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Terapias baseadas em aquecimento são aquelas onde uma fonte de calor é uti-
lizada para auxiliar no tratamento de condições que variam deste inflamações até
alguns tipos de câncer. Neste tipo de procedimento médico, o monitoramento da
variação da temperatura é de vital importância pois, se a janela de temperatura
desejada não for alcançada, a eficácia do tratamento por ser limitada ou é possível
até mesmo agravar o problema existente. Nesse sentido, o presente trabalho propõe
uma modelagem para tratar o problema de estimar a variação de temperatura em
imagens de ultrassom em modo B possibilitando a utilização de modelos de apren-
dizado de máquina. Para validar a modelagem, foram explorados modelos baseados
em árvores, topologias simples de redes neurais profundas e redes neurais sem peso
modificadas para problemas de regressão. A modelagem proposta lida apenas com
informações providas pelas imagens de ultrassom, incorporando informações obtidas
a partir de uma imagem paramétrica construída com base nas mudanças de energia
de retroespalhamento (CBEUS). Os resultados computacionais mostram que, em um
cenário simulado, a modelagem proposta em conjunto com o modelo Gradient Boost-
ing Decision Tree (GBDT) é capaz de estimar a variação de temperatura com um
erro médio absoluto próximo de 0.5ºC, o que é considerado aceitável em ambientes
práticos tanto em tratamentos fisioterapêuticos quando em ultrassom focalizado de
alta intensidade (HIFU).
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Heating-based therapies are those where a heat source is used to assist in treat-
ments of conditions that ranges from inflammation to forms of cancer. In this type of
medical procedure, monitoring temperature variation is vitally important because,
if the desired temperature range is not reached, treatment may be limited or even
worsen the existing problem. In this sense, this work aims to propose a modeling
to address the problem of estimating temperature variation in regions of B-mode
ultrasound images that allows the use of machine learning models. To validate the
modeling, tree-based models, simple topologies of deep neural networks and weight-
less neural networks adapted for regression problems were explored. The proposed
modeling aims to deal only with information provided by the ultrasound images,
incorporating data that can be obtained from a parametric image constructed based
on changes in backscattered energy (CBEUS). The computational results showed
that, in a simulated scenario, the proposed approach with the Gradient Boosting
Decision Tree model would be able to estimate the temperature with an mean ab-
solute error close to 0.5ºC, which is acceptable in practical environments both in
physiotherapeutic treatments and high intensity focused ultrasound (HIFU).
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Chapter 1

Introduction

Thermotherapy is a type of medical treatment that is based on the variation of tissue
temperature, where this variation can be considered both as increasing or decreas-
ing direction [1]. In general, thermotherapy applications act superficially, so that
other types of procedures are required to reach deeper tissues. When considering
temperature increase, heat can be obtained from the use of infrared radiation or
ultrasound.

Ultrasound is characterized as any mechanical vibration with a frequency greater
than 20 kHz [2]. In medicine, ultrasound devices are commonly associated with
image diagnosis, but the use of therapeutic ultrasound for treating injuries or certain
types of cancer has wide application due to its low cost and because it is a harmless
and non-invasive procedure [3].

Among the existing thermal therapies that use ultrasound as a heat source,
hyperthermia is particularly prominent. It is a thermal treatment for some kinds of
cancer, where the region is heated to temperatures close to 45ºC, which improves
the effectiveness of procedures like radiotherapy [4]. Ultrasound is also used in
physiotherapeutic treatments. It is applied, for example, to treat inflammatory
conditions by increasing the blood flow and accelerating healing processes. [5].
Being a treatment that requires a specific temperature window to work and since
heat does not spread equally, online temperature tracking is an essential procedure.
The treatment would be ineffective if the temperature is below the required range.
On the other hand, reaching higher temperatures could be harmful, causing burns
and undesired effects.

However, tracking the temperature in deep tissues is a challenging task. The gold
standard for measuring the temperature is through invasive techniques using sensing
probes, specifically sensors like thermocouples that need to be in direct contact with
the region [6]. This type of procedure is not always a viable option, which leads to an
investigation of non-invasive techniques for temperature monitoring, and Magnetic
Resonance Thermography (MRT) is presented as an alternative. It is a non-ionizing
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procedure that can retrieve information that is clinically accepted but has major
drawbacks, like high cost and the difficulty of designing systems that are not affected
by the scanner’s magnetic field [7].

Backscattered energy is an acoustic property that is a topic of interest in re-
search related to temperature estimation. It is the portion of the energy that travels
back to the transducer after it interacts with a medium or an object. Other works
aimed at studying the impact of changes in backscattered energy (CBE). In [8] the
authors demonstrate how the power of backscattered ultrasound is dependent on
temperature. [9] present analysis where CBE varies monotonically depending on
the medium type, and [10] produced 2D temperature maps based on echo shifts and
CBE of acoustic harmonic in the temperature range of hyperthermia.

Machine learning (ML) rises as a potential candidate in many domains - includ-
ing healthcare - when talking about automatic methods to process both structured
and unstructured data. From supporting prognosis [11] to highlighting hidden pat-
terns in medical imaging generation [12], the application of artificial intelligence
algorithms and usage of intelligent agents has reportedly enhanced both productiv-
ity and quality not only in the medical domain but in various sectors of the modern
society.

Machine learning methods are usually applied to image processing tasks when
dealing with ultrasound. In [13] the authors present a literature review showing
applications on image classification (the system must decide whether the image be-
longs to a class or not), image detection (discover if and where the desired element
is present in the image), image segmentation (isolate parts of the image that cor-
respond to distinguished elements) and 3D ultrasound analysis. [14] describes an
application on obstetrics in which a classification system based on support vector
machines is used to detect fetal presentation by analyzing features extracted from
images. [15] shows a deep neural network to reconstruct ultrasound images from
radio-frequency data.

The goal of this work is to propose a data modeling for the problem of estimating
the temperature variation of B-mode images as a supervised learning problem by
proposing the transformation of the image information into a structured tabular
format that enables the use of machine learning models to estimate the variation
in a non-invasive way. In particular, the proposed modeling resort to the use of a
parametric image built based on CBE.

As stated earlier, one of the benefits of ultrasound is that it is a cheaper solu-
tion compared to other applications, and it would be desirable to include machine
learning-based solutions that cause minimal impacts in cost while retaining good
performance. Weightless neural models (WNN) have reportedly presented advan-
tages like their simplicity to be implemented as hardware, low training time, good
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convergence with few examples, and a steep learning curve [16].
One of the most famous WNN is the WiSARD (Wilkie, Stonham, and Alek-

sander Recognition Device) [17], a classifier that is formed by a group of multiple
discriminators built using RAM-like structures that operates as the network neurons.
Since the WiSARD model was developed for classification tasks, and the problem of
estimating the temperature variation requires the output to be a continuous value,
it was necessary to perform a modification on the model structure to enable it to
work in regression tasks. In this sense, this work also proposes the RegressionWiS-
ARD (ReW) and ClusRegressionWiSARD (CReW) models, which are extensions of
the WiSARD models for regression. Both models were initially applied to classic
machine learning datasets to explore parameter tuning.

1.1 Contributions

During the development of this work, the following contributions were presented:

• proposal of novel modeling for the problem of estimating temperature variation
in ultrasound images that enables the use of machine learning models;

• exploration of three groups of machine learning models to evaluate the pro-
posed modeling;

• presentation of two architecture extensions of the WiSARD models for per-
forming regression tasks;

• comparison of the proposed extensions with classic regression models in dif-
ferent scenarios;

1.2 Document Organization

The remainder of this thesis is organized as follows:

• Chapter 2 presents background on medical ultrasound, introducing the basic
aspects that enable understanding the application scenario.

• Chapter 3 describes the proposed data modeling for estimating temperature
variation as a supervised learning problem.

• Chapter 4 presents the structure of the experiments and the main results
obtained from the experiments,

• Chapter 5 shows an exploratory data analysis to understand the results better.
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• Chapter 6 summarizes the general conclusions and points to the next steps for
this research.

• Appendix A list all published works developed during this period.

• Appendix B presents background on weightless neural models the two pro-
posed weightless neural models for regression tasks, RegressionWiSARD and
ClusRegressionWiSARD.

• Appendix C shows graphical results on hyperparameter exploration of the
proposed regression models when applied to a set of classic regression datasets
and discusses these results.

• Appendix D presents a heuristic proposed for selecting the number of bits
addressed to a feature when applying a thermometer encoding.
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Chapter 2

Background on Ultrasound

This chapter starts with a background on ultrasound, contextualizing fundamental
principles and characteristics, followed by the subsequent exploration of therapeutic
ultrasound and its applications, which is the focal domain of this work. Particularly,
the main problem that is addressed in this work is the non-invasive temperature
measurement in hyperthermia, and a literature review on different approaches for
this problem is performed.

2.1 Introduction

Sound is a mechanical wave that is created by an object’s vibration, such as a
speaker or musical instruments like guitars and drums. This vibration causes the
air molecules around the object to compress and expand, creating a pressure wave
that travels through the air. When this wave reaches an ear structure, it causes
the eardrum to vibrate, which turns the signals to the brain that are interpreted
as sound. Sound can also travel through other mediums such as solids and liquids.
Sound is measured in decibels (dB) and the loudness of sound is known as sound
intensity. As it propagates, it can lose intensity along the wave path, as it interacts
with medium properties.

Being a wave, sound can be described by components like frequency (how often
a wave oscillates), wavelength (the distance between two peaks), and amplitude (the
height of the wave), as illustrated in figure 2.1. Typically, the human ear can detect
sounds that present a frequency between 20 Hz and 20,000 Hz.

When a sound wave reaches a frequency higher than 20,000 Hz it is defined as
ultrasound [2]. At this frequency, these waves are not audible to the human ear.
Although it cannot be heard, ultrasound waves have a wide range of applications in
various fields, such as:

• Sonar: used in localization systems for tasks like navigation and object detec-
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Figure 2.1: Description of a sound wave in terms of frequency its wavelength λ and
amplitude A

tion [18].

• Industrial Inspection: ultrasound testing is a type of non-destructive testing
(NDT). Ultrasound can be used for integrity inspection of components such
as pipes or pressure vessels. It can detect internal defects like cracks and
corrosion that would not be detected by the human eye [19].

• Industrial Cleaning: to remove dirt, oil, and other substances from surfaces
by creating microscopic bubbles that implode and create tiny shockwaves that
remove the desired material [19].

• Pest control: to repel pests such as rats, bats, and other animals. The high-
frequency sound waves are used to create an environment that is uncomfortable
for pests, turning them to leave [20].

• Cosmetics: used alongside cosmetics and personal care procedures to help
remove dirt from the skin and dead skin cells [21].

Besides the above-mentioned applications, ultrasound is also commonly asso-
ciated with the medical domain. The Austrian neurologist Karl Theo Dussik is
referred to as the first to apply ultrasound as a medical diagnostic tool, using it to
generate brain images [22]. In general terms, there are two major uses of ultrasound
in medicine: ultrasonography and therapeutic ultrasound.
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2.2 Ultrasonography

Ultrasonography, also known as diagnostic sonography, is an imaging procedure that
uses ultrasound waves to create images of internal organs, blood vessels, and other
inner structures of the human body. Ultrasound images are created by sending sound
waves into the body and then measuring the echoes that are returned. These echoes
are then used to create a detailed image of the structure or organ being examined.
Ultrasonography is a non-invasive and safe procedure, as it does not use ionizing
radiation, and it is relatively inexpensive compared to other imaging techniques such
as computed tomography (CT) or magnetic resonance imaging (MRI).

It can be used to monitor and diagnose a wide range of medical conditions,
including pregnancy, tumors, organ damage, blood clots, and more. In obstetrics
and gynecology, ultrasound images are used to monitor the growth and development
of a fetus during pregnancy. Also, it can help detect anomalies in the abdominal
region and vascular system, for example, [23].

For generating images, a device known as a transducer is used [24]. It both emits
the ultrasound waves and also captures the waves that reflect on body structures
and return. All transducers have piezoelectric elements, usually made of ceramic or
polyvinylidene fluoride that convert electrical energy into mechanical energy and vice
versa. This crystal is responsible for creating and receiving the ultrasound waves.
There are several types of ultrasound transducers, each with a specific purpose and
design. Some of the most common types include:

• Linear transducers: have a linear array of elements that emit and receive
sound waves. They are used for applications such as abdominal imaging, and
musculoskeletal imaging.

• Convex transducers: have a curved surface that allows them to scan a larger
area of the body. They are used for applications such as obstetrics and gyne-
cology, as well as abdominal imaging.

• Electronically focalized transducers: have a matrix of elements that emit and
receive sound waves. They can be electronically focused, allowing them to
image deeper structures and improve image resolution. They are used in ap-
plications such as cardiac imaging, and vascular imaging.

The choice of the transducer depends on the type of exam to be performed and
the type of tissue or organ to be imaged [25]. Based on that, the chosen transducer is
then moved over the area of the body being examined, and the images are displayed
on a monitor for the doctor to review. Different modes of ultrasound images can
provide different information and can be used to evaluate a wide range of conditions
and diseases. Some of these modes are described as follows:
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• B-mode (Brightness mode): typically used for diagnostic purposes, such as
detecting tumors, cysts, and other abnormalities. Also used to measure the size
and shape of organs, and to monitor the growth of a fetus during pregnancy.

• M-mode (Motion mode): provides one and bi-dimensional views of internal
structures. Usually used to evaluate cardiac function and to measure the size
and movement of internal organs.

• Doppler mode: used to evaluate blood flow in the body. It can be used to
evaluate blood flow in the uterus, placenta, and fetal heart during pregnancy.

• Power Doppler mode: similar to Doppler mode, but it is more sensitive and
can detect even small amounts of blood flow.

• Color Doppler mode: combines Doppler information with B-mode images to
create a color-coded map of blood flow. It can be used to evaluate blood flow
in the uterus, placenta, and fetal heart during pregnancy.

• Spectral Doppler mode: displays the speed and direction of blood flow in a
line graph format, it is used to evaluate blood flow in the vessels, such as the
carotid artery, and it can also be used to detect any blockages or problems
with blood flow.

• 3D images: provide a more detailed, three-dimensional view of the body and
are used to visualize the fetus during pregnancy, as well as to examine the
shape and structure of organs such as the heart and liver.

In this work, the focus is on the analysis of B-mode ultrasound images, which are
gray-level images created based on the measurement of the amplitude of ultrasound
waves’ echoes that reflect after interacting with internal organs and tissues. The
strength of the echoes is represented by different shades of gray in the image, with
brighter areas indicating stronger reflectors while dark areas indicate weaker ones.
An example of a B-mode ultrasound image can be seen in figure 2.2. The choice
of this type of image was because it is the ultrasound image variation used in most
practical situations.

