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Abstract In this note, we guarantee the existence of a global saddle point

and we study the strong duality for the dislocation hyperbolic augmented

Lagrangian function (DHALF). These results are obtained in the context of

the convex constrained nonlinear programming.
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1 Introduction

Throughout this work, we are interested in studying the following optimiza-

tion problem

(P ) x∗ ∈ X∗ = argmin{f(x) | x ∈ S},

where,

S = {x ∈ IRn | gi(x) ≥ 0, i = 1, ...,m},

is the convex feasible set of the problem (P) and where the function f : IRn →

IR is convex and gi : IR
n → IR, i = 1, ...,m, are concave functions, we assume

also that f and gi are continuously differentiable. Some algorithms of the aug-

mented Lagrangian type that solve the problem (P) are the following [3], [7],

[11], [8], [9], [2], [5] and [15]. The existence of saddle points for this problem

are studied in [6], [7], [4] and [5].
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In this work we are going to introduce the function DHALF, this function

is a slight variation of the hyperbolic augmented Lagrangian function (HALF),

this function is based on the hyperbolic penalty function (HPF), see [12], [13],

[14] and [5]. We will observe that DHALF has similar properties to the Log-

Sigmoid Lagrangian (LSL). The function LSL is defined as:

Ls(x, λ, k) = f(x)−
m∑
i=1

λi
ki
ψ(kigi(x))

= f(x) +
2

k

m∑
i=1

λi ln
(
1 + e−kgi(x)

)
− 2

k

(
m∑
i=1

λi

)
ln(2)

and is based on the Log-Sigmoid transformation (LST), this function is defined

as ψ : IR→ (−∞, 2 ln(2)),

ψ(t) = 2
(
ln(2) + t− ln(1 + et)

)
,

and the important features of LST are as follows (for more details of LST and

LSL see [9] and [10]):

� ψ ∈ C∞ on (−∞,∞).

� the LSL is as smooth as the initial functions in the entire primal space.

� ψ′ and ψ′′ are bounded on (−∞,∞).

The contribution of this work is to introduce DHALF, guarantee the ex-

istence of a global saddle point for this new function and present some of its

properties. We also introduce the dislocation hyperbolic function, this function

is a new approach to DHALF.
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The work is organized as follows: Chapter 2, some basic results are pre-

sented. Chapter 3, DHALF is proposed. In Chapter 4, we guarantee the global

existence of saddle point.

2 Preliminaries and Basic Results

Throughout this work, we consider the following assumption:

C1. The optimal set X∗ is nonempty, closed, bounded and, consequently, com-

pact.

C2. Slater constraint qualification holds, i.e., there exists x̂ ∈ S which satisfies

gi(x̂) > 0, i = 1, ...,m.

The Lagrangian function of the problem (P) is L : IRn × IRm
+ → IR,

defined as

L(x, λ) = f(x)−
m∑
i=1

λigi(x), (2.1)

where, λi ≥ 0, i = 1, ...,m, are called dual variables. The dual function Φ :

IRm
+ → IR, is defined as follows

Φ(λ) = inf
x∈IRn

L(x, λ), (2.2)

and the dual problem consists of finding

(D) λ ∈ Λ∗ = argmax{Φ(λ) | λ ∈ IRm
+}.

Since the problem (P) is convex, we know that due to assumption C2,

the following results will occur: there exists λ∗ = (λ∗1, ..., λ
∗
m), such that, the
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Karush-Kuhn-Tucker (KKT) conditions hold true, i.e.,

∇xL(x
∗, λ∗) = ∇f(x∗)−

m∑
i=1

λ∗i∇gi(x∗) = 0, (2.3)

λ∗i gi(x
∗) = 0, i = 1, ...,m, (2.4)

gi(x
∗) ≥ 0, i = 1, ...,m, (2.5)

λ∗i ≥ 0, i = 1, ...,m. (2.6)

2.1 Dislocation Hyperbolic Penalty Function

The dislocation hyperbolic penalty function (DHPF) was proposed in [13]

as

p(y, λ, τ) = −λy +
√
(λy)

2
+ τ2 − τ, (2.7)

where p : (−∞,+∞)× IR+ × IR++ → IR.

We use the following properties of DHPF:

P0) p(y, λ, τ) is k−times continuously differentiable for any positive integer k

for τ > 0.

