation 3.2 to an arbitrary loss
function ℓ and a transition matrix T . The backward loss correction involves a lin-
ear combination of the loss values for each observed label, using coefficients that
depends on the probability that each observed label reflects the true class. Intu-
itively, we are reweighting the loss according to the noise probabilities of each label
using the inverse of T and thus somehow going one step back, reverting the noise
effects. This corrected loss is unbiased and can be minimized with any conventional
back-propagation algorithm, making it flexible to include within different training
techniques and data pipelines.

ℓ←(P (Ỹ |X)) = T−1ℓ(P (Ỹ |X)) (3.2)

However, backward correction requires matrix inversion, which may not exist
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or may lead to numerical instabilities if the transition matrix T is ill-conditioned.
Although there is possible solutions to a bad condition number of T , one should
consider using the forward correction, a backward variation proposed by PATRINI
et al. (2017) to avoid this issue, as defined in Equation 3.3. While backward acts on
the loss itself, forward corrects model predictions. Forward correction does not have
the same theoretical guarantees as backward, but offers a label noise robustness,
ensuring that the learned model is the minimize over the clean distribution without
the need of matrix inversion.

ℓ→(P (Ỹ |X)) = ℓ(T⊤P (Ỹ |X)) (3.3)

Now we discuss classification methodologies that operate in the presence of label
noise. While our research does not directly tackle fairness problems in the presence
of label noise, we highlight relevant works that, akin to ours, bridge the domains of
fairness and noise in machine learning research.

Some recent works deal with fairness problems in the presence of noise. For
example, the sensitive attribute available could be noisy, which could distort the
effects of fairness intervention. In this context, LAMY et al. (2019) uses noise-
rate estimators from the label noise literature to change a fairness model. Also,
FOGLIATO et al. (2020) proposes a framework for assessing how assumptions on
the noise across groups affect the predictive bias properties in risk assessment models.
Furthermore, WANG et al. (2020) considers the consequences of naively relying on
noisy protected group labels while proposing two new optimization approaches with
sensitive attribute noise robustness. A denoised version of the selection problem to
deal with noisy sensitive attributes is proposed in MEHROTRA e CELIS (2021).
Lastly, CELIS et al. (2021) proposes an optimization framework for classification in
the presence of noisy protected attributes.

There is also the perspective of dealing with the proxy features divergence or
covariance. A theoretical approach to this issue identifying potential sources of errors
can be found in PROST et al. (2021). The problem of measuring group fairness in
ranking based on divergence with proxy features is investigated by GHAZIMATIN
et al. (2022). A framework of fair semi-supervised learning in the pre-processing
phase can be found in ZHANG et al. (2022), which includes predicting labels for
unlabeled data, a resampling method, and ensemble learning to improve accuracy
and decrease discrimination.

Another research direction is considering how fair models perform in the presence
of NNAR label noise, where error rates of corruption depend both on the label class
and the membership of a protected subgroup. In this scenario WANG et al. (2021)
addresses the problem of fair classification and WU et al. (2022) provides a general
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framework for rewriting the classification risk and the fairness metric in terms of
noisy data and thereby building robust classifiers. In GHOSH et al. (2023) a study
about the presence of noise in the protected attribute can be found.

Furthermore, many recent works deals with fairness under semi-supervised set-
tings considering censored data, that is, for some individuals the class label is not
available due censorship (ZHANG e WEISS, 2022; ZHANG et al., 2023b; ZHANG
e WEISS, 2023; ZHANG et al., 2023c). In this scenario, the main approach is to
use some technique to estimate the missing data instead of removing the instance
from training data. This is closely related to the previous problems of fair learning
under noisy data. In censored fairness problems noise can be interpreted as a kind
of censorship, as the original data affected by noise is not available.

Bias and noise are two related phenomena, both corrupt data affecting models
trained with this data. For example, if noise disproportionately affects different
groups this potentially produces unfairness in models that uses this data in train-
ing (WANG et al., 2021). For example, we could have positive true class (Y = 1)
flipped into negative labels (Ỹ = 0) more frequently in the protected group (A = 1)
than in privileged group (A = 0). Simultaneously, the negative class (Y = 0)
could be more frequently flipped into positives observed labels (Ỹ = 1) within priv-
ileged/unprotected group (A = 0). This scenario could lead to a undetected higher
false negative rate to protected group and higher false positive rate to privileged
group. In this case the Noisy Not at Random data would be a source of negative
social bias.

As referred before, in MEHRABI et al. (2021) a non-exhaustive list of bias types
was presented. In the scenario described above, the incorrect measurement of the
true class resulted in a different observed label (Y ̸= Ỹ ), which could be classified
as a Measurement Bias. Similarly, a Noisy Not at Random data could lead to a
Population Bias, where the characteristics of the population represented in the data
differ from those of the original target population.

It can be challenging to distinguish between label noise and bias in certain scenar-
ios, specially when noise disproportionately affects different social groups. Although
there is some overlapping, they are distinct phenomena. Label noise is a stochastic
process that is considered independent and unintentional (FRÉNAY e VERLEY-
SEN, 2014), whereas bias is rooted in historical and social issues and could be
intentional. Furthermore, even noise-free data, correctly represented by observed
features and labels, may be unfair since the social phenomena that produce this
data could be biased against some groups.

Previous studies on fair machine learning have largely concentrated on under-
standing how noisy or censored data affects fair learning and on mitigating these
effects. Thus, the objective of this work is not to theoretically deal with fair machine
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learning as a label noise problem or incorporate noisy classes or attributes in fairness
problems. In contrast, our approach is inspired by label noise techniques, but with
a distinct goal: not merely to analyze or mitigate the impact of noise or censorship,
but to directly address and reduce unfairness itself.

To achieve a competitive trade-off between performance and fairness in the pro-
posed method, we discuss multi-objective optimization within the context of fair
machine learning. A model that substantially decreases model performance to re-
duce unfairness may not be a viable option, as low performance could harm all
groups affected by the model’s decisions, including protected groups. Similarly, a
model projected to be a fair alternative that keeps performance almost intact, but
with little or even no gain in fairness, is not practically relevant. It is possible that
fine-tuning this trade-off could result in a fairer solution that achieves better perfor-
mance than traditional methods, but this is not the case for most practical problems.
Achieving this balance is one of the most challenging tasks in fair machine learning.

In this context, an interesting approach is to deal with fair machine learning as a
Multi-Objective Optimization (MOO) problem, where predictive performance and
fairness metric are the objectives, which could be defined according Equation 3.4,
where γ is a parameter/hyperparameter configuration in the space Γ, ρ : Γ 7→ [0, 1]

is a model performance metric and φ : Γ 7→ [0, 1] a fairness metric. The set of all
optimal solutions is called Pareto front, where one objective cannot be improved
without sacrificing another. In this setting there is no single γ∗ optimal solution,
but a set of solutions forming a Pareto front (PARETO, 1906).

max (ρ(γ), φ(γ)) (3.4)

s.t. γ ∈ Γ

One of the most frequent approach to deal with MOO problems like these is to
combine the multiple function outputs to a single scalar, which is called scalarization.
Therefore, we could describe a general scalarization setup to Equation 3.4 according
Equation 3.5. The effectiveness of this approach is that is also possible to use single
objective optimization techniques to tackle the MOO optimization problem. In
this scenario a relevant issue is to select a scalarization setup capable of promote
a proper trade-off of all the objectives thorough the optimization process given the
optimization method.

argmax
γ∈Γ

G(γ) = (ρ(γ), φ(γ)) (3.5)

The fairness-accuracy Pareto front is formally described in WEI e NIETHAM-
MER (2022), which indicates that many existing fairness methods are performing
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a linear scalarization scheme and argues that it has several limitations in recover-
ing Pareto optimal solutions. Instead, authors proposes a Chebyshev scalarization
scheme, that is theoretically superior than linear scheme. A characterization of the
accuracy-fairness trade-off as a Pareto front can be found in LIU e VICENTE (2022).
Also, MERCIER et al. (2018) proposes a stochastic multi-gradient based in original
stochastic multi-gradient to Multi-Objective Optimization.

Another remarkable use of MOO in Fair Machine Learning is to perform a Fair
Hyperparameter Optimization, which provides a model agnostic approach with flex-
ibility to apply in multiple machine learning pipelines. A time-efficient Bayesian
Optimization approach can be found in SCHMUCKER et al. (2020), combining
scalarization techniques with the bandit-inspired Hyperband (LI et al., 2017) algo-
rithm to Hyperparameter Optimization in context of fairness.

A general objective function to be used with some popular off-the-shelf hyper-
parameters optimization techniques combining model performance and fairness in
a flexible setting can be found in F.CRUZ et al. (2021). The authors argues that
in fairness context the Pareto front is most often convex, thus proposes a sim-
ple scalarizing function that could be applied to reduce G to a single scalar with
weighed lp-norm. Also, they argue that GIAGKIOZIS e FLEMING (2015) indicates
the the use of lp-norms with a high p value leads to slower convergence. Thus, the
optimization metric g(γ) = ||G(γ)||1 is optimized according Equation 3.6, where α
is the relative importance of predictive performance and fairness and γ is a param-
eter configuration in the space Γ. In experiments, α is fixed at 0.5, giving same
importance to both objectives.

G(γ) = α · ρ(γ) + (1− α) · φ(γ) (3.6)

A Multi-objective SVMOptimizer with Dataset Constraints is proposed by GOH
et al. (2016), where the objective is to minimize multiple objectives on real-world
datasets, such as misclassification error and positive prediction at specific rate to
some population. A custom reinforcement learning algorithm directly modeling per-
formance and fairness as objectives is proposed by PETROVIĆ et al. (2021). Au-
thors proposes using as reward function the difference between model performance
(Area Under the ROC Curve) and three different fairness metrics (Statistical Parity,
Equal Opportunity and Equalized Odds), each one with its respective importance
coefficient. In experimental setups only one of those coefficient are different from
zero. Thus, the optimized metric could be written as G(γ) = ρ(γ)−α ·φ(γ), where
α is the relative importance of fairness.
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3.2 Fair Transition Loss

We propose a novel fair classification method inspired by techniques used for classi-
fication in the presence of label noise. By using some features of label noise methods
that redistribute probabilities for unbalanced noise across classes, our approach re-
weights prediction probabilities to reduce disparities in favorable and unfavorable
outcomes across social groups. This proposal was originally inspired by BRAIDA
(2018), that applies label noise techniques in order to achieve label noise robust
collaborative filtering,

Whereas forward loss correction (PATRINI et al., 2017) uses a transition matrix
with corruption probabilities for every label combination in the case of NAR, fair
classification problems are more related to NNAR. While forward loss correction
uses a transition matrix with corruption probabilities for each label combination, as
in the case of NAR, fair classification problems align more with NNAR scenarios.
In NNAR, the probability of corruption depends not only on the true class but also
on features, analogous to how bias in fairness problems is directed against certain
groups. Here our correction does not revert a random label corruption from the
true class, but a potentially unfair prediction. While noise label techniques, like
forward (PATRINI et al., 2017), aims to correct the prediction targeting a unknown
true class using the available noisy label, analogously the proposed technique focus
on correcting predictions chasing the unknown fair class using the available unfair
label. Despite those are distinct phenomena, the corrections works the same way,
adjusting the probabilities of predictions produced by a machine learning model
during the training.

Thus, our proposal is a prediction probability loss reweighting technique that
accounts different rates to each group of the sensitive feature, instead of using the
same correction to every individual. A correction method that incorporates dif-
ferent probabilities for protected and unprotected groups could be more effective in
mitigating bias during the learning phase. Specifically, we want a forward-based cor-
rection that takes into account a different matrix to each group of sensitive features,
not only one transition matrix as used in label noise techniques. In this scenario,
each group of sensitive feature have its own correction, with its own rates for each
class combination. Ideally, if we can find an appropriate transition matrix that de-
scribes the bias to each group in a specific problem, we can apply a correction that
attenuates those negative effects by reweighting model’s predictions in the learning
process.

Next, we formally present Fair Transition Loss. For purpose of clarity we follow
the same structure available at (PATRINI et al., 2017), with the pertinent changes
to our scope. The Fairness Transition Matrix Ta is defined with some abuse of
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notation to the group A = a of the sensitive feature as

Ta,i,j = P (Ỹ = yj|Y = yi, A = a), (3.7)

where label space Y = {y1, y2, . . . , yc}, c the number of classes, Y = yi is the
unknown fair class and Ỹ = yj is the available and possibly unfair label. Here,
Ta,i,j is the probability of the fair class Y = yi being unfairly labeled as Ỹ = yj

to an individual of the group A = a due negative social bias. Therefore, suppose
that there is an invertible link function ψ : ∆c−1 → Rc, where ∆c−1 ⊂ [0, 1]c is the
c-simplex, the simplex in a c-dimensional space.

Thus, a composite loss function, denoted by ℓψ : Y ×Rc → R if it can be written
as a decomposition of ψ−1, that is,

ℓψ(Y, h(X)) = ℓ(Y, ψ−1(h(X)), (3.8)

where h : X → Rc is a standard artificial neural network with multiple layers
using activation functions, and h(X) is the output o this neural network to a given
input X. For example, to cross entropy loss function the softmax is the inverse link
function. Proper loss functions are those that can be directly used to estimate class
probabilities. The minimizer of a proper composite loss has the particular form of
the link function applied to the conditional class probabilities P (Y |X). Adding a
new conditioning to this formulation, to an individual from group A = a we have

argmin
h

EX,Y ℓψ(Y, h(X|A = a)) = ψ(P (Y |X,A = a)). (3.9)

Fair Transition Loss (FTL) consists in correcting model’s predictions with the
same technique as forward, but taking into account the sensitive attribute value
when choosing the transition matrix. In Theorem 1 the Fair Transition Loss is
formally defined, with a guarantee about its minimizers.

Theorem 1. Suppose that the Fairness Transition Matrix Ta for a given sensitive
attribute A = a is non-singular. Given a proper composite loss ℓψ, define the Fair
Transition Loss as

FTLψ(h(X|A = a)) = ℓ(T⊤a ψ
−1(h(X|A = a))).

Then, the minimizer of the corrected loss under the unfair distribution is the same
as the minimizer of the original loss under the fair distribution:

argmin
h

EX,Ỹ FTLψ(Y, h(X|A = a)) = argmin
h

EX,Y ℓψ(Y, h(X|A = a)).
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Proof. First notice that:

FTLψ(Y, h(X|A = a)) = ℓ(Y, T⊤a ψ
−1(h(X|A = a)))

= ℓϕ(Y, h(X|A = a)), (3.10)

where we denote ϕ−1 = ψ−1 ◦ T⊤a . Equivalently, ϕ = (T−1a )⊤ ◦ ψ is invertible by
composition of invertible functions, its domain is ∆c−1 as of ψ and its codomain is
Rc. The last loss in Equation 3.10 is proper composite with link ϕ. Finally, from
Equation 3.9, the loss minimizer over the unfair distribution is

argmin
h

EX,Ỹ ℓϕ(Y, h(X|A = a)) = ϕ(P (Ỹ |X,A = a)) (3.11)

= ψ((T−1a )⊤)P (Ỹ |X,A = a) (3.12)

= ψ(P (Y |X,A = a)), (3.13)

that proves the Theorem by Equation 3.9 once again.

Considering a common scenario with only two groups in sensitive attributes (pro-
tected and privileged), we can correct the model’s predictions using two different
fair transition matrices. One with rates applied while learning instances from the
protected group, and the other with rates applied while learning instances from the
privileged group. Formally, to the sensitive feature A ∈ {0, 1}, let T0 the transi-
tion matrix associated with privileged/unprotected group (A = 0) and T1 with the
protected group (A = 1), FTL can be computed as

FTL(P (Ỹ |X)) = (1− A) · ℓ(T⊤0 P (Ỹ |X)) + A · ℓ(T⊤1 P (Ỹ |X)), (3.14)

which in a standard batch learning, consists in alternating the transition matrix
applied according instance’s sensitive attribute.

Furthermore, to a common binary classification problem, where there is a positive
(favorable) class and a negative (unfavorable) class, and two groups from sensitive
feature (protected and privileged), we have two 2×2 transition matrices. Intuitively
we are choosing rates to increase or decrease the probability of each group to be
classified with the positive or negative prediction. We name those rates associated
with increasing the probability to achieve the positive outcome as promotion rate,
and those associated with increasing the probability to receive the negative outcome
as demotion rate. As the transition matrix is row-stochastic, we can describe T0 and
T1 as

T0 =

[
1− d0 d0

p0 1− p0

]
, T1 =

[
1− d1 d1

p1 1− p1

]
, (3.15)

where d0 is the privileged demotion rate, p0 the privileged promotion rate, the d1
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protected demotion rate, and p1 the protected promotion rate. With an appropriate
combination of d0, p0, d1, p1 we can define a transition matrix pair that should
be able to reweight model’s predictions with FTL to achieve fairer results with
a reasonable model performance. The central problem in our methodology thus
relies in choosing these rates, which can be seen as an hyperparameter optimization
problem.

Our hyperparameter optimization problem consists in finding an optimal trade-
off between fairness and performance, which can be described as a MOO prob-
lem, as defined in Equation 3.4. Here, the hyperparameter configuration is γ =

(d0, p0, d1, p1). Since the transition matrix is row stochastic these parameters are
sufficient to define T0 and T1. We want to maximize model performance ρ(γ) and
minimize fairness metric φ(γ).

Following some MOO approaches to fair machine learning, we will use a lin-
ear scalarization setup to define the optimization metric (PETROVIĆ et al., 2021;
SCHMUCKER et al., 2020). As we yet have four hyperparameter to fine-tune, and
in F.CRUZ et al. (2021) the relative importance α is fixed at 0.5, we choose the
simple and intuitive objective function

G(γ) = ρ(γ)− φ(γ) (3.16)

to maximize without the parameter α, i.e., giving same importance to fairness and
performance. This objective function can be seen as a simplified version of the
Lagrangian relaxation of the bounded optimization problem

max ρ(γ)

s.t. ϕ(γ) ≤ ϵ,
(3.17)

where ϵ is an arbitrary fairness tolerance, ideally small. Intuitively, we want to
maximize model performance ρ(γ), penalizing fairness metric ϕ(γ) with same weight.
Here we choose this objective to optimize, but one might need to consider a different
formulation depending on the specific problem at hand.

3.3 Experimental setup

In this section, we detail the experimental setup employed to benchmark our model
against relevant in-processing fair classification models found in standard fairness
toolkits, namely, Prejudice Remover (KAMISHIMA et al., 2012), Adversarial De-
biasing (ZHANG et al., 2018), and Gerry Fair Classifier (KEARNS et al., 2018).
We use the implementation of these methods from AI Fairness 360 toolkit (BEL-
LAMY et al., 2018). The baseline is a Standard MLP using two hidden layers with
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100 hidden units each, ReLU activation function, batch size of 64, 50 epochs early
stopped at 3 epochs without improvement (LI et al., 2020) and softmax in out-
put, trained with ADAM optimizer (KINGMA e BA, 2015) with learning rate at
3e−4. The only difference between baseline MLP and Fair Transition Loss MLP is
that baseline uses standard Binary Cross Entropy Loss. The Gerry Fair Classifier
implementation uses the False Negative Rate as its fairness definition and in Adver-
sarial Debiasing classifier the hidden size is 100 units. Additionally, we compare the
Fair Transition Loss within the Adaptive Priority Reweighting HU et al. (2023), a
promising fairness promoting technique focused on improving generalization, which
outperformed many recent methods such as JIANG e NACHUM (2020), MROUEH
et al. (2021), and ROH et al. (2021).