2.3 Therapeutic Ultrasound

Therapeutic ultrasound, also known as therapeutic ultrasonography, is a medical
treatment that uses ultrasound waves to promote healing and reduce pain. The ul-
trasound waves are delivered to the body and penetrate deep into the tissue, creating
heat and stimulating blood flow and tissue repair, which helps reduce inflammation
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Figure 2.2: Example of B-mode ultrasound. This figure was retrieved from the web-
site: https://commons.wikimedia.org/wiki/File:Dilated_cardiomyopathy_
B-Mode.jpg

and promote healing. Additionally, the heat generated by the ultrasound waves can
help reduce pain and muscle spasms. Therapeutic ultrasound is used to treat a
variety of conditions, including:

• Musculoskeletal conditions such as tendinitis, bursitis, and muscle strains

• Soft tissue injuries such as sprains and strains

• Wounds and ulcers

• Bone healing and fractures

Therapeutic ultrasound is a non-invasive treatment with minimal side effects,
and it can be used in combination with other treatments such as exercise, physical
therapy, and medication. It is encapsulated in a group of procedures known as ther-
motherapy, which uses heat to relieve pain and muscle spasms, increase circulation,
and promote healing. And, besides ultrasound waves, other forms of electromag-
netic energy can also be used. Thermotherapy is often used to treat conditions such
as arthritis, menstrual cramps, and muscle strains. One important application of
thermotherapy is cancer treatment, in the form of procedures like thermal ablation
and hyperthermia.

Thermal ablation uses heat energy to destroy or remove tumors. The energy
is delivered to the tissue through a probe guided to the target area using imaging
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techniques such as ultrasonography. Thermal ablation is often used to treat benign
or malignant tumors in the liver, kidney, and lung, among others.

Hyperthermia is a form of thermotherapy that uses heat to raise the temperature
of cancerous tissue to kill the cancer cells. [26] The idea behind hyperthermia is that
cancer cells become more sensitive to drug therapy than normal cells. So, by raising
the temperature of the cancerous tissue, the cancer cells will be killed while leaving
the normal cells unharmed. Among different types of hyperthermia treatments, it
could be cited:

• Whole-body: raises the entire body’s temperature. It is used to treat
advanced-stage cancers such as metastatic melanoma.

• Regional: raises the temperature of a specific area of the body, such as an
organ. It is used to treat localized cancers such as prostate or breast cancer.

• Focal: raises the temperature of a specific area of the body. It is used to treat
small tumors and cancer that have not spread to other parts of the body.

In hyperthermia, ultrasound is used in a technique called High-Intensity Focused
Ultrasound (HIFU) [27]. HIFU therapy works by focusing the ultrasound energy at
a certain point. The high energy at the focal point causes the temperature to rise
rapidly, leading to cell death in the targeted area. The sound waves are precisely
focused and the energy is delivered at a high intensity to the target area, while the
surrounding healthy tissue is spared. [28]

2.4 Temperature Estimation

Since ultrasound images do not directly provide information regarding temperature.
It is possible, however, to estimate temperature changes in tissue using techniques
such as thermal imaging. Thermal imaging utilizes the differences in ultrasound
backscatter between regions of different temperatures to create a thermal map of
the tissue. [29].

It is important to notice that these techniques are not as accurate as direct
temperature measurements and are affected by several factors such as tissue type
and composition, power settings, and probe frequency. Thus, the main objective
is to estimate temperature within a certain margin error, which, according to the
literature, is desired to be placed equal to or lower than 0.5 degree Celsius [30].

In thermotherapy procedures, the control of temperature variation is of great
interest, as the correct level of heating/cooling is directly associated with the pro-
cedure’s success. In a heating scenario, if the temperature is not high enough, the
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procedure may have little to no effect. On the other hand, if the temperature is too
high, it could cause burns in tissue and aggravate the problem.

2.5 Related Work

Non-invasive temperature measurement has been a subject of interest in several
works over the past decades. [31] presents a handful of examples where invasive
monitoring methods can be questioned, like patients’ low acceptance and the possi-
bility of undesired side effects. The authors, then, developed a study comparing the
effectiveness of thermal monitoring using less-invasive (monitor application in shal-
low organs) and non-invasive techniques (magnetic resonance tomography). It was
concluded that, even though there are limitations and specific application scenarios,
both approaches should be considered and further explored.

In one of the first works to approach ultrasound for non-invasive thermometry,
the authors in [32] analyze the modification in the backscattered signal generated by
a given tissue. This was motivated by the fact that the signal has a direct dependence
on the tissue properties and these properties change based on the temperature of
the tissue. In particular, it is stated that the backscattered power on the considered
temperature range can be retrieved by the following equation:

Pr(T ) =
2H2δ

8R4α(T )
η(T )S(1− e−2α(T )c(T )τ ) (2.1)

where H
R

and δ are the amplitude and duration of the insonifying sinusoidal burst,
respectively; R is the distance from the transducer to the scattering volume of tissue;
α(T) is the attenuation within the tissue volume as a function of temperature; c(T)
is the speed of sound in the tissue volume as a function of temperature; and η(T) is
the backscatter coefficient of the tissue volume as a function of temperature.

In [33], the authors question the results of previous works that proposed tem-
perature estimation methodologies without considering a realistic temperature rise
using body temperature baseline. Besides, it also questions the phantom material
of the works (rubber), which presents different properties comparing to muscle or
lipid tissue.

The work evaluates three liver samples, each one containing normal, intermedi-
ate, and high-fat percentages, and it aims to promote a method for visualizing the
heated region based on analysis of the ultrasound echo strain.

A different method used for the non-invasive temperature estimation is the av-
erage gray-level (AVGL) [34]. Given a defined rectangular region with dimensions
MxN, the absolute average gray-level is computed as
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AV GLab =
1

M ×N

M∑
i=1

N∑
j=1

pij (2.2)

where pij is the gray-level of the pixel in the position i × j. The authors use
a sample of the porcine kidney (with both muscular and lipid tissue) and measure
the temperature continuously in a range of 36oC - 45oC in two different regions
of the sample while generating corresponding images at each given temperature,
which leads to the development of a relation mapping (e.g. a function) between the
AVGLs and the temperatures. The temperature variation was performed using a
water bath-controlled system.

The measurements indicated a high correlation between the two variables (AVGL
and temperature), with a minimum correlation of 0.98. By displaying scatter plots
and fitting a function to approximate the distributions, a maximum error of 0.25oC.
It must be stated, though, that this error was obtained through an interpolation
method. In other words, it is a function that describes the distribution of measured
points, and no evaluation of unseen data was performed.

Next, the authors perform an extended exploration of how to use the AVGLs for
temperature estimation [35]. A similar temperature-controlled system was used, but
a bovine muscle sample was chosen for the experiments. Also, a different approach
was taken, where the heating source was a therapeutic ultrasound. By using these
different approaches, it was found that while in a water bath, the AVGLs presented
a linear relationship concerning temperature, the therapeutic ultrasound promoted
a quadratic relationship.

In [36] the authors further extend the research by starting an evaluation study
on a metric known as uncertainty, which is a description of the difference between
the measured value and the actual value in real life. The experiments followed
the previous work’s design using a plastic phantom that was placed on a reservoir
with controlled temperature changes. Based on the measurements, they computed
a regression model to describe the variation between metrics.

The experiments were performed 10 independent times, and the regression model
was evaluated through the usage of the leave-one-out method, where, at each given
time, one test was removed and the regression model was performed using the other
nine tests. Then, the one remaining test’s actual result was compared to the pre-
dicted value of the model. It was observed that in a worst-case scenario, the predic-
tion error was around 1oC.

In a later work [37], the authors expand the studies regarding uncertainty mea-
surement by dealing with a tissue-mimicking material using an ultrasound-based
heating mechanism. The analysis was performed both in heating and cooling proce-
dures. As previously mentioned, the type of heating source impacts the relationship
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between the AVGLs and temperature variation. The interference of the therapeu-
tic ultrasound in the uncertainty computation was noticed since the value obtained
during the heating procedure (2.5oC, and where the device was active) was higher
than the one obtained during the cooling procedure (1.9oC).

13



Chapter 3

Proposed Data Modeling

This chapter presents the proposed data modeling, which is a novel methodology that
enables the application of machine learning methods to the temperature variation
estimation problem. It starts by explaining CBEUS, a parametric image generated
based on changes in backscattered energy that was proposed in [38] and is used
as a resource for the proposed modeling. Then, it follows up by explaining the
proposed data modeling, showing the different approaches that will be evaluated in
the following chapter. It concludes by presenting a summary of some of the machine
learning models that will be used in the experiments. It is worth noticing that
the examples illustrated in this chapter use B-mode ultrasound images that will be
better described in the Experimental Framework section in Chapter 4.

3.1 CBEUS

In [38] the authors explore a new imaging modality in the analysis of intensity
changes of pixels related to temperature changes, referred to as CBE-based Ultra-
sound (CBEUS) Imaging. The novel method proved to be efficient not only by
maintaining the ability to distinguish structures but also by providing the identifi-
cation of new ones.

During the analysis, the authors noticed that the behavior during heating of a
single pixel location could be fit by a linear model and that the angular coefficient
(slope parameter) of the linear model was different according to the type of tissue.
So, by mapping the angular coefficient, it would be possible to describe the different
tissue compositions.

The general process for creating a CBEUS image uses a set of B-mode ultrasound
images ordered by temperature level in ascending order. For each pixel location (i, j),
the linear model is used to fit the pixel values across all images:

∆Ii×j(∆T ) = ai×j∆T + bi×j (3.1)
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where ∆Ii×j(∆T ) is the temperature-dependent intensity change for some pixel
(i, j), ∆T is the temperature change measured, and ai×j and bi×j are the linear model
parameters for pixel (i, j). Then, from the fitted polynomial, the slope parameter
ai×j is retrieved and placed in the same pixel (i, j) of the parametric image. Finally,
the CBEUS image is generated after normalizing the pixel values into the interval
[0, 255]. Figure 3.1 illustrates this process.

For clarification purposes, three examples of actual values in the experiment with
the digital phantom are presented. Pixel locations from each of the different tissue
type regions were chosen. For the muscle tissue region, the array [65, 59, 56, 52,
49, 49, 48, 44, 40] was retrieved. By fitting the first-order polynomial, the model
ŷ = −2.73x + 62.27 was obtained, where the slope parameter is −2.73. Next, for
the lipid tissue region, the array [87, 87, 90, 93, 96, 96, 93, 101, 93] was retrieved.
Similarly, the model ŷ = 1.25x+87.89 is obtained, with the slope parameter as 1.25.
Finally, for the water medium region, the external region where the temperature
images contain black pixels was used. The retrieved array should be [0, 0, 0, 0, 0,
0, 0, 0, 0], and the model would be ŷ = 0, and the slope parameter is 0.

The slope parameters are placed in the corresponding pixel locations of the
CBEUS image, and the normalization process is applied. In this sense, the lowest
value in the matrix will be converted to 0 (black) and the highest value will be
converted to 255 (white). As shown in Figure 3.1d, the muscle region is darker, which
relates to the fact that this type of tissue presented a negative slope parameter, i.e.
pixels get darker (pixel values get lower) as the temperature rises.

The modeling starts by considering the following practical scenario: the ultra-
sonic transducer is applied to the surface of some system, generating a base image
that represents the system at a given temperature T1. After some time, as the
heating process occurs, the system temperature rises, and the generated image now
represents the same system at a new given temperature T2. In this practical scenario,
there are two images and the desire to estimate the difference ∆ = T2 − T1.

Images are a type of unstructured data, and it is necessary to define a set of
processes to extract information to produce features. Since images are a collection
of pixels, and there is a direct relation between pixel < i, j > of images T1 and T2 if,
and only if, the transducer position was not altered during the process, it is possible
to track how the pixel value was affected by the temperature variation.

Four different approaches for modeling this scenario were developed construc-
tively. It starts by considering a collection containing M images that are ordered
by the referenced temperature. Hence, this collection can be represented as a set:

C = {T1, T2, ..., TM} (3.2)
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Figure 3.1: Process for creating a CBEUS image. a) set of images ordered by
temperature level in ascending order. b) small section of the images with grayscale
values of the pixels. c) the resulting slope parameters for each pixel in the parametric
image. d) the final CBEUS image obtained after pixel value normalization.

Figure 3.2 illustrates the possible combinations that can be obtained using eight
different images ordered by temperature. For the sake of the algorithm, M must be
at least 2. In this sense, for a given collection C containing M images, a group G

containing M − 1 sets {S1, S2, ..., SM−1} can be generated so that:

• S1 contains N − 1 groups with 2 images and ∆ = 1

• S2 contains N − 2 groups with 3 images and ∆ = 2

• ...

• SM−1 contains 1 group with M images and ∆ = M − 1

3.2 Proposed Approaches

The first idea was to select the same pixel value from the first (T1) and last (T2)
images of each group and associate them with the expected ∆ value, as depicted
in Figure 3.3. But although the raw pixel value can be used, it was also proposed
the usage of the CBEUS image information to incorporate the structure description
capability of the parametric image, as shown in Figure 3.4, which was the actual
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Figure 3.2: Illustration of the possible arrangements for generating CBEUS images
from a set of B-mode images ordered by represented temperature.

motivation for creating the sets of images in the collection, as the computation of a
first-order polynomial demand at least two points, and the more points, the better
is the interpolation.

Figure 3.3: Pictorial representation of the first data modeling approach used. By
considering two B-mode temperature images, the same pixel of both images is se-
lected to generate an observation to the dataset. The expected output of the dataset
is the given ∆. The process is repeated for all valid pixels in both images.

By recalling collection C, for each base image, a set of CBEUS images with their
respective ∆ values were generated. The third and fourth approaches taken were
to extract the grayscale values of both images within a certain neighborhood of size
N , reshape it in the form of a vector, and associate it with the known temperature
variation ∆. In the third approach - as shown in Figure 3.5 - the neighborhood was
extracted only from the base image, while approach four (Figure 3.6) extracts the
same neighborhood from both images. Since the thermal expansion of tissues may
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Figure 3.4: Pictorial representation of the second data modeling approach used. By
considering a B-mode temperature image and the CBEUS image computed with a
certain temperature variation, the same pixel of both images is selected to generate
an observation to the dataset. The expected output of the dataset is the given ∆.
The process is repeated for all valid pixels in both images.

lead to a situation where each pixel does not represent the same site in the structure,
this procedure is also convenient to account for any pixel displacement caused by
temperature rise.

By iteratively performing this process through all viable pixels within all images,
a dataset is generated. It must be stated that the dataset is unbalanced, as the sets
within collection C present a different number of images.

In this sense, it can be stated that there is a group of observations with a set of
known expected outputs and that there are new observations with a similar structure
that require the estimation of this output, which is the definition of a supervised
learning problem. Hence, it would be possible to use a machine learning algorithm
to learn data patterns and build a predictor.
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Figure 3.5: Pictorial representation of the third data modeling approach used. By
considering a B-mode temperature image and the CBEUS image computed with a
certain temperature variation, for the same pixel of both images, a neighborhood of
size N for the temperature image and the single pixel are selected to generate an
observation to the dataset. The expected output of the dataset is the given ∆. The
process is repeated for all valid pixels in both images. A valid pixel implies that the
neighborhood of size N can be retrieved, i.e. it is within the image bounds.

Figure 3.6: Pictorial representation of the fourth data modeling approach used. By
considering a B-mode temperature image and the CBEUS image computed with a
certain temperature variation, for the same pixel of both images, a neighborhood of
size N is selected to generate an observation to the dataset. The expected output
of the dataset is the given ∆. The process is repeated for all valid pixels in both
images. A valid pixel implies that the neighborhood of size N can be retrieved, i.e.
it is within the image bounds.
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3.3 Machine Learning Models

After generating the dataset from the images, it is possible to feed the data to a
supervised machine learning model. This section briefly describes two groups of
models that were used in the experiments, while the following two chapters provide
a deep overview of the weightless neural models that were developed during the first
steps of this work. Nevertheless, it should be stated that a deeper exploration of
other models’ performances should be addressed in future projects.

