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1. Introduction 
 

While the maintenance refers to the activities that happen in any time after the 
implementation of a new software development project, the software evolution is defined 
by the exam of the systems characteristics dynamic behavior and how they change along 
the time. 
 

The Laws of Software Evolution (LSE) describe how a system behaves throughout their 
successive versions (LEHMAN, 1980). Works found in the literature makes reference to 
software evolution experimental studies just considering the legacy systems’ source code 
(KEMERER & SLAUGHTER, 1999) (SCACHI, 2003). Besides, LEHMAN & RAMIL (2002) 
have been pointing out the need for evolution studies regarding object-oriented systems 
and in other software development process phases (LEHMAN & RAMIL, 2003). Due to 
these characteristics, decay causes’ study throughout object-oriented development 
processes becomes relevant, providing us a better understanding of how this type of 
software evolves.   

 
ARAUJO & TRAVASSOS (2004) have described the theme Software Evolution in 

the context of the Experimental Software Engineering, highlighting the concepts and 
characteristics involved in the area, as well as a bibliographical revision on the subject, 
with emphasis in experimental studies.  The Laws of Software Evolution were used as the 
basis for a software evolution theory, originally proposed by LEHMAN (1980). In 
agreement with SCACHI (2003), this theory represents one of the largest intellectual 
contributions and challenges for the software evolution research community. KEMERER & 
SLAUGHTER (1999) state that only 2% of the experimental studies focus in maintenance, 
despites the fact that publications show at least 50% of the software effort is dedicated to 
this phase. Among the publications found in the literature, most refers to observational 
studies, usually concerned with the evolution in legacy systems’ source code, some still 
regarding batch systems and, usually, in the COBOL language. The aim was to introduce 
the research that has been accomplished at COPPE/UFRJ for defining a framework, 
based on the Laws of Software Evolution (LEHMAN, 1980), for supporting experimental 
studies and decision making processes regarding object-oriented software decay. The 
purpose is the elaboration of a conceptual structure to support the definition of 
experimental studies for different object-oriented software development process phases. 

  
In this work, we have evolved the scenario previously described (ARAUJO & 

TRAVASSOS, 2004), bringing the concepts concerned with the Laws of Software 
Evolution to the evolutive maintenance arena. Our aim is to explore the relationships 
among the LSE applying them to object-oriented software. With this, software engineers 
could be able to observe, by applying such model, the possible decay causes in their OO 
software projects. Besides, we believe this model can represent the first steps towards the 
building of a system dynamic model, what could support in-virtuo and in-silico 
experimental studies regarding evolutive maintenance and OO software decay 

 
This technical report is divided in 2 more sections besides this introduction. The 

section 2 describes an initial discussion about the application of the Laws of Software 
Evolution in object-oriented software development processes, describing a framework for 
evolution studies in this context. Section 3 describes the final considerations and 
perspectives of future works. 
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2. Interpreting the Laws of Software Evolution when applied to Object-
Oriented Software Development Processes 
 

Once the approaches found in the technical literature usually treat of software 
evolution regarding legacy systems’ source code (some software still in batch and, usually, 
written in the COBOL language), this work brings, as one of its intended contributions, the 
hypothesis that the Laws of Software Evolution (LSE) could also be supported by the 
different phases of a software development process based on the object-oriented 
paradigm, instead of just to the legacy systems’ code phase. For this, without generality 
loss, an adaptation of the object-oriented software development process proposed in 
TRAVASSOS et al. (2001) was used, shown in the Figure  2.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 – The considered software development process (adapted from TRAVASSOS et al. (2001)) 
 

Considering this development scenario, firstly a set of characteristics that, when 
grouped, would affect OO software decay was identified, in order to provide a better 
understanding than it would really affect the software evolution. Some characteristics were 
adapted from ISO 9126-1 (1997) and others have been added in the sense of 
contemplating characteristics not included by this standard, but relevant in the software 
evolution process. 

Among the extracted and adapted characteristics from ISO 9126-1, there are 
Reliability, Efficiency and Maintainability. The added characteristics are Size, Periodicity, 
Complexity, Effort and Modularity. These characteristics are measured through the 
collection of specific metrics to each artifact version. 

We characterize Size as the amount of artifacts produced in each phase of the 
proposed software development process, as amount of function points for Requirements 
Specification, amount of key classes for High Level Design, amount of support classes for 
Low Level Design and number of source code lines for Coding. 

As Periodicity we are representing the interval of time elapsed between each 
produced version of that artifact. 

Complexity, in the context of this work, is related only to Structural Complexity, 
which is measurable, and will be named just Complexity throughout this text. Thus, 
Complexity is identified through elements that can measure the structural complexity of the 
artifact, as number of requirements in a requirements document, number of class 
diagrams and cyclomatic complexity per method, exemplifying, respectively, artifacts of 
Requirements Specification phases, High Level Design and Coding. 

As Effort we considered as the amount of artifacts handled (number of inclusions, 
modifications and exclusions in each artifact). Besides, in case of modifications, an artifact 
modified several times is counted repeatedly as many times as the modifications are 
made. 
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We describe Modularity through the coupling and cohesion characteristics between 
artifacts as, for instance, coupling between Use Cases in Requirements Specification, 
between classes in High and Low Level Design and cohesion in methods in Coding. 

As Reliability we represent the amount of identified defects by artifact in each 
version of it, besides system’s availability. This characteristic was based mainly on the 
Maturity sub-characteristic from ISO 9126-1. 

Efficiency is identified by the amount of people and allocated resources, spent time 
and average productivity of the team, by version of each artifact. This characteristic was 
based mainly on the Time Behavior and Resource Behavior sub-characteristics from ISO 
9126-1. 

Finally, Maintainability is characterized by the spent time in the identification of 
defects and also for the spent time in their removal. This characteristic was mainly based 
on the Changeability and Testability sub-characteristics from ISO 9126-1. 

The table 2.1 summarizes the relationships among the Laws of Software Evolution 
and the described characteristics. 

 
Table 2.1 – Laws of Software Evolution x Characteristics 

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability 
Continuing 
Change 

        

Increasing 
Complexity 

        

Self Regulation         

Conservation of 
Organizational 
Stability 

        

Conservation of 
Familiarity 

        

Continuing 
Growth 

        

Declining 
Quality 

        

Feedback 
System 

        

 
Starting from the definition of the characteristics that influence in the software 

evolution, a study was made in how these characteristics would behave to result in the 
software decay. These characteristics were grouped and interpreted according to the 
perspective given by the LSE and OO software development phase. It aimed at capturing 
each expected characteristic’s trend when evaluating software decay. We used truth 
tables to capture each one of the possible combinations of characteristics’ trends. Next, 
based on the combination of these trends, we marked down those ones that are applicable 
to the LSE. At the end, the combination of these trends gives the hypotheses regarding the 
LSE and associated characteristics’ trends. After each table, there comes the associated 
study hypothesis, described through the formalism defined by CARVER (2003). The 
following symbolism will be used for the tables construction: 

• ↑   increasing of a specific characteristic; 
• ↓  decreasing of a specific characteristic; 
• ↔ a characteristic is constant, that is, doesn’t change; 
• *  regardless of its value; 
•   lack of applicability to the Law of Software Evolution; 
•   applicability to the Law of Software Evolution; 
• Λ   connective AND; 
• V connective OR; 
• ¬  connective NOT; 
• ⇒  logical imply. 
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The Law of Continuing Change (Law I) 
 

Original interpretation: “An E-type1 system must be continually adapted else it 
becomes progressively less satisfactory in use” (LEHMAN & RAMIL, 2001b). The need for 
change reflects a need to adapt the system as the outside world, the domain being 
covered and the application and/or activity being supported or pursued, changes. Such 
exogenous changes are likely to invalidate assumptions made during system definition, 
development, validation, installation and application or render them unsatisfactory. The 
software reflecting such assumptions must then be adapted to restore their validity 
(LEHMAN & RAMIL, 2001b). 
 