Our methodology consists of two phases: hyperparameter tuning and testing.
In the hyperparameter tuning phase we perform a Bandit-Based pruning approach
using HyperBand (LI et al., 2018) with Tree-structured Parzen Estimator Sampler
(TPE) (BERGSTRA et al., 2011) over 100 trials. Those techniques achieves better
solutions to multi-objective hyperparameter optimization in the same number of tri-
als than conventional approaches like Grid Search and Random Search (MORALES-
HERNÁNDEZ et al., 2023). At each trial fitness function is evaluated by performing
a complete training and validation, where both model performance and fairness met-
rics are assessed. The fitness function is computed based on the objective defined in
Equation 3.16. This same experimental procedure can be adapted to utilize other
hyperparameter tuning algorithms such as FairRandom Search, Fair TPE, and Fair-
band (F.CRUZ et al., 2021).

Once the best hyperparameters are selected, we proceed to the testing phase,
where a new training is conducted using those optimal hyperparameters. After this
training, we evaluate the model’s performance on a separate test set that was not
used during the hyperparameter tuning phase, which are reported. This complete
tuning-training-testing described is repeated 15 times with dataset re-sampling then
we proceed to comparison. Here the re-sampling consists in shuffling the whole
dataset before splitting, which is better described further in this section.

As the objective defined in Equation 3.16 can be achieved with different perfor-
mance and fairness metrics, we compare the proposed method with other relevant in-
processing techniques from literature in different optimization scenarios. In addition
to Accuracy (Acc.) as performance metric, we also evaluate the Mathews Correla-
tion Coefficient (MCC), which has advantages over F1 score and Accuracy in binary
classification evaluation (CHICCO e JURMAN, 2020). To this performance metric,
1 means a perfect prediction according true class, −1 a complete inversion and 0 an
average random outcome. As fairness metric we consider Statistical Parity (Stat.
Parity, Definition 13), Equal Opportunity (Eq. Opp., Definition 14) and Equalized
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Odds (Eq. Odds, Definition 16). Thus we have the following optimization scenar-
ios: MCC and Statistical Parity; MCC and Equal Opportunity; MCC and Equalized
Odds; Accuracy and Statistical Parity; Accuracy and Equal Opportunity; Accuracy
and Equalized Odds.

Table 3.1: Hyperparameters search ranges or options of each method.

Method Parameter Range/options

Standard MLP (baseline) dropout [0.0, 0.2]

Prejudice Remover (KAMISHIMA et al., 2012) η [0.0, 50.0]

Adversarial Debasing (ZHANG et al., 2018) α [0.0, 1.0]

Gerry Fair Classifier (KEARNS et al., 2018) C [0.0, 20.0]
γ {0.1, 0.01, 0.001}

Adaptive Priority Reweighting (HU et al., 2023) α [0.0, 10000.0]
η [0.5, 3.0]

Fair Transition Loss d0, p0, d1, p1 [0.0, 1.0]
dropout [0.0, 0.2]

Table 3.1 presents the methods hyperparameters along with their corresponding
search ranges or options. While each method may possess a varying number of
hyperparameters and range sizes, all are optimized under the same conditions and
number of configurations to guarantee a balanced comparison. In Figure 3.2 we
present a brief sensibility analysis on the fitness functions with different fairness
and performance values over those six optimization scenarios listed before. Here
we perform a complete hyperparameter tuning with HyperBand and TPE over 100
trials using the baseline model (Standard MLP) with the Adult Income dataset
optimizing the hyperparamers reported on Table 3.1. This sensibility analysis aims
better present the linear objective function behavior within performance and fairness
metrics evaluated in this study.

Each plot in Figure 3.2 illustrates the fitness value corresponding to specific
performance and fairness metrics. The color scheme in the plots represents the
fitness values, with higher values in red and lower values in blue. On the x-axis, we
have the fairness metric, where a lower value is preferable. The y-axis represents
the performance metric, with higher values being preferred. The color gradient in
these plots indicates the linear relationship between fitness and variations in the
corresponding performance and fairness metrics. It is important to note that the
scale of the fairness metric is significantly smaller than that of the performance
metric. However, it is sufficiently to act as a penalization. The general fitness
function in the scenarios described is capable of producing results with reduced bias
while maintaining similar performance levels. Although each metric combination
has different scales, each hyperparameter tuning experiment uses only one metric
combination at a time, ensuring consistency in the optimization process.
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Figure 3.2: Sensibility analysis on optimized fitness functions within different perfor-
mance and fairness metrics. Results from complete hyperparameter tuning through
100 trials with baseline model over the Adult Income dataset.
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On these plots we used the fitness and performance levels obtained through the
TPE sampler with HyperBand pruning during the hyperparameter tuning phase
using the baseline model, as previously described. In this setting, the solution, i.e.,
the combination of hyperparameters, that yields the best fitness value is selected
for a new complete training phase. This involves assessing metrics on test data not
used in the previous phase. To ensure robust evaluation, the dataset is reshuffled,
re-split into train, validation and test segments, and this entire process is repeated
over 15 iterations.

To properly compare this set of 15 results of each method, we conduct an Almost
Stochastic Order (ASO) test (DROR et al., 2019), which is a significance test suit-
able for comparing complex machine learning models with various hyperparameters.
The ASO test involves evaluating a set of metrics through multiple samplings of a
Collection of Statistics, in this case assessed in test phase using random resampling,
to compare one method against another. The ASO(h1, h2) function yields a value
in the range [0, 1], given two methods h1 and h2. If ASO(h1, h2) is lesser than 0.5,
we can reject the null hypothesis and conclude that method h1 outperforms method
h2 in the given task. That is, method h1 produces stochastically larger values than
method h2 for a given metric. The lower the ASO(h1, h2) value, the stronger the
evidence that h1 is superior to hb in that particular task, which can be interpreted
as a confidence interval. Therefore, we perform pairwise comparisons between all
methods for each optimization scenario outlined previously and for each dataset.

Our experiments uses common datasets used in Fair Classification problems,
namely Adult Income (BECKER e KOHAVI, 1996), German Credit (HOFMANN,
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1994), Bank Marketing (S. MORO e CORTEZ, 2012), and COMPAS Recidi-
vism (JEFF LARSON e ANGWIN, 2016). We use the dataset readers available
in the AI Fairness 360 toolkit (BELLAMY et al., 2018) with its standard configu-
rations. Instances with missing data are removed.

Table 3.2: Dataset details used in this work, including performance and fairness
metrics assessed to a standard classifier without tuning, and the maximum Pearson’s
correlation coefficient between sensitive feature and the other features.

Dataset Adult
Income

Bank
Marketing

COMPAS
Recidivsm

German
Credit

# Features 102 57 401 58
# Instances 45222 30488 6167 1000
Sensitive Attribute sex age race sex
Positives 24.78% 12.66% 54.45% 70.00%
Negatives 75.22% 87.34% 45.55% 30.00%
Privileged 67.50% 97.17% 34.05% 69.00%
Unprivileged 32.50% 2.83% 65.95% 31.00%
Accuracy 0.846 0.906 0.358 0.685
MCC 0.572 0.553 -0.275 0.000
Stat. Parity. 0.192 0.106 0.172 0.074
Equal Opportunity 0.094 0.145 0.120 0.043
Equalized Odds 0.092 0.094 0.163 0.122
Maximum Correlation 0.527 0.364 0.826 0.593

Table 3.2 present dataset details used in this work, including the number of fea-
tures before pre-processing, the count of valid instances, the proportion of positive
and negative labels, the sensitive feature considered in experiments, the proportion
of privileged and unprivileged groups within the corresponding sensitive feature,
reference performance and fairness metrics using a standard Random Forest Classi-
fier with 1, 000 classifiers without tuning, and the maximum correlation coefficient
between the sensitive feature and the other features. The maximum correlation is
useful to assess whether it is possible to use another feature as proxy to the sensitive
feature, which is commonly referred as redlining effect (PEDRESCHI et al., 2008).

The Adult Income dataset presents a classification task to predict whether an
individual earns more than 50, 000 per year. This dataset consists of 48, 842 instances
sourced from the U.S. 1994 Census database. The sensitive attribute used in this
task is sex, with the male group considered privileged and the female group protected
(unprivileged). In the German Credit dataset, the task consists of classifying 1, 000

individuals described by a set of attributes as good or bad credit risks. Similar to
the Adult Income dataset, here we use sex as the sensitive attribute, with the male
group considered privileged and the female group protected. The Bank Marketing
classification task aims to predict whether 45, 211 clients will subscribe to a term
deposit after direct marketing campaigns (phone calls) by a Portuguese banking
institution. In this case, the sensitive feature is age, where individuals under the
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age of 25 are considered unprivileged, while those aged 25 and older are considered
privileged. The COMPAS dataset presents around 80, 000 criminal records from
the Broward County Clerk’s Office. The task here is to predict whether a defendant
will recidivate in the next two years. The sensitive feature in this case is race, with
Caucasians as the privileged group and non-Caucasians (Black and Hispanic) as
unprivileged.

For all datasets, the data preparation process is the same, one-hot encoding for
categorical features and standardize the numerical features. We perform a random
split, with 80% allocated for the hyperparameter tuning phase and the remaining
20% reserved for evaluating metrics in the test phase. Within the hyperparameter
tuning phase, this corresponding fraction of data is further randomly split, with 80%

assigned to training and 20% to validation. The validation set allows us to assess
metrics and compute the fitness function for each hyperparameter configuration. In
datasets where there is originally some kind of split, e.g., train set and test set in
separate files, all available data is merged and then shuffled to produce new splits
at each run.

3.4 Results and discussion

This section summarizes our results, comparing Fair Transition Loss (FTL) with
the baseline Standard MLP (MLP) and some relevant fair in-processing methods:
Adversarial Debiasing (AD), Prejudice Remover (PR), Gerry Fair Classifier (GFC)
and Adaptive Priority Reweighting (APW).

As we have multiple optimization scenarios with different objective functions and
datasets, and to each of them multiple runs, we present in Table 3.3 the results of
the ASO test described before, which allow us to properly compare each method
to FTL. Values under 0.5 (in bold) mean that we can reject the null hypothesis,
i.e., FTL produces stochastically larger fitness than method in respective column
for a objective and dataset. Lower values indicate stronger evidence. The complete
results with mean and standard deviation of fitness, performance and fairness can
be found in tables 3.5 to 3.10 to a fairness-performance trade-off analysis.

In 69 of 120 comparison scenarios from Almost Stochastic Order test (Table 3.3),
it is possible to claim that FTL outperforms its competitor, i.e., FTL produces
stochastically higher fitness values. Despite these positive results, one can argue
that the proposed technique only adds extra hyperparameters that increase models
flexibility to achieve higher fitness values. In other words, are we effectively de-
scribing bias in datasets by transition matrices as claimed before? To address this,
we showcase various FTL hyperparameter combinations selected during the tuning
phase described in Section 3.3, comparing with corresponding dataset information

42



Table 3.3: Almost Stochastic Order test comparing Fair Transition Loss fitness.
Values under 0.5 (in bold) mean that FTL outperforms corresponding method in
such optimization scenario.

Fairness/Performance
Metric

Dataset MLP AD PR GFC APW

Statistical Parity
MCC

Adult Income 0.00 0.15 1.00 0.00 1.00
Bank Marketing 0.01 0.00 0.00 0.00 0.00
Compas Recidivism 0.01 0.25 0.00 0.02 0.00
German Credit 0.28 0.30 0.39 0.21 0.28

Equal Opportunity
MCC

Adult Income 0.01 0.00 0.05 0.00 0.93
Bank Marketing 0.81 0.18 0.24 0.09 0.77
Compas Recidivism 0.00 1.00 0.00 0.66 1.00
German Credit 1.00 0.23 0.84 0.78 0.76

Equalized Odds
MCC

Adult Income 0.03 0.28 0.42 0.00 0.00
Bank Marketing 0.46 0.18 0.12 0.02 0.18
Compas Recidivism 0.01 0.58 0.00 0.07 0.00
German Credit 1.00 0.07 1.00 0.31 1.00

Statistical Parity
Accuracy

Adult Income 0.01 0.26 0.32 0.00 0.53
Bank Marketing 0.25 1.00 1.00 0.76 0.82
Compas Recidivism 0.00 1.00 0.10 1.00 0.00
German Credit 1.00 0.26 1.00 1.00 1.00

Equal Opportunity
Accuracy

Adult Income 0.89 0.97 1.00 0.23 0.98
Bank Marketing 1.00 0.39 0.81 1.00 1.00
Compas Recidivism 0.01 0.78 0.00 0.10 1.00
German Credit 1.00 0.64 1.00 1.00 1.00

Equalized Odds
Accuracy

Adult Income 0.01 0.21 0.19 0.00 1.00
Bank Marketing 0.76 0.40 0.82 1.00 1.00
Compas Recidivism 0.01 0.45 0.00 0.01 0.00
German Credit 1.00 0.12 1.00 1.00 1.00

available at Table 3.2. We perform this analysis using Adult Income dataset. The
corresponding hyperparameters can be found in Table 3.4. Here, high values mean
that FTL alters the corresponding probabilities, while values close to zero indicate
minimal interference by the method.

When optimizing for MCC and Statistical Parity, there’s a notable high value
for protected promotion. This value is compatible with the high corresponding fair-
ness metric for this dataset, approximately 0.19 without correction. This increases
the likelihood that an unprivileged instance receives a favorable outcome. Since
statistical parity only compare the probability of a positive outcome across groups
(ignoring true class) this is enough. The other hyperparameters presents low values.
In contrast to the previous case, optimizing Equal Opportunity requires compati-
ble false negative rates. Optimizing this fairness metric within MCC produces the
effect of promoting both privileged and protected, although protected with higher
values. This produces the effect of reducing false negatives at all, since the method
enhances the probability of a positive outcome. This effect is counterbalanced with
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Table 3.4: Fair Transition Loss hyperparameters chosen by optimizing different
metrics in Adult Income dataset.

Objective
d0

Priv. Dem.
p0

Priv. Prom.
d1

Prot. Dem.
p1

Prot. Prom.

MCC and Stat. Parity 0.056 0.076 0.043 0.878
MCC and Eq. Opp. 0.292 0.455 0.329 0.575
MCC and Eq. Odds 0.037 0.165 0.005 0.432
Acc. and Stat. Parity 0.470 0.110 0.023 0.446
Acc. and Eq. Opp. 0.389 0.326 0.311 0.530
Acc. and Eq. Odds 0.497 0.286 0.228 0.094

intermediate demotion rates to both groups through a finetuning to keep MCC. Note
that Equal Opportunity values without correction to this dataset is not as high as
Statistical Parity. To optimize Equalized Odds within MCC it is necessary to keep
both false negatives and false positives comparable across groups, which lead to a
less intense intervention when compared to Equal Opportunity. Here remains the
high values to protected promotion to achieve fairness.

There is a remarkable difference between hyperparameters found through op-
timizing Accuracy and MCC. While MCC handles unbalanced classes effectively,
Accuracy only measures the probability of correctly predicting an instance. If the
dataset is unbalanced it is possible to achieve high Accuracy only by predicting the
label of the more frequent class. In this dataset, only about a quarter of the instances
are positives, which can lead to more frequent negative outcomes to achieve higher
Accuracy. Results optimizing for Accuracy show significantly higher demotion rates
compared to those from MCC optimization, both to privileged and protected groups.
From this analysis, it’s evident that the proposed methodology effectively describes
and mitigates bias in a dataset according to a given fairness definition and while
keeping targeted performance metric at a reasonable level.

Now we discuss the results to each objective, starting with MCC and Statistical
Parity. To this objective Fair Transition Loss consistently outperforms all methods
at all classification tasks, except PR and APW in Adult Income. Figure 3.3a presents
a box-plot comparison, where we can see that FTL, PR and APW are effectively
drawn. While FTL and APW has little bit higher values, PR presents smaller
variance. AS PR is a regularized logistic regression, it is a smaller model than FTL,
which can explain the also smaller variance.

When comparing the optimization results for MCC and Equal Opportunity, FTL
consistently outperforms its counterparts in most scenarios. Here we have only one
discrepancy, as APW presents slightly advantage over FTL on COMPAS dataset.
Also, on German Credit dataset all methods achieved similar results. Given the
small size of this dataset, we theorize that all methods, barring AD, have reached
the Pareto front — meaning, any further improvements in fairness would necessitate
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Figure 3.3: Fitness values optimizing MCC and multiple fairness metrics.
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a proportional sacrifice in performance. This equilibrium between baseline (MLP),
FTL, PR, GFC and APW is evident in Figure 3.3b.

The sub-optimal results of AD can likely be attributed to the dataset’s lim-
ited size; with merely 1000 instances, this dataset might be too small for the an
adversarial model like AD train effectively. This pattern of AD underperforming
persists across subsequent classification tasks involving this dataset. Interestingly,
also with the exception of AD, we notice that the variance in results for most op-
timization scenarios is smaller than in other classification tasks. This observation
further underscores our Pareto front hypothesis and suggests that the classification
task’s simplicity may contribute to the reduced variability in outcomes.

When optimizing for MCC and Equalized Odds, we find that the results are
consistent, with FTL outperforming its counterparts in most scenarios. Notably,
within the German Credit dataset, FTL surpasses not just AD but also GFC. Since
GFC primarily relies on the False Negative Rate for its fairness definition, it has a
natural advantage when optimizing for Equal Opportunity compared to Equalized
Odds, which requires maintaining equitable False Positive and False Negative Rates.
As observed in the previous comparisons, Figure 3.3c underscores that the baseline,
FTL, PR and APW seem to hit the Pareto front for this dataset.

Upon examining FTL’s results when optimizing for MCC across all the fair-
ness metrics evaluated, it’s evident that FTL consistently superior results compared
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to its counterparts. Specifically, FTL achieves stochastically higher fitness values
in 44 out of the 60 scenarios evaluated. Given the inherent challenges associated
with optimizing MCC compared to Accuracy, we attribute FTL’s dominance in the
MCC optimization to its capability of effectively capturing the bias idiosyncrasies
of the dataset and the specified performance and fairness metrics trough transition
matrices.

Furthermore, it’s noteworthy that both the baseline and PR models substan-
tially underperform across all optimization scenarios in the COMPAS Recidivism
classification task. This dataset, characterized by its complexity with 401 features,
might be at the heart of these subpar results. We theorize that the this lack of
performance could be due to an insufficiently large model to navigate such a high-
dimensional space, especially when we observe, as indicated in Table 3.2, that the
standard performance on this dataset is relatively low.

When turning our attention to results obtained by optimizing Accuracy, we must
first reiterate its inherent simplicity as a performance metric compared to MCC.
Given its nature, it allows models to attain high values simply by predicting the
label of the predominant class. In such circumstances, it is comparatively easier to
reach the Pareto front. Even under these conditions, FTL displays commendable
competitiveness. Although it achieves stochastically higher fitness values in 25 of
the 60 scenarios, this rate is notably less than what we observed when optimizing
for MCC. By juxtaposing Figures 3.4a, 3.4b, and 3.4c with Table 3.3, we discern
that in scenarios where FTL does not have the upper hand, it still competes closely
with its counterparts. This very close results are primarily attributed to multiple
methods simultaneously approaching the Pareto front. Likely when optimizing for
MCC using Equal Opportunity as fairness metric, APW presents slightly advantage
over FTL on COMPAS dataset.

A particularly straightforward fair classification task emerges when optimizing
for Accuracy and Statistical Parity within the Adult Income dataset. With this pro-
nounced class imbalance, models can lean into over-predicting the majority class,
thereby aligning the probabilities of positive predictions across the groups. This
strategy results in a exceptionally low variance across all methodologies. A sim-
ilar, albeit reduced, effect can be observed within the German Credit dataset, as
previously highlighted.

