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Nesta dissertação, estudamos métodos clássicos e do estado da arte para a iden-

ti�cação de pontos de mudanças, de modo online, em séries temporais de latência

e vazão de rede. Examinamos os modelos clássicos Shewhart, EWMA e CUSUM

e mostramos que implementações básicas podem não ser adequadas para detectar

tais pontos. Propomos, então, estratégias simples para contornar este problema.

Estudamos também os métodos BOCD e RRCF (este originalmente proposto para

detecção de anomalias) e, de forma análoga aos métodos clássicos, propomos modi-

�cações simples que aumentaram o desempenho nos conjuntos de dados analisados.

Avaliamos ainda um novo método para detecção de mudanças, o VWCD, que oferece

�exibilidade, interpretabilidade e permitiu a detecção de pontos de mudança com

maior precisão.

Aplicamos os métodos estudados a um conjunto de dados não rotulados de latên-

cia e vazão de rede, construído por nós usando a ferramenta M-Lab NDT, e apresen-

tamos uma aplicação simples que pode ser usada para o monitoramento da qualidade

de serviço de rede. Além disso, avaliamos o desempenho dos métodos utilizando um

conjunto de medições de latência com pontos de mudanças rotulados. Os algorit-

mos propostos, incluindo o VWCD, apresentaram desempenho competitivo com um

algoritmo o�ine do estado da arte, o Pelt não-paramétrico.
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In this work, we study classical and state-of-the-art methods to identify change

points in time series of network latency and throughput, in an online setting. First,

we study the classic methods of Shewhart, EWMA and CUSUM, concluding that

their straightforward implementations may not be suitable for detecting such points.

We then present simple strategies to mitigate this problem. We also study the

methods BOCD, RRCF (this was initially proposed for anomaly detection) and,

similarly to the classical methods, we propose simple strategies that improve their

performance in the studied datasets. We also introduce a novel change-point de-

tection method, the VWCD, that o�ers �exibility and interpretability and increases

the precision of the change-point detection.

We applied the methods to a non-labeled dataset of latency and throughput,

built by us using the M-Lab NDT tool, and showed a simple application that can

be used to access the network quality of service. Furthermore, we assessed the

methods' performance using a latency dataset with labeled change points. The

proposed algorithms, including the VWCD, showed competitive performance with

a state-of-the-art o�ine algorithm, the non-parametric Pelt.
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Chapter 1

Introduction

Change-point detection refers to locating points in time or position in a sequence

where some data property, such as location, scale, or distribution, changes (FEARN-

HEAD and RIGAILL, 2019). This problem has been researched for decades and has

applications in many areas, among them: quality control, target detection and track-

ing, navigation systems integrity monitoring, segmentation of signals and images,

seismic data processing, mechanical systems integrity monitoring, �nance and eco-

nomics, computer network surveillance and security, smart grid monitoring, cyber-

physical systems, sensor networks, social networks, epidemic detection, genomic

signal processing, astronomy, neurophysiology and climatology (CHO and KIRCH,

2021; TARTAKOVSKY et al., 2015; XIE et al., 2021).

The research on change-point detection can be grouped in two main directions:

online and o�ine settings. In the online setting, the data is acquired and processed in

real-time or near real-time (a batch of �xed size is accumulated before the processing

stage). The goal is to decide on a change-point with minimum delay and false alarm

rate. On the other hand, in the o�ine setting, the data is fully available before

applying the method. In this work, we focus on online algorithms despite using an

o�ine method as a base for performance comparison.

Change-point detection methods typically do not require training labels. While

there are some supervised approaches using traditional machine learning methods

(AMINIKHANGHAHI and COOK, 2017), they are uncommon. Change-point de-

tection is usually performed using unsupervised learning methods (OLTEANU et al.,

2022), which is the focus of this work.

These methods can be further classi�ed as univariate or multivariate. Classical

methods Shewhart (SHEWHART, 1929), Exponential Weighted Moving Average

(EWMA) (ROBERTS, 1959) and Cumulative Sum (CUSUM) (PAGE, 1954) are

original univariate, although there are also multivariate versions available (LOWRY

and MONTGOMERY, 1995). On the other hand, the Bayesian Online Change-

point Detection (BOCD) (ADAMS and MACKAY, 2007) and the Robust Random

1



Cut Forest (RRCF) (GUHA et al., 2016) are naturally suitable for multivariate

data. Similarly, the new proposed method Voting Windows Changpoint Detection

(VWCD) is immediately applicable to the multivariate case.

A related issue to change-point detection is anomaly detection. While they are

treated interchangeable in some research, they have distinct concepts and goals.

This work explores these di�erences and shows that the classic selected methods

and the more recent BOCD cannot distinguish change-points from point anomalies.

To address this, we propose straightforward strategies to enhance the performance

of these algorithms. Furthermore, we study a recent tree-based method initially

designed for anomaly detection, the RRCF, and propose a simple framework that

allows the use of this algorithm also in the change-point detection task.

In addition to the algorithms above, we present and evaluate a new change-point

detection method proposed by our group, the VWCD. This method is based on

the generalized likelihood ratio (GLR) test, on the ensemble concept, and has the

advantage of �exibility and easy interpretation of its hyperparameters and results.

1.1 Objectives

This work focus on online unsupervised methods for change-point detection in time

series. Although many studies use synthetic data to evaluate change-point methods,

our objective is restricted to real data time series. Speci�cally, using datasets of

network measurements, we are interested in investigating the following questions:

� How do the classical statistical methods Shewhart, EWMA and CUSUM per-

form on network measurements (real data)? This same question applies to the

most recent and highly cited BOCD method.

� Can the RRCF - a popular tree-based algorithm - be used to change-point

detection? How does it perform on network measurement data?

� How does the new method proposed by our group, the VWCD, perform on

network measurement data?

� How is the above methods' performance compared to o�ine methods?

1.2 Motivation

As the Introduction mentions, the change-point detection problem has applications

in many areas. For this work, we are speci�cally interested in studying change

points algorithms suitable for network measurements and quality of service (QoS)

monitoring. In this scenario, the use of online and unsupervised algorithms is a

2



natural choice given the high amount of data generated and collected from networks

and since labeling that data is complex and costly.

The choice of the classical methods Shewhart, EWMA and CUSUM is motivated

by several reasons. First, following the Occam's Razor learning principle1, simpler

models are preferred whenever possible. Furthermore, these methods are widely

used in various domains, are simple to understand and implement, have a solid

theoretical ground and are computationally �cheap�. Moreover, they're still being

researched, with many recent updates and extensions in the literature.

On the other hand, the BOCD method is highly cited, has recent extensions,

e.g. (ALTAMIRANO et al., 2023) and was reported in a recent evaluation work

with several datasets (BURG and WILLIAMS, 2020) as having the best perfor-

mance among other competitors, even o�ine methods, when allowed to optimize its

hyperparameters.

The choice to study the RRCF, in turn, is motivated by the fact that tree algo-

rithms are popular and competitive across various tasks and domains. In addition,

there are good implementation options in Python, e.g. (BARTOS et al., 2019),

Matlab, and it is also available in the Amazon Web Services, having been used

with success in real-world applications, e.g., (KRISHNAN, 2020). Finally, GUHA

et al. (2016) suggest that, although the method was initially designed for anomaly

detection, it could also be adapted to change-point detection.

One known characteristic of the traditional methods found in the literature

is that they usually produce many spurious alarms STREIT et al. (2023); TAR-

TAKOVSKY et al. (2013). Although this can be tolerated in certain applications or

mitigated using complementary strategies (see, e.g., TARTAKOVSKY et al. (2015)),

in the task of QoS monitoring usually a high precision is desirable or even manda-

tory. For example, consider an internet service provider (ISP) that uses a system to

detect QoS issues in their network. The system triggers alarms for the operators; in

this case, a high number of false alarms could overload the operators and decrease

their con�dence in the system.

1.3 Methodology and dissertation outline

To investigate the questions raised in Section 1.1, we �rst perform a literature review

to study the main concepts and related work (Chapter 2), followed by a study of the

selected methods (Chapter 3). After that, in Chapter 4, we propose enhancements in

the literature methods to improve their performance. Additionally, we also propose

a framework for change-point detection using the RRCF method. In Chapter 5,

1"The simplest model that �ts the data is also the most plausible." (ABU-MOSTAFA et al.,
2012, p. 167)

3



we introduce the new method proposed by our group and describe new strategies

investigated.

To evaluate the performance of the selected methods (Chapter 6), we use two

di�erent datasets of real-data network measurements:

� NDT dataset: This dataset comprises 296 time-series of round trip time (RTT)

and throughput (for both download and upload tests) that were collected by

us using the M-Lab Network Diagnostic Tool (NDT) tool (GILL et al., 2022)

(real data), with a total of 45687 measurements. For this dataset, we do not

have labels for the change points.

� Shao dataset: a labeled dataset of RTT time series provided in (SHAO et al.,

2017). The dataset comprises 50 time series with 408087 measurements and

1047 labeled change-points.

With the NDT dataset, we study the algorithms' performance by comparing the

number of detected change points and verifying it visually to gain insights into the

number of false alarms. We also compare the elapsed time of each method. Further-

more, we discuss some examples visually. In the experiment with the Shao dataset,

we tune the hyperparameters using grid search and evaluate the performance using

the Precision, Recall and F1 metrics. The results are compared to recent works and

discussed in Chapter 6. Finally, the conclusions are stated in Chapter 7.

1.4 Contributions

The main contributions of this work are:

� We built a dataset with controlled M-Lab NDT tests executed in residential

networks. The time series data and code used in the work are available in a

public repository.

� We proposed extensions of the classical change-point detection, improving their

performance for the studied series. Furthermore, we evaluated a recently pro-

posed variant of CUSUM, the Window-Limited CUSUM (WL-CUSUM). Sim-

ilarly, we proposed simple modi�cations to the BOCD and RRCF methods in

order to make them more competitive with the state-of-the-art Non-parametric

Pelt (Pelt-NP). To the best of our knowledge, this is the �rst work proposing

a framework to use the RRCF method in the task of change-point detection.

Also, to the best of our knowledge, this is the �rst work evaluating the WL-

CUSUM with real data.
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� We performed a detailed study of a new change-point detection method pro-

posed by our group, �rstly introduced in STREIT et al. (2023), the VWCD; we

showed that it outperformed the Pelt-NP in terms of precision and false pos-

itive rate. We investigated di�erent ways to aggregate the votes in a window

and evaluated VWCD using real data from two distinct network measurements

datasets.
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Chapter 2

Background and related work

Several terms and research topics related to changes and anomaly identi�cation are

found in the literature, each with distinct or fuzzy nuances. In this section, we

formulate the change-point detection problem and discuss the following related con-

cepts: anomaly detection, outlier detection, noisy removal and signal segmentation.

The goal is not to exhaust the themes or propose new concepts but to clarify the

terminology and discuss related work.