 In this work, the Law of Continuing Change (CC) is being characterized by the 
number of accomplished modifications (additions, removals, modifications) over the 
successive versions of the system artifacts, taking into consideration the time interval 
between versions. A system is considered to be undergoing continuing change if new 
versions are produced at regular time intervals, showing then modifications in functionality 
and/or structure. 
 

The table 2.2 shows the expected impact of each defined characteristic to observe 
the Law of Continuing Change, describing, at the end, the logical formulation regarding the 
software characteristics behavior and the Law I.  

 
Table 2.2 – Truth Table for the Law of Continuing Change 

Periodicity Effort Continuing 
Change 

↑ *  
↔ ↑  
↔ ↔  
↔ ↓  
↓ ↑  
↓ ↔  
↓ ↓  

¬↑ Λ ¬↓ ⇒ CC 
 

This way, we described the following hypothesis to observe this law: 
(Periodicity doesn’t increase Λ Effort doesn’t decrease) ⇒ Continuing Change 

 
The Law of Increasing Complexity (Law II) 
 

Original interpretation: “As an E-type system is evolved its complexity increases 
unless work is done to maintain or reduce it” (LEHMAN & RAMIL, 2001b). Increasing 
complexity arises because of the injection and the super-positioning of changes to 
achieve, for example, growth in functionality of satisfaction of the needs of changing 
operational domains. This leads to increasing internal interconnectivity and, hence, to 
deteriorating system structure, increasing disorder. Equally, it results in increasing 
complexity of internal and external interfaces at all levels. These effects are amplified 
because, as the system ages, changes are more likely to be orthogonal to existing system 
structures (LEHMAN & RAMIL, 2001b). 

 

                                            
1 An E-type system represents software solving a problem or addressing an application in the real word. 
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In this context, the Law of Increasing Complexity (IC) is being characterized by the 
increase of the characteristics that mainly lead to the system’s structural complexity 
deterioration, thus leading to an approach which aims at the reduction and/or impairment 
of such process. This increase in complexity is observed by means of the number of 
produced artifacts, structural complexity, number of modifications already done, loss of 
artifacts modularity (through coupling increases or cohesion loss) as well as the system 
maintainability decrease.  
 

The table 2.3 shows the expected impact of each defined characteristic to observe 
the Law of Increasing Complexity, describing, at the end, the logical formulation regarding 
the software characteristics behavior and the Law II.  

 
Table 2.3 – Truth Table for the Law of Increasing Complexity 

Size Complexity Effort Modularity Maintainability Increasing 
Complexity 

↑ * * * *  
↔ ↑ * * *  
↔ ↔ ↑ * *  
↔ ↔ ↔ ↑ ↑  
↔ ↔ ↔ ↑ ↔  
↔ ↔ ↔ ↑ ↓  
↔ ↔ ↔ ↔ ↑  
↔ ↔ ↔ ↔ ↔  
↔ ↔ ↔ ↔ ↓  
↔ ↔ ↔ ↓ *  
↔ ↔ ↓ ↑ ↑  
↔ ↔ ↓ ↑ ↔  
↔ ↔ ↓ ↑ ↓  
↔ ↔ ↓ ↔ ↑  
↔ ↔ ↓ ↔ ↔  
↔ ↔ ↓ ↔ ↓  
↔ ↔ ↓ ↓ *  
↔ ↓ ↑ * *  
↔ ↓ ↔ ↑ ↑  
↔ ↓ ↔ ↑ ↔  
↔ ↓ ↔ ↑ ↓  
↔ ↓ ↔ ↔ ↑  
↔ ↓ ↔ ↔ ↔  
↔ ↓ ↔ ↔ ↓  
↔ ↓ ↔ ↓ *  
↔ ↓ ↓ ↑ ↑  
↔ ↓ ↓ ↑ ↔  
↔ ↓ ↓ ↑ ↓  
↔ ↓ ↓ ↔ ↑  
↔ ↓ ↓ ↔ ↔  
↔ ↓ ↓ ↔ ↓  
↔ ↓ ↓ ↓ *  
↓ ↑ * * *  
↓ ↔ ↑ * *  
↓ ↔ ↔ ↑ ↑  
↓ ↔ ↔ ↑ ↔  
↓ ↔ ↔ ↑ ↓  
↓ ↔ ↔ ↔ ↑  
↓ ↔ ↔ ↔ ↔  
↓ ↔ ↔ ↔ ↓  
↓ ↔ ↔ ↓ *  
↓ ↔ ↓ ↑ ↑  
↓ ↔ ↓ ↑ ↔  
↓ ↔ ↓ ↑ ↓  
↓ ↔ ↓ ↔ ↑  
↓ ↔ ↓ ↔ ↔  
↓ ↔ ↓ ↔ ↓  
↓ ↔ ↓ ↓ *  
↓ ↓ ↑ * *  
↓ ↓ ↔ ↑ ↑  
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Size Complexity Effort Modularity Maintainability Increasing 
Complexity 

↓ ↓ ↔ ↑ ↔  
↓ ↓ ↔ ↑ ↓  
↓ ↓ ↔ ↔ ↑  
↓ ↓ ↔ ↔ ↔  
↓ ↓ ↔ ↔ ↓  
↓ ↓ ↔ ↓ *  
↓ ↓ ↓ ↑ ↑  
↓ ↓ ↓ ↑ ↔  
↓ ↓ ↓ ↑ ↓  
↓ ↓ ↓ ↔ ↑  
↓ ↓ ↓ ↔ ↔  
↓ ↓ ↓ ↔ ↓  
↓ ↓ ↓ ↓ *  
↑ v ↑ v ↑ v ↓ v ↓ ⇒ IC 

 
This way, we described the following hypothesis to observe this law: 
(Size increases V Complexity increases V Effort increases V Modularity decreases 
V Maintainability decreases) ⇒ Increasing Complexity 

 
The Law of Self Regulation (Law III) 
 

Original interpretation: “Global E-type system evolution processes are self 
regulating” (LEHMAN & RAMIL, 2001b). The global process includes all activities that 
influence the software process and its product, and includes not only direct technical 
activity but also that of other stakeholders such as business executives, marketers, users 
and their managers (LEHMAN & RAMIL, 2000). 

 
In the context of this work, the Law of Self Regulation (SR) is being characterized 

by keeping the system development under control by means of measuring the system’s 
reliability, allocated resources throughout successive versions of maintenance with 
increases in the system size. Reliability can be measured through the number of detected 
and corrected defects for each system version as well its availability ratio. Allocated 
resources can be measured based on the team’s size and productivity, allocated time and 
consumed resources. 

 
The table 2.4 shows the expected impact of each defined characteristic to study the 

Law of Self Regulation, describing, at the end, the logical formulation concerned with the 
software characteristics behavior and  Law III.  

