
COPPE/UFRJ Keele University

RT ES-XXX/05 1

Technical Report
ES-XXX/05

Evolutive Maintenance:
Observing Object-Oriented Software Decay

Marco Antonio Pereira Araújo
Guilherme Horta Travassos

Systems Engineering and Computer Science Program
Federal University of Rio de Janeiro - Brazil

COPPE/UFRJ
http://www.cos.ufrj.br

Barbara Kitchenham
Dept Computer Science

Keele University, UK
http://www.keele.ac.uk/depts/cs/

March/2005

COPPE/UFRJ Keele University

RT ES-XXX/05 2

1. Introduction

While the maintenance refers to the activities that happen in any time after the
implementation of a new software development project, the software evolution is defined
by the exam of the systems characteristics dynamic behavior and how they change along
the time.

The Laws of Software Evolution (LSE) describe how a system behaves throughout their
successive versions (LEHMAN, 1980). Works found in the literature makes reference to
software evolution experimental studies just considering the legacy systems’ source code
(KEMERER & SLAUGHTER, 1999) (SCACHI, 2003). Besides, LEHMAN & RAMIL (2002)
have been pointing out the need for evolution studies regarding object-oriented systems
and in other software development process phases (LEHMAN & RAMIL, 2003). Due to
these characteristics, decay causes’ study throughout object-oriented development
processes becomes relevant, providing us a better understanding of how this type of
software evolves.

ARAUJO & TRAVASSOS (2004) have described the theme Software Evolution in

the context of the Experimental Software Engineering, highlighting the concepts and
characteristics involved in the area, as well as a bibliographical revision on the subject,
with emphasis in experimental studies. The Laws of Software Evolution were used as the
basis for a software evolution theory, originally proposed by LEHMAN (1980). In
agreement with SCACHI (2003), this theory represents one of the largest intellectual
contributions and challenges for the software evolution research community. KEMERER &
SLAUGHTER (1999) state that only 2% of the experimental studies focus in maintenance,
despites the fact that publications show at least 50% of the software effort is dedicated to
this phase. Among the publications found in the literature, most refers to observational
studies, usually concerned with the evolution in legacy systems’ source code, some still
regarding batch systems and, usually, in the COBOL language. The aim was to introduce
the research that has been accomplished at COPPE/UFRJ for defining a framework,
based on the Laws of Software Evolution (LEHMAN, 1980), for supporting experimental
studies and decision making processes regarding object-oriented software decay. The
purpose is the elaboration of a conceptual structure to support the definition of
experimental studies for different object-oriented software development process phases.

In this work, we have evolved the scenario previously described (ARAUJO &

TRAVASSOS, 2004), bringing the concepts concerned with the Laws of Software
Evolution to the evolutive maintenance arena. Our aim is to explore the relationships
among the LSE applying them to object-oriented software. With this, software engineers
could be able to observe, by applying such model, the possible decay causes in their OO
software projects. Besides, we believe this model can represent the first steps towards the
building of a system dynamic model, what could support in-virtuo and in-silico
experimental studies regarding evolutive maintenance and OO software decay

This technical report is divided in 2 more sections besides this introduction. The

section 2 describes an initial discussion about the application of the Laws of Software
Evolution in object-oriented software development processes, describing a framework for
evolution studies in this context. Section 3 describes the final considerations and
perspectives of future works.

COPPE/UFRJ Keele University

RT ES-XXX/05 3

2. Interpreting the Laws of Software Evolution when applied to Object-
Oriented Software Development Processes

Once the approaches found in the technical literature usually treat of software
evolution regarding legacy systems’ source code (some software still in batch and, usually,
written in the COBOL language), this work brings, as one of its intended contributions, the
hypothesis that the Laws of Software Evolution (LSE) could also be supported by the
different phases of a software development process based on the object-oriented
paradigm, instead of just to the legacy systems’ code phase. For this, without generality
loss, an adaptation of the object-oriented software development process proposed in
TRAVASSOS et al. (2001) was used, shown in the Figure 2.1.

Figure 2.1 – The considered software development process (adapted from TRAVASSOS et al. (2001))

Considering this development scenario, firstly a set of characteristics that, when
grouped, would affect OO software decay was identified, in order to provide a better
understanding than it would really affect the software evolution. Some characteristics were
adapted from ISO 9126-1 (1997) and others have been added in the sense of
contemplating characteristics not included by this standard, but relevant in the software
evolution process.

Among the extracted and adapted characteristics from ISO 9126-1, there are
Reliability, Efficiency and Maintainability. The added characteristics are Size, Periodicity,
Complexity, Effort and Modularity. These characteristics are measured through the
collection of specific metrics to each artifact version.

We characterize Size as the amount of artifacts produced in each phase of the
proposed software development process, as amount of function points for Requirements
Specification, amount of key classes for High Level Design, amount of support classes for
Low Level Design and number of source code lines for Coding.

As Periodicity we are representing the interval of time elapsed between each
produced version of that artifact.

Complexity, in the context of this work, is related only to Structural Complexity,
which is measurable, and will be named just Complexity throughout this text. Thus,
Complexity is identified through elements that can measure the structural complexity of the
artifact, as number of requirements in a requirements document, number of class
diagrams and cyclomatic complexity per method, exemplifying, respectively, artifacts of
Requirements Specification phases, High Level Design and Coding.

As Effort we considered as the amount of artifacts handled (number of inclusions,
modifications and exclusions in each artifact). Besides, in case of modifications, an artifact
modified several times is counted repeatedly as many times as the modifications are
made.

New
Requirements Requirements

Specification
High Level
Design

Low Level
Design

Coding

Project
Plan Process Tracking, Management and Quality Assurance

Object files
Executables

Artifacts,
Object Files,
Executables

System Repository

COPPE/UFRJ Keele University

RT ES-XXX/05 4

We describe Modularity through the coupling and cohesion characteristics between
artifacts as, for instance, coupling between Use Cases in Requirements Specification,
between classes in High and Low Level Design and cohesion in methods in Coding.

As Reliability we represent the amount of identified defects by artifact in each
version of it, besides system’s availability. This characteristic was based mainly on the
Maturity sub-characteristic from ISO 9126-1.

Efficiency is identified by the amount of people and allocated resources, spent time
and average productivity of the team, by version of each artifact. This characteristic was
based mainly on the Time Behavior and Resource Behavior sub-characteristics from ISO
9126-1.

Finally, Maintainability is characterized by the spent time in the identification of
defects and also for the spent time in their removal. This characteristic was mainly based
on the Changeability and Testability sub-characteristics from ISO 9126-1.

The table 2.1 summarizes the relationships among the Laws of Software Evolution
and the described characteristics.

Table 2.1 – Laws of Software Evolution x Characteristics

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
Continuing
Change

Increasing
Complexity

Self Regulation

Conservation of
Organizational
Stability

Conservation of
Familiarity

Continuing
Growth

Declining
Quality

Feedback
System

Starting from the definition of the characteristics that influence in the software

evolution, a study was made in how these characteristics would behave to result in the
software decay. These characteristics were grouped and interpreted according to the
perspective given by the LSE and OO software development phase. It aimed at capturing
each expected characteristic’s trend when evaluating software decay. We used truth
tables to capture each one of the possible combinations of characteristics’ trends. Next,
based on the combination of these trends, we marked down those ones that are applicable
to the LSE. At the end, the combination of these trends gives the hypotheses regarding the
LSE and associated characteristics’ trends. After each table, there comes the associated
study hypothesis, described through the formalism defined by CARVER (2003). The
following symbolism will be used for the tables construction:

• ↑ increasing of a specific characteristic;
• ↓ decreasing of a specific characteristic;
• ↔ a characteristic is constant, that is, doesn’t change;
• * regardless of its value;
• lack of applicability to the Law of Software Evolution;
• applicability to the Law of Software Evolution;
• Λ connective AND;
• V connective OR;
• ¬ connective NOT;
• ⇒ logical imply.