Fair Transition Loss consistently indicates an effective bias mitigation, by absorb-
ing the nuances of the dataset and the fairness metric through its transition matrices,
resulting in stochastically superior fitness values in a significant number of scenar-
ios. Additionally, the method has the capacity to effectively handle datasets with
unbalanced classes when optimizing for metrics like MCC. However, it’s important
to recognize that Fair Transition Loss requires fine-tuning multiple hyperparame-
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Figure 3.4: Fitness values optimizing Accuracy and multiple fairness metrics.
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ters. We thus consider that this technique is especially beneficial in setups where
hyperparameter optimization is an inherent part of the prediction pipeline.

A key concern is about the potential for fairness-promoting techniques to inad-
vertently shift the burden onto the very group they aim to protect. This arises from
the possibility that by imposing additional constraints, the method might uninten-
tionally learn alternative ways to reproduce and even reinforce the negative social
biases present in the data, thus harming the individuals it intends to safeguard.

To evaluate the capability of FTL to address this risk, we present another ex-
periment, where we adjusted only the protected promotion hyperparameter (p1,
Equation 3.15) during the FTL training, keeping all other FTL hyperparameters
at zero and dropout at 0.2. Here we follow the same re-sampling procedure, each
experiment is performed over 15 repetitions, shuffling the dataset before splitting.
This experiment was conducted using the four datasets previously analyzed, and we
reported the following metrics assessed over the training set: protected false nega-
tive rate, protected false positive rate, protected accuracy, privileged false negative
rate, privileged false positive rate, privileged accuracy, overall false negative rate,
overall false positive rate and overall accuracy.

The results, presented in Figure 3.5, show that increasing the protected promo-
tion hyperparameter value leads to a decreased false negative rate for the protected
group. Meanwhile, most other monitored metrics tended towards stability to rea-
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Figure 3.5: Results of false negatives and false positives within groups on protected
promotion (p1) parameter at increasing levels.
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sonable hyperparameter levels (p1 under 0.95) . An exception is the false positive
rate, specially to protected group, which increased as the false negative rate de-
creased to keep accuracy. This pattern was consistent across all evaluated datasets.
The primary aim of this experiment was to indicate that our proposed technique
does not inadvertently penalize the protected group. Rather, the overall impact of
increasing the aforementioned parameter is to effectively promote fairness for the
protected group without detriment to either the privileged or protected groups. The
behavior of the remaining FTL parameters is analogous, necessitating proper fine-
tuning to achieve a balanced outcome. This underscores the efficacy of our method
in achieving its intended purpose of reducing bias and promoting fairness in the
model.

Additionally, we present performance and fairness results along with the fitness,
in order to provide material to a trade-off analysis. Also, those metric values en-
able the reader to compare this results with different experimental setup and fitness
objective from literature. Results corresponding each optimization scenario can be
found on tables 3.5 to 3.10, presenting metric means and standard deviation values
across multiple resample run. Best result of each metric within evaluation scenario
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are in bold, and standard deviation values are presented between parenthesis. Up
arrow (↑) indicates that the referred metric should be maximized while down arrow
(↓) that the metric should be minimized. To provide a visual resource to this com-
parison, the distribution of those metrics across multiple resample runs comparing
the propose method (FTL) with baseline (MLP) and current state-of-art (APW) are
presented in joint plot format in figures 3.6 to 3.11. Here each joint plot is present
within the corresponding table to a better comprehension.
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Table 3.5: Mean and standard deviation metric values optimizing MCC and Statis-
tical Parity in comparison with Fair Transition Loss across multiple resample runs.

Dataset Method ↑ Fitness ↑ MCC ↓ Stat. Parity

Adult
Income

Adaptive Priority Reweighting 0.499 (±0.01) 0.510 (±0.01) 0.011 (±0.01)
Adversarial Debiasing 0.478 (±0.01) 0.501 (±0.02) 0.024 (±0.02)
Fair Transition Loss 0.492 (±0.02) 0.512 (±0.01) 0.020 (±0.01)
Gerry Fair Classifier 0.357 (±0.02) 0.512 (±0.02) 0.154 (±0.03)
Prejudice Remover 0.491 (±0.01) 0.500 (±0.01) 0.009 (±0.01)
Standard MLP (baseline) 0.395 (±0.01) 0.581 (±0.01) 0.185 (±0.01)

Bank
Marketing

Adaptive Priority Reweighting 0.441 (±0.03) 0.482 (±0.02) 0.041 (±0.04)
Adversarial Debiasing 0.459 (±0.03) 0.505 (±0.02) 0.046 (±0.02)
Fair Transition Loss 0.539 (±0.03) 0.579 (±0.01) 0.040 (±0.03)
Gerry Fair Classifier 0.358 (±0.04) 0.428 (±0.02) 0.070 (±0.03)
Prejudice Remover 0.454 (±0.03) 0.487 (±0.02) 0.033 (±0.02)
Standard MLP (baseline) 0.419 (±0.04) 0.522 (±0.02) 0.102 (±0.03)

COMPAS
Recidivism

Adaptive Priority Reweighting −0.412 (±0.35) 0.194 (±0.07) 0.606 (±0.29)
Adversarial Debiasing 0.157 (±0.14) 0.322 (±0.02) 0.165 (±0.14)
Fair Transition Loss 0.220 (±0.06) 0.276 (±0.03) 0.057 (±0.05)
Gerry Fair Classifier 0.141 (±0.04) 0.289 (±0.06) 0.148 (±0.06)
Prejudice Remover −0.318 (±0.05) −0.276 (±0.03) 0.042 (±0.03)
Standard MLP (baseline) −0.511 (±0.05) −0.299 (±0.03) 0.212 (±0.04)

German
Credit

Adaptive Priority Reweighting 0.217 (±0.09) 0.321 (±0.05) 0.105 (±0.06)
Adversarial Debiasing 0.200 (±0.17) 0.368 (±0.06) 0.168 (±0.15)
Fair Transition Loss 0.272 (±0.08) 0.354 (±0.07) 0.083 (±0.04)
Gerry Fair Classifier 0.221 (±0.09) 0.291 (±0.11) 0.071 (±0.06)
Prejudice Remover 0.234 (±0.09) 0.329 (±0.05) 0.095 (±0.06)
Standard MLP (baseline) 0.223 (±0.10) 0.330 (±0.07) 0.107 (±0.07)

Figure 3.6: Metric distribution optimizing MCC and Statistical Parity in compari-
son with Fair Transition Loss across multiple resample runs. Corresponding values
available at Table 3.5.
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Table 3.6: Mean and standard deviation metric values optimizing MCC and Equal
Opportunity in comparison with Fair Transition Loss across multiple resample runs.

Dataset Method ↑ Fitness ↑ MCC ↓ q. Opp.

Adult
Income

Adaptive Priority Reweighting 0.493 (±0.01) 0.523 (±0.01) 0.030 (±0.01)
Adversarial Debiasing 0.509 (±0.03) 0.565 (±0.02) 0.056 (±0.02)
Fair Transition Loss 0.523 (±0.02) 0.576 (±0.02) 0.052 (±0.02)
Gerry Fair Classifier 0.434 (±0.01) 0.523 (±0.01) 0.089 (±0.01)
Prejudice Remover 0.509 (±0.05) 0.558 (±0.02) 0.049 (±0.03)
Standard MLP (baseline) 0.489 (±0.03) 0.576 (±0.01) 0.087 (±0.03)

Bank
Marketing

Adaptive Priority Reweighting 0.424 (±0.04) 0.474 (±0.02) 0.050 (±0.04)
Adversarial Debiasing 0.426 (±0.06) 0.512 (±0.02) 0.086 (±0.05)
Fair Transition Loss 0.485 (±0.06) 0.569 (±0.01) 0.084 (±0.06)
Gerry Fair Classifier 0.371 (±0.04) 0.423 (±0.02) 0.052 (±0.03)
Prejudice Remover 0.413 (±0.04) 0.485 (±0.02) 0.072 (±0.04)
Standard MLP (baseline) 0.439 (±0.03) 0.514 (±0.02) 0.075 (±0.03)

COMPAS
Recidivism

Adaptive Priority Reweighting −0.111 (±0.18) 0.260 (±0.04) 0.371 (±0.17)
Adversarial Debiasing 0.191 (±0.11) 0.324 (±0.03) 0.133 (±0.10)
Fair Transition Loss 0.208 (±0.06) 0.283 (±0.02) 0.074 (±0.05)
Gerry Fair Classifier 0.155 (±0.05) 0.274 (±0.06) 0.120 (±0.04)
Prejudice Remover −0.352 (±0.03) −0.278 (±0.02) 0.073 (±0.03)
Standard MLP (baseline) −0.471 (±0.05) −0.294 (±0.02) 0.176 (±0.04)

German
Credit

Adaptive Priority Reweighting 0.299 (±0.08) 0.373 (±0.06) 0.075 (±0.05)
Adversarial Debiasing 0.040 (±0.41) 0.301 (±0.13) 0.261 (±0.30)
Fair Transition Loss 0.273 (±0.10) 0.386 (±0.08) 0.113 (±0.08)
Gerry Fair Classifier 0.218 (±0.11) 0.321 (±0.10) 0.103 (±0.05)
Prejudice Remover 0.283 (±0.10) 0.391 (±0.07) 0.107 (±0.06)
Standard MLP (baseline) 0.270 (±0.07) 0.352 (±0.05) 0.082 (±0.04)

Figure 3.7: Metric distribution optimizing MCC and Equal Opportunity in compar-
ison with Fair Transition Loss across multiple resample runs. Corresponding values
available at Table 3.6.
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Table 3.7: Mean and standard deviation metric values optimizing MCC and Equal-
ized Odds in comparison with Fair Transition Loss across multiple resample runs.

Dataset Method ↑ Fitness ↑ MCC ↓ Eq. Odds

Adult
Income

Adaptive Priority Reweighting 0.553 (±0.01) 0.576 (±0.01) 0.022 (±0.02)
Adversarial Debiasing 0.493 (±0.05) 0.573 (±0.01) 0.080 (±0.05)
Fair Transition Loss 0.556 (±0.03) 0.584 (±0.01) 0.029 (±0.03)
Gerry Fair Classifier 0.394 (±0.03) 0.515 (±0.02) 0.121 (±0.02)
Prejudice Remover 0.505 (±0.09) 0.560 (±0.02) 0.055 (±0.08)
Standard MLP (baseline) 0.489 (±0.03) 0.580 (±0.01) 0.091 (±0.03)

Bank
Marketing

Adaptive Priority Reweighting 0.441 (±0.06) 0.500 (±0.01) 0.059 (±0.06)
Adversarial Debiasing 0.373 (±0.09) 0.508 (±0.02) 0.136 (±0.09)
Fair Transition Loss 0.467 (±0.11) 0.560 (±0.03) 0.093 (±0.10)
Gerry Fair Classifier 0.344 (±0.07) 0.422 (±0.02) 0.078 (±0.06)
Prejudice Remover 0.392 (±0.09) 0.490 (±0.02) 0.098 (±0.08)
Standard MLP (baseline) 0.432 (±0.06) 0.520 (±0.02) 0.087 (±0.06)

COMPAS
Recidivism

Adaptive Priority Reweighting 0.292 (±0.03) 0.319 (±0.02) 0.027 (±0.02)
Adversarial Debiasing 0.258 (±0.05) 0.329 (±0.03) 0.070 (±0.05)
Fair Transition Loss 0.213 (±0.06) 0.264 (±0.06) 0.050 (±0.03)
Gerry Fair Classifier 0.201 (±0.05) 0.290 (±0.04) 0.089 (±0.05)
Prejudice Remover −0.319 (±0.03) −0.289 (±0.03) 0.030 (±0.02)
Standard MLP (baseline) −0.435 (±0.03) −0.292 (±0.02) 0.143 (±0.03)

German
Credit

Adaptive Priority Reweighting 0.261 (±0.08) 0.326 (±0.06) 0.065 (±0.05)
Adversarial Debiasing 0.116 (±0.40) 0.311 (±0.14) 0.195 (±0.28)
Fair Transition Loss 0.274 (±0.10) 0.361 (±0.08) 0.087 (±0.05)
Gerry Fair Classifier 0.273 (±0.10) 0.361 (±0.06) 0.087 (±0.06)
Prejudice Remover 0.271 (±0.07) 0.324 (±0.06) 0.054 (±0.04)
Standard MLP (baseline) 0.295 (±0.09) 0.354 (±0.08) 0.060 (±0.04)

Figure 3.8: Metric distribution optimizing MCC and Equalized Odds in compari-
son with Fair Transition Loss across multiple resample runs. Corresponding values
available at Table 3.7.
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Table 3.8: Mean and standard deviation metric values optimizing Accuracy and
Statistical Parity in comparison with Fair Transition Loss across multiple resample
runs.

Dataset Method ↑ Fitness ↑ Accuracy ↓ Stat. Parity

Adult
Income

Adaptive Priority Reweighting 0.811 (±0.01) 0.822 (±0.01) 0.011(±0.01)
Adversarial Debiasing 0.808 (±0.01) 0.830 (±0.01) 0.022 (±0.01)
Fair Transition Loss 0.814 (±0.01) 0.828 (±0.01) 0.014 (±0.01)
Gerry Fair Classifier 0.651 (±0.21) 0.721 (±0.07) 0.070 (±0.14)
Prejudice Remover 0.807 (±0.01) 0.825 (±0.00) 0.018 (±0.01)
Standard MLP (baseline) 0.666 (±0.01) 0.851 (±0.00) 0.184 (±0.01)

Bank
Marketing

Adaptive Priority Reweighting 0.851 (±0.06) 0.900 (±0.00) 0.049 (±0.06)
Adversarial Debiasing 0.869 (±0.03) 0.901 (±0.00) 0.031 (±0.02)
Fair Transition Loss 0.854 (±0.05) 0.889 (±0.01) 0.035 (±0.05)
Gerry Fair Classifier 0.824 (±0.02) 0.895 (±0.00) 0.071 (±0.02)
Prejudice Remover 0.860 (±0.02) 0.898 (±0.00) 0.038 (±0.02)
Standard MLP (baseline) 0.799 (±0.04) 0.902 (±0.00) 0.103 (±0.03)

COMPAS
Recidivism

Adaptive Priority Reweighting −0.105 (±0.26) 0.584 (±0.03) 0.689 (±0.23)
Adversarial Debiasing 0.538 (±0.07) 0.670 (±0.02) 0.132 (±0.08)
Fair Transition Loss 0.501 (±0.15) 0.600 (±0.05) 0.099 (±0.14)
Gerry Fair Classifier 0.501 (±0.05) 0.614 (±0.05) 0.113 (±0.07)
Prejudice Remover 0.308 (±0.03) 0.359 (±0.01) 0.052 (±0.02)
Standard MLP (baseline) 0.146 (±0.03) 0.354 (±0.02) 0.208 (±0.02)

German
Credit

Adaptive Priority Reweighting 0.589 (±0.08) 0.682 (±0.03) 0.093 (±0.08)
Adversarial Debiasing 0.430 (±0.33) 0.713 (±0.09) 0.283 (±0.26)
Fair Transition Loss 0.616 (±0.20) 0.715 (±0.06) 0.098 (±0.17)
Gerry Fair Classifier 0.621 (±0.09) 0.712 (±0.12) 0.090 (±0.04)
Prejudice Remover 0.684 (±0.05) 0.757 (±0.02) 0.073 (±0.06)
Standard MLP (baseline) 0.639 (±0.06) 0.752 (±0.02) 0.113 (±0.06)

Figure 3.9: Metric distribution optimizing Accuracy and Statistical Parity in com-
parison with Fair Transition Loss across multiple resample runs. Corresponding
values available at Table 3.8.
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Table 3.9: Mean and standard deviation metric values optimizing Accuracy and
Equal Opportunity in comparison with Fair Transition Loss.

Dataset Method ↑ Fitness ↑ Accuracy ↓ Eq. Opp.

Adult
Income

Adaptive Priority Reweighting 0.808 (±0.01) 0.837 (±0.00) 0.029 (±0.01)
Adversarial Debiasing 0.796 (±0.01) 0.849 (±0.00) 0.052 (±0.01)
Fair Transition Loss 0.808 (±0.02) 0.842 (±0.01) 0.034 (±0.02)
Gerry Fair Classifier 0.756 (±0.01) 0.788 (±0.03) 0.032 (±0.04)
Prejudice Remover 0.794 (±0.02) 0.845 (±0.01) 0.051 (±0.01)
Standard MLP (baseline) 0.765 (±0.02) 0.850 (±0.00) 0.084 (±0.02)

Bank
Marketing

Adaptive Priority Reweighting 0.858 (±0.02) 0.897 (±0.00) 0.039 (±0.03)
Adversarial Debiasing 0.807 (±0.07) 0.902 (±0.00) 0.095 (±0.07)
Fair Transition Loss 0.833 (±0.05) 0.892 (±0.01) 0.059 (±0.05)
Gerry Fair Classifier 0.837 (±0.04) 0.895 (±0.00) 0.058 (±0.04)
Prejudice Remover 0.827 (±0.04) 0.898 (±0.00) 0.071 (±0.04)
Standard MLP (baseline) 0.826 (±0.04) 0.901 (±0.00) 0.075 (±0.04)

COMPAS
Recidivism

Adaptive Priority Reweighting 0.356 (±0.18) 0.643 (±0.02) 0.287 (±0.18)
Adversarial Debiasing 0.553 (±0.09) 0.669 (±0.01) 0.116 (±0.09)
Fair Transition Loss 0.572 (±0.03) 0.631 (±0.04) 0.059 (±0.03)
Gerry Fair Classifier 0.530 (±0.03) 0.637 (±0.04) 0.107 (±0.05)
Prejudice Remover 0.264 (±0.03) 0.357 (±0.01) 0.093 (±0.02)
Standard MLP (baseline) 0.155 (±0.04) 0.350 (±0.02) 0.195 (±0.04)

German
Credit

Adaptive Priority Reweighting 0.674 (±0.06) 0.750 (±0.03) 0.076 (±0.04)
Adversarial Debiasing 0.368 (±0.38) 0.685 (±0.10) 0.317 (±0.30)
Fair Transition Loss 0.599 (±0.12) 0.711 (±0.05) 0.112 (±0.11)
Gerry Fair Classifier 0.662 (±0.12) 0.719 (±0.12) 0.057 (±0.07)
Prejudice Remover 0.664 (±0.05) 0.748 (±0.02) 0.084 (±0.04)
Standard MLP (baseline) 0.638 (±0.06) 0.738 (±0.04) 0.101 (±0.05)

Figure 3.10: Metric distribution optimizing Accuracy and Equal Opportunity in
comparison with Fair Transition Loss across multiple resample runs. Corresponding
values available at Table 3.9.
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Table 3.10: Mean and standard deviation metric values optimizing Accuracy and
Equalized Odds in comparison with Fair Transition Loss across multiple resample
runs.