 
Table 2.4 – Truth Table for the Law of Self Regulation 

Size Reliability Efficiency Self Regulation 
↑ * *  
↔ ↑ ↑  
↔ ↑ ↔  
↔ ↑ ↓  
↔ ↔ ↑  
↔ ↔ ↔  
↔ ↔ ↓  
↔ ↓ *  
↓ ↑ ↑  
↓ ↑ ↔  
↓ ↑ ↓  
↓ ↔ ↑  
↓ ↔ ↔  
↓ ↔ ↓  
↓ ↓ *  

¬↑ Λ ¬↓ Λ ¬↓ ⇒ SR 
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This way, we described the following hypothesis to observe this law: 
(Size doesn’t increase Λ Reliability doesn’t decrease Λ Efficiency doesn’t decrease) 
⇒ Self Regulation 

 
The Law of Conservation of Organizational Stability (Law IV) 
 

Original interpretation: “Average activity rate in an E-type process tends to remain 
constant over system lifetime or segments of that lifetime” (LEHMAN & RAMIL, 2001b). 
The activity rate (e. g., elements changed, handled or handlings per release or unit of time 
tends to remain constant over periods or segments of system lifetime (LEHMAN & RAMIL, 
2001b) 

 
In this work, the Law of Conservation of Organizational Stability (COS) is being 

characterized by the stagnation of the number of elements changed and allocated 
resources, showing that the added functionality, or the increase of allocated resources, 
don’t significantly change it. It can be checked by means of the number of changes’ 
constancy and resources allocated to it. 

 
The table 2.5 shows the expected impact of each one of the software characteristics 

to observe the Law of Conservation of Organizational Stability, describing, at the end, the 
logical formulation regarding software characteristics behavior and Law IV.  

 
Table 2.5 – Truth Table for the Law of Conservation of Organizational Stability 

Effort Efficiency Conservation of 
Organizational Stability 

↑ *  
↔ ↑  
↔ ↔  
↔ ↓  
↓ *  

↔ Λ ↔ ⇒ COS 
 

This way, we described the following hypothesis to observe this law: 
(Effort doesn’t change Λ Efficiency doesn’t change) ⇒ Conservation of 
Organizational Stability 
 

The Law of Conservation of Familiarity (Law V) 
 

Original interpretation: “In general, the average incremental growth (growth rate 
trend) of E-type systems tends to decline” (LEHMAN & RAMIL, 2001b). Give the growing 
complexity of the system, its workings and its functionality, achieving renewed familiarity 
after numerous changes, additions and removals, restoration of pre-change familiarity after 
change becomes increasingly difficult. This reasoning suggests that the rate of change 
and growth of the system be slowed down as it ages (LEHMAN & RAMIL, 2001b). 
 
 In this work, the Law of Conservation of Familiarity (CF) is being characterized by 
the point from which all the modifications added into the system’s versions show little 
difference in general functionality. It can be observed by the constancy in system size, its 
complexity and number of manipulations (additions, removals, modifications) on the 
artifacts of the system. 
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The table 2.6 shows the expected impact of each defined software characteristic to 
observe the Law of Conservation of Familiarity, describing, at the end, the logical 
formulation concerned with the characteristics behavior and Law V. 

 
Table 2.6 – Truth Table for the Law of Conservation of Familiarity 

Size Complexity Effort Conservation 
of Familiarity 

↑ * *  
↔ ↑ *  
↔ ↔ ↑  
↔ ↔ ↔  
↔ ↔ ↓  
↔ ↓ *  
↓ * *  

↔ Λ ↔ Λ ↔ ⇒ CF 
 

This way, we described the following hypothesis to observe this law: 
(Size doesn’t change Λ Complexity doesn’t change Λ Effort doesn’t change) ⇒ 
Conservation of Familiarity 

 
The Law of Continuing Growth (Law VI) 
 

Original interpretation: “The functional capability of E-type systems must be 
continually increased to maintain user satisfaction over the system lifetime” (LEHMAN & 
RAMIL, 2001b). This law is more related to the fact that finiteness of the implemented 
software implies that its properties are bounded relative to those of the application and its 
domain. Properties excluded by the bounds eventually become a source of performance 
limitations, irritation and error. To eliminate the latter requires extension of the system 
(LEHMAN & RAMIL, 2000). 

 
In this context, the Law of Continuing Growth (CG) is being characterized by the 

continuing increase of functionality offered by the system. It’s noticeable by the quantity of 
existing artifacts for each new version that should be released at regular intervals. 
 

The table 2.7 shows the expected impact of each defined characteristic to observe 
the Law of Continuing Growth, describing, at the end, the logical formulation regarding the 
characteristics behavior and Law VI. 
 

Table 2.7 – Truth Table for the Law of Continuing Growth 
Size Periodicity Continuing 

Growth 
↑ ↑  
↑ ↔  
↑ ↓  
↔ *  
↓ *  

↑ Λ ¬↑ ⇒ CG 
 

This way, we described the following hypothesis to observe this law: 
(Size increases Λ Periodicity doesn’t increase) ⇒ Continuing Growth 

 
The Law of Declining Quality (Law VII) 
 

Original interpretation: “Unless rigorously adapted to take into account changes in 
the operational environment, the quality of an E-type systems will appear to decline as it is 
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evolved” (LEHMAN & RAMIL, 2001b). Assuming quality to be related to the extend which 
system behavior address the needs of an application and its domain, the law derives from 
the observation that user needs inevitably change with time (LEHMAN & RAMIL, 2000).   

 
In the context of this work, the Law of Declining Quality (DQ) expresses the loss of 

quality of a given system, leading to improvements in order to avoid decay. It can be 
measured through the increase in structural complexity, increase in the number of 
manipulations (additions, removals, modifications) over the artifacts, modularity loss, 
maintainability and reliability decrease. 

 
The table 2.8 shows the expected impact of each defined characteristic to observe 

the Law of Declining Quality, describing, at the end, the logical formulation concerned with 
the software characteristics behavior and Law VII. 

 
Table 2.8 – Truth Table for the Law of Declining Quality 

Complexity Effort Modularity Reliability Maintainability Declining Quality 
↑ * * * *  
↔ ↑ * * *  
↔ ↔ ↑ ↑ ↑  
↔ ↔ ↑ ↑ ↔  
↔ ↔ ↑ ↑ ↓  
↔ ↔ ↑ ↔ ↑  
↔ ↔ ↑ ↔ ↔  
↔ ↔ ↑ ↔ ↓  
↔ ↔ ↑ ↓ *  
↔ ↔ ↔ ↑ ↑  
↔ ↔ ↔ ↑ ↔  
↔ ↔ ↔ ↑ ↓  
↔ ↔ ↔ ↔ ↑  
↔ ↔ ↔ ↔ ↔  
↔ ↔ ↔ ↔ ↓  
↔ ↔ ↔ ↓ *  
↔ ↔ ↓ * *  
↔ ↓ ↑ ↑ ↑  
↔ ↓ ↑ ↑ ↔  
↔ ↓ ↑ ↑ ↓  
↔ ↓ ↑ ↔ ↑  
↔ ↓ ↑ ↔ ↔  
↔ ↓ ↑ ↔ ↓  
↔ ↓ ↑ ↓ *  
↔ ↓ ↔ ↑ ↑  
↔ ↓ ↔ ↑ ↔  
↔ ↓ ↔ ↑ ↓  
↔ ↓ ↔ ↔ ↑  
↔ ↓ ↔ ↔ ↔  
↔ ↓ ↔ ↔ ↓  
↔ ↓ ↔ ↓ *  
↔ ↓ ↓ * *  
↓ ↑ * * *  
↓ ↔ ↑ ↑ ↑  
↓ ↔ ↑ ↑ ↔  
↓ ↔ ↑ ↑ ↓  
↓ ↔ ↑ ↔ ↑  
↓ ↔ ↑ ↔ ↔  
↓ ↔ ↑ ↔ ↓  
↓ ↔ ↑ ↓ *  
↓ ↔ ↔ ↑ ↑  
↓ ↔ ↔ ↑ ↔  
↓ ↔ ↔ ↑ ↓  
↓ ↔ ↔ ↔ ↑  
↓ ↔ ↔ ↔ ↔  
↓ ↔ ↔ ↔ ↓  
↓ ↔ ↔ ↓ *  
↓ ↔ ↓ * *  
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Complexity Effort Modularity Reliability Maintainability Declining Quality 
↓ ↓ ↑ ↑ ↑  
↓ ↓ ↑ ↑ ↔  
↓ ↓ ↑ ↑ ↓  
↓ ↓ ↑ ↔ ↑  
↓ ↓ ↑ ↔ ↔  
↓ ↓ ↑ ↔ ↓  
↓ ↓ ↑ ↓ *  
↓ ↓ ↔ ↑ ↑  
↓ ↓ ↔ ↑ ↔  
↓ ↓ ↔ ↑ ↓  
↓ ↓ ↔ ↔ ↑  
↓ ↓ ↔ ↔ ↔  
↓ ↓ ↔ ↔ ↓  
↓ ↓ ↔ ↓ *  
↓ ↓ ↓ * *  
↑ v ↑ v ↓ v ↓ v ↓ ⇒ DQ 