COPPE/UFRJ Keele University

RT ES-XXX/05 5

The Law of Continuing Change (Law I)

Original interpretation: “An E-type1 system must be continually adapted else it
becomes progressively less satisfactory in use” (LEHMAN & RAMIL, 2001b). The need for
change reflects a need to adapt the system as the outside world, the domain being
covered and the application and/or activity being supported or pursued, changes. Such
exogenous changes are likely to invalidate assumptions made during system definition,
development, validation, installation and application or render them unsatisfactory. The
software reflecting such assumptions must then be adapted to restore their validity
(LEHMAN & RAMIL, 2001b).

 In this work, the Law of Continuing Change (CC) is being characterized by the
number of accomplished modifications (additions, removals, modifications) over the
successive versions of the system artifacts, taking into consideration the time interval
between versions. A system is considered to be undergoing continuing change if new
versions are produced at regular time intervals, showing then modifications in functionality
and/or structure.

The table 2.2 shows the expected impact of each defined characteristic to observe
the Law of Continuing Change, describing, at the end, the logical formulation regarding the
software characteristics behavior and the Law I.

Table 2.2 – Truth Table for the Law of Continuing Change

Periodicity Effort Continuing
Change

↑ *
↔ ↑
↔ ↔
↔ ↓
↓ ↑
↓ ↔
↓ ↓

¬↑ Λ ¬↓ ⇒ CC

This way, we described the following hypothesis to observe this law:
(Periodicity doesn’t increase Λ Effort doesn’t decrease) ⇒ Continuing Change

The Law of Increasing Complexity (Law II)

Original interpretation: “As an E-type system is evolved its complexity increases
unless work is done to maintain or reduce it” (LEHMAN & RAMIL, 2001b). Increasing
complexity arises because of the injection and the super-positioning of changes to
achieve, for example, growth in functionality of satisfaction of the needs of changing
operational domains. This leads to increasing internal interconnectivity and, hence, to
deteriorating system structure, increasing disorder. Equally, it results in increasing
complexity of internal and external interfaces at all levels. These effects are amplified
because, as the system ages, changes are more likely to be orthogonal to existing system
structures (LEHMAN & RAMIL, 2001b).

1 An E-type system represents software solving a problem or addressing an application in the real word.

COPPE/UFRJ Keele University

RT ES-XXX/05 6

In this context, the Law of Increasing Complexity (IC) is being characterized by the
increase of the characteristics that mainly lead to the system’s structural complexity
deterioration, thus leading to an approach which aims at the reduction and/or impairment
of such process. This increase in complexity is observed by means of the number of
produced artifacts, structural complexity, number of modifications already done, loss of
artifacts modularity (through coupling increases or cohesion loss) as well as the system
maintainability decrease.

The table 2.3 shows the expected impact of each defined characteristic to observe
the Law of Increasing Complexity, describing, at the end, the logical formulation regarding
the software characteristics behavior and the Law II.

Table 2.3 – Truth Table for the Law of Increasing Complexity

Size Complexity Effort Modularity Maintainability Increasing
Complexity

↑ * * * *
↔ ↑ * * *
↔ ↔ ↑ * *
↔ ↔ ↔ ↑ ↑
↔ ↔ ↔ ↑ ↔
↔ ↔ ↔ ↑ ↓
↔ ↔ ↔ ↔ ↑
↔ ↔ ↔ ↔ ↔
↔ ↔ ↔ ↔ ↓
↔ ↔ ↔ ↓ *
↔ ↔ ↓ ↑ ↑
↔ ↔ ↓ ↑ ↔
↔ ↔ ↓ ↑ ↓
↔ ↔ ↓ ↔ ↑
↔ ↔ ↓ ↔ ↔
↔ ↔ ↓ ↔ ↓
↔ ↔ ↓ ↓ *
↔ ↓ ↑ * *
↔ ↓ ↔ ↑ ↑
↔ ↓ ↔ ↑ ↔
↔ ↓ ↔ ↑ ↓
↔ ↓ ↔ ↔ ↑
↔ ↓ ↔ ↔ ↔
↔ ↓ ↔ ↔ ↓
↔ ↓ ↔ ↓ *
↔ ↓ ↓ ↑ ↑
↔ ↓ ↓ ↑ ↔
↔ ↓ ↓ ↑ ↓
↔ ↓ ↓ ↔ ↑
↔ ↓ ↓ ↔ ↔
↔ ↓ ↓ ↔ ↓
↔ ↓ ↓ ↓ *
↓ ↑ * * *
↓ ↔ ↑ * *
↓ ↔ ↔ ↑ ↑
↓ ↔ ↔ ↑ ↔
↓ ↔ ↔ ↑ ↓
↓ ↔ ↔ ↔ ↑
↓ ↔ ↔ ↔ ↔
↓ ↔ ↔ ↔ ↓
↓ ↔ ↔ ↓ *
↓ ↔ ↓ ↑ ↑
↓ ↔ ↓ ↑ ↔
↓ ↔ ↓ ↑ ↓
↓ ↔ ↓ ↔ ↑
↓ ↔ ↓ ↔ ↔
↓ ↔ ↓ ↔ ↓
↓ ↔ ↓ ↓ *
↓ ↓ ↑ * *
↓ ↓ ↔ ↑ ↑

COPPE/UFRJ Keele University

RT ES-XXX/05 7

Size Complexity Effort Modularity Maintainability Increasing
Complexity

↓ ↓ ↔ ↑ ↔
↓ ↓ ↔ ↑ ↓
↓ ↓ ↔ ↔ ↑
↓ ↓ ↔ ↔ ↔
↓ ↓ ↔ ↔ ↓
↓ ↓ ↔ ↓ *
↓ ↓ ↓ ↑ ↑
↓ ↓ ↓ ↑ ↔
↓ ↓ ↓ ↑ ↓
↓ ↓ ↓ ↔ ↑
↓ ↓ ↓ ↔ ↔
↓ ↓ ↓ ↔ ↓
↓ ↓ ↓ ↓ *
↑ v ↑ v ↑ v ↓ v ↓ ⇒ IC

This way, we described the following hypothesis to observe this law:
(Size increases V Complexity increases V Effort increases V Modularity decreases
V Maintainability decreases) ⇒ Increasing Complexity

The Law of Self Regulation (Law III)

Original interpretation: “Global E-type system evolution processes are self
regulating” (LEHMAN & RAMIL, 2001b). The global process includes all activities that
influence the software process and its product, and includes not only direct technical
activity but also that of other stakeholders such as business executives, marketers, users
and their managers (LEHMAN & RAMIL, 2000).

In the context of this work, the Law of Self Regulation (SR) is being characterized

by keeping the system development under control by means of measuring the system’s
reliability, allocated resources throughout successive versions of maintenance with
increases in the system size. Reliability can be measured through the number of detected
and corrected defects for each system version as well its availability ratio. Allocated
resources can be measured based on the team’s size and productivity, allocated time and
consumed resources.

The table 2.4 shows the expected impact of each defined characteristic to study the

Law of Self Regulation, describing, at the end, the logical formulation concerned with the
software characteristics behavior and Law III.

Table 2.4 – Truth Table for the Law of Self Regulation

Size Reliability Efficiency Self Regulation
↑ * *
↔ ↑ ↑
↔ ↑ ↔
↔ ↑ ↓
↔ ↔ ↑
↔ ↔ ↔
↔ ↔ ↓
↔ ↓ *
↓ ↑ ↑
↓ ↑ ↔
↓ ↑ ↓
↓ ↔ ↑
↓ ↔ ↔
↓ ↔ ↓
↓ ↓ *

¬↑ Λ ¬↓ Λ ¬↓ ⇒ SR

COPPE/UFRJ Keele University

RT ES-XXX/05 8

This way, we described the following hypothesis to observe this law:
(Size doesn’t increase Λ Reliability doesn’t decrease Λ Efficiency doesn’t decrease)
⇒ Self Regulation

The Law of Conservation of Organizational Stability (Law IV)

Original interpretation: “Average activity rate in an E-type process tends to remain
constant over system lifetime or segments of that lifetime” (LEHMAN & RAMIL, 2001b).
The activity rate (e. g., elements changed, handled or handlings per release or unit of time
tends to remain constant over periods or segments of system lifetime (LEHMAN & RAMIL,
2001b)

In this work, the Law of Conservation of Organizational Stability (COS) is being

characterized by the stagnation of the number of elements changed and allocated
resources, showing that the added functionality, or the increase of allocated resources,
don’t significantly change it. It can be checked by means of the number of changes’
constancy and resources allocated to it.

