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O problema do job shop flexível determina a programação da fabricação, con-
siderando diferentes tarefas e máquinas. Devido à generalidade e complexidade de
diferentes linhas e processos de produção, os modelos para esse problema costu-
mam ser relativamente específicos e restritos. Este trabalho considera o problema
de job shop flexível com restrições mais realistas, como horários de início míni-
mos, diferentes funções objetivo e o uso de Grafos Acíclicos Direcionados (GADs)
para representar restrições de precedência entre operações de um mesmo job. Qua-
tro modelos de Programação Inteira Mista (PIM) são propostos para capturar tais
cenários, e são resolvidos pelo método de branch-and-bound clássico. No primeiro
conjunto de experimentos, um software de simulação a eventos discretos, que lida
com vários tipos de problemas de programação de produção e possui um núcleo
heurístico, é usado para comparar a qualidade das soluções obtidas. No segundo
conjunto de experimentos, o mesmo software é utilizado para gerar soluções viáveis
a serem utilizadas pelo solucionador matemático. São avaliadas instâncias de refer-
ência, sintéticas e outras baseadas em casos do mundo real. O primeiro conjunto
de experimentos numéricos indica que as soluções dos modelos de PIM propostos
superam as soluções heurísticas em todos os casos testados. O segundo conjunto
de experimentos numéricos indica que a resolução dos modelos pode ser afetada
através de melhorias nas soluções dual e primal encontradas ao longo da resolução
dos modelos.
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The flexible job shop problem determines manufacturing scheduling taking into
account different tasks and machines. Due to the generality and complexity of dif-
ferent production lines and processes, models for this problem are often relatively
specific and restricted to a production line. This paper considers the flexible job
shop problem with more realistic constraints such as minimum start times, different
objective functions and the use of a Directed Acyclic Graph (DAG) to represent
precedence constraints between operations in the same job. Four Mixed Integer
Programming (MIP) models are proposed to capture these scenarios and benchmark
instances are solved using the classical branch-and-bound method. A discrete event
simulation software which handles various types of production scheduling problems
and has a heuristic core to generate viable solutions is used to compare the qual-
ity of the solutions obtained via MIP. In the second scenario, the viable solutions
generated by the simulation software are used as initial solutions by the mathe-
matical solver. Reference, synthetic and other instances based on real-world cases
are evaluated. The first set of numerical experiments indicate that the solutions
obtained from the proposed MIP models outperform the heuristic solutions in all
the cases evaluated. The second set of numerical experiments indicate that the MIP
models are affected through improvements in the dual and primal solutions found
throughout the execution of the branch-and-bound method.
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Chapter 1

Introduction

The agile development of industrial production technologies combined with
changes in the characteristics of the markets for manufactured products are striking
characteristics of modern times, highlighting the constant need for upgrading by
manufacturing companies and processes [1, 2]. One of the activities most impacted
by these changes is production planning and control. In this sense, especially in
recent decades, the search for efficient and effective means of planning and control
has been pursued.

The industry originally emerged as a paradigm of producing very standardized
products, i.e. without much variety, on a large scale, to be manufactured by dedicate
and scarce resources [3, 4]. The purpose of this structure was to reduce unit costs
by increasing production efficiency. Since a wider range of items must be produced
by the same set of flexible resources [5], the current scenario faces significantly more
production scheduling complexity [6, 7]. On the other hand, meeting new demands
for customization and product variety requires the flexibility and agility of both
resources and production scheduling to keep up with the constantly fluctuating pro-
duction scenario. Such flexibility contradicts the assumption of mass production
stability to pursue the highest possible economic efficiency. So, how do such seem-
ingly opposing goals coexist [8]?

All of these factors amalgamate to make short-term production planning and
scheduling critical in manufacturing operations. Ensuring that production goals are
met within a relatively short deadline entails coordination and optimization of pro-
duction processes. A production schedule determines what jobs are to be executed
in what machines at what time while satisfying a diverse set of constraints. Planning
requires tracking inventory levels and modifying production schedules in response
to shifts in demand, supply, or other production limitations such as machine fail-
ure [9]. Thus, planning and scheduling are often jointly addressed in manufacturing
operations.

To be successful, companies must properly plan and manage their scarce re-
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sources during manufacturing. A good plan and schedule can guarantee the desired
amount and quality is produced at the appropriate time, while also reducing waste,
downtime, and other costs. Thus, constructing effective plans and schedules is fun-
damental for modern manufacturing, and this gives rise to the Job Shop Scheduling
Problem (JSSP). Indeed, there is a large body of literature in tackling these problems
using a broad variety of problem formulation [10–20].

Many real-world manufacturing problems are also incredibly complex and very
specific in terms of constraints and actions. Nevertheless, recent academic works
have addressed planning and scheduling problems that increasingly resemble real-
world scenarios [21]. A typical strategy is to optimize the production plan using
mathematical programming techniques such as Mixed-Integer Programming (MIP).
The capacity of examining alternative production schedules and selecting the most
efficient schedule is a key benefit of employing MIP in JSSP.

Manufacturers can use mathematical models to plan production efficiently (or
optimally) and allocate resources by considering production constraints like finite re-
sources or machine capacity in complex production environments [22]. Furthermore,
such models can be updated during production to reflect changes in the manufac-
turing environment, allowing manufacturers to adjust their schedules in real-time to
account for new constraints or shifting customer demand. Thus, MIP is an indis-
pensable tool for modern manufacturing processes.

1.1 Motivation

Scheduling a production line becomes incredibly challenging due to countless in-
terconnected factors that create a complex and dynamic environment. A historical
and comparative analysis of two paradigms of industrial management has been dis-
cussed: mass production and flexible/agile production DUGUAY et al. [3]. Mass
production which emerged in the nineteenth century and dominated the twentieth
century, is characterized by a mechanistic and rigid approach to reducing costs, in-
creasing volume, and controlling change. Mass production relies on innovation by
experts and managers, division of labor, and adversarial relations with suppliers.
In contrast, flexible/agile production which emerged in the 1980s as a response to
the increasing complexity and dynamism of the environment, is characterized by an
organic and adaptive approach to improving quality, time, and cost simultaneously.
Flexible production relies on continuous improvement by empowered workers, team-
work, and partnership with suppliers. These paradigms are illustrated with examples
from the automobile industry and other sectors DUGUAY et al. [3]. They conclude
that flexible production is the dominant paradigm in industrial management for the
twenty-first century.
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All of these changes resulted in an increase in complexity in the manufacturing
process, which had an impact on the complexity of the mathematical models that
were designed to take these characteristics into account. In the JSSP each product
may have different processing requirements, manufacturing times, and dependencies
on specific machines or resources. As a result, creating an efficient schedule that
can accommodate this diverse mix of products while optimizing the use of resources
becomes a formidable task that must be automated.

Figure 1.1 depicts an example of non-optimized production scheduling. Figure
1.2 depicts the same scenario with some scheduling improvements, such as shorter
operation completion times. If we had all of the necessary scenario parameters, we
could easily perform the calculations manually and determine the optimum value.

Figure 1.1: An example of production scheduling.

Figure 1.2: An example of production scheduling with minor improvement.

However, this problem can easily reach a point where such manual computations
are no longer feasible in enough time in order to obtain a schedule with satisfactory
objective values, as shown in Figure 1.3.
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Figure 1.3: An example of complex production scheduling.

The complexity of scheduling is further amplified by the interdependencies be-
tween different tasks and processes. The production line operates as a chain, where
the completion of one task triggers the start of another. Delays or disruptions at
any stage can have a domino effect, leading to bottlenecks and inefficiencies down
the line. Ensuring smooth flow and coordination between tasks is crucial, and even
minor changes in the schedule can have significant ripple effects on the entire pro-
duction process.

Moreover, real-world production environments are often subject to uncertainties
and disruptions. Machine breakdowns, unexpected material shortages, fluctuating
demand, and workforce issues are just a few examples of the unpredictable events
that can occur. Schedulers must account for these uncertainties and be prepared to
adjust the schedule in real-time to maintain productivity and meet delivery dead-
lines.

Another factor contributing to the difficulty of scheduling a production line is the
presence of resource constraints. Limited availability of machines, workforce, or raw
materials imposes limitations on the production capacity. Optimally allocating these
finite resources across various products and tasks becomes a complex optimization
problem.

Additionally, modern production lines are becoming increasingly dynamic and
flexible to meet market demands. The concept of lot size one or personalized pro-
duction requires rapid changeovers and frequent adjustments to the schedule. As
a result, traditional static scheduling methods are no longer sufficient, and agile
scheduling techniques are needed to adapt quickly to changing production require-
ments.
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Furthermore, the objective of scheduling is not just limited to minimizing pro-
duction time or costs. In today’s competitive landscape, organizations also need to
consider other critical factors such as on-time delivery and customer satisfaction.
Consider these multiple objectives requires a comprehensive approach and the use
of advanced optimization algorithms.

Finally, due to the inherent variability and diversity of products, interdepen-
dencies between tasks, uncertainties and disruptions, resource constraints, dynamic
production requirements, and multiple competing objectives, scheduling a produc-
tion line becomes challenging. To address these complexities, advanced schedul-
ing techniques such as AI-based algorithms, simulation models, and optimization
methods such as Mixed Integer Linear Programming (MILP) are required. By con-
fronting these challenges head on, organizations can improve production efficiency,
lower costs, increase customer satisfaction, and gain a competitive advantage in the
ever-changing manufacturing and production landscape.

1.2 See The Future

As a basis for comparison with the solutions generated by the mathematical
model here proposed, a state-of-the-art software used by manufacturing companies
that generates solutions for scheduling problems was used for comparison. The
software uses a processing kernel called See The Future (STF), developed by the
National Institute of Technology (INT), and is made available through a customized
layer for each client.

A list of the jobs that need to be completed, together with the corresponding
delivery dates, dependencies between the operations of each job, machine options
for completing each operation, and specific factory data like processing times, setup
times between operations, production rates, and various other parameters must
be provided by the customer. Then, in order to prepare the data for use by its
processing core, the software processes and rearranges the data.

STF is able to generate viable solutions to a wide variety of scheduling problems
using different heuristics and user guidance. At each iteration, the user selects a
set of rules that will be applied in order of priority. Users can even specify these
sequencing criteria and request that the STF developers implement them. In an
iterative and interactive approach, the user then changes not only the priority and
set of rules that the STF will use to build the solution, but can also include a variety
of other soft constraints that, while not necessarily impractical, do not fit with the
culture and needs of the factory in question. In this sense, the user’s knowledge of
the problem and the identification of bottlenecks in the process, for example, are
crucial to the proper use of the STF.
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Thus, STF can generate viable solutions to a wide range of scheduling problems.
The common approach to identifying a good feasible solution is an iterative proce-
dure of rearranging available rules based on the generated partial schedule. This
set of rules is employed when selecting each of the possible combinations of jobs,
operations, and machines (a triplet) among the jobs and operations to be assigned
to the respective machines at each instant.

In other words, the STF discretely traverses the time established for production
planning to decide, deterministically and greedily, which production tasks should
occur at each instant. To do so, the STF cleverly and leanly explores all possible
combinations of operation and machine and evaluates them according to the policy
established by the user at each decision time.

To compare different allocations, different queuing policies can be used: First
In, First Out (FIFO); Shortest Deadline (SD); Shortest Setup Time (SST); Shortest
Processing Time (SPT), among other specific policies devised by the customer in
question. Whenever two triples share the same resources within the planning horizon
and can be evaluated for machine allocation (i.e., performing a given operation on
a machine at a given instant is feasible), these queuing rules come into effect, being
evaluated in increasing order of priority.

The triple that wins in at least one of the comparisons at each iteration becomes
a processing task in the feasible solution and is not reconsidered. Once all the
feasible triples become processing tasks, the simulator then steps to the next instant
in time when some event occurs that performs a change in the state of some entity
of the simulation (such as the completion of a processing task or the release of
some machine either by termination of processing or by finished maintenance, for
example). A feasible solution is presented to the user once all jobs’ operations have
been processed and scheduled.

Note that the STF does not have an explicit objective function. However, the
user can determine different combinations of queuing rules, which are considered
when evaluating the triplets to generate a feasible schedule, in order to modify
the planning generated by the simulator to improve the performance metrics to be
evaluated (e.g. reduce delay, reduce idleness, increase profit).

1.3 Contributions

The main objective of this work is to present two mathematical models that suc-
cessfully handle the objectives and complexities present in real-world manufacturing
environments. The main goal of this research has been to develop a model that can
generate solutions that are viable and efficient in real production environments.

An approach was devised to effectively address the sophisticated dependency
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graph of operations associated with each item in real-world manufacturing environ-
ments. To ensure comprehensive coverage of all possible arrangements of dependen-
cies among operations, a Directed Acyclic Graph (DAG) approach was employed
in the formulation of the mathematical models. By representing the dependencies
among operations of an item as a DAG, the proposed models possess the inherent
capability to handle multifaceted interdependencies, thus enabling a holistic and ac-
curate representation of the actual production processes. This representation ensures
that the mathematical models presented in this research are capable of addressing
a wide array of real-world production challenges, making them highly versatile and
relevant in practical production environments.

To ensure the best possible alignment with real production challenges, the es-
sential characteristics and features that must be incorporated into the suggested
models were first carefully identified. It is ensured that the mathematical models
proposed here have the capabilities to faithfully reproduce the key aspects of actual
production processes by providing such careful consideration.