3.3.1 Tree-based methods

Both the Random Forest (RF) and the Gradient Boosting Decision Trees (GBDT)
are ensemble models derived from the classic Decision Tree (DT) [39]. A tree is a
data structure formed by nodes that can have one or more child nodes. In a tree,
there are three types of nodes: the root node, which is a single node that represents
the starting element of the tree; internal nodes, which are nodes that have one or
more child nodes and a father node; and leaf nodes, which are nodes without child
nodes. Figure 3.7 illustrates this structure.

Figure 3.7: Classic tree data structure.

The training phase of a DT model builds a tree based on the dataset. Differ-
ent algorithms for training can be used like C4.5 [40] and CART [41]. The usual
approach is to use a metric to identify a feature that can be used to effectively cre-
ate a partition of the data. Given the current node, this feature is used to create
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an if/else statement, and child nodes are generated to address the corresponding
decisions. Then, the algorithm repeats for each child node.

As previously mentioned, RF is an ensemble method. Ensemble methods are a
special class of models that group simple models that work together and combine
their responses to improve the overall performance. These simple models are known
as weak learners. In the RF model (and also in the GBDT model), the weak learners
are DTs.

GBDT [42], as implied by the model’s name, uses a technique known as boosting
[43]. This is one of the possible techniques used by ensemble models to direct how
the dataset is approached by the weak learners and guides the training process. The
idea is to add new DTs to the ensemble as the previous DTs are trained, and these
new models are focused on correcting the errors generated by the previous learners.
This process is illustrated in Figure 3.8 The process of minimizing the error within
the new models is associated with the idea of the gradient descent algorithm, where
we use a learning rate η to define the contribution of each new estimator. The
smaller the learning rate, the less the next learner will adapt to previous errors.

Figure 3.8: Examplification of the boosting technique.
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3.3.2 Deep Neural Networks

Deep Learning stands as the current basis for modern artificial intelligence systems,
as it has been applied to a wide range of domains reaching state-of-the-art results for
applications like image recognition [44], voice generation [45] and speech recognition
[46]. This comes from the ability of deep neural models to detect and learn non-linear
patterns from data.

A neural network is a classic machine learning model that aims to mimic a living
brain [47]. It is composed of several elements known as neurons that are units of
computation with a series of weights associated with its inputs and an activation
function that generates an output. In a neural network, a set of neurons is organized
in the shape of layers. Typically, a Deep Neural Network (DNN) is classified as a
neural network with at least two hidden layers. Neural networks learn from data
through the use of the backpropagation algorithm, in which the data is presented to
the network and, after a validation process, the weights are updated to better suit
the predictions.

As the number of layers increases, the more powerful the network becomes. But
this comes with the downside of demanding more time to adjust the weights. The
capability of DNN’s is better explored by using graphics processing units (GPU),
which can perform numerous computations in parallel, allowing the distribution
calculations involved in the network training process, accelerating this, which is its
most computationally costly stage.

An important step in constructing a DNN’s topology includes adjusting the
regularization and normalization mechanisms that will be used in it. In this sense,
two important parameters are the Batch Normalization [48], which is the process of
normalizing the inputs in the network layers so that the optimization process can
be improved, and the Dropout Rate [49], which is the probability of a neuron to be
deactivated during the training phase.

In general, DNN models present a series of requirements to provide good per-
formance, which includes a vast number of training examples to be able to detect
non-linear patterns between the data and being able to generalize, and also a ro-
bust hardware infrastructure that makes it possible to accelerate the model training
process, which becomes more expensive as the complexity of the network also in-
creases. Based on these characteristics, part of the proposal of this work consisted
of the elaboration and exploration of two weightless neural network models, given
that they are a class of models that generalize well even with few examples and
their main characteristic is an efficient training process with little expenditure of
resources.
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3.3.3 RegressionWiSARD

In contrast to the classic perceptron model [50], weightless neural models do not
contain weight parameters to be adjusted. The n-tuple classifier presented in [51]
stands as a reference model from which other weightless neural systems were devel-
oped. Initially proposed for handwritten character recognition, this method receives
a binary input divided into n subsets and addressed to node structures.

RegressionWiSARD (ReW) extends the original WiSARD model by applying the
additional accumulative dimension of the n-Tuple Regression Network, so that its
architecture is now based on RAM-memory locations with two dimensions: counter
and sum, with both values being updated for each training pattern. Initially, all
memory location values are set to zero. The ReW model keeps the binary input
restriction and the pseudo-random mapping of the input, while it does not present
a group of discriminators. Since the output it tries to predict is within a continuous
space, only one set of RAM-nodes is needed.

Regarding the training phase, the ReW model is similar to WiSARD: a pseudo-
random mapping is applied and each n-tuple is related to a specific memory address.
However, the process of directing the observation to a discriminator is replaced
by adding the expected output to the sum cell in each memory address that was
activated by the input pattern. The training process is described by figure 3.9. The
classification phase also applies random mapping, while the RAM activation is now
performed by collecting all sum values of the addresses along with all counter values,
followed by an average computation. The n-Tuple Regression Network proposed the
usage of a simple mean computation. The ReW model extends this computation by
allowing the model to perform different types of average computations, described in
the following list:

• simple mean: 1
n

∑N
i=0

sumi

ci
;

• power mean: ( 1
n

∑n
k=1(yk/ck)

p)1/p; where p is the power

• median: central value of yi
ci

, with i in range [0, n]

• harmonic power mean: n∑n
i=0

ci
yi

• geometric mean: (
∏n

i=0
yi
ci
)

1
n

• exponential mean: log(
∑n

i=0 e
yi
ci

n
)

One aspect to be noticed is that when during the prediction phase a memory
location that was never trained is accessed, ReW will respond as a do not know
answer prediction. This answer must be adapted according to the problem domain.
For the sake of the current work, this prediction is treated as 0.
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Figure 3.9: Description of the training process of the RegressionWiSARD model. A
binary pattern is presented alongside its expected output. The pattern is divided
into n tuples and each tuple is addressed to a RAM node. The address formed by
the tuple increments the counter by 1 and the sum by the expected output.

3.3.4 ClusRegressionWiSARD

Inspired by ClusWiSARD, the ClusRegressionWiSARD (CReW) model is a network
formed by a set of ReWs, each one with distinct pseudo-random mappings but with
the same retina and the same address size. Since ReW RAM-like nodes operate
as only one discriminator, CReW starts as a single ReW model. Then, in the
training phase, the input pattern is presented to this ReW, and a score value that
corresponds to the number of memory addresses that were accessed and contained
a counter value greater than a value k is returned. If this score is greater than
a predefined threshold, the pattern is learned. Otherwise, a new ReW model is
created. For each of the following observations, the input pattern is presented to
all ReWs, and the one that returns the highest response is selected for learning
the input. This process is illustrated in Figure 3.10. As for the prediction phase,
each ReW will classify the input submitted to the CReW model, and the highest
score will perform the prediction. If there is a tie between two or more ReWs, the
bleaching process is applied.
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Figure 3.10: Example representation of the CReW model process to select a ReW
model for training.
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Chapter 4

Computational Results

This chapter presents the computational results of the experiments. For each model,
a train/test split of the dataset was performed, with 30% of the data reserved for
model testing, which comprises the reported results. The process was repeated 10
times and the average of the Mean Absolute Error (MAE) and Mean Squared Error
(MSE) metrics were measured. The standard deviation is associated with each value.
For both metrics, the closer the reported value is to 0.0, the better. Also, the time
taken for each model to finish the training and prediction processes was measured,
and the values were displayed in seconds (s).

4.1 Experimental Framework

This section presents the main elements relating to the experiments. Initially, the
sources of ultrasound images that were used are detailed, in addition to provid-
ing more details on the final format of the datasets created using each proposed
approach. Next, details are provided about the parameters used by the models.
Finally, the numerical results of the experiments carried out are presented.

4.1.1 Details on Simulation Data

In the experiments, a digital phantom was used as shown in Figure 4.1, which
consists of a set of concentric rings, where the inner circle and the second ring (white
pixels) simulate muscle tissue, and the first and third rings simulate lipid tissue
(black pixels). This structure is immersed in an aqueous medium (gray region).
The phantom’s dimension is 20mm x 20mm (height x thickness).

Figure 4.2 illustrates the generated B-mode images that represent different tem-
peratures in the range of 37-45ºC. The authors of [38] generated and provided both
the phantom and the temperature images of this simulation using the k-Wave open-
source MATLAB toolbox [72].
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Figure 4.1: Digital phantom used for B-mode image generation. White pixels sim-
ulate muscle tissue, black pixels simulate lipid tissue (fat), and the gray region
simulates water. This figure is based on the one presented in [38].

Figure 4.2: Collection of the resulting B-mode images representing different temper-
atures obtained using the numeric phantom. In each figure, the related temperature
is the same across the whole image.

Table 4.1 shows the configuration of the dataset generated using the simulation
data in each of the proposed approaches. In each line, the number of input features
of the observations, the total number of observations, and how the 70/30 partition
was used to form the training and prediction sets are recorded. It is possible to
observe the increase in the dimensionality of the input data as the approach used
becomes more complex. A second factor to note is the gradual decrease in the
number of observations. This occurs because, as the value of the neighborhood N
increases, the pixels on the edge of the image begin to become unfeasible options

27



as it is not possible to capture a sufficiently large neighborhood without reaching a
region outside the image domains.

Simulation
Approach Features Total Training Prediction

1 2 3,510,000 2,457,000 1,053,000
2 2 3,510,000 2,457,000 1,053,000

3 (N=1) 10 3,465,144 2,425,600 1,039,544
3 (N=3) 50 3,376,296 2,363,407 1,012,889
3 (N=5) 122 3,288,600 2,302,020 986,580
4 (N=1) 18 3,465,144 2,425,600 1,039,544
4 (N=3) 98 3,376,296 2,363,407 1,012,889
4 (N=5) 242 3,288,600 2,302,020 986,580

Table 4.1: Information regarding the generation of datasets using each of the pro-
posed approaches based on simulation data. The table shows, for each approach, the
number of input features, the total size of the dataset, and the size of each partition
after dividing the training set and the prediction set.

4.1.2 Details on In− V itro Data

The experiments were also performed using B-mode ultrasound images generated
from in vitro samples of porcine muscle tissue used in [73]. In this work, the authors
aimed to analyze the required dimensions of the region of interest within an image
where the contrast generated by the CBEUS image can be visualized by an observer.

The sample was placed in a heat bath in a PVC chamber with water heated by a
copper tube. An Ultrasonix SonixMDP scanner with an Ultrasonix L14-5/38 linear
transducer was used for generating the B-mode images, while the video capture was
performed using the CamStudio software.

First, the sample was maintained at a temperature of 36ºC for 30 minutes to
achieve thermal equilibrium. Then, a 30fps video of 5 seconds was recorded. Next,
the authors increased the system temperature by 1ºC, maintained the sample at
this configuration for 5 minutes, and recorded another 5-second video. The process
was repeated until it reached the final temperature of 45ºC.

Figure 4.3 illustrates B-mode images generated from this sample. Similarly, in
the simulation case, a collection of images representing different temperatures in a
certain range was used, but in this scenario, we start with a base image at 36ºC
up to 45ºC. It is worth mentioning that the B-mode images for each temperature
are similar to each other and one cannot detect temperature differences by visual
inspection.

Similarly to the previous section, table 4.2 shows information about the data
partitions using the in-vitro sample. The expected behavior in this situation is the
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Figure 4.3: Resulting B-mode images representing temperatures of 36ºC and 45ºC
obtained using in vitro porcine skeletal striated muscle. In each figure, the related
temperature is the same across the whole image. We use different images for all
integer temperature values between the ones displayed in the figure, but they do not
present significant differences visually and were omitted for simplification purposes.

same as the previous one: greater dimensionality of the input data and a smaller
number of features as the approach used becomes more complex.

In-vitro
Approach Features Total Training Prediction

1 2 6,075,000 4,252,500 1,822,500
2 2 6,075,000 4,252,500 1,822,500

3 (N=1) 10 6,007,680 4,205,376 1,802,304
3 (N=3) 50 5,874,120 4,111,884 1,762,236
3 (N=5) 122 5,742,000 4,019,400 1,722,600
4 (N=1) 18 6,007,680 4,205,376 1,802,304
4 (N=3) 98 5,874,120 4,111,884 1,762,236
4 (N=5) 242 5,742,000 4,019,400 1,722,600

Table 4.2: Information regarding the generation of datasets using each of the pro-
posed approaches based on real data. The table shows, for each approach, the
number of input features, the total size of the dataset, and the size of each partition
after dividing the training set and the prediction set.

4.1.3 Computational Environment

The experiments were developed using the Python3 programming language and the
numpy, sklearn [74], xgboost, TensorFlow modules. All experiments were performed
using a system consisting of an Intel Xeon 2.3GHz processor, 60GB of RAM, NVidia
T4 GPU, and Debian GNU Linux version 11.
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4.2 Numerical Results

Table 4.3 shows the hyperparameters and configurations used in each of the models.
These parameter values were obtained empirically, where a finite set of different
values was tested, and these configurations returned the best results so far. In the
final section, it is discussed the necessity of further hyperparameter exploration.

Another important aspect of the DNN model refers to other parameter configu-
rations that would not be well explained in a tabular format. In the experiments,
considerably simple topologies were used. In all cases, the initial weights of the net-
works were initialized randomly. Combinations between two, three, and four fully
connected layers were tested, where the number of neurons present in each layer was
varied. Among the tests carried out, alternatives were tested using combinations of
the number of neurons within the set [1024, 512, 256, 128] where either all layers
had the same number of neurons or there was a decreasing sequence. In all cases,
as mentioned previously, the networks had only one output layer, as the problem
was treated as a regression problem. The activation function used in all layers was
RelU, and the dropout and bath normalization techniques were applied to all layers.
Finally, the topology that presented the best results had three dense layers with
1024 neurons each.

Model Parameter Explored Values Best Value

RF Max depth 3, 6, 10 6
#estimators 10, 100, 1000 1000

GBDT
η 0.1, 0.3, 0.5 0.3
Max depth 3, 6, 10 6
#estimators 10, 100, 1000 1000

DNN
Dropout rate 10%, 30% 30%
Batch normalization Yes, No Yes
Epochs 10, 20, 100 100

ReW
Thermometer 5, 10, 20 10
Address size 2, 5, 10, 20, 30 10
Mean Simple, Median, Exponential Median

CReW

Thermometer 5, 10, 20 10
Address size 2, 5, 10, 20, 30 10
Mean Simple, Median, Exponential Median
Thershold 0.5, 0.7, 0.9 0.7

Table 4.3: Parameters of the models Random Forest (RF), Gradient-boosting Deci-
sion Tree (GBDT), Deep Neural Network (DNN), RegressionWiSARD (ReW) and
ClusRegressionWiSARD (CReW) that returned the best results across the compu-
tational experiments. The values were obtained empirically after exploring a finite
set of different configurations.
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4.3 Results on Simulation Data

This section presents the experimental results of the experiments applied to the
dataset generated from the digital phantom. Tables ??-?? summarize the numerical
results. Figures 4.4-4.9 illustrate the behavior of these results by comparing each
metric with each one of the proposed approaches.