The table 2.5 shows the expected impact of each one of the software characteristics

to observe the Law of Conservation of Organizational Stability, describing, at the end, the
logical formulation regarding software characteristics behavior and Law IV.

Table 2.5 – Truth Table for the Law of Conservation of Organizational Stability

Effort Efficiency Conservation of
Organizational Stability

↑ *
↔ ↑
↔ ↔
↔ ↓
↓ *

↔ Λ ↔ ⇒ COS

This way, we described the following hypothesis to observe this law:
(Effort doesn’t change Λ Efficiency doesn’t change) ⇒ Conservation of
Organizational Stability

The Law of Conservation of Familiarity (Law V)

Original interpretation: “In general, the average incremental growth (growth rate
trend) of E-type systems tends to decline” (LEHMAN & RAMIL, 2001b). Give the growing
complexity of the system, its workings and its functionality, achieving renewed familiarity
after numerous changes, additions and removals, restoration of pre-change familiarity after
change becomes increasingly difficult. This reasoning suggests that the rate of change
and growth of the system be slowed down as it ages (LEHMAN & RAMIL, 2001b).

 In this work, the Law of Conservation of Familiarity (CF) is being characterized by
the point from which all the modifications added into the system’s versions show little
difference in general functionality. It can be observed by the constancy in system size, its
complexity and number of manipulations (additions, removals, modifications) on the
artifacts of the system.

COPPE/UFRJ Keele University

RT ES-XXX/05 9

The table 2.6 shows the expected impact of each defined software characteristic to
observe the Law of Conservation of Familiarity, describing, at the end, the logical
formulation concerned with the characteristics behavior and Law V.

Table 2.6 – Truth Table for the Law of Conservation of Familiarity

Size Complexity Effort Conservation
of Familiarity

↑ * *
↔ ↑ *
↔ ↔ ↑
↔ ↔ ↔
↔ ↔ ↓
↔ ↓ *
↓ * *

↔ Λ ↔ Λ ↔ ⇒ CF

This way, we described the following hypothesis to observe this law:
(Size doesn’t change Λ Complexity doesn’t change Λ Effort doesn’t change) ⇒
Conservation of Familiarity

The Law of Continuing Growth (Law VI)

Original interpretation: “The functional capability of E-type systems must be
continually increased to maintain user satisfaction over the system lifetime” (LEHMAN &
RAMIL, 2001b). This law is more related to the fact that finiteness of the implemented
software implies that its properties are bounded relative to those of the application and its
domain. Properties excluded by the bounds eventually become a source of performance
limitations, irritation and error. To eliminate the latter requires extension of the system
(LEHMAN & RAMIL, 2000).

In this context, the Law of Continuing Growth (CG) is being characterized by the

continuing increase of functionality offered by the system. It’s noticeable by the quantity of
existing artifacts for each new version that should be released at regular intervals.

The table 2.7 shows the expected impact of each defined characteristic to observe
the Law of Continuing Growth, describing, at the end, the logical formulation regarding the
characteristics behavior and Law VI.

Table 2.7 – Truth Table for the Law of Continuing Growth
Size Periodicity Continuing

Growth
↑ ↑
↑ ↔
↑ ↓
↔ *
↓ *

↑ Λ ¬↑ ⇒ CG

This way, we described the following hypothesis to observe this law:
(Size increases Λ Periodicity doesn’t increase) ⇒ Continuing Growth

The Law of Declining Quality (Law VII)

Original interpretation: “Unless rigorously adapted to take into account changes in
the operational environment, the quality of an E-type systems will appear to decline as it is

COPPE/UFRJ Keele University

RT ES-XXX/05 10

evolved” (LEHMAN & RAMIL, 2001b). Assuming quality to be related to the extend which
system behavior address the needs of an application and its domain, the law derives from
the observation that user needs inevitably change with time (LEHMAN & RAMIL, 2000).

In the context of this work, the Law of Declining Quality (DQ) expresses the loss of

quality of a given system, leading to improvements in order to avoid decay. It can be
measured through the increase in structural complexity, increase in the number of
manipulations (additions, removals, modifications) over the artifacts, modularity loss,
maintainability and reliability decrease.

The table 2.8 shows the expected impact of each defined characteristic to observe

the Law of Declining Quality, describing, at the end, the logical formulation concerned with
the software characteristics behavior and Law VII.

Table 2.8 – Truth Table for the Law of Declining Quality

Complexity Effort Modularity Reliability Maintainability Declining Quality
↑ * * * *
↔ ↑ * * *
↔ ↔ ↑ ↑ ↑
↔ ↔ ↑ ↑ ↔
↔ ↔ ↑ ↑ ↓
↔ ↔ ↑ ↔ ↑
↔ ↔ ↑ ↔ ↔
↔ ↔ ↑ ↔ ↓
↔ ↔ ↑ ↓ *
↔ ↔ ↔ ↑ ↑
↔ ↔ ↔ ↑ ↔
↔ ↔ ↔ ↑ ↓
↔ ↔ ↔ ↔ ↑
↔ ↔ ↔ ↔ ↔
↔ ↔ ↔ ↔ ↓
↔ ↔ ↔ ↓ *
↔ ↔ ↓ * *
↔ ↓ ↑ ↑ ↑
↔ ↓ ↑ ↑ ↔
↔ ↓ ↑ ↑ ↓
↔ ↓ ↑ ↔ ↑
↔ ↓ ↑ ↔ ↔
↔ ↓ ↑ ↔ ↓
↔ ↓ ↑ ↓ *
↔ ↓ ↔ ↑ ↑
↔ ↓ ↔ ↑ ↔
↔ ↓ ↔ ↑ ↓
↔ ↓ ↔ ↔ ↑
↔ ↓ ↔ ↔ ↔
↔ ↓ ↔ ↔ ↓
↔ ↓ ↔ ↓ *
↔ ↓ ↓ * *
↓ ↑ * * *
↓ ↔ ↑ ↑ ↑
↓ ↔ ↑ ↑ ↔
↓ ↔ ↑ ↑ ↓
↓ ↔ ↑ ↔ ↑
↓ ↔ ↑ ↔ ↔
↓ ↔ ↑ ↔ ↓
↓ ↔ ↑ ↓ *
↓ ↔ ↔ ↑ ↑
↓ ↔ ↔ ↑ ↔
↓ ↔ ↔ ↑ ↓
↓ ↔ ↔ ↔ ↑
↓ ↔ ↔ ↔ ↔
↓ ↔ ↔ ↔ ↓
↓ ↔ ↔ ↓ *
↓ ↔ ↓ * *

COPPE/UFRJ Keele University

RT ES-XXX/05 11

Complexity Effort Modularity Reliability Maintainability Declining Quality
↓ ↓ ↑ ↑ ↑
↓ ↓ ↑ ↑ ↔
↓ ↓ ↑ ↑ ↓
↓ ↓ ↑ ↔ ↑
↓ ↓ ↑ ↔ ↔
↓ ↓ ↑ ↔ ↓
↓ ↓ ↑ ↓ *
↓ ↓ ↔ ↑ ↑
↓ ↓ ↔ ↑ ↔
↓ ↓ ↔ ↑ ↓
↓ ↓ ↔ ↔ ↑
↓ ↓ ↔ ↔ ↔
↓ ↓ ↔ ↔ ↓
↓ ↓ ↔ ↓ *
↓ ↓ ↓ * *
↑ v ↑ v ↓ v ↓ v ↓ ⇒ DQ

This way, we described the following hypothesis to observe of this law:
(Complexity increases V Effort increases V Modularity decreases V Reliability
decreases V Maintainability decreases) ⇒ Declining Quality

The Law of Feedback System (Law VIII)

Original interpretation: “E-type evolution processes are multi-level, multi-loop, multi-
agent feedback systems” (LEHMAN & RAMIL, 2001b). The behavior of complex feedback
systems is not and cannot, in general, be described directly in terms of the local behavior
of its forward path activities and mechanisms. Feedback will constrain the ways that the
process constituents interact with one another and will modify their individual, local, and
collective, global, behavior (LEHMAN & RAMIL, 2001b).