Furthermore, the research work undertakes an evaluation process involving
benchmark and generated instances and real-world manufacturing scenarios. This
evaluation scenario not only tests the efficacy of the proposed mathematical models
but also validates their practical utility in solving real-world manufacturing prob-
lems. The empirical results derived from this evaluation strongly indicate that the
proposed mathematical models yield optimal solutions for medium-sized benchmark
instances, underscoring their computational efficiency and efficacy.

Additionally, the efficacy of the proposed models is further exemplified by their
performance on simplified real-world instances. In comparison to a state-of-the-
art tool widely employed in manufacturing processes (STF software), the solutions
obtained from the proposed models exhibit a notable improvement, thus affirming
their practical superiority in addressing real-world production problems.

Finally, as part of this work, an article was published in the Brazilian Symposium
on Operational Research (SBPO) [23].

1.4 Structure

The remainder of this paper is organized as follows:

• Chapter 2 provides a review on the relevant literature about the Job Shop and
Flexible Job Shop problems tackled in this work and about the Dependency
Graph approach as an Directed Acyclic Graph, including how researchers have
used CP and MIP models, metaheuristics and others to tackle this class of
problems. An explanation about some real-world scenarios are also provided
and along with gaps identified;
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• Chapter 3 presents four proposed mathematical models and a detailed expla-
nation about their objective and constraints.

• In Chapter 4, two sets of experiments are presented and discussed: the first
set contains comparison results between mathematical models and a state-of-
the-art software based on heuristics and discrete event computer simulation
(STF); the second set provides results on using solutions generated by STF to
improve the results initially obtained by mathematical models.

• Chapter 5 presents a brief conclusion of this thesis and a path to future works.
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Chapter 2

Related work and background

The Job Shop Scheduling Problem (JSSP) is a well-known combinatorial opti-
mization problem where the objective is usually to minimize the makespan. The
JSSP has many applications in manufacturing, logistics, project management, and
other domains. However, the JSSP is also known to be NP-hard, which means that
finding an optimal solution may be computationally intractable for large instances.
Therefore, many researchers have proposed various heuristic and metaheuristic al-
gorithms to find near-optimal solutions in reasonable time.

However, most of the existing algorithms for the JSSP assume that the operations
can start as soon as the preceding operations are finished, and that the only objective
is to minimize the makespan. These assumptions may not hold in more realistic
scenarios, where there may be additional constraints and objectives that need to
be considered. For example, in the cases presented in this work, some jobs have a
minimum start time that specifies the earliest time that a job can begin. This could
be due to a lack of raw materials or even to do reschedule, so the current job at some
machine can be finished. Furthermore, there may be different objective functions
that reflect the decision maker’s preferences or priorities, such as minimizing total
tardiness, which is a common approach when some features that must be considered
are related to dates.

In this dissertation, we address the JSSP under more realistic constraints and
objectives, and propose novel algorithms that can handle them effectively and ef-
ficiently. We first review the relevant literature on the JSSP and its variants, and
identify the research gaps and challenges that motivate our work. We then present
the models proposed in Chapter 3, each focusing on a different aspect of the problem.

2.1 Job Shop Scheduling Problem

In computer science and operations research, the JSSP is a well-studied combi-
natorial, NP-hard optimization problem. The goal of the problem is to identify the
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best plan for distributing shared resources to competing activities over time in order
to reduce the total time required to complete all activities.

In a general job scheduling problem, we are given n jobs with varying processing
times that must be scheduled on m machines with varying processing speed, while
attempting to minimize the makespan - the total length of the schedule (that is,
when all of the jobs have completed processing). Each job in the job-shop scheduling
variant consists of a set of nj operations that must be executed in a specified order
(known as precedence constraints) [24]. When an operation of a job is assigned to
be processed on a machine it is called a task of production.

There are several constraints for the job shop problem: no operation for a job
can be started until the previous operation for that job is completed. A machine
can only work on one task at a time. A task, once started, must run to completion
and each operation requires specific resources (e.g. machines, operators etc.) to be
processed.

A common goal for this problem is to schedule the tasks on the machines with
the objective to minimize the length of the schedule—the time it takes to complete
all of the jobs, also known as makespan.

Another set of constraints commonly present in real production lines are related
to dates. The start of production is sometimes limited to the arrival of raw mate-
rials, or it may even depend on a process that is performed in another part of the
factory. This means that the demand exists, but it should not be started before a
predetermined time. In the latter situation, this type of constraint can be avoided
if the planning scope is expanded to cover all sectors responsible for one or more
operations on a certain item [25]. However, it is not unusual to find contexts so
complex that, to make the planning process feasible, it becomes necessary to break
the planning of the whole plant into smaller parts, such as physical sectors or related
areas.

On the other hand, deadlines for the production of a demand are also part
of the planning routine in real factories. In production lines that operate both
by pushed or pulled demand (which generally involves a strict inventory control),
deadlines are necessary to control what to perform at each moment of planning.
The difference is that in pushed production these deadlines tend to be more flexible,
because the demand deadlines are intended to ensure the minimum safety levels
of operations. While in pushed production, this deadline can be crucial to the
organization’s success, especially in cases where deadlines are set through agreements
with end customers. In this case, it is clear that meeting or not meeting a deadline
has immediate effects on customer relationship management (while also accruing
early bonuses or paying late fees).

Other aspects of JSSP, such as the management of energy or human resources,
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are beyond the scope of this work. However, a relevant case study of finite capac-
ity production scheduling in a motorcycle manufacturing plant was conducted by
CARVALHO et al. [8]. The authors employed simulation-based systems to support
production schedulers in different plant sectors. An action research method was
used, which included participatory and iterative problem-solving and improvement
processes. The authors took into account the human, organizational, and techno-
logical dimensions of the scheduling problem and emphasized the implementation
lessons learned. The authors reported significant benefits from their approach, such
as reduced work in process, assembly line stoppages, and scheduling time and also
discussed the implementation challenges and difficulties, such as modeling complex-
ity, data integration, user training, and organizational change.

In order to improve the modeling for the problem, the order of precedence be-
tween work operations can be treated as a DAG in this work and will be explained
in section 2.3.

2.2 Flexible Job Shop Scheduling Problem

The Flexible Job Shop Scheduling Problem (FJSP) is an extension of the con-
ventional job shop scheduling problem in which an operation can be executed by
any machine from a defined set.

In contrast to the conventional job shop scheduling problem, where each opera-
tion must be processed on a specific machine, the FJSP allows for more flexibility
in assigning operations to machines. The FJSP is far more complex than the JSSP
because it introduces the assignment of operations to machines as an additional
decision variable.

A mathematical model is considered efficient and effectively used for schedul-
ing in production lines, when its constraints must reflect the characteristics of the
real world whose model it is intended to represent [26]. In this section the rele-
vant characteristics commonly found in the context of FJSP production lines are
presented.

One of the main characteristics of FJSP is the need to set up a machine to start
producing an item after it has been used to produce another kind of item. Often this
set up time depends on both kinds of items: produced before and to be produced
[27], and is called sequence dependent setup time. It is well known that setup times
have a major impact on scheduling performance [28]. This effect stems from the need
for machine adjustments for different reasons, such as the difference in dimensions
of the items produced, different production temperatures (which implies heating or
cooling of the machine), or even the change of large tools to be used (e.g. molds).

The FJSP models have become more complex over time, which motivates some

11



researchers to review the state-of-the-art methods and identify the research gaps
and directions in this field. XIE et al. [10] present a systematic literature review of
the solution methods for the FJSP, which they divide into three main categories:
exact algorithms, heuristics and meta-heuristics. They also discuss the real-world
applications of the FJSP in various industrial sectors, such as glass, textile, steel and
electronics. Moreover, they explore the future research challenges and opportunities
of the FJSP, such as incorporating environmental factors, uncertainty factors, multi-
objective optimization and hybrid models. They argue that the FJSP is a worthwhile
and important research topic that requires more attention from both academia and
industry.

The evolution of industry technologies and their interconnections have increased
the complexities of FJSP. ZHENG et al. [1] performed a systematic literature review
on how Industry 4.0 enabling technologies are applied in manufacturing business
processes. They discovered that production scheduling and control was the most
studied process, while IoT, Big Data Analytics and Cloud were the most utilized
technologies. They also discussed how various technologies can be integrated to
enhance different processes in the supply chain, such as production, distribution, and
consumption. They also identified some of the emerging trends that are transforming
the supply chain landscape, such as the shift from product-based to service-based
models and the adoption of circular supply chain management principles that aim
to reduce waste and environmental impact.

KIM e BOBROWSKI [28] investigated how sequence-dependent setup time af-
fects job shop scheduling performance. They used a simulation model of a nine-
machine job shop with six different job types and varying setup times for each job
type. They compared four scheduling heuristics that took setup time and/or due
date information into account when making a sequencing decision. They also varied
the tightness of the due date and the cost structure to test the heuristics’ sensitivity.
Their findings revealed that setup-oriented heuristics, which explicitly accounted for
setup time, outperformed ordinary heuristics in terms of flow time, due date per-
formance, and total cost. They also discovered that setup-oriented heuristics were
less sensitive to changes in due date tightness and setup time than conventional
heuristics. Their research found that sequence-dependent setup time has a signif-
icant impact on job shop scheduling performance and that appropriate scheduling
heuristics are required to effectively address this issue.

Mathematical models that represent the increasingly complex reality of factories
are still much needed, and for this reason, studies have been carried out with the
objective of improving the performance and comprehensiveness of the models over
the years.

A MILP model and a hybrid metaheuristic (hybridization of Artificial Immune
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and Simulated Annealing Algorithms) for FJSP is introduced by ROSHANAEI et al.
[29]. Although they have addressed the basic constraints (e.g. Sequence Dependent
Setup Times (SDST)) of the FJSP with excellence, bringing a structurally efficient
formulation, they do not take into account real constraints of this context such as
deadlines, startup constraints and, more importantly, they do not address problems
where a machine needs to be set up between two operations of the same job.

The survey provided by CHAUDHRY e KHAN [26] covers techniques that have
been used to tackle FJSP. Among the techniques used in the reviewed papers are
metaheuristics such as Ant-Colony Optimization (ACO), Evolutionary Algorithms
(EAs), heuristics, exact algorithms such as MIP, and hybrid algorithms using one
or more heuristics and/or metaheuristics.

YEUNG et al. [30] investigated a supply chain scheduling problem involving a
single supplier, a single manufacturer, and multiple retailers, where the manufacturer
has limited production capacity and can only accept some of the retailers’ orders.
The problem is formulated as a two-machine proportionate flow shop scheduling
problem with common due windows, with the goal of maximizing the manufac-
turer’s profit, which is dependent on storage time, storage quantity, order sequence
dependent weighted storage costs, and order idle time. The issue is similar to the job
shop issue, but with different machine speeds and common due dates. To solve the
problem optimally, the authors devised a pseudo-polynomial dynamic programming
algorithm. They also applied their model to a real-world case study in the apparel
manufacturing industry.

DEMIR e İŞLEYEN [15] reviews and compares five different mathematical for-
mulations for FJSP, based on the type of binary variable that they use to capture
the sequencing decision: sequence-position, precedence, and time-indexed variables.
They compare the models based on the objective function value, CPU time, the num-
ber of variables and constraints, and the number of nonlinear entries. They evaluate
the models’ performance using randomly generated test problems from FATTAHI
et al. [31]. In terms of solution quality and computational efficiency, they discover
that the precedence variable-based model outperforms the others. They also discover
that the time-indexed model is sensitive to the time interval chosen and necessitates
a large number of variables and constraints. They conclude that mathematical pro-
gramming formulations can be used to better understand the structure of FJSP and
develop effective heuristics.

A MILP formulation is presented by [27] to solve FJSP with SDST. To further
improve the solution quality and efficiency, the article proposes a tabu search al-
gorithm with specific neighborhood functions and a diversification structure, which
begins with a randomly generated initial solution, then applies feasibility checks
and iterative searches for better solutions by employing local search procedures and

13



making minor changes to the current solution. They also emphasize the importance
of considering setup times in manufacturing line problems because setup times can
have a significant impact on overall manufacturing efficiency and productivity.

An integer non-linear model is introduced by [32] to deal with FJSP-SDST,
alongside by a real-world case of a manufacturer in the automotive sector producing
injection molded parts. What makes this work interesting is that it takes into
account other factors such as release dates and deadlines. By including release
dates and deadlines in the mathematical model, the proposed approach can better
reflect the constraints and objectives of a practical manufacturing environment.

A Mixed Integer Non-Linear Programming (MINLP) model for FJSP with vari-
able batches is proposed by [33], that also takes into account a transfer time between
operations processed on different machines. In their work, jobs can be divided into
sub-batches so that they can be processed on different machines at the same time.
This is a significant improvement over traditional FJSP models, in which each op-
eration of a job must be completed on a single machine before proceeding to the
next.

Four MILP models and a constraint programming (CP) model to solve the dis-
tributed flexible work shop scheduling problem was proposed by MENG et al. [20].
The MILP models are formulated based on four different modeling ideas (sequence-
based, position-based, time-indexed, and adjacent sequence-based), and the CP
model is formulated based on range variables and domain filtering algorithms. The
experimental results showed that the sequence-based MILP model was the most
efficient of the MILP models, while the CP model was very effective in finding
good quality solutions for both small and large-sized problems. The CP model out-
performs state-of-the-art algorithms and gets new better solutions to 11 reference
instances. In addition, the best MILP model and the CP model prove the optimality
of 62 best known solutions.

