
Application Partitioning and Hierarchical Application Management
in Grid Environments

Patrícia Kayser Vargas Mangan
��� �

Inês de Castro Dutra
�

Cláudio F. R. Geyer
�

�
COPPE/Engenharia de Sistemas e Computação

Universidade Federal do Rio de Janeiro�
Curso de Ciência da Computação

Centro Universitário La Salle�
Instituto de Informática

Universidade Federal do Rio Grande do Sul
{kayser,ines}@cos.ufrj.br, geyer@inf.ufrgs.br

June 2004

Resumo

A grid computing environment supports
the sharing and coordinated use of heteroge-
neous and geographically distributed resources.
A grid differs from conventional distributed com-
puting in its focus on large-scale resource shar-
ing, innovative applications, and, in some cases,
high-performance and/or high-throughput ori-
entation. Therefore, a grid presents challenges
such as the control of huge numbers of tasks
and their allocation to the grid nodes. In the last
years, many works on grid computing environ-
ments have been proposed. However, most work
presented in the literature can not deal prop-
erly with all issues related to application man-
agement. Usually, applications are composed of
tasks and most systems deal with each individ-
ual task as if they are stand-alone applications.
Very often, as for example in some applica-
tion of High Energy Physics, aplications are com-
posed of hierarchical tasks that need to be dealt
with altogether. Some problems that are not prop-
erly solved include data locality, unnecessary
migration of transient data files, and over-
load of the submit machines (i.e. the machine
where the applications are launched). Our work
deals with these limitations, focusing on applica-
tions that spread a very large number of tasks. The
central idea of our work is to have a hierarchi-
cal application control mechanism. This control
mechanism manages the execution of a huge num-
ber of distributed tasks preserving data locality
while controlling the load of the submit ma-

chines.

Contents

1 Introduction 2
1.1 Motivation 2
1.2 Goals and Contributions 3
1.3 Text Organization 3

2 Grid Computing Systems Concepts 4
2.1 Grid Computing Definition 4
2.2 Classifying Grid Applications . . 5
2.3 Classifying Grid Systems 6
2.4 Considerations 8

3 Application Management 8
3.1 Application Partitioning 8

3.1.1 Problem Definition 8
3.1.2 Related Graph Partitioning

Techniques 9
3.2 Representing an Application as a

Graph 10
3.2.1 DAGMan 11
3.2.2 Chimera 13

3.3 Considerations 13

4 Resource Management Systems 14
4.1 Resource Management Issues . . . 14
4.2 Scheduling Taxonomy 15
4.3 Job Management Systems for

Clusters 17
4.4 Scheduling Mechanisms for Grid

Environments 17

1

4.4.1 Legion 18
4.4.2 Globus 18
4.4.3 Condor and Condor-G . . 19
4.4.4 MyGrid 20
4.4.5 MetaScheduler in GrADS

Project 21
4.4.6 ISAM 22

4.5 Comparison 23

5 Toward an integrated system to manage
applications and data in grid environ-
ments 25
5.1 Premises 25
5.2 Application Partitioning Model . . 26

5.2.1 Description Language . . 27
5.2.2 Application Partition-

ing Proposal 28
5.3 Task Submission Model 28

5.3.1 Model Components 30
5.3.2 Model Components Inter-

action 30
5.4 Discussion 31

6 Simulation Model 32
6.1 Grid Simulation Tools 32

6.1.1 MicroGrid 32
6.1.2 SimGrid 32
6.1.3 GridSim 33
6.1.4 MONARC 2 33
6.1.5 Discussion 34

6.2 MONARC 2 Overview 35
6.3 Simulation Model 36

7 Conclusion 36

References 37

1. Introduction

The main subject of this text is the control of
applications in a grid computing environment. We
present an ongoing work that deals with resource
management limitations, focusing on applications
that spread a huge number (thousands) of tasks and
manipulate very large amount of data across the
grid.

1.1. Motivation

The term grid computing [41, 39] was coined in
the mid-1990s to denote a distributed computing
infrastructure for scientific and engineering appli-
cations. The grid can federate systems into a super-
computer far beyond the power of any current com-
puting center [9]. Several works on grid computing
have been proposed in the last years [39, 6, 90, 12].

There are also several initiatives in grid Computing
at Brazil [47, 23].

A grid computing environment supports shar-
ing and coordinated use of heterogeneous and geo-
graphically distributed resources. These resources
are made available transparently to the application
independent of its physical location as if they be-
long to a single and powerful logical computer.
These resources can be CPUs, storage systems,
network connections, or any resource made avail-
able due to hardware or software. In the last years,
many works on grid computing environments have
been proposed [10, 62, 21, 82, 111]. However,
most work presented in the literature can not deal
properly with all issues related to application man-
agement.