P1) p(0, λ, τ) = 0, for τ > 0 and λ ≥ 0.

P2) p(y, λ, τ) is decreasing function of y, i.e.,

∇yp(y, λ, τ) = −λ

(
1− λy√

(λy)2 + τ2

)
≤ 0,

for τ > 0 and λ ≥ 0.

The DHPF is a smoothing of the exact penalty function studied by Zangwill

[16].
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3 Dislocation Hyperbolic Augmented Lagrangian Function

DHALF is based on DHPF. We define DHALF of problem (P) by lH :

IRn × IRm
++ × IR++ → IR,

lH(x, λ, τ) = f(x) +

m∑
i=1

p(gi(x), λi, τ)

= f(x) +

m∑
i=1

(
−λigi(x) +

√
(λigi(x))

2
+ τ2 − τ

)
, (3.8)

where τ > 0 is the penalty parameter. Note that this function belongs to class

C∞ if the involved functions f(x) and gi(x), i = 1, ...,m, are too.

Proposition 3.1 Let us assume that if f(x) and all gi(x) ∈ C2 and that f(x)

is strictly convex and gi(x), i = 1, ...,m, are concave functions, then lH(x, λ, τ)

is strictly convex in IRn for any fixed λ > 0 and τ > 0.

Proof. We only need to prove that the Hessiana of lH is defined positive. Let

are λ = (λ1, ..., λm) > 0 and τ > 0 fixed. The Hessian of lH(x, λ, τ) is

∇2
xxlH(x, λ, τ) = ∇2

xxf(x)−
m∑
i=1

λi∇2
xxgi(x)

+

m∑
i=1

(
(λi)

2√
(λigi(x))2 + τ2

− (λi)
4g2i (x)

((λigi(x))2 + τ2)
3
2

)
∇xgi(x)∇T

x gi(x)

+

m∑
i=1

(λi)
2gi(x)√

(λigi(x))2 + τ2
∇2

xxgi(x). (3.9)

What follows is similar to Proposition 4.0.1 of [5]. Therefore, we are going

to get ∇2
xxlH(x, λ, τ) > 0, for λ > 0 and τ > 0 fixed.
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From now on we will consider the following assumption:

C3. For every τ > 0 and λ > 0, the level set

M = {x ∈ IRn | lH(x, λ, τ) ≤ α} ,

is bounded for every α <∞.

Remark 3.1 From C3 and Proposition 3.1 for any λ > 0 and any τ > 0

there exists a unique minimizer

x̌ = x̌(λ, τ) = argmin {lH(x, λ, τ) | x ∈ IRn}

for problem (P) with the assumption C1.

4 Duality Theory

The following result is similar to a result obtained in Proposition 4.1.1 of

[5] and the Section 7 of [7].

Proposition 4.1 Consider the convex problem (P). Assume the assumption

C2 it hold. Then x∗ ∈ S is a solution of problem (P) for any τ > 0 if and

only if:

(i) There exists a vector λ∗ ≥ 0 such that

λ∗i gi(x
∗) = 0, i = 1, ...,m and lH(x, λ∗, τ) ≥ lH(x∗, λ∗, τ), ∀x ∈ IRn.

(4.10)

(ii) The pair (x∗, λ∗) is a saddle point of lH , that is,

lH(x, λ∗, τ) ≥ lH(x∗, λ∗, τ) ≥ lH(x∗, λ, τ), ∀x ∈ IRn, ∀λ ∈ IRm
+ . (4.11)
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Proof. (⇒) Let any τ > 0 fixed. Assume x∗ is a solution for convex problem

(P) satisfying the assumption C2. Then system

f(x)− f(x∗) < 0,

−gi(x) < 0, i = 1, ...,m,

has no solution in IRn. Hence, by the Proper Separation Theorem (see, The-

orem 2.26 (iv) of Dhara and Dutta [1]), there exists a vector (λ̃, λ̂) ̸= (0, 0) ∈