A MILP and two heuristics for FJSP with the aim of minimizing the makespan
was developed by FATTAHI et al. [31]. The mathematical model was a MILP that
solved the assignment and sequencing sub-problems in an integrated or hierarchical
way. The heuristics were based on the Simulated Annealing (SA) and Tabu Search
(TS) metaheuristics, and they also used six different search structures to combine
the sub-problems. They evaluated their methods using the branch and bound tech-
nique for small problems, and the upper and lower bounds for medium and large
problems. They did not consider setups, due dates, another objective function, or
DAGs for modeling operations precedences, but they provided some benchmark in-
stances that are widely used in the literature. They found that the hierarchical
approach performed better than the integrated one.

A CP and MILP models were employed by ZHANG e WANG [19] to address
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the flexible assembly JSSP in a dynamic manufacturing environment. In addition,
several dispatch criteria with machine feedback mechanism are developed. Experi-
mental studies are conducted based on test case problems with different scales and
complexities. It was found that CP is the most effective approach, whose solu-
tion aptitude outweighs MILP, as well as all dispatch criteria in both static and
dynamic cases. On the other hand, the dispatch criteria are simple to implement,
among which the earliest completion time criterion is the most favorable. A real-time
scheduling/reprogramming system was built for the implementation of the proposed
approaches to solving practical production problems.

To minimize the total energy usage, MENG et al. [11] present six MILP formula-
tions for the FJSP that aim. The formulations are based on two different approaches:
idle time variable and idle energy variable. The former approach computes the idle
energy consumption by multiplying the idle time by the idle power, while the latter
approach directly assigns idle energy as a variable to be optimized. The formulations
also incorporate the switching on/off strategy to reduce the idle energy consump-
tion when the machines are not in use for long durations. A modeling concept is
used to split each machine into several slots or positions and allocate operations
to these slots. A comparison and an evaluation of the proposed formulations and
a previous formulation was made in terms of size and computational difficulties.
The paper finds that all of the proposed formulations significantly outperform the
previous formulation, and that the formulations based on different approaches have
large differences in size and computational difficulties.

ÖZGÜVEN et al. [34] propose two MILP models for the flexible job shop schedul-
ing problem with routing and process plan flexibility. The first model is a MILP
model that employs a binary variable to indicate whether a job is processed before
another one on a machine, while the second model is an extension of the first one
that incorporates alternative process plans for each job. They also evaluate their
models on hypothetical test instances and compare them with existing models and
heuristic methods from the literature. They show that their models can obtain op-
timal or near-optimal solutions within reasonable CPU time. They also claim that
their models have fewer binary variables and constraints than previous models.

A CP model and a MILP model to solve a JSSP with parallel batch processing
machines was proposed by HAM e CAKICI [13]. They also compare their models
with a previous MIP model from the literature. They test their models on a set of
common problem instances and find that CP outperforms MIP in terms of computa-
tional time and solution quality. The authors emphasized that the proposed three-
indexed model has fewer variables and constraints than the existing four-indexed
model in the literature. In order to tighten the formulation and improve the lower
bounds, they also introduce some valid inequalities.
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It is presented by GOMES et al. [22] a MILP model for scheduling make-to-
order job shops that are flexible. It takes into account groups of parallel homo-
geneous machines, a limited number of intermediate buffers, and negligible set-up
effects. The model also supports re-circulation, which means that certain jobs may
visit the same machine group multiple times. The authors compare their model to
other MILP formulations and heuristic methods in the literature and demonstrate
that using commercial MILP software, their model can obtain optimal solutions for
realistic examples of flexible job shops.

JUNG et al. [35] presented a MILP model and three genetic algorithms (GA) for
a two-stage assembly flow shop scheduling problem with dynamic component-sizes
and a setup time. The problem involves producing various types of components on
a single machine and assembling them into products on a single assembly machine.
The authors considered the case where different products require different numbers
and types of components, and a setup time is incurred when the machining machine
switches between different components. The objective is to minimize the makespan
of the production process. The authors derived several optimal properties for the
problem and proposed three GAs with different chromosome representations: one
with a complete solution, one with a component-manufacturing sequence, and one
with a product-assembly sequence. The authors compared the performance of the
GAs with randomly generated examples and found that the GA with a product-
assembly sequence outperformed the other two GAs and the MILP model in terms
of solution quality and computational efficiency.

An improved hybrid algorithm framework for the job-shop scheduling problem
that combines MILP and CP was proposed by REN e TANG [14]. Based on the con-
cepts of critical job assignment and critical cut, the authors show two heuristics for
generating more effective cuts. Experiments show that the improved framework is
capable of solving more complex problems faster than the existing framework. The
paper also introduces a hybrid MILP/CP model for the job-shop scheduling prob-
lem, which divides the problem into two subproblems: assignment and sequencing.
The paper builds on previous work that uses a hybrid MILP/CP approach to solve
scheduling and combinatorial optimization problems.

A MILP model and a multi-objective evolutionary algorithm based method for
solving the dynamic flexible job shop scheduling problem was introduced by SHEN
e YAO [17] . They considered four objectives: make-span, tardiness, maximal ma-
chine workload, and stability. They proposed a modified predictive–reactive schedul-
ing approach that used heuristic strategies to construct the initial population and
problem-specific genetic operators for variation. They also designed a dynamic deci-
sion making procedure to select one solution from the Pareto front. They compared
their method with existing scheduling rules and static algorithms on a simulated
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dynamic flexible job shop.
VITAL SOTO [18] developed a MILP model and a hybrid bacterial foraging

optimization algorithm HBFOA are proposed to tackle the the FJSP with sequencing
flexibility (FJSPS), which is a generalization of the classical job-shop problem that
allows different precedence relations among operations. They also incorporate dual-
resource constraints (workers and machines) and multiple process plans for each
job into the problem. They formulate multi-objective mathematical models and
a modified non-dominated sorting genetic algorithm to deal with these extensions.
The authors evaluate their models and algorithms on various benchmark instances
and a real-world case study from a metal cutting industry. They demonstrate that
their methods can generate efficient and effective solutions for the FJSPS and its
extensions [36].

A FJSP with job-splitting was studied by TUTUMLU e SARAÇ [37]. They
developed a MILP model that enables the jobs to be divided into variable sub-lots
and allocated to different parallel machines without any restrictions on the number
and size of sub-lots. They also designed a hybrid genetic algorithm that uses a local
search algorithm to optimize the size of sub-lots and enhance the search performance.
Their goal was to minimize the makespan. They evaluated their model and algorithm
on randomly generated problems of various sizes and found that job-splitting can
significantly decrease the makespan. They also showed that their hybrid genetic
algorithm outperforms a classical genetic algorithm.

All the related works presented have some aspects of real-world problems iden-
tified in this paper, although there is a gap, which this paper aims to fill, when it
comes to dealing with all aspects together.

A further distinction between this work and the aforementioned works is that
they approach delay in a way that considers negative values, which means the job is
finishing earlier, and since, where this effect occur, there difference in the objective
function from finishing an operation that is already within the agreed deadline or
one that is outside is the same.

Also, some recent studies have explored the impact of Industry 4.0 on production
scheduling, as well as the current and future research directions in this field.

For instance, PARENTE et al. [9] present a review and analysis of the impact
of Industry 4.0 (I4.0) on production scheduling, as well as the current and future
research directions in this field. The authors identify the main opportunities and
challenges brought by I4.0 to scheduling, such as increased flexibility, adaptabil-
ity, integration, and complexity. They also propose a set of critical scheduling ar-
eas (CSA) that need to be developed to enable the full implementation of I4.0 in
scheduling, such as holistic scheduling, decentralized decision-making, human–robot
collaboration, and scheduling under uncertainty. The authors conduct a two-stage
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cascade literature review to assess the state of the art and the research gaps in each
CSA and provide suggestions for future research.

An overview of the evolution of production paradigms from mass production to
mass personalization is presented by WANG et al. [2], with a discussion of the role
of Industry 4.0 in enabling the latter. The authors propose a framework for mass
personalization production based on four key components of Industry 4.0: cyber-
physical system, mobile and cloud computing and Internet of things, big data, data
mining and knowledge discovery, and Internet of service. They also provide some
examples of industrial practices and a lab demonstration of producing personalized
keychains using the proposed framework. The authors conclude that mass person-
alization is the advanced stage of mass customization, and that Industry 4.0 can
facilitate the realization of mass personalization by integrating emerging technolo-
gies and customer participation in the design process.

A survey on heuristic approaches for solving Multi-Objective Flexible Job Shop
Problems (MOFJSP) was conducted by TÜRKYILMAZ et al. [21] , which are com-
plex optimization problems with wide applications in industrial fields. The survey
reviewed the recent studies on MOFJSP based on different heuristic techniques, such
as particle swarm optimization, artificial bee colony, variable neighborhood search,
tabu search, and others. The survey also analyzed the problem sets, objective func-
tions, and performance measures used in the literature. The survey concluded that
there is no general best method for solving MOFJSP, and that more research is
needed to address the challenges and limitations of the existing methods.

JIANG et al. [7] present a comprehensive review of the evolution of production
scheduling from Industry 3.0 to Industry 4.0, covering different types of scheduling
problems, methods, and applications. They classify scheduling problems into four
categories: centralized, distributed, decentralized, and cloud manufacturing schedul-
ing. They also analyze the literature on these topics from various perspectives,
such as production system configuration, operating environment, objectives and con-
straints, and solution methods. They use both heuristic and mathematical models
to solve scheduling problems, depending on the complexity and characteristics of the
problems. They also discuss the challenges and trends in production scheduling in
the context of Industry 4.0, such as sustainable manufacturing, mass customization,
inter- and intra-organizational collaboration, adaptive and self-organized scheduling,
and big-data driven scheduling. They conclude by highlighting the importance of
production scheduling for improving the efficiency and intelligence of manufacturing
systems.

A structured literature review of large scale industrial production scheduling
problems with complex constraints was proposed by SCHLENKRICH e PARRAGH
[38], they classify the existing literature into two streams: one that generalizes clas-
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sical scheduling problems and one that focuses on specific industry cases. They
identify three main categories of solution methods for large scale problems: meta-
heuristics, constraint programming and machine learning. They highlight the chal-
lenges and opportunities of scheduling in the era of Industry 4.0 and suggest some
promising directions for future research.

Finally, VERDERAME et al. [39] provide a review of the planning and scheduling
problems under uncertainty across multiple sectors, such as chemical, petrochemical,
pharmaceutical, energy, power, agriculture, forestry, waste, water, transportation,
and others. They compare the commonalities and differences of the problem for-
mulations, objectives, constraints, and uncertainty approaches used in each sector.
They also identify the key challenges and opportunities for future research in this
area. They conclude that planning and scheduling under uncertainty is a rich and
diverse field that can benefit from interdisciplinary collaborations and integrated
methodologies.

Table 2.1 summarizes the characteristics of some of the papers examined that
deal with the JSSP and the FJSP, listing the features of each approach presented
making it easier to see how they compare.

Table 2.1: Summary of the papers’ reviewed with the characteristics of approaches
used to tackle JSSP/FJSP.

Paper MILP MINLP Flexible Heur Setup Dates DAGs Objective
Function

BIRGIN et al. [12] ✓ - ✓ - - - ✓ Makespan
CAO et al. [40] - - ✓ ✓ ✓ - ✓ Makespan
CARVALHO et al. [8] - - ✓ ✓ ✓ ✓ - Multi-objective
FATTAHI et al. [31] ✓ - ✓ ✓ - - - Makespan
GOMES et al. [22] ✓ - ✓ - - ✓ - Cost
HAM e CAKICI [13] ✓ - ✓ - ✓ - - Makespan
JUNG et al. [35] ✓ - - - ✓ - - Makespan
MENG et al. [11] ✓ - ✓ - - - - Energy
MENG et al. [20] ✓ - ✓ - - - - Makespan
ÖZGÜVEN et al. [34] ✓ - ✓ - - - - Makespan
PINHA et al. [25] - - ✓ ✓ ✓ ✓ - Multi-objective
REN e TANG [14] ✓ - - ✓ ✓ ✓ - Makespan
ROSHANAEI et al. [29] ✓ - ✓ ✓ - - - Makespan
SHEN e YAO [17] ✓ - ✓ ✓ ✓ ✓ - Efficiency
SHEN et al. [27] ✓ - ✓ ✓ ✓ - - Makespan
TUTUMLU e SARAÇ [37] ✓ - ✓ ✓ ✓ - - Makespan
VITAL SOTO [18] ✓ - ✓ ✓ - ✓ ✓ Tardiness
WINKLEHNER e HAUDER [32] - ✓ ✓ ✓ ✓ ✓ - Makespan
XIULI et al. [33] ✓ ✓ ✓ ✓ - - - Makespan
YEUNG et al. [30] - - ✓ ✓ - ✓ - Profit
ZHANG e WANG [19] ✓ - ✓ - ✓ - - Makespan
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2.3 Dependency graph

A directed acyclic graph (DAG) is a modeling approach that can be used in the
context of the FJSP to encode the operation dependencies between different jobs
and machines, providing a powerful and intuitive representation of the scheduling
constraints. The classic linear order of precedence can be seen in Figure 2.1, and is
also a DAG.

Figure 2.1: An example of job with a linear order of precedence.

A DAG is a specialized type of graph where the edges have a specific direction,
meaning they go from one node to another, indicating the flow or precedence of oper-
ations. In the job shop context, each node in the DAG corresponds to an operation
that needs to be performed, and the directed edges represent the order in which
operations must be executed, indicating the precedence constraints between opera-
tions. The acyclic property ensures that no circular dependencies exist, ensuring a
feasible sequence of operations in the job shop.