MAE (ºC) MSE (ºC)
RF 1.67 ± 0.00e+00 3.89 ± 8.00e-03
XGB 1.66 ± 1.17e-02 3.89 ± 3.00e-03
XGB-GPU 1.66 ± 2.22e-16 3.89 ± 6.63e-03
DNN 1.87 ± 3.00e-03 4.36 ± 4.00e-03
REW 1.67 ± 4.00e-03 4.36 ± 4.00e-03
CREW 1.67 ± 3.00e-03 3.89 ± 1.14e-02

Table 4.4: Computational results regarding MAE and MSE for estimating temper-
ature variation on simulation data using approach #1.

Training Time (s) Prediction Time (s)
RF 141.30 ± 2.15e+00 3.93 ± 1.68e-01
XGB 17.52 ± 4.67e-01 2.95 ± 5.19e-02
XGB-GPU 18.66 ± 3.81e-01 0.37 ± 4.00e-03
DNN 452.02 ± 9.68e+00 60.65 ± 2.26e+00
REW 0.30 ± 5.55e-17 0.34 ± 5.55e-17
CREW 2.83 ± 1.47e-02 1.74 ± 1.22e-02

Table 4.5: Computational results regarding training and prediction time for esti-
mating temperature variation on simulation data using approach #1.

MAE (ºC) MSE (ºC)
RF 1.39 ± 6.32e-03 2.94 ± 6.32e-03
XGB 1.18 ± 0.00e+00 2.28 ± 9.17e-03
XGB-GPU 1.18 ± 0.00e+00 2.28 ± 4.44e-16
DNN 1.48 ± 3.00e-03 3.58 ± 8.31e-03
REW 1.68 ± 1.14e-02 3.89 ± 7.75e-03
CREW 1.68 ± 2.22e-16 3.92 ± 9.17e-03

Table 4.6: Computational results regarding MAE and MSE for estimating temper-
ature variation on simulation data using approach #2.
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Training Time (s) Prediction Time (s)
RF 214.60 ± 2.63e+00 3.85 ± 2.32e-01
XGB 20.09 ± 7.03e-01 3.05 ± 3.30e-02
XGB-GPU 19.63 ± 3.54e-01 0.39 ± 4.58e-03
DNN 448.23 ± 8.80e+00 59.00 ± 2.66e+00
REW 0.30 ± 7.00e-03 0.32 ± 5.39e-03
CREW 2.89 ± 2.53e-02 1.82 ± 1.80e-02

Table 4.7: Computational results regarding training and prediction time for esti-
mating temperature variation on simulation data using approach #2.

MAE (ºC) MSE (ºC)
RF 1.39 ± 7.48e-03 2.92 ± 6.00e-03
XGB 1.15 ± 7.00e-03 2.23 ± 4.47e-03
XGB-GPU 1.15 ± 4.58e-03 2.25 ± 0.00e+00
DNN 1.63 ± 2.22e-16 4.99 ± 5.39e-03
REW 1.67 ± 3.00e-03 3.89 ± 6.00e-03
CREW 1.67 ± 1.19e-02 3.89 ± 8.31e-03

Table 4.8: Computational results regarding MAE and MSE for estimating temper-
ature variation on simulation data using approach #3 and neighborhood size N =
1.

Training Time (s) Prediction Time (s)
RF 691.00 ± 3.24e+00 3.84 ± 1.30e-01
XGB 21.79 ± 7.52e-01 2.95 ± 3.54e-02
XGB-GPU 22.92 ± 5.35e-01 0.45 ± 5.39e-03
DNN 387.91 ± 2.39e+01 61.16 ± 1.99e+00
REW 1.22 ± 3.38e-02 1.69 ± 2.80e-02
CREW 13.93 ± 4.26e-01 9.09 ± 3.03e-01

Table 4.9: Computational results regarding training and prediction time for estimat-
ing temperature variation on simulation data using approach #3 and neighborhood
size N = 1.

MAE (ºC) MSE (ºC)
RF 1.38 ± 2.22e-16 2.89 ± 6.00e-03
XGB 1.11 ± 8.94e-03 2.10 ± 9.17e-03
XGB-GPU 1.12 ± 2.22e-16 2.12 ± 0.00e+00
DNN 1.10 ± 0.00e+00 6.83 ± 5.39e-03
REW 1.67 ± 8.00e-03 3.89 ± 7.00e-03
CREW 1.67 ± 8.31e-03 3.90 ± 8.31e-03

Table 4.10: Computational results regarding MAE and MSE for estimating temper-
ature variation on simulation data using approach #3 and neighborhood size N =
3.
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Training Time (s) Prediction Time (s)
RF 355.52 ± 2.15e+00 4.47 ± 1.56e-01
XGB 52.59 ± 8.99e-01 3.15 ± 6.86e-02
XGB-GPU 38.18 ± 9.19e-01 1.22 ± 1.74e-02
DNN 390.86 ± 3.79e+01 60.89 ± 1.71e+00
REW 7.22 ± 1.05e-01 13.16 ± 4.29e-01
CREW 75.11 ± 1.29e+00 72.06 ± 1.32e+00

Table 4.11: Computational results regarding training and prediction time for esti-
mating temperature variation on simulation data using approach #3 and neighbor-
hood size N = 3.

MAE (ºC) MSE (ºC)
RF 1.37 ± 3.00e-03 2.82 ± 5.39e-03
XGB 1.09 ± 0.00e+00 2.03 ± 8.94e-03
XGB-GPU 1.09 ± 0.00e+00 2.03 ± 8.31e-03
DNN 1.78 ± 7.00e-03 4.62 ± 8.88e-16
REW 1.67 ± 4.00e-03 3.88 ± 4.44e-16
CREW 1.66 ± 6.00e-03 3.89 ± 5.39e-03

Table 4.12: Computational results regarding MAE and MSE for estimating temper-
ature variation on simulation data using approach #3 and neighborhood size N =
5.

Training Time (s) Prediction Time (s)
RF 7293.00 ± 2.12e+00 7.36 ± 2.25e-01
XGB 118.89 ± 3.03e+00 4.25 ± 5.02e-02
XGB-GPU 67.33 ± 1.08e+00 3.29 ± 2.76e-02
DNN 439.31 ± 2.19e+01 60.10 ± 1.80e+00
REW 8.27 ± 5.12e-02 15.21 ± 2.66e-01
CREW 83.68 ± 1.50e+00 74.00 ± 8.71e-01

Table 4.13: Computational results regarding training and prediction time for esti-
mating temperature variation on simulation data using approach #3 and neighbor-
hood size N = 5.

MAE (ºC) MSE (ºC)
RF 1.36 ± 3.00e-03 2.80 ± 6.32e-03
XGB 0.74 ± 4.00e-03 1.16 ± 1.00e-02
XGB-GPU 0.74 ± 0.00e+00 1.16 ± 0.00e+00
DNN 3.18 ± 0.00e+00 7.73 ± 8.88e-16
REW 1.67 ± 6.63e-03 3.88 ± 4.44e-16
CREW 1.67 ± 3.00e-03 3.89 ± 4.47e-03

Table 4.14: Computational results regarding MAE and MSE for estimating temper-
ature variation on simulation data using approach #4 and neighborhood size N =
1.
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Training Time (s) Prediction Time (s)
RF 1522.34 ± 1.81e+00 3.90 ± 1.60e-01
XGB 29.72 ± 7.05e-01 2.99 ± 2.02e-02
XGB-GPU 27.98 ± 6.79e-01 0.53 ± 4.58e-03
DNN 457.15 ± 2.55e+01 55.35 ± 2.54e+00
REW 2.21 ± 1.64e-02 3.29 ± 1.83e-02
CREW 25.84 ± 7.41e-01 19.82 ± 3.75e-01

Table 4.15: Computational results regarding training and prediction time for esti-
mating temperature variation on simulation data using approach #4 and neighbor-
hood size N = 1.

MAE (ºC) MSE (ºC)
RF 1.29 ± 2.22e-16 2.87 ± 4.00e-03
XGB 0.62 ± 6.40e-03 0.85 ± 0.00e+00
XGB-GPU 0.62 ± 8.72e-03 0.85 ± 4.00e-03
DNN 1.06 ± 3.00e-03 2.01 ± 4.47e-03
REW 1.67 ± 5.39e-03 3.90 ± 6.00e-03
CREW 1.67 ± 9.43e-03 3.90 ± 0.00e+00

Table 4.16: Computational results regarding MAE and MSE for estimating temper-
ature variation on simulation data using approach #4 and neighborhood size N =
3.

Training Time (s) Prediction Time (s)
RF 8901.84 ± 2.46e+00 5.78 ± 1.14e-01
XGB 102.29 ± 4.23e+00 3.14 ± 5.33e-02
XGB-GPU 61.06 ± 1.30e+00 4.72 ± 6.24e-02
DNN 434.37 ± 2.57e+01 58.90 ± 1.70e+00
REW 13.89 ± 5.55e-02 25.84 ± 1.58e-01
CREW 138.62 ± 8.04e+00 113.25 ± 8.02e+00

Table 4.17: Computational results regarding training and prediction time for esti-
mating temperature variation on simulation data using approach #4 and neighbor-
hood size N = 3.

MAE (ºC) MSE (ºC)
RF 1.25 ± 0.00e+00 2.53 ± 7.00e-03
XGB 0.58 ± 0.00e+00 0.73 ± 4.47e-03
XGB-GPU 0.58 ± 8.31e-03 0.73 ± 7.48e-03
DNN 1.03 ± 3.00e-03 3.39 ± 6.00e-03
REW 1.67 ± 1.00e-02 3.89 ± 1.17e-02
CREW 1.67 ± 5.39e-03 3.90 ± 0.00e+00

Table 4.18: Computational results regarding MAE and MSE for estimating temper-
ature variation on simulation data using approach #4 and neighborhood size N =
5.
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Training Time (s) Prediction Time (s)
RF 13110.40 ± 2.51e+00 8.00 ± 1.08e-01
XGB 259.19 ± 1.22e+01 3.35 ± 6.48e-02
XGB-GPU 32.52 ± 6.29e-01 1.36 ± 1.62e-02
DNN 442.21 ± 1.43e+01 60.17 ± 1.17e+00
REW 16.00 ± 1.01e-01 31.70 ± 1.85e-01
CREW 167.87 ± 1.23e+01 123.27 ± 6.08e+00

Table 4.19: Computational results regarding training and prediction time for esti-
mating temperature variation on simulation data using approach #4 and neighbor-
hood size N = 5.

Figure 4.4: Comparison of the experimental results considering how the MAE for
each model changed given each one of the proposed approaches using the real data.
The X-axis indicates each one of the approaches, while the Y-axis indicates the MAE
for the 30% reserved data.
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Figure 4.5: Comparison of the experimental results considering how the MSE for
each model changed given each one of the proposed approaches using the real data.
The X-axis indicates each one of the approaches, while the Y-axis indicates the MSE
for the 30% reserved data.

Figure 4.6: Comparison of the experimental results considering how the training
time for each model changed given each one of the proposed approaches using the
real data. The X-axis indicates each one of the approaches, while the Y-axis indicates
the time taken to train each model using the 70% reserved data.
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Figure 4.7: Comparison of the experimental results considering how the training
time for each model changed given each one of the proposed approaches. The X-
axis indicates each one of the approaches, while the Y-axis indicates the time taken
to train each model using the 70% reserved data. In this figure, the RF model was
suppressed to evaluate the other models better.

Figure 4.8: Comparison of the experimental results considering how the prediction
time for each model changed given each one of the proposed approaches using the real
data. The X-axis indicates each one of the approaches, while the Y-axis indicates
the time taken to generate the predictions for the 30% reserved data.
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Figure 4.9: Comparison of the experimental results considering how the prediction
time for each model changed given each one of the proposed approaches using the real
data. The X-axis indicates each one of the approaches, while the Y-axis indicates
the time taken to generate the predictions for the 30% reserved data. In this figure,
the DNN and CReW models were suppressed to evaluate the other models better.

4.4 Results on In-Vitro Data

In this section, the same structure is performed to show the experimental results
when the proposed modeling was applied to the images generated from the in−vitro
porcine sample. Tables 4.20-4.35 show the numerical results of the experiments,
while figures 4.10-4.15 illustrate how these numerical values modified along each
approach change.

MAE (ºC) MSE (ºC)
RF 1.87 ± 3.00e-03 4.88 ± 6.32e-03
XGB 1.66 ± 2.22e-16 3.89 ± 1.17e-02
XGB-GPU 1.66 ± 7.48e-03 3.89 ± 7.00e-03
DNN 1.87 ± 4.47e-03 4.36 ± 6.00e-03
REW 1.87 ± 7.00e-03 4.89 ± 0.00e+00
CREW 1.67 ± 1.00e-02 3.89 ± 4.44e-16

Table 4.20: Computational results regarding MAE and MSE for estimating temper-
ature variation on real data using approach #1.
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Training Time (s) Prediction Time (s)
RF 242.31 ± 2.16e+00 4.99 ± 1.56e-01
XGB 17.99 ± 3.98e-01 2.94 ± 1.62e-02
XGB-GPU 18.81 ± 5.77e-01 0.37 ± 5.39e-03
DNN 449.20 ± 7.84e+00 60.20 ± 2.97e+00
REW 0.46 ± 6.32e-03 0.53 ± 6.32e-03
CREW 2.84 ± 1.05e-01 1.76 ± 1.35e-01

Table 4.21: Computational results regarding training and prediction time for esti-
mating temperature variation on real data using approach #1.

MAE (ºC) MSE (ºC)
RF 1.29 ± 8.00e-03 2.74 ± 5.39e-03
XGB 1.11 ± 1.04e-02 2.24 ± 7.48e-03
XGB-GPU 1.11 ± 4.90e-03 2.24 ± 3.00e-03
DNN 1.78 ± 4.58e-03 5.68 ± 4.58e-03
REW 1.87 ± 2.22e-16 4.88 ± 6.32e-03
CREW 1.87 ± 7.00e-03 4.90 ± 0.00e+00

Table 4.22: Computational results regarding MAE and MSE for estimating temper-
ature variation on real data using approach #2.

Training Time (s) Prediction Time (s)
RF 327.16 ± 3.78e+00 7.74 ± 7.38e-01
XGB 32.21 ± 7.58e-01 4.05 ± 8.32e-02
XGB-GPU 30.11 ± 4.56e-01 0.65 ± 6.32e-03
DNN 806.21 ± 1.30e+01 109.11 ± 2.42e+00
REW 0.47 ± 3.00e-03 0.51 ± 7.00e-03
CREW 4.96 ± 1.07e-01 2.76 ± 5.72e-02

Table 4.23: Computational results regarding training and prediction time for esti-
mating temperature variation on real data using approach #2.

MAE (ºC) MSE (ºC)
RF 1.30 ± 6.63e-03 2.73 ± 6.00e-03
XGB 1.09 ± 0.00e+00 2.16 ± 0.00e+00
XGB-GPU 1.09 ± 4.47e-03 2.16 ± 5.39e-03
DNN 1.62 ± 3.00e-03 5.15 ± 0.00e+00
REW 1.87 ± 3.00e-03 4.89 ± 0.00e+00
CREW 1.88 ± 5.00e-03 4.89 ± 4.00e-03

Table 4.24: Computational results regarding MAE and MSE for estimating temper-
ature variation on real data using approach #3 and neighborhood size N = 1.
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Training Time (s) Prediction Time (s)
RF 1359.87 ± 7.95e+00 7.64 ± 1.05e+00
XGB 40.09 ± 9.85e-01 4.00 ± 3.22e-02
XGB-GPU 37.82 ± 6.35e-01 0.75 ± 6.40e-03
DNN 814.04 ± 2.00e+01 108.55 ± 2.69e+00
REW 2.12 ± 4.41e-02 2.67 ± 6.22e-02
CREW 23.43 ± 1.14e-01 14.38 ± 4.43e-01

Table 4.25: Computational results regarding training and prediction time for esti-
mating temperature variation on real data using approach #3 and neighborhood
size N = 1.