 
This way, we described the following hypothesis to observe of this law: 
(Complexity increases V Effort increases V Modularity decreases V Reliability 
decreases V Maintainability decreases) ⇒ Declining Quality 

 
The Law of Feedback System (Law VIII) 
 

Original interpretation: “E-type evolution processes are multi-level, multi-loop, multi-
agent feedback systems” (LEHMAN & RAMIL, 2001b). The behavior of complex feedback 
systems is not and cannot, in general, be described directly in terms of the local behavior 
of its forward path activities and mechanisms. Feedback will constrain the ways that the 
process constituents interact with one another and will modify their individual, local, and 
collective, global, behavior (LEHMAN & RAMIL, 2001b). 

   
In this work, the Law of Feedback System (FS) is characterized by the collecting 

and analyzing of all prior LSE, given us information not only on the understanding of the 
evolution process itself but also on the decision-making process regarding the application 
of corrective and preventive means related to system decay. We interpreted this law as a 
result of the analyses of the previous laws and, therefore, it doesn't describe a specific true 
table for its logical definition. 
 

This way, we described the following hypothesis to observe this law: 
(Collection of relative measures to Size, Periodicity, Complexity, Modularity, Effort, 
Reliability, Efficiency, Maintainability) ⇒ Feedback System 

 
The Hypotheses for the Laws of Software Evolution 
 

Using these truth tables, it was possible to describe a set of hypotheses, each one 
associated to a specific LSE. The table 2.9 summarizes these hypotheses. 
 

Table 2.9 – The Hypotheses for the Laws of Software Evolution 
Hypotheses 

(Periodicity doesn’t increase Λ Effort doesn’t decrease) ⇒ Continuing Change 
(Size increases V Complexity increases V Effort increases V Modularity decreases V Maintainability 
decreases) ⇒ Increasing Complexity 
(Size doesn’t increase Λ Reliability doesn’t decrease Λ Efficiency doesn’t decrease) ⇒ Self Regulation 
(Effort doesn’t change Λ Efficiency doesn’t change) ⇒ Conservation of Organizational Stability 
(Size doesn’t change Λ Complexity doesn’t change Λ Effort doesn’t change) ⇒ Conservation of Familiarity 
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(Size increases Λ Periodicity doesn’t increase) ⇒ Continuing Growth 
(Complexity increases V Effort increases V Modularity decreases V Reliability decreases V Maintainability 
decreases) ⇒ Declining Quality 
(Collection of relative measures to Size, Periodicity, Complexity, Effort, Modularity, Reliability, Efficiency, 
Maintainability) ⇒ Feedback System 
 

 
Linkages among the Laws of Software Evolution 
 

Kitchenham (1982) and Lehman & Ramil (2001b) show that the Laws of Software 
Evolution are not independent. Thus, the presented hypotheses were discussed in order to 
identify the linkages among the Laws of Software Evolution (figure 2.2). This discussion is 
particularly relevant because this work is concerned with identifying software decay 
process and not to study the individual behavior of the Laws of Software Evolution. 

 
Figure 2.2 – Linkages among the Laws of Software Evolution 

 
However, it’s important to describe how the Laws of Software Evolution influence 

each other. Thus, figure 2.4 shows these linkages by using the SADT (Structured Analysis 
and Design Technique) diagram (ROSS, 1977), considering the presented hypotheses 
logical formulation. The structure of a SADT diagram is represented by figure 2.3, where 
Input are the received data by means of an activity, Output are the generated or 
transformed data by an activity, Control are data whose utilization influence on the 
input/output transformation process and Mechanism is the processor that undertakes or 
processes the activity.  

 

I 
Continuing Change 

II 
Increasing 

Complexity 

III 
Self Regulation IV 

Conservation of 
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Figure 2.3 – Representation of a SADT diagram 
 
The established hypotheses are in our view the definition bases of the Laws of 

Software Evolution causes. For example, the Law of Conservation of Familiarity (Law V) 
has as input the system’s current version. For this Law, the controls are represented by 
the system’s baseline and the software characteristics represented by Size, Complexity 
and Effort. Also as controls, we have the status of Laws II and III that indicate the 
possibility of these Laws be influencing over the current Law (Law V). This fact indicates 
that Laws II and III have straight influence in Law V; that is, if the presented hypotheses 
are true, we should also verify their impact in the laws that could be directly affected, such 
as the Law of Conservation of Familiarity in this example. The mechanism is represented 
by the logical formulation for this Law, as described in table 2.9. The output is the status of 
Law V, in addition to the fact that this Law may influence the Law of Declining Quality (Law 
VII) and Law of Feedback System (Law VIII). 

 
However, we can’t claim that a specific Law of Software Evolution, which its 

associated logical proposition is true, results in software decay. This is particularly relevant 
when considering anti-regressive work (LEHMAN & RAMIL, 2001) (PFLEEGER, 2001) in 
relation to decay, like redocumentation, restructuring and reverse engineering. Thus, Table 
2.10 shows a discussion of each Law of Software Evolution regarding its neutral feature 
and its positive and negative implications. It’s relevant to remark that the neutral feature 
reveals an inherent characteristic towards the Law of Software Evolution itself. The 
positive implication reveals situations where the Law might result in an opposite condition 
to the software decay, like the use of anti-regressive work, for example. The negative 
implication is the one that results in decay and describes the interests in this work. Thus, 
we start to interpret the presented hypotheses through the negative implication for each 
Law of Software Evolution. 