The DAG approach provides a compact and informative way to visualize the
scheduling constraints and explore the feasible sequence of operations for each job.
The use of DAG approach overrule the traditional representation of FJSP where only
one operation precedes another, increasing complexity and bringing the representa-
tion closer to the real ones in the manufacturing context. In this work, two types of
DAGs were investigated in order to address some common scenarios in production
planning, as shown below.

A MILP-based method for the FJSP problem was proposed by BIRGIN et al.
[12], who improved an existing model by ÖZGÜVEN et al. [34] . The proposed
method uses DAGs to represent the jobs and was tested using both exact and heuris-
tic methods. The work results showed better performance and flexibility than the
previous model. The authors also generated new test cases for the FJSP problem,
based on realistic scenarios from the printing industry.

A approach to FJSP was proposed by CAO et al. [40], which combines a
knowledge-based cuckoo search algorithm (KCSA) and Reinforcement Learning
(RL). The KCSA can handle complex scheduling constraints such as mating opera-
tions, sequence-dependent setup time, and precedence constraints, which are mod-
eled as directed acyclic graphs (DAGs), enhancing the representations’ flexibility.
The algorithm enhances a basic cuckoo search algorithm with reinforcement learn-
ing and hybrid heuristics, forming a knowledge base that influences mutation and
adjusts parameters dynamically. A feedback mechanism is also implemented to en-
sure the appropriate balance between population diversity and intensification. The
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KCSA’s effectiveness and robustness were verified using benchmark and randomly
generated cases, showing superior performance when compared to other methods.

VITAL-SOTO et al. [36] also used DAGs to represent operations precedence
relations rather than in a linear order, but without specifying which class of DAGs
were used or whether a procedure was used to choose the precedence constraints
rather than a random assignment in evaluating different scenarios.

Despite the fact that some works have employed DAGs to represent operations
precedence relations [12, 36, 40], this work extends the use of DAGs to model opera-
tions precedence relations in two different ways, each suited for a different production
scenario:

• Barabási-Albert Graphs

Barabási and Albert [41] proposed random graph models to understand how
complex networks emerge and over time. The Barabási-Albert (BA) graphs
have a property called scale-free which means that the number of connections
per node follows a power law distribution. This implies that there are a few
nodes, called hubs, that have many connections, while most nodes have only
a few. Random graphs can model various phenomena, such as the structure
of the internet, social networks, or biological systems, and play a crucial role
in information dissemination, robustness, and overall network efficiency [42].
In job shop problems, a DAG can be likened to a BA graph in represent-
ing dependencies between different operations. By representing the operation
dependency graph as a Barabási-Albert-like DAG, the characteristics of dif-
ferent operations precedence arrangements can be explored, providing a more
realistic depiction of job shop problems and evaluating scheduling algorithms’
efficiency in complex and interconnected environments. Figure 2.2 shows an
example of BA graph.

Figure 2.2: An example of a job with a precedence such as a BA graph.

• Uniform Random Trees Graphs
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A Uniform Random Tree (URT), which is a tree-like structure with some
special properties, consists of nodes, each of which has a unique parent and
an arbitrary number of children. The parent-child relationships are randomly
assigned, so that there is no fixed pattern or order in the URT. This makes
the URT a versatile and flexible way of representing scheduling constraints,
as it can capture dependencies among operations in a job. The URT graph’s
complexity and degree behavior are both intriguing, since its complexity is
determined by the number of nodes in the tree, which can range from one
to infinity. A node’s degree is determined by the number of children it has,
which can range from zero to infinity. A URT has an average degree of one
(children), but the distribution of degrees is not constant with some nodes
having zero or one child and a few nodes having many children. This reflects
the URT structure’s randomness and diversity. Figure 2.3 shows an example
of URT graph.

Figure 2.3: An example of a job with a precedence such as a URT graph.

Finally, the URT graphs can capture the assembly operations that are common in
some situations, while the BA graphs can handle the complex dependencies among
many items that are required for a final product. This work provides a deeper
understanding of how DAGs can be used to represent different production contexts.
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Chapter 3

Mathematical models

This chapter presents the mathematical models proposed to solve instances of
FJSP. The proposed models assume that start times, processing times, and setup
times are integers, and that time intervals smaller than seconds are negligible, al-
lowing time intervals to be discrete and measured in minutes or hours. Four models
are proposed and can be classified in two ways: by the type of the objective function
and by the type of precedence of jobs’ operations. Table 3.1 shows how models are
divided by each classification.

Objective

Makespan Deadline

P
re

c.
T

yp
e Linear Model-1 Model-2

DAGs Model-3 Model-4

Table 3.1: Table containing the classification by objective funcion and precedence
relationship type of the mathematical models proposed.

The models’ indices and parameters are described in Table 3.2, while the decision
variables are described on Table 3.3 for all models proposed.
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Table 3.2: Indexes and parameters.

Notation Description
n Number of jobs.
m Number of machines.
i Index for machines, where 1 ≤ i ≤ m.
j, h Indices for jobs, where 1 ≤ j, h ≤ n.
nj, nh Number of operations of jobs j and h.
l, k Indices for operations of a job, where 1 ≤ l ≤ nj, 1 ≤ k ≤ nh.
M A large positive number.
Rj,l The set indicating the machines eligible to process operation l

of job j.
Pi,j,l Processing time of lth operation of job j on machine i.
Oi,j,l,h,k Sequence dependent setup times between lth operation of job j

that precedes kth operation of job h on machine i.
Qj Minimum starting time for job j.
Dj Deadline for job j.
Uj,l Indices of operations of job j that must succeed operation l of

the same job

Table 3.3: Decision variables.

Notation Description
yi,j,l Binary decision variable indicating whether job j is processed in

machine i in stage l.
xj,l,h,k Binary decision variable indicating whether lth operation of job

j is processed after kth operation of job h in any machine.
si,j,l Continuous variable for starting time of operation l of job j on

machine i.
bi,j,nj

Auxiliary variable indicating whether the completion of a job is
greater than its deadline.

3.1 Model-1

The first mathematical model (Model-1) proposed in this work to solve more
realistic instances of the FJSP is a MILP that has both classic constraints, commonly
found in mathematical modeling papers on FJSP, and additional constraints, that
better represent real production environments. While these constraints are not new,
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they are usually found separately, in different works, and under different modeling
perspectives. Thus, the proposed model consolidates prior ideas into a single and
more realistic mathematical model.

The proposed MILP model is presented as follows:

Minimize
m∑
i=1

n∑
j=1

∑
l:Uj,l=∅

(si,j,l + Pi,j,l · yi,j,l) (3.1)

Subject to:

m∑
i=1

si,j,l+1 ≥
m∑
i=1

si,j,l +
m∑
i=1

Pi,j,l yi,j,l ∀j, ∀l < nj (3.2)

si,j,l+1 ≥ si,j,l + Pi,j,l · yi,j,l +Oi,j,l,j,l+1 −M(2− yi,j,l+1 − yi,j,l)

∀i ∈ {Rj,l ∩Rj,l+1}, ∀j, ∀l < nj

(3.3)

si,j,l ≥ si,h,k + Pi,h,k +Oi,h,k,j,l −M(3− xj,l,h,k − yi,j,l − yi,h,k)

∀i ∈ {Rj,l ∩Rh,k}, ∀j < n, ∀l, ∀h > j, ∀k
(3.4)

si,h,k ≥ si,j,l + Pi,j,l +Oi,j,l,h,k −M(xj,l,h,k + 2− yi,j,l − yi,h,k)

∀i ∈ {Rj,l ∩Rh,k}, ∀j < n, ∀l, ∀h > j, ∀k
(3.5)

si,j,1 ≥ Qj · yi,j,1 ∀i, ∀j (3.6)

m∑
i=1

yi,j,l = 1 ∀j, ∀l (3.7)

si,j,l ≤ M · yi,j,l ∀i, ∀j, ∀l (3.8)

si,j,l ≥ 0 ∀i, ∀j, ∀l (3.9)

yi,j,l ∈ {0, 1} ∀i, ∀j, ∀l (3.10)

xj,l,h,k ∈ {0, 1} ∀j < n, ∀l, ∀h > j, ∀k (3.11)

The Objective Function (3.1) aims to minimize the makespan, and it is defined
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by the sum of the finishing time of the all operations with no successors of all jobs.
Thus, it might be possible to reduce the sum by decreasing the finish time of each
job.

Constraints (3.2) relates the start times of subsequent operations of the same job,
establishing that a successor operation l+1 of job j on machine i can only begin when
its predecessor operation l on the same machine has started and finished. Constraints
(3.3) work similarly, ensuring that the setup times of subsequent operations of the
same job are respected. In fact, whenever yi,j,l = 1 and yi,j,l+1 = 1, then the right-
hand-sides of (3.3) are tight, and (3.3) are active.

Constraints (3.4) and (3.5) act together, and deal with the precedence of two
operations (l and k) from jobs (j and h), that are performed on the same machine.
Necessarily, one of the operations must occur before the other, since it is not allowed
for a machine to process two operations at the same time. Therefore, for these
constraints to come into play, at least yi,j,l and yi,h,k must be equal to 1. Thus,
whenever the lth operation of job j is processed after kth operation of job h in some
machine (xj,l,h,k = 1), then the right-hand-sides of (3.4) are tight, ensuring that the
precedence between the operations is respected. When xj,l,h,k = 0, Constraints (3.5)
guarantee the same effect, but in the reverse order of precedence. This way, the
setup time between two subsequent operations is respected, since this time is added
as well as the processing time for that operation on that particular machine.

Constraints (3.6) couple variables s and y with parameter Q, ensuring that the
first operation (l = 1) of job j assigned to machine i starts at a minimum time Qj.
Thus, si,j,1 ≥ Qj whenever yi,j,1 = 1.

Constraints (3.7) guarantee that each machine only processes one job at a time.
Constraints (3.8) couple variables s and y, ensuring that an operation l of job j starts
on machine i only if job j is processed in machine i in stage l. Thus, if yi,j,l = 0

then si,j,l = 0.
Lastly, Constraints (3.9), (3.10) and (3.11) determine the decision variables’

domains.

3.2 Model-2

Another common objective in production line sequencing is meeting deadlines or
minimizing tardiness. This alternative MINLP model is represented as follows:

Minimize
m∑
i=1

n∑
j=1

(si,j,nj
+ Pi,j,nj

−Dj) · bi,j,nj
(3.12)

Subject to (3.2)-(3.11) and:
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si,j,nj
+ Pi,j,nj

· yi,j,nj
≥ Dj −M · (1− bi,j,nj

) ∀i, ∀j (3.13)

si,j,nj
+ Pi,j,nj

· yi,j,nj
≤ Dj +M · bi,j,nj

∀i, ∀j (3.14)

bi,j,nj
∈ {0, 1} ∀i, ∀j (3.15)

Remembering that auxiliary variables bi,j,nj
indicate whether the completion of a

job is greater than its deadline, Constraints (3.13) and (3.14) act together, capturing
the occurrence of a delay in some job j. Whenever si,j,nj

+ Pi,j,nj
· yi,j,nj

< Dj, then
bi,j,nj

= 0; otherwise Constraints (3.13) would imply si,j,nj
+ Pi,j,nj

· yi,j,nj
≥ Dj, a

contradiction. Therefore, bi,j,nj
= 0, Constraints (3.14) are active (tight), Con-

straints (3.13) are non-active, and no delay is accounted for in the OF. Con-
versely, whenever si,j,nj

+ Pi,j,nj
· yi,j,nj

> Dj, then bi,j,nj
= 1; otherwise Con-

straints (3.14) would imply si,j,nj
+ Pi,j,nj

· yi,j,nj
≤ Dj, a contradiction. There-

fore, bi,j,nj
= 1, Constraints (3.13) are active (tight), Constraints (3.14) are non-

active, and the corresponding delay is accounted for in the OF. In the special case
si,j,nj

+ Pi,j,nj
· yi,j,nj

= Dj, we could have either bi,j,nj
= 0 or bi,j,nj

= 1. As the
objective function is to minimize, the solver always choose bi,j,nj

= 0, and no delay is
accounted for in the OF. Finally, Constraints (3.15) determine the domain of bi,j,nj

variables. It is worth mentioning that (3.12) is the sum of the difference between the
finish time of a job and its deadline across all jobs. Therefore, it might be possible
to reduce the value of this function by delaying a job aiming to finish others earlier.

3.3 Model-3 and Model-4

As an advance to prior models presented, DAGs were used to represent the
precedence relationship between operations of the same job. Model-3 is a variations
of Model-1 and adjustments must be done in Constraints (3.2), (3.4), (3.5) and (3.6).
So, Model-3 OF is shown in (3.1) and it is subject to (3.7)-(3.11) and:

m∑
i=1

si,j,h ≥
m∑
i=1

si,j,l +
m∑
i=1

Pi,j,l · yi,j,l ∀j, ∀l, ∀h ∈ {Uj,l} (3.16)

si,j,l ≥ si,h,k + Pi,h,k +Oi,h,k,j,l −M(3− xj,l,h,k − yi,j,l − yi,h,k)

∀i ∈ {Rj,l ∩Rh,k}, ∀j < n, ∀l, ∀h ≥ j, ∀k
(3.17)
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si,h,k ≥ si,j,l + Pi,j,l +Oi,j,l,h,k −M(xj,l,h,k + 2− yi,j,l − yi,h,k)

∀i ∈ {Rj,l ∩Rh,k}, ∀j < n, ∀l, ∀h ≥ j, ∀k
(3.18)

si,j,1 ≥ Qj · yi,j,l ∀i, ∀j, ∀l ̸∈ Uj (3.19)

Constraints (3.16) relates the start times of subsequent operations of the same
job, establishing that a successor operation h of job j can only begin when its prede-
cessor operation l has started and finished. Note that this set of constraints models
the precedence constraints as DAGs and not only allows for a wide range of prece-
dence configurations between operations in a job, but it also opens up the possibility
of having more than one predecessor per operation. Some examples are presented in
Sections 4.2 and 4.3. Constraints (3.17) and (3.17) operate similarly to Constraints
(3.4) and (3.5), with the exception that they use DAG-modeled precedences rather
than linearly modeled precedences.