2.1 The change-point detection problem

The change-point detection problem is usually formulated di�erently in the online

and o�ine settings.

2.1.1 O�ine setting

In the o�ine setting, the problem can be stated as an optimization problem for the

time series (signal) segmentation. Consider a time series represented by a random

process X = X1, X2, . . . , Xt, . . . XT , Xt ∈ R. This time series is assumed to be

piece-wise stationary, i.e., some characteristic of the process change abruptly at

some unknown instants {τ1, τ2 . . . , τk, . . . .τK}, K ∈ [1, T ]. These change-points split

the time series in K + 1 segments, and we de�ne the k-th segment as x(τk−1+1):τk
1.

Then, the change-point detection problem falls into two categories: if the number of

change-points is known a priori, the problem is only to estimate the indexes τk. If

we don't know in advance the number of change-points (a more realistic scenario),

we also have to estimate K (TRUONG et al., 2020).

Let's consider the second case (unknown number of change-points) and let C(·)
be a cost function for the segments. Then, change-point detection can be stated as

a penalized minimization problem (HAYNES, 2017):

1it's also usual in the literature to index the segment as xτk:(τk+1−1).
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Q(x,β) = min
τ1:K

{
K+1∑
i=1

[
C
(
x(τi−1+1):τi

)
+ β

]}
, (2.1)

where β is a penalty added to avoid over-�tting. It's also usual to restrict the

minimum size of a segment (hyperparameter min_seg in Table A.2).

This formulation using cost functions is very general and can be employed with

several approaches; see (TRUONG et al., 2020) for a survey. In the Section 3.4,

we introduce the Pruned Exact Linear Time (Pelt) algorithm (speci�cally, a non-

parametric extension) that we use to compare the performance of our selected online

methods.

2.1.2 Online (sequential) setting

In this section, we introduce the formulation used in the Sequential Analysis research

area (TARTAKOVSKY et al., 2015; WALD, 1947; XIE et al., 2021), in which the

classical models are derived. In this setting, the problem is also known as quick

change detection (XIE et al., 2021). In the subsequent chapters, we will also discuss

other approaches when introducing the BOCD, RRCF and VWCD methods.

In the sequential setting, observations are made one at a time, and we are in-

terested in detecting a change as soon as possible. So, at every new observation,

we must decide to let the process continue or stop and raise an alarm of change.

Formally, the problem can be stated in the following manner: given a series of ob-

servations x1, x2, . . . lets consider that a change occurs at t = τ . Then, x1, x2, . . . , xτ

follows one probability distribution and xτ+1, xτ+2, . . . follows another distribution2.

The most simple and prevalent assumption is to consider that observations are i.i.d.

and the post-change distribution does not depend on τ . In this case, the time series

model becomes

pτ (x) =
τ∏

i=1

p0 (xi)×
T∏

i=τ+1

p1 (xi) . (2.2)

where pτ is a joint distribution and p0(·), p1(·) are the marginal distributions.
The change-point variable can be modeled as an unknown deterministic num-

ber or a random variable (r.v.). So, two classes of sequential procedures are de-

rived: bayesian and non-bayesian. Furthermore, the probability distributions can

modeled using parametric or non-parametric approaches, thus deriving another two

sub-classes of methods.

Also note that, in the sequential setting, the monitoring procedure can produce

two possible outputs: a false alarm or a true change-point detected with a potential

2It is also usual to de�ne τ as the �rst instant after the change
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Figure 2.1: Example of change-point types (synthetic data). In the top subplot, the
process mean changes from 10 to 5, characterizing and additive type change-point;
In the bottom, there is an increase of the process variance (non-additive change-
point).

delay. This leads to a natural trade-o� problem: we want to detect the change-point

with a low false alarm rate while keeping a low average detection delay. So, the main

question tackled by the Sequential Change-point research area is how to formulate

and solve this optimization problem.

2.1.3 Change-point types

TARTAKOVSKY et al. (2015) classify the change points in two types:

� Additive change: a change in the mean value of the sequence;

� Non-additive change: the change can occur in the signal or system's variance,

correlations, spectral characteristics or dynamics. The non-additive change-

points are typically more challenging to detect, even for humans.

The Fig. 2.1 illustrates these two types of change-point.

2.2 Anomaly, noise and outlier detection

Anomalies and outliers are frequently used interchangeably in the machine learn-

ing and data mining literature (AGGARWAL, 2017; OLTEANU et al., 2022). For

CHANDOLA et al. (2009), �anomalies are patterns in data that do not conform to

a well-de�ned notion of normal behavior �. On the other hand, HAWKINS (1980)

de�nes an outlier as an �observation which deviates so much from other observa-

tions as to arouse suspicions that a di�erent mechanism generated it�. Another

related concept, noisy removal, deals with data that is not interesting to the analyst

(AGGARWAL, 2017; CHANDOLA et al., 2009).

8



NormalOutliers

NoiseAnomaly AnomalyNoise

Outliers

score

hard threshold

Figure 2.2: Relation of outliers, noise and anomaly. We use the normal distribu-
tion as the underlying model and the probabity density function as the score in
this example. However, in general, the model and score may not be probabilistic.
Elaborated by the author based on the Fig. 1.2 of (AGGARWAL, 2017)

AGGARWAL (2017) propose to relate the three concepts using the �outlierness�

score, used by most of the methods. For the author, anomalies typically have a

higher score than noise. Still, this separation may not be clear in some applications,

and ultimately, it is determined by the analyst in an ad hoc manner. In the Fig. 2.2,

we illustrate these concepts using a normal distribution as the underlying model.

Anomalies are usually classi�ed in three categories (AGGARWAL, 2017; CHAN-

DOLA et al., 2009; OLTEANU et al., 2022):

� Point anomalies: a single observation is classi�ed as an anomaly. This is

the focus of most anomaly detection techniques.

� Contextual or conditional anomalies: the abnormal condition of the point

is determined by a context that, in turn, is induced by contextual attributes

(see, for example, Fig. 2.3).

� Collective anomalies: an individual data instance may not be anomalous,

but their occurrence together with other instances characterizes an anomaly

(Fig. 2.4).

2.3 Relation of change-points and anomalies

For OLTEANU et al. (2022), the main di�erence between the change-point and

anomaly is that, in the former, the data is considered �normal� on both sides of the

change-point (each side follows a model). In contrast, in anomaly detection, it is usu-

ally assumed a model only for the normal data. However, in the literature of Sequen-

tial Change-point Detection, this de�nition is not appropriate. TARTAKOVSKY

et al. (2015), for example, do not distinct the two concepts and employ change-point

methods to detect network anomalies. In the same direction, TRUONG et al. (2020)
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Figure 2.3: Contextual anomaly example. The temperature at point P1 is normal
for the context (summer in Brazil). But the same temperature at time P2 (winter) is
abnormal. Elaborated by the author based on Fig. 3 of CHANDOLA et al. (2009).

Figure 2.4: Collective anomaly. Atrial premature contraction in a human electrocar-
diogram. Note that this type of anomaly can also be interpreted as a change-point.
Reproduced from CHANDOLA et al. (2009).

states that, in the online setting, change-point detection is often referred as event

or anomaly detection. As discussed in Chapter 4, the sequential methods typically

cannot distinguish change-points from point anomalies.

However, distinguishing change-points from anomalies is desirable in many real-

world applications (ALTAMIRANO et al., 2023; FEARNHEAD and RIGAILL,

2019; LIU et al., 2023; XIMENES et al., 2018). To illustrate, consider the examples

of Fig. 2.5. It seems to be consensual that in case (a), there is no change-point, and

in case (f), there is only one change-point (t = 10). In case (b), people usually label

the point t = 10 as an outlier or anomaly (see e.g. Fig. 6.9) and not a change-point.

However, the cases (c), (d) and (e) are more subjective. These di�culties were also

commented on and addressed by XIMENES et al. (2018).

Based on the example of Fig. 2.5 and corroborating with XIMENES et al. (2018),
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Figure 2.5: Di�cult in labeling change-point and anomalies (example with generated
data). The cases (a), (b) and (f) seem to be obvious, whereas (c), (d) and (e) are
more subjective.

and argue that the main characteristic that di�ers change-point from anomaly is the

duration of the system in the new state after the change. We classify an instant as

a change-point only if the system persists in the new state for a certain period. The

di�culty, of course, is to de�ne this minimum period.

Using the above understanding, collective anomalies can also be viewed as the

occurrence of two change-points, a �rst that changes the process to an abnormal

state and a second that returns the process to their normal state. That could be

the cases (c), (d) and (e) of Fig. 2.5. This idea - interpreting collective anomalies as

change-points - is known in the literature as epidemic change-point (FISCH et al.,

2022; JUODAKIS and MARSLAND, 2023).

Another clear di�erence between anomaly and change-point methods is that the

former can be applied to more general data types, such as objects and graphs. In

contrast, change-point usually deals only with numeric data. Lastly, change-point

methods are mostly unsupervised, while anomaly detection can be supervised, semi-

supervised or unsupervised (CHANDOLA et al., 2009).

2.4 Methods surveys

For the task of anomaly detection, there are an extensive literature review, surveys

and benchmarks; see e.g. BRAEI and WAGNER (2020), SCHMIDL et al. (2022)

and HAN et al. (2022). Interestingly, despite the deep-learning progress, these works

concluded that the classical statistical methods still perform better for most of the

datasets evaluated. However, many proposed methods use deep learning; see PANG

et al. (2021) for a review.

For the task of change-point detection, the number of works (methods, review
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and survey papers) seems to be signi�cantly smaller than anomaly detection, es-

pecially when considering the machine learning approach. TRUONG et al. (2020)

perform a selective review of o�ine methods. AMINIKHANGHAHI and COOK

(2017) presents a survey using online and o�ine methods and evaluates some of

them. However, they did not use the same dataset and metrics for all the algo-

rithms, so comparing performance is di�cult.

The lack of a labeled time series partly justi�es the few surveys and evaluation

works that use various (real-data) datasets in the change-point task. Recognizing

this, BURG and WILLIAMS (2020) proposed a framework to label the datasets

considering possibly di�erent labels given by a group of persons. Then, using �ve

di�erent annotators, they provided a benchmark evaluating 14 algorithms in a 37

time series set from di�erent domain areas. As a result, with hyperparameter tuning,

the BOCD outperformed all other methods, including those o�ine.

Regarding neural networks, HUSHCHYN et al. (2020) proposed two online mod-

els and compared them with o�ine methods, including Pelt. They used 11 datasets:

three synthetics (mean, variance and co-variance jump), two with human activities

sensor data, two with astronomy measurements, two with high energy physics, and

one using sequence handwritten digits of the MNIST dataset. They evaluated the

F1 score and similarity-based index and showed that their models outperformed the

others in various cases. One criticism is that they used a vast margin size (δ = 50),

comparable to the signal length and dynamics, to compute the true positive rate.