Many applications have a high demand for com-
putational resources such as CPU cycles and/or
data storage. For instance, research in High Energy
Physics (HEP) and Bioinformatics usually requires
processing of large amounts of data using process-
ing intensive algorithms. The major HEP experi-
ments for the next years aim to find the mecha-
nism responsible for mass in the universe and the
“Higgs” particles associated with mass generation
[15]. These experiments will be conducted through
collaborations that encompass around 2000 physi-
cists from 150 institutions in more than 30 coun-
tries. One of the largest collaborations is the Com-
pact Muon Solenoid (CMS) project. The CMS
project estimates that 12-14 Petabytes of data will
be generated each year [24].

In Bioinformatics, genomic sequencing is one
of the hot topics. The genomic sequences are being
made public on a lot of target organisms. A great
amount of gene sequences are being stored in pub-
lic and private databases. It is said that the quan-
tity of stored genomic information should double
every eight months. The more the quantity of in-
formation increases, the more computation power
is required [64].

There are several applications that can run in
a grid computing environment. We consider only
applications composed by several tasks which can
have dependencies through file sharing. We clas-
sify those applications in three types, as we present
in more detail later on: independent tasks (bag-of-
tasks), loosely-coupled tasks (few sharing points),
and tightly-coupled tasks (more complex depen-
dencies).

Usually, applications are composed of tasks and
most systems deal with each individual task as if
they are stand-alone applications. Very often, as
for example in some application of High Energy
Physics (HEP), they are composed of hierarchical
tasks that need to be dealt with altogether, either

2

because they need some feedback from the user or
because they need to communicate. These appli-
cations can also present a large-scale nature and
spread a very large number of tasks requiring the
execution of thousands or hundreds of thousands
of experiments. Most current software systems fail
to deal with these two problems: (1) manage and
control large numbers of tasks; and (2) regulate
the submit machine load and network traffic, when
tasks need to communicate. One work in the di-
rection of item (1) is that of Dutra et al. [30] that
reported experiments of inductive logic program-
ming that generated over 40 thousand jobs that re-
quired a high number of resources in parallel in or-
der to terminate in a feasible time. However, this
work was concentrated on providing an user level
tool to control and monitor that specific applica-
tion execution, including automatic resubmission
of failed tasks.

Dealing with huge amounts of data requires
solving several problems to allow the execution of
the tasks as well as to get some efficiency. One of
them is data locality. Some applications are pro-
grammed using data file as a means of communi-
cation to avoid interprocess communication. Some
of the generated data can be necessary only to get
the final results, that is, they are intermediate or
transient data which are discarded at the end of the
computation. Transient data can exist in loosely-
and tightly-coupled tasks. We consider that allocat-
ing dependent tasks grouped allows to keep data lo-
cality. The goal is to get a high data locality so that
data transfer costs are minimized.

So, applications that spread a large number of
tasks must receive a special treatment for submis-
sion and execution control. Submission of a large
number of tasks can stall the machine. A good so-
lution is to have some kind of distributed submis-
sion control. Besides, monitoring information to
indicate application progress must be provided to
make the system user friendly. Finally, automatic
fault detection is crucial since handling errors man-
ually is not feasible.

Our work deals with these application control
limitations, focusing on applications that spread a
very large number of tasks. These non trivial appli-
cations need a powerful distributed execution en-
vironment with many resources that currently are
only available across different network sites. Grid
computing is a good alternative to obtain access to
the needed resources.

1.2. Goals and Contributions

Two open research problems in grid environ-
ments are addressed in this work. The first one is

the task submission process. Executing in parallel
an application which is embarrassingly parallel is
usually not complex. However, if the application is
composed by a huge number of tasks, the execu-
tion control is a problem. Tasks of an application
can have dependencies. The user should not need
to start such tasks manually. Besides, the number
of tasks can be very large. The user should not need
to control start and termination of each task. More-
over, tasks should not be started from the same
machine to avoid (1) overloading the submit ma-
chine, and (2) that the submit machine becomes
a bottleneck. In this work we employ a hierarchi-
cal application management organization for con-
trolling applications with a huge number of tasks
and distribute the task submission among several
controllers. We believe that a hierarchy of adapt-
able and grid-aware controllers can provide effi-
cient, robust, and resilient execution.