It is also noteworthy to mention that Constrains (3.3) are no longer required
because Constraints (3.17) and (3.18) are already accounting for precedence between
operations of the same job, since the domain of h includes j. Constraints (3.19),
like Constraints (3.6) ensures that all operations assigned to machine i that have no
preceding operations, i.e. initial operations, begin only at a minimum time Qj.

Similarly, Model-4 is a modification of Model-2, with OF as presented in (3.12)
subject to (3.7)-(3.11) and (3.16)-(3.19), which also employs DAG-modeled prece-
dences.
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Chapter 4

Computational results

In this section, the performance of the proposed mathematical models is com-
pared, across different approaches. Two sets of experiments were conducted.

The first set of experiments focuses on comparing the performance of the STF
heuristic approach with the solutions obtained from Model-1 and Model-2 for differ-
ent objective functions, such as Makespan and Deadline. By analyzing these results,
insights can be gained into how effectively each mathematical model performs in
terms of optimizing Makespan and Deadline. Comparing the solutions generated by
Model-1 and Model-2 with the solutions given by STF allows for a comprehensive
evaluation of their capabilities in meeting specific objectives, providing valuable in-
formation about the decision-making process. This comparison helps to identify the
strengths and weaknesses of each approach, allowing investigations to be carried out
to refine and improve upon them.

Based on the findings of the first set, the second set of experiments investigates
how providing the solver with an initial heuristic solution (provided by STF) affects
its solution development process (specifically the development of primal and dual
solutions) and whether this approach can improve computational efficiency, solution
quality or both. An expected outcome, e.g., would be a narrowing of the optimality
gap, either by lowering the value of the OF (primal solution) or by increasing the
best dual solution in a minimization problem. In addition, the second set introduces
Model-3 and Model-4, which provide a much more flexible representation of the
precedence between operations in the same job.

To conduct this comparison and present the findings in terms of objective func-
tion values, CPU times, and gap percentages, three types of datasets were used,
namely Benchmark, Synthetic and Real-world based datasets, described respectively
in Sections 4.1, 4.2 and 4.3. In the first set, three real-world based instances and
a set of twenty benchmark modified datasets were used in the experiments. All
instances used in the first set (instances using the suffix "_v1") were also used in
the second set having their setup and processing times modified to allow for a wider
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range (instances with the suffix "_v2"), while keeping the same number of jobs,
machines and operations, as well as the operations’ precedence relationships, jobs
start time constraints and deadlines.

The M parameter (also known as big M) was set for each instance to ten times the
longer time between setup and processing times. As a result, it is not large enough
to cause issues with precision and numerical representation in the programming
languages used, but it is sufficient for the solver’s behavior to be adequate and the
constraints to be respected.

A time limit of three hours for first set and one hour for second set was imposed
for the solver to find the optimal solution, returning the best viable solution found
when this limit is reached.

The time required to the STF to generate a solution for each instance appears to
be unaffected by their size. This independence arises from the utilization of simple
heuristics for decision-making at each step, resulting in minimal temporal variations
contingent upon the complexity of the given instance. Consequently, its temporal
component was omitted in the second set of experiments, deeming it irrelevant
(across all cases, the time involved consistently required less than one second) [23].
The emphasis is on prioritizing consideration of other factors that have a greater
impact on the solution generation process.

The imposed time limit is an important practical consideration because, in real-
world scenarios, the implications of scheduling decisions must be considered, and
evaluating complex schedules with dozens of jobs and machines takes a long time.
On top of that, it is often necessary to reschedule or make changes to an existing
schedule, making it critical to generate a new production program so that the plant
does not grind to a halt.

The experiments were run on AMD Ryzen 7 3700x 8-Core @3.60 GHz processor
with 32GB RAM. To solve the models, Python language version 3.11.3 and Gurobi
solver version 10.0.1 through the API provided by the gurobipy library were used.
Experiments implementation details and all (benchmark, modified and generated)
instances used are available at GitHub for first1 and second2 sets of the experiments.

Gurobi’s default parameters were used, with no optimization or predefinition,
with the exception of the parameter to focus on integrality, to ensure that solutions
generated were integer.

1https://github.com/thj3a/JobShopModels.py/tree/model-SBPO
2https://github.com/thj3a/JobShopModels.py
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4.1 Benchmark datasets

One of the main objectives of this work is to compare the effectiveness of the
methods that we have developed for solving the FJSP. To do so, we need to use some
datasets that can represent the characteristics and the constraints of the real cases
that we are dealing with. However, finding such datasets is not an easy task (due to
the companies’ policy of not allowing their data to be publicly disclosed). So, most
of the existing datasets in the literature are either too simple or too unrealistic.

Conversely, benchmark datasets are intentionally designed to be challenging for
several reasons. These challenges serve to assess and compare the performance of
algorithms, models, or techniques under realistic and demanding conditions. Over-
coming these challenges demonstrates the robustness and effectiveness of a solution
in addressing real-world complexities. Researchers and practitioners use benchmark-
ing to understand the strengths and limitations of different approaches, fostering
advancements in the field.

Twenty datasets that were derived from the work of FATTAHI et al. [31] were
used. These datasets, however, lacked key information for this study, such as the
SDST, job start times, and deadlines. As a result, we modified them by including
the following information: To add the setup times, a random number from a normal
distribution with a mean of zero and a standard deviation of ten was drawn and
only the absolute number was used. To fulfill the start time constraint, similarly,
an absolute random number was drawn from a normal distribution with a mean
of ten and a standard deviation of two, with a probability of occurrence of 40%;
otherwise, zero was used. The procedure used to include the deadlines, along with
the modifications for the second set of experiments (instances with suffix "_v2")
were the same described in Section 4.2.

Figures 4.1 and 4.2 demonstrate the precedence graphs of jobs 0 and 1, respec-
tively, of the FSM_20_v2 instance, with their linear order of precedence.
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Figure 4.1: Graph representation of
the precedence of the operations of in-
stance FSM_20_v2’s job 0.

Figure 4.2: Graph representation of
the precedence of the operations of in-
stance FSM_20_v2’s job 1.

The linear structure of precedence between operations sets apart this class from
the others. This feature has not been modified from FATTAHI et al. [31]’s original
instances and cannot represent the level of detail found in some real item structures.

4.2 Synthetic datasets

As shown in Section 2.3, the BA and URT graph types were employed to generate
twenty datasets, each, explored in this work. These two types of graphs were partic-
ularly chosen because of their similar properties to real cases. While the properties
of the URT graph can be observed in assembly plants, for example, the properties of
the BA graph can be found in cases where the bill of materials (BOM) of the final
products have few levels but are extremely complex.

The number of jobs, operations per job, and machines followed the distribution
proposed in FATTAHI et al. [31] benchmark instances. The idea was to create
instances with the same proportions, but with different characteristics in terms of
the dependencies between the operations of each job. The precedence graphs were
generated with the aid of the Networkx3 library implemented in Python4.

The number of alternative machines in a job that can process an operation
was defined as the smallest value greater than one third of the total number of
machines in the instance, while the machines that could process each operation
were drawn from a uniform distribution among all the machines in the instance,
without replacement.

The processing times were taken from a uniform distribution between two and
five, while to generate synthetic setup times it was drawn a random number from
a uniform distribution between the the minimum and maximum processing time

3www.networkx.org
4www.python.org
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for each instance, considering all the jobs, operations and machines involved. Fi-
nally, the number drawn was multiplied by another random number, also uniformly
distributed, between one and five. This resulted in a setup time that could be
significantly different from the average processing time, depending on the instance
characteristics and the random factors. This method has a lower expected value
than just a uniform distribution between one and five times the higher processing
time. The variance, on the other hand, is greater.

The earliest start time for each job and each operation was generated randomly
from a uniform distribution between zero and three while the deadline for each job
was calculated by multiplying the number of operations in the job by a random
number drawn from a uniform distribution between the lower and higher processing
times.

Figures 4.3, 4.4, depict the precedence graphs of jobs 9 and 11 from BA_20
instance, while 4.5 and 4.6 illustrate jobs 1 and 11 from URT_20 instance. The
shape of the graphs representing precedence shows a clear difference. While the
nodes in the BA_20 instance have a higher degree of entry, the graphs in the URT_-
20 instance are, as expected, tree-shaped.

Figure 4.3: Graph representation of
the precedence of the operations of in-
stance BA_20’s job 09.

Figure 4.4: Graph representation of
the precedence of the operations of in-
stance BA_20’s job 11.
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Figure 4.5: Graph representation of
the precedence of the operations of in-
stance URT_20’s job 1.

Figure 4.6: Graph representation of
the precedence of the operations of in-
stance URT_20’s job 11.

4.3 Real-world based datasets

To create realistic and diverse instances of the problem, we used three datasets
that were derived from real data collected from different industrial sectors. The first
dataset came from the metalworking industry, which involves cutting, bending and
assembling metal parts. The second dataset came from the plastic injection industry,
which involves injecting molten plastic into molds to produce plastic parts. The third
dataset came from the customized manufacturing industry, which involves producing
unique products according to customer specifications. These three instances were
simplified in terms of their constraints to fit the proposed models, while keeping their
number of jobs, operations and machines, reflecting the different sizes, complexities
and characteristics of the problem in different industrial contexts.

The number of operations per job, as shown in Figures 4.7 and 4.8, is one of
the first characteristics that distinguishes graphs of real-world based instances from
others. The graph for job 23 of the MetalMeca instance shows an interesting occur-
rence of operation precedence, with a bifurcation followed by a junction after a few
operations.
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Figure 4.7: Graph representation of
the precedence of the operations of in-
stance MetalMeca_v2’s job 18.

Figure 4.8: Graph representation of
the precedence of the operations of in-
stance MetalMeca_v2’s job 23.

To use the data from these instances, a translation module from the STF data
model to the data model used by the mathematical model had to be built. To
accomplish this, time values were converted from seconds to minutes, and date
values were translated based on the schedule’s initial date (STF has a component
that mimics a clock and controls the passage of time from a given date). Because
STF contains other entities such as items, which can contain other attributes that do
not belong to operations, such as quantity in stock, data relating to the precedence
of operations also had to be remodeled.

4.4 Comparing STF with mathematical models

Table 4.1 shows characteristics of the instances and corresponding results. Im-
portant attributes of the instances are the total number of jobs (n), total number
of operations (

∑
j nj), and total number of machines (m). The density relating the

number of binary variables (# Bin) with the total number of variables (# Var) is
also shown. The objective function value (OF) and the time required by the solver
is presented, in seconds (s), for the MILP and MINLP models and STF. The time
mentioned does not include model construction in either the solver or the STF, as
this time is irrelevant even for the largest instances (less than one second). Note
that STF generates a single solution for each instance and does not depend on the
objective function (thus, a single execution time). The optimality gap (Opt Gap) for
the models is null whenever an optimal solution is found; otherwise, a non-negative
gap means that the time limit of three hours was reached. The STF Heuristic Gap
(Heur Gap) reflects the gap with respect to the OF value returned by the respective
(Makespan or Deadline) MILP or MINLP model, being calculated by the mathemat-
ical formulas OFSTF−OFMILP/OFMILP and OFSTF−OFMINLP/OFMINLP. Therefore,
to compare the performance of MILP and MINLP models against STF, we should
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not compare the respective Gap columns directly, but column 6 with column 12 and
column 9 with column 14, respectively.

Table 4.1: Computational results comparing mathematical models with STF solu-
tions, without the use of DAGs, for both Makespan and Deadline OFs.