MAE (ºC) MSE (ºC)
RF 1.29 ± 6.00e-03 2.71 ± 5.39e-03
XGB 1.04 ± 7.00e-03 2.03 ± 3.00e-03
XGB-GPU 1.04 ± 2.22e-16 2.03 ± 3.00e-03
DNN 1.15 ± 4.00e-03 3.57 ± 1.22e-02
REW 1.87 ± 5.39e-03 4.88 ± 6.00e-03
CREW 1.87 ± 2.22e-16 4.89 ± 0.00e+00

Table 4.26: Computational results regarding MAE and MSE for estimating temper-
ature variation on real data using approach #3 and neighborhood size N = 3.

Training Time (s) Prediction Time (s)
RF 5882.65 ± 4.25e+01 9.15 ± 5.15e-01
XGB 104.18 ± 7.60e-01 4.26 ± 7.48e-02
XGB-GPU 65.00 ± 6.20e-01 2.10 ± 1.70e-02
DNN 810.69 ± 2.39e+01 109.80 ± 2.51e+00
REW 11.53 ± 7.32e-02 21.07 ± 4.46e-01
CREW 119.92 ± 3.19e-02 106.71 ± 9.85e-02

Table 4.27: Computational results regarding training and prediction time for esti-
mating temperature variation on real data using approach #3 and neighborhood
size N = 3.

MAE (ºC) MSE (ºC)
RF 1.28 ± 9.80e-03 2.70 ± 5.39e-03
XGB 1.06 ± 8.31e-03 2.03 ± 6.00e-03
XGB-GPU 1.06 ± 5.39e-03 2.04 ± 1.28e-02
DNN 1.67 ± 0.00e+00 8.16 ± 0.00e+00
REW 1.87 ± 2.22e-16 4.89 ± 6.40e-03
CREW 1.87 ± 8.72e-03 4.89 ± 6.00e-03

Table 4.28: Computational results regarding MAE and MSE for estimating temper-
ature variation on real data using approach #3 and neighborhood size N = 5.
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Training Time (s) Prediction Time (s)
RF 10761.28 ± 5.90e+01 12.90 ± 6.57e-01
XGB 209.63 ± 2.61e+00 15.03 ± 7.66e-02
XGB-GPU 111.92 ± 1.25e+00 7.09 ± 4.50e-02
DNN 795.98 ± 1.47e+01 105.55 ± 3.01e+00
REW 57.11 ± 9.38e-02 69.24 ± 3.23e-01
CREW 299.28 ± 1.56e-01 255.61 ± 1.11e-02

Table 4.29: Computational results regarding training and prediction time for esti-
mating temperature variation on real data using approach #3 and neighborhood
size N = 5.

MAE (ºC) MSE (ºC)
RF 1.22 ± 5.39e-03 2.50 ± 0.00e+00
XGB 0.68 ± 8.00e-03 1.13 ± 5.39e-03
XGB-GPU 0.68 ± 1.11e-16 1.13 ± 2.22e-16
DNN 1.62 ± 4.00e-03 6.68 ± 1.02e-02
REW 1.87 ± 2.22e-16 4.90 ± 0.00e+00
CREW 1.87 ± 4.47e-03 4.90 ± 0.00e+00

Table 4.30: Computational results regarding MAE and MSE for estimating temper-
ature variation on real data using approach #4 and neighborhood size N = 1.

Training Time (s) Prediction Time (s)
RF 2477.71 ± 6.93e+00 7.76 ± 5.18e-01
XGB 53.21 ± 8.26e-01 4.45 ± 2.29e-02
XGB-GPU 44.99 ± 5.97e-01 0.90 ± 3.00e-03
DNN 787.10 ± 3.62e+01 105.99 ± 3.50e+00
REW 3.81 ± 1.86e-02 4.98 ± 2.36e-02
CREW 41.48 ± 1.23e-01 26.20 ± 1.49e-02

Table 4.31: Computational results regarding training and prediction time for esti-
mating temperature variation on real data using approach #4 and neighborhood
size N = 1.

MAE (ºC) MSE (ºC)
RF 1.16 ± 7.48e-03 2.29 ± 6.00e-03
XGB 0.57 ± 1.11e-16 0.86 ± 0.00e+00
XGB-GPU 0.57 ± 6.32e-03 0.86 ± 7.81e-03
DNN 1.02 ± 4.90e-03 3.99 ± 4.90e-03
REW 1.87 ± 5.39e-03 4.88 ± 4.58e-03
CREW 1.87 ± 3.00e-03 4.89 ± 7.48e-03

Table 4.32: Computational results regarding MAE and MSE for estimating temper-
ature variation on real data using approach #4 and neighborhood size N = 3.
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Training Time (s) Prediction Time (s)
RF 9871.54 ± 3.97e+01 12.93 ± 6.76e-01
XGB 177.26 ± 6.82e-01 12.45 ± 4.82e-02
XGB-GPU 104.55 ± 1.62e+00 7.47 ± 8.89e-02
DNN 785.92 ± 1.86e+01 106.75 ± 2.26e+00
REW 10.30 ± 7.34e-02 18.43 ± 1.39e-01
CREW 119.43 ± 7.91e+00 95.00 ± 7.01e+00

Table 4.33: Computational results regarding training and prediction time for esti-
mating temperature variation on real data using approach #4 and neighborhood
size N = 3.

MAE (ºC) MSE (ºC)
RF 1.14 ± 2.22e-16 2.18 ± 3.00e-03
XGB 0.52 ± 4.00e-03 0.73 ± 3.00e-03
XGB-GPU 0.52 ± 1.11e-16 0.73 ± 6.32e-03
DNN 0.97 ± 8.31e-03 4.77 ± 7.00e-03
REW 1.87 ± 3.00e-03 4.89 ± 0.00e+00
CREW 1.87 ± 6.00e-03 4.89 ± 6.00e-03

Table 4.34: Computational results regarding MAE and MSE for estimating temper-
ature variation on real data using approach #4 and neighborhood size N = 5.

Training Time (s) Prediction Time (s)
RF 15278.82 ± 1.62e+02 15.69 ± 1.25e+00
XGB 368.65 ± 7.33e+00 12.44 ± 6.61e-02
XGB-GPU 183.38 ± 6.37e-01 5.81 ± 2.09e-02
DNN 785.32 ± 2.48e+01 104.82 ± 1.43e+00
REW 59.35 ± 1.13e-01 68.38 ± 2.12e-01
CREW 269.87 ± 9.85e+00 203.25 ± 1.80e+01

Table 4.35: Computational results regarding training and prediction time for esti-
mating temperature variation on real data using approach #4 and neighborhood
size N = 5.
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Figure 4.10: Comparison of the experimental results considering how the MAE for
each model changed given each one of the proposed approaches using the real data.
The X-axis indicates each one of the approaches, while the Y-axis indicates the MAE
for the 30% reserved data.

Figure 4.11: Comparison of the experimental results considering how the MSE for
each model changed given each one of the proposed approaches using the real data.
The X-axis indicates each one of the approaches, while the Y-axis indicates the MSE
for the 30% reserved data.
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Figure 4.12: Comparison of the experimental results considering how the training
time for each model changed given each one of the proposed approaches using the real
data. The X-axis indicates each one of the approaches, while the Y-axis indicates
the time taken to train each model using the 70% reserved data.

Figure 4.13: Comparison of the experimental results considering how the training
time for each model changed given each one of the proposed approaches. The X-axis
indicates each one of the approaches, while the Y-axis indicates the time taken to
train each model using the 70% reserved data. In this figure, the RF model was
suppressed to evaluate the other models better.
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Figure 4.14: Comparison of the experimental results considering how the prediction
time for each model changed given each one of the proposed approaches using the real
data. The X-axis indicates each one of the approaches, while the Y-axis indicates
the time taken to generate the predictions for the 30% reserved data.

Figure 4.15: Comparison of the experimental results considering how the prediction
time for each model changed given each one of the proposed approaches using the real
data. The X-axis indicates each one of the approaches, while the Y-axis indicates
the time taken to generate the predictions for the 30% reserved data. In this figure,
the DNN and CReW models were suppressed to evaluate the other models better.
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Chapter 5

Discussion

This chapter presents the main discussions regarding the results obtained and which
were presented in the previous chapter. Initially, some considerations are presented
regarding the general results obtained by the models. Next, the error analysis con-
tinues based on the results obtained by the GBDT model, given that it was the one
that performed best in terms of error metrics.

5.1 Initial Considerations

Considering the GBDT model could reach results that are within an acceptable
range for clinical applications, the results for this model will be used for exploratory
data analysis. The results of a random iteration of the experiments were taken but,
as suggested by the considerably low standard deviation of the results, the same
patterns can be found in the other experiments. Although further investigation
needs to be performed, some initial thoughts on why the other two models could
not reach better results can be presented.

Regarding the DNN model, it is worth mentioning that it was not possible to per-
form an exhaustive hyperparameter and topology exploration due to infrastructure
limitations, and only a few simple combinations that are commonly used for ini-
tial evaluation were tested. Although works like [76] can be cited that demonstrate
that tree-based methods usually outperform DNN on tabular data, there are also
a group of DNN models based on transformers architecture – like TransformerTab
[77] – which was designed for application on this type of data and are candidates
for future experiments. Nevertheless, it can be observed from the results that this
model’s results improved as the approaches were enhanced.

Also, it is worth noticing that DNN models have the ability to capture implicit
patterns in data when there is a hierarchical representation of features, as described
in works such as [78] and [79]. However, it is possible that the approaches presented
in this work were not able to correctly express this hierarchy, thus compromising the
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performance of the architectures used. Nevertheless, with the addition of specific
filters in the topology and attention mechanisms, this limitation can be overcome
and provides scope for future work.

The RegressionWiSARD presented a similar behavior as its classification coun-
terpart: while suboptimal prediction performance, the overall time required to train
the model surpassed even the XGB using a GPU. Both WNN models presented the
same values across all experiments, which indicates that they could not accurately
estimate the data and two possibilities should be further investigated. The first one
is regarding the binarization process. Perhaps it was not possible to find the correct
bit addressing and parameter configuration that enables the models to perform well.
The second is regarding the data used and the output format. Although a numerical
continuous output, the granularity of the target was low. If another observation in
a different temperature interval was presented to the network, it could be possible
to contribute to the models’ performance.

5.2 Error Analysis on Simulation Data

Even though the temperature variation can be considered a continuous variable,
the data used presented discrete values. In this way, it is possible to analyze what
was the error for each expected ∆. As previously mentioned, ∆ represents the
expected temperature variation for a given input data. When evaluating the models’
performance, this value with the model’s prediction is compared. The difference
between these two values is what is called prediction error. For the data not used
for training, some inputs should be predicted as ∆ = 1 but are predicted as some
other value, which may be small or large. The same holds for ∆ = 2, ∆ = 3, and so
on. Then, a separation of this data into groups represented by the respective value
of ∆ that should be predicted was performed.

A kernel density estimation (KDE) plot was generated for each group to describe
how the absolute value of the prediction error on the group was distributed. Besides,
it must considered that there is a starting temperature in each ∆. For example, it
is possible to consider a variation of 1ºC from 37ºC to 38ºC or from 42ºC to 43ºC.
In this sense, each plot splits the data for each starting temperature in the form of
a colored line. Figures 5.1-5.8 show the generated plots considering the predicted
error on the dataset that was created using the simulation data.

For example, it is possible to visualize that there is not a considerable difference
in the error distribution between the different starting temperatures, as the lines for
all temperatures in the same plot describe similar behavior. This can be related to
the monotonical aspect of temperature increase described earlier, and the GBDT
model was able to capture it.
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Figure 5.1: KDE plot of prediction error on simulation data considering an expected
temperature variation ∆ = 1. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

Figure 5.2: KDE plot of prediction error on simulation data considering an expected
temperature variation ∆ = 2. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.
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Figure 5.3: KDE plot of prediction error on simulation data considering an expected
temperature variation ∆ = 3. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

Figure 5.4: KDE plot of prediction error on simulation data considering an expected
temperature variation ∆ = 4. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.
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Figure 5.5: KDE plot of prediction error on simulation data considering an expected
temperature variation ∆ = 5. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

Figure 5.6: KDE plot of prediction error on simulation data considering an expected
temperature variation ∆ = 6. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.
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Figure 5.7: KDE plot of prediction error on simulation data considering an expected
temperature variation ∆ = 7. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

Figure 5.8: KDE plot of prediction error on simulation data considering an expected
temperature variation ∆ = 8. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X.
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A common feature in all plots is the presence of a peak around the value of
3.4ºC. This fact was due to the external region composed of water, which always
has the same behavior (slope 0). These points appear in all temperature variations
and, when combined with the imbalance of classes, cause the final result for these
points to be given by a weighted average. To better understand this effect, consider
a neighborhood k = 1. When considering the external water region, the inputs
are built by selecting i) pixels in the temperature image with a grayscale value
of 0 (a black pixel) and all eight pixels within its neighborhood, which are also
black in the majority of the cases), and ii) pixels in the CBEUS image that, in
this scenario, presented a slope parameter of 0.0, since there was no variation along
the heating procedure. Then, our input would be a zero-array of size 18 (9 from
the temperature and 9 from the CBEUS). This input is found across all possible
temperature variations, which leads to the same input being addressed to all possible
expected outputs.

In situations like that, regression models usually output the average value be-
tween the possible predictions, which would be 4.5ºC in this case. It turns out that
the dataset is not balanced: the lower temperature variations appear more than the
higher temperature variations. This causes the average to move in the direction
of the lower values, and, in our experiments, reach a value around 3.4ºC. As this
behavior occurs in a significant portion of the dataset, it could create peaks in the
KDE plots.

Nevertheless, by considering most of the plots it is possible to observe that
prediction errors for smaller ∆ variations are concentrated close to a margin of
0.5ºC. On the other hand, as ∆ increases, the prediction error range also increases,
although it is worth recalling that there are fewer training observations for high-
temperature variation, which can impact the models’ performance.

The analysis can also be performed by considering the region where the predic-
tions were made. Figures 5.9-5.16 present heatmaps obtained from all predictions
made for the possible variations considering the base temperature image of 37ºC.
Each heatmap presents a gradient pattern that ranges from white to red. The vari-
able in question is the absolute prediction error, i.e. for each pixel in a given image,
the absolute value of the difference between the expected temperature output (rep-
resented in the image title) and the prediction made by the model. In each figure,
there are two kinds of pixels. Gray pixels were used for training the model or could
not be accessed because of neighborhood limitations. All other pixels were used for
prediction. Low errors are associated with the white color, as complete white means
an error of 0ºC. As the error increases, the pixel turns red.