IR× IRm such that

λ̃ (f(x)− f(x∗))−
m∑
i=1

λ̂igi(x) ≥ 0,

for all x ∈ IRn. We rewrite the inequality above as

λ̃ (f(x)− f(x∗)) ≥
m∑
i=1

λ̂igi(x), (4.12)

for all x ∈ IRn. Now, we follow an analysis similar to Theorem 4.2 of [1], so

by C2, we have that there exists λ∗i = λ̂i

λ̃
, i = 1, ...,m, with λ̃ > 0. Then, by

(4.12) we have

f(x)− f(x∗) ≥
m∑
i=1

λ∗i gi(x), (4.13)

for all x ∈ IRn. In particular, (4.13) holds for x = x∗. So we get

0 ≥
m∑
i=1

λ∗i gi(x
∗). (4.14)

On the other hand, since, gi(x
∗) ≥ 0 and λ∗i ≥ 0 for i = 1, ...,m, then by

(4.14) we obtain

λ∗i gi(x
∗) = 0, i = 1, ...,m, (4.15)
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holds, so we have the first part of (4.10). Now, we are interested in proving

the second part of (4.10). From (4.15) and (4.13), we have

f(x∗)−
m∑
i=1

λ∗i gi(x
∗) = f(x∗) ≤ f(x)−

m∑
i=1

λ∗i gi(x), (4.16)

for all x ∈ IRn. Now, since we have (4.15), also, we can obtain

(λ∗i gi(x
∗))2 + τ2 ≤ (λ∗i gi(x))

2 + τ2, i = 1, ...,m,

so, we have the following

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ2 ≤
m∑
i=1

√
(λ∗i gi(x))

2 + τ2,

on both sides we subtract by
∑m

i=1 τ,

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ2 −
m∑
i=1

τ ≤
m∑
i=1

√
(λ∗i gi(x))

2 + τ2 −
m∑
i=1

τ, (4.17)

considering (4.16) and (4.17), we have

lH(x, λ∗, τ) ≥ lH(x∗, λ∗, τ), ∀x ∈ IRn, (4.18)

in this way, we finish the proof of (4.10). We are interested in verifying item (ii)

now. But, first we will prove that lH(x∗, λ∗, τ) = f(x∗). Indeed, by definition

of lH , we have

lH(x∗, λ∗, τ) = f(x∗)−
m∑
i=1

λ∗i gi(x
∗) +

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ2 −
m∑
i=1

τ, (4.19)

considering (4.15); (4.19) becomes

lH(x∗, λ∗, τ) = f(x∗). (4.20)

On the other hand, as x∗ is feasible, i.e.,

gi(x
∗) ≥ 0, i = 1, ...,m. (4.21)
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By applying the property P2 of the DHF in (4.21), we obtain

p(gi(x
∗), λi, τ) ≤ p(0, λi, τ), i = 1, ...,m. (4.22)

By applying property P1, on the right side of expression (4.22), we will

obtain

p(gi(x
∗), λi, τ) ≤ 0, for λi ≥ 0, i = 1, ...,m. (4.23)

By performing the sum of 1 to m in (4.23) it follows that

m∑
i=1

p(gi(x
∗), λi, τ) ≤ 0.

Adding f(x∗) to both sides of the expression, we obtain

f(x∗) +

m∑
i=1

p(gi(x
∗), λi, τ) ≤ f(x∗). (4.24)

By definition of lH , (4.24) becomes

lH(x∗, λ, τ) ≤ f(x∗). (4.25)

Now, by (4.25) and (4.20) we have

lH(x∗, λ, τ) ≤ f(x∗) = lH(x∗, λ∗, τ). (4.26)

Finally, from (4.18) and (4.26), there is λ∗ ≥ 0 such that the primal-dual

solution (x∗, λ∗) is a saddle point of lH , ∀x ∈ IRn and τ > 0.

(⇐) We assume that (x∗, λ∗) is a saddle point of lH , so (4.11) is hold.

Then, for all x ∈ IRn, λ ∈ IRm
+ and for any τ > 0 fixed, we have

f(x∗)−
m∑
i=1

λigi(x
∗) +

m∑
i=1

√
(λigi(x∗))

2
+ τ2 −

m∑
i=1

τ = lH(x∗, λ, τ)
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≤ lH(x∗, λ∗, τ) = f(x∗)−
m∑
i=1

λ∗i gi(x
∗)+

m∑
i=1

√
(λ∗i gi(x

∗))
2
+ τ2−

m∑
i=1

τ. (4.27)

From (4.27), we have

−
m∑
i=1

λigi(x
∗) +

m∑
i=1

√
(λigi(x∗))