In this work, the Law of Feedback System (FS) is characterized by the collecting

and analyzing of all prior LSE, given us information not only on the understanding of the
evolution process itself but also on the decision-making process regarding the application
of corrective and preventive means related to system decay. We interpreted this law as a
result of the analyses of the previous laws and, therefore, it doesn't describe a specific true
table for its logical definition.

This way, we described the following hypothesis to observe this law:
(Collection of relative measures to Size, Periodicity, Complexity, Modularity, Effort,
Reliability, Efficiency, Maintainability) ⇒ Feedback System

The Hypotheses for the Laws of Software Evolution

Using these truth tables, it was possible to describe a set of hypotheses, each one
associated to a specific LSE. The table 2.9 summarizes these hypotheses.

Table 2.9 – The Hypotheses for the Laws of Software Evolution
Hypotheses

(Periodicity doesn’t increase Λ Effort doesn’t decrease) ⇒ Continuing Change
(Size increases V Complexity increases V Effort increases V Modularity decreases V Maintainability
decreases) ⇒ Increasing Complexity
(Size doesn’t increase Λ Reliability doesn’t decrease Λ Efficiency doesn’t decrease) ⇒ Self Regulation
(Effort doesn’t change Λ Efficiency doesn’t change) ⇒ Conservation of Organizational Stability
(Size doesn’t change Λ Complexity doesn’t change Λ Effort doesn’t change) ⇒ Conservation of Familiarity

COPPE/UFRJ Keele University

RT ES-XXX/05 12

(Size increases Λ Periodicity doesn’t increase) ⇒ Continuing Growth
(Complexity increases V Effort increases V Modularity decreases V Reliability decreases V Maintainability
decreases) ⇒ Declining Quality
(Collection of relative measures to Size, Periodicity, Complexity, Effort, Modularity, Reliability, Efficiency,
Maintainability) ⇒ Feedback System

Linkages among the Laws of Software Evolution

Kitchenham (1982) and Lehman & Ramil (2001b) show that the Laws of Software
Evolution are not independent. Thus, the presented hypotheses were discussed in order to
identify the linkages among the Laws of Software Evolution (figure 2.2). This discussion is
particularly relevant because this work is concerned with identifying software decay
process and not to study the individual behavior of the Laws of Software Evolution.

Figure 2.2 – Linkages among the Laws of Software Evolution

However, it’s important to describe how the Laws of Software Evolution influence

each other. Thus, figure 2.4 shows these linkages by using the SADT (Structured Analysis
and Design Technique) diagram (ROSS, 1977), considering the presented hypotheses
logical formulation. The structure of a SADT diagram is represented by figure 2.3, where
Input are the received data by means of an activity, Output are the generated or
transformed data by an activity, Control are data whose utilization influence on the
input/output transformation process and Mechanism is the processor that undertakes or
processes the activity.

I
Continuing Change

II
Increasing

Complexity

III
Self Regulation IV

Conservation of
Organizational

Stability

V
Conservation of

Familiarity

VI
Continuing Growth

VII
Declining Quality

VIII
Feedback System

influences

feedback

COPPE/UFRJ Keele University

RT ES-XXX/05 13

Figure 2.3 – Representation of a SADT diagram

The established hypotheses are in our view the definition bases of the Laws of

Software Evolution causes. For example, the Law of Conservation of Familiarity (Law V)
has as input the system’s current version. For this Law, the controls are represented by
the system’s baseline and the software characteristics represented by Size, Complexity
and Effort. Also as controls, we have the status of Laws II and III that indicate the
possibility of these Laws be influencing over the current Law (Law V). This fact indicates
that Laws II and III have straight influence in Law V; that is, if the presented hypotheses
are true, we should also verify their impact in the laws that could be directly affected, such
as the Law of Conservation of Familiarity in this example. The mechanism is represented
by the logical formulation for this Law, as described in table 2.9. The output is the status of
Law V, in addition to the fact that this Law may influence the Law of Declining Quality (Law
VII) and Law of Feedback System (Law VIII).

However, we can’t claim that a specific Law of Software Evolution, which its

associated logical proposition is true, results in software decay. This is particularly relevant
when considering anti-regressive work (LEHMAN & RAMIL, 2001) (PFLEEGER, 2001) in
relation to decay, like redocumentation, restructuring and reverse engineering. Thus, Table
2.10 shows a discussion of each Law of Software Evolution regarding its neutral feature
and its positive and negative implications. It’s relevant to remark that the neutral feature
reveals an inherent characteristic towards the Law of Software Evolution itself. The
positive implication reveals situations where the Law might result in an opposite condition
to the software decay, like the use of anti-regressive work, for example. The negative
implication is the one that results in decay and describes the interests in this work. Thus,
we start to interpret the presented hypotheses through the negative implication for each
Law of Software Evolution.

Activity

Input Output

Control

Mechanism

COPPE/UFRJ Keele University

RT ES-XXX/05 14

Law I

Law II

Law III

Law IV

Law V

Law VI

Law VII

Law VIII

Effort doesn´t decrease AND
Periodicity doesn´t increase

Effort
Periodicity

Size
Complexity

Effort
Modularity

Maintainability

Size increases OR
Complexity increases OR

Effort increases OR
Modularity decreases OR
Maintainability decreases

Size
Efficiency

Size doesn't change AND
Efficiency doesn't change

Size doesn't change AND
Complexity doesn't change
AND Effort doesn't change

Size
Complexity

Effort

Size
Periodicity

Size increases AND
Periodicity doesn´t increase

Size
Periodicity
Complexity

Effort
Modularity
Reliability
Efficiency

Maintainability

Collection of relative measures to Size,
Periodicity, Complexity, Effort, Modularity,

Reliability, Efficiency, Maintainability

Complexity
Effort

Modularity
Reliability

Maintainability

Complexity increases OR
Effort increases OR

Modularity decreases OR
Reliability decreases OR
Maintainability decreases

Size
Reliability
Efficiency

Size doesn´t increase AND
Reliability doesn´t decrease AND

Efficiency doesn´t decrease

Continuing Change

Conservation of
Organizational Stability

Self Regulation

Declining Quality

Conservation of Familiarity

Increasing Complexity

Continuing Growth

Feedback System

System

System

System

System

System

System

System

System

Status Law I

Status Law II

Status Law III

Status Law IV

Status Law V

Status Law VI

Status Law VII

Status Law VIII

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

System's
Baseline

Figure 2.4 – Linkages among the Laws of Software Evolution by using a SADT Diagram

COPPE/UFRJ Keele University

RT ES-XXX/05 15

Table 2.10 – Neutral Feature, Positive and Negative Implications for the Laws of Software Evolution