It is possible to observe that, apart from ∆ = 3 and ∆ = 4, all heatmaps show
a concentration of red pixels around the phantom muscle and lipid regions in the
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Figure 5.9: Comparison of the prediction error of the GBDT model from a spatial
perspective on the simulation data and considering a temperature variation ∆ of
8ºC.

Figure 5.10: Comparison of the prediction error of the GBDT model from a spatial
perspective on the simulation data and considering a temperature variation ∆ of
7ºC.

phantom, which once again relates to the water medium and the presence of the
same variation pattern in all temperatures. The two temperatures that present
lower error on these regions are exactly the ones that are close to the weighted
average previously mentioned.

Another aspect that is worth mentioning is that the scale of error increases along
with the temperature, mainly when considering temperature variations starting from
6ºC. One possible explanation is related to imbalanced data, as fewer examples in
these groups can affect the prediction performance. On the other hand, once again
the region representing the water medium negatively affects the results, since it is
concentrated around a value that is closer to the lower temperature variations.
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Figure 5.11: Comparison of the prediction error of the GBDT model from a spatial
perspective on the simulation data and considering a temperature variation ∆ of
6ºC.

Figure 5.12: Comparison of the prediction error of the GBDT model from a spatial
perspective on the simulation data and considering a temperature variation ∆ of
5ºC.
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Figure 5.13: Comparison of the prediction error of the GBDT model from a spatial
perspective on the simulation data and considering a temperature variation ∆ of
4ºC.
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Figure 5.14: Comparison of the prediction error of the GBDT model from a spatial
perspective on the simulation data and considering a temperature variation ∆ of
3ºC.
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Figure 5.15: Comparison of the prediction error of the GBDT model from a spatial
perspective on the simulation data and considering a temperature variation ∆ of
2ºC.
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Figure 5.16: Comparison of the prediction error of the GBDT model from a spatial
perspective on the simulation data and considering a temperature variation ∆ of
1ºC.
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5.3 Error Analysis on in− vitro Data

The same set of analyses was performed for the porcine muscle data. Figures 5.17-
5.25 show the KDE plots referring to the in vitro data, while figures 5.26-5.33 display
the heatmaps to illustrate the absolute error from a spatial perspective. The results
present a fairly similar behavior observed on the simulation data: the KDE plots of
the lower base temperature display an error concentration close to 0.5ºC and also
present a second data concentration, which indicates that there are also a collection
of pixels that present the same behavior along all possible temperatures and is
affected by the data unbalance.

Regarding the heatmaps, it is possible to observe that the concentration of pixels
with the highest error rate is located in the lower part of the image, which refers to
a region where there is a layer of lipid tissue, while the upper part consists of the
muscle tissue. In the muscle region, it is observed that the degree of error presents
similar behavior to that of the simulation data, where the lowest values are found
in variations of 1ºC.

Figure 5.17: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 1. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.
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Figure 5.18: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 2. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

Figure 5.19: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 3. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.
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Figure 5.20: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 4. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

Figure 5.21: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 5. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

61



Figure 5.22: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 6. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

Figure 5.23: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 7. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.
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Figure 5.24: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 8. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X. Each colored line
represents a base starting temperature.

Figure 5.25: KDE plot of prediction error on real data considering an expected
temperature variation ∆ = 9. The X-axis indicates the absolute error between
the expected output and the predicted value. The Y-axis indicates the normalized
number of observations within that range of error indicated by X.
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Figure 5.26: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 9ºC.

Figure 5.27: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 8ºC.
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Figure 5.28: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 7ºC.

Figure 5.29: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 6ºC.
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Figure 5.30: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 5ºC.
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Figure 5.31: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 4ºC.
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Figure 5.32: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 3ºC.
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Figure 5.33: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 2ºC.

69



Figure 5.34: Comparison of the prediction error of the GBDT model from a spatial
perspective on the real data and considering a temperature variation ∆ of 1ºC.
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One last aspect worth mentioning is the data imbalance mentioned during the
analysis. Table 5.1 shows the average percentage of the degree of imbalance in
the data sets from each of the sources used. It is possible to observe that there
is on average ten times more data from the temperature variation class ∆ = 1
when compared to the number of observations referring to the greatest possible
temperature variation in each scenario.

∆ Simulation In-vitro
1 22% 20%
2 19% 18%
3 17% 16%
4 14% 13%
5 11% 11%
6 8% 9%
7 6% 7%
8 3% 4%
9 - 2%

Table 5.1: Average degree of imbalance between the different temperature variations
existing in the datasets based on the simulation and real data.

5.4 Error Analysis on Muscle Tissue

Given that there is knowledge regarding the types of tissue in the regions existing in
the phantom, it is possible to map the behavior of the angular coefficients computed
during the creation of the CBEUS image. The table ?? shows, for each type of tissue
in the phantom, the number of image pixels corresponding to the type of tissue and,
subsequently, the number of pixels with each of the possible directions of the angular
coefficient: positive (greater than zero), negative (less than zero) or neutral (equal
to zero). In addition, the percentage of each type of growth is also shown.

It is possible to observe that muscle tissue pixels have a much better defined
behavior concerning the others. It is noted that the angular coefficients are mostly
negative, i.e. the image tends to be darker in regions related to this type of tissue.
The other types of pixels (lipid tissue and water) have a less regular behavior,
presenting high variation between negative and neutral coefficients. This led to an
attempt to observe how the error behaved in the more regular region. In this way,
we sought to isolate the pixels in the muscle tissue region and evaluate the model’s
performance considering only these observations.

Figure 5.35a shows the heat map generated for the temperature variation ∆ = 1
considering the initial temperature of 37ºC, while Figure 5.35b shows the same heat
map with isolation of the muscle tissue region. It is possible to observe that this
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Type Total Coefficient Count %

Lipid 3545
Positive 1,607 45.33
Negative 1,890 53.31
Zero 48 1.35

Muscle 2541
Positive 357 14.05
Negative 2,184 85.95
Zero 0 0

Water 98774
Positive 33,186 33.6
Negative 44,763 45.32
Zero 20,825 21.08

Table 5.2: Behavior of the angular coefficients of the CBEUS parametric image when
splitting the image between the different types of tissue in the digital phantom.

region is composed of mostly bright pixels, indicating a lower error level. Not only
that, by computing the average absolute error of the pixels in this region, it was
possible to obtain a value of 0.41, thus reaching a value lower than the established
gold standard.

Figure 5.35: Error visualization of muscle-related region in the phantom figure. a)
the standard heatmap considering the base image at 37ºC and temperature variation
∆ = 1, as presented in Figure 5.9. b) The same heatmap but displaying only the
regions related to muscle tissue in the phantom.
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Chapter 6

Conclusion

This work aimed to address the problem of numerically estimating the degree of
temperature variation in B-mode ultrasound images. To accomplish this task, a data
modeling was proposed that allows the interpretation of this as a supervised learning
problem, enabling the use of machine learning models to find intrinsic relationships
between ultrasound image data and be able to generalize these relationships to
efficiently estimate variation. By efficiency, it was tried to achieve error rates within
a margin of 0.5ºC, which is considered in the literature as the gold standard in
this type of problem. The proposed data modeling was built after four iterations of
experiments resourced to the use of information retrieved from CBEUS, which is a
parametric image that is generated based on the changes in backscattered energy
during the process of temperature variation, and that describes how the intensity of
pixels in ultrasound images varied throughout the process of increasing temperature.
After the modeling proposal, data sets were created using two sources as a basis, one
of which came from a phantom that represented the physical properties of tissues
and whose images were generated using simulation software, while the other came
from a process using an in-vitro sample of porcine muscle heated in a water bath and
whose images were captured using a conventional ultrasound device. To evaluate
the modeling, some supervised learning models were used. Models based on decision
trees - Random Forest and Gradient-Boosting Decision Trees -, basic architectures
of deep neural networks and also weightless neural network models were analyzed.
For each model, it was measured the Mean Absolute Error and Mean Squared Error
metrics, and it was also measured the time taken to complete the training and
prediction tasks.

The experimental results on both generated datasets pointed out that the pro-
posed approach would achieve its best performance metrics by using the Gradient-
boosting Decision Tree (GBDT) model, as it was able to estimate the temperature
variation with a mean absolute error of 0.55 degree Celsius in a simulated environ-
ment and 0.41 degree Celsius when considering only muscle tissue regions. When
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applying the method on the in vitro real sample the model presented 0.54 degree
Celsius of mean absolute error. The best performance regarding prediction would
appear in small temperature variation changes (1 degree Celsius).

Alongside the proposed approach, two extensions of the weightless neural net-
work WiSARD were presented that would enable this architecture to perform re-
gression tasks. Both extension models were compared to classic regression models in
literature and then also applied in the proposed modeling. The main reasons behind
this proposal are the benefits of using the weightless architecture, like low energy
consumption and easy to implement as hardware to work as an embedded system.
When compared to the classic models, both proposed extensions presented similar
behavior to it classification counterpart: although suboptimal estimation perfor-
mance, they present low training time, which is a good characteristic for online
learning domains.

Although the results provided in this research are highly promising, the current
state of this work should be considered as a proof of concept, and the clinical appli-
cation for the presented method still requires a deeper investigation, which leads to
comments regarding the future perspective for this work, which is the focal point of
discussion in the following section.

6.1 Future Work

Regarding future works, a handful of opportunities arise, both in the direction of
extending the research aiming for a practical application as for improving the pro-
posed methodology from a machine learning perspective. Considering the latter,
exploring the wide range of possible hyperparameter configurations of the models is
within the first experiments to be performed, especially when considering the Deep
Neural Network (DNN) architectures that were applied. As stated in the chapter
5, few naive variations of DNNs were used, and it is expected that more robust
configurations could improve the overall performance of this group of models. Also,
the necessity to limit the training time of the DNNs was an issue that had to be
addressed. Nevertheless, it should be stated that the time required for a model
to be trained would not be a limit factor for real applications, since the proposed
approach is not expected to deal with the challenge of online learning, which would
be the case for resourcing to the weightless neural models (WNN).

Referring to the two weightless models produced during the development of this
work and that perform function approximation to output a continuous numerical
value - RegressionWiSARD (ReW) and ClusRegressionWiSARD (CReW) - the ex-
periments demonstrated that both models struggled with the combination of the
proposed approaches and the hyperparameter configurations. It is known that choos-
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ing an inadequate binary representation for a given problem is enough to harm the
WiSARD-family models. In this sense, it is of high importance to research aim-
ing to find a proper encoding technique for this problem. Also, these two models
can be seen as quite simple when compared to ensemble methods, and the usage of
both ReW and CReW in an ensemble environment was already initially explored
in []. Resourcing to this scenario could lead to a performance improvement, but
would still find problems if the binary representation is not good enough. Still re-
lated to weightless models, it would be interesting to develop work that performs a
mathematical derivation proving the feasibility of using the other proposed central
tendency measures, to demonstrate the capacity of these calculations to operate as
an appropriate kernel function.

Another aspect would be the possibility of changing the way the approaches were
used. Although it was possible to achieve good levels of precision with the analysis
of pixel values, more robust techniques could be used, such as feature extraction for
dimensionality reduction. This resource could be explored in the future.

Furthermore, a very important factor to be addressed is the data set. Firstly,
regarding the data variation used, which is considered small. It would be interesting
if the tests performed in this work were replicated on different data samples, such
as simulated data using phantoms with configurations in other formats. Secondly,
regarding the granularity of the dependent variable, it was mentioned that the work
only considered discrete temperature values. It would be interesting to add obser-
vations using intermediate temperatures to improve the quality of the interpolation,
which would also be a factor that could bring improvements to WANN models.

Another aspect concerns the evaluation of cross-models, in the sense of evaluating
the performance of models that were trained on one database when trying to estimate
the variation in another database. Initial experiments were carried out in this regard
and the preliminary results were promising, but further investigation is necessary.
Besides, an intuition generated by the work is that it would be difficult for a single
model to be able to perform adequately for each and every situation. As evaluated
in chapter 5, the selected model achieved greater generalization capacity in regions
of muscle tissue. Thus, one path to be followed would be to integrate with image
segmentation methods to define which regions are composed of each type of tissue,
followed by the application of a model specialized in that type of tissue.

Finally, one of the requirements for enabling a practical application of the method
is currently limited by the fact that it expects both the transducer and the medium
to remain in a fixed position during the entire process. But this would not be the
case for a practical scenario. In this sense, it is proposed to develop a methodology
for incorporating a motion-tracking algorithm to compensate for image mobility.
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Appendix A

Publications

Following is the list of papers accepted for publication during the development of
this work:

A.1 Journal articles

1. LUSQUINO FILHO, L. A. D.; OLIVEIRA, L. F. R. ; LIMA FILHO, A. ;
GUARISA, G. ; FELIX, L. M. ; LIMA, P. M. V. ; FRANÇA, F. M. G. .
Extending the Weightless WiSARD Classifier for Regression. NEUROCOM-
PUTING, 2020.

2. OLIVEIRA, L. F. R; FRANÇA, F. M. G.; PEREIRA, W. C. A., A data-driven
approach for estimating temperature variations based on B-mode Ultrasound
Images and Changes in Backscattered Energy. Ultrasonic Imaging, 2023.

A.2 Book chapters

1. LUSQUINO FILHO, L. A. D.; OLIVEIRA, L. F. R.; CARNEIRO, H. C. C.,
GUARISA G. P.; LIMA FILHO, A. S.; FRANÇA, F. M. G. ; LIMA, P. M.
V., A Weightless Neural System for Empathy Prediction - Accepted for OMG-
Challenges Book, Knowledge Technology Group, Springer, 2020.

A.3 Complete works published in proceedings of

conferences

1. LIMA FILHO, A. ; GUARISA, G. ; LUSQUINO FILHO, L. A. D. ;
OLIVEIRA, L. F. R. ; COSENZA, C. ; FRANÇA, F. M. G. ; LIMA, P. M.
V. . Interpretation of Model Agnostic Classifiers via Local Mental Images. In:
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Machine Learning, 2019, Bruges. Proc of ESANN 2019, 2019. v. 27. p.
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A weightless regression system for predicting multi-modal empathy, Workshop
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national Conference on Automatic Face and Gesture Recognition (FG 2020),
Buenos Aires, Argentina, 2020.

85



Appendix B

Weightless Neural Networks

This appendix explores weightless neural networks by presenting an introduction to
this type of neural network architecture and its main concepts, resourcing mainly
to the n-tuple networks WiSARD and ClusWiSAD, which serve as starting points
for the regression methods that were presented in chapter 3. After each model’s
introduction, a brief review of previous works using these models demonstrates their
wide range of applications and evolution through time.

B.1 WiSARD

WiSARD stands for Wilkie, Stonham and Aleksander Recognition Device and it’s
the first commercial product based on weightless neural networks and applied for
handwritten digits recognition [17]. Its architecture is based on multiple discrim-
inators, where each discriminator is responsible for recognizing a single class, as
shown in figure B.1. The internal nodes are RAM-like structures, i.e. a set of pairs
< key, value > where the key is a binary address and the value is a boolean flag
that represents whether the address was accessed or not.

When the network is first initialized, all addresses of the RAM neurons are set
to 0. Given an input, observation to be learned in the shape of a binary word and
a label, a pseudo-random mapping is applied to the binary word, which creates a
new order of bits. The new entry is then divided into n segments (tuples) of length
m. Each tuple is then addressed to a neuron of the discriminator that relates to the
given label. The value related to each tuple is, then, set to 1. This training phase
is illustrated by figure B.2.