The second open problem is the data local-
ity maintenance when tasks are partitioned and
mapped to remote resources. In this work, the ap-
plications are distributed applications, i.e. applica-
tions composed by several tasks. Tasks can be in-
dependent or dependent due to file sharing. The
application partitioning goal is to group tasks in
blocks that are mapped to available processors.
This process must keep data locality, which means
to minimize data transfer through processors and
to avoid unnecessary data transfers. This is funda-
mental to get good application performance.

Our main goal is to evaluate our hierarchical ap-
plication management. Our specific goals are the
following:

� to study the main works related to application
control and resource management systems;

� to design our model aiming to keep it as sim-
ple as possible;

� to present it in detail in this text;
� to produce a simulation model to evaluate our

design, checking its feasibility;

1.3. Text Organization

The remaining of this text is organized as fol-
lows. First, we present basic concepts related to
grid computing (Section 2). Then, we analyze con-
cepts and works related to application management
(Section 3). We focus mainly in application parti-
tioning. Since the applications will run in a grid en-
vironment, we also analyze concepts and works in
resource management for grid (Section 4).

We present and analyze our hierarchical model
in Section 5. We discuss some of the problems that
need to be solved to satisfy user needs, which are

3

the motivation to our model. We also present our
architecture.

Then, we describe some tools that can be used
to simulate grid environments and MONARC, the
tool chosen for our experiments (Section 6). It also
presents our simulation model.

Finally, we conclude this text with our final re-
marks and future works (Section 7).

2. Grid Computing Systems Concepts

Grid computing is closely related to the dis-
tributed systems and network research areas. Grid
computing differs from conventional distributed
computing in its focus on large-scale resource shar-
ing, innovative applications, and, in some cases,
high-performance and/or high-throughput orienta-
tion [41, 65].

This section presents basic concepts related to
grid computing. First, we present grid comput-
ing definitions (Subsection 2.1). Then, we discuss
about grid applications (Subsection 2.2), and grid
computational systems (Subsection 2.3).

2.1. Grid Computing Definition

An increasing number of research groups have
been working in the field of network wide-area dis-
tributed computing [28, 49, 107, 11, 53, 74, 95,
29]. They have been implementing middleware, li-
braries, and tools that allow cooperative use of geo-
graphically distributed resources. These initiatives
have been known by several names [6, 90] such
as metacomputing, global computing, and more re-
cently grid computing.

The term grid computing was coined by Fos-
ter and Kesselman [37] as a hardware and soft-
ware infrastructure that provides dependable, con-
sistent, pervasive, and inexpensive access to high-
end computational capabilities. Actual grid com-
puting efforts can be seen as the third phase of
metacomputing evolution as stated in the Meta-
computing’s paper of Smarr and Catlett [98]: a
transparent network that will increase the com-
putational and information resources available to
an application. It is also a synonym of metasys-
tem [52] which supports the illusion of a single
machine by transparently scheduling application
components on processors; managing data migra-
tion, caching, transfer, and the masking of data-
format differences between systems; detecting and
managing faults; and ensuring that users’ data and
physical resources are protected, while scaling ap-
propriately.

The Global Grid Forum (GGF) [48] is a
community-initiated forum of more than 5000 in-

dividual researchers and practitioners working on
grid technologies. The GGF creates and docu-
ments technical specifications, user experiences,
and implementation guidelines. The GGF’s Grid
Scheduling Dictionary [89] defines grid as fol-
lowing: “Grids are persistent environments that
enable software applications to integrate instru-
ments, displays, computational and information in
widespread locations”.

Since there is not a unique and precise defini-
tion for the grid concept, we present two attempts
to define and check if a distributed system is really
a grid system. First, Foster [36] proposes a three
points checklist to define grid as a system that:

1. coordinates resources that are not subject to
centralized control...

2. ... using standard, open, general-purpose pro-
tocols and interfaces...

3. ... to deliver nontrivial qualities of service.

Second, Németh and Sunderam in May 2002
[78] presented a formal definition of what a grid
system should provide. They focused on the se-
mantics of the grid and argue that a grid is not just
a modification of “conventional” distributed sys-
tems but fundamentally differs in semantics. They
present an interesting table comparing distributed
environments and grids that we transcribe in Table
1 and analyze. A grid can present heterogeneous
resources including, for example, sensors and de-
tectors and not only computational nodes. Indi-
vidual sites belong to different administrative do-
mains. Thus, the user has access to the grid (the
pool) but not to the individual sites and access may
be restricted. User has little knowledge about each
site due to administrative boundaries, and even due
to the large number of resources. Resources in the
grid typically belong to different administrative do-
mains and also to several trust domains. Finally,
while conventional distributed environments tend
to be static, except due to faults and maintenance,
grids are dynamic by definition.