MILP and MINLP Models Solutions STF Heuristic Solutions
Instances Makespan Deadline Makespan Deadline STF

Time
(s)

Instance
name

# Bin /
# Var

n
∑

nj m
OF

(min)
Solver

time (s)
Opt
Gap

OF
(min)

Solver
time (s)

Opt
Gap

OF
(min)

Heur
Gap

OF
(min)

Heur
Gap

FSM_01_v1 10 / 18 2 4 2 142 0.01 0.0% 80 0.01 0.0% 193 35.9% 131 63.8% 0.38
FSM_02_v1 7 / 13 2 4 2 204 0.01 0.0% 132 0.00 0.0% 204 0.0% 164 24.2% 0.37
FSM_03_v1 17 / 27 3 6 2 600 0.01 0.0% 445 0.01 0.0% 612 2.0% 496 11.5% 0.39
FSM_04_v1 18 / 28 3 6 2 874 0.02 0.0% 653 0.01 0.0% 1001 14.5% 878 34.5% 0.38
FSM_05_v1 22 / 34 3 6 2 303 0.04 0.0% 221 0.03 0.0% 321 5.9% 298 34.8% 0.38
FSM_06_v1 96 / 112 3 9 3 808 0.02 0.0% 626 0.03 0.0% 1216 50.5% 1085 73.3% 0.39
FSM_07_v1 99 / 118 3 9 5 923 0.01 0.0% 696 0.01 0.0% 952 3.1% 921 32.3% 0.43
FSM_08_v1 99 / 118 3 9 4 655 0.04 0.0% 519 0.06 0.0% 773 18.0% 813 56.6% 0.41
FSM_09_v1 99 / 118 3 9 3 553 0.07 0.0% 443 0.07 0.0% 579 4.7% 566 27.8% 0.38
FSM_10_v1 38 / 58 4 12 5 1899 0.05 0.0% 1599 0.04 0.0% 2000 5.3% 1883 17.8% 0.40
FSM_11_v1 81 / 114 5 15 6 2043 0.37 0.0% 1703 0.41 0.0% 2339 14.5% 2402 41.0% 0.43
FSM_12_v1 102 / 141 5 15 7 1977 0.63 0.0% 1620 0.61 0.0% 2165 9.5% 2333 44.0% 0.40
FSM_13_v1 149 / 197 6 18 7 2517 2.95 0.0% 2078 8.85 0.0% 3259 29.5% 3474 67.2% 0.41
FSM_14_v1 191 / 247 7 21 7 3317 15.92 0.0% 2741 45.86 0.0% 3699 11.5% 3939 43.7% 0.42
FSM_15_v1 196 / 251 7 21 7 3283 87.52 0.0% 2714 36.63 0.0% 3807 16.0% 4062 49.7% 0.41
FSM_16_v1 244 / 306 8 24 7 4244 3469.86 0.0% 3600 763.61 0.0% 4949 16.6% 5338 48.3% 0.43
FSM_17_v1 394 / 472 8 32 7 5953 10800.28 15.1% 5290 10800.43 18.4% 7268 22.1% 7383 39.6% 0.42
FSM_18_v1 441 / 527 9 36 8 6720 10801.38 16.6% 6088 10801.97 21.5% 8237 22.6% 8271 35.9% 0.42
FSM_19_v1 619 / 722 11 44 8 9709 10802.29 30.7% 8785 10802.16 33.7% 10911 12.4% 10668 21.4% 0.43
FSM_20_v1 735 / 847 12 48 8 11597 10801.82 32.6% 10256 10801.34 32.5% 13005 12.1% 12877 25.6% 0.43
FTQL_v1 47 / 71 5 24 5 70820 0.07 0.0% 34533 0.12 0.0% 88487 24.9% 52200 51.2% 0.43

PlasticInject_v1 398 / 549 69 69 35 81298 101.66 0.0% 70636 10801.38 1.4% 89405 10.0% 123417 74.7% 0.57
MetalMeca_v1 4791 / 5334 61 295 21 645591 10813.41 2.8% 0 3.29 0.0% 711671 10.2% 440 ∗ ∗ ∗ 0.90

∗ ∗ ∗ In this case, Heur Gap cannot be calculated, since there is no division by zero.

Table 4.1 also shows that optimal solutions were found for 16/20 (80%) bench-
mark instances and 2/3 (67%) real-world instances for both Model-1 and Model-2.
For example, from instance FSM_17_v1 to FSM_20_v1 both the Model-1 and
Model-2, the solver was not able to find the optimal solution to within the time
limit provided. For these instances, the optimality gap provided ranges from 15% to
33%. Surprisingly, optimal or very small gap solutions were found for both the very
large real-world instances MetalMeca_v1 and PlastInject_v1. It is also important
to emphasize that for these instances, Heur Gaps were very large. In particular,
this behavior occurred for almost all tested instances, i.e., Heur Gap was much
larger than MILP Gap or MINLP Gap, for 22/23 (95,6%) and 23/23 (100%) of the
tested instances, respectively. This indicates that scheduling under the solutions
of the proposed models manages resources more efficiently, allowing for increased
productive capacity without increasing the number working hours, for example. It
is also worth noting that large real-world instances could be easier to solve by the
MILP and MINLP models than the modified benchmark instances, due to actual
constraints and parameters of real-world problems.

Certain instances within the benchmark class, on the other hand, have demon-
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strated an expected level of difficulty in their solution by MIP models, despite their
relatively modest scale when compared to real-world counterparts. This observation
highlights a crucial detail: the difficulty in solving benchmark problems extends
beyond size considerations. In other words, the complexity and intricacies embed-
ded within certain benchmark instances defy expectations, demonstrating that the
degree of difficulty in problem-solving is not solely determined by the size of the
problem at hand.

In contrast to the proposed model, and not surprising, STF found just a sin-
gle optimal solution (for FSM_02_v1), although it provided good quality solutions
(gap<10% in some instances). However, for most cases, Heuristic Gap is more than
10%, and up to more than 70% in the worst case, which is a brutal difference. This in-
dicates that scheduling under the solutions of the proposed model manages resources
more efficiently, allowing for increased productive capacity without increasing the
number working hours, just by making the schedule more efficient.

It is worth noting that for some cases, besides meeting deadlines as an objective is
more realistic and closer to reality in some shop-floor cases, the counterpart problem
when minimizing makespan can be harder than the former (as can be seen in results
for Model-1 and Model-2 for Instance MetalMeca_v1).

Figures 4.9 and 4.10 illustrate the schedule for the FSM_16_v1 instance gen-
erated by solving Model-1 and by STF, respectively. Despite the two schedules are
similar, note that STF requires more time to finish all jobs and its gap is 16.6% with
respect to the optimal solution found by the MILP model.

Figure 4.9: Model-1 Solution for in-
stance FSM_16_v1.

Figure 4.10: STF Heuristic Solution
for instance FSM_16_v1.

Similarly, Figures 4.11 and 4.12 illustrate the schedule for the FSM_17_v1 in-
stance generated by solving the MILP proposed model (makespan OF) and by STF.
In contrast, note that the model required more time to finish all jobs (job 07 is the
last one). However, by delaying the execution of job 07 the model finished many
other jobs much earlier than STF, such as job 00 and job 06. Indeed, the heuristic
gap considering the OF value is 22.1% with respect to the solution returned by the
model. This kind of solution seems quite hard to obtain using heuristics.
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Figure 4.11: Model-1 Solution for in-
stance FSM_17_v1.

Figure 4.12: STF Heuristic Solution
for instance FSM_17_v1.

Figures 4.13 and 4.14 illustrate the schedule for the FSM_16_v1 and FSM_-
17_v1 instances generated by the Model-2. Note that for FSM_16_v1 the schedule
generated is identical to the one generated by the MILP model (makespan OF),
illustrated in Figure 4.9. In contrast, the schedule for FSM_17_v1 is much tighter
than the corresponding schedule generated by the makespan OF (see Figure 4.11).
Indeed, the deadline OF forces jobs to finish closer to their deadlines, as opposed to
simply reducing their finish times.

Figure 4.13: Model-2 Solution for in-
stance FSM_16_v1.

Figure 4.14: Model-2 Solution for in-
stance FSM_17_v1.

Figure 4.15: Model-1 Solution for instance MetalMeca_v1.
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Figure 4.16: STF Heuristic Solution for instance MetalMeca_v1.

Figures 4.15 and 4.16 illustrate the schedule for the MetalMeca_v1 instance
(with 61 jobs) generated by solving the proposed MILP model (makespan OF) and
by STF, respectively. While the two schedules look relatively similar and the heuris-
tic gap is 10.2%, note that the schedule generated by the model has fewer jobs
finishing after time 15000 in comparison to STF, where many jobs finish after the
same threshold. Again, this shows the potential of using a mathematical model
and a solver to generate efficient schedules, even when the obtained solution is not
optimal, as in this scenario.

The distinctions between real and benchmark instances become clear when the
figures 4.10 and 4.16 are assessed. Despite the similarities between FSM_16_v1
and FSM_17_v1, the small distinction of a few additional operations per job is
what appears to make instance FSM_17_v1 considerably more difficult to handle
in the proposed amount of time, an expected behavior when dealing with MILP and
MINLP models. However, when comparing instances with large differences in the
number of machines, jobs, and operations, such as FSM_17_v1 and MetalMeca_-
v1, it is clear that the variances in processing and setup times make it easier to find
solutions closer to the global optimum for larger real-world based instances.

An important practical consideration is the amount of time required to generate
a solution. As Table 4.1 shows, while in all scenarios where an optimal solution
was found, less than 100 seconds was required (with the exception of FSM_16_v1
and PlasticInject_v1) to solve the respective model, in the cases where the optimal
solution was not found, the model ran until the three hour time limit. Lastly, for
the benchmark instances, as the instance size increases, the difficulty to solve it also
increases.

In contrast, Table 4.1 also shows that the execution time required by STF to
generate a solution was less than one second in all problem instances. Moreover,
its execution time does not seem to have (strong) correlation with the problem size.
This is clearly a large advantage of this approach, that quickly yields a feasible solu-
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tion using a greedy procedure driven by multiple heuristics. However, its execution
time depends more on the number of the competing operations and the number of
heuristics and their potential combinations (a limited number of heuristics was used
here) than the total number of jobs, operations and machines. Lastly, it is important
to emphasize that the quality of these solutions generated by STF was, for the vast
majority of instances, much lower than the quality of the solutions generated by the
mathematical models.

The time required to build a solution using STF heuristics is its most significant
advantage. With an substantial increase in the size of the instances, there is virtually
no temporal fluctuation. However, as stated in Section 1.2, multiple heuristics can
be employed, and the search for the set of heuristics can take a long time depending
on the number of heuristics available and their potential combinations.

Finally, understanding the problem and how to properly apply the heuristic
approach are important aspects in evaluating how long it will take a user to construct
a reasonably good solution in a reasonable amount of time, since the solutions
provided by STF kernel may appear to be satisfactory, there is no way to prove
how far it is from its global optimum without the aid of a mathematical model.

4.5 Combining STF with mathematical models

The results of combining the STF with the MIP models Model-3 and Model-4
introduced in Section 3.3 are shown in this section.

Similarly to Table 4.1, Table 4.2 presents for each instance, the ratio of binary
variables (# Bin) to total model variables(# Var) and its characteristics with the
difference that only results for the makespan objective are displayed. The follow-
ing table also compares the results for Model-3 with the use and the absence of
STF solution together with the characteristics of all instances tested in this set of
experiments. There are three additional columns containing the difference of objec-
tion function (Diff OF), time (Diff Time) and gap (Diff Gap) between the results
obtained with (STF+MIP) and without (MIP) the STF solution. It is crucial to
emphasize that the time numbers on both tables only represent the amount of time
the solver takes; they do not account for the amount of time STF takes to produce
the solution that is supplied to the solver. Negative values indicate that using the
STF+MIP strategy produced better results than using the MIP approach alone.
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Table 4.2: Computational results for Model-3 comparing the use of the STF solution.

Instances MIP STF+MIP Comparison

Instance
name

# Bin /
# Var

n m
∑

nj

OF
(min)

Solver
Time
(s)

Opt.
Gap

OF
(min)

Solver
Time
(s)

Opt.
Gap

Diff
OF

Diff
Time

Diff
Gap

BA_01 20 / 25 2 2 4 44 0.00 0.00% 44 0.00 0.00% 0 0.00 0.00%
BA_02 20 / 25 2 2 4 48 0.00 0.00% 48 0.00 0.00% 0 0.00 0.00%
BA_03 42 / 49 3 2 6 72 0.00 0.00% 72 0.01 0.00% 0 0.00 0.00%
BA_04 42 / 49 3 2 6 73 0.00 0.00% 73 0.00 0.00% 0 0.00 0.00%
BA_05 42 / 49 3 2 6 101 0.00 0.00% 101 0.01 0.00% 0 0.00 0.00%
BA_06 90 / 100 3 3 9 100 0.01 0.00% 100 0.01 0.00% 0 0.00 0.00%
BA_07 99 / 118 3 5 9 45 0.14 0.00% 45 0.14 0.00% 0 0.01 0.00%
BA_08 99 / 118 3 4 9 46 0.32 0.00% 46 0.32 0.00% 0 0.00 0.00%
BA_09 90 / 100 3 3 9 98 0.01 0.00% 98 0.01 0.00% 0 0.00 0.00%
BA_10 168 / 193 4 5 12 65 0.50 0.00% 65 0.71 0.00% 0 0.21 0.00%
BA_11 255 / 286 5 6 15 81 1.13 0.00% 81 1.06 0.00% 0 -0.07 0.00%
BA_12 270 / 316 5 7 15 64 4.63 0.00% 64 4.18 0.00% 0 -0.45 0.00%
BA_13 378 / 433 6 7 18 86 175.91 0.00% 86 773.99 0.00% 0 598.08 0.00%
BA_14 504 / 568 7 7 21 121 3600.11 19.83% 121 3600.14 19.83% 0 0.03 0.00%
BA_15 504 / 568 7 7 21 112 3600.23 22.32% 112 3600.24 22.32% 0 0.02 0.00%
BA_16 648 / 721 8 7 24 146 3600.32 45.21% 146 3600.22 45.21% 0 -0.10 0.00%
BA_17 1120 / 1217 8 7 32 218 3600.46 61.01% 206 3600.32 58.25% -12 -0.13 -2.76%
BA_18 1404 / 1513 9 8 36 231 3600.51 56.71% 231 3600.47 56.71% 0 -0.04 0.00%
BA_19 2068 / 2201 11 8 44 325 3600.56 68.31% 325 3600.78 68.31% 0 0.22 0.00%
BA_20 2448 / 2593 12 8 48 381 3600.74 67.45% 397 3600.69 69.02% 16 -0.05 1.56%