Dataset Method ↑ Fitness ↑ Accuracy ↓ Eq. Odds

Adult
Income

Adaptive Priority Reweighting 0.829 (±0.01) 0.847 (±0.00) 0.018 (±0.01)
Adversarial Debiasing 0.756 (±0.03) 0.848 (±0.00) 0.092 (±0.03)
Fair Transition Loss 0.787 (±0.08) 0.826 (±0.07) 0.039 (±0.04)
Gerry Fair Classifier 0.705 (±0.07) 0.751 (±0.09) 0.046 (±0.05)
Prejudice Remover 0.810 (±0.02) 0.846 (±0.00) 0.036 (±0.02)
Standard MLP (baseline) 0.752 (±0.04) 0.849 (±0.00) 0.097 (±0.04)

Bank
Marketing

Adaptive Priority Reweighting 0.846 (±0.05) 0.901 (±0.00) 0.055 (±0.05)
Adversarial Debiasing 0.750 (±0.09) 0.900 (±0.00) 0.150 (±0.09)
Fair Transition Loss 0.799 (±0.10) 0.891 (±0.01) 0.092 (±0.10)
Gerry Fair Classifier 0.837 (±0.06) 0.893 (±0.00) 0.057 (±0.06)
Prejudice Remover 0.781 (±0.07) 0.899 (±0.00) 0.118 (±0.07)
Standard MLP (baseline) 0.800 (±0.06) 0.902 (±0.00) 0.102 (±0.06)

COMPAS
Recidivism

Adaptive Priority Reweighting 0.642 (±0.03) 0.669 (±0.01) 0.027 (±0.02)
Adversarial Debiasing 0.594 (±0.07) 0.672 (±0.02) 0.078 (±0.06)
Fair Transition Loss 0.594 (±0.04) 0.648 (±0.01) 0.054 (±0.03)
Gerry Fair Classifier 0.558 (±0.05) 0.647 (±0.02) 0.088 (±0.04)
Prejudice Remover 0.287 (±0.03) 0.342 (±0.01) 0.055 (±0.03)
Standard MLP (baseline) 0.218 (±0.05) 0.353 (±0.01) 0.135 (±0.05)

German
Credit

Adaptive Priority Reweighting 0.716 (±0.04) 0.750 (±0.02) 0.034 (±0.03)
Adversarial Debiasing 0.530 (±0.33) 0.713 (±0.10) 0.183 (±0.24)
Fair Transition Loss 0.622 (±0.26) 0.705 (±0.10) 0.083 (±0.17)
Gerry Fair Classifier 0.643 (±0.13) 0.707 (±0.13) 0.063 (±0.04)
Prejudice Remover 0.648 (±0.06) 0.743 (±0.03) 0.095 (±0.06)
Standard MLP (baseline) 0.681 (±0.08) 0.747 (±0.03) 0.066 (±0.06)

Figure 3.11: Metric distribution optimizing Accuracy and Equalized Odds in com-
parison with Fair Transition Loss across multiple resample runs. Corresponding
values available at Table 3.10.
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Chapter 4

Correlation based penalty function

In this chapter, we propose a novel regularization factor to penalize the use of fea-
tures highly correlated with a protected attribute by a machine learning model,
aiming to avoid the redlining effect (PEDRESCHI et al., 2008). The proposed pe-
nalization factor is applied directly to the input weights of a Multi-Layer Perceptron,
using a strategy that proportionately penalizes features use based on their correla-
tion with the sensitive feature.

4.1 Preliminaries

The phenomena known as redlining effect consists in the unintended use of proxy
variables to the sensitive feature by the model, which can lead model to produce
indirect discrimination in their outcomes (PEDRESCHI et al., 2008). Thus, the in-
sight here is to penalize the use of those proxy features by the model proportionally
according its correlation with sensitive feature in order to avoid redlining effect. The
proposed regularization approach uses the recently described Chatterjee’s xi corre-
lation coefficient (CHATTERJEE, 2021), which robustly assess whether a random
variable can be described as a function of another one, as a measure of the potential
of given feature to be used by the model as a proxy to the sensitive feature.

Before discussing this approach, we start defining some common correlation co-
efficients and providing a proper comparison within Chatterjee’s correlation. For
purpose of simplicity we describe only the most commonly used form, more complex
formulations involving additional terms depending on available data should be con-
sidered to most of coefficients. Also, we present some related approaches, specially
those ones that, like ours, use regularization and penalty factors to avoid indirect
discrimination.

The Pearson correlation coefficient, denoted by r and defined in Definition 20,
is a measure of the linear relationship between two random variables. The Pearson
correlation coefficient ranges from −1 to 1, where 1 indicates a perfect positive linear
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relationship, −1 indicates a perfect negative linear relationship, and 0 indicates no
linear relationship.

Definition 20 (Pearson correlation coefficient). Let x and y random variables. The
Pearson correlation coefficient r between x and y can be defined as

r =
Cov(x,y)

σxσy
, (4.1)

where Cov(x,y) is the covariance between x and y, while σx and σy the standard
deviations of x and y, respectively.

Spearman’s rank correlation coefficient, denoted by rs and defined in Defini-
tion 21, measures the strength and direction of the monotonic relationship between
two ranked (ordered) variables. As like Pearson correlation coefficient, Spearman’s
rank correlation coefficient ranges from −1 to 1, where 1 indicates a perfect pos-
itive relationship, −1 indicates a perfect negative relationship, and 0 indicates no
relationship.

Definition 21 (Spearman’s correlation coefficient). Let x and y random variables, n
the sample size and xi, yi the i-th observations to i = 1 . . . n. Let rank(xi), rank(yi)
the rank of observations xi, yi, i.e., the position of xi, yi by ordering the samples,
respectively. The Spearman’s rank correlation coefficient rs between x and y can be
defined to non-repeated observation values as

rs = 1−
6

n∑
i=1

(rank(xi)− rank(yi))
2

n(n2 − 1)
. (4.2)

Kendall’s rank correlation coefficient, denoted by τ and defined in Definition 22,
indicates the strength and direction of association between two variables. It is based
on the relative ordering of pairs of observations rather than their actual values. Here
we interpret the correlation values as like in Spearman’s and Pearson’s correlation
coefficients, ranging from −1 to 1, where 1 indicates a perfect positive relationship,
−1 a perfect negative relationship, and 0 no linear relationship.

Definition 22 (Kendall’s correlation coefficient). Let two variables x and y sampled
with n pairs of observations (xi,yi) for i = 1, 2, . . . , n. A pair of observations (xi,yi)
and (xj,yj) is concordant if the ranks (order) of both elements agree, i.e., to i < j

either xi > xj and yi > yj) or xi < xj and yi < yj. Otherwise their are considered
discordant, i.e., either xi > xj and yi < yj or xi < xj and yi > yj. The Kendall’s
rank correlation coefficient τ between x and y can be defined as

τ =
2(Nc −Nd)

n(n− 1)
, (4.3)
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where Nc is the number of concordant observation and Nd the number of discordant
observations.

Chatterjee’s rank correlation coefficient, denoted by ξ and defined in Defini-
tion 23, is designed to robustly measure the degree of dependence between two
variables without assuming any specific type of relationship and capturing noise nu-
ances. The previously described correlation coefficients are not effective on detecting
associations that are not monotonic, even in complete absence of noise.

This correlation coefficient asses whether a random variable can be described as
a function of another one. Differently from correlation coefficients described before,
this coefficient ranges from 0 to 1, where 0 indicates independence and 1 indicates
a perfect functional relationship. Also this correlation is not symmetric, i.e., the
correlation between x and y may differ from between y and x.

Definition 23 (Chatterjee’s correlation coefficient). Let two variables x and y,
where y is not a constant, sampled with n pairs of observations (xi,yi) for i =

1, 2, . . . , n. The Chatterjee’s rank correlation coefficient τ between x and y when
there are no ties among y can be defined as

ξ = 1−
3
n−1∑
i=1

|rank(yi+1,x)− rank(yi,x)|

n2 − 1
, (4.4)

where rank(yi,x) is the rank of yi in the ordered sequence of y values corresponding
to the sorted x values.

To illustrate some characteristics of Chatterjee’s rank correlation coefficient we
compare those results on Anscombe’s quartet (ANSCOMBE, 1973) along with Pear-
son’s, Spearman’s and Kendall’s correlation coefficients. The Anscombe’s quartet
(Table 4.1) is a set of four different datasets that have nearly identical simple de-
scriptive statistics, yet very different distribution, which is clear on Figure 4.1. As
an additional resource, a line representing a linear regression over the data is plot-
ted within the points, enforcing that they present nearly identical simple descriptive
statistics.

Comparing correlation coefficients, it is evident that Pearson’s r does not prop-
erly capture the peculiarities of Anscombe’s quartet. Although the four datasets
present the same correlation coefficient, they exhibit very different distribution.
Spearman’s rs and Kendall’s τ performs very similarly each other, properly cap-
turing relevant characteristics, albeit Kendall’s τ indicates to be more exigent on
assigning high correlation values. Chatterjee’s ξ is even more exigent, pursuing the
behavior of capturing functional relations between data, considering noise. For ex-
ample, the first quartet presents a small ξ as it contains relevant noise, despite the
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Table 4.1: Anscombe’s quartet (ANSCOMBE, 1973), a set of four different datasets
that have nearly identical simple descriptive statistics, yet very different distribution.

I II III IV
x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

points are effectively linearly disposed. Albeit the second quartet has a non linear
distribution, the data has lower noise influence, presenting a more functional rela-
tionship. Thus, to Chatterjee’s correlation the second presents a higher coefficient
than the first, which is not equivalently captured by Spearman’s and Kendall’s.

Figure 4.1: Multiple correlation coefficients on Anscombe’s quartet.
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As a resource to defining the proposed redlining penalty method we describe
the L2 regularization. This regularization term, a.k.a. weight decay, is a common
technique used to prevent overfitting in machine learning models, including the
Multi-Layer Perceptron (MLP). The L2 regularization adds a penalty term to the
loss function that is proportional to the sum of the squares of the model parameters
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(weights). This encourages the model to keep the weights small, which can help
improving generalization.

Let W(l) represent the weight matrix for the l-th layer of the MLP. The primary
loss function of the network, ℓ0, could be any suitable loss function such as the
mean squared error for regression or the cross-entropy loss for classification. The L2
regularization term for a single layer is given by

R(W(l)) =
1

2

Dl∑
i=1

Hl∑
j=1

(
w

(l)
ij

)2

, (4.5)

where Dl and Hl are the dimensions of the weight matrix W(l), and w(l)
ij is the weight

connecting the i-th input neuron to the j-th neuron in the l-th layer. Thus, the total
regularization term for the entire network, considering all layers, is

R(W) =
1

2

L∑
l=1

Dl∑
i=1

Hl∑
j=1

(
w

(l)
ij

)2

, (4.6)

where L is the total number of layers in the network. Furthermore, the total loss
function ℓ for the MLP, incorporating the L2 regularization term, is defined as

ℓ = ℓ0 + λ R(W), (4.7)

where λ is a scalar hyperparameter that controls the overall strength of the regular-
ization.

By adding this regularization term, the optimization process aims to minimize
the primary loss ℓ0 along with keeping the weights small, thereby helping to reduce
the model complexity and prevent overfitting. The gradient descent updates for the
weights will be adjusted to account for the regularization term, effectively shrinking
the weights during the training process.

Although many fair machine learning techniques are based on imposing con-
straints to achieve reasonable values under specific fairness definitions and met-
rics (MEHRABI et al., 2021; CATON e HAAS, 2023; HORT et al., 2023), the
approach of integrating these constraints as regularization factors remains under
explored. One foundational fairness technique, the Prejudice Remover Regular-
izer (KAMISHIMA et al., 2012), accomplishes this objective by measuring and pe-
nalizing indirect prejudice through a prejudice index alongside an L2 regularization.

Relevant regularization approaches to fair machine learning include the dual
form for Fairness Constraints through Decision Boundary Covariance by ZAFAR
et al. (2017a) and the example-based and model-agnostic Paired-Consistency ap-
proach (HORESH et al., 2020). A notable approach proposed by BAHARLOUEI

60



et al. (2020) includes a general min-max framework for fair inference using the Rényi
correlation coefficient (RÉNYI, 1959) as a regularization term. Additional recent
developments in this research area can be found in the works of OLFAT e MINTZ
(2020), YU et al. (2022), and JUNG et al. (2023).

4.2 Redlining Penalty Regularizer

Here we propose the Redlining Penalty Regularizer (RPR), a novel regularization
term that penalizes the weights of features highly correlated with the sensitive at-
tribute in order to prevent the redlining effect. By incorporating this penalty into
the loss function of the neural network, the model is encouraged to reduce its reliance
on sensitive attributes and their proxies, thus promoting fairer predictions. To the
best of our knowledge, this the first approach to incorporate a regularization term
that proportionately penalizes the features weights on the input layer according its
correlation to sensitive attribute to prevent the redlining effect.

As referred before, the Chatterjee’s Xi Correlation Coefficient distinguish from
many other by providing a measure of how much one random variable can be ex-
pressed as a function of another, with a range from 0 to 1. This characteristics is
relevant to the proposed use, to capture redlining effect, as of this phenomena hap-
pens exactly when the sensitive feature can be inferred by another one, producing
the same harmful effects whether the correlation is positive or negative. Naturally
it would be possible to use the absolute value of correlation coefficient such as Pear-
son, Spearman and Kendall, but this strategy could lead to some kind of information
loss. Another relevant characteristics of this correlation coefficient is the ability to
capture sophisticated non-linearities, including non-monotonic ones, and the effects
of noise on variable’s distribution, conditions frequently present in proxy feature
relationships.

Thus, let X ∈ Rn×m be the dataset features where n represents the number of
instances and m represents the number of features. Let Xi ∈ Rn denote the i-th
feature of the dataset, and let A = Xi ∈ Rn be a sensitive (protected) feature for
some i. In this neural network, W(1) ∈ Rm×H1 is the weight matrix for the first
hidden layer, with H1 being the number of neurons in this layer. Additionally, λ is
a scalar that controls the overall strength of the regularization.

Thus, the proposed regularization term R(W(1)) applied to the weight matrix
W(1) only on the first hidden layer, defined as

R(W(1)) =
m∑
i=1

ξn(Xi, A)

H1∑
j=1

(w
(1)
ij )

2, (4.8)
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where W (1)
ij are the weights connecting the i-th input feature to the j-th neuron in

the first hidden layer. Here, the Chatterjee’s Xi Correlation Coefficient ξn(Xi, A)

between the i-th input feature Xi and the sensitive feature A acts as the regulariza-
tion strength for the i-th input feature. The greater i-th input feature dependence
on sensitive feature the greater the penalization factor enforcing lower values to
those weights.

Thus, the total loss function ℓ to a MLP, incorporating the sensitive-feature-
specific L2 regularization, is defined as

ℓ = ℓ0 + λ R(W(1)), (4.9)

where L0 is the primary loss function of the network. This formulation ensures
that the model’s learning process penalizes weights with high values associated with
features highly correlated to the sensitive attribute, thereby reducing the potential
for biased decisions influenced by redlining effect.

This formulation differs from similar approaches to regularization in order to
achieve fairness in machine learning by two fundamental points. The first one is
that here the regularization acts as a focused penalty factor through the use of the
correlation of each feature to the sensitive one, reducing it’s effect on less correlated
features and boosting on the highly correlated ones. The second point is that this
proposed penalty does not acts as a common regularizer, by imposing small values
on every model’s parameter. Rather, it penalizes the use of each feature according
it’s correlation to the sensitive one by exclusively acting on the input layer weights,
that is, the usage level of each feature by hidden units.

With the combination of characteristics tailored by this formulation and the
chosen correlation coefficient we do expects effectively avoiding the use of indirect
sensitive feature predictors within the model, thus mitigating redlining effect.

4.3 Experimental setup

In this section, we detail the experimental setup employed to benchmark the pro-
posed regularization within both Standard MLP with Cross Entropy Loss and a
MLP using Fair Transition Loss. Both MLP model uses two hidden layers with
100 hidden units each, ReLU activation function, batch size of 64, 50 epochs early
stopped at 3 epochs without improvement (LI et al., 2020) and softmax in output,
trained with ADAM optimizer (KINGMA e BA, 2015) and learning rate at 3e−4.

The overall experimental methodology follows same principles of those used on
Fair Transition Loss evaluation. There are two phases: hyperparameter tuning and
testing. In the hyperparameter tuning phase we perform a Bandit-Based pruning
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approach using HyperBand (LI et al., 2018) with Tree-structured Parzen Estimator
Sampler (TPE) (BERGSTRA et al., 2011) over 100 trials. At each trial a fitness
function is evaluated by performing a complete training and validation, where both
model performance and fairness metrics are assessed. The fitness function is com-
puted based on the objective defined in Equation 3.16.

Once the best hyperparameters are selected, we proceed to the testing phase,
where a new training is conducted using those optimal hyperparameters. After this
training, we evaluate the model’s performance on a separate test set that was not
used during the hyperparameter tuning phase, which are reported. This complete
tuning-training-testing described is repeated 15 times within random re-sampling
then we proceed to comparison. Here the re-sampling consists in shuffling the whole
dataset before splitting, as described before

As the objective defined in Equation 3.16 can be achieved with different perfor-
mance and fairness metrics, we compare the proposed regularization schema within
Standard MLP and MLP with FTL in different optimization scenarios, consider-
ing as performance metrics Accuracy (Acc.) and Mathews Correlation Coefficient
(MCC), while the fairness metrics considered are Statistical Parity (Stat. Parity),
Equal Opportunity (Eq. Opp.) and Equalized Odds (Eq. Odds). Those pursued
metrics lead us to the following optimization scenarios: MCC and Statistical Parity;
MCC and Equal Opportunity; MCC and Equalized Odds; Accuracy and Statistical
Parity; Accuracy and Equal Opportunity; Accuracy and Equalized Odds.

Table 4.2: Hyperparameters search ranges or options of each method.

Method Parameter Range/options

Standard MLP without regularization (baseline) dropout [0.0, 0.2]

Standard MLP with RPR dropout [0.0, 0.2]

λ {1e−2, 1e−3, 1e−4}
Fair Transition Loss without regularization d0, p0, d1, p1 [0.0, 1.0]

dropout [0.0, 0.2]
Fair Transition Loss with RPR d0, p0, d1, p1 [0.0, 1.0]

dropout [0.0, 0.2]
λ {1e−2, 1e−3, 1e−4}

Table 4.2 presents the methods hyperparameters along with their corresponding
search ranges or options. While each method may possess a varying number of
hyperparameters and range sizes, all are optimized under the same conditions and
number of configurations to guarantee a balanced comparison.

To properly compare this set of 15 results of each method, we conduct an Al-
most Stochastic Order (ASO) test (DROR et al., 2019), a significance test suitable
for comparing complex machine learning models with various hyperparameters. As
described before, the ASO test involves evaluating a set of metrics through multiple
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samplings of a Collection of Statistics, in this case assessed in the test phase using
random resampling to compare one method against another. The ASO(h1, h2) func-
tion yields a value in the range [0, 1], given two methods h1 and h2. If ASO(h1, h2)
is less than 0.5, we can reject the null hypothesis and conclude that method h1 out-
performs method h2 in the given task. That is, method h1 produces stochastically
larger values than method h2 for a given metric. The lower the ASO(h1, h2) value,
the stronger the evidence that h1 is superior to h2 in that particular task, which can
be interpreted as a confidence interval. Therefore, we perform comparisons between
all methods for each optimization scenario outlined previously and for each dataset.

Our experiments uses common datasets from Fair Classification benchmarks,
namely Adult Income (BECKER e KOHAVI, 1996), German Credit (HOFMANN,
1994), Bank Marketing (S. MORO e CORTEZ, 2012), and COMPAS Recidi-
vism (JEFF LARSON e ANGWIN, 2016). We use the dataset readers available
in the AI Fairness 360 toolkit (BELLAMY et al., 2018) with its standard configu-
rations. Instances with missing data are removed. To a proper description of those
datasets please check Section 3.3

For all datasets, the data preparation process is the same: one-hot encoding
for categorical features and standardization to the numerical features. We perform
a random split, with 80% allocated for the hyperparameter tuning phase and the
remaining 20% reserved for evaluating metrics in the test phase. Within the hy-
perparameter tuning phase, this corresponding fraction of data is further randomly
split, with 80% assigned to training and 20% to validation. The validation set al-
lows us to assess metrics and compute the fitness function for each hyperparameter
configuration. In datasets where there is originally some kind of split (e.g., train
set and test set in separate files), all available data is merged and then shuffled to
produce new splits at each run.