Németh and Sunderam in April 2002 [77] also
made an informal comparison of distributed sys-
tems and computational grids.

Besides, Foster et al. [41] presents the specific
problem that underlies the grid concept as coor-
dinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations.
The sharing is, necessarily, highly controlled, with
resource providers and consumers defining clearly
and carefully what is shared, who is allowed to
share, and the conditions under which sharing oc-
curs. A set of individuals and/or institutions de-
fined by such sharing rules form what they call a
virtual organization.

4

Conventional distributed environments Grids
1 a virtual pool of computational nodes a virtual pool of resources
2 a user has access (credential) to all the nodes in

the pool
a user has access to the pool but not to individ-
ual sites

3 access to a node means access to all resources
on the node

access to a resource may be restricted

4 the user is aware of the capabilities and features
of the nodes

the user has little knowledge about each site

5 nodes belong to a single trust domain resources span multiple trust domains
6 elements in the pool 10-100, more or less static elements in the pool 1000-10000, dynamic

Table 1. Comparison of conventional distributed environments and grids [78]

Though there might be a strong relation among
the entities building a virtual organization, a grid
still consists of resources owned by different, typ-
ically independent organizations. Heterogeneity of
resources and policies is a fundamental result of
this [92].

There are several reasons for programming ap-
plications on a computational grid. Laforenza [65]
presents some examples: to exploit the inherent
distributed nature of an application, to decrease the
turnaround/response time of a huge application, to
allow the execution of an application which is out-
side the capabilities of a single (sequential or par-
allel) architecture, and to exploit affinities between
an application component and grid resources with
specific functionalities.

In the next subsections we give some of the clas-
sifications found in the literature for grid applica-
tions and systems.

2.2. Classifying Grid Applications

Foster and Kesselman [37] identify five major
application classes for grid environment:

� Distributed supercomputing applications use
grid to aggregate substantial computational
resources in order to tackle problems that can-
not be solved on a single system. They are
very large problems, such as simulation of
complex physical processes, which need lots
of resources like CPU and memory.

� High-Throughput Computing uses grid re-
sources to schedule a large number of
loosely coupled or independent tasks, with
the goal of putting unused processor cy-
cles to work. The Condor system [107]
has been dealing with this kind of applica-
tion, as for example, molecular simulations
of liquid crystal and biostatistical prob-
lems solved with inductive logic program-
ming.

� On-Demand Computing applications use grid
capabilities to meet short-term requirements

for resources that cannot be cost-effectively
or conveniently located locally. For example,
one user doesn’t need to buy a supercomputer
to run an application once a week. Another
example, the processing of data from mete-
orological satellites can use dynamically ac-
quired supercomputer resources to run a cloud
detection algorithm.

� Data-Intensive Computing applications,
where the focus is on synthesizing new in-
formation from data that is maintained in
geographically distributed repositories, dig-
ital libraries, and databases. This process is
often computationally and communication in-
tensive, as expected in future high energy
physics experiments.

� Collaborative Computing applications are
concerned primarily with enabling and en-
hancing human-to-human interactions. Many
collaborative applications are concerned with
enabling the shared use of computational re-
sources such as data archives and simulations.
For example, the CAVE5D [19] system sup-
ports remote, collaborative exploration of
large geophysical data sets and the mod-
els that generated them.

Some examples of applications that are repre-
sentative of these main classes of applications are
the following:

Monte Carlo Simulation Monte Carlo experiments
are sampling experiments, performed on a com-
puter, usually done to determine the distribution of
a statistic under some set of probabilistic assump-
tions [51]. The name Monte Carlo comes from the
use of random numbers.

In HEP, there are several applications to this
technique. The results can usually be obtained run-
ning several instances independently with different
parameters, which can be easily executed in paral-
lel.

Biostatistic Problems using ILP Techniques Dutra
et al. [30] reported experiments of inductive logic
programming (ILP) to solve biostatistic problems.

5

Since, it is a machine learning problem, it had two
main phases: experimentation and evaluation. Dur-
ing the experimentation phase, the user wants to
run a learner, adjusting the learner parameters, us-
ing several datasets, and sometimes, repeating the
learning process several times. During the evalua-
tion phase, the user is interested in knowing how
accurate a give model is, and which one of the ex-
periments gave the most accurate result.