URT_01 20 / 25 2 2 4 44 0.02 0.00% 44 0.00 0.00% 0 -0.02 0.00%
URT_02 20 / 25 2 2 4 42 0.02 0.00% 42 0.02 0.00% 0 0.00 0.00%
URT_03 42 / 49 3 2 6 69 0.04 0.00% 69 0.04 0.00% 0 -0.01 0.00%
URT_04 42 / 49 3 2 6 77 0.03 0.00% 77 0.04 0.00% 0 0.01 0.00%
URT_05 42 / 49 3 2 6 101 0.06 0.00% 101 0.05 0.00% 0 -0.01 0.00%
URT_06 90 / 100 3 3 9 97 0.03 0.00% 97 0.03 0.00% 0 0.00 0.00%
URT_07 99 / 118 3 5 9 43 0.76 0.00% 43 0.76 0.00% 0 -0.01 0.00%
URT_08 99 / 118 3 4 9 48 3600.19 12.50% 48 3600.43 12.50% 0 0.25 0.00%
URT_09 90 / 100 3 3 9 136 0.07 0.00% 136 0.07 0.00% 0 -0.01 0.00%
URT_10 168 / 193 4 5 12 66 2.36 0.00% 66 2.21 0.00% 0 -0.15 0.00%
URT_11 255 / 286 5 6 15 93 4.40 0.00% 93 4.14 0.00% 0 -0.26 0.00%
URT_12 270 / 316 5 7 15 72 33.92 0.00% 72 31.98 0.00% 0 -1.95 0.00%
URT_13 378 / 433 6 7 18 92 736.05 0.00% 92 717.88 0.00% 0 -18.16 0.00%
URT_14 504 / 568 7 7 21 126 3600.20 20.63% 126 3600.18 20.63% 0 -0.01 0.00%
URT_15 504 / 568 7 7 21 120 3600.08 15.83% 120 3600.31 15.83% 0 0.22 0.00%
URT_16 648 / 721 8 7 24 150 3600.16 37.33% 152 3600.21 38.82% 2 0.05 1.48%
URT_17 1120 / 1217 8 7 32 222 3600.44 52.70% 225 3600.38 55.56% 3 -0.06 2.85%
URT_18 1404 / 1513 9 8 36 237 3600.44 54.01% 238 3600.99 53.78% 1 0.54 -0.23%
URT_19 2068 / 2201 11 8 44 328 3600.91 61.59% 311 3600.60 59.49% -17 -0.32 -2.10%
URT_20 3756 / 3913 12 9 60 6081 3600.26 0.13% 6081 3600.79 0.10% 0 0.52 -0.03%

FSM_01_v2 24 / 33 2 2 4 1231 0.13 0.00% 1231 0.12 0.00% 0 -0.01 0.00%
FSM_02_v2 22 / 29 2 2 4 1339 0.05 0.00% 1339 0.05 0.00% 0 0.01 0.00%
FSM_03_v2 46 / 57 3 2 6 2620 0.11 0.00% 2620 0.11 0.00% 0 0.00 0.00%
FSM_04_v2 46 / 57 3 2 6 3152 0.15 0.00% 3152 0.15 0.00% 0 0.00 0.00%
FSM_05_v2 48 / 61 3 2 6 2027 0.26 0.00% 2027 0.27 0.00% 0 0.02 0.00%
FSM_06_v2 96 / 112 3 3 9 3306 3600.33 2.90% 3306 3600.10 2.90% 0 -0.22 0.00%
FSM_07_v2 99 / 118 3 5 9 2932 0.40 0.00% 2932 0.52 0.00% 0 0.12 0.00%
FSM_08_v2 99 / 118 3 4 9 2365 0.44 0.00% 2365 3600.13 3.72% 0 3599.68 3.72%
FSM_09_v2 99 / 118 3 3 9 2290 0.69 0.00% 2290 0.70 0.00% 0 0.02 0.00%
FSM_10_v2 164 / 185 4 5 12 4834 0.29 0.00% 4834 1.39 0.00% 0 1.10 0.00%
FSM_11_v2 258 / 292 5 6 15 5602 5.99 0.00% 5602 6.72 0.00% 0 0.73 0.00%

Continued on next page
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Table 4.2 – Continued from previous page
Instances MIP STF+MIP Comparison

Instance
name

# Bin /
# Var

n m
∑

nj

OF
(min)

Solver
Time
(s)

Opt.
Gap

OF
(min)

Solver
Time
(s)

Opt.
Gap

Diff
OF

Diff
Time

Diff
Gap

FSM_12_v2 264 / 304 5 7 15 5308 4.80 0.00% 5308 11.38 0.00% 0 6.57 0.00%
FSM_13_v2 372 / 421 6 7 18 7247 72.91 0.00% 7247 66.13 0.00% 0 -6.78 0.00%
FSM_14_v2 497 / 554 7 7 21 8581 190.20 0.00% 8581 148.45 0.00% 0 -41.75 0.00%
FSM_15_v2 496 / 552 7 7 21 8885 141.11 0.00% 8885 158.20 0.00% 0 17.09 0.00%
FSM_16_v2 638 / 701 8 7 24 12045 3600.27 12.98% 12007 3600.15 16.07% -38 -0.12 3.10%
FSM_17_v2 1102 / 1181 8 7 32 16465 3600.39 36.59% 15504 3600.05 35.53% -961 -0.34 -1.05%
FSM_18_v2 1382 / 1469 9 8 36 16896 3600.07 32.32% 16786 3600.08 32.07% -110 0.01 -0.25%
FSM_19_v2 2039 / 2143 11 8 44 26260 3600.38 48.86% 25833 3600.88 47.15% -427 0.51 -1.70%
FSM_20_v2 2416 / 2529 12 8 48 29677 3600.30 48.37% 31837 3600.29 52.54% 2160 -0.01 4.17%
FTQL_v2 600 / 625 5 5 24 74452 0.84 0.00% 74452 0.70 0.00% 0 -0.14 0.00%

PlasticInject_v2 6758 / 6956 69 35 81 2934826 3600.83 9.20% 2930911 3600.71 9.20% -3915 -0.13 0.00%
MetalMeca_v2 87568 / 88112 41 21 295 511907 3600.41 11.84% 515707 3600.44 12.38% 3800 0.03 0.54%

Similarly, Table 4.3 shows the results for Model-4 (deadline OF).

Table 4.3: Computational results for Model-4 comparing the use of the STF solution.

Instances MIP STF+MIP Comparison

Instance
name

# Bin /
# Var

n m
∑

nj

OF
(min)

Solver
Time
(s)

Opt.
Gap

OF
(min)

Solver
Time
(s)

Opt.
Gap

Diff
OF

Diff
Time

Diff
Gap

BA_01 22 / 27 2 2 4 28 0.00 0.00% 28 0.00 0.00% 0.00 0.00 0.00%
BA_02 22 / 27 2 2 4 30 0.00 0.00% 30 0.01 0.00% 0.00 0.00 0.00%
BA_03 45 / 52 3 2 6 60 0.00 0.00% 60 0.00 0.00% 0.00 0.00 0.00%
BA_04 45 / 52 3 2 6 53 0.00 0.00% 53 0.00 0.00% 0.00 0.00 0.00%
BA_05 45 / 52 3 2 6 75 0.01 0.00% 75 0.01 0.00% 0.00 0.00 0.00%
BA_06 93 / 103 3 3 9 73 0.00 0.00% 73 0.02 0.00% 0.00 0.01 0.00%
BA_07 105 / 124 3 5 9 11 0.17 0.00% 11 0.06 0.00% 0.00 -0.10 0.00%
BA_08 105 / 124 3 4 9 25 0.36 0.00% 25 0.15 0.00% 0.00 -0.21 0.00%
BA_09 93 / 103 3 3 9 74 0.01 0.00% 92 0.01 0.00% 18.00 0.00 0.00%
BA_10 176 / 201 4 5 12 29 0.72 0.00% 29 0.45 0.00% 0.00 -0.28 0.00%
BA_11 265 / 296 5 6 15 34 0.90 0.00% 34 0.69 0.00% 0.00 -0.21 0.00%
BA_12 285 / 331 5 7 15 20 4.85 0.00% 20 4.98 0.00% 0.00 0.13 0.00%
BA_13 396 / 451 6 7 18 19 44.32 0.00% 19 22.33 0.00% 0.00 -21.99 0.00%
BA_14 525 / 589 7 7 21 63 3600.13 61.90% 63 3600.04 58.73% 0.00 -0.09 -3.17%
BA_15 525 / 589 7 7 21 41 3600.03 4.88% 41 3600.03 12.20% 0.00 -0.01 7.32%
BA_16 672 / 745 8 7 24 58 3600.45 94.83% 50 3600.04 78.00% -8.00 -0.40 -16.83%
BA_17 1144 / 1241 8 7 32 98 3600.25 95.92% 98 3600.22 95.92% 0.00 -0.03 0.00%
BA_18 1431 / 1540 9 8 36 133 3600.16 93.23% 133 3600.07 93.23% 0.00 -0.09 0.00%
BA_19 2101 / 2234 11 8 44 175 3600.24 98.86% 175 3600.18 98.86% 0.00 -0.06 0.00%
BA_20 2484 / 2629 12 8 48 249 3600.28 97.99% 249 3600.40 97.99% 0.00 0.12 0.00%

URT_01 22 / 27 2 2 4 28 0.02 0.00% 28 0.00 0.00% 0.00 -0.02 0.00%
URT_02 22 / 27 2 2 4 32 0.02 0.00% 32 0.02 0.00% 0.00 0.00 0.00%
URT_03 45 / 52 3 2 6 47 0.06 0.00% 47 0.06 0.00% 0.00 0.00 0.00%
URT_04 45 / 52 3 2 6 51 0.00 0.00% 51 0.00 0.00% 0.00 0.00 0.00%
URT_05 45 / 52 3 2 6 75 0.08 0.00% 75 0.06 0.00% 0.00 -0.02 0.00%
URT_06 93 / 103 3 3 9 70 0.04 0.00% 70 0.06 0.00% 0.00 0.01 0.00%

Continued on next page
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Table 4.3 – Continued from previous page
Instances MIP STF+MIP Comparison

Instance
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URT_07 105 / 124 3 5 9 10 0.33 0.00% 10 0.33 0.00% 0.00 0.00 0.00%
URT_08 105 / 124 3 4 9 29 0.33 0.00% 29 0.37 0.00% 0.00 0.04 0.00%
URT_09 93 / 103 3 3 9 112 0.06 0.00% 112 0.05 0.00% 0.00 0.00 0.00%
URT_10 176 / 201 4 5 12 33 0.86 0.00% 33 0.84 0.00% 0.00 -0.01 0.00%
URT_11 265 / 296 5 6 15 44 3.84 0.00% 44 3.72 0.00% 0.00 -0.13 0.00%
URT_12 285 / 331 5 7 15 28 12.12 0.00% 28 11.90 0.00% 0.00 -0.22 0.00%
URT_13 396 / 451 6 7 18 22 28.76 0.00% 22 96.33 0.00% 0.00 67.57 0.00%
URT_14 525 / 589 7 7 21 58 3600.08 46.55% 58 3600.03 51.72% 0.00 -0.05 5.17%
URT_15 525 / 589 7 7 21 53 3600.06 50.94% 53 1328.84 0.00% 0.00 -2271.21 -50.94%
URT_16 672 / 745 8 7 24 58 3600.05 81.03% 58 3600.05 81.03% 0.00 0.00 0.00%
URT_17 1144 / 1241 8 7 32 102 3600.58 94.12% 116 3600.08 93.10% 14.00 -0.50 -1.01%
URT_18 1431 / 1540 9 8 36 143 3600.11 86.01% 145 3600.12 91.03% 2.00 0.01 5.02%
URT_19 2101 / 2234 11 8 44 204 3600.10 96.08% 204 3600.33 96.08% 0.00 0.23 0.00%
URT_20 3768 / 3925 12 9 60 5928 3600.30 0.13% 5926 3600.78 0.20% -2.00 0.48 0.07%

FSM_01_v2 28 / 37 2 2 4 271 0.08 0.00% 271 0.07 0.00% 0.00 -0.01 0.00%
FSM_02_v2 25 / 32 2 2 4 379 0.03 0.00% 379 0.02 0.00% 0.00 -0.01 0.00%
FSM_03_v2 51 / 62 3 2 6 1180 0.14 0.00% 1180 0.15 0.00% 0.00 0.01 0.00%
FSM_04_v2 51 / 62 3 2 6 1712 0.10 0.00% 1712 0.08 0.00% 0.00 -0.03 0.00%
FSM_05_v2 54 / 67 3 2 6 587 0.35 0.00% 587 0.35 0.00% 0.00 0.00 0.00%
FSM_06_v2 101 / 117 3 3 9 1866 0.22 0.00% 1866 0.21 0.00% 0.00 0.00 0.00%
FSM_07_v2 105 / 124 3 5 9 1492 0.29 0.00% 1492 0.37 0.00% 0.00 0.08 0.00%
FSM_08_v2 105 / 124 3 4 9 925 0.32 0.00% 925 0.32 0.00% 0.00 -0.01 0.00%
FSM_09_v2 105 / 124 3 3 9 850 0.31 0.00% 850 3600.71 1.29% 0.00 3600.41 1.29%
FSM_10_v2 171 / 192 4 5 12 2914 3600.33 2.57% 2914 3600.55 2.57% 0.00 0.22 0.00%
FSM_11_v2 269 / 303 5 6 15 3202 1.84 0.00% 3202 4.64 0.00% 0.00 2.80 0.00%
FSM_12_v2 277 / 317 5 7 15 2908 16.83 0.00% 2908 6.68 0.00% 0.00 -10.15 0.00%
FSM_13_v2 388 / 437 6 7 18 4367 703.75 0.00% 4367 179.15 0.00% 0.00 -524.60 0.00%
FSM_14_v2 516 / 573 7 7 21 5221 343.41 0.00% 5221 1468.89 0.00% 0.00 1125.47 0.00%
FSM_15_v2 516 / 572 7 7 21 5525 374.61 0.00% 5525 1000.99 0.00% 0.00 626.38 0.00%
FSM_16_v2 661 / 724 8 7 24 8170 3600.43 30.61% 8167 3600.16 34.37% -3.00 -0.27 3.76%
FSM_17_v2 1118 / 1197 8 7 32 11644 3600.29 42.52% 11644 3600.15 42.37% 0.00 -0.14 -0.15%
FSM_18_v2 1400 / 1487 9 8 36 13941 3601.08 51.55% 13656 3600.40 49.50% -285.00 -0.68 -2.05%
FSM_19_v2 2061 / 2165 11 8 44 21838 3600.46 63.01% 19495 3600.53 56.36% -2343.00 0.07 -6.66%
FSM_20_v2 2440 / 2553 12 8 48 26230 3600.44 67.09% 25604 3600.61 65.89% -626.00 0.17 -1.20%
FTQL_v2 605 / 630 5 5 24 47572 0.86 0.00% 47572 0.88 0.00% 0.00 0.02 0.00%

PlasticInject_v2 6908 / 7106 69 35 81 2936384 3600.24 10.34% 2936384 3600.83 10.33% 0.00 0.59 -0.01%
MetalMeca_v2 87609 / 88153 41 21 295 58147 3600.31 84.83% 61574 3600.37 84.19% 3427.00 0.06 -0.64%

As a first observation, it can be seen that the benchmark and real-world instances
tested on the second set of experiments had worse results overall than in the first
set of experiments, in terms of optimal gaps. While the time limit set in this set was
only a third of the one in the first set, no correlation can exist since the instances
themselves are not the same. So, we can only note that the number of variables
has significantly increased, but as previously stated, this does not indicate that the
difficulty of solving the model has increased.