4.4 Results and discussion

Before presenting the main experimental results, we perform an additional compar-
ison using the same methodology to address two concerns. Firstly, one might argue
that the proposed penalty strategy does not differ from applying conventional regu-
larization factors like L2. In this context, any observed advantages of the proposed
method over the same model without the penalty would be attributed to the con-
ventional effects of regularization, i.e., avoiding model overfitting and consequently
improving fitness values. Therefore, we compare the proposed strategy not only
with an MLP baseline but also with the same MLP under standard L2 regulariza-
tion across all network layers, optimized using the ranges specified in Table 4.2.

Secondly, there is the question of whether using traditional correlation coeffi-
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cients in order to assess and penalize redlining , such as Pearson’s r, Spearman’s
rs, and Kendall’s τ , would be equally beneficial. To address this, we compare the
proposed penalty (referred to as RPRξ) with variations that use the absolute values
of Pearson’s r, Spearman’s rs, and Kendall’s τ instead of Chatterjee’s ξ, therefore
referred as RPRr, RPRrs , and RPRτ , respectively. In this comparison, every method
uses the same MLP architecture and the same hyperparameter tuning procedure,
varying only the regularization strategy.

Table 4.3: Almost Stochastic Order test comparing RPRξ fitness to baseline and
multiple regularization schemes. Values under 0.5 (in bold) mean that RPRξ out-
performs corresponding method in such optimization scenario.

Fairness/Performance
Metric

Dataset MLP
(baseline)

MLP
L2

MLP
RPRr

MLP
RPRrs

MLP
RPRτ

Statistical Parity
MCC

Adult Income 0.80 0.68 1.00 0.61 0.65
Bank Marketing 1.00 0.46 0.80 0.74 0.59
COMPAS Recidivism 0.02 0.17 0.18 0.15 0.09
German Credit 1.00 1.00 1.00 0.24 1.00

Equal Opportunity
MCC

Adult Income 0.09 0.03 0.26 0.46 0.28
Bank Marketing 1.00 1.00 0.79 1.00 0.55
COMPAS Recidivism 0.19 0.23 0.60 0.33 0.89
German Credit 1.00 0.71 1.00 0.89 1.00

Equalized Odds
MCC

Adult Income 0.29 0.24 0.25 0.63 0.46
Bank Marketing 1.00 1.00 1.00 1.00 1.00
COMPAS Recidivism 0.01 0.04 0.16 0.15 0.01
German Credit 1.00 0.63 0.38 1.00 1.00

Statistical Parity
Accuracy

Adult Income 0.76 0.36 0.31 0.47 0.40
Bank Marketing 1.00 1.00 1.00 1.00 1.00
COMPAS Recidivism 0.42 0.60 0.48 1.00 0.72
German Credit 0.92 1.00 1.00 1.00 1.00

Equal Opportunity
Accuracy

Adult Income 0.35 0.34 0.26 1.00 0.15
Bank Marketing 1.00 0.56 0.84 1.00 0.66
COMPAS Recidivism 0.02 0.04 0.06 0.10 0.19
German Credit 0.65 1.00 1.00 1.00 1.00

Equalized Odds
Accuracy

Adult Income 1.00 0.74 0.68 0.53 0.66
Bank Marketing 0.19 0.15 0.21 0.52 0.55
COMPAS Recidivism 0.09 0.41 0.26 0.36 0.13
German Credit 0.26 0.11 0.50 0.25 1.00

As we have multiple optimization scenarios within different objective functions
and datasets, and to each of them multiple runs, we present in Table 4.3 the results
of the ASO test described earlier. This allow us to properly compare each regular-
ization strategy to RPRξ. Values under 0.5 (in bold) mean that we can reject the
null hypothesis, i.e., RPRξ produces stochastically larger fitness values than the reg-
ularization strategy in respective column for a given objective and dataset. Lower
values indicate stronger evidence. Additionally, complete results will be available
at the end of this section, similar to those presented for the Fair Transition Loss
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experiments.
Notably, both baseline MLP and MLP with L2 regularization are compatible

when juxtaposed to RPRξ on almost every scenario, i.e., they presents comparable
values on ASO test. Both standard MLP and MLP with L2 regularization under-
performs when compared to RPRξ. This observation lead us to a comprehension
that the proposed penalty schema effectively differs from standard regularization
strategies such as L2. Another relevant perception is that the proposed method is
highly influenced by the dataset, which will be furthermore explored on this section.

Now we compare the results of the proposed penalty scheme using standard cor-
relation coefficients. We can perceive that in almost every scenario where RPRξ

outperforms baseline MLP and MLP with L2 regularization, it also outperforms the
same penalty strategy but using standard correlation coefficients instead of Chatter-
jee’s. This reinforces the argument that the proposed approach takes advantages of
the Chatterjee’s correlation coefficient characteristics. Despite that observation,
in most of scenarios the ASO values are higher to those produced by baseline
MLP and MLP with L2 regularization, indicating that they presents better per-
formance/fairness trade-off. This can be interpreted as an ability of the proposed
regularization schema to penalize redlining effect, although less efficiently than when
using Chatterjee’s correlation coefficient.

Table 4.4: Almost Stochastic Order test comparing the use of Redlining Penalty
Regularizer on Standard MLP and MLP with Fair Transition Loss fitness. Values
under 0.5 (in bold) mean that the model with RPR outperforms the same model
without regularization on each optimization scenario.

Fitness Rule MLP FTL
Adult Bank COMPAS German Adult Bank COMPAS German

MCC - S. Parity 0.79 0.99 0.03 1.00 0.34 1.00 1.00 0.31
MCC - Eq. Opp. 0.26 1.00 0.01 1.00 0.35 1.00 0.19 1.00
MCC - Eq. Odds 0.08 1.00 0.20 1.00 0.30 1.00 0.56 1.00
Acc. - S. Parity 0.75 1.00 0.39 0.87 0.44 1.00 0.02 1.00
Acc. - Eq. Opp. 1.00 0.18 0.07 0.24 0.58 0.67 1.00 1.00
Acc. - Eq. Odds 0.33 1.00 0.01 0.62 0.40 1.00 0.20 1.00

Now we compare the effects of Redlining Penalty Regularizer on both MLP
with standard cross entropy loss and fair transition loss. The MLP baseline here
is the same presented on the last comparison (Table 4.3), and the FTL model uses
the same MLP architecture. The overall methodology remains the same, including
15 runs with dataset resampling with 100 trials to hyperparameter tuning each,
according Table 4.2. The FTL model without RPR is exactly that same presented
at Chapter 3 and on CANALLI et al. (2024), whose achieved state-of-art results. In
order to provide a straightforward comparison we include only RPRξ, as it reaches
the best results when compared with the others. The ASO results are available at
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Figure 4.2: Fitness values of RPR optimizing MCC and multiple fairness metrics.
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Figure 4.3: Fitness values of RPR optimizing Accuracy and multiple fairness metrics.
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Table 4.4 and the box-plot comparison at Figure 4.2 and Figure 4.3.
As an additional resource to interpret these results we plot at Figure 4.4 the

correlations of each feature to the sensitive to each described correlation coefficient
at each dataset. The correlation values are presented from highest value to the lower,
to provide a non-ascendant visualization. Also, we omit the correlation of sensitive
feature to it self (always 1.0) and plot both the top 10 correlations and the values to
each feature, according the number of features at corresponding dataset. Note that
Chatterjee’s performs very differently when compared to the others, identifying more
highly correlation values, demonstrating the functional relationship of many features
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with the sensitive and therefore theirs potential to be used as proxy features by the
model. Another relevant perception is that the Bank dataset presents considerably
lower correlations, although still very high values than the others.

Figure 4.4: Sorted feature’s correlation to the sensitive one according multiple cor-
relation coefficients to all datasets.
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On Table 4.4 RPR presents low ASO values in many scenarios, on which we can
claim that it outperforms the corresponding model without penalty. It is clear that
both MLP and FTL benefit with the use of RPR, whose results remains strongly
better to most of optimization objectives. Here the main difference is the dataset.
While to Adult and COMPAS the model with RPR consistently outperforms its
counterparts, this not happens when the proposed technique is evaluated on Bank
and German datasets. As referred before, German Credit is a very small and simple
dataset. In this condition the Pareto frontier is rapidly achieved, with no room left
for improvement. This condition clear looking at at Figure 4.2 and Figure 4.3.

Additionally, when comparing Bank ’s features correlations to sensitive at Fig-
ure 4.4 we can argue that as it presents reduced redlining effect, the effectiveness of
the proposed penalty strategy is also reduced. Analogously, the best RPR results are
those assessed on COMPAS, the dataset with the most aggressive redlining effect.

Thus, on those conditions where the dataset presents features with high poten-
tial to be learned as proxy to the sensitive feature by the model, Redlining Penalty
Regularizer consistently outperforms the model without regularization. This hap-
pens to both MLP models, the one using standard cross entropy loss and with Fair
Transition Loss. In this last scenario the state-of-art results described before are
enhanced.

As done on the last chapter, we present performance and fairness results along
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with the fitness, in order to provide material to a trade-off analysis. Those metric val-
ues enable the reader to compare this results with different experimental setup and
fitness objective from literature. Results corresponding each optimization scenario
can be found on tables 4.5 to 4.10, presenting metric means and standard deviation
values across multiple resample run. Best result of each metric within evaluation
scenario are in bold, and standard deviation values are presented between parenthe-
sis. Up arrow (↑) indicates that the referred metric should be maximized while down
arrow (↓) that the metric should be minimized. To provide a visual resource to this
comparison, the distribution of those metrics across multiple resample runs compar-
ing the Redlining Penalty Regularization using Chatterjee’s correlation (RPR) on
baseline (MLP) and Fair Transition Loss (FTL) are presented in joint plot format
in figures 4.5 to 4.10. Each joint plot is present within the corresponding table to a
better comprehension.
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Table 4.5: Mean and standard deviation metric values optimizing MCC and Statis-
tical Parity in comparison with Redlining Penalty Regularizer.

Dataset Method ↑ Fitness ↑ MCC ↓ Stat. Parity

Adult
Income

FTL 0.487 (±0.02) 0.509 (±0.02) 0.022 (±0.02)
FTL+RPRξ 0.494 (±0.01) 0.517 (±0.02) 0.023 (±0.02)
MLP 0.386 (±0.01) 0.576 (±0.01) 0.191 (±0.01)
MLP+L2 0.385 (±0.01) 0.576 (±0.01) 0.190 (±0.01)
MLP+RPRrs 0.384 (±0.01) 0.576 (±0.01) 0.192 (±0.01)
MLP+RPRr 0.393 (±0.01) 0.580 (±0.01) 0.187 (±0.01)
MLP+RPRτ 0.386 (±0.01) 0.577 (±0.01) 0.191 (±0.01)
MLP+RPRξ 0.388 (±0.01) 0.578 (±0.01) 0.191 (±0.01)

Bank
Marketing

FTL 0.534 (±0.03) 0.569 (±0.01) 0.035 (±0.03)
FTL+RPRξ 0.523 (±0.04) 0.569 (±0.01) 0.046 (±0.04)
MLP 0.429 (±0.03) 0.521 (±0.02) 0.092 (±0.02)
MLP+L2 0.412 (±0.04) 0.521 (±0.02) 0.110 (±0.03)
MLP+RPRrs 0.422 (±0.03) 0.527 (±0.02) 0.106 (±0.03)
MLP+RPRr 0.424 (±0.03) 0.523 (±0.01) 0.100 (±0.03)
MLP+RPRτ 0.412 (±0.04) 0.520 (±0.02) 0.108 (±0.03)
MLP+RPRξ 0.426 (±0.05) 0.528 (±0.02) 0.102 (±0.04)

COMPAS
Recidivism

FTL 0.239 (±0.03) 0.276 (±0.03) 0.036 (±0.03)
FTL+RPRξ 0.236 (±0.05) 0.294 (±0.03) 0.058 (±0.04)
MLP 0.074 (±0.03) 0.283 (±0.02) 0.209 (±0.04)
MLP+L2 0.089 (±0.04) 0.291 (±0.02) 0.202 (±0.04)
MLP+RPRrs 0.083 (±0.05) 0.293 (±0.03) 0.210 (±0.04)
MLP+RPRr 0.087 (±0.05) 0.282 (±0.03) 0.195 (±0.04)
MLP+RPRτ 0.085 (±0.03) 0.281 (±0.02) 0.197 (±0.03)
MLP+RPRξ 0.121 (±0.05) 0.329 (±0.03) 0.208 (±0.03)

German
Credit

FTL 0.256 (±0.12) 0.355 (±0.08) 0.099 (±0.06)
FTL+RPRξ 0.302 (±0.06) 0.371 (±0.05) 0.069 (±0.05)
MLP 0.266 (±0.10) 0.329 (±0.09) 0.064 (±0.05)
MLP+L2 0.261 (±0.10) 0.374 (±0.09) 0.113 (±0.07)
MLP+RPRrs 0.192 (±0.11) 0.292 (±0.07) 0.099 (±0.06)
MLP+RPRr 0.255 (±0.07) 0.341 (±0.07) 0.087 (±0.04)
MLP+RPRτ 0.256 (±0.08) 0.342 (±0.05) 0.086 (±0.06)
MLP+RPRξ 0.246 (±0.07) 0.329 (±0.05) 0.084 (±0.06)

Figure 4.5: Metric distribution optimizing MCC and Statistical Parity in comparison
with Redlining Penalty Regularization across multiple resample runs. Correspond-
ing values available at Table 4.5.

0.000.050.100.150.20
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60

M
at

he
w 

Co
rre

la
tio

n

method
MLP
MLP+RPR
FTL
FTL+RPR

Adult Income

0.050.000.050.100.150.200.25

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62
method

MLP
MLP+RPR
FTL
FTL+RPR

Bank Marketing

0.050.000.050.100.150.200.250.30
Statistical Parity

0.20

0.25

0.30

0.35

0.40

M
at

he
w 

Co
rre

la
tio

n

method
MLP
MLP+RPR
FTL
FTL+RPR

Compas Recidivism

0.100.050.000.050.100.150.200.250.30
Statistical Parity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 method
MLP
MLP+RPR
FTL
FTL+RPR

German Credit

70



Table 4.6: Mean and standard deviation metric values optimizing MCC and Equal
Opportunity in comparison with Redlining Penalty Regularizer.

Dataset Method ↑ Fitness ↑ MCC ↓ Eq. Opp.

Adult
Income

FTL 0.540 (±0.04) 0.576 (±0.01) 0.036 (±0.03)
FTL+RPRξ 0.554 (±0.03) 0.581 (±0.02) 0.027 (±0.02)
MLP 0.480 (±0.04) 0.582 (±0.01) 0.103 (±0.04)
MLP+L2 0.479 (±0.03) 0.580 (±0.01) 0.102 (±0.03)
MLP+RPRrs 0.493 (±0.04) 0.578 (±0.01) 0.085 (±0.04)
MLP+RPRr 0.478 (±0.04) 0.580 (±0.01) 0.102 (±0.04)
MLP+RPRτ 0.488 (±0.04) 0.580 (±0.01) 0.092 (±0.03)
MLP+RPRξ 0.506 (±0.05) 0.577 (±0.01) 0.071 (±0.05)

Bank
Marketing

FTL 0.483 (±0.07) 0.567 (±0.02) 0.084 (±0.06)
FTL+RPRξ 0.416 (±0.14) 0.519 (±0.15) 0.104 (±0.08)
MLP 0.420 (±0.08) 0.524 (±0.02) 0.104 (±0.08)
MLP+L2 0.438 (±0.06) 0.514 (±0.02) 0.076 (±0.06)
MLP+RPRrs 0.426 (±0.06) 0.520 (±0.02) 0.094 (±0.06)
MLP+RPRr 0.452 (±0.05) 0.527 (±0.02) 0.074 (±0.05)
MLP+RPRτ 0.417 (±0.08) 0.526 (±0.02) 0.109 (±0.07)
MLP+RPRξ 0.420 (±0.10) 0.529 (±0.02) 0.109 (±0.09)

COMPAS
Recidivism

FTL 0.195 (±0.11) 0.281 (±0.03) 0.086 (±0.09)
FTL+RPRξ 0.251 (±0.04) 0.309 (±0.03) 0.058 (±0.04)
MLP 0.150 (±0.05) 0.282 (±0.03) 0.132 (±0.05)
MLP+L2 0.146 (±0.06) 0.282 (±0.03) 0.136 (±0.04)
MLP+RPRrs 0.179 (±0.04) 0.303 (±0.02) 0.124 (±0.03)
MLP+RPRr 0.168 (±0.06) 0.290 (±0.03) 0.122 (±0.05)
MLP+RPRτ 0.146 (±0.05) 0.289 (±0.03) 0.143 (±0.04)
MLP+RPRξ 0.211 (±0.05) 0.325 (±0.02) 0.114 (±0.04)

German
Credit

FTL 0.293 (±0.12) 0.368 (±0.10) 0.074 (±0.05)
FTL+RPRξ 0.166 (±0.16) 0.284 (±0.14) 0.117 (±0.07)
MLP 0.290 (±0.09) 0.355 (±0.07) 0.065 (±0.06)
MLP+L2 0.249 (±0.08) 0.309 (±0.07) 0.060 (±0.04)
MLP+RPRrs 0.319 (±0.05) 0.367 (±0.07) 0.048 (±0.04)
MLP+RPRr 0.229 (±0.13) 0.297 (±0.10) 0.068 (±0.04)
MLP+RPRτ 0.277 (±0.08) 0.329 (±0.06) 0.053 (±0.04)
MLP+RPRξ 0.275 (±0.09) 0.341 (±0.06) 0.066 (±0.05)

Figure 4.6: Metric distribution optimizing MCC and Equal Opportunity in compar-
ison with Redlining Penalty Regularization across multiple resample runs. Corre-
sponding values available at Table 4.6.
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Table 4.7: Mean and standard deviation metric values optimizing MCC and Equal-
ized Odds in comparison with Redlining Penalty Regularizer.