This margin δ will be de�ned in Section 2.5. Another recent work is (ZHOU et al.,

2024), where they proposed a model for mean shift detection with theoretical guar-

antees. Still, the model is o�ine, and they evaluated it using only one time series

of stock prices. Similarly, LI et al. (2022) proposed a deep-learning model and re-

ported to achieve comparable performance with CUSUM, but the proposed model

is o�ine, and they tested using only one dataset.

Interestingly, despite the intrinsic connections between change points and

anomalies, they are not usually explored together in the literature. Exceptions

are TAKEUCHI and YAMANISHI (2006), SU et al. (2013), FEARNHEAD and

RIGAILL (2019), OLTEANU et al. (2022) and (LIU et al., 2023).

2.5 Evaluation metrics

Let the set of true change points be denoted by T = {τ1, . . . , τM} and the set of

detected change-points by the algorithms T̂ = {τ̂1, . . . , τ̂K}. Note that the cardinal-
ities of theses sets, |T | = M and |T̂ | = K may be di�erent. It's common to allow a

certain margin of error δ to identify each change-point (see the example of Fig. 2.6).

In this case, we de�ne the true positives as (TRUONG et al., 2020)
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Figure 2.6: Change-point metrics. In this example, |TP | = 2, P = 2/3 andR = 2/2.
Based on �g. 5 of TRUONG et al. (2020).

TP(T , T̂ ) :=
{
τ ∈ T | ∃τ̂ ∈ T̂ such that |τ − τ̂ | < δ

}
(2.3)

with the restriction that the association of τ and τ̂ must be one-to-one or, strictly,

0..1 to 0..1.

Similarly, we can de�ne the false positives as

FP(T , T̂ ) :=
{
τ̂ ∈ T̂ | ∄τ ∈ T such that |τ − τ̂ | < δ

}
. (2.4)

.

Now, let |X | be the total number of observations. Then, the total negatives, i.e.,
the number of time instants that are not change points, is |N | = |X | − |T |. With

these de�nitions, the true positive rate (TPR) and false positive rate (FPR) can be

expressed as

TPR =
|TP(T , T̂ )|
|T |

FPR =
|FP(T , T̂ )|
|N |

, (2.5)

In the same way, the Precision (P ) and Recall (R) can be expressed as

P =
|TP(T , T̂ )|
|T̂ |

R =
|TP(T , T̂ )|
|T |

(2.6)

Note that the number of detected change points is given by the sum of the true

positives and false positives, i.e., T̂ = FP+TP. Then, metric Precision considers

the false positives: the more false positives, the lower the Precision. On the other

hand, the Recall considers the false negatives (undetected change points): the more

false negatives, the lower the recall. Usually, there is a trade-o� between Precision

and Recall: if one wants to have a high precision (low FPR), then some true change

points can be undetected, leading to a low recall (high false negative rate). Con-

versely, a high recall usually implies more false positives (low precision). Aiming to

combine both metrics, the F1-score is de�ned as the harmonic mean of Precision
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and Recall.

In the Fig. 2.6, denote the two true change-points (in blue) by τ1 and τ2 and

suppose that the value of δ would be su�ciently larger such that the two tolerance

region (in gray) overlaps. In this case, note that a detected change-point τ̂ between

the two regions (τ1 − δ ≤ τ̂ ≤ τ2 + δ) could be assigned for both labels, i.e., τ̂ = τ1

or τ̂ = τ2. In other words, computing the true positives using a tolerance margin is

not always straightforward since multiple solutions can be admitted. To deal with

this problem, SHAO et al. (2017) proposed an elegant solution: �rst, they de�ned

that an optimal mapping occurs when the cardinality of TP is maximized while

the sum of distances |τ − τ̂ | is minimized. With this formulation, they show the

problem can be translated to the well-known problem of �nding the minimum cost

maximum-cardinality of a bipartite graph, which can be solved by the Hungarian

algorithm (KONIG, 1931). See (SHAO, 2017) for a detailed explanation. In this

work, we use this solution to compute the true positives.

Beyond these metrics familiar in the supervised classi�cation, it is also possible

to use other metrics commonly employed for clustering. See (TRUONG et al., 2020)

and (BURG and WILLIAMS, 2020) for a more-in-depth discussion.

Another critical issue is that the number of positive labels (change points) is

usually infrequent compared to the negative labels (all other points). Probably

because of this, di�erently from works in traditional machine learning, even the

most recent works in change-point detection (e.g., (BURG and WILLIAMS, 2020))

usually do not divide the datasets into training and test sets. Neither this problem

is mentioned in the surveys (TRUONG et al., 2020) and AMINIKHANGHAHI and

COOK (2017).

2.6 Applications with network measurements

MATIAS et al. (2011) compared the performance of Shewhart, EWMA and CUSUM

methods to monitor the quality of network tra�c forecasts based on the residuals

of an autoregressive moving average (ARMA) model. They conclude Shewhart per-

formed better than CUSUM but worse than EWMA, but they restrict the analysis

for tra�c data, not considering QoS metrics.

Using the M-Lab NDT dataset, FARKAS (2016) applied the two-sided CUSUM

to time series of download throughput and package re-transmissions using a sliding

window to detect anomalous segments and points in the window. The author �rst

proposed searching for a segment of the window that complies with the Shapiro-

Wilker normality test. Then, this segment is used to estimate the pre-change distri-

bution parameters and to tune the hyperparameters. Unlike our work, the author

did not restart the surveillance process after a deviation in the CUSUM statistic.
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Thus, the algorithm's output is anomalous points that are not necessarily change

points. Nonetheless, we were inspired by this work to propose a framework for the

classical methods (Section 4.2).

In our group, XIMENES et al. (2018) used an o�ine change-point detection

method and a spatial-temporal correlation to detect network regions with similar

performance. SANTOS et al. (2019) extended that work employing Hidden Markov

Model (HMM) to detect changes in package loss time series, including a proposed

online framework. The focus of this last work was to detect changes in the quality of

services and to correlate with user calls. Regarding the HMMmodel, they considered

a binomial (discrete-time) distribution for the observations and 4 (hidden) states,

each of them with a distribution of package loss. Then, they interpreted these

distributions by relating them to network quality states: good, intermediate, bad

and network unavailable. The main di�erence to our work is that we study other

methods and focus on latency and throughput time series instead of package loss.

Another di�erence is that we do not restrict the number of states. Yet regarding

research in our group, beyond the change-point problem, STREIT et al. (2021)

tackled the issue of anomaly detection using tensor decomposition.

Investigating the matching of RTT and path (routes) changes, SHAO et al.

(2017) employed change-point methods to RTT time series and also provided a la-

beled dataset, which we use in this work. Furthermore, they provided a methodology

to compute the true positives, introduced in Section 2.5, and evaluated the dataset

using the Pelt method (Section 3.4) with di�erent cost functions (normal, exponen-

tial, Poisson and non-parametric) and di�erent penalties. The Gaussian model with

Modi�ed Bayesian Information Criteria (MBIC) resulted in the best recall but worst

precision, whereas the performance of the other models was relatively closed. Based

on this work, we selected the Pelt-NP method as the o�ine reference method to

compare the performance of our selected online algorithms.

Also using the SHAO et al. (2017) dataset, MOUCHET et al. (2020) studied a

non-parametric bayesian o�ine HMM model, HDP-HMM (FOX et al., 2011). The

proposed method performed at least well as the Pelt methods, with an apparent

advantage in terms of precision and recall (MOUCHET, 2020), but no statistical

con�dence interval or test was provided to support the results; only the median

values. Furthermore, the implementation code was not available.
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Chapter 3

Selected methods

In this chapter, we present the selected online methods used in this work: the

classical Shewhart, EWMA and CUSUM, including the recently proposed variant

WL-CUSUM; and the more recent proposals BOCD and RRCF. We also describe

the o�ine method Pelt-NP, used as a reference for performance comparison.

3.1 Classical methods

3.1.1 Shewhart

The Shewhart control charts (SHEWHART, 1929) were proposed and are still widely

used in the context of Statistical Process Control (SPC). Formally, the Shewhart

method can be stated as a sequence of Neyman-Pearson (NP) hypothesis tests. Let

m be the sample size (in our work,m = 1), λ(t) the log-likelihood ratio (LLR) for the

sample t, h the decision threshold and dt a random variable that indicates if there is

a change (dt = 1) or not. Then, the test can be written as (TARTAKOVSKY et al.,

2015):

dt =

{
0 if λ(n) < h

1 if λ(n) ≥ h
, λ(t) =

nm∑
i=(n−1)m+1

log
p1(xi)

p0(xi)
. (3.1)

For the particular case of a change in the mean of a Gaussian sequence Xt ∼
N (µ, σ0) from µ = µ0 (hypothesis H0) to µ = µ1 ̸= µ0), and assuming that σ2

0 is

known, it can be shown that the likelihood ratio test is equivalent to the standard

Z-test for large random samples (RAMACHANDRAN and TSOKOS, 2020, p. 268).

Furthermore, in the case of a unitary sample, the hypothesis test reduces to

|xt − µ0|
H1

≷
H0

κσ0, (3.2)
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where κ is the number of acceptable standard deviations, equivalent to the Z-test's

score.

It is worth mentioning that, in the SPC literature, the Shewhart method for

individual measurements (known as X-chart or I-MR chart) is usually built using

the moving range statistic instead of the standard deviation. According to NEL-

SON (1982), the aim is to minimize in�ationary e�ects on the variability caused

by trends and oscillations. However, from the example provided in that work, one

can verify that the di�erence is not too signi�cant. So, for simplicity, we choose

to use the sample standard deviation as an estimator for σ0. Furthermore, a bias

correction factor should be applied because the sample standard deviation is a bi-

ased estimator. However, this factor can be neglected for sample sizes above 10 (the

minimum window size used in our experiments). Refers to(MONTGOMERY, 2013)

for details.

3.1.2 Exponential Weighted Moving Average

The Exponential Weighted Moving Average (EWMA) (ROBERTS, 1959), also called

geometric moving average, is de�ned as

zt = λxt + (1− λ)zt−1, (3.3)

where 0 < λ < 1 is a hyperparameter that weights the past observations: the higher

the λ, the more importance is given to the recent observations and less to past ones.

Developing recursively the Eq. (3.3), for an arbitrary t:

zt = λ
t−1∑
j=0

(1− λ)jxt−j + (1− λ)tx0 (3.4)

where we can see the weights λ(1 − λ)j decrease geometrically with t; it can be

shown that they always sums to 1. Furthermore, a distinct characteristic compared

to the Shewhart method is that at each time step t, the EWMA statistic considers

the entire history of observations. In contrast, Shewhart statistic considers only

information from the last sample.

It is interesting to note that, in its classical formulation (ROBERTS, 1959), the

EWMA is non-parametric (no distribution is assumed to the data). However, it

can also be formulated using the LLR. In this way, the classical formulation can be

derived as a special case, considering a change in the mean of a Gaussian sequence.