 
Activity 

Input Output 

Control 

Mechanism 
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Law I

Law II

Law III

Law IV

Law V

Law VI

Law VII

Law VIII

Effort doesn´t decrease AND
Periodicity doesn´t increase

Effort
Periodicity

Size
Complexity

Effort
Modularity

Maintainability

Size increases OR
Complexity increases OR

Effort increases OR
Modularity decreases OR
Maintainability decreases

Size
Efficiency

Size doesn't change AND
Efficiency doesn't change

Size doesn't change AND
Complexity doesn't change
AND Effort doesn't change

Size
Complexity

Effort

Size
Periodicity

Size increases AND
Periodicity doesn´t increase

Size
Periodicity
Complexity

Effort
Modularity
Reliability
Efficiency

Maintainability

Collection of relative measures to Size,
Periodicity, Complexity, Effort, Modularity,

Reliability, Efficiency, Maintainability

Complexity
Effort

Modularity
Reliability

Maintainability

Complexity increases OR
Effort increases OR

Modularity decreases OR
Reliability decreases OR
Maintainability decreases

Size
Reliability
Efficiency

Size doesn´t increase AND
Reliability doesn´t decrease AND

Efficiency doesn´t decrease

Continuing Change

Conservation of
Organizational Stability

Self Regulation

Declining Quality

Conservation of Familiarity

Increasing Complexity

Continuing Growth

Feedback System

System

System

System

System

System

System

System

System

Status Law I

Status Law II

Status Law III

Status Law IV

Status Law V

Status Law VI

Status Law VII

Status Law VIII

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

Figure 2.4 – Linkages among the Laws of Software Evolution by using a SADT Diagram 
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Table 2.10 – Neutral Feature, Positive and Negative Implications for the Laws of Software Evolution 

Law I – Continuing Change: An E-type system must be continually adapted else it becomes progressively 
less satisfactory in use 
Neutral: A product in use will be subject to continuous change 
Positive Implication: If the change is well performed, the product will remain useful reflecting the changes 
in the environment and in the users’ expectations 
Negative Implication: If the change is badly performed or the product is not modified, the product will 
become progressively less useful 
Law II – Increasing Complexity: As an E-type system is evolved its complexity increases unless work is 
done to maintain or reduce it 
Neutral: A modified product will become more complex 
Positive Implication: Increasing in complexity might be necessary to reflect modifications in the product 
environment and the increasing of users’ needs 
Negative Implications: Increasing in complexity might turn the product more difficult to maintain and use 
Law III – Self Regulation: Global E-type system evolution processes are self-regulating 
Neutral: Systems have self regulation mechanisms 
Positive Implication: Self regulation allows the management of the evolution systems’ process, resulting in 
a balance that might be explored for its good management 
Negative Implication: Self regulation is not considered nor used in the systems’ development 
management, turning into barriers for a good management 
Law IV – Conservation of Organisational Stability: Average activity rate in an E-type process tends to 
remain constant over system lifetime or segments of that lifetime 
Neutral: Systems have global activities rates along their lifetime 
Positive Implication: The global activities rates tend to remain constant over system lifetime, indicating 
possible maturation and stability in the system’s development 
Negative Implication: The global activity rates over lifetime vary significantly, indicating an instability in the 
system’s development. Negative variations indicate the possibility of discontinuing product, while positive 
ones indicate the possibility of excessive effort for changes 
Law V – Conservation of Familiarity: In general, the average incremental growth (growth rate trend) of E-
type systems tends to decline 
Neutral: Growth rate trend of systems can be measured 
Positive Implication: Average incremental growth rates tend to decline, indicating stability in the system’s 
development 
Negative Implication: Average incremental growth rates tend to increase or remain constant evidencing 
the possibility of excessive effort between system’s evolution cycles, indicating instability in the system’s 
development 
Law VI – Continuing Growth: The functional capability of E-type systems must be continually increased to 
maintain user satisfaction over the system lifetime 
Neutral: Systems in use are subject to continuing growth 
Positive Implication: The increment of new functionality can keep the system utility, remaining useful 
related to changes in the environment and the user’s expectations 
Negative Implication: The lack of new functionality increment may turn the system progressively less 
useful according to the user’s needs 
Law VII – Declining Quality: Unless rigorously adapted to take into account changes in the operational 
environment, the quality of an E-type system will appear to decline as it is evolved 
Neutral: A system in evolution are subject to quality decay 
Positive Implication: Might result in anti-regressive work, like redocumentation, restructuring, 
reengineering, reverse engineering and elimination of useless artifacts 
Negative Implication: Declining in quality may turn the system more difficult to understand and change 
Law VIII – Feedback System: E-type evolution processes are multi-level, multi-loop, multi-agent feedback 
systems 
Neutral: Systems in evolution have feedback mechanisms 
Positive Implication: The feedback system is used to reach relevant enhancement 
Negative Implication: The feedback system is not considered nor used in order to reach relevant 
enhancement 
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Based on these studies, we believe that these linkages are applicable not only 
inside each phase of the software development process, like Requirements Specifications, 
High and Low Level Design and Coding, but also through these phases in a software 
development process (figure 2.5). Therefore, we propose a hypothesis based on the fact 
that the software characteristics previously defined, which logically determines the Laws of 
Software Evolution behavior, should be investigated throughout the software development 
phases, considering the linkages among the Laws of Software Evolution, in order to 
identify the software decay causes. For example, an Increasing of Complexity in 
Requirements Specification should be investigated in High Level Project and thus, 
successively, in the next phases. This thought should also be valid for the other Laws of 
Software Evolution. This hypothesis needs some experimental investigation, which will be 
an object of study in this research’s scope. 

 

 
Figure 2.5 - Linkages among the Laws of Software Evolution through Software Development Phases 
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Besides, we believe that each version produced in this software evolution process 

influences next software versions decay. Regarding the fact that we are talking about 
evolutive maintenance, we established that a group of new requirements is associated to 
each new artifact version and, from them on, we should map the linkages among the Laws 
of Software Evolution not only among the development phases of one version (figure 2.5), 
but also capturing the impact of these modifications for the next software versions (figure 
2.6). Thus, our start study point should be always concerned with the Requirements 
Specification phase, which is mapped in the next phases inside the referred maintenance 
cycle and, next, between the versions of that artifact. Needless to say that, despite the fact 
that the Requirements Specification is always the start point of any software project, it is 
possible to map the linkages among the development phases up to the abstraction level 
desired for the studies, that is, we could study the evolution process just up to High Level 
Project phase, for example. This brings out the discussion of software evolution for higher 
abstraction levels rather than mainly considering just the Coding phase. These hypotheses 
also need experimental investigation and also must be object of future studies in the 
context of this research. 

 

 
Figure 2.6 – Linkages among the Laws of Software Evolution trough different versions  

produced throughout the software development process 
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Mapping the hypotheses to the object-oriented software metrics 
 

Starting from this set of hypotheses and, considering the software development 
process using the object-oriented paradigm previously proposed, we defined a set of 
metrics that would be applicable to each development process phase. 
 

This set of metrics defines a parameter based framework, allowing flexibility to 
collect their values and to study the software decay inside one of the development process 
phases. This approach turns the study of the software evolution softer, once it can be 
adapted regarding the development process used, just collecting those metrics that could 
be extracted from the process in use. This flexibility will be more evident when associating 
the identified hypotheses with the used process phases and the defined metrics. This 
mapping will be done later in this work and it will indicate the relationship between the 
metrics and its optional use. 

 
The metrics that give support to each one of the characteristics described 

previously in the different development process phases were based, generically, in the 
works of PFLEEGER (2001) and PRESSMAN (2001). More specific metrics related to the 
context of the object-oriented paradigm were based on CHIDAMBER & KEMERER (1994), 
LORENZ & KIDD (1994), TRAVASSOS et al. (2001) and TRAVASSOS (2003). 