2
+ τ2

≤ −
m∑
i=1

λ∗i gi(x
∗) +

m∑
i=1

√
(λ∗i gi(x

∗))
2
+ τ2, (4.28)

This relation (4.28) is possible only if gi(x
∗) ≥ 0. Since, if this relation

is violated (i.e., gi(x
∗) < 0) for some index i, we can choose λi sufficiently

large such that (4.28) becames false. So, x∗ is feasible for problem (P). We will

prove the complementarity condition of (4.10). So again, by (4.28), and since

that λi ≥ 0, i = 1, ...,m, in particular taking λi = 0, i = 1, ...,m, in (4.28),

we obtain
m∑
i=1

τ ≤ −
m∑
i=1

λ∗i gi(x
∗) +

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ2,

thus, it follows that

m∑
i=1

(λ∗i gi(x
∗) + τ)

2 ≤
m∑
i=1

(
(λ∗i gi(x

∗))2 + τ2
)
,

m∑
i=1

(
(λ∗i gi(x

∗))
2
+ τ2 + 2τλ∗i gi(x

∗)
)
≤

m∑
i=1

(
(λ∗i gi(x

∗))2 + τ2
)
,

so,
m∑
i=1

λ∗i gi(x
∗) ≤ 0,

and since λ∗i ≥ 0 and gi(x
∗) ≥ 0, i = 1, ...,m, it must be true

λ∗i gi(x
∗) = 0, i = 1, ...,m. (4.29)

By (4.29) and definition of lH , we obtain

lH(x∗, λ∗, τ) = f(x∗). (4.30)
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From definition of saddle point, we know that lH(x, λ∗, τ) ≥ lH(x∗, λ∗, τ),

by (4.30) and by definition of lH , we can write

f(x∗) = lH(x∗, λ∗, τ) ≤ lH(x, λ∗, τ) = f(x) +

m∑
i=1

p(gi(x), λ
∗
i , τ). (4.31)

On the other hand, once again considering property P2 of DHF, for any

feasible point x, i.e., gi(x) ≥ 0, i = 1, ...m, we will carry out a work similar to

that of (4.21)-(4.24), thus, we can obtain

f(x) +

m∑
i=1

p(gi(x), λ
∗
i , τ) ≤ f(x), (4.32)

now, we replace (4.32) in (4.31), then follow

f(x∗) ≤ f(x),

therefore, x∗ is a global optimal solution of (P).

Let’s consider the following definitions. Let

Fτ (x) = sup
λ≥0

lH(x, λ, τ).

Then Fτ (x) = f(x), if gi(x) ≥ 0, i = 1, ...,m and Fτ (x) = ∞, otherwise.

Therefore, we can consider the following problem

x∗ = argmin {Fτ (x) | x ∈ IRn} , (4.33)

that is the problem (P) reduces to solving (4.33).

Let

ϕτ (λ) = inf
x∈IRn

lH(x, λ, τ)
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(possibly ϕτ (λ) = −∞ for some λ) and consider the following dual problem

of (P), that consisting of finding

λ∗ = argmax {ϕτ (λ) | λ ≥ 0} . (4.34)

In the following result, we are going to verify the weak duality.

Proposition 4.2 Let x be a feasible solution to problem (P) and let λ be a

feasible solution to problem (4.34). Then

ϕτ (λ) ≤ Fτ (x) = f(x), ∀x ∈ S, ∀ λ ∈ IRm
+ .

Proof. For any feasible x and λ, we then we can get the weak duality. Indeed,

by the definition of ϕτ , we have

ϕτ (λ) = inf
w∈IRn

lH(w, λ, τ) = inf
w∈IRn

{
f(w) +

m∑
i=1

p(gi(w), λi, τ)

}

≤ inf
w∈S

{
f(w) +

m∑
i=1

p(gi(w), λi, τ)

}

= f(x) +

m∑
i=1

p(gi(x), λi, τ). (4.35)