(TARTAKOVSKY et al., 2015). Nonetheless, the EWMA is known to be robust

against non-normality (BORROR et al., 1999). For (MONTGOMERY, 2013, p.

439), �It is almost a perfectly non-parametric procedure�.

For Xt ∼ N (µ0, σ
2), the variance of Zt is (MONTGOMERY, 2013)
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Figure 3.1: Shewhart and CUSUM example with Xt ∼ N (µ0 = 10, σ2 = 1). The
mean changed to µ1 = 11 at t = 30. The Shewhart chart could not detect the shift,
but CUSUM identi�ed the change-point at t = 35.

σ2
Zt

= σ2

(
λ

2− λ

)[
1− (1− λ)2t

]
, (3.5)

with σ2
Zt
being used to set the control limits ±κdσZt . As t increases, the term (1−λ)2t

rapidly approaches 0, and, because of this, in our implementation, we neglected it.

3.1.3 Cumulative Sum

Perhaps the most popular sequential change-point detection method is the Cumula-

tive Sum (CUSUM) (PAGE, 1954). The procedure analyzed as a repeated Sequential

Probability Ratio Test using the framework of Sequential Analysis. Furthermore, the

CUSUM can also be formulated as GLR test (TARTAKOVSKY et al., 2015). Here,

we present an intuitive interpretation of the CUSUM provided in TARTAKOVSKY

et al. (2015).

Consider the observation model of Eq. (2.2). The key idea is to note that the

LLR shows a negative drift before the change and a positive drift after the change,

as is illustrated in the example of Fig. 3.1.

Let λt be the LLR and Zt a r.v. de�ned as

λt =
t∑

i=1

Zi =
t∑

i=1

log
p1(xi)

p0(xi)
. (3.6)
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The relevant information (concerned to the change) is the di�erence between the

LLR λn =
∑t

i=1 Zi (the cumulative sum) and its current minimum value:

gt = λt − min
0≤j≤t

λj (3.7a)

=
t∑

i=1

Zi − min
0≤j≤t

j∑
i=1

Zi (3.7b)

= max
1≤j≤t+1

t∑
i=j

Zi (3.7c)

= max

{
0, max

1≤j≤t

t∑
i=j

Zi

}
(3.7d)

where
∑n

i=t+1 Zi = 0. Using h as a threshold value for the statistics, we decide on a

change-point when gt ≥ h.

Trough Eq. (3.7a), the detection rule can viewed as a comparison of the cumula-

tive sum (LLR) λt with an adaptive threshold. In the words of (TARTAKOVSKY

et al., 2015, p. 377): �this threshold is not only modi�ed online but keeps complete

memory of the entire useful information contained in the past observations�. This

ability to track past information is the key feature that di�ers CUSUM from the

Shewhart.

Last but not least important, the CUSUM statistic, Eq. (3.7d), can also be

written in a recursive form:

gt = [gt−1 + Zt]
+

=

[
gt−1 + log

p1(xt)

p0(xt)

]+
, t ≥ 1, g0 = 0.

(3.8)

Many variants of the CUSUM are proposed in the literature. XIE et al. (2021)

review the main results and point to new research directions. In this work, we

focus on the most known formulation of the algorithm, the two-sided CUSUM (2S-

CUSUM), and in a recent variation proposal, the WL-CUSUM.

Two-sided CUSUM

Let's consider the particular case of an additive change in a Gaussian i.i.d. sequence

of r.v. Xt ∼ N (µ, σ2), from µ = µ0 to µ = µ1, keeping constant the variance σ2.

With straightforward algebraic manipulation, the r.v. Zt in the CUSUM statistic

(Eq. (3.8)) simpli�es to
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Zt =
(µ1 − µ0)

σ2

[
Xt −

(µ0 + µ1)

2

]
. (3.9)

Now, lets consider the two-sided case: an upper change in the mean, µ1 = µ0+δσ,

or a lower change in mean: µ1 = µ0−δσ, where ±δσ is the change magnitude. From

Eq. (3.9), it is clear that if want to re-write the CUSUM statistic in therms of δ, it

leads to two equations:

gut =

[
gut−1 + xt − µ0 −

δσ

2

]+
, gu0 = 0

gℓt =

[
gℓt−1 − xt + µ0 −

δσ

2

]+
, gℓ0 = 0.

(3.10)

where gut monitors the upper change and gℓt the lower one. In the above equations,

we have dropped the constant scale therm δ/σ that appears in the derivation since

it can be incorporated into the decision threshold, as is usual in the literature.

In the SPC literature, the Gaussian two-sided CUSUM formulation for monitor-

ing a shift in the mean is also known as tabular CUSUM.

The Window-Limited CUSUM

The main problem of the CUSUM algorithm is that it assumes that both pre-change

p0(·) and post-change p1(·) distributions are known. The �rst premise usually is not
a problem since p0(·) can be estimated from past data. However, not knowing the

p1(·) and selecting arbitrary δ in Eq. (3.10) may lead to performance degradation.

Recently, XIE et al. (2023) propose to estimate p1(·) at each new data sample

using a sliding window scheme. They called this scheme Window-Limited CUSUM

(WL-CUSUM).

In the WL-CUSUM scheme, the parameter θ1 of p1(·) is substituted by a consis-

tent estimate:

gt = g+t−1 + log
p1(xt, θ̂1,t−1)

p0(xt)
, gw = 0, n = w1 + 1, w1 + 2, . . . (3.11)

where w1 is the sliding window. Then, θ1 can can be estimated through maximum

likelihood estimate (MLE):

θ̂1,t = argmax
θ∈Θ

w1−1∑
i=0

log p1(xt−i, θ). (3.12)

With a su�ciently large window, the authors showed that WL-CUSUM statistic

behaves like the original CUSUM while maintaining optimality properties. Similar
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Figure 3.2: ARL comparison for Shewhart, EWMA and CUSUM. In the left, hy-
perparameters are tuned with common values; in the right, we adjust them to get a
ARL to false alarm equal 370. Computed with the R package SPC (KNOTH, 2022)

.

to other methods that use sliding windows, one issue is the choice of the window

size.

The authors evaluated the proposed algorithm using only simulated data. To

our knowledge, this is the �rst work evaluating this proposal with real data.

3.1.4 Theoretical comparison

The sequential change-point algorithms are usually characterized and evaluated

through the average run lenght (ARL) function, which relates the expected number

of samples to detect a change in terms of some parameter of interest, for example,

the change magnitude in the mean. This function provides the false alarm rate and

the expected delay to detection. For the Shewhart method, the ARL function can

be computed exactly using the Z-test's type II error. For the EWMA and CUSUM

methods, the derivation of the ARL function is more complex but well studied (see

e.g. (TARTAKOVSKY et al., 2015)).

In Fig. 3.2, we plot the ARL function of Shewhart (X chart), 2S-CUSUM and

EWMA to detect a shift of δ standard deviations in the mean of a Gaussian process.

The graphic suggests that Shewhart performs better for shifts more signi�cant than

±3σ, whereas EWMA and CUSUM have small ARL for small shifts.

According to HUNTER (1986), as stated in POLUNCHENKO et al. (2013), the

EWMA can be viewed as a compromise between the Shewhart and the CUSUM.

Also, LUCAS and SACCUCCI (1990) showed that EWMA can be as powerful as

CUSUM to detect a shift in the mean of Gaussian noise.
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Figure 3.3: BOCD example (synthetic data) showing the relation of the change-
points (top) and the run length variable (bottom).

3.2 Bayesian Online Changepoint Detection

The Bayesian Online Changepoint Detection (BOCD) was introduced independently

by ADAMS and MACKAY (2007) and FEARNHEAD and LIU (2007) (MURPHY,

2023). A key idea of the BOCD is, instead of modeling the change-point itself as a

variable, to use the run lenght discrete variable rt, de�ned as the amount of time

spent since the last change-point:

rt =

{
0, if change-point at time t

rt−1 + 1, else.
(3.13)

This variable is illustrated in the Fig. 3.3, where we can see that at each time step,

rt is increased by one or drops to zero when the change-point occurs.

In the BOCD model, the run length is a latent random variable, and its posterior

probability can be computed from the joint distribution:

p(rt | x1:t) =
p(rt,x1:t)

p(x1:t)
(3.14)

Then, another key idea is to compute the joint distribution in a recursive way [

see (GUNDERSEN, 2019) for a detailed derivation]:

p(rt,x1:t) =
∑
rt−1

Change-point prior︷ ︸︸ ︷
p(rt | rt−1)

UPM predictive︷ ︸︸ ︷
p(xt | rt−1,x

(r)
t )

Message︷ ︸︸ ︷
p(rt−1,x1:t−1) . (3.15)

where UPM is the underlying probabilistic model. Note that this term must be com-

puted for each run length rt. When using a model from the exponential family, the
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posterior predictive can be computed in closed form using only su�cient statistics

because of its prior-conjugacy property. In this work, we used the Normal-Inverse-

Gamma distribution, which is the conjugate prior of the normal distribution with

unknown mean and variance.

A known problem of the Bayesian inference a�ecting the performance of the

BOCD is the lack of robustness under outliers. To address this problem, recent works

propose robust versions of BOCD using the Generalized Bayesian (GB) inference

framework. The GB inference aims to estimate the posterior replacing the Kullback-

Leibler divergence (used in the classical Bayes posterior) with a general divergence

metric and the negative log-likelihood (also the standard in the Bayes posterior)

with a general risk function. (ALTAMIRANO et al., 2023; MURPHY, 2023).

Our study tested a recent proposal, the DSM-BOCD, (ALTAMIRANO et al.,

2023), that claims to deliver provable robustness without sacri�cing scalability. How-

ever, the robust posterior proposed (based on the Fischer divergence metric) requires

computing gradient matrices and is more prone to numerical instability issues. To

contour this, the authors employed a standard-scaling pre-processing of the time

series in their implementations. Of course, this is not suitable for real-world online

applications.

In the Chapter 4, we propose a simple modi�cation in the BOCD method to

increase the robustness to outliers.

3.3 Robust Random Cut Forest

The Robust Random Cut Forest (RRCF) GUHA et al. (2016) is a non-parametric

anomaly detection model based on the idea of Isolation Trees introduced in (LIU

et al., 2008, 2012), but designed to handle streamed data, including time series.

The idea of isolation-based anomaly detection is illustrated in the Fig. 3.4. At

each iteration, the method randomly chooses a dimension (feature) and then divides,

or �cut� (also randomly) this dimension in two subsets. This process is repeated until

the desired point is isolated or the maximum number of allowed steps is achieved.

On the left side of the �gure, an anomaly point took 5 cuts to be isolated, whereas

on the right side, a normal point took 20 steps.

This process can be e�ciently handled with binary trees. LIU et al. (2008)

proposed a data structure (iTrees) where the number of cuts is translated to the

path length from the root to the leaf containing the point. Then, with a forest of

iTrees, the authors show that average path length converges.