Dataset Method ↑ Fitness ↑ MCC ↓ Eq. Odds

Adult
Income

FTL 0.515 (±0.03) 0.572 (±0.02) 0.057 (±0.02)
FTL+RPRξ 0.526 (±0.02) 0.575 (±0.01) 0.048 (±0.02)
MLP 0.478 (±0.02) 0.575 (±0.01) 0.097 (±0.02)
MLP+L2 0.484 (±0.01) 0.577 (±0.01) 0.093 (±0.01)
MLP+RPRrs 0.492 (±0.02) 0.578 (±0.01) 0.085 (±0.02)
MLP+RPRr 0.489 (±0.02) 0.575 (±0.01) 0.087 (±0.02)
MLP+RPRτ 0.487 (±0.02) 0.578 (±0.01) 0.091 (±0.02)
MLP+RPRξ 0.500 (±0.02) 0.578 (±0.01) 0.078 (±0.02)

Bank
Marketing

FTL 0.495 (±0.05) 0.574 (±0.01) 0.078 (±0.05)
FTL+RPRξ 0.490 (±0.03) 0.571 (±0.01) 0.081 (±0.03)
MLP 0.461 (±0.05) 0.522 (±0.02) 0.061 (±0.04)
MLP+L2 0.461 (±0.03) 0.525 (±0.02) 0.065 (±0.03)
MLP+RPRrs 0.468 (±0.04) 0.529 (±0.02) 0.061 (±0.03)
MLP+RPRr 0.442 (±0.05) 0.522 (±0.02) 0.080 (±0.03)
MLP+RPRτ 0.434 (±0.05) 0.519 (±0.01) 0.085 (±0.05)
MLP+RPRξ 0.446 (±0.04) 0.539 (±0.02) 0.093 (±0.04)

COMPAS
Recidivism

FTL 0.216 (±0.04) 0.288 (±0.02) 0.072 (±0.04)
FTL+RPRξ 0.225 (±0.04) 0.282 (±0.03) 0.056 (±0.03)
MLP 0.098 (±0.05) 0.283 (±0.03) 0.185 (±0.03)
MLP+L2 0.097 (±0.04) 0.281 (±0.03) 0.185 (±0.04)
MLP+RPRrs 0.096 (±0.05) 0.282 (±0.03) 0.185 (±0.03)
MLP+RPRr 0.119 (±0.05) 0.292 (±0.03) 0.174 (±0.03)
MLP+RPRτ 0.124 (±0.04) 0.310 (±0.02) 0.185 (±0.03)
MLP+RPRξ 0.129 (±0.05) 0.303 (±0.02) 0.174 (±0.03)

German
Credit

FTL 0.278 (±0.12) 0.383 (±0.08) 0.105 (±0.06)
FTL+RPRξ 0.228 (±0.08) 0.337 (±0.07) 0.109 (±0.06)
MLP 0.249 (±0.10) 0.352 (±0.08) 0.102 (±0.06)
MLP+L2 0.214 (±0.11) 0.297 (±0.10) 0.084 (±0.05)
MLP+RPRrs 0.219 (±0.09) 0.352 (±0.07) 0.133 (±0.05)
MLP+RPRr 0.228 (±0.11) 0.342 (±0.06) 0.114 (±0.09)
MLP+RPRτ 0.247 (±0.06) 0.341 (±0.06) 0.094 (±0.05)
MLP+RPRξ 0.231 (±0.10) 0.332 (±0.07) 0.102 (±0.06)

Figure 4.7: Metric distribution optimizing MCC and Equalized Odds in comparison
with Redlining Penalty Regularization across multiple resample runs. Correspond-
ing values available at Table 4.7.
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Table 4.8: Mean and standard deviation metric values optimizing Accuracy and
Statistical Parity in comparison with Redlining Penalty Regularizer.

Dataset Method ↑ Fitness ↑ Accuracy ↓ Stat. Parity

Adult
Income

FTL 0.806 (±0.02) 0.827 (±0.01) 0.022 (±0.02)
FTL+RPRξ 0.811 (±0.01) 0.825 (±0.01) 0.015 (±0.01)
MLP 0.664 (±0.01) 0.850 (±0.00) 0.185 (±0.01)
MLP+L2 0.660 (±0.01) 0.851 (±0.00) 0.191 (±0.01)
MLP+RPRrs 0.663 (±0.01) 0.848 (±0.00) 0.186 (±0.01)
MLP+RPRr 0.657 (±0.01) 0.849 (±0.00) 0.192 (±0.01)
MLP+RPRτ 0.659 (±0.01) 0.849 (±0.00) 0.190 (±0.01)
MLP+RPRξ 0.666 (±0.01) 0.850 (±0.00) 0.183 (±0.02)

Bank
Marketing

FTL 0.828 (±0.14) 0.887 (±0.01) 0.059 (±0.14)
FTL+RPRξ 0.800 (±0.25) 0.897 (±0.01) 0.096 (±0.24)
MLP 0.799 (±0.03) 0.902 (±0.00) 0.103 (±0.03)
MLP+L2 0.796 (±0.03) 0.902 (±0.00) 0.106 (±0.03)
MLP+RPRrs 0.790 (±0.03) 0.902 (±0.00) 0.113 (±0.03)
MLP+RPRr 0.799 (±0.03) 0.902 (±0.00) 0.103 (±0.03)
MLP+RPRτ 0.802 (±0.05) 0.901 (±0.00) 0.099 (±0.05)
MLP+RPRξ 0.777 (±0.03) 0.905 (±0.00) 0.127 (±0.04)

COMPAS
Recidivism

FTL 0.520 (±0.12) 0.619 (±0.04) 0.100 (±0.11)
FTL+RPRξ 0.606 (±0.03) 0.651 (±0.01) 0.045 (±0.03)
MLP 0.439 (±0.04) 0.646 (±0.01) 0.207 (±0.04)
MLP+L2 0.449 (±0.04) 0.650 (±0.01) 0.202 (±0.04)
MLP+RPRrs 0.462 (±0.04) 0.651 (±0.01) 0.189 (±0.04)
MLP+RPRr 0.449 (±0.03) 0.652 (±0.01) 0.203 (±0.03)
MLP+RPRτ 0.457 (±0.03) 0.646 (±0.01) 0.189 (±0.03)
MLP+RPRξ 0.462 (±0.03) 0.659 (±0.01) 0.197 (±0.03)

German
Credit

FTL 0.684 (±0.07) 0.723 (±0.03) 0.040 (±0.05)
FTL+RPRξ 0.655 (±0.07) 0.725 (±0.03) 0.070 (±0.06)
MLP 0.628 (±0.06) 0.742 (±0.03) 0.114 (±0.06)
MLP+L2 0.653 (±0.08) 0.741 (±0.03) 0.088 (±0.07)
MLP+RPRrs 0.644 (±0.05) 0.742 (±0.03) 0.098 (±0.04)
MLP+RPRr 0.669 (±0.06) 0.763 (±0.02) 0.094 (±0.05)
MLP+RPRτ 0.650 (±0.06) 0.747 (±0.03) 0.097 (±0.05)
MLP+RPRξ 0.631 (±0.07) 0.733 (±0.02) 0.102 (±0.06)

Figure 4.8: Metric distribution optimizing Acc. and Statistical Parity in comparison
with Redlining Penalty Regularization across multiple resample runs. Correspond-
ing values available at Table 4.8.
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Table 4.9: Mean and standard deviation metric values optimizing Accuracy and
Equal Opportunity in comparison with Redlining Penalty Regularizer.

Dataset Method ↑ Fitness ↑ Accuracy ↓ Eq. Opp.

Adult
Income

FTL 0.812 (±0.03) 0.845 (±0.01) 0.034 (±0.02)
FTL+RPRξ 0.815 (±0.02) 0.847 (±0.00) 0.031 (±0.02)
MLP 0.758 (±0.04) 0.848 (±0.00) 0.090 (±0.04)
MLP+L2 0.750 (±0.04) 0.850 (±0.00) 0.100 (±0.04)
MLP+RPRrs 0.748 (±0.03) 0.849 (±0.00) 0.101 (±0.03)
MLP+RPRr 0.750 (±0.04) 0.848 (±0.00) 0.098 (±0.04)
MLP+RPRτ 0.751 (±0.03) 0.849 (±0.00) 0.098 (±0.03)
MLP+RPRξ 0.757 (±0.05) 0.849 (±0.00) 0.091 (±0.05)

Bank
Marketing

FTL 0.781 (±0.17) 0.883 (±0.02) 0.102 (±0.17)
FTL+RPRξ 0.802 (±0.08) 0.892 (±0.01) 0.090 (±0.09)
MLP 0.803 (±0.07) 0.902 (±0.00) 0.099 (±0.07)
MLP+L2 0.791 (±0.08) 0.903 (±0.00) 0.112 (±0.07)
MLP+RPRrs 0.824 (±0.06) 0.902 (±0.00) 0.078 (±0.06)
MLP+RPRr 0.798 (±0.07) 0.901 (±0.00) 0.103 (±0.07)
MLP+RPRτ 0.822 (±0.07) 0.901 (±0.00) 0.079 (±0.07)
MLP+RPRξ 0.839 (±0.05) 0.903 (±0.00) 0.063 (±0.04)

COMPAS
Recidivism

FTL 0.614 (±0.03) 0.645 (±0.03) 0.031 (±0.02)
FTL+RPRξ 0.598 (±0.03) 0.639 (±0.02) 0.041 (±0.03)
MLP 0.498 (±0.04) 0.646 (±0.01) 0.148 (±0.04)
MLP+L2 0.519 (±0.04) 0.647 (±0.02) 0.128 (±0.03)
MLP+RPRrs 0.520 (±0.03) 0.651 (±0.01) 0.131 (±0.03)
MLP+RPRr 0.503 (±0.06) 0.649 (±0.01) 0.146 (±0.05)
MLP+RPRτ 0.506 (±0.04) 0.647 (±0.01) 0.141 (±0.04)
MLP+RPRξ 0.536 (±0.03) 0.663 (±0.01) 0.127 (±0.03)

German
Credit

FTL 0.676 (±0.06) 0.751 (±0.02) 0.075 (±0.06)
FTL+RPRξ 0.665 (±0.06) 0.736 (±0.03) 0.071 (±0.05)
MLP 0.673 (±0.06) 0.739 (±0.03) 0.066 (±0.05)
MLP+L2 0.652 (±0.04) 0.736 (±0.03) 0.084 (±0.05)
MLP+RPRrs 0.667 (±0.06) 0.739 (±0.03) 0.072 (±0.05)
MLP+RPRr 0.687 (±0.04) 0.749 (±0.04) 0.062 (±0.03)
MLP+RPRτ 0.702 (±0.04) 0.736 (±0.02) 0.034 (±0.03)
MLP+RPRξ 0.702 (±0.05) 0.750 (±0.02) 0.048 (±0.04)

Figure 4.9: Metric distribution optimizing Acc. and Equal Opportunity in compar-
ison with Redlining Penalty Regularization across multiple resample runs. Corre-
sponding values available at Table 4.9.
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Table 4.10: Mean and standard deviation metric values optimizing Accuracy and
Equalized Odds in comparison with Redlining Penalty Regularizer.

Dataset Method ↑ Fitness ↑ Accuracy ↓ Eq. Odds

Adult
Income

FTL 0.798 (±0.02) 0.841 (±0.01) 0.043 (±0.02)
FTL+RPRξ 0.805 (±0.02) 0.843 (±0.01) 0.038 (±0.02)
MLP 0.760 (±0.02) 0.849 (±0.00) 0.089 (±0.02)
MLP+L2 0.762 (±0.02) 0.849 (±0.00) 0.086 (±0.02)
MLP+RPRrs 0.772 (±0.02) 0.849 (±0.00) 0.076 (±0.02)
MLP+RPRr 0.759 (±0.02) 0.849 (±0.00) 0.090 (±0.02)
MLP+RPRτ 0.753 (±0.03) 0.849 (±0.00) 0.096 (±0.02)
MLP+RPRξ 0.772 (±0.02) 0.849 (±0.00) 0.077 (±0.02)

Bank
Marketing

FTL 0.846 (±0.03) 0.890 (±0.01) 0.044 (±0.04)
FTL+RPRξ 0.831 (±0.05) 0.892 (±0.01) 0.061 (±0.05)
MLP 0.845 (±0.03) 0.901 (±0.00) 0.057 (±0.03)
MLP+L2 0.821 (±0.04) 0.903 (±0.00) 0.082 (±0.04)
MLP+RPRrs 0.838 (±0.04) 0.903 (±0.00) 0.065 (±0.04)
MLP+RPRr 0.828 (±0.05) 0.902 (±0.00) 0.073 (±0.05)
MLP+RPRτ 0.822 (±0.04) 0.902 (±0.00) 0.079 (±0.04)
MLP+RPRξ 0.830 (±0.03) 0.902 (±0.00) 0.072 (±0.03)

COMPAS
Recidivism

FTL 0.545 (±0.10) 0.631 (±0.05) 0.086 (±0.08)
FTL+RPRξ 0.594 (±0.04) 0.647 (±0.02) 0.053 (±0.04)
MLP 0.449 (±0.04) 0.649 (±0.01) 0.200 (±0.03)
MLP+L2 0.452 (±0.04) 0.649 (±0.01) 0.197 (±0.04)
MLP+RPRrs 0.464 (±0.03) 0.650 (±0.01) 0.186 (±0.03)
MLP+RPRr 0.449 (±0.05) 0.650 (±0.01) 0.201 (±0.04)
MLP+RPRτ 0.463 (±0.05) 0.650 (±0.01) 0.187 (±0.05)
MLP+RPRξ 0.497 (±0.04) 0.667 (±0.01) 0.170 (±0.03)

German
Credit

FTL 0.669 (±0.05) 0.712 (±0.02) 0.043 (±0.07)
FTL+RPRξ 0.631 (±0.06) 0.721 (±0.03) 0.090 (±0.08)
MLP 0.619 (±0.07) 0.740 (±0.03) 0.121 (±0.07)
MLP+L2 0.675 (±0.05) 0.750 (±0.02) 0.075 (±0.04)
MLP+RPRrs 0.647 (±0.06) 0.742 (±0.03) 0.096 (±0.05)
MLP+RPRr 0.641 (±0.04) 0.734 (±0.03) 0.093 (±0.04)
MLP+RPRτ 0.647 (±0.07) 0.748 (±0.03) 0.101 (±0.07)
MLP+RPRξ 0.640 (±0.06) 0.748 (±0.02) 0.107 (±0.06)

Figure 4.10: Metric distribution optimizing Acc. and Equalized Odds in comparison
with Redlining Penalty Regularization across multiple resample runs. Correspond-
ing values available at Table 4.10.
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Chapter 5

Conclusions

In this work we introduced Fair Transition Loss, a novel approach to fair classi-
fication that estimates the influence of historical and societal biases on outcome
probabilities for distinct social groups delineated by a sensitive feature. Drawing
inspiration from label noise robustness, we represented these disparities on model’s
positive and negative outcomes probabilities to each social group using transition
matrices, therefore incorporating this information onto the loss function to promote
fairness. The proposed method hyperarameters were chosen by a Multi-Objective
Optimization approach combining both fairness and model performance with a lin-
ear scalarization, defined in such a way that it is suitable to optimize a wide range
of fairness and performance metrics.

Also, the present study proposed a novel regularization approach to fair classi-
fication named Redlining Penalty Regularization, which uses feature’s correlation
coefficient to the sensitive attribute to proportionately penalize model’s dependency
on it. Our empirical evaluation indicates that this approach effectively mitigate un-
fairness while keeping predictive performance, with benefits corresponding to redlin-
ing level on dataset. The proposed approach can be used on both standard neural
networks and those trained with Fair Transition Loss to reduce bias while keeping
predictive performance.

5.1 Results and contributions

Our experimental evaluation indicates that Fair Transition Loss consistently outper-
forms its competitors in most optimization scenarios. Even in those cases that the
proposed method isn’t the outright leader, it performs at least as well as evaluated
alternatives, standing as the only model to keep competitive results in all scenarios.
Therefore, this novel approach can significantly mitigate bias while keeping model
performance, specially when optimizing balanced performance metrics like MCC.
The proposed technique particularly stands out in setups where hyperparameter
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tuning procedures constitutes the prediction pipeline.
Furthermore, our results indicates that the Redlining Penalty Regularization

approach effectively mitigates redlining effect on multiple datasets within various
objective metrics when applied to both standard MLP and MLP trained with Fair
Transition Loss. Also, our analysis indicates that the effectiveness of the referred
approach is proportional to redlining level present on data, the higher the redlining
the higher the performance-fairness trade-off improvement.

Thus, we summarize some contributions of the present study:

(i) a novel loss correction approach inspired by label noise techniques to fair clas-
sification problems (CANALLI et al., 2024);

(ii) a discussion of recent studies that lies between fairness and noise on machine
learning;

(iii) a multi-objective hyperparameter tuning approach do tackle the performance-
fairness trade-off using a simple linear scalarization setup;

(iv) a solid comparison of classic and state-of-art fair classification approaches using
the Almost Stochastic Order as significance test;

(v) state-of-art results on various benchmarked datasets to fair classification using
the proposed loss correction approach;

(vi) a novel regularization approach that proportionately penalizes model’s depen-
dency on sensitive feature proxies according their correlations;

(vii) improved results using the proposed regularization approach on standard MLPs
to fair classification.

(viii) improved state-of-art results using both the loss correction and regularization
approaches to fair classification.

5.2 Research directions

Here we outline some research direction insights, derived from proposed method’s
drawbacks and issues uncharted by this study:

(i) explore approaches to estimating or initializing transition matrices to reduce
computational costs required by hyperparameter optimization techniques;

(ii) evaluate Fair Transition Loss within different neural network architectures,
such as Deep Neural Networks;
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(iii) evaluate Fair Transition Loss on different data domains, such as image, audio
and natural language;

(iv) evaluate Fair Transition Loss optimization under non-linear scalarization se-
tups, such as the Chebyshev scalarization scheme proposed by WEI e NI-
ETHAMMER (2022);

(v) evaluate Fair Transition Loss within different multi-objective optimization
schemes, such as the Fair Hyperparameter Tuning techniques proposed
by F.CRUZ et al. (2021);

(vi) investigate whether Fair Transition Loss can effectively address multi-class fair
classification problems and handle multiple sensitive attributes, as theoretically
possible;

(vii) evaluate Redlining Penalty Regularization within different neural network ar-
chitectures, such as Deep Neural Networks;

(viii) evaluate Redlining Penalty Regularization on different data domains, such as
image, audio and natural language;

(ix) evaluate Redlining Penalty Regularization combined with multiple pre-
processing, in-processing and post-processing fair classification approaches.

78



References

ANSCOMBE, F. J. “Graphs in Statistical Analysis”, The American Statistician,
v. 27, n. 1, pp. 17–21, 1973. ISSN: 00031305. Disponível em: <http:

//www.jstor.org/stable/2682899>.

JULIA ANGWIN, JEFF LARSON, S. M., KIRCHNER, L. “Machine Bias”. ProP-
ublica, 2016. Disponível em: <https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing>.

MEHRABI, N., MORSTATTER, F., SAXENA, N., et al. “A Survey on Bias
and Fairness in Machine Learning”, ACM Comput. Surv., v. 54, n. 6, jul
2021. ISSN: 0360-0300. doi: 10.1145/3457607. Disponível em: <https:

//doi.org/10.1145/3457607>.

CATON, S., HAAS, C. “Fairness in Machine Learning: A Survey”, ACM Comput.
Surv., aug 2023. ISSN: 0360-0300. doi: 10.1145/3616865. Disponível em:
<https://doi.org/10.1145/3616865>. Just Accepted.

HUTCHINSON, B., MITCHELL, M. “50 Years of Test (Un)fairness: Lessons
for Machine Learning”, Proceedings of the Conference on Fairness, Ac-
countability, and Transparency, 2018. Disponível em: <https://api.

semanticscholar.org/CorpusID:53782832>.

ZAFAR, M. B., VALERA, I., ROGRIGUEZ, M. G., et al. “Fairness Constraints:
Mechanisms for Fair Classification”. In: Singh, A., Zhu, J. (Eds.), Pro-
ceedings of the 20th International Conference on Artificial Intelligence and
Statistics, v. 54, Proceedings of Machine Learning Research, pp. 962–970.
PMLR, 20–22 Apr 2017a. Disponível em: <https://proceedings.mlr.

press/v54/zafar17a.html>.

PEDRESCHI, D., RUGGIERI, S., TURINI, F. “Discrimination-aware data min-
ing”, Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD 08, p. 560, 2008. ISSN: 0309-
0167 (Print). doi: 10.1145/1401890.1401959. Disponível em: <http:

//dl.acm.org/citation.cfm?doid=1401890.1401959>.