Since we know that x is feasible, we have gi(x) ≥ 0, i = 1, ...,m, immedi-

ately then, for the property P2 of the HPF, we get the following expressions

p(gi(x), λi, τ) ≤ p(0, λi, τ), i = 1, ...,m,

we rewrite the expression above, as follows

m∑
i=1

p(gi(x), λi, τ) ≤
m∑
i=1

p(0, λi, τ),
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now, we apply property P1, on the right side of the previous inequality

m∑
i=1

p(gi(x), λi, τ) ≤ 0,

we add f(x), to both sides of the inequality above

f(x) +

m∑
i=1

p(gi(x), λi, τ) ≤ f(x), (4.36)

we replace (4.36) in (4.35), so

ϕτ (λ) ≤ f(x), ∀x ∈ S, ∀λ ∈ IRm
+ . (4.37)

If x̂ and λ̂ are feasible solutions of the primal and dual problems and

Fτ (x̂) = ϕτ (λ̂), then x̂ = x∗ and λ̂ = λ∗. From Remark 3.1, with the smooth-

ness of f(x) and gi(x), i = 1, ...,m, we ensure the smoothness for the dual

function ϕτ (λ).

Theorem 4.1 The problem (P) is considered. The assumption C2 is verified.

Then the existence of a solution of problem (P) implies that the problem (4.34)

has a solution and

ϕτ (λ
∗) = f(x∗), for any τ > 0. (4.38)

Proof. Let x∗ be a solution of problem (P). By C2, we get λ∗ ≥ 0, such that

(4.10) is verified. So we have

ϕτ (λ
∗) = min

x∈IRn
lH(x, λ∗, τ) = lH(x∗, λ∗, τ)

≥ lH(x∗, λ, τ) ≥ min
x∈IRn

lH(x, λ, τ) = ϕτ (λ), ∀λ ≥ 0.
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Therefore ϕτ (λ
∗) = max

{
ϕτ (λ) | λ ∈ IRm

+

}
, in this way λ∗ ∈ IRm

+ is a

solution of the dual problem and since we have

lH(x∗, λ∗, τ) = f(x∗),

so (4.38) hold.

Now we are going to introduce a property of function lH at a KKT point.

Proposition 4.3 For any KKT pair (x∗, λ∗) and for any τ > 0.

� lH(x∗, λ∗, τ) = f(x∗).

� ∇xlH(x∗, λ∗, τ) = ∇xL(x
∗, λ∗) = ∇f(x∗)−

∑m
i=1 λ

∗
i∇gi(x∗) = 0.

� ∇2
xxlH(x∗, λ∗, τ) = ∇2

xxL(x
∗, λ∗)+ 1

τ∇g(x
∗)D∗∇g(x∗), where D∗ = diag

(
(λ∗i )

2
)
, i =

1, ...,m.

Proof. Let any τ > 0 fixed.

� by (2.4) we obtain

lH(x∗, λ∗, τ) = f(x∗)−
m∑
i=1

(
λ∗i gi(x

∗)−
√

(λ∗i gi(x
∗))

2
+ τ2 + τ

)
= f(x∗).

� The gradient of lH in x is

∇xlH(x∗, λ∗, τ) = ∇f(x∗)−
m∑
i=1

λ∗i

1− λ∗i gi(x
∗)√

(λ∗i gi(x
∗))

2
+ τ2

∇gi(x∗),

applying (2.4) we get

∇xlH(x∗, λ∗, τ) = ∇f(x∗)−
m∑
i=1

λ∗i∇gi(x∗).
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� The Hessian in x is

∇2
xxlH(x∗, λ∗, τ) = ∇2

xxf(x
∗)−

m∑
i=1

λ∗i∇2
xxgi(x

∗)

+

m∑
i=1

(
(λ∗i )

2√
(λ∗i gi(x

∗))2 + τ2
− (λ∗i )

4g2i (x
∗)

((λ∗i gi(x
∗))2 + τ2)

3
2

)
∇xgi(x

∗)∇T
x gi(x

∗)

+

m∑
i=1

(λ∗i )
2gi(x

∗)√
(λ∗i gi(x

∗))2 + τ2
∇2

xxgi(x
∗), (4.39)

so, applying (2.4) again we can obtain

∇2
xxlH(x∗, λ∗, τ) = ∇2

xxL(x
∗, λ∗) +

1

τ

m∑
i=1

(λ∗i )
2∇gi(x∗)∇gi(x∗).

Through this property we can see that the function lH has the same local

property as the function Log-sigmoid Lagrangian (see, [9]) and the logarithmic

MBF (see, [7]). Now, we are going to introduce dislocation hyperbolic function,

this function is a new approach to DHALF.
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