Motivated to allow online learning, GUHA et al. (2016) introduced a new model

of isolation tree, the Robust Random Cut Tree (RRCT), and a new anomaly statis-

tic. RRCT di�ers from iTree in selecting the dimension to cut: RRCT sets the
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Figure 3.4: Isolation-based anomaly detection (synthetic data). The number of
random cuts in the axes required to isolate an anomaly point (left side) is less than
that required for a normal point (right side). Based on (LIU et al., 2012).

probability of choosing a dimension proportional to its �relevance�, instead of pick-

ing it uniformly. Furthermore, the authors show that the statistic used by iForest

(the average path length) is not always helpful in characterizing anomalies, so they

introduce a new statistic, the �collusive displacement�, related to increased model

complexity when a new instance is inserted in the forest.

3.3.1 Anomaly detection example

The Robust Random Cut Forest (RRCF) was initially introduced for anomaly de-

tection. To gain insight into the method behavior, we reproduce in the Fig. 3.5

the same synthetic example (univariate time series) from (GUHA et al., 2016), but

introducing additional point anomalies at t = 105, t = 305 and t = 309.

When using time series, GUHA et al. (2016) proposed to use a sliding window

(hyperparameter shingle_size) with the current sample and a certain number of

past samples. In the example of Fig. 3.5, a window of size w = 4 is used, so, when

processing the sample t, the point x = {xt, xt−1, . . . xt−w} is inserted at each tree of

the forest. They call these sliding windows �shingles�.

The motivation for using this shingle scheme is to consider the auto-correlation

of the time series, improving the detection of anomalies in some instances. However,

a side e�ect of this scheme is the lag introduced in the statistics when processing a

point anomaly. This is illustrated in the example of Fig. 3.5: after a point anomaly

at t = 105, the RRCF statistic persists at a high level for more 3 samples. If we use

a threshold value to detect the anomaly point, the point t = 105 is classi�ed as an

anomaly (and t = 106, 107, 108). So, practical implementations should be aware of

this characteristic. In our implementation, we use w = 2 to minimize this problem.
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Figure 3.5: RRCF original example (synthetic data) of (GUHA et al., 2016) extended
with point anomalies at t = {105, 305, 309} and a threshold for anomaly detection.

In the Fig. 3.5, it is also possible to note another characteristic of the original

RRCF proposed scheme: because the forest is updated after each sample (increasing

learning), the model quickly adapts itself in the presence of a collective anomaly.

So, only the start and the end index of collective anomalies are detected. In the

Section 4.4, we propose a simple framework to adapt the RRCF method to change-

point detection.

3.4 Non-parametric Pelt

The Non-parametric Pelt (Pelt-NP) (HAYNES et al., 2017) is an extension of the

o�ine method Pelt (KILLICK et al., 2012). We use it as a reference to compare

the performance of the online algorithms because this was also used in the previous

works (MOUCHET et al., 2020; SHAO et al., 2017) with RTT time series and also

because Pelt is one of the start-of-the algorithms for o�ine segmentation. (CHO

and KIRCH, 2021; HAYNES, 2017; TRUONG et al., 2020).

In the o�ine formulation for the change-point problem (Section 2.1.1), the cost

of segments are additive and the Bellman optimality principle holds, thus allowing

the use of Dynamic Programming to write Eq. (2.1) in a recursive form. Using

this scheme, JACKSON et al. (2005) proposed an exact method, the Optimal Par-
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titioning (OP), but with a quadratic computational cost in the number of samples,

O(t2).
To reduce the cost of the OP algorithm, KILLICK et al. (2012) proposed the

Pelt that, under mild conditions - most importantly, the number of change points

increases linearly with t, the complexity reduces to linear. The main idea of Pelt is to

sequentially check each sample regarding a pruning rule, discarding, when possible,

the sample from the set of potential change points.

Usually, the negative log-likelihood is used as the cost function C(·) (TRUONG
et al., 2020), but this requires the knowledge (or assumption) of the underlying

distribution of generating data. To contour this, HAYNES et al. (2017) proposed

an extension of Pelt that uses an empirical cumulative distribution function. This

method, combined with the Modi�ed Bayesian Information Criteria (mBIC) penalty

(ZHANG and SIEGMUND, 2007), which takes into account the length of the seg-

ments, was reported by SHAO et al. (2017) to give the best recall and F2 score1

when applied to the task of RTT time series segmentation.

1The F2 score gives more weight to recall than precision, whereas F1 score gives the same.
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Chapter 4

Implementation and enhancements

proposals

In this chapter, we present proposals for implementing the classical methods and

modi�cations in the BOCD and RRCF methods to improve their performance.

4.1 Basic implementation of the classical methods

The sequential change-point methods assume that the parameters of pre-change dis-

tribution p0 (Eq. (2.2), 7) are known. However, this is not the case for applications

such as network quality monitoring. In our basic implementation of the sequential

methods, we consider the following simple strategy: whenever the process monitor-

ing begins (or after a change-point), we use the �rst samples, a �xed window of size

w0, to estimate the parameters using MLE. During this estimating phase, change-

point detection is not performed. This procedure is illustrated in the �owchart of

Fig. 4.1.

4.2 Proposed framework for the classical methods

In this section, we propose a series of simple strategies for improving the performance

of the classical methods.

Wait for w0
samples

Estimate the p0
pre-change
parameters

g(t) ≥ h?

no

yesProcess
monitoring

Change-point
or process start

Change-point
detected

Figure 4.1: Sequential methods basic implementation �owchart. Here, p0 is the pre-
change distribution density function, g(t) the method statistic and h the threshold.
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Figure 4.2: In�uence of point anomalies on the classical methods. In this example
(synthetic data), we used µ0 = 5, µ1 = 7 (for CUSUM algorithm), σ0 = 2, and the
hyperparameters h = 5 for CUSUM and λ = 0.5, kd = 4 for EWMA.

4.2.1 Distinguishing point anomalies from change points

When a point anomaly occurs, abrupt changes in the statistical properties of the data

impact the classical methods statistics so that, in general, they cannot distinguish

a change-point from a point anomaly. This is illustrated on Fig. 4.2.

A usual solution to this problem is to include a �lter (GUSTAFSSON, 2000).

However, this solution can introduce an unacceptable lag or even prevent the detec-

tion of changes in the variance.

To contour this problem, we propose a simple alternative, illustrated in the

�owchart of �gure Fig. 4.3. Once the test statistic g(t) deviates from the limit h, a

change-point is con�rmed only if clim observations lead, in sequence, to deviations. In

the case of CUSUM and EWMA, their statistics have memory, i.e., they considered

the current and all the past samples. So, whenever a deviation occurs (g(t) ≥ h),

we reset the statistic to the last value before the deviation.

Once this proposal is straightforward, it has probably been employed in other

works, but we have not been able to �nd references for this simple extension. A

recent work employing LSTM (Long short-term memory) neural network ensembles

mentions this same strategy to distinguish anomalies from changepoints (ATASH-

GAHI et al., 2021).
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Figure 4.3: Classical methods - distinguishing point anomalies from change points.

4.2.2 Distinguishing noise from point anomalies

To distinguish noise (that is not of interest to the analyst) from anomalies, we use

the z-score

z =
|Xn − µ0|

σ0

≥ κa, (4.1)

where κa is a threshold for anomalies (we use κa = 5). Furthermore, we classify the

point anomalies in two classes: upper anomaly, when xt−µ0 > 0 and lower anomaly,

on the contrary.

4.2.3 Improving the pre-change parameters estimation

In the basic implementation of the classical methods, the estimated parameters can

lead to poor performance and missed change points if the process is not stabilized.

To illustrate this, consider the Shewhart chart shown in Fig. 4.4a where the �rst

20 samples were used to estimate the pre-change parameters. In this example, note

that the estimated is signi�cant. This large variance leads to large control limits,

not allowing the method to detect the change-point near the sample t = 500.

To improve the estimation of the parameters and ensure the Gaussian model's

validity, FARKAS (2016) proposed to perform a Shapiro-Wilker normality hypoth-

esis test in subsequences of sliding windows. In that work, the author searches for

subsequences until the p-value meets the required speci�cation or decreases the size

of the subsequence until it reaches the limit size of 24 samples.

The Shapiro-Wilker tests the null hypothesis that the sample Xt is drawn from

a normally distributed population. In (RAZALI and WAH, 2011), the authors em-

ployed Monte Carlo simulation and showed that the Shapiro-Wilker is more potent

than the Kolomogorov-Smirnof, Lilliefors and Anderson-Darling tests.

Inspired in (FARKAS, 2016), we propose a similar procedure that employs the

Shapiro-Wilker test but takes another step to check for variance increasing ∆Var

after a change-point. The rationale is that, during a process transient, the variance
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Figure 4.4: Pre-change parameters estimation.
NDT Dataset, Client 8, gig03, down. throughput.
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Figure 4.5: Parameters estimation proposed procedure. The key main idea is to
apply an normality test and check if the variance is not too high before estimating
the parameters of p0.

can grow before the stabilization and, even with a high variance, the normality

hypothesis may not be rejected. The proposed procedure is shown in the �owchart

of Fig. 4.5.

In our proposal, we also de�ne a maximum allowed number of consecutive esti-

mating windows (hyperparameter cwmax in the �owchart); after that, the parameters

are forced to be estimated, but applying �rst a percentile �lter. This �lter is also

used when the process monitoring starts; in this case, we do not have a previous

variance estimate.

The Fig. 4.4b shows an example of applying the proposed procedures. Starting

with the �rst 20 samples, the Shapiro-Wilk test rejected the null hypotheses of

normality. So, we wait for the following 20 samples. This repeats until t = 100 when

the process gets stabilized. With the variance properly estimated, the Shewhart

method identi�ed the change-point near t = 500.
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4.2.4 Checking for additional change after estimation

After the estimation procedure of Fig. 4.5, whenever the process takes more than

one window to get stabilized, i.e., 1 < cw ≤ cwmax, we also check for a possi-

ble change-point using the Augmented Dickey-Fuller (ADF) test (DICKEY and

FULLER, 1979). If the current window used for parameters estimation pass in

the ADF test, but the last did not, than we declare that a change-point occurred

between these two windows.

The motivation to use the ADF test in addition to the normality test is the

following fact: the Shapiro-Wilker normality test can reject the null hypothesis of

normal distribution even if the process is stationary.

It's worth mentioning that, in the procedure of Fig. 4.5, we already tried to

use the ADF test together with the Shapiro-Wilker test or as a substitute for it.

However, these strategies do not reveal good results with our datasets.

4.3 BOCD enhancements

4.3.1 Change-point decision in the online setting

Despite its name, the BOCD is not genuinely full online. The posterior probability

of the run length is computed online, but deciding on a change-point online is

challenging, especially in the presence of outliers. To illustrate this, consider the

example of Fig. 4.6, where we plotted the run length posterior probability and its

maximum a posteriori (MAP) value evaluated online. Note that the MAP value

oscillates from one state to another.