Law I – Continuing Change: An E-type system must be continually adapted else it becomes progressively
less satisfactory in use
Neutral: A product in use will be subject to continuous change
Positive Implication: If the change is well performed, the product will remain useful reflecting the changes
in the environment and in the users’ expectations
Negative Implication: If the change is badly performed or the product is not modified, the product will
become progressively less useful
Law II – Increasing Complexity: As an E-type system is evolved its complexity increases unless work is
done to maintain or reduce it
Neutral: A modified product will become more complex
Positive Implication: Increasing in complexity might be necessary to reflect modifications in the product
environment and the increasing of users’ needs
Negative Implications: Increasing in complexity might turn the product more difficult to maintain and use
Law III – Self Regulation: Global E-type system evolution processes are self-regulating
Neutral: Systems have self regulation mechanisms
Positive Implication: Self regulation allows the management of the evolution systems’ process, resulting in
a balance that might be explored for its good management
Negative Implication: Self regulation is not considered nor used in the systems’ development
management, turning into barriers for a good management
Law IV – Conservation of Organisational Stability: Average activity rate in an E-type process tends to
remain constant over system lifetime or segments of that lifetime
Neutral: Systems have global activities rates along their lifetime
Positive Implication: The global activities rates tend to remain constant over system lifetime, indicating
possible maturation and stability in the system’s development
Negative Implication: The global activity rates over lifetime vary significantly, indicating an instability in the
system’s development. Negative variations indicate the possibility of discontinuing product, while positive
ones indicate the possibility of excessive effort for changes
Law V – Conservation of Familiarity: In general, the average incremental growth (growth rate trend) of E-
type systems tends to decline
Neutral: Growth rate trend of systems can be measured
Positive Implication: Average incremental growth rates tend to decline, indicating stability in the system’s
development
Negative Implication: Average incremental growth rates tend to increase or remain constant evidencing
the possibility of excessive effort between system’s evolution cycles, indicating instability in the system’s
development
Law VI – Continuing Growth: The functional capability of E-type systems must be continually increased to
maintain user satisfaction over the system lifetime
Neutral: Systems in use are subject to continuing growth
Positive Implication: The increment of new functionality can keep the system utility, remaining useful
related to changes in the environment and the user’s expectations
Negative Implication: The lack of new functionality increment may turn the system progressively less
useful according to the user’s needs
Law VII – Declining Quality: Unless rigorously adapted to take into account changes in the operational
environment, the quality of an E-type system will appear to decline as it is evolved
Neutral: A system in evolution are subject to quality decay
Positive Implication: Might result in anti-regressive work, like redocumentation, restructuring,
reengineering, reverse engineering and elimination of useless artifacts
Negative Implication: Declining in quality may turn the system more difficult to understand and change
Law VIII – Feedback System: E-type evolution processes are multi-level, multi-loop, multi-agent feedback
systems
Neutral: Systems in evolution have feedback mechanisms
Positive Implication: The feedback system is used to reach relevant enhancement
Negative Implication: The feedback system is not considered nor used in order to reach relevant
enhancement

COPPE/UFRJ Keele University

RT ES-XXX/05 16

Based on these studies, we believe that these linkages are applicable not only
inside each phase of the software development process, like Requirements Specifications,
High and Low Level Design and Coding, but also through these phases in a software
development process (figure 2.5). Therefore, we propose a hypothesis based on the fact
that the software characteristics previously defined, which logically determines the Laws of
Software Evolution behavior, should be investigated throughout the software development
phases, considering the linkages among the Laws of Software Evolution, in order to
identify the software decay causes. For example, an Increasing of Complexity in
Requirements Specification should be investigated in High Level Project and thus,
successively, in the next phases. This thought should also be valid for the other Laws of
Software Evolution. This hypothesis needs some experimental investigation, which will be
an object of study in this research’s scope.

Figure 2.5 - Linkages among the Laws of Software Evolution through Software Development Phases

COPPE/UFRJ Keele University

RT ES-XXX/05 17

Besides, we believe that each version produced in this software evolution process

influences next software versions decay. Regarding the fact that we are talking about
evolutive maintenance, we established that a group of new requirements is associated to
each new artifact version and, from them on, we should map the linkages among the Laws
of Software Evolution not only among the development phases of one version (figure 2.5),
but also capturing the impact of these modifications for the next software versions (figure
2.6). Thus, our start study point should be always concerned with the Requirements
Specification phase, which is mapped in the next phases inside the referred maintenance
cycle and, next, between the versions of that artifact. Needless to say that, despite the fact
that the Requirements Specification is always the start point of any software project, it is
possible to map the linkages among the development phases up to the abstraction level
desired for the studies, that is, we could study the evolution process just up to High Level
Project phase, for example. This brings out the discussion of software evolution for higher
abstraction levels rather than mainly considering just the Coding phase. These hypotheses
also need experimental investigation and also must be object of future studies in the
context of this research.

Figure 2.6 – Linkages among the Laws of Software Evolution trough different versions

produced throughout the software development process

COPPE/UFRJ Keele University

RT ES-XXX/05 18

Mapping the hypotheses to the object-oriented software metrics

Starting from this set of hypotheses and, considering the software development
process using the object-oriented paradigm previously proposed, we defined a set of
metrics that would be applicable to each development process phase.

This set of metrics defines a parameter based framework, allowing flexibility to
collect their values and to study the software decay inside one of the development process
phases. This approach turns the study of the software evolution softer, once it can be
adapted regarding the development process used, just collecting those metrics that could
be extracted from the process in use. This flexibility will be more evident when associating
the identified hypotheses with the used process phases and the defined metrics. This
mapping will be done later in this work and it will indicate the relationship between the
metrics and its optional use.

The metrics that give support to each one of the characteristics described

previously in the different development process phases were based, generically, in the
works of PFLEEGER (2001) and PRESSMAN (2001). More specific metrics related to the
context of the object-oriented paradigm were based on CHIDAMBER & KEMERER (1994),
LORENZ & KIDD (1994), TRAVASSOS et al. (2001) and TRAVASSOS (2003).

The set of metrics associated to each characteristic in each development process

phase is represented in the table 2.11.

COPPE/UFRJ Keele University

RT ES-XXX/05 19

Table 2.11 - Metrics associated by Characteristic in each phase of the Process
 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability

Requirements
Specification

• # Function Points
• # Use Case Points

• Interval
between
Versions

• # Requirements
• # Use Cases

• # Requirements Handled
• # Use Cases Handled

• Coupling between
Use Cases (#
Extensions and
Uses)

• # Detected
Defects
• # Corrected
Defects

• # People
• Allocated Resources
• Spent Time
• Average Productivity of
the Team

• Spent Time in the
Diagnostic of Defects
• Spent Time in the
Removal of Defects

High Level
Design

• # Classes
• # Methods per Class

• Interval
between
Versions

• # Class Diagrams
• # Sequence Diagrams
• # State Diagrams
• # Package Diagrams
• # Activity Diagrams
• Depth of Inheritance per
Class
• # Children per Class

• # Class Diagrams Handled
• # Sequence Diagrams
Handled
• # State Diagrams Handled
• # Package Diagrams
Handled
• # Activity Diagrams
Handled

• Coupling between
Classes

• # Detected
Defects
• # Corrected
Defects

• # People
• Allocated Resources
• Spent Time
• Average Productivity of
the Team

• Spent Time in the
Diagnostic of Defects
• Spent Time in the
Removal of Defects

Low Level
Design

• # Key Classes
• # Support Classes
• # Methods per Class
• # Subsystems

• Interval
between
Versions

• # Class Diagrams
• # Sequence Diagrams
• Depth of Inheritance per
Class
• Coupling between
Objects
• Response for a Class
• Lack of Cohesion in
Methods
• # Children per Class

• # Class Diagrams Handled
• # Sequence Diagrams
Handled

• Cohesion in
Methods
• Coupling between
Classes

• # Detected
Defects
• # Corrected
Defects

• # People
• Allocated Resources
• Spent Time
• Average Productivity of
the Team

• Spent Time in the
Diagnostic of Defects
• Spent Time in the
Removal of Defects

Coding • # Lines of Source
Code
• # Methods per Class

• Interval
between
Versions

• Depth of Inheritance per
Class
• Coupling between
Objects
• Response for a Class
• Lack of Cohesion in
Methods
• # Children per Class
• Cyclomatic Complexity
per Method

• # Lines of Source Code
Handled

• Cohesion in
Methods
• Coupling between
Classes

• # Detected
Defects
• # Corrected
Defects
• System
Availability

• # People
• Allocated Resources
• Spent Time
• Average Productivity of
the Team

• Spent Time in the
Diagnostic of Defects
• Spent Time in the
Removal of Defects

COPPE/UFRJ Keele University

RT ES-XXX/05 20

Based on this set of metrics, a study could be made in order to verify the
trend of these metrics for the hypotheses previously described.

For each software development process phase, a table was elaborated
relating the metrics identified in the table 2.11 through the interpretation of the
described hypotheses, in other words, relating metrics with the Laws of Software
Evolution, Characteristics and Relationships between the Characteristics, for each
phase of the process. In this context, the table 2.12 shows the interpretation of the
metrics in Requirements Specification phase by Characteristic and Law of
Software Evolution, while the tables 2.13, 2.14 and 2.15 describe the
interpretations of the metrics for the High Level Design, Low Level Design and
Code phases, respectively.