79

http://www.jstor.org/stable/2682899
http://www.jstor.org/stable/2682899
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3616865
https://api.semanticscholar.org/CorpusID:53782832
https://api.semanticscholar.org/CorpusID:53782832
https://proceedings.mlr.press/v54/zafar17a.html
https://proceedings.mlr.press/v54/zafar17a.html
http://dl.acm.org/citation.cfm?doid=1401890.1401959
http://dl.acm.org/citation.cfm?doid=1401890.1401959


HORT, M., CHEN, Z., ZHANG, J. M., et al. “Bias Mitigation for Machine Learn-
ing Classifiers: A Comprehensive Survey”, ACM Journal on Responsible
Computing, pp. 1–52, 2023. doi: 10.1145/3631326.

CANALLI, Y., BRAIDA, F., ALVIM, L., et al. “Fair Transition Loss: From label
noise robustness to bias mitigation”, Knowledge-Based Systems, v. 294, 6
2024. ISSN: 09507051. doi: 10.1016/j.knosys.2024.111711.

PATRINI, G., ROZZA, A., MENON, A. K., et al. “Making deep neural networks
robust to label noise: A loss correction approach”, Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017,
v. 2017-Janua, pp. 2233–2241, 2017. doi: 10.1109/CVPR.2017.240.

CHATTERJEE, S. “A New Coefficient of Correlation”. 2021. Disponível em:
<https://doi.org/10.1080/01621459.2020.1758115>.

BECKER, B., KOHAVI, R. “Adult”. UCI Machine Learning Repository, 1996.
Disponível em: <https://archive.ics.uci.edu/dataset/2/adult>.

S. MORO, P. R., CORTEZ, P. “Bank Marketing”. UCI Machine Learning Repos-
itory, 2012. Disponível em: <https://archive.ics.uci.edu/dataset/

222/bank+marketing>.

JEFF LARSON, SURYA MATTU, L. K., ANGWIN, J. “COMPAS Dataset”. ProP-
ublica, 2016. Disponível em: <https://www.propublica.org/article/

how-we-analyzed-the-compas-recidivism-algorithm>.

HOFMANN, H. “Statlog (German Credit Data)”. UCI Machine Learning Reposi-
tory, 1994. Disponível em: <https://archive.ics.uci.edu/dataset/

144/statlog+german+credit+data>.

DROR, R., SHLOMOV, S., REICHART, R. “Deep Dominance - How to Prop-
erly Compare Deep Neural Models”. In: Korhonen, A., Traum, D. R.,
Màrquez, L. (Eds.), Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Florence, Italy, July 28-
August 2, 2019, Volume 1: Long Papers, pp. 2773–2785. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/p19-1266. Disponível
em: <https://doi.org/10.18653/v1/p19-1266>.

CANALLI, Y. “Computational Resources to Fair Transition Loss and Redlin-
ing Penalty Regularization methods to Fair Classification”. jul. 2024.
Disponível em: <https://doi.org/10.5281/zenodo.12752457>.

80

https://doi.org/10.1080/01621459.2020.1758115
https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://doi.org/10.18653/v1/p19-1266
https://doi.org/10.5281/zenodo.12752457


MEMARIAN, B., DOLECK, T. “Fairness, Accountability, Transparency, and
Ethics (FATE) in Artificial Intelligence (AI) and higher education: A
systematic review”. 1 2023. ISSN: 2666920X.

HUTCHINSON, B., SMART, A., HANNA, A., et al. “Towards Accountability
for Machine Learning Datasets: Practices from Software Engineering and
Infrastructure”. In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’21, p. 560–575, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN: 9781450383097.
doi: 10.1145/3442188.3445918. Disponível em: <https://doi.org/10.

1145/3442188.3445918>.

BURKART, N., HUBER, M. F. “A Survey on the Explainability of Supervised
Machine Learning”, J. Artif. Int. Res., v. 70, pp. 245–317, may 2021.
ISSN: 1076-9757. doi: 10.1613/jair.1.12228. Disponível em: <https:

//doi.org/10.1613/jair.1.12228>.

HLEG, A. “Ethics guidelines for trustworthy AI”. abr. 2019. Disponível
em: <https://digital-strategy.ec.europa.eu/en/library/

ethics-guidelines-trustworthy-ai>.

VERMA, S., RUBIN, J. “Fairness Definitions Explained”, IEEE/ACM In-
ternational Workshop on Software Fairness, v. 18, 2018. doi: 10.
1145/3194770.3194776. Disponível em: <https://doi.org/10.1145/

3194770.3194776>.

ALER TUBELLA, A., BARSOTTI, F., KOÇER, R. G., et al. “Ethical implica-
tions of fairness interventions: what might be hidden behind engineer-
ing choices?” Ethics and Information Technology, v. 24, n. 1, pp. 1–11,
mar 2022. ISSN: 15728439. doi: 10.1007/S10676-022-09636-Z/TABLES/
4. Disponível em: <https://link.springer.com/article/10.1007/

s10676-022-09636-z>.

ALVES, G., BERNIER, F., COUCEIRO, M., et al. “Survey on fairness notions and
related tensions”, EURO Journal on Decision Processes, v. 11, pp. 100033,
2023. ISSN: 2193-9438. doi: https://doi.org/10.1016/j.ejdp.2023.100033.
Disponível em: <https://www.sciencedirect.com/science/article/

pii/S2193943823000067>.

WEINBERG, L. “Rethinking Fairness: An Interdisciplinary Survey of Critiques
of Hegemonic ML Fairness Approaches”, Journal of Artificial Intelligence
Research, v. 74, pp. 75–109, 2022. doi: 10.1613/jair.1.13196.

81

https://doi.org/10.1145/3442188.3445918
https://doi.org/10.1145/3442188.3445918
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613/jair.1.12228
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
https://link.springer.com/article/10.1007/s10676-022-09636-z
https://link.springer.com/article/10.1007/s10676-022-09636-z
https://www.sciencedirect.com/science/article/pii/S2193943823000067
https://www.sciencedirect.com/science/article/pii/S2193943823000067


DWORK, C., HARDT, M., PITASSI, T., et al. “Fairness through Awareness”.
In: Proceedings of the 3rd Innovations in Theoretical Computer Sci-
ence Conference, ITCS ’12, p. 214–226, New York, NY, USA, 2012.
Association for Computing Machinery. ISBN: 9781450311151. doi:
10.1145/2090236.2090255. Disponível em: <https://doi.org/10.1145/

2090236.2090255>.

KUSNER, M., LOFTUS, J., RUSSELL, C., et al. “Counterfactual Fairness”. In:
Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, p. 4069–4079, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN: 9781510860964.

HARDT, M., PRICE, E., SREBRO, N. “Equality of Opportunity in Supervised
Learning”. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, p. 3323–3331, Red Hook, NY,
USA, 2016. Curran Associates Inc. ISBN: 9781510838819.

BLYTH, C. R. “On Simpson’s Paradox and the Sure-Thing Principle”, Jour-
nal of the American Statistical Association, v. 67, n. 338, pp. 364–
366, 1972. ISSN: 01621459. Disponível em: <http://www.jstor.org/

stable/2284382>.

GOH, G., COTTER, A., GUPTA, M., et al. “Satisfying Real-world
Goals with Dataset Constraints”. In: Lee, D., Sugiyama, M.,
Luxburg, U., et al. (Eds.), Advances in Neural Information Pro-
cessing Systems, v. 29. Curran Associates, Inc., 2016. Disponível
em: <https://proceedings.neurips.cc/paper_files/paper/2016/

file/dc4c44f624d600aa568390f1f1104aa0-Paper.pdf>.

KOMIYAMA, J., TAKEDA, A., HONDA, J., et al. “Nonconvex optimization
for regression with fairness constraints”, 35th International Conference on
Machine Learning, ICML 2018, v. 6, pp. 4280–4294, 2018.

PETROVIĆ, A., NIKOLIĆ, M., JOVANOVIĆ, M., et al. “Fair classification
via Monte Carlo policy gradient method”, Engineering Applications of
Artificial Intelligence, v. 104, n. February, pp. 104398, 2021. ISSN:
09521976. doi: 10.1016/j.engappai.2021.104398. Disponível em: <https:

//doi.org/10.1016/j.engappai.2021.104398>.

F.CRUZ, A., SALEIRO, P., BELÉM, C., et al. “Promoting Fairness through Hy-
perparameter Optimization”. In: 2021 IEEE International Conference on
Data Mining (ICDM), pp. 1036–1041, 2021. doi: 10.1109/ICDM51629.
2021.00119.

82

https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
http://www.jstor.org/stable/2284382
http://www.jstor.org/stable/2284382
https://proceedings.neurips.cc/paper_files/paper/2016/file/dc4c44f624d600aa568390f1f1104aa0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/dc4c44f624d600aa568390f1f1104aa0-Paper.pdf
https://doi.org/10.1016/j.engappai.2021.104398
https://doi.org/10.1016/j.engappai.2021.104398


LIU, S., VICENTE, L. N. “Accuracy and fairness trade-offs in machine learn-
ing: a stochastic multi-objective approach”, Computational Management
Science, v. 19, pp. 513–537, 7 2022. ISSN: 16196988. doi: 10.1007/
s10287-022-00425-z.

KEARNS, M., NEEL, S., ROTH, A., et al. “Preventing Fairness Gerrymandering:
Auditing and Learning for Subgroup Fairness”, Proceedings of Machine
Learning Research, v. 80, 11 2017. Disponível em: <http://arxiv.org/

abs/1711.05144>.

KEARNS, M., NEEL, S., ROTH, A., et al. “An Empirical Study of Rich Sub-
group Fairness for Machine Learning”. In: Proceedings of the Conference
on Fairness, Accountability, and Transparency, FAT* ’19, p. 100–109,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN:
9781450361255. doi: 10.1145/3287560.3287592. Disponível em: <https:

//doi.org/10.1145/3287560.3287592>.

CORBETT-DAVIES, S., GAEBLER, J. D., NILFOROSHAN, H., et al. “The
measure and mismeasure of fairness”, J. Mach. Learn. Res., v. 24, n. 1,
mar 2024. ISSN: 1532-4435.

WU, S., HAN, B., LIU, Y., et al. “Fair Classification with Instance-dependent Label
Noise”, Proceedings of Machine Learning Research, v. 140, pp. 1–17, 2022.
Disponível em: <https://www.mturk.com/>.

MA, Y., FRAUEN, D., MELNYCHUK, V., et al. “Counterfactual Fair-
ness for Predictions using Generative Adversarial Networks”, CoRR,
v. abs/2310.17687, 2023. doi: 10.48550/ARXIV.2310.17687. Disponível
em: <https://doi.org/10.48550/arXiv.2310.17687>.

GRARI, V., LAMPRIER, S., DETYNIECKI, M. “Adversarial learning for coun-
terfactual fairness”, Mach. Learn., v. 112, n. 3, pp. 741–763, 2023. doi:
10.1007/S10994-022-06206-8. Disponível em: <https://doi.org/10.

1007/s10994-022-06206-8>.

KASIRZADEH, A., SMART, A. “The use and misuse of counterfactuals in ethical
machine learning”, FAccT 2021 - Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency, pp. 228–236, 2021. doi:
10.1145/3442188.3445886.

KLEINBERG, J., MULLAINATHAN, S., RAGHAVAN, M. “Inherent trade-offs
in the fair determination of risk scores”, Leibniz International Proceedings

83

http://arxiv.org/abs/1711.05144
http://arxiv.org/abs/1711.05144
https://doi.org/10.1145/3287560.3287592
https://doi.org/10.1145/3287560.3287592
https://www.mturk.com/
https://doi.org/10.48550/arXiv.2310.17687
https://doi.org/10.1007/s10994-022-06206-8
https://doi.org/10.1007/s10994-022-06206-8


in Informatics, LIPIcs, v. 67, pp. 1–23, 2017. ISSN: 18688969. doi:
10.4230/LIPIcs.ITCS.2017.43.

CHOULDECHOVA, A. “Fair Prediction with Disparate Impact: A Study of Bias
in Recidivism Prediction Instruments”, Big Data, v. 5, n. 2, pp. 153–163,
2017. doi: 10.1089/big.2016.0047. Disponível em: <https://doi.org/

10.1089/big.2016.0047>. PMID: 28632438.

S, K. K. “The Impossibility Theorem of Machine Fairness - A Causal Perspective”,
CoRR, v. abs/2007.06024, 2020. Disponível em: <https://arxiv.org/

abs/2007.06024>.

BELL, A., BYNUM, L., DRUSHCHAK, N., et al. “The Possibility of Fairness:
Revisiting the Impossibility Theorem in Practice”, ACM International
Conference Proceeding Series, v. 1, n. 1, pp. 400–422, 2023. doi: 10.1145/
3593013.3594007.

BEIGANG, F. “Yet Another Impossibility Theorem in Algorithmic Fairness”,
Minds and Machines, v. 33, n. 4, pp. 715–735, 2023. ISSN: 15728641.
doi: 10.1007/s11023-023-09645-x. Disponível em: <https://doi.org/

10.1007/s11023-023-09645-x>.

KAMIRAN, F., CALDERS, T. “Data preprocessing techniques for classification
without discrimination”, Knowledge and Information Systems, v. 33,
pp. 1–33, 2012. ISSN: 02193116. doi: 10.1007/s10115-011-0463-8.

ZEMEL, R., WU, Y., SWERSKY, K., et al. “Learning Fair Representations”.
In: Dasgupta, S., McAllester, D. (Eds.), Proceedings of the 30th In-
ternational Conference on Machine Learning, v. 28, Proceedings of Ma-
chine Learning Research, pp. 325–333, Atlanta, Georgia, USA, 17–19 Jun
2013. PMLR. Disponível em: <https://proceedings.mlr.press/v28/

zemel13.html>.

KAMIRAN, F., KARIM, A., ZHANG, X. “Decision Theory for Discrimination-
Aware Classification”. In: 2012 IEEE 12th International Conference on
Data Mining, pp. 924–929, 2012. doi: 10.1109/ICDM.2012.45.

CALDERS, T., VERWER, S. “Three naive Bayes approaches for discrimination-
free classification”, Data Mining and Knowledge Discovery, v. 21, pp. 277–
292, 2010. ISSN: 13845810. doi: 10.1007/s10618-010-0190-x.

KAMISHIMA, T., AKAHO, S., ASOH, H., et al. “Fairness-aware classifier with
prejudice remover regularizer”, Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes

84

https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1089/big.2016.0047
https://arxiv.org/abs/2007.06024
https://arxiv.org/abs/2007.06024
https://doi.org/10.1007/s11023-023-09645-x
https://doi.org/10.1007/s11023-023-09645-x
https://proceedings.mlr.press/v28/zemel13.html
https://proceedings.mlr.press/v28/zemel13.html


in Bioinformatics), v. 7524 LNAI, n. PART 2, pp. 35–50, 2012. ISSN:
03029743. doi: 10.1007/978-3-642-33486-3.

WOODWORTH, B., GUNASEKAR, S., OHANNESSIAN, M. I., et al. “Learn-
ing Non-Discriminatory Predictors”. In: Kale, S., Shamir, O. (Eds.),
Proceedings of the 2017 Conference on Learning Theory, v. 65, Pro-
ceedings of Machine Learning Research, pp. 1920–1953. PMLR, 07–10
Jul 2017. Disponível em: <https://proceedings.mlr.press/v65/

woodworth17a.html>.

ZAFAR, M. B., VALERA, I., GOMEZ RODRIGUEZ, M., et al. “Fairness Be-
yond Disparate Treatment & Disparate Impact: Learning Classification
without Disparate Mistreatment”. In: Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW ’17, p. 1171–1180, Re-
public and Canton of Geneva, CHE, 2017b. International World Wide
Web Conferences Steering Committee. ISBN: 9781450349130. doi:
10.1145/3038912.3052660. Disponível em: <https://doi.org/10.1145/

3038912.3052660>.

KEARNS, M., NEEL, S., ROTH, A., et al. “Preventing Fairness Gerrymander-
ing: Auditing and Learning for Subgroup Fairness”. In: Dy, J., Krause,
A. (Eds.), Proceedings of the 35th International Conference on Machine
Learning, v. 80, Proceedings of Machine Learning Research, pp. 2564–
2572. PMLR, 10–15 Jul 2018. Disponível em: <https://proceedings.

mlr.press/v80/kearns18a.html>.

ADEL, T., VALERA, I., GHAHRAMANI, Z., et al. “One-Network Adversar-
ial Fairness”, Proceedings of the AAAI Conference on Artificial Intelli-
gence, v. 33, n. 01, pp. 2412–2420, Jul. 2019. doi: 10.1609/aaai.v33i01.
33012412. Disponível em: <https://ojs.aaai.org/index.php/AAAI/

article/view/4085>.

XU, D., YUAN, S., ZHANG, L., et al. “FairGAN+: Achieving Fair Data Generation
and Classification through Generative Adversarial Nets”, Proceedings -
2019 IEEE International Conference on Big Data, Big Data 2019, pp.
1401–1406, 2019. doi: 10.1109/BigData47090.2019.9006322.

WEI, S., NIETHAMMER, M. “The fairness-accuracy Pareto front”, Statistical
Analysis and Data Mining, v. 15, pp. 287–302, 6 2022. ISSN: 19321872.
doi: 10.1002/SAM.11560.

85

https://proceedings.mlr.press/v65/woodworth17a.html
https://proceedings.mlr.press/v65/woodworth17a.html
https://doi.org/10.1145/3038912.3052660
https://doi.org/10.1145/3038912.3052660
https://proceedings.mlr.press/v80/kearns18a.html
https://proceedings.mlr.press/v80/kearns18a.html
https://ojs.aaai.org/index.php/AAAI/article/view/4085
https://ojs.aaai.org/index.php/AAAI/article/view/4085


MERCIER, Q., POIRION, F., DÉSIDÉRI, J. A. “A stochastic multiple gradient
descent algorithm”, European Journal of Operational Research, v. 271,
pp. 808–817, 12 2018. ISSN: 03772217. doi: 10.1016/j.ejor.2018.05.064.

HU, Z., XU, Y., TIAN, X. “Adaptive Priority Reweighing for Generalizing Fairness
Improvement”. In: International Joint Conference on Neural Networks,
IJCNN 2023, Gold Coast, Australia, June 18-23, 2023, pp. 1–8. IEEE,
2023. doi: 10.1109/IJCNN54540.2023.10191757. Disponível em: <https:

//doi.org/10.1109/IJCNN54540.2023.10191757>.

ZHANG, B. H., LEMOINE, B., MITCHELL, M. “Mitigating Unwanted Biases with
Adversarial Learning”, AIES 2018 - Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pp. 335–340, 12 2018. doi: 10.
1145/3278721.3278779.

D’ALOISIO, G., D’ANGELO, A., DI MARCO, A., et al. “Debiaser for Mul-
tiple Variables to enhance fairness in classification tasks”, Information
Processing and Management, v. 60, n. 2, pp. 103226, 2023. ISSN:
03064573. doi: 10.1016/j.ipm.2022.103226. Disponível em: <https:

//doi.org/10.1016/j.ipm.2022.103226>.

LIU, T., WANG, H., WANG, Y., et al. “SimFair: A Unified Framework for
Fairness-Aware Multi-Label Classification”, Proceedings of the AAAI Con-
ference on Artificial Intelligence, v. 37, n. 12, pp. 14338–14346, 2023.
doi: 10.1609/aaai.v37i12.26677. Disponível em: <https://ojs.aaai.

org/index.php/AAAI/article/view/26677>.

KIM, D., PARK, S., HWANG, S., et al. “Fair classification by loss balancing
via fairness-aware batch sampling”, Neurocomputing, v. 518, pp. 231–
241, 2023. ISSN: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2022.
11.018. Disponível em: <https://www.sciencedirect.com/science/

article/pii/S0925231222013984>.