Given an observation to be classified, the same pseudo-random mapping is ap-
plied and the input is divided into n tuples. However, differently from the training
phase where a single discriminator is used, in this phase, all discriminators must be
accessed. Each address formed by the tuples is verified if the corresponding neurons
contain the value 1. If it does, the neuron indicates its activation. Each discrim-
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Figure B.1: Example of discriminators in a digits classification scenario. A total of
10 discriminators, each one responsible for recognizing a single digit. In the training
phase, the input is addressed to the corresponding discriminator.

inator returns the number of neurons that were activated and this value is called
activation degree. The class chosen by the network is the one that has the largest
activation degree. A random one is selected if there is a tie between two or more
discriminators.

Figure B.2: Training phase of the WiSARD model. The pseudo-random mapping
creates a new order of the input bits and the new input is divided according to the
defined address size. The counter value c of the corresponding address in each RAM
node registers the activation.
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Figure B.3: Classification phase of the WiSARD model. The same pseudo-random
mapping used in training creates a new order of the input bits and the new input is
divided according to the defined address size. For each RAM node, the corresponding
address is verified and, if the memory address was accessed, the node is considered
activated and the discriminator reports the number of active nodes.

Figure B.4: To complete the classification of the presented pattern, the WiSARD
model compares the response of all discriminators. The one with the highest re-
sponse defines the class.

B.1.1 Bleaching

A problem faced by the WiSARD model is known as saturation, which is when,
after an excessive amount of training, many of the possible RAM addresses of the
discriminators are filled up. This causes more than one discriminator to respond to
the stimuli and leads to the model being in doubt as to which class the presented
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pattern belongs to.
To work around this problem, the bleaching [52] technique was developed, which

consists of changing how addresses work. Instead of recording the value 1, the
address operates as a counter: once a sequence of bits is displayed to an address,
the previous value is incremented by 1. With that, a threshold is defined so that,
given a tuple, only the RAM structures whose value stored in the given address is
greater than or equal to the threshold are activated.

B.2 Binary Encoding

The WiSARD model requires binary inputs so it can apply its learning algorithm.
Thus, a binarization process is required to deal with values representing integer and
floating point values or text. Although a simple binary conversion of the respective
value could be applied, it brings certain negative aspects. For example, consider the
binary conversion of integer values 0, 1, 7 and 8 using a 4-bit word. The process
would lead to the following:

• 0 : 0000

• 1 : 0001

• 7 : 0111

• 8 : 1000

As a matter of comparison, values 0 and 1 are close to each other both in the
numeric perspective and in the binary representation. But the same does not hold
when comparing the pairs 0 and 8, and 7 and 8. In the first case, the values are
numerically distant, but the binary representation presents the same difference as
the one from 0 and 1. On the other hand, the second case presents two values that
are close to each other, but with a considerable difference in binary representation.
In this sense, it is necessary to provide a binarization process that overcomes these
problems.

B.2.1 Thermometer Encoding

The binary thermometer encoding generates binary words from numerical values.
It works by identifying the lower and higher values of the variable to be converted.
Then, by defining the total number of bits n, a set of n thresholds is created, given
by a step that is computed using the formula (max−min)

n
. Starting from the minimum

value, the threshold increments by accumulating the step.
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Figure B.5 illustrates the process of converting the value 4 into an 8-bit word
considering a given set of data. Given a collection of values S and the desired number
of bits n = 8, the procedure starts by computing the maximum (18) and minimum
(-2) values. Then, the step is computed as (18−(−2))

8
= 2,5. The threshold starts at

the minimum value and the following ones are incremented by the step. For a given
value to be converted, a binary word containing 8 zeros is generated. Then, all bits
are flipped at the indexes where the value is higher than the specified threshold. In
this example, the value 4 is converted to 11100000.

Figure B.5: Illustrative example of the linear thermometer.

Defining the number of bits n is a critical step. If too small, a lot of information
regarding the feature can be lost. On the other hand, long binary words may affect
the models’ performance. Besides, a dataset is usually formed by a group of different
features, with different distributions and ranges of values. A naïve approach that
could be used is to use the same value for all features, although that could harm the
model performance. Since there is a difference between the relevance of features with
respect to the expected output, this difference should be reflected in the number of
bits used to address the features: the most relevant ones should be addressed with
a wider number of bits, while the less relevant features should be addressed with
fewer bits. In this sense, a heuristic for defining the number of bits n is proposed.

In the scope of data preprocessing, feature engineering takes a fundamental role
in the machine learning pipeline. The majority of the different techniques require
some sort of preparation for the input data so that a model can either be more
accurate or faster. Among the different steps that are applied during preprocessing,
one, in particular, provides the tools for developing the proposed heuristic: choosing
features.

As stated earlier, features in the dataset present different levels of importance
when compared to the expected output or even with other features. This importance
can be measured with values called correlation coefficients, which are statistical
measures that show how two variables are related. It is usually a value that ranges
from -1 to 1, where ±1 indicates a full correlation and 0 indicates no correlation at
all.
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Figure B.6: Correlation matrix for the Iris dataset.

One of the most used correlation coefficients is Pearson’s r, also referred to
as Pearson product-moment correlation coefficient [53]. Developed by the English
mathematician Karl Pearson, it measures the linear relationship between two vari-
ables. For a given sample, the correlation coefficient is computed as described by
equation B.1.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=0(xi − x̄)2
√∑n

i=0(yi − ȳ)2
(B.1)

The usage of correlation coefficients usually appears in the form of correlation
matrices associated with a heat-map, which allows visual perception of the relation-
ship’s behavior of the variables. A correlation matrix M is a symmetrical matrix
where rows and columns represent one of the dataset’s features and each index mi,j

represents the correlation coefficient between features i and j. The main diagonal
of a correlation matrix is always 1, since it represents the correlation between the
feature and itself.

In Appendix ??, a series of experiments are performed comparing this heuristic
with the proposed ones. The results show that the heuristic method can improve
the models’ performance in various scenarios. Although this cannot be considered
in all cases, using this method can be seen as a good starting point.
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B.2.2 Distributive Thermometer

One characteristic of thermometer encoding is the fact that it assumes a certain
distribution of data. In particular, the linear thermometer encoding assumes the
data is uniformly distributed. Given that this may not hold, authors in [54] proposed
a novel thermometer technique that aims to make the binarization independent from
the distribution.

This is done by changing how the thresholds are computed. Instead of splitting
into n intervals of the same size, the divisions are done based on percentiles of the
data. This method is useful in the sense that it better covers regions where there
is a higher concentration of data. In the conventional linear thermometer, points in
the same region are represented by the same binary word. Figure B.7 illustrates the
difference between the two thermometer techniques.

Figure B.7: Comparison between the thresholds generated by a) the conventional
linear thermometer and b) the distributive thermometer.

B.3 ClusWiSARD

A common problem that affects classification models is when observations of the
same class present different characteristics (not in the sense of being an outlier).
That is particularly noticed in classification performance when the observation has
never been presented to the model. To overcome this situation, an extension of the
WiSARD model is proposed in [55], named ClusWiSARD.

As an extension, ClusWiSARD also operates with discriminators and RAM-
based nodes with an access counter. The main difference is in the fact that the
model is capable of creating new discriminators related to the same class if the
presented training observation is not similar enough to the knowledge stored within
its current discriminator, which acts like a clustering system. This model can handle
both supervised and unsupervised learning tasks.
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The training phase of the ClusWiSARD model, then, works slightly similar to the
one in WiSARD, where the observation is presented to its corresponding discrimina-
tor. But in this case, there is a group of discriminators. Since the pattern will only
be addressed to one discriminator, before the training happens, each discriminator
evaluates the pattern and returns a score r. To learn the pattern, a discriminator
must satisfy:

r ≥ min

(
N, r0 +

N |d|
γ

)
, (B.2)

where r is the score of the discriminator when classifying the observation, |d| is
the discriminator size, N is its number of RAMs, r0 is a threshold, which indicates
the minimum response expected by a discriminator, and γ is also a threshold, which
indicates the growth interval, that is, the speed that the discriminators increase
their size.

The classification phase is similar to the one in the WiSARD model, and the
pattern is presented to all discriminators. If there is a tie between discriminators of
different classes, the bleaching procedure is applied. On the other hand, in case of
ties between discriminators of the same class, there is no need for applying bleaching,
since the class is already decided.

B.4 Applications of WiSARD-based Models

WiSARD-based models have been successfully reported in different application do-
mains, dealing with both structured and unstructured data. In [55] the authors
apply the ClusWiSARD model to a credit analysis problem using two reference
datasets and comparing the models’ performance with the Support Vector Machine
(SVM) model. Results demonstrated that the weightless network was highly com-
petitive when considering classification accuracy while surpassing the SVM model
by two orders of magnitude in training time.

Authors in [56] and [57] explore the context of clustering streams of data, which
is a task that requires a model that can perform on scenarios of online data acqui-
sition. Another extension of the WiSARD model is presented in this work called
StreamWiSARD. The model was able to perform faster and with a higher quality
than two classic stream clustering models.

In a text-processing environment, authors in [58] and [59] developed a multilin-
gual part-of-speech (POS) tagging system, where the goal is to, given a sentence or
text, define how each word acts in the sentence based on its definition and context,
i.e. if its a noun, a verb, adjective, etc. The main concern in this problem is that the
training process involved is highly intense and time-consuming. Thus, based on the
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WiSARD models’ efficiency it was possible to perform hyperparameters’ calibration
for different languages and either surpassed or matched state-of-the-art results.

As previously stated, due to its simplicity and architecture, WiSARD-based
models are easy to implement as hardware and can operate as efficient edge devices.
In [60] the authors propose a new model named LogicWiSARD, that incorporates a
new dimension of operations to the traditional WiSARD architecture, as it generates
a mapping of the RAM nodes into logic functions. The model is then implemented
using an FPGA - an integrated circuit that can be programmed - and evaluates
facing an MLP model, showing that the weightless architecture consumes up to 80%
less energy, also surpassing versions that implement DNN models. Authors in [61]
explore a new weightless architecture

Regarding image and video processing, WiSARD-based models were also applied.
In [62] the authors developed a face tracking system, where the main objective is to
enable a piece of software through the use of a camera to track the movement of a
person’s face in real-time. [63] also uses the WiSARD model to perform real-time
music tracking. Both works point to the capacity of the weightless model to generate
a fast classification response.

Other works related to image and video processing are presented in [16] and [64],
where the authors seek to develop an automatic emotion recognition system based
on the FACS system, in which specific combinations of muscle activation - known as
action units - are used to determine human emotions according to facial expressions.
In this work, a WiSARD-based architecture was able to reach state-of-the-art results
in the proposed comparative experiments.

B.5 Weightless Models for Regression

This chapter presents the two weightless-based regression models developed: Re-
gresionWiSARD and ClusRegressionWiSARD. First, a brief review of the n-tuple
regression is presented, followed by a description of the algorithms of both mod-
els. Then, the results of performance comparisons of both models are shown. It is
worth noticing that these models are also presented in [65], as they were developed
collaboratively in the original paper [66] that includes both authors as first author.

B.5.1 n-Tuple Regression Network

Regression is a classic machine learning task, where the goal is to generate a scalar
real-valued output y given a D-dimensional input x, which comes from the random
variables Y and X, respectively. Performing this task implies at finding a relationship
between the input and the output. It is usually assumed that X and Y are distributed
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according to a continuous joint probability density function f(x, y), and the
The n-Tuple Regression Network [67] is an adaptation of the classic n-Tuple

Classifier architecture that aims to implement a General Regression Neural Net-
work (GRNN) [68], which is capable of approximating unknown system mappings
through the estimation of its regression function using a set of training observations.
Although the GRNN presents an implementation problem due to its need to store
the entire training set for operating the network, the usage of the n-Tuple architec-
ture was proved to avoid this issue since elements of the training set are intrinsically
stored in the network nodes.

The method is developed based on the kernel method [69], which is a type of
non-parametric regression and is applied when there is no explicit knowledge about
the system. It does so by assigning a smooth monotonically decreasing function to
every sample (x,y) taken from the distribution. In particular, the GRNN the usage
of the Nadaraya-Watson kernel regression estimator [70].

The authors consider a given input x to the network in terms of three compo-
nents:

x→


{t1(x), t2(x), ..., tk(x)}

{w1(x), w2(x), ..., wk(x)}

{a1(x), a2(x), ..., ak(x)}

(B.3)

where ti(x) is the address of the i-th RAM node formed by the i-th tuple from the
binary representation of x, wi(x) is the expected output value from the observation,
and ai(x) is as access counter. Then, each node structure are updated according to
the following increment rules:

wk(x
i) ← wk(x

i) + yi

ak(x
i) ← ak(x

i) + 1
(B.4)

Then, the output of the network is computed by normalizing the sum of the
addressed weights with the sum of their respective counter values.

ŷ(x) =

∑K
k=0 wk(x)∑K
k=0 ak(x)

(B.5)

B.5.2 Interpolation Capability Comparison

Initially, ReW and the original n-Tuple Regression network were compared. This was
done by trying to replicate some of the experiments in [67]. The main comparison
to be computed is the interpolation capability of different averages. For the sake of
simplicity, it is considered that a ReW using the Simple Mean denotes the original
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n-Tuple Regression Network while the other averages relate to the proposed models.
First, a function u(k) is defined as follows:

u(k) =

sin(2×π×k
250

), k ≤ 500

0.8× sin(2×π×k
250

) + 0.2× sin(2×π×k
25

), otherwise

The function is defined in the interval [0, 1000]. From this interval, a random
sample is retrieved containing 1,000 pairs (x, y). This sample is used for training
all combinations of models. After the training is finished, all models predict 10,000
pairs in a linear space inside the defined interval. From the prediction, the mean
absolute error metric (MAE) is computed. This procedure is repeated 10 times,
with the average of these results being drawn. Figure B.8 illustrates the predicted
function.

Figure B.8: ReW interpolation capability. The blue line indicates the real function
u(k), while the orange line indicates the predicted values from ReW. From the
results obtained, it is possible to observe limitations regarding three of the analysed
averages as they are unable to generate a continuous line.

In the plots, it is possible to observe that three of the proposed averages are not
able to interpolate the whole function. The parts of the lines that are not plotted
denote the do not know answer from the model. Although the Power Mean presented
a better performance compared to Harmonic Power and Geometric means, all of
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these calculations shared the characteristic of not predicting values below 0. The
other averages behaved quite similarly, and a more precise analysis of the methods
can be done with the table results. By using the Median calculation, there was a
slight improvement in the model performance, as shown in table B.1.

Model MAE
Simple Mean 0.201
Median 0.125
Exponential Mean 0.225

Table B.1: Comparison of MAE values from ReW models while varying the type of
average. It is possible to observe that Median appears as a better type of computing
the output in contrast to the Simple Mean as suggested by the original n-tuple
regressor for this particular task.
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Appendix C

Results on Hyperparameter
Exploration of the ReW Model

C.1 Models Evaluation

This section shows the computation results of a series of comparisons between the
RegressionWiSARD model and a small collection of popular regression models de-
scribed in Table C.1. The comparisons are made in terms of the Mean Absolute
Error metric, and the training and prediction speed of the models, measured in
seconds. To evaluate the models, four regression datasets from the UCI Machine
Learning repository [71] were used, described as follows:

• Abalone: this dataset aims to predict the age of abalone given some physical
attributes. It contains 8 attributes and 4177 observations, with the target
variable in the range [1, 29];

• Auto Imports: using 25 features, this dataset aims to predict the price of an
automobile. It has 201 observations and the target variable is in the range
[5118, 35056];

• Auto Insurance: this dataset has 63 observations and a single feature to relate
the number of insurance claims to the total payment. The target variable is
within the range [0, 422.2];

• House Prices: one of the most used dataset for benchmarks in regression, it
aims to predict the price of a house given a set of 13 characteristics of the
building. The target variable is in the range [5, 50] among 506 observations.