ADAMS and MACKAY (2007) provide no clue on deciding a change-point other

than visual inspection. In the code repository of (ALTAMIRANO et al., 2023), a

convoluted algorithm is used, but in an o�ine setting, the algorithm uses the entire

run length matrix.

To remedy this situation, we propose a simpler strategy: if the current run length

probability drops below a threshold value (we use 0.05, hyperparameter p_thr_rl

in Table A.2), we identify the most probable change-point and check if this point or

its vicinity were not already previously identi�ed.

Note that the need to check the list of previous change points is due to the

oscillating behavior shown in the Fig. 4.6. Also, since we wait for the run length

probability to drop below the threshold of a low value (instead of simply verifying

the maximum a posterior run), in some instances, our solution leads to a lag in the

detection. This lag and the false positive rate are a trade-o�. It's worth mentioning

that, while we did not take too much time investigating this problem, more e�cient

solutions are probably possible, but we did not �nd any in the literature.
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Figure 4.6: BOCD basic and proposed versions. The basic algorithm (left subplot)
classi�ed and outlier between t = 200 and 400 as a change-point, whereas the
proposed version (right subplot) did not.

Example 1 - NDT Dataset, Client 4, rnp-rj, down. RTT.

Lastly, to limit the computational cost to a constant value per iteration, we

follow ALTAMIRANO et al. (2023) and �prune� the run length posterior keeping

only the K = 50 most probable run lengths.

4.3.2 Resilience to point anomalies

As discussed in Section 3.2, the BOCD lacks robustness to point anomalies. To

remedy this, we propose a strategy similar to that proposed for the classical methods.

The di�erence here is that the BOCD uses a matrix of posterior probabilities and

not a simple statistic. The proposed procedure is described below and illustrated in

Fig. 4.7:

� Suppose a deviation in the current run (possible change-point) is identi�ed

at t = τ . We wait for 4 more additional points (hyperparameter min_seg in

Appendix A) to verify if this change persists. We use the last value before the

deviation x(τ − 1) to update the run length posteriors during this stage.

� If the change-point is con�rmed, we re-compute the run length posteriors using

the actual values {x(τ − c+ 1), . . . ,x(τ)} instead of x(τ − 1).
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Figure 4.7: BOCD proposed scheme to increase robustness to point anomalies. The
basic algorithm (left subplot) classi�ed mny outlier as a change-point, whereas the
proposed version (right subplot) did not.

Figure 4.8: BOCD basic and proposed versions
Example 2 - NDT Dataset, Client 4, gig03, down. RTT.

The Fig. 4.8 shows another example of both versions of the BOCD. It can be

noted that the basic algorithm is considerably more susceptible to point anomalies

than our proposal.

4.4 RRCF framework for change points

As discussed in Section 3.3, the Robust Random Cut Forest (RRCF) original scheme

(GUHA et al., 2016) is capable of detecting only anomalies and not change points.

To remedy this, we propose a simple framework similar to that proposed for the

classical methods. This scheme is illustrated in Fig. 4.9 and described below:

� Whenever an anomaly is identi�ed (the score S(t) deviates from the threshold),

check if the next clim samples also conduct to an anomaly. We consider clim = 4

consecutive anomalies as a change-point.

� Due to the incremental learning characteristic of the model (see Section 3.3),
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Figure 4.10: RRCF proposed framework - example. The proposed extension of the
method identi�es both anomalies and change-points - NDT Dataset, Client 1, gru05,
down. throughput

whenever a deviation occurs, we need to forget the sample x(t) before evalu-

ating the next one.

� After a change-point, instead of allowing the model to adapt itself incremen-

tally, we re-start the model with a new empty forest.

The Fig. 4.10 shows an example of the proposed framework applied to a download

throughput time series. It is possible to note that the change-point between t = 300

and t = 350 was identi�ed, as well as anomaly points.
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Chapter 5

Voting Windows Change-point

Detection

The VWCD, �rst presented in (STREIT et al., 2023), is a new change-point detec-

tion method studied by our group. The method is suitable for the online setting

and does not assume the previous knowledge of the parameters distributions before

and after the change-point. A key feature is that its output is easy to interpret and

adjust according to the studied problem.

The method follows the concept of the window-limited GLR (LAI and SHAN,

1999; WILLSKY and JONES, 1976), but is based on a Bayesian setting and ensemble

concept. The main idea is illustrated in the conceptual diagram of Fig. 5.1. Each

window chooses the time instant that most probably a change-point occurs and votes

in this instant. As the window slides, each sample is visited for w windows; thus,

it can receive up to w votes. These votes are probabilistic and used to decide on a

change-point.

5.1 Formalization of the method

Let xt be the current observation and D = {xt−w+1, . . . , xt} a set with the last w

observations. Suppose that a change-point occurs at t = τ , t−w+1 ≤ τ < t. Then,

using the model of Eq. (2.2) and substituting the density parameters by their MLE

estimate θ̂1 and θ̂2, the likelihood function is given by

p(D | τ, θ̂1, θ̂2) =
τ∏

i=t−w+1

f0(xi | θ̂1)
w∏

i=τ+1

f1(xi | θ̂2) (5.1)

To decide on a change-point, usually a composite hypothesis test is performed

(BASSEVILLE and NIKIFOROV, 1993, pg. 57). However, in the Bayesian setting,

the hypothesis can be accessed using the computed MAP probability of the change-
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Figure 5.1: VWCD conceptual diagram. As it slides, the window identi�es the
timestamp with the higher probability of being a change-point, �voting� in this
point with a certain probability.

point, assuming a prior p(τ). Trough the Bayes theorem, omitting θ̂1 and θ̂2:

p(τ | D) = p(D | τ)p(τ)∑w
τ=t−w+1 p(D | τ)p(τ)

(5.2)

Now, we can use the MAP criteria to �nd the most probable change-point loca-

tion:

τ ∗ = argmax
τ

p (τ | D) . (5.3)

We store the vote p(τ ∗ | D), to aggregate it later. There are several ways to compute
the vote for each window. In this work, we check if its above a threshold probability

pthr (hyperparameter):

p(τ ∗ | D) ≥ pthr. (5.4)

Using a uniform distribution is a natural choice for the prior p(τ). Another

possibility is to give less weight to points located near the extremes of the window

36



using a beta-binomial distribution (hyperparameters α, β), thus avoiding computing

the MLE with few data points. We explored these two strategies in our experiments.

5.2 Votes aggregation

To decide on a change-point, we must evaluate the votes with di�erent weights. In

this work, we use a simple strategy: we take the mean of the votes and apply a

threshold (pathr). Furthermore, to increase the con�dence of the voting scheme,

we aggregate the votes for a timestamp t = τ only after all possible windows have

visited that point, i.e., at t = τ + w − 1 and if the number of stored votes for that

timestamp is more signi�cant than a threshold value (hyperparameter nthr). Despite

this simple scheme, voting schemes are used in several works, e.g. (NORDMANN

and PHAM, 1999) and (LIU et al., 2021); thus, other strategies for aggregation can

be further investigated.

5.3 Hyperparameters tuning

One great advantage of the method is its intuitive hyperparameter adjustment. For

example, the minimum number of votes received to classify a timestamp as a change-

point (nthr) can be based on the probability associated with the vote. For instance,

if one wants to get a high precision, it makes sense to select only votes with a high

probability, for example, pthr = 0.8 and pathr = 0.9, as we used for the NDT dataset

(Table A.2 of Appendix A).

The less intuitive hyperparameter to adjust is the window size (w). However,

this di�cult occurs not only for VWCD, but for all window-based method (see e.g.,

(XIE et al., 2023)).

5.4 Time complexity

As stated in (WANG and XIE, 2023), it is reasonable to assume at least O(w)
operations are required to �nd the MLE of a set of w points (note that it could

be optimized using, for example, su�cient statistics). We can consider this same

cost to the MAP estimate. Furthermore, similarly to the window-limited GLR, the

VWCD procedure scans through all the potential change-point within the sliding

window, so the time complexity is O(w2).

Example The Fig. 5.2 shows an example of the method application. In the subplot

Fig. 5.2a, we considered the default hyperparameters used to the dataset (Table A.2),

while in Fig. 5.2b is �ne-tuned as explained below.
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In the Fig. 5.2a, the VWCD method detected the jump in the mean between

t = 125 and t = 150 and the variance and mean change near t = 25 and t = 225.

One can note that there is also a change-point between t = 50 and t = 75, from 530

Mbit/s to 550 Mbits/s (less than 5% of change). This minor change-point was not

detected in this example because the number of votes above the threshold pthr (third

row from the top to the bottom) did not achieve the value of 10 votes. However, it

would be possible to detect it decreasing pthr and pathr (the probability threshold

for votes aggregation, depicted in the lower row). This is done Fig. 5.2b, illustrating

the �exibility of the method.

We provide a pseudo-code for one implementation of the VWCD method in the

Appendix A.2.
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Figure 5.2: VWCD example - NDT dataset - Client 3, gig01, down. throughput
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Chapter 6

Experiments

In this section we present the experiments realized with two datasets: the NDT

Dataset (built by us using the M-Lab NDT tool), and the labeled Shao Dataset

SHAO et al. (2017).

6.1 Experiment 1: NDT dataset

6.1.1 The M-Lab project and the NDT

The Measurement Lab (M-Lab) is an open-source project with the objective of

measuring the internet, save the data, and make it universally accessible and useful.

The project provides an open protocol speci�cation - the Network Diagnostic Tool

(NDT), reference implementations for the client and server software, o�cially sup-

ported servers in many countries and public access to the data. In November 2021,

2.9 million NDT tests were executed per day, on average, coming from 239 countries,

with the majority of these tests (90%) triggered by the Google-Mlab integration. If

one searches for �internet speed� in the Google, the site suggests the user to perform

an NDT test. Furthermore, the USA (26%), India (18%) and Brazil (7%) were the

top originators of the tests (CLARK and WEDEMAN, 2021; GILL et al., 2022).

In addition to the existing M-Lab server in Brazil we also used the two RNP

servers in Rio and São Paulo that implemented the NDT protocol following a Mem-

orandum of Understanding (MOU) recently signed by RNP and M-Lab.

6.1.2 Dataset building

The Fig. 6.1 shows the architecture of the experiment. We omit the implementation

details here because Data Engineering is not our focus. Still, it should be men-

tioned that this stage (design, implementation, and testing of the data collection

and processing framework) consumed a signi�cant portion of our work time.
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Figure 6.1: Architecture of the NDT data collection experiment

The idea was to use Raspberry PI1 devices to trigger NDT tests from the user net-

work. The Raspberry is connected directly to the home router using a twisted-pair

cable to measure the network condition of the user, not considering wi� limitations.