For benchmark instances, the greatest improvements when solving Model-3 were
seen on FSM_16_v2 to FSM_19_v2, with 38, 961, 110, and 427 minutes saved in
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scheduling, respectively. This means that the sum of the total time required to finish
all production tasks was decreased by this value, translating to a significant amount
of time saved (more than 16 hours in the best case). Additionally, the reduced
scheduling time on these benchmark instances indicates that the model is becoming
more efficient and effective in solving complex problems. These time savings can
be allocated to the increase the amount of items produced or to perform scheduled
maintenance on machines. Rather, the optimality gaps persisted at high values for
these cases, suggesting that the problem’s dual solution or the quality of the primal
solution can still be enhanced.

Likewise, for instances FSM_18_v2 to FSM_20_v2 when solving Model-4, a
huge reduction was observed in OF value. Instance FSM_19, specially, owns the
highest reduction of OF value of all instances tested for the Deadline OF, a reduction
of more than 10% in previous value. It means that the factory’s overall punctuality
was improved, even though more jobs were completed later, i.e., the solution better
exploited time windows for items that could be delivered later, reducing the overall
tardiness.

Figures 4.17 and 4.18 show that the best solution has a schedule much tighter in
the first half of scheduling, even with longer time windows between tasks occurring
more frequently.

Figure 4.17: Gantt graph with the
scheduling for Instance FSM_17_v2
for Model-3 without STF’s initial so-
lution.

Figure 4.18: Gantt graph with the
scheduling for Instance FSM_17_v2
for Model-3 with STF’s initial solu-
tion.

The best solution, however, is clearly tighter in the comparison shown in Figures
4.19 and 4.20. Though, the difference in the time windows and overall tightness
between tasks when comparing FSM_17_v2 and FSM_19_v2 with FSM_17_v1
and FSM_17_v1 is very clear.
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Figure 4.19: Gantt graph with the
scheduling for Instance FSM_19_v2
for Model-4 without STF’s initial so-
lution.

Figure 4.20: Gantt graph with the
scheduling for Instance FSM_19_v2
for Model-4 with STF’s initial solu-
tion.

With regard to synthetic instances, the significant improvement showcased by
solving Model-4 at Instance URT_15 highlights the importance of utilizing effective
heuristic solutions like those provided by STF combined with MIP approaches. Fig-
ures 4.21 and 4.22 show that the solutions in this case are the same. Figures 4.23
and 4.24, however, illustrate that, although the primal solution reached its optimal
value later (1025s over 205s) than in the case where no initial solution was provided,
the development of the dual solution improved much faster over time. In the worst
case, the best dual solution did not reach half of its optimal value, even though it
took three times longer than the best case. With the aid of the STF solution, the
solver was able to prove more quickly that the solution found without its help was
already the optimal one, saving approximately 37 minutes of processing time and
reducing the optimality gap in incredibly 51%.

Figure 4.21: Gantt graph with the
scheduling for Instance URT_15 for
Model-4 without STF’s initial solu-
tion.

Figure 4.22: Gantt graph with the
scheduling for Instance URT_15 for
Model-4 with STF’s initial solution.
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Figure 4.23: Evolution of the primal and dual solutions of Model-4 for the Instance
URT_15 without the aid of STF’s solution.

Figure 4.24: Evolution of the primal and dual solutions of Model-4 for the Instance
URT_15 with the aid of STF’s solution.

Another successful case was on the BA_16 instance, where the optimality gap
was reduced by 16%. Indeed Figures 4.26 shows a tighter Gantt graph that 4.25.
It’s worth noting that the optimality gaps, particularly when solving Model-4, were
unexpectedly large for the largest synthetic instances, reaching close to 99%. Al-
though these values are extremely high, this does not imply that the solutions found
are of low quality; rather, it indicates that the distance between the dual solution
and the primal solution found is still substantial. However, as in the case of the
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URT_15 instance, if better initial solutions are provided or more time is given to
the solver, it can be proven that the solution found is optimal.

Figure 4.25: Gantt graph with the
scheduling for Instance BA_16 for
Model-4 without the aid of STF’s so-
lution.

Figure 4.26: Gantt graph with the
scheduling for Instance BA_16 for
Model-4 with the aid of STF’s solu-
tion.

Figures 4.27 and 4.28 show that when the size of the instances is very large, the
process of visually understanding solutions becomes extremely complex. When it
comes to real-world examples, no noteworthy changes have occurred in terms of the
gap and time required differences. Despite that, what appears to be a modest reduc-
tion of only approximately 0.13% in the OF value for Model-3 of PlasticInjection_v2
instance, results in more than 60 hours of free resources for various operations. This
aspect is specially relevant in long term planning scenarios, where the time limit is
larger, but also the solution sought is the best possible, since the impacts caused by
this type of decision are deeper and more extensive.

Figure 4.27: Gantt graph with the scheduling for Instance PlasticInjection_v2 for
Model-3 without the aid of STF’s solution.
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Figure 4.28: Gantt graph with the scheduling for Instance PlasticInjection_v2 for
Model-3 with the aid of STF’s solution.

Nonetheless, an curious phenomenon occurs as illustrated in Figures 4.29 and
4.30: the STF solution continues to have a positive impact on how the solver handles
the branch-and-bound process in the pursuit of the optimal solution even after
several minutes. Because of the early cut of some nodes, the STF solution becomes
even more valuable in such cases, reducing the intricate maze of possibilities the
solver needs to explore, resulting in a more unstable evolution, but also allowing for
greater improvements on optimality gap. Figure 4.29 depicts imperceptible gains in
primal and dual solutions unless the optimality gap is examined. This effect is more
visible in Figure 4.30, around the 2400s. This is particularly crucial when dealing
with complex optimization problems where deterministic methods may struggle, and
significant advancements on primal and dual solutions occur scarcely.

Figure 4.29: Evolution of the primal and dual solutions of Model-4 for the Instance
PlasticInject_v2 without the aid of STF’s solution.
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Figure 4.30: Evolution of the primal and dual solutions of Model-4 for the Instance
PlasticInject_v2 with the aid of STF’s solution.

Despite the fact that applying the STF solution as the first primal solution to
the problem had a number of beneficial effects, there were some situations where
the best viable solution found had drawbacks. The evolution of the primal and
dual solutions for Instance URT_20 when solving Model-3 is depicted in Figures
4.31 and 4.32. This could be a result of limited exploration space. Reducing the
space can occasionally have a positive effect, but it can also take longer to arrive at
better solutions. It is evident that even though the dual solution has not yet reached
optimality, the primal solution is optimal; as a result, the gap is still non-zero even
though it is very small. Solving Model-3 for the MetalMeca_v2 instance is another
instance of an even more harmful event. In this case, we observe that even though
the optimality gap is smaller than in the case where the initial solution is not given,
the value of the primal solution when the initial solution was employed ends up
being higher, resulting in a worse feasible solution.
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Figure 4.31: Evolution of the primal and dual solutions of Model-3 for the URT_20
instance without the aid of STF’s solution.

Figure 4.32: Evolution of the primal and dual solutions of Model-3 for the instance
URT_20 with the aid of STF’s solution.
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Chapter 5

Conclusions and future work

The Flexible Job Shop Scheduling Problem (FJSP) is a fundamental problem in
modern manufacturing since solutions can provide efficient plans and schedules for
assembly and production lines, reducing resource consumption and working hours.
An important consideration in FJSP is accurately representing real world scenarios
which are often very complex and specific. The complexity is increased when com-
plex real-world constraints like minimum start times, different objective functions
and complex precedence relations are faced.

This paper presents an in-depth study of this problem and proposes four mathe-
matical models to tackle these challenges with realistic constraints such as minimum
start and setup times, different objective functions such as deadlines, and complex
precedence relations among operations.

Models 1 and 3 are based on mixed integer linear programming, whereas Models
2 and 4 are based on Mixed Integer Programming due to the presence of non-linear
components in their formulation. Models 3 and 4 are also based on directed acyclic
graphs. A mathematical solver is used to solve all proposed models using the branch-
and-bound method.

Model-1 is a MILP model that aims to minimize the FJSP’s makespan. It is
based on assigning operations of a job to a machine, the order of precedence between
operations of different jobs on the same machine, and the time each operation must
begin.

Model-2 adds a new decision variable to Model-1 to measure the tardiness of
each job, assuming that each job has a due date.

Model-3 and Model-4 are variations of Model-1 and Model-2, respectively, with
the addition of a new parameter to assign a precedence constraint between operations
of the same job, rather than assuming a linear one, which adds a new level of
complexity to the problem.

The performance of the proposed Model-1 and Model-2 is also compared to that
of state-of-the-art software that employs a heuristic core STF based on discrete event
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simulation.
The paper evaluates the two first models on benchmark and real-world based

instances in a first set of experiments and shows that the proposed models can
obtain optimal or near-optimal solutions for medium-sized problems and outperform
heuristic solutions in all tested cases.

Numerical evaluations suggest that primary and dual solutions can be benefi-
cially affected by reducing their relative distances through the use of better initial
heuristics than those provided by the solver.

In the second set of experiments, the paper compares the last two models on
benchmark, synthetic, and real-world instances, with the addition of a given solution
provided by STF. The integration with the discrete event based simulation core and
has demonstrated that MIP models results can be significantly improved, though
unexpected effects can still occur, i.e., the use of the STF as an initial solution
provider did not always result in improvement; in those cases, initial solutions based
on the solver’s own heuristics are likely to produce better results.

This work also demonstrates that the proposed models can capture the key
characteristics and challenges of real-world manufacturing environments and provide
effective and efficient solutions to the FJSP. As a result, the improved performance of
the models demonstrates its improved ability to handle larger and more sophisticated
scheduling tasks, being capable of handling very complex operations precedence
structures and specific shop floor characteristics. This progress is promising for
future applications in various scenarios where time and resource management are
crucial.

5.1 Future work

While the models proposed in this work embody important constraints, other
aspects of complex and real production lines should also be incorporated, thus al-
lowing the models to be used in a broader context. Therefore, a suggestion for future
work is the incorporation of features such as representing possible idle times after
an operation (e.g., drying before folding), representing transportation time between
two operations of a job in different machines, and allowing for flexible batch pro-
cessing (e.g., produce 100 items in two operations of 50 items) are also requirements
often needed in manufacturing scenarios.

One of the method’s limitations is that, while STF solutions can be useful in
many cases, there is still room for improvement in the solutions that are provided to
the solver. As a result, techniques such as metaheuristics could be used to improve
the initial solutions presented to the solver. Furthermore, the solver’s settings could
be optimized, such as allocating more time to its initial heuristics or focusing on
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improving the dual solution.
More effective comparisons, such as directly comparing models with the same

OFs but different precedence representations, could be made. In addition, the STF
heuristic solution could be passed to Model-1 and Model-2 and the results observed.
Instead of STF heuristics, metaheuristics could be implemented in the STF kernel
to provide higher-quality solutions.

The complexity of scheduling is not solely technical but also involves dealing
with human factors. Involving the workforce and managing their skills, shift pref-
erences, and workload is crucial to creating a schedule that is both efficient and
practical. Employee morale, motivation, and work-life balance can all be impacted
by the scheduling decisions, making workforce management an integral part of the
scheduling process.

The use of preemption by mathematical models could be investigated further in
order to gain insights into how to apply it on heuristics and metaheuristics that can
provide better initial solutions and speed up the resolution of complex and large
instances.

Further research is required to assess the difference in complexity between models
with and without the use of DAGs under the same time constraint. Finally, multi-
objective functions could be explored to tackle both OFs covered in this work, as
well as others.
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