For each dataset, a 10-fold cross-validation process was used, and the mean
averages of the metrics are reported, alongside the standard deviations. For ReW
and CReW, an exploration of the tuple size, output mean and thermometer size
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Model Alias Parameters
K-nearest neighbors knn neighbors: 5
Decision Tree dt criterion: mae
Random Forest rf estimators: 100
Support Vector Machine svr kernel: RBF; C=1.0
Multi-layer Perceptron mlp learning_rate: 0.01; hidden_layer: (50, 50)

Gradient Boost gb learning_rate: 0.1; estimators: 1000
max_depth: 9

XGBoost xgb learning_rate: 0.1; estimators: 1000;
max_depth: 9

Table C.1: Regression models configuration

was performed by varying the base thermometer value in the set [50,100,150,200],
the tuple size in the set [2,5,10,15,20,25,31]. Numerical results for each dataset are
reported in Tables C.2-C.5.

Model MAE Training Time Prediction Time
knn 1.58± 0.50 4.77e−03± 1.78e−03 5.88e−03± 2.31e−03
dt 2.15± 0.54 0.02± 6.38e−03 3.51e−04± 1.18e−04
rf 1.56± 0.44 0.83± 7.15e−03 9.36e−03± 3.43e−04
svr 1.51± 0.53 0.55± 0.04 0.06± 3.27e−03
mlp 1.53± 0.41 5.01± 2.99 3.62e−03± 3.55e−03
gb 1.66± 0.44 1.31± 0.06 1.79e−03± 9.29e−05
xgb 1.63± 0.43 9.91± 10.13 5.59e−03± 2.00e−03
ReW 1.75± 0.50 8.82e−03± 3.05e−04 1.25e−03± 4.26e−05
CReW 1.86± 0.86 2.80e−03± 8.70e−05 8.64e−04± 4.39e−05

Table C.2: Results on the Abalone dataset.

Model MAE Training Time Prediction Time
knn 2065.72± 1031.71 2.65e−04± 3.49e−05 7.77e−04± 1.32e−04
dt 2303.06± 623.03 2.75e−03± 7.79e−04 1.61e−04± 3.18e−05
rf 1824.74± 629.77 0.21± 2.97e−03 6.09e−03± 2.45e−04
svr 4265.74± 2127.53 1.28e−03± 4.03e−05 2.04e−04± 1.13e−05
mlp 4029.47± 1062.94 0.11± 0.07 2.41e−04± 2.36e−05
gb 1776.86± 674.64 0.17± 3.51e−03 2.90e−04± 1.55e−05
xgb 1672.72± 531.36 1.02± 0.87 3.76e−03± 3.39e−03
ReW 2096.12± 634.61 2.90e−03± 3.99e−05 3.52e−04± 1.74e−05
CReW 2166.03± 0.86 9.88e−04± 8.70e−05 2.52e−05± 4.39e−05

Table C.3: Results on the Auto Imports dataset.
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Model MAE Training Time Prediction Time
knn 36.51± 23.82 2.55e−04± 3.63e−05 4.82e−04± 5.94e−05
dt 41.90± 15.59 2.36e−04± 1.78e−05 6.92e−05± 5.61e−06
rf 39.74± 16.30 0.08± 3.10e−03 5.97e−03± 2.17e−04
svr 40.73± 26.80 4.29e−04± 3.04e−05 9.15e−05± 7.60e−06
mlp 37.99± 25.73 0.02± 4.50e−03 9.97e−05± 4.25e−05
gb 41.89± 15.60 0.02± 1.27e−03 1.91e−04± 1.35e−05
xgb 40.74± 17.22 1.38± 2.09 5.35e−03± 4.48e−03
ReW 34.88± 19.58 2.97e−05± 6.37e−06 1.36e−05± 6.75e−07
CReW 37.60± 0.86 2.06e−05± 8.70e−05 6.34e−04± 4.39e−05

Table C.4: Results on the Auto Insurance dataset.

Model MAE Training Time Prediction Time
knn 6.01± 0.97 4.86e−04± 9.09e−05 9.45e−04± 1.69e−04
dt 3.67± 0.47 2.57e−03± 4.56e−04 1.17e−04± 4.29e−05
rf 2.99± 0.59 0.18± 9.10e−03 6.97e−03± 2.83e−04
svr 5.65± 1.18 7.74e−03± 1.91e−04 1.88e−03± 1.16e−04
mlp 4.53± 0.78 0.80± 0.59 3.49e−04± 2.92e−05
gb 3.34± 0.67 0.26± 7.76e−03 7.32e−04± 1.38e−04
xgb 2.82± 0.44 1.09± 0.82 3.95e−03± 3.72e−03
ReW 4.08± 0.86 1.60e−03± 8.70e−05 4.35e−04± 4.39e−05
CReW 4.61± 0.86 5.41e−03± 8.70e−05 1.34e−04± 4.39e−05

Table C.5: Results on the House Prices dataset.
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Figure C.1: MAE measures - Hyperparameter exploration on the Abalone Dataset.
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Figure C.2: Training time measures - Hyperparameter exploration on the Abalone
Dataset.
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Figure C.3: Prediction time measures - Hyperparameter exploration on the Abalone
Dataset.
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Figure C.4: MAE measures - Hyperparameter exploration on the Auto Imports
Dataset.
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Figure C.5: Training time measures - Hyperparameter exploration on the Auto
Imports Dataset.
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Figure C.6: Prediction time measures - Hyperparameter exploration on the Auto
Imports Dataset.
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Figure C.7: MAE measures - Hyperparameter exploration on the Auto Insurance
Dataset.
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Figure C.8: Training time measures - Hyperparameter exploration on the Auto
Insurance Dataset.
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Figure C.9: Prediction time measures - Hyperparameter exploration on the Auto
Insurance Dataset.
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Figure C.10: MAE measures - Hyperparameter exploration on the House Prices
Dataset.

110



Figure C.11: Training time measures - Hyperparameter exploration on the House
Prices Dataset.
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Figure C.12: Prediction time measures - Hyperparameter exploration on the House
Prices Dataset.
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Appendix D

Heuristics for Selecting Thermometer
sizes

This appendix presents an experimental exploration of the proposed heuristic that
uses a correlation coefficient to guide the process of choosing the size of the ther-
mometer encoding for each feature. The experiments were conducted with different
datasets and a comparison was made between the heuristic and the naïve approach
of using the same value for all features. The experimental results show that, in
some cases, a better accuracy performance can be obtained by using the proposed
heuristic.

D.1 Experimental Framework

D.1.1 Datasets Description

To perform a comparison between approaches, a collection of datasets from the UCI
machine learning repository [71] was used. The datasets present various character-
istics regarding the number of observations and features, so it might be helpful to
understand the effects of the proposed heuristics in each scenario.

Breast Cancer

Features are computed from a digitized image of a fine needle aspirate (FNA) of
a breast mass. They describe the characteristics of the cell nuclei present in the
image. This dataset has 569 instances and 32 attributes.

Ten real-valued features are computed for each cell nucleus: a) radius (mean of
distances from center to points on the perimeter); b) texture (standard deviation
of gray-scale values); c) perimeter; d) area; e) smoothness (local variation in radius
lengths); f) compactness (perimeter2/area− 1.0); g) concavity (severity of concave
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portions of the contour); h) concave points (number of concave portions of the
contour); i) symmetry; j) fractal dimension ("coastline approximation" - 1).

Diabetes

Diabetes patient records were obtained from an automatic electronic recording de-
vice and paper records. The automatic device had an internal clock to timestamp
events, whereas the paper records only provided "logical time" slots (breakfast,
lunch, dinner, bedtime).

Diabetes files consist of four fields per record: a) date in MM-DD-YYYY format;
b) time in XX:YY format; c) code; d) value.

Ionosphere

This dataset has 34 continuous attributes and 351 instances. This radar data was
collected by a system in Goose Bay, Labrador. This system consists of a phased
array of 16 high-frequency antennas with a total transmitted power on the order
of 6.4 kilowatts. See the paper for more details. The targets were free electrons in
the ionosphere. "Good" radar returns are those showing evidence of some type of
structure in the ionosphere. "Bad" returns are those that do not; their signals pass
through the ionosphere.

Received signals were processed using an auto-correlation function whose argu-
ments are the time of a pulse and the pulse number. There were 17 pulse numbers
for the Goose Bay system. Instances in this database are described by 2 attributes
per pulse number, corresponding to the complex values returned by the function
resulting from the complex electromagnetic signal.

Sonar

This dataset has 60 continuous attributes and 208 instances. This is composed of two
main files: the file sonar.mines contains 111 patterns obtained by bouncing sonar
signals off a metal cylinder at various angles and under various conditions. The file
sonar.rocks contains 97 patterns obtained from rocks under similar conditions. The
transmitted sonar signal is a frequency-modulated chirp, rising in frequency. The
data set contains signals obtained from a variety of different aspect angles, spanning
90 degrees for the cylinder and 180 degrees for the rock.

Each pattern is a set of 60 numbers in the range [0.0, 1.0] Each number represents
the energy within a particular frequency band, integrated over a certain period. The
integration aperture for higher frequencies occurs later since these frequencies are
transmitted later during the chirp
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Multiclass Classification Datasets

Iris

This dataset has 4 attributes and 150 instances. The data set contains 3 classes of
50 instances each, where each class refers to a type of iris plant. One class is linearly
separable from the other 2; the latter are not linearly separable from each other.

Wheat Seed

This dataset has 7 attributes and 210 instances. The examined group comprised
kernels belonging to three different varieties of wheat: Kama, Rosa, and Canadian,
70 elements each, randomly selected for the experiment. High-quality visualization
of the internal kernel structure was detected using a soft X-ray technique. It is
non-destructive and considerably cheaper than other more sophisticated imaging
techniques like scanning microscopy or laser technology. The images were recorded
on 13x18 cm X-ray KODAK plates. Studies were conducted using combined har-
vested wheat grain originating from experimental fields, explored at the Institute of
Agrophysics of the Polish Academy of Sciences in Lublin.

To construct the data, seven geometric parameters of wheat kernels were mea-
sured: a)area; b) perimeter; c) compactness (4∗π∗A

P 2 ); d) length of kernel; e) width of
kernel; f) asymmetry coefficient; g) length of kernel groove. All of these parameters
are real-valued continuous.

Wine

This dataset is the result of a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. The analysis determined the
quantities of 13 constituents found in each of the three types of wines and the goal
is to use these constituents to determine the type of wine.

Regression Datasets

A single regression dataset was used in these experiments. The House Prices dataset
is the most used for regression benchmarks. It has 77 features (both categorical and
numerical) and the goal is to predict the selling price of each building. The training
set has 973 observations, while the test set has 480.

D.1.2 Experiments Description

Two versions of the heuristic were developed and evaluated: the first one - referred
to as division - defines a base value for all features. This value is then scaled
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according to the absolute value of the correlation coefficient. In this case, unless the
features present a full correlation concerning the output, the binary words generated
from this heuristic will always be shorter than the words generated from the naïve
approach. The second heuristic - referred to as extend - defines a fixed value for the
final binary word. Each feature receives a fraction of this total amount, according
to the magnitude of the coefficient.

For each dataset, a 10-fold cross-validation was performed with a data shuffle.
The minimum and maximum values of the features were collected from the training
set. The hyper-parameters of both WiSARD and ReW were explored by varying
the base thermometer value in the set [50,100,150,200,256], the tuple size in the set
[2,5,10,15,20,25,31], and, for ReW, the simple mean, median and quadratic mean.
Also, a slightly different correlation coefficient was used for comparison alongside the
Pearson correlation coefficient. The Spearman’s ρ, or Spearman’s rank correlation
coefficient [80], is a metric that relates to Pearson’s r, but instead of modeling the
variables with a linear relationship, it models them using a monotonic function.

This process was repeated 100 times, and the mean values were computed and
reported. One aspect to be mentioned is the standard deviation of the results. In
all cases reported, regarding the accuracy score, MAE, and training and prediction
speed, the standard deviations were significantly low (below 0.1% or 1 second).
Then, for the sake of simplicity, the standard deviation values of the experiments
will not be shown. Also, although the previously mentioned recommendation is
to remove features with a high correlation with each other and a significantly low
correlation with the target, such modifications will not be performed. This is due
to the goal of comparing the impact between approaches, and not necessarily to
improve the model’s performance when compared to other models.

D.2 Results and Discussion

Figures D.1-D.24 present the computational results from the experiments. Each
figure contains 10 subfigures, each one with three colored lines. The red lines indicate
the results from the heuristic using the Pearson correlation coefficient, while the
green lines indicate the ones using the Spearman correlation coefficient. The blue
lines indicate the naïve approach.

In each figure, the upper five subfigures represent results using the division

heuristic, while the lower five indicate the results from the extend heuristic. Above
the graphs, there is a title indicating the base thermometer size used: the subfigures
on the far left use thermometers of size 50, and the subfigures on the far right use
thermometers of size 250. The x-axis of the subgraphs indicates the variation of
tuple size within the same thermometer. The y-axis indicates the metric of the
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subfigures, and for each set of five subfigures, the axis is normalized. Each dataset
has three associated figures containing its results. The groups of figures are displayed
in alphabetical order according to the dataset name. In each group, figures #1,
#2, and #3 present the results using the classic thermometer encoding regarding
prediction performance, followed by the training and prediction times respectively.
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A first look at the results shows an undefined conclusion around the benefits
of the proposed approaches. From the eight datasets, four presented better pre-
diction performance, two presented no apparent difference and two had a decrease
in accuracy. Table D.1 shows a summary of statistics regarding the datasets and
the metrics of the correlation coefficients computed for them. The column status

indicates whether the prediction performance increased (+), decreased (-), or did
not show a significant difference (=). The table also indicates no apparent reason
to detect when the approaches should be used or not.

Dataset Status Lines Features Classes Sum Mean StD Min Max
Diabetes + 768 8 2 1.66 0.21 0.12 0.07 0.47
House + 506 13 - 5.59 0.43 0.15 0.18 0.74
Iris + 150 4 3 3.10 0.78 0.22 0.41 0.96
Sonar + 208 60 2 10.89 0.18 0.12 0.00 0.48
Cancer = 683 9 2 6.73 0.75 0.10 0.53 0.87
Ionos. = 351 33 2 6.07 0.18 0.14 0.00 0.52
Seed - 210 7 3 2.49 0.36 0.17 0.02 0.58
Wine - 178 13 3 6.40 0.49 0.23 0.05 0.85

Table D.1: Statistics regarding the datasets used in the experiments.

Considering the results for classification and prediction speed, it is worth noticing
that by using the division approach there is no significant difference in using or not
a correlation coefficient, since the inputs have always the same final size. That does
not occur in the extend approach, where inputs that uses the correlation coefficients
usually present shorter inputs which will result in faster processing.
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