The interval between tests was set to follow an exponential distribution with a mean

of 30 minutes, so the expected number of tests per device, at one day, is 48.

From each NDT test, we extract the following time series:

� Download mean throughput (Mbits/s);

� Download mean RTT (ms);

� Upload mean throughput (Mbits/s);

� Upload mean RTT (ms);

It is worth mentioning that the mean values of RTT are not computed and

provided in the summary of the NDT test, only the min. value. To overcome this,

we processed the JSON �le returned by the NDT client and computed the mean

value using the values reported along the test.

NDT clients and servers

We used nine Raspberry PI devices, seven installed in the home of student volunteers

and two installed in the network of a partner Internet Service Provider. The device

hardware speci�cation is shown on Table A.1, and for the client software, we used

the ndt7-client v0.7.02.

When an NDT client is called to target the M-Lab o�cial servers, the application

automatically chooses the destination server, considering the client-server physical

distance and load balancing. As already stated before, in addition to the o�cial

M-Lab servers, we also used in this work two additional NDT servers of the RNP.

The M-Lab servers are grouped in pods called sites.

1https://www.raspberrypi.com/
2https://github.com/m-lab/ndt7-client-go/
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Period: 2023-05-01 to 2023-30-11

Number of clients: 9

Number of sites: 9

Metrics: 4

Number of time series: 296

Total number of observations (tests): 45687

Min. num. of observation per series: 102

Max. num. of observation per series: 1495

Mean num. of observations per series: 617

Table 6.1: NDT Dataset description

Time series selection

To build the dataset, we �ltered the pairs client-site with more than 100 measures

in the period from 2023-05-01 to 2023-30-11 (7 months). We considered the nine

clients and the four metrics previously mentioned. So, each time series is speci�c to

a determined client, site, and metric. Also, after this �ltering, we got a total of nine

sites: gig01...gig04, gru02....gru05, rnp-rj and rnp-sp.

In principle, we would expect to have (9 clients)× (9 sites)× (4 metrics) = 324

time series. However, the clients were installed on di�erent dates, and once some

M-Lab sites were retired during the experiment, some pairs of client-sites did not

achieve the minimum number of measures established (100). In this way, our �nal

dataset turned out to have a total of 296 time series. Aside from other statistics

about the dataset, these numbers are summarized in Table 6.1.

To illustrate the dataset, the Fig. 6.2 depicts the time series of download RTT

and throughput for Client 8. This �gure shows that changes in the throughput are

not always correlated with the latency. This justi�es monitoring the throughput

variable and the RTT for QoS purposes.

6.1.3 Normality assumption

For the parametric methods (Shewhart, 2S-CUSUM, WL-CUSUM, BOCD and

VWCD), we use the Gaussian distribution as the underlying model. This was mo-

tivated both by theoretical and empirical reasons. First, our dataset is composed

of mean measurements (mean throughput and mean RTT). By the Central Limit

Theorem, the limit distribution of the mean of any random sample is Gaussian, even

if the random variable itself is not.

By visually inspecting some of the time series, we also noted that, despite the

outliers, the normal model seems to adhere to most cases. To illustrate this, in

the Fig. 6.3, we plot some time series of the NDT dataset with a change-point

detected by the Pelt-NP. In addition, we plot a probability plot (using the normal
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Figure 6.2: NDT Dataset - time series of Client 8. This client was installed in the
home of a student volunteer connected through the ISP TIM S/A, AS26615.
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Figure 6.3: NDT Dataset - Normality assumption. We show four examples of time
series with a single change-point (detected by the Pelt-NP). The change-point seg-
ments the series in two parts, showing a probability plot with the normal distribution
as a reference.

distribution as the reference line, in red) for the two segments before and after the

change-point. In this �gure, it is possible to note that, despite the outliers, the

normality hypothesis seems reasonable.

6.1.4 Results

For the classic methods, the hyperparameters were tuned according to recommended

values in the literature (MONTGOMERY, 2013). For BOCD and RRCF, we used

recommendations and examples provided by their authors (ADAMS and MACKAY,

2007; GUHA et al., 2016). For the VWCD, we adjusted it according to the guideline

discussed in Section 5.3.

Since we don't have labels for the NDT dataset, we analyzed the results by

visually inspecting the change points identi�ed in some series, the total number of

changes identi�ed and the processing time.
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Figure 6.4: NDT Dataset - Number of detected change-points and elapsed time

The Fig. 6.4 shows the number of change points identi�ed and the processing

time required by each method to run the total dataset. Since the classical methods

do not distinguish anomalies from change points, the number of change points iden-

ti�ed using basic implementations was superior to those identi�ed by the proposed

implementations.

Regarding the required processing time, it can be observed that the classical

methods, even with the proposed framework, are very light: the proposed Shewhart,

EWMA and 2S-CUSUM took 2 s to process the entire dataset; WL-CUSUM, on the

other hand, took one magnitude order above, since it uses a sliding window to

estimate the post-change parameter. The same order of magnitude was observed for

BOCD and Pelt-NP. Finally, the VWCD executed in one order of magnitude above

BOCD and Pelt-NP (three orders above classical methods). The heavier method

was RRCF, four orders above the classical techniques.

The �gures 6.5 and 6.6 show two examples of the application of the methods. In

both �gures, it is possible to note that the classical methods' basic implementation

performed very poorly, especially the WL-CUSUM. On the other hand, the proposed

framework improved the performance.

In the Fig. 6.5, it is possible to note that all the proposed methods could identify

the change-point between t = 125 and t = 150. The minor change-point between

t = 50 and t = 75 was not detected by the RRCF and VWCD methods. However,

adjusting the hyperparameters would be possible to detect it (see, e.g., Fig. 5.2).

On the other hand, the VWCD method marked as change-point the oscillation that

occurred near t = 25, whereas the other methods did not.

In the Fig. 6.6, it is interesting to note that even the Pelt-NP failed to distinguish
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Figure 6.5: NDT Client 3, gig01, down. throughput - Detected change points

some point anomalies (near t = 100 and t = 600) from change-points. In the same

manner, the basic BOCD marked as change points various point anomalies, e.g.,

near t = 200, whereas the proposed BOCD did not. In turn, the VWCD exhibited

better performance than the classical methods but also su�ered from the in�uence

of two outliers near t = 550. These could be mitigated by increasing the vote

probability hyperparameter. In the Fig. 6.7, for example, we have set pthr = 0.99.

In the case of parametric models, it is possible to identify the model parameters

after a change and to verify, in real-time, if this change leads to a QoS worsening.

The Fig. 6.8 illustrate a simple application of QoS monitoring. It shows in the

y-axis the number of change-points that were responsible for a worsening (down-

load throughput reduction), and in the x -axis the magnitude of the reduction (in

megabits per second). The goal is to identify which clients showed a QoS degrada-

tion. To generate the graph, we used all the time series available for each client,

each corresponding to a speci�c NDT site. It is possible to note that, for Client

8, all the methods detected at least eight change points with a magnitude greater

than 150Mbits/s, indicating a possible worsening in the network quality. In fact,

in Fig. 6.2b, it is clear that Client 8 had a throughput decrease. Thus, this �gure

provides insights into how the online change-point methods can monitor the network

quality in real time and without labels.
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Figure 6.8: A simple unsupervised QoS monitoring application. The value in the y-
axis is the number of changes detected so that the download throughput worsened up
to the value in the x-axis. It is possible to note that, for Client 8, the BOCD detected
10 decrements with magnitude 150Mbits/s, indicating worse network quality than
the other clients.

6.2 Experiment 2: Shao dataset

6.2.1 Dataset description

In SHAO et al. (2017), a labeled dataset of RTT measurements was made publicly

available. This dataset consists of a 50 time series from the RIPE Atlas built-

in measurements (RIPE, 2024) and was manually labeled by the authors using a

methodology capable of evaluating the quality of the labels.

Each time series consists of RTT (ping) measured from the probe to the target

server at a regular interval of 4 minutes. The dataset contains 408087 RTT mea-

surements, and the labelers identi�ed 1047 change points. Each time series has (in

the mean) about 8000 measures and 20 change points. The Fig. 6.9 depicts some

examples of time series with their change-point labels. We plot only the �rst 1000

samples for better visualization.
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Figure 6.9: Some time series from Shao Dataset (�rst 1000 samples).

6.2.2 Results

We applied the methods and evaluated the metrics precision, recall and F1 score

(Section 2.5). To tune the hyperparameters, we performed a grid search (see Ta-

ble A.2, Appendix A). The range was selected based on the values used for the NDT

Dataset (Section 6.1.4).

In the same way as in the previous experiment and discussion (Section 6.1.3), we

use the Gaussian distribution as the underlying model for the parametric methods

Shewhart, 2S-CUSUM, WL-CUSUM and VWCD.

We discuss the results by analyzing two examples depicted in Fig. 6.10 and

Fig. 6.11. All the proposed methods correctly identi�ed the labeled change points

in the �rst example. In contrast, the performance of the basic methods (classical

and BOCD) was not satisfactory: they classi�ed many outliers as change points.

The second example, Fig. 6.11, is more challenging. In Fig. 6.13 we �zoomed�

two segments: Segment 2 (τ1 = 188 to τ2 = 272); and Segment 5, (τ4 = 597 to

τ5 = 920). Also, we plotted only the change points detected by the proposed methods

and by Pelt-NP. For Segment 2, it is clear that after t = 210, the mean changes

from 152ms to 150ms. This change was not labeled by the human annotator but

detected by Pelt-NP, EWMA, 2S-CUSUM and WL-CUSUM. Similarly, in Segment

5, the detected change points �make sense�, although they are relatively smaller in

magnitude. Again, this example illustrates the di�culty of labeling changes in time
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Figure 6.10: Shao Dataset - Results for the time series 12723 (�rst 1000 samples)

series through visual inspection and, consequently, the di�culty of evaluating the

change-point methods. Yet regarding this series, the Fig. 6.12 shows the change

points detected by the VWCD method with an alternative tuning increases the

recall, once again illustrating the �exibility of the method.

The behavior of the methods in these two examples is helpful to understand the

overall performance for the dataset, shown in Fig. 6.14. In this �gure, we plot the

boxplot of precision, recall and F1-score aggregating these metrics for all the 50

series. Furthermore, we highlighted in red the two best methods for each metric.

From �gure Fig. 6.14, we note that:

� Regarding the classical methods (Shewhart, EWMA, 2S-CUSUM and WL-

CUSUM), the proposed framework signi�cantly improved the performance in

terms of precision, recall and F1 sore. The Shewhart, EWMA, 2S-CUSUM

had similar performance, whereas the WL-CUSUM had the worst in terms of

precision and F1 score.

� In terms of F1 score, excepting WL-CUSUM, the proposed methods had com-

parable performance with the Pelt-NP. The proposed BOCD had the better
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Figure 6.11: Shao Dataset - Results for the time series 15018 (�rst 1000 samples)

median F1 score (0.62). Still, using the estimated con�dence interval (CI) -

the notches of the boxplots - we cannot claim a statically di�erent result since

the CI of the two boxes overlaps.