 
The set of metrics associated to each characteristic in each development process 

phase is represented in the table 2.11. 
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Table 2.11 - Metrics associated by Characteristic in each phase of the Process 
 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability 

Requirements 
Specification 

• # Function Points 
• # Use Case Points 

• Interval 
between 
Versions 

• # Requirements 
• # Use Cases 

• # Requirements Handled 
• # Use Cases Handled 

• Coupling between 
Use Cases (# 
Extensions and 
Uses) 

• # Detected 
Defects 
• # Corrected 
Defects 

• # People 
• Allocated Resources 
• Spent Time 
• Average Productivity of 
the Team 

• Spent Time in the 
Diagnostic of Defects 
• Spent Time in the 
Removal of Defects 

High Level 
Design 

• # Classes 
• # Methods per Class 

• Interval 
between 
Versions 

• # Class Diagrams 
• # Sequence Diagrams 
• # State Diagrams 
• # Package Diagrams 
• # Activity Diagrams 
• Depth of Inheritance per 
Class 
• # Children per Class 

• # Class Diagrams Handled 
• # Sequence Diagrams 
Handled 
• # State Diagrams Handled 
• # Package Diagrams 
Handled 
• # Activity Diagrams 
Handled 

• Coupling between 
Classes 

• # Detected 
Defects 
• # Corrected 
Defects 

• # People 
• Allocated Resources 
• Spent Time 
• Average Productivity of 
the Team 

• Spent Time in the 
Diagnostic of Defects 
• Spent Time in the 
Removal of Defects 

Low Level 
Design 

• # Key Classes 
• # Support Classes 
• # Methods per Class 
• # Subsystems 

• Interval 
between 
Versions 

• # Class Diagrams 
• # Sequence Diagrams 
• Depth of Inheritance per 
Class 
• Coupling between 
Objects 
• Response for a Class 
• Lack of Cohesion in 
Methods 
• # Children per Class 

• # Class Diagrams Handled 
• # Sequence Diagrams 
Handled 

• Cohesion in 
Methods 
• Coupling between 
Classes 

• # Detected 
Defects 
• # Corrected 
Defects 

• # People 
• Allocated Resources 
• Spent Time 
• Average Productivity of 
the Team 

• Spent Time in the 
Diagnostic of Defects 
• Spent Time in the 
Removal of Defects 

Coding • # Lines of Source 
Code  
• # Methods per Class 
 

• Interval 
between 
Versions 

• Depth of Inheritance per 
Class 
• Coupling between 
Objects 
• Response for a Class 
• Lack of Cohesion in 
Methods 
• # Children per Class 
• Cyclomatic Complexity 
per Method 

• # Lines of Source Code 
Handled 

• Cohesion in 
Methods 
• Coupling between 
Classes 

• # Detected 
Defects 
• # Corrected 
Defects 
• System 
Availability 

• # People 
• Allocated Resources 
• Spent Time 
• Average Productivity of 
the Team 

• Spent Time in the 
Diagnostic of Defects 
• Spent Time in the 
Removal of Defects 
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Based on this set of metrics, a study could be made in order to verify the 
trend of these metrics for the hypotheses previously described.  
 

For each software development process phase, a table was elaborated 
relating the metrics identified in the table 2.11 through the interpretation of the 
described hypotheses, in other words, relating metrics with the Laws of Software 
Evolution, Characteristics and Relationships between the Characteristics, for each 
phase of the process. In this context, the table 2.12 shows the interpretation of the 
metrics in Requirements Specification phase by Characteristic and Law of 
Software Evolution, while the tables 2.13, 2.14 and 2.15 describe the 
interpretations of the metrics for the High Level Design, Low Level Design and 
Code phases, respectively. 
 

These tables show, among the columns that identify the Characteristics, 
logical connectives that map the hypotheses. Inside of each cell of the tables, the 
metrics are described, with their respective interpretations related with the 
hypotheses. Logical connectives among these metrics indicate the obligation or not 
of the collection. The logical connective V (OR) between the metrics indicates that 
they are optional measures to be collected, where any of them would be enough to 
analyze that characteristic for the Law of Software Evolution. This turns the 
framework more flexible, explaining the fact that not all the metrics need to be 
collected, turning it adaptable to the software development process that is being 
used. 
 

This metrics set includes process and product metrics that should be 
collected for each produced OO software artifact version throughout the software 
life cycle. This will allow the definition of a baseline in order to study how the 
characteristics influence on OO software decay. 
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Table 2.12 – Interpretation of Metrics in the Requirements Specification Phase by Characteristic and Law of Software Evolution 

 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 
Continuing 
Change 

 

 

¬↑ Interval 
between Versions 
  

 

Λ

¬↓ # 
Requirements 
Handled 

V 
¬↓ # Use Cases 
Handled 

 

 

 

 

 

 

 

 

Increasing 
Complexity 

↑ # Function 
Points 

V 
↑ # Use Case 
Points 

 

 

V

↑ # Requirements 
V 

↑ # Use Cases 
V 

↑ # Requirements 
Handled 

V 
↑ # Use Cases 
Handled 

V

↑ Coupling 
between Use 
Cases (# 
Extensions and 
Uses) 

 

 

 

 

V

↑ Spent Time in 
the Diagnostic of 
Defects 

V 
↑ Spent Time in 
the Removal of 
Defects 

Self Regulation ¬↑ # Function 
Points 

V 
¬↑ # Use Case 
Points  

 

 

 

 

 

 

 

Λ

¬↑ # Detected 
Defects  

V 
¬↑ # Corrected 
Defects Λ

¬↓ # People 
V 

¬↓ Allocated 
Resources 

V 
¬↓ Spent Time 

V 
¬↓ Average 
Productivity of the 
Team 

 

 

Conservation of 
Organizational 
Stability 

 

 

 

 

 

 

↔ # 
Requirements 
Handled 

V 
↔ # Use Cases 
Handled 

 

 

 

 

Λ

↔ # People 
Λ 

↔ Allocated 
Resources 

Λ 
↔ Spent Time 

Λ 
↔ Average 
Productivity of the 
Team 

 

 

Conservation of 
Familiarity 

↔ # Function 
Points 

V 
↔ # Use Case 
Points 

 

 

Λ

↔ # 
Requirements 

V 
↔ # Use Cases Λ

↔ # 
Requirements 
Handled 

V 
↔ # Use Cases 
Handled 

 

 

 

 

 

 

 

 

Continuing 
Growth 

↑ # Function 
Points 

V 
↑ # Use Case 
Points 

Λ 

¬↑ Interval 
between Versions 

 

 

 

 

 

 

 

 

 

 

 

 

Declining Quality     ↑ # Requirements V ↑ # Requirements V ↑ Coupling V ↑ # Detected   V ↑ Spent Time in 
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 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 
V 

↑ # Use Cases 
Handled 

V 
↑ # Use Cases 
Handled 

between Use 
Cases (# 
Extensions and 
Uses) 

Defects 
V 

↑ # Corrected 
Defects 

the Diagnostic of 
Defects 

V 
↑ Spent Time in 
the Removal of 
Defects 

Feedback System • # Function 
Points 
• # Use Case 
Points  

• Interval between 
Versions 

 

• # Requirements 
• # Use Cases 

 

• # Requirements 
Handled 
• # Use Cases 
Handled  

• Coupling 
between Use 
Cases (# 
Extensions and 
Uses) 

 

• # Detected 
Defects 
• # Corrected 
Defects  

• # People 
• Allocated 
Resources 
• Spent Time 
• Average 
Productivity of the 
Team 

 

• Spent Time in 
the Diagnostic of 
Defects 
• Spent Time in 
the Removal of 
Defects 
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Table 2.13 – Interpretation of Metrics in the High Level Design Phase by Characteristic and Law of Software Evolution 
 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 

Continuing 
Change 

 

 

¬↑ Interval 
between Versions 
 

 

 