These tables show, among the columns that identify the Characteristics,
logical connectives that map the hypotheses. Inside of each cell of the tables, the
metrics are described, with their respective interpretations related with the
hypotheses. Logical connectives among these metrics indicate the obligation or not
of the collection. The logical connective V (OR) between the metrics indicates that
they are optional measures to be collected, where any of them would be enough to
analyze that characteristic for the Law of Software Evolution. This turns the
framework more flexible, explaining the fact that not all the metrics need to be
collected, turning it adaptable to the software development process that is being
used.

This metrics set includes process and product metrics that should be
collected for each produced OO software artifact version throughout the software
life cycle. This will allow the definition of a baseline in order to study how the
characteristics influence on OO software decay.

COPPE/UFRJ Keele University

RT ES-XXX/05 21

Table 2.12 – Interpretation of Metrics in the Requirements Specification Phase by Characteristic and Law of Software Evolution

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
Continuing
Change

¬↑ Interval
between Versions

Λ

¬↓ #
Requirements
Handled

V
¬↓ # Use Cases
Handled

Increasing
Complexity

↑ # Function
Points

V
↑ # Use Case
Points

V

↑ # Requirements
V

↑ # Use Cases
V

↑ # Requirements
Handled

V
↑ # Use Cases
Handled

V

↑ Coupling
between Use
Cases (#
Extensions and
Uses)

V

↑ Spent Time in
the Diagnostic of
Defects

V
↑ Spent Time in
the Removal of
Defects

Self Regulation ¬↑ # Function
Points

V
¬↑ # Use Case
Points

Λ

¬↑ # Detected
Defects

V
¬↑ # Corrected
Defects Λ

¬↓ # People
V

¬↓ Allocated
Resources

V
¬↓ Spent Time

V
¬↓ Average
Productivity of the
Team

Conservation of
Organizational
Stability

↔ #
Requirements
Handled

V
↔ # Use Cases
Handled

Λ

↔ # People
Λ

↔ Allocated
Resources

Λ
↔ Spent Time

Λ
↔ Average
Productivity of the
Team

Conservation of
Familiarity

↔ # Function
Points

V
↔ # Use Case
Points

Λ

↔ #
Requirements

V
↔ # Use Cases Λ

↔ #
Requirements
Handled

V
↔ # Use Cases
Handled

Continuing
Growth

↑ # Function
Points

V
↑ # Use Case
Points

Λ

¬↑ Interval
between Versions

Declining Quality ↑ # Requirements V ↑ # Requirements V ↑ Coupling V ↑ # Detected V ↑ Spent Time in

COPPE/UFRJ Keele University

RT ES-XXX/05 22

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
V

↑ # Use Cases
Handled

V
↑ # Use Cases
Handled

between Use
Cases (#
Extensions and
Uses)

Defects
V

↑ # Corrected
Defects

the Diagnostic of
Defects

V
↑ Spent Time in
the Removal of
Defects

Feedback System • # Function
Points
• # Use Case
Points

• Interval between
Versions

• # Requirements
• # Use Cases

• # Requirements
Handled
• # Use Cases
Handled

• Coupling
between Use
Cases (#
Extensions and
Uses)

• # Detected
Defects
• # Corrected
Defects

• # People
• Allocated
Resources
• Spent Time
• Average
Productivity of the
Team

• Spent Time in
the Diagnostic of
Defects
• Spent Time in
the Removal of
Defects

COPPE/UFRJ Keele University

RT ES-XXX/05 23

Table 2.13 – Interpretation of Metrics in the High Level Design Phase by Characteristic and Law of Software Evolution
 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability

Continuing
Change

¬↑ Interval
between Versions

Λ

¬↓ # Class
Diagrams
Handled

V
¬↓ # Sequence
Diagrams
Handled

V
¬↓ # State
Diagrams
Handled

V
¬↓ # Package
Diagrams
Handled

V
¬↓ # Activity
Diagrams
Handled

Increasing
Complexity

↑ # Classes
V

↑ # Methods per
Class

V

↑ # Class
Diagrams

V
↑ # Sequence
Diagrams

V
↑ # State
Diagrams

V
↑ # Package
Diagrams

V
↑ # Activity
Diagrams

V
↑ Depth of
Inheritance per
Class

V
↑ # Children per
Class

V

↑ # Class
Diagrams
Handled

V
↑ # Sequence
Diagrams
Handled

V
↑ # State
Diagrams
Handled

V
↑ # Package
Diagrams
Handled

V
↑ # Activity
Diagrams
Handled

V

↑ Coupling
between Classes

V

↑ Spent Time in
the Diagnostic of
Defects

V
↑ Spent Time in
the Removal of
Defects

Self Regulation ¬↑ # Classes
V

¬↑ # Methods per
Class

Λ

¬↑ # Detected
Defects

V
¬↑ # Corrected
Defects

Λ

¬↓ # People
V

¬↓ Allocated
Resources

V
¬↓ Spent Time

COPPE/UFRJ Keele University

RT ES-XXX/05 24

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
V

¬↓ Average
Productivity of
the Team

Conservation of
Organizational
Stability

↔ # Class
Diagrams
Handled

V
↔ # Sequence
Diagrams
Handled

V
↔ # State
Diagrams
Handled

V
↔ # Package
Diagrams
Handled

V
↔ # Activity
Diagrams
Handled

Λ

↔ # People
Λ

↔ Allocated
Resources

Λ
↔ Spent Time

Λ
↔ Average
Productivity of
the Team

Conservation of
Familiarity

↔ # Classes
V

↔ # Methods per
Class

Λ

↔ # Class
Diagrams

V
↔ # Sequence
Diagrams

V
↔ # State
Diagrams

V
↔ # Package
Diagrams

V
↔ # Activity
Diagrams

V
↔ Depth of
Inheritance per
Class

V
↔ # Children per
Class

Λ

↔ # Class
Diagrams
Handled

V
↔ # Sequence
Diagrams
Handled

V
↔ # State
Diagrams
Handled

V
↔ # Package
Diagrams
Handled

V
↔ # Activity
Diagrams
Handled

Continuing
Growth

↑ # Classes
V

↑ # Methods per
Λ

¬↑ Interval
between Versions

COPPE/UFRJ Keele University

RT ES-XXX/05 25

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
Class

Declining Quality

↑ # Class
Diagrams

V
↑ # Sequence
Diagrams

V
↑ # State
Diagrams

V
↑ # Package
Diagrams

V
↑ # Activity
Diagrams

V
↑ Depth of
Inheritance per
Class

V
↑ # Children per
Class

V

↑ # Class
Diagrams
Handled

V
↑ # Sequence
Diagrams
Handled

V
↑ # State
Diagrams
Handled

V
↑ # Package
Diagrams
Handled

V
↑ # Activity
Diagrams
Handled

V

↑ Coupling
between Classes

V

↑ # Detected
Defects

V
↑ # Corrected
Defects

V

↑ Spent Time in
the Diagnostic of
Defects

V
↑ Spent Time in
the Removal of
Defects

Feedback System • # Classes
• # Methods per
Class

• Interval between
Versions

• # Class
Diagrams
• # Sequence
Diagrams
• # State Diagrams
• # Package
Diagrams
• # Activity
Diagrams
• Depth of
Inheritance per
Class
• # Children per
Class

• # Class
Diagrams
Handled
• # Sequence
Diagrams
Handled
• # State Diagrams
Handled
• # Package
Diagrams
Handled
• # Activity
Diagrams
Handled

• Coupling
between Classes

• # Detected
Defects
• # Corrected
Defects

• # People
• Allocated
Resources
• Spent Time
• Average
Productivity of
the Team

• Spent Time in
the Diagnostic of
Defects
• Spent Time in
the Removal of
Defects

COPPE/UFRJ Keele University

RT ES-XXX/05 26

Table 2.14 – Interpretation of Metrics in the Low Level Design Phase by Characteristic and Law of Software Evolution
 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability

Continuing
Change

¬↑ Interval
between Versions

Λ

¬↓ # Class
Diagrams
Handled

V
¬↓ # Sequence
Diagrams
Handled

Increasing
Complexity

↑ # Key Classes
V

↑ # Support
Classes

V
↑ # Methods per
Class

V
↑ # Subsystems

V

↑ # Class
Diagrams

V
↑ # Sequence
Diagrams

V
↑ Depth of
Inheritance per
Class

V
↑ Coupling
between Objects

V
↑ Response for a
Class

V
↑ Lack of
Cohesion in
Methods

V
↑ # Children per
Class

V

↑ # Class
Diagrams
Handled

V
↑ # Sequence
Diagrams
Handled

V

↓ Cohesion in
Methods

V
↑ Coupling
between Classes

V

↑ Spent Time in
the Diagnostic of
Defects

V
↑ Spent Time in
the Removal of
Defects

Self Regulation ¬↑ # Key Classes
V

¬↑ # Support
Classes

V
¬↑ # Methods per
Class

V
¬↑ # Subsystems

Λ

¬↑ # Detected
Defects

V
¬↑ # Corrected
Defects Λ

¬↓ # People
V

¬↓ Allocated
Resources

V
¬↓ Spent Time

V
¬↓ Average
Productivity of
the Team

Conservation of
Organizational
Stability

↔ # Class
Diagrams
Handled

V
↔ # Sequence
Diagrams

Λ

↔ # People
Λ

↔ Allocated
Resources

Λ
↔ Spent Time

COPPE/UFRJ Keele University

RT ES-XXX/05 27

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
Handled Λ

↔ Average
Productivity of
the Team

Conservation of
Familiarity

↔ # Key Classes
V

↔ # Support
Classes

V
↔ # Methods per
Class

V
↔ # Subsystems

Λ

↔ # Class
Diagrams

V
↔ # Sequence
Diagrams

V
↔ Depth of
Inheritance per
Class

V
↔ Coupling
between Objects

V
↔ Response for a
Class

V
↔ Lack of
Cohesion in
Methods

V
↔ # Children per
Class

Λ

↔ # Class
Diagrams
Handled

V
↔ # Sequence
Diagrams
Handled

Continuing
Growth

↑ # Key Classes
V

↑ # Support
Classes

V
↑ # Methods per
Class

V
↑ # Subsystems

Λ

¬↑ Interval
between Versions

Declining Quality

↑ # Class
Diagrams

V
↑ # Sequence
Diagrams

V
↑ Depth of
Inheritance per
Class

V
↑ Coupling
between Objects

V

↑ # Class
Diagrams
Handled

V
↑ # Sequence
Diagrams
Handled

V

↓ Cohesion in
Methods

V
↑ Coupling
between Classes

V

↑ # Detected
Defects

V
↑ # Corrected
Defects

V

↑ Spent Time in
the Diagnostic of
Defects

V
↑ Spent Time in
the Removal of
Defects

COPPE/UFRJ Keele University

RT ES-XXX/05 28

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
V

↑ Response for a
Class

V
↑ Lack of
Cohesion in
Methods

V
↑ # Children per
Class

Feedback System • # Key Classes
• # Support
Classes
• # Methods per
Class
• # Subsystems

• Interval between
Versions

• # Class
Diagrams
• # Sequence
Diagrams
• Depth of
Inheritance per
Class
• Coupling
between Objects
• Response for a
Class
• Lack of
Cohesion in
Methods
• # Children per
Class

• # Class
Diagrams
Handled
• # Sequence
Diagrams
Handled

• Cohesion in
Methods
• Coupling
between Classes

• # Detected
Defects
• # Corrected
Defects

• # People
• Allocated
Resources
• Spent Time
• Average
Productivity of
the Team

• Spent Time in
the Diagnostic of
Defects
• Spent Time in
the Removal of
Defects

COPPE/UFRJ Keele University

RT ES-XXX/05 29

Table 2.15 – Interpretation of Metrics in the Code Phase by Characteristic and Law of Software Evolution
 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability

Continuing
Change

¬↑ Interval
between
Versions

Λ

¬↓ # Lines of
Source Code
Handled

Increasing
Complexity

↑ # Lines of
Source Code

V
↑ # Methods per
Class

V

↑ Depth of
Inheritance per
Class

V
↑ Coupling
between Objects

V
↑ Response for a
Class

V
↑ Lack of
Cohesion in
Methods

V
↑ # Children per
Class

V
↑ Cyclomatic
Complexity per
Method

V

↑ # Lines of
Source Code
Handled

V

↓ Cohesion in
Methods

V
↑ Coupling
between Classes

V

↑ Spent Time in
the Diagnostic of
Defects

V
↑ Spent Time in
the Removal of
Defects

Self Regulation ¬↑ # Lines of
Source Code

V
¬↑ # Methods
per Class

Λ

¬↑ # Detected
Defects

V
¬↑ # Corrected
Defects

V
¬↓System
Availability

Λ

¬↓ # People
V

¬↓ Allocated
Resources

V
¬↓ Spent Time

V
¬↓ Average
Productivity of
the Team

Conservation of
Organizational
Stability

↔ # Lines of
Source Code
Handled

Λ

↔ # People
Λ

↔ Allocated
Resources

Λ
↔ Spent Time

Λ
↔ Average
Productivity of
the Team

Conservation of ↔ # Lines of Λ ↔ Depth of Λ ↔ # Lines of

COPPE/UFRJ Keele University

RT ES-XXX/05 30

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
Familiarity Source Code

V
↔ # Methods
per Class

Inheritance per
Class

V
↔ Coupling
between Objects

V
↔ Response for
a Class

V
↔ Lack of
Cohesion in
Methods

V
↔ # Children per
Class

V
↔ Cyclomatic
Complexity per
Method

Source Code
Handled

Continuing
Growth

↑ # Lines of
Source Code

V
↑ # Methods per
Class

Λ

¬↑ Interval
between
Versions

Declining Quality

↑ Depth of
Inheritance per
Class

V
↑ Coupling
between Objects

V
↑ Response for a
Class

V
↑ Lack of
Cohesion in
Methods

V
↑ # Children per
Class

V
↑ Cyclomatic
Complexity per
Method

V

↑ # Lines of
Source Code
Handled

V

↓ Cohesion in
Methods

V
↑ Coupling
between Classes

V

↑ # Detected
Defects

V
↑ # Corrected
Defects

V
↓ System
Availability

V

↑ Spent Time in
the Diagnostic of
Defects

V
↑ Spent Time in
the Removal of
Defects

Feedback System • # Lines of
Source Code
• # Methods per

• Interval
between
Versions

• Depth of
Inheritance per
Class

• # Lines of
Source Code
Handled

• Cohesion in
Methods
• Coupling

• # Detected
Defects
• # Corrected

• # People
• Allocated
Resources

• Spent Time in
the Diagnostic of
Defects

COPPE/UFRJ Keele University

RT ES-XXX/05 31

 Size Periodicity Complexity Effort Modularity Reliability Efficiency Maintainability
Class • Coupling

between Objects
• Response for a
Class
• Lack of
Cohesion in
Methods
• # Children per
Class
• Cyclomatic
Complexity per
Method

between Classes Defects
• System
Availability

• Spent Time
• Average
Productivity of
the Team

• Spent Time in
the Removal of
Defects

COPPE/UFRJ Keele University

RT ES-XXX/05 32

3. Final Considerations and Future Perspectives

This work described a conceptual framework based on the Laws of Software
Evolution to support the definition of experimental studies regarding object oriented
software decay. It is intended to be applied in different object-oriented software
development processes phases.

As suggestion for future works, there follows:
• Considering other relevant techniques, as Reuse of Software and

Development Based on Components (LEHMAN & RAMIL, 2000), Families
of Products (RIVA & ROSSO, 2002) and Software Architectures;

• Modifying the development process to insert collection phases and analysis
of the metrics;

• Refining the set of hypotheses, goals, questions and metrics;
• Elaborating studies to evaluate how the characteristics relate to each other,

throughout the software development process;
• Planning and executing experimental studies for evaluation of the proposed

hypotheses, according to the experimentation process defined in (AMARAL
& TRAVASSOS, 2003), using simulation techniques based on systems
dynamics models (BARROS et al., 2004);

• Considering features of software rejuvenation (redocumentation,
restructuring, reverse engineering, reengineering) (PFLEEGER, 2001);

• Proposing and building an environment that offers tool support for software
evolution experimental studies.

COPPE/UFRJ Keele University

RT ES-XXX/05 33

References

AMARAL, E.A.G.; TRAVASSOS, G.H. 2003. A Package Model for Software

Engineering Experiments. IEEE International Symposium on Empirical
Software Engineering.