� In terms of precision, the VWCD had the better performance, including when

comparable with Pelt-NP. The other proposed methods showed similar perfor-

mance.

� Regarding recall, the proposed BOCD performed similarly to the Pelt-NP.

We plot the confusion matrix for the BOCD (proposed), VWCD and Pelt-NP

in Fig. 6.15. Di�erent from Fig. 6.14, in the confusion matrix we considered the

total of observations, and not the median value of the 50 series. Because of this, the

metrics computed from the matrix can have di�erent values. Furthermore, because

the dataset is too imbalanced, the true negative rate (TNR) and the FPR become

more di�cult to compare.

In the Fig. 6.16, we plotted the number of detected change points and the pro-

cessing time for each method. We note that:
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time series 15018. Here, we plot the change points detected only by our proposed
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� The WL-CUSUM proved to be very sensitive, detecting the number of change-

points, but most of them are false positives, as reported by the low precision

depicted in Fig. 6.14).

� The Pelt-NP also detected many change-points, approximately double the clas-

sical methods and VWCD. This yields a high recall in cost of low accuracy,

also depicted in Fig. 6.14.

� In terms of execution time, the performance was similar to the NDT dataset

discussed in the previous section.
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Chapter 7

Conclusions

Using two datasets with real network measurements, �rst, we showed that the clas-

sical change-point methods - Shewhart, EWMA and CUSUM - present challenges

to real-world implementation because the theoretical models assume the full knowl-

edge of the distribution before and after the change-point. To overcome this, we

proposed a simple framework that improves the parameter estimation and the re-

silience to outliers. As a result, the performance of the classical methods using our

framework was signi�cantly better than the basic implementation, being competi-

tive to the state-of-the-art BOCD and Pelt-NP, this last o�ine. Furthermore, the

classical methods are very light and suitable even for low-resource devices. On the

other hand, one weakness is the relatively high variance in recall. This is possible

because of the need to wait for the process to stabilize before estimating and start

detecting change points.

Using similar ideas of the classical framework, we proposed a simple modi�cation

in the BOCD method to enhance its resilience to outliers and a simple scheme

to decide on a change-point in the online setting. As a result, we do not have

statistical con�dence that the F1-score is better than the other methods (except

for WL-CUSUM), but we can claim that the recall was the same as Pelt-NP and

outperformed the other methods. On the other hand, the hyperparameters are more

challenging to adjust.

In addition to the well-established methods and using the same ideas for out-

lier resilience, we adapted the RRCF, initially designed for anomaly detection, to

change-point detection. Despite exhibiting a relatively poor recall and high compu-

tational cost, the RRCF outperformed the Pelt-NP in precision. Furthermore, an

advantage (besides being online) is that RRCF is intrinsically multivariate. On the

other hand, the main drawback of the method is the non-intuitive score threshold

hyperparameter.

We also evaluated a new method proposed by our group, the VWCD. A signif-

icant advantage of this method, when comparable to the classical ones, is that it
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does not assume the knowledge of distribution parameters; they are learned using

the MLE approach. Furthermore, based on a voting scheme, the hyperparameters

are more intuitive and easier to adjust, and we can easily increase con�dence when

deciding on a change point. This con�dence increase is re�ected in the precision:

VWCD showed signi�cantly better precision than Pelt-NP, but at the cost of a

smaller recall. On the other hand, VWCD is signi�cantly heavier than the classical

methods and may require a larger window; furthermore, in its current implementa-

tion, the method operates with a delay of one window of samples. There are several

ways to take advantage of the voting probabilities. We did not explore those in this

work but the di�erent possibilities will be explored by our group in the future.

As demonstrated in various examples throughout the work, labeling change

points in real-data time series is not a trivial task for humans, being subjective. This

a�ects the evaluation of the method. Some recent works (BURG and WILLIAMS,

2020; SHAO et al., 2017) seek to minimize this issue by developing specialized tools

and methodologies for annotation and metrics evaluation. However, a degree of

uncertainty in the labels persists, and the question of evaluating the change-point

methods in real data does not seem completely clear.

Finally, we conclude that no single method �ts all applications and require-

ments. However, the online methods studied and proposed in this work showed to

be competitive to the state-of-the-art Pelt-NP (o�ine) when applied to time series

of network measurements, enabling their use for practical and real-time applications,

such as network quality monitoring. Using domain-speci�c knowledge to adjust the

trade-o� between precision, recall and execution time, one can select the method(s)

that best �ts the requirements.
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Appendix A

Reproducibility

A.1 Code, data and hyperparameters

The code and data used in this work are available at the Github repository

https://github.com/cleitonmoya/msc_thesis together with instructions to repro-

duce the experiments.

The author implemented the classical methods and the VWCD using Python 3.9

with standard packages for scienti�c computing (details in the Github repository).

To compute the change-point metrics, we rely on the benchmark module of SHAO

et al. (2017) (https://github.com/WenqinSHAO/rtt).

For the BOCD, we used the Python implementation of ALTAMIRANO et al.

(2023) (https://github.com/maltamiranomontero/DSM-bocd).

For the RRCF, we used the Python package rrcf (BARTOS et al., 2019).

For the Pelt-NP, we use the R package changepoint.np

(https://cran.r-project.org/package=changepoint.npd) over the rpy2

(https://github.com/rpy2/rpy2) bridge to Python.

The Table A.1 shows the hardware infrastructure used to run the experiments;

the Table A.2 lists the hyperparameters values and the range used in the grid search

(for the Shao dataset).

Workstation (change-points alghorithms)
CPU: Intel Core i7-6700 (4 cores, 8 threads, 3.40Ghz,

4x256kiB L2 cache, 8MiB L3 cache)
RAM: 16 GB
OS: Windows 10 22H2

Raspberry PI - Data collection
Model: Raspberry PI 4 Model B Rev. 1.4
CPU: Cortex-A72 (4 cores, ARMv8, 1.8GHz)
RAM: 8 GB
OS: Raspberry PI OS 64 bits (2023-05-03)

Table A.1: Hardware infrastructure
.
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A.2 VWCD pseudo-code

The Algorithm 1 presents the pseudo-code for the VWCD method. For vectors and

lists, the index begins at 1. For legibility, we assumed that the log-likelihood can

be computed even for only one sample, but not that it is not true for the Gaussian

distribution (it requires two samples to have a non-null standard deviation).

Algorithm 1 Voting Windows Change-point Detection
1: function VWCD(x, w, α, β, pthr, pathr, nthr, y0, yw)
2: ▷ w: window size ◁
3: ▷ pthr: threshold prob. for a change at each window pos. ◁
4: ▷ pathr: threshold prob. for a change after votes aggregation ◁
5: ▷ nthr: min. number of votes for a change-point ◁
6: ▷ α, β: hyperp. for the beta-binom prior ◁
7: ▷ y0, y1: hyperp. for the logistic prior ◁
8: πw ← betabinom(size = w,α, β) ▷ prior prob. for a change at each window pos.

9: πv ← logistic(size = w, y0, yw)
10: V← empty_dictionary() ▷ dictionary with the list of votes for each n
11: CP ← empty_list() ▷ list of changepoints

12: N ← number of elements of x
13:
14: for n = w . . .N do:

15: xw ← x[(n− w + 1) : n]
16: LLR← empty_array(w) ▷ log-likelihood ratio for each possible cp. in w
17: for ν = 1 . . . w do ▷ Hv composite hypothesis

18: x1 ← xw[1 : ν]
19: x2 ← xw[(ν + 1) : w]
20: (logL1, θ̂1)← mle(x1) ▷ max. likelihood estimation

21: (logL2, θ̂2)← mle(x2)
22: LLR[ν]← logL1 + logL2
23:
24: ▷ Compute the vote of window and store it if meets the threshold prob. ◁
25: (νmap, pν)← map(LLR,πw)
26: if pν ≥ pthr then

27: V [n− w + νmap].append(pν)
28:
29: ▷ If the num. of votes for x[n− w − 1] is greater than nthr ◁
30: ▷ aggregate the votes and decide for a change-point ◁
31: votes← V [n− w + νmap]
32: nvotes = num_elements(votes)
33: if nvotes ≥ nthr then

34: agg_vote←mean(votes)
35: if agg_vote ≥ pathr then

36: CP .append(n− w + 1)
37: return CP
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Method Param. NDT Shao Grid search Ref.

All δ − 5 − Eq. (2.3)
Classical (all) w0 10 10 − Section 4.1
Classical (all) clim 4 4 − Section 4.2.1
Classical (all) κa 5 5 − Eq. (4.1)
Classical (all) αnorm 0.01 0.01 − Section 4.2.3
Classical (all) αstat 0.01 0.01 − Section 4.2.4
Classical (all) cwmax 4 4 − Section 4.2.3
Classical (all) ∆max 1.2 1.2 − Section 4.2.3
Shewhart κ 3 4 [1, 2, 3,4] Eq. (3.2)
EWMA λ 0.1 0.5 [0.1, 0.2,0.5] Eq. (3.3)
EWMA κd 4 4 [3,4, 5] Section 3.1.2
2S-CUSUM h 5 6 [4, 5,6] Section 3.1.3
2S-CUSUM δ 2 3 [1, 2,3] Eq. (3.10)
WL-CUSUM h 5 6 [4, 5,6] Eq. (3.10)
WL-CUSUM w1 20 5 [5, 10] Eq. (3.11)
BOCD λ 1e4 1e10 [1e10, 1e20] Section 3.2
BOCD κ0 0.01 0.5 [0.01, 0.1,0.5] Section 3.2
BOCD α0 0.01 0.01 [0.01, 0.05, 0.1] Section 3.2
BOCD ω0 0.1 1 [0.1, 0.5,1.0] Section 3.2
BOCD K 50 50 − Section 4.3.1
BOCD p_thr_rl 0.05 0.05 − Section 4.3.1
BOCD min_seg 4 4 − Section 4.3.2
RRCF num_trees 40 40 − Section 3.3
RRCF tree_size 100 200 [75, 100,200, 256] Section 3.3
RRCF shingle_size 2 2 − Section 3.3.1
RRCF thr 20 20 [20, 25, 30, 35, 40] Section 3.3
RRCF clim 4 4 − Section 4.4
VWCD w 20 20 − Eq. (5.1)
VWCD α, β 1 1 [1, 5] Section 5.1
VWCD pthr 0.8 0.6 [0.6, 0.8] Eq. (5.4)
VWCD pathr 0.9 0.9 − Section 5.2
VWCD nthr 0.5 0.7 [0.5,0.7] Section 5.2
Pelt-NP min_seg 4 4 − Section 2.1.1
Pelt-NP custom_cost MBIC MBIC − Section 3.4

Table A.2: Hyperparameters
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