Λ

¬↓ # Class 
Diagrams 
Handled 

V 
¬↓ # Sequence 
Diagrams 
Handled 

V 
¬↓ # State 
Diagrams 
Handled 

V 
¬↓ # Package 
Diagrams 
Handled 

V 
¬↓ # Activity 
Diagrams 
Handled 

 

 

 

 

 

 

 

 

Increasing 
Complexity 

↑ # Classes 
V 

↑ # Methods per 
Class 

 

 

V

↑ # Class 
Diagrams 

V 
↑ # Sequence 
Diagrams 

V 
↑ # State 
Diagrams 

V 
↑ # Package 
Diagrams 

V 
↑ # Activity 
Diagrams 

V 
↑ Depth of 
Inheritance per 
Class 

V 
↑ # Children per 
Class 

V 

↑ # Class 
Diagrams 
Handled 

V 
↑ # Sequence 
Diagrams 
Handled 

V 
↑ # State 
Diagrams 
Handled 

V 
↑ # Package 
Diagrams 
Handled 

V 
↑ # Activity 
Diagrams 
Handled 

V

↑ Coupling 
between Classes 

 

 

 

 

V

↑ Spent Time in 
the Diagnostic of 
Defects 

V 
↑ Spent Time in 
the Removal of 
Defects 

Self Regulation ¬↑ # Classes 
V 

¬↑ # Methods per 
Class  

 

 

 

 

 

 

 

Λ

¬↑ # Detected 
Defects  

V 
¬↑ # Corrected 
Defects 

Λ

¬↓ # People 
V 

¬↓ Allocated 
Resources 

V 
¬↓ Spent Time 
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 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 
V 

¬↓ Average 
Productivity of 
the Team 

Conservation of 
Organizational 
Stability 

 

 

 

 

 

 

↔ # Class 
Diagrams 
Handled 

V 
↔ # Sequence 
Diagrams 
Handled 

V 
↔ # State 
Diagrams 
Handled 

V 
↔ # Package 
Diagrams 
Handled 

V 
↔ # Activity 
Diagrams 
Handled 

 

 

 

 

Λ

↔ # People 
Λ 

↔ Allocated 
Resources 

Λ 
↔ Spent Time 

Λ 
↔ Average 
Productivity of 
the Team  

 

Conservation of 
Familiarity 

↔ # Classes 
V 

↔ # Methods per 
Class 

 

 

Λ

↔ # Class 
Diagrams 

V 
↔ # Sequence 
Diagrams 

V 
↔ # State 
Diagrams 

V 
↔ # Package 
Diagrams 

V 
↔ # Activity 
Diagrams 

V 
↔ Depth of 
Inheritance per 
Class 

V 
↔ # Children per 
Class 

Λ

↔ # Class 
Diagrams 
Handled 

V 
↔ # Sequence 
Diagrams 
Handled 

V 
↔ # State 
Diagrams 
Handled 

V 
↔ # Package 
Diagrams 
Handled 

V 
↔ # Activity 
Diagrams 
Handled 

 

 

 

 

 

 

 

 

Continuing 
Growth 

↑ # Classes 
V 

↑ # Methods per 
Λ 

¬↑ Interval 
between Versions  
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 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 
Class 

Declining Quality  

 

 

 

↑ # Class 
Diagrams 

V 
↑ # Sequence 
Diagrams 

V 
↑ # State 
Diagrams 

V 
↑ # Package 
Diagrams 

V 
↑ # Activity 
Diagrams 

V 
↑ Depth of 
Inheritance per 
Class 

V 
↑ # Children per 
Class 

V 

↑ # Class 
Diagrams 
Handled 

V 
↑ # Sequence 
Diagrams 
Handled 

V 
↑ # State 
Diagrams 
Handled 

V 
↑ # Package 
Diagrams 
Handled 

V 
↑ # Activity 
Diagrams 
Handled 

V

↑ Coupling 
between Classes 

V

↑ # Detected 
Defects 

V 
↑ # Corrected 
Defects 

 

 

V

↑ Spent Time in 
the Diagnostic of 
Defects 

V 
↑ Spent Time in 
the Removal of 
Defects 

Feedback System • # Classes 
• # Methods per 
Class 

 

• Interval between 
Versions 

 

• # Class 
Diagrams 
• # Sequence 
Diagrams 
• # State Diagrams
• # Package 
Diagrams 
• # Activity 
Diagrams 
• Depth of 
Inheritance per 
Class 
• # Children per 
Class 

 

• # Class 
Diagrams 
Handled 
• # Sequence 
Diagrams 
Handled 
• # State Diagrams 
Handled 
• # Package 
Diagrams 
Handled 
• # Activity 
Diagrams 
Handled 

 

• Coupling 
between Classes 

 

• # Detected 
Defects 
• # Corrected 
Defects 

 

• # People 
• Allocated 
Resources 
• Spent Time 
• Average 
Productivity of 
the Team  

• Spent Time in 
the Diagnostic of 
Defects 
• Spent Time in 
the Removal of 
Defects 
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Table 2.14 – Interpretation of Metrics in the Low Level Design Phase by Characteristic and Law of Software Evolution 
 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 

Continuing 
Change 

 

 

¬↑ Interval 
between Versions 
 

 

 

Λ

¬↓ # Class 
Diagrams 
Handled 

V 
¬↓ # Sequence 
Diagrams 
Handled 

 

 

 

 

 

 

 

 

Increasing 
Complexity 

↑ # Key Classes 
V 

↑ # Support 
Classes 

V 
↑ # Methods per 
Class 

V 
↑ # Subsystems 

 

 

V

↑ # Class 
Diagrams 

V 
↑ # Sequence 
Diagrams 

V 
↑ Depth of 
Inheritance per 
Class 

V 
↑ Coupling 
between Objects 

V 
↑ Response for a 
Class 

V 
↑ Lack of 
Cohesion in 
Methods 

V 
↑ # Children per 
Class 

V 

↑ # Class 
Diagrams 
Handled 

V 
↑ # Sequence 
Diagrams 
Handled 

V

↓ Cohesion in 
Methods 

V 
↑ Coupling 
between Classes 

 

 

 

 

V

↑ Spent Time in 
the Diagnostic of 
Defects 

V 
↑ Spent Time in 
the Removal of 
Defects 

Self Regulation ¬↑ # Key Classes 
V 

¬↑ # Support 
Classes 

V 
¬↑ # Methods per 
Class 

V 
¬↑ # Subsystems 

 

 

 

 

 

 

 

 

Λ

¬↑ # Detected 
Defects  

V 
¬↑ # Corrected 
Defects Λ

¬↓ # People 
V 

¬↓ Allocated 
Resources 

V 
¬↓ Spent Time 

V 
¬↓ Average 
Productivity of 
the Team 

 

 

Conservation of 
Organizational 
Stability 

 

 

 

 

 

 

↔ # Class 
Diagrams 
Handled 

V 
↔ # Sequence 
Diagrams 

 

 

 

 

Λ

↔ # People 
Λ 

↔ Allocated 
Resources 

Λ 
↔ Spent Time 
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 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 
Handled Λ 

↔ Average 
Productivity of 
the Team 

Conservation of 
Familiarity 

↔ # Key Classes 
V 

↔ # Support 
Classes 

V 
↔ # Methods per 
Class 

V 
↔ # Subsystems 

 

 

Λ

↔ # Class 
Diagrams 

V 
↔ # Sequence 
Diagrams 

V 
↔ Depth of 
Inheritance per 
Class 

V 
↔ Coupling 
between Objects 

V 
↔ Response for a 
Class 

V 
↔ Lack of 
Cohesion in 
Methods 

V 
↔ # Children per 
Class 

Λ

↔ # Class 
Diagrams 
Handled 

V 
↔ # Sequence 
Diagrams 
Handled 

 