ARAUJO, M.A.; TRAVASSOS, G.H. 2004. Towards a Framework for Software
evolution Experimental Studies, PESC Technical Report ES-641/04,
COPPE/UFRJ. (available at http://www.cos.ufrj.br)

BARROS et al., 2004. Supporting Risks in Software Project Management”. Journal
Of Systems And Software.

BASILI & WEISS, 1984. A methodology for collecting valid software engineering
data. IEEE Transactions on Software Engineering, Vol. SE-10, No. 6, 1984.

BASILI et al., 1996. Understanding and Predicting the Process of Software
Maintenance Releases. Proc. 18th Int´l Conf. Software Eng., 1996.

BAUER & PIZKA, 2003. The Contribution of Free Software to Software Evolution.
Sixth International Workshop on Principles of Software Evolution (IWPSE'03),
IEEE, 2003.

BARRY et al, 1999. An Empirical Analysis of Software Evolution Profiles and
Outcomes. Proceeding of the 20th international conference on Information
Systems. ACM, 1999.

BELADY & LEHMAN, 1976. A Model of Large Program Development. IBM
Systems J., vol. 15, no. 1, 1976.

BENDIFALLAH & SCACCHI, 1990. Understanding Software Maintenance Work.
IEEE Trans. Software Engineering, 1990.

CAPILUPPI, 2003. Models for the Evolution of OS Projects. Proceedings of the
International Conference on Software Maintenance. IEEE, 2003.

CAPILUPPI et al, 2003. Quantitative Models for Open Source Projects: A Proposal.
2003.

CAPILUPPI et al, 2003. Characteristics of Open Source Projects. Proceedings of
the Seventh European Conference on Software Maintenance and
Reengineering (CSMR´03). IEEE, 2003.

CARVER, 2003. The Impact of Background and Experience on Software
Inspections. PhD Thesis, Faculty of the Graduate School of the University of
Maryland, College Park. 2003.

CHIDAMBER & KEMERER, 1994. A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, vol. 20, No. 6, 1994.

COOK & ROESCH, 1994. Real-Time Software Metrics. J. Systems and Software,
vol. 24, no. 3, 1994.

CUSUMANO & YOFFIE, 1999. Software Development on Internet Time.
Computer, October 1999.

EICK et al, 1999. Does Code Decay? Assessing the Evidence from Change
Management Data. IEEE Computer, 1999.

GALL et al., 1997. Software Evolution Observations Based on Product Release
History. Proc. 1997 Intern. Conf. Software Maintenance (ICSM´97), 1997.

COPPE/UFRJ Keele University

RT ES-XXX/05 34

GEFEN & SCHNEBERGER, 1996. The Non-Homogeneous Maintenance Periods:
A Case Study of Software Modifications. Proc. Conf. Software Maintenance,
IEEE, 1996.

GODFREY & TU, 2000. Evolution in Open Source Software: A Case Study. IEEE,
2000.

GODFREY & TU, 2001. Growth, Evolution, and Structural Change in Open Source
Software. ACM, 2001.

GREENWOOD, et al, 1998. An Empirical Study of the Evolution of a Software
System. Thirteenth IEEE Conference on Automated Software Engineering,
1998.

ISO 9126-1, 1997. International Standard. Information Technology – Software
Quality Characteristics and Metrics – Part 1: Quality Characteristics and Sub-
Characteristics, 1997.

KEMERER & SLAUGHTER, 1999, An Empirical Approach to Studying Software
Evolution. IEEE, 1999.

KEMERER & SLAUGHTER, 1997. Determinants of Software Maintenance Profiles:
An Empirical Investigation. Journal of Software Maintenance: Research and
Practice, v.9 n.4, p.235-251, July-Aug. 1997.

KITCHENHAM, 1982. System evolution dynamics of VME/B. ICL Tech. J., 42-57,
1982.

LEHMAN, 1980. Programs, Life Cycle and the Laws of Software Evolution, Proc.
IEEE, IEEE,1980.

LEHMAN & RAMIL, 2000. Software Evolution in the age of component-based
software engineering. IEEE Software, 2000.

LEHMAN & RAMIL, 2001. Towards a Theory of Software Evolution – And its
Practical Impact. IEEE, 2001.

LEHMAN & RAMIL, 2001b. Rules and Tools for Software Evolution Planning and
Management. Annals of Software Engineering November 2001, vol. 11, no.
1, pp. 15-44(30), 2001.

LEHMAN & RAMIL, 2002. An Overview of Some Lessons Learnt in FEAST.
WESS’02 Eighth IEEE Workshop on Empirical Studies of Software
Maintenance, Canada, 2002.

LEHMAN & RAMIL, 2003. “Software Evolution – Background, Theory, Practice”.
Information Processing Letters, vol. 88, pp. 33 – 44, 2003.

LEHMAN, 1998. Software’s Future: Managing Evolution. IEEE Software, 1998.
LEHMAN et al, 1998. Implications of Evolution Metrics on Software Maintenance.

IEEE, 1998.
LEHMAN et al, 1997. Metrics and Laws of Software Evolution – The Nineties View.

IEEE, 1997.
LORENZ & KIDD, 1994. Object-Oriented Software Metrics. Prentice-Hall, 1994.
MUNSON & WERRIES, 1996. Measuring Software Evolution. IEEE, 1996.
PARNAS, 1994. Software Aging. IEEE, 1994.
PERRY, 1994. Dimensions of Software Evolution. Proceedings of the International

Conference on Software Maintenance. IEEE. 1994.
PERRY et al., 2001. Parallel Changes in Large-Scale Software Development: An

Observational Case Study. ACM Trans. Software Engineering and
Methodology, 2001.

COPPE/UFRJ Keele University

RT ES-XXX/05 35

PFLEEGER, 1998. The Nature of System Change. IEEE Software, 1998.
PFLEEGER, 2001. Software Engineering: Theory and Practice, 2th ed., Prentice

Hall, 2001.
PRESSMAN, 2001. Software Engineering: A Practitioner's Approach, 5th ed., Mc-

Graw Hill, 2001.
RAMIL, 2002. Laws of Software Evolution and their Empirical Support.

Proceedings of the International Conference on Software Maintenance
(ICSM´02), IEEE, 2002.

RIVA & ROSSO, 2002. Experiences with Software Product Family Evolution.
Proceedings of the Sixth International Workshop on Principles of Software
Evolution (IWPSE´03), IEEE, 2002.

ROSS, 1977. Structured Analysis for Requirements Definition. IEEE Transactions
on Software Engineering, v. 3, n. 1, p. 6-15, jan, 1997.

SCACCHI, 2003. Understanding Open Source Software Evolution: Applying,
Breaking, and Rethinking the Laws of Software Evolution.
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-
Evolution.pdf, 2003.

SMITH & RAMIL, 2002. Qualitative Simulation of Software Evolution Process.
WESS´02 Eighth Workshop on Empirical Studies of Software Maintenance,
2002.

SOLIGEN & BERGHOUT, 1999. The Goal/Question/Metric Method: a practical
guide for quality improvement of software development. McGraw-Hill
Publishing Company, 1999.

TAMAI & TORIMITSU, 1992. Software Lifetime and its Evolution Process over
Generations. Proc. Conf. Software Maintenance, IEEE, 1992.

TRAVASSOS et al, 2001. Working with UML: A Software Design Process Based
on Inspections for the Unified Modeling Language. Advances in Computers,
2001.

TRAVASSOS, 2003. Class notes of the discipline Special Topics in Software
Engineering - Revisions, Inspection and Test of Object-Oriented Software.
Systems Engineering and Computer Science Department – COPPE/UFRJ,
2003.

YUEN, 1985. An Empirical Approach to the Study of Errors in Large Software
under Maintenance. Proc. Second Conf. Software Maintenance, IEEE, 1985.

YUEN, 1987. A Statistical Rationale for Evolution Dynamic Concepts. Proc. Conf.
Software Maintenance, IEEE,1987.

YUEN, 1988. On Analyzing Maintenance Process Data at the Global and Detailed
Levels: A Case Study. Proc. Fourth Conf. Software Maintenance, IEEE, 1988.