KHALILI, M. M., ZHANG, X., ABROSHAN, M. “Loss Balancing for Fair Su-
pervised Learning”. In: Krause, A., Brunskill, E., Cho, K., et al. (Eds.),
International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, v. 202, Proceedings of Machine Learn-
ing Research, pp. 16271–16290. PMLR, 2023. Disponível em: <https:

//proceedings.mlr.press/v202/khalili23a.html>.

LIANG, Y., CHEN, C., TIAN, T., et al. “Fair classification via domain
adaptation: A dual adversarial learning approach”, Frontiers in Big

86

https://doi.org/10.1109/IJCNN54540.2023.10191757
https://doi.org/10.1109/IJCNN54540.2023.10191757
https://doi.org/10.1016/j.ipm.2022.103226
https://doi.org/10.1016/j.ipm.2022.103226
https://ojs.aaai.org/index.php/AAAI/article/view/26677
https://ojs.aaai.org/index.php/AAAI/article/view/26677
https://www.sciencedirect.com/science/article/pii/S0925231222013984
https://www.sciencedirect.com/science/article/pii/S0925231222013984
https://proceedings.mlr.press/v202/khalili23a.html
https://proceedings.mlr.press/v202/khalili23a.html


Data, v. 5, 2023. ISSN: 2624-909X. doi: 10.3389/fdata.2022.1049565.
Disponível em: <https://www.frontiersin.org/articles/10.3389/

fdata.2022.1049565>.

ZHANG, T., ZHU, T., LI, J., et al. “Revisiting model fairness via adversarial
examples”, Knowl. Based Syst., v. 277, pp. 110777, 2023a. doi: 10.1016/
J.KNOSYS.2023.110777. Disponível em: <https://doi.org/10.1016/

j.knosys.2023.110777>.

MOUSAVI, S. A., MOUSAVI, H., DANESHTALAB, M. “FARMUR: Fair Ad-
versarial Retraining to Mitigate Unfairness in Robustness”. In: Abelló,
A., Vassiliadis, P., Romero, O., et al. (Eds.), Advances in Databases
and Information Systems - 27th European Conference, ADBIS 2023,
Barcelona, Spain, September 4-7, 2023, Proceedings, v. 13985, Lec-
ture Notes in Computer Science, pp. 133–145. Springer, 2023. doi:
10.1007/978-3-031-42914-9\_10. Disponível em: <https://doi.org/

10.1007/978-3-031-42914-9_10>.

WEI, Z., WANG, Y., GUO, Y., et al. “CFA: Class-wise Calibrated Fair Adver-
sarial Training”, CoRR, v. abs/2303.14460, 2023. doi: 10.48550/ARXIV.
2303.14460. Disponível em: <https://doi.org/10.48550/arXiv.2303.

14460>.

PLECKO, D., BAREINBOIM, E. “Causal fairness for outcome control”. In: Pro-
ceedings of the 37th International Conference on Neural Information Pro-
cessing Systems, NIPS ’23, Red Hook, NY, USA, 2024a. Curran Associates
Inc.

PLECKO, D., BAREINBOIM, E. “Fairness-Accuracy Trade-Offs: A Causal
Perspective”. 2024b. Disponível em: <https://arxiv.org/abs/2405.

15443>.

CHEN, H., ZHU, T., ZHANG, T., et al. “Privacy and Fairness in Federated
Learning: On the Perspective of Tradeoff”, ACM Comput. Surv., v. 56,
n. 2, pp. 39:1–39:37, 2024. doi: 10.1145/3606017. Disponível em:
<https://doi.org/10.1145/3606017>.

VUCINICH, S., ZHU, Q. “The Current State and Challenges of Fairness in
Federated Learning”, IEEE Access, v. 11, pp. 80903–80914, 2023. doi:
10.1109/ACCESS.2023.3295412. Disponível em: <https://doi.org/10.

1109/ACCESS.2023.3295412>.

87

https://www.frontiersin.org/articles/10.3389/fdata.2022.1049565
https://www.frontiersin.org/articles/10.3389/fdata.2022.1049565
https://doi.org/10.1016/j.knosys.2023.110777
https://doi.org/10.1016/j.knosys.2023.110777
https://doi.org/10.1007/978-3-031-42914-9_10
https://doi.org/10.1007/978-3-031-42914-9_10
https://doi.org/10.48550/arXiv.2303.14460
https://doi.org/10.48550/arXiv.2303.14460
https://arxiv.org/abs/2405.15443
https://arxiv.org/abs/2405.15443
https://doi.org/10.1145/3606017
https://doi.org/10.1109/ACCESS.2023.3295412
https://doi.org/10.1109/ACCESS.2023.3295412


ZHANG, W., WEISS, J. C. “Longitudinal Fairness with Censorship”. In: Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022,
pp. 12235–12243. AAAI Press, 2022. doi: 10.1609/AAAI.V36I11.21484.
Disponível em: <https://doi.org/10.1609/aaai.v36i11.21484>.

ZHANG, W., HERNANDEZ-BOUSSARD, T., WEISS, J. “Censored Fairness
through Awareness”, Proceedings of the AAAI Conference on Artifi-
cial Intelligence, v. 37, n. 12, pp. 14611–14619, Jun. 2023b. doi:
10.1609/aaai.v37i12.26708. Disponível em: <https://ojs.aaai.org/

index.php/AAAI/article/view/26708>.

ZHANG, W., WEISS, J. C. “Fairness with censorship and group constraints”,
Knowl. Inf. Syst., v. 65, n. 6, pp. 2571–2594, 2023. doi: 10.1007/
S10115-023-01842-5. Disponível em: <https://doi.org/10.1007/

s10115-023-01842-5>.

ZHANG, W., KIM, J., WANG, Z., et al. “Individual Fairness Guarantee
in Learning with Censorship”, CoRR, v. abs/2302.08015, 2023c. doi:
10.48550/ARXIV.2302.08015. Disponível em: <https://doi.org/10.

48550/arXiv.2302.08015>.

FRÉNAY, B., VERLEYSEN, M. “Classification in the presence of label noise: A
survey”, IEEE Transactions on Neural Networks and Learning Systems,
v. 25, n. 5, pp. 845–869, 2014. ISSN: 21622388. doi: 10.1109/TNNLS.
2013.2292894.

HICKEY, R. J. “Noise modelling and evaluating learning from exam-
ples”, Artificial Intelligence, v. 82, n. 1–2, pp. 157–179, apr 1996.
ISSN: 0004-3702. doi: http://dx.doi.org/10.1016/0004-3702(94)00094-8.
Disponível em: <http://www.sciencedirect.com/science/article/

pii/0004370294000948>.

QUINLAN, J. R. “Induction of decision trees”, Machine Learning 1986 1:1,
v. 1, n. 1, pp. 81–106, mar 1986. ISSN: 1573-0565. doi: 10.1007/
BF00116251. Disponível em: <https://link.springer.com/article/

10.1007/BF00116251>.

LAMY, A., ZHONG, Z., VERMA, N., et al. “Noise-tolerant fair classification”,
Advances in Neural Information Processing Systems, v. 32, 1 2019. ISSN:

88

https://doi.org/10.1609/aaai.v36i11.21484
https://ojs.aaai.org/index.php/AAAI/article/view/26708
https://ojs.aaai.org/index.php/AAAI/article/view/26708
https://doi.org/10.1007/s10115-023-01842-5
https://doi.org/10.1007/s10115-023-01842-5
https://doi.org/10.48550/arXiv.2302.08015
https://doi.org/10.48550/arXiv.2302.08015
http://www.sciencedirect.com/science/article/pii/0004370294000948
http://www.sciencedirect.com/science/article/pii/0004370294000948
https://link.springer.com/article/10.1007/BF00116251
https://link.springer.com/article/10.1007/BF00116251


10495258. doi: 10.48550/arxiv.1901.10837. Disponível em: <https://

arxiv.org/abs/1901.10837v4>.

FOGLIATO, R., CHOULDECHOVA, A., G’SELL, M. “Fairness Evaluation in
Presence of Biased Noisy Labels”. In: Chiappa, S., Calandra, R. (Eds.),
Proceedings of the Twenty Third International Conference on Artifi-
cial Intelligence and Statistics, v. 108, Proceedings of Machine Learn-
ing Research, pp. 2325–2336. PMLR, 26–28 Aug 2020. Disponível em:
<https://proceedings.mlr.press/v108/fogliato20a.html>.

WANG, S., GUO, W., NARASIMHAN, H., et al. “Robust Optimization for
Fairness with Noisy Protected Groups”, Advances in Neural Information
Processing Systems, v. 2020-December, feb 2020. ISSN: 10495258. doi:
10.48550/arxiv.2002.09343. Disponível em: <https://arxiv.org/abs/

2002.09343v3>.

MEHROTRA, A., CELIS, L. E. “Mitigating Bias in Set Selection with Noisy
Protected Attributes”, FAccT 2021 - Proceedings of the 2021 ACM Con-
ference on Fairness, Accountability, and Transparency, pp. 237–248, nov
2021. doi: 10.48550/arxiv.2011.04219. Disponível em: <https://arxiv.

org/abs/2011.04219v2>.

CELIS, L. E., HUANG, L., KESWANI, V., et al. “Fair Classification with
Noisy Protected Attributes: A Framework with Provable Guarantees”.
In: Meila, M., Zhang, T. (Eds.), Proceedings of the 38th International
Conference on Machine Learning, v. 139, Proceedings of Machine Learn-
ing Research, pp. 1349–1361. PMLR, 18–24 Jul 2021. Disponível em:
<https://proceedings.mlr.press/v139/celis21a.html>.

PROST, F., AWASTHI, P., BLUMM, N., et al. “Measuring Model Fairness under
Noisy Covariates: A Theoretical Perspective”. In: Proceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society, AIES ’21, p. 873–883,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN:
9781450384735. doi: 10.1145/3461702.3462603. Disponível em: <https:

//doi.org/10.1145/3461702.3462603>.

GHAZIMATIN, A., KLEINDESSNER, M., RUSSELL, C., et al. “Measuring Fair-
ness of Rankings under Noisy Sensitive Information”. In: Proceedings of
the 2022 ACM Conference on Fairness, Accountability, and Transparency,
FAccT ’22, p. 2263–2279, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN: 9781450393522. doi: 10.1145/3531146.3534641.
Disponível em: <https://doi.org/10.1145/3531146.3534641>.

89

https://arxiv.org/abs/1901.10837v4
https://arxiv.org/abs/1901.10837v4
https://proceedings.mlr.press/v108/fogliato20a.html
https://arxiv.org/abs/2002.09343v3
https://arxiv.org/abs/2002.09343v3
https://arxiv.org/abs/2011.04219v2
https://arxiv.org/abs/2011.04219v2
https://proceedings.mlr.press/v139/celis21a.html
https://doi.org/10.1145/3461702.3462603
https://doi.org/10.1145/3461702.3462603
https://doi.org/10.1145/3531146.3534641


ZHANG, T., ZHU, T., LI, J., et al. “Fairness in Semi-Supervised Learning:
Unlabeled Data Help to Reduce Discrimination”, IEEE Transactions on
Knowledge and Data Engineering, v. 34, n. 4, pp. 1763–1774, apr 2022.
ISSN: 15582191. doi: 10.1109/TKDE.2020.3002567.

WANG, J., CRUZ, U. S. C. S., LIU, U. Y., et al. “Fair classification with
group-dependent label noise”, FAccT 2021 - Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pp. 526–
536, 3 2021. doi: 10.1145/3442188.3445915. Disponível em: <https:

//doi.org/10.1145/3442188.3445915>.

GHOSH, A., KVITCA, P., WILSON, C. “When Fair Classification Meets Noisy
Protected Attributes”. In: Proceedings of the 2023 AAAI/ACM Confer-
ence on AI, Ethics, and Society, AIES ’23, p. 679–690, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN: 9798400702310.
doi: 10.1145/3600211.3604707. Disponível em: <https://doi.org/10.

1145/3600211.3604707>.

PARETO, V. “Manuale di economica politica, societa editrice libraria”, Manual of
political economy, v. 1971, 1906.

SCHMUCKER, R., DONINI, M., PERRONE, V., et al. “Multi-objective multi-
fidelity hyperparameter optimization with application to fairness”. In:
NeurIPS 2020 Workshop on Meta-learning, 2020.

LI, L., JAMIESON, K., DESALVO, G., et al. “Hyperband: A Novel Bandit-Based
Approach to Hyperparameter Optimization”, J. Mach. Learn. Res., v. 18,
n. 1, pp. 6765–6816, jan 2017. ISSN: 1532-4435.

GIAGKIOZIS, I., FLEMING, P. J. “Methods for multi-objective opti-
mization: An analysis”, Information Sciences, v. 293, pp. 338–350,
2015. ISSN: 0020-0255. doi: https://doi.org/10.1016/j.ins.2014.08.071.
Disponível em: <https://www.sciencedirect.com/science/article/

pii/S0020025514009074>.

BRAIDA, F. Considerando o ruído no aprendizado de modelos preditivos robus-
tos para a filtragem colaborativa. Phd thesis, Universidade Federal do
Rio de Janeiro, 2018. Disponível em: <http://hdl.handle.net/11422/

12978>.

BELLAMY, R. K. E., DEY, K., HIND, M., et al. “AI Fairness 360: An Ex-
tensible Toolkit for Detecting, Understanding, and Mitigating Unwanted

90

https://doi.org/10.1145/3442188.3445915
https://doi.org/10.1145/3442188.3445915
https://doi.org/10.1145/3600211.3604707
https://doi.org/10.1145/3600211.3604707
https://www.sciencedirect.com/science/article/pii/S0020025514009074
https://www.sciencedirect.com/science/article/pii/S0020025514009074
http://hdl.handle.net/11422/12978
http://hdl.handle.net/11422/12978


Algorithmic Bias”. out. 2018. Disponível em: <https://www.ibm.com/

opensource/open/projects/ai-fairness-360/>.

LI, M., SOLTANOLKOTABI, M., OYMAK, S. “Gradient Descent with Early Stop-
ping is Provably Robust to Label Noise for Overparameterized Neural Net-
works”. In: Chiappa, S., Calandra, R. (Eds.), Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, v.
108, Proceedings of Machine Learning Research, pp. 4313–4324. PMLR,
26–28 Aug 2020. Disponível em: <https://proceedings.mlr.press/

v108/li20j.html>.

KINGMA, D. P., BA, J. “Adam: A Method for Stochastic Optimization”. In:
Bengio, Y., LeCun, Y. (Eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015. Disponível em: <http://arxiv.org/

abs/1412.6980>.

JIANG, H., NACHUM, O. “Identifying and correcting label bias in machine learn-
ing”. In: International Conference on Artificial Intelligence and Statistics,
pp. 702–712. PMLR, 2020.

MROUEH, Y., OTHERS. “Fair Mixup: Fairness via Interpolation”. In: Interna-
tional Conference on Learning Representations, 2021.

ROH, Y., LEE, K., WHANG, S. E., et al. “FairBatch: Batch Selection for
Model Fairness”. 2021. Disponível em: <https://arxiv.org/abs/2012.

01696>.

LI, L., JAMIESON, K., ROSTAMIZADEH, A., et al. “Hyperband: A Novel Bandit-
Based Approach to Hyperparameter Optimization”. 2018. Disponível em:
<http://jmlr.org/papers/v18/16-558.html.>.

BERGSTRA, J., BARDENET, R., BENGIO, Y., et al. “Algorithms for
Hyper-Parameter Optimization”. In: Shawe-Taylor, J., Zemel, R.,
Bartlett, P., et al. (Eds.), Advances in Neural Information Pro-
cessing Systems, v. 24. Curran Associates, Inc., 2011. Disponível
em: <https://proceedings.neurips.cc/paper_files/paper/2011/

file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf>.

MORALES-HERNÁNDEZ, A., VAN NIEUWENHUYSE, I., ROJAS GONZALEZ,
S. A survey on multi-objective hyperparameter optimization algorithms
for machine learning, v. 56. New York, NY, USA, Springer Netherlands,

91

https://www.ibm.com/opensource/open/projects/ai-fairness-360/
https://www.ibm.com/opensource/open/projects/ai-fairness-360/
https://proceedings.mlr.press/v108/li20j.html
https://proceedings.mlr.press/v108/li20j.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2012.01696
https://arxiv.org/abs/2012.01696
http://jmlr.org/papers/v18/16-558.html.
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf


2023. ISBN: 0123456789. doi: 10.1007/s10462-022-10359-2. Disponível
em: <https://doi.org/10.1007/s10462-022-10359-2>.

CHICCO, D., JURMAN, G. “The advantages of the Matthews correlation coeffi-
cient (MCC) over F1 score and accuracy in binary classification evalua-
tion”, BMC genomics, v. 21, n. 1, pp. 1–13, 2020.

HORESH, Y., HAAS, N., MISHRAKY, E., et al. “Paired-Consistency: An
Example-Based Model-Agnostic Approach to Fairness Regularization in
Machine Learning”. In: Cellier, P., Driessens, K. (Eds.), Machine Learn-
ing and Knowledge Discovery in Databases, pp. 590–604, Cham, 2020.
Springer International Publishing. ISBN: 978-3-030-43823-4.

BAHARLOUEI, S., NOUIEHED, M., BEIRAMI, A., et al. “Rényi Fair Inference”.
In: 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
Disponível em: <https://openreview.net/forum?id=HkgsUJrtDB>.

RÉNYI, A. “On measures of dependence”, Acta Mathematica Academiae Scien-
tiarum Hungarica, v. 10, pp. 441–451, 1959. Disponível em: <https:

//api.semanticscholar.org/CorpusID:122331124>.

OLFAT, M., MINTZ, Y. “Flexible Regularization Approaches for Fairness in
Deep Learning”. In: 2020 59th IEEE Conference on Decision and Control
(CDC), pp. 3389–3394, 2020. doi: 10.1109/CDC42340.2020.9303736.

YU, E., QIN, Z., LEE, M. K., et al. “Policy Optimization with Ad-
vantage Regularization for Long-Term Fairness in Decision Sys-
tems”. In: Koyejo, S., Mohamed, S., Agarwal, A., et al. (Eds.),
Advances in Neural Information Processing Systems, v. 35,
pp. 8211–8213. Curran Associates, Inc., 2022. Disponível em:
<https://proceedings.neurips.cc/paper_files/paper/2022/

file/36b76e1f69bbba80d3463f7d6c02bc3d-Paper-Conference.pdf>.

JUNG, S., PARK, T., CHUN, S., et al. “Re-weighting Based Group Fairness
Regularization via Classwise Robust Optimization”. 2023. Disponível em:
<https://arxiv.org/abs/2303.00442>.

92

https://doi.org/10.1007/s10462-022-10359-2
https://openreview.net/forum?id=HkgsUJrtDB
https://api.semanticscholar.org/CorpusID:122331124
https://api.semanticscholar.org/CorpusID:122331124
https://proceedings.neurips.cc/paper_files/paper/2022/file/36b76e1f69bbba80d3463f7d6c02bc3d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/36b76e1f69bbba80d3463f7d6c02bc3d-Paper-Conference.pdf
https://arxiv.org/abs/2303.00442

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Contextualization
	Objectives
	Contributions
	Results summary
	Thesis structure

	Fair machine learning
	Fairness, accountability, and transparency 
	Sources and types of algorithmic unfairness
	Fairness definitions and metrics
	Fair classification

	Fair loss function from noise robustness
	Preliminaries
	Fair Transition Loss
	Experimental setup
	Results and discussion

	Correlation based penalty function
	Preliminaries
	Redlining Penalty Regularizer
	Experimental setup
	Results and discussion

	Conclusions
	Results and contributions
	Research directions

	References