 

 

 

 

 

 

 

Continuing 
Growth 

↑ # Key Classes 
V 

↑ # Support 
Classes 

V 
↑ # Methods per 
Class 

V 
↑ # Subsystems 

Λ 

¬↑ Interval 
between Versions 

 

 

 

 

 

 

 

 

 

 

 

 

Declining Quality  

 

 

 

↑ # Class 
Diagrams 

V 
↑ # Sequence 
Diagrams 

V 
↑ Depth of 
Inheritance per 
Class 

V 
↑ Coupling 
between Objects 

V 

↑ # Class 
Diagrams 
Handled 

V 
↑ # Sequence 
Diagrams 
Handled 

V

↓ Cohesion in 
Methods 

V 
↑ Coupling 
between Classes 

V

↑ # Detected 
Defects 

V 
↑ # Corrected 
Defects 

 

 

V

↑ Spent Time in 
the Diagnostic of 
Defects 

V 
↑ Spent Time in 
the Removal of 
Defects 



COPPE/UFRJ  Keele University 

RT ES-XXX/05 28

 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 
V 

↑ Response for a 
Class 

V 
↑ Lack of 
Cohesion in 
Methods 

V 
↑ # Children per 
Class 

Feedback System • # Key Classes 
• # Support 
Classes 
• # Methods per 
Class 
• # Subsystems 

 

• Interval between 
Versions 

 

• # Class 
Diagrams 
• # Sequence 
Diagrams 
• Depth of 
Inheritance per 
Class 
• Coupling 
between Objects 
• Response for a 
Class 
• Lack of 
Cohesion in 
Methods 
• # Children per 
Class 

 

• # Class 
Diagrams 
Handled 
• # Sequence 
Diagrams 
Handled 

 

• Cohesion in 
Methods 
• Coupling 
between Classes 

 

• # Detected 
Defects 
• # Corrected 
Defects 

 

• # People 
• Allocated 
Resources 
• Spent Time 
• Average 
Productivity of 
the Team 

 

• Spent Time in 
the Diagnostic of 
Defects 
• Spent Time in 
the Removal of 
Defects 
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Table 2.15 – Interpretation of Metrics in the Code Phase by Characteristic and Law of Software Evolution 
 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 

Continuing 
Change 

 
 

¬↑ Interval 
between 
Versions 
 

 

 

Λ

¬↓ # Lines of 
Source Code 
Handled  

 

 

 

 

 

 

 

Increasing 
Complexity 

↑ # Lines of 
Source Code 

V 
↑ # Methods per 
Class  

 

 

V

↑ Depth of 
Inheritance per 
Class 

V 
↑ Coupling 
between Objects 

V 
↑ Response for a 
Class 

V 
↑ Lack of 
Cohesion in 
Methods 

V 
↑ # Children per 
Class 

V 
↑ Cyclomatic 
Complexity per 
Method 

V 

↑ # Lines of 
Source Code 
Handled 

V

↓ Cohesion in 
Methods 

V 
↑ Coupling 
between Classes 

 

 

 

 

V

↑ Spent Time in 
the Diagnostic of 
Defects 

V 
↑ Spent Time in 
the Removal of 
Defects 

Self Regulation ¬↑ # Lines of 
Source Code 

V 
¬↑ # Methods 
per Class  

 

 

 

 

 

 

 

Λ

¬↑ # Detected 
Defects  

V 
¬↑ # Corrected 
Defects 

V 
¬↓System 
Availability 

Λ

¬↓ # People 
V 

¬↓ Allocated 
Resources 

V 
¬↓ Spent Time 

V 
¬↓ Average 
Productivity of 
the Team 

 

 

Conservation of 
Organizational 
Stability 

 

 

 

 

 

 

↔ # Lines of 
Source Code 
Handled 

 

 

 

 

Λ

↔ # People 
Λ 

↔ Allocated 
Resources 

Λ 
↔ Spent Time 

Λ 
↔ Average 
Productivity of 
the Team 

 

 

Conservation of ↔ # Lines of   Λ ↔ Depth of Λ ↔ # Lines of         
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 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 
Familiarity Source Code 

V 
↔ # Methods 
per Class 

Inheritance per 
Class 

V 
↔ Coupling 
between Objects 

V 
↔ Response for 
a Class 

V 
↔ Lack of 
Cohesion in 
Methods 

V 
↔ # Children per 
Class 

V 
↔ Cyclomatic 
Complexity per 
Method 

Source Code 
Handled 

Continuing 
Growth 

↑ # Lines of 
Source Code 

V 
↑ # Methods per 
Class 

Λ 

¬↑ Interval 
between 
Versions  

 

 

 

 

 

 

 

 

 

 

 

Declining Quality  

 

 

 

↑ Depth of 
Inheritance per 
Class 

V 
↑ Coupling 
between Objects 

V 
↑ Response for a 
Class 

V 
↑ Lack of 
Cohesion in 
Methods 

V 
↑ # Children per 
Class 

V 
↑ Cyclomatic 
Complexity per 
Method 

V 

↑ # Lines of 
Source Code 
Handled 

V

↓ Cohesion in 
Methods 

V 
↑ Coupling 
between Classes 

V

↑ # Detected 
Defects 

V 
↑ # Corrected 
Defects 

V 
↓ System 
Availability 

 

 

V

↑ Spent Time in 
the Diagnostic of 
Defects 

V 
↑ Spent Time in 
the Removal of 
Defects 

Feedback System • # Lines of 
Source Code  
• # Methods per 

 
• Interval 
between 
Versions 

 
• Depth of 
Inheritance per 
Class 

 
• # Lines of 
Source Code 
Handled 

 
• Cohesion in 
Methods 
• Coupling 

 
• # Detected 
Defects 
• # Corrected 

 
• # People 
• Allocated 
Resources 

 
• Spent Time in 
the Diagnostic of 
Defects 
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 Size  Periodicity  Complexity  Effort  Modularity  Reliability  Efficiency  Maintainability 
Class • Coupling 

between Objects 
• Response for a 
Class 
• Lack of 
Cohesion in 
Methods 
• # Children per 
Class 
• Cyclomatic 
Complexity per 
Method 

between Classes Defects 
• System 
Availability 

• Spent Time 
• Average 
Productivity of 
the Team 

• Spent Time in 
the Removal of 
Defects 
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3. Final Considerations and Future Perspectives 
 

This work described a conceptual framework based on the Laws of Software 
Evolution to support the definition of experimental studies regarding object oriented 
software decay. It is intended to be applied in different object-oriented software 
development processes phases.  
 

As suggestion for future works, there follows: 
• Considering other relevant techniques, as Reuse of Software and 

Development Based on Components (LEHMAN & RAMIL, 2000), Families 
of Products (RIVA & ROSSO, 2002) and Software Architectures; 

• Modifying the development process to insert collection phases and analysis 
of the metrics; 

• Refining the set of hypotheses, goals, questions and metrics; 
• Elaborating studies to evaluate how the characteristics relate to each other, 

throughout the software development process; 
• Planning and executing experimental studies for evaluation of the proposed 

hypotheses, according to the experimentation process defined in (AMARAL 
& TRAVASSOS, 2003), using simulation techniques based on  systems 
dynamics models (BARROS et al., 2004); 

• Considering features of software rejuvenation (redocumentation, 
restructuring, reverse engineering, reengineering) (PFLEEGER, 2001); 

• Proposing and building an environment that offers tool support for software 
evolution experimental studies.   
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