Typically, these experiments, in both phases,
need to run in parallel. Due to the highly indepen-
dent nature of each experiment, all machine learn-
ing process can be trivially parallelized. However,
all experiments of a phase must be finished before
proceeding to the next phase.

Finite Constraint Satisfaction Problems Fi-
nite Constraint Satisfaction Problems (CSP)
[3] usually describe NP-complete search prob-
lems. Algorithms exist, such as arc-consistency
algorithms, that help to eliminate inconsistent val-
ues from the solution space. They can be used
to reduce the size of the search space, allow-
ing to find solutions for large CSPs.

Still, there are problems whose instance size
make it impossible to find a solution with sequen-
tial algorithms. Concurrency and parallelization
can help to minimize this problem because a con-
straint network generated by a constraint program
can be split among processes in order to speed
up the arc-consistency procedure. The dependency
between the constraints can be represented usually
as a complex and high-connected graph.

Considering the examples presented and other
presented in the literature we certainly have a wide
variety of applications that can profit from grid
power. Because we intend to partition the appli-
cations to map their tasks to resources, we pro-
pose the following taxonomy for distributed appli-
cations in grid:

� independent tasks The simplest kind of ap-
plication is the one usually called bag-of-
tasks. It characterizes applications where
all tasks are independents. One exam-
ple are the Monte Carlo simulations typically
used in HEP experiments.

� loosely-coupled tasks This kind of graph is
characterized by few sharing points. It is typ-
ically characterized by an application divided
in phases. One example are the ILP experi-
ments mentioned.

� tightly-coupled tasks Highly complex
graphs are not so often, but are more dif-
ficult to be partitioned. Constraint logic
programming applications can fall in this cat-
egory.

We present in Figure 1 visual representations of
application graphs for each of the presented cate-
gories.

(a) (b) (c)

Figure 1. Grid application classes:
(a) independent tasks, (b) loosely-
coupled tasks, and (c) tightly-coupled
tasks

2.3. Classifying Grid Systems

A current classification of grid computing sys-
tems is computational and data grid [82]. The
Computational Grid focuses on reducing execu-
tion time of applications that require a great num-
ber of computer processing cycles or on execution
of applications that can not be executed sequen-
tially. The Data Grid provides the way to solve
large scale data management problems. Data in-
tensive applications such as High Energy Physics
and Bio-informatics require both Computa-
tional and Data Grid features.

Krauter et al. [62] presents a similar taxonomy
for grid systems, which includes a third category,
the service grid:

� The computational grid category denotes
systems that have higher aggregate com-
putational capacity available for single
applications than the capacity of any con-
stituent machine in the system. It is sub-
divided into distributed supercomputing
(application execution in parallel on multi-
ple machines) and high throughput (stream
of jobs). Computational grid can also be de-
fined as a “large-scale high performance
distributed computing environment that pro-
vide access to high-end computational re-
sources” [89].

� The data grid is a terminology used for sys-
tems that provide an infrastructure for synthe-
sizing new information from data repositories
that are distributed in a wide area network.

� The service grid is the name used for sys-
tems that provide services that are not pro-
vided by any single local machine. This cat-

6

egory is further divided as on demand (ag-
gregate resources to provide new services),
collaborative (connect users and applications
via a virtual workspace), and multimedia (in-
frastructure for real-time multimedia applica-
tions).

Currently, the most accepted technology for
building computational grids are based on ser-
vices.

A grid system can also be classified accord-
ing to historical or other technical characteristics.
Roure et al. [90] identify three generations in the
evolution of grid systems. The first generation in-
cludes the forerunners of grid computing as we rec-
ognize it today and were projects to connect su-
percomputing sites. At the time this approach was
known as metacomputing. The early to mid 1990s
mark the emergence of the early metacomputing or
grid environment.

Two representative projects in the first genera-
tion were FAFNER and I-WAY. FAFNER (Factor-
ing via Network-Enabled Recursion) [33, 32] was
created through a consortium to make RSA130 fac-
torization using a numerical technique called Num-
ber Field Sieve. I-WAY (The Information Wide
Area Year) [28] was an experimental high perfor-
mance network that connected several high perfor-
mance computers spread over seventeen universi-
ties and research centers using mainly ATM tech-
nology. These projects differ in some ways: (a)
FAFNER was concerned with one specific appli-
cation while I-WAY could execute different appli-
cations, mainly high performance applications; (b)
FAFNER could use almost any kind of machine
while I-WAY assumed high-performance comput-
ers with a high bandwidth and low latency net-
work. Nevertheless, both had to overcome a num-
ber of similar obstacles, including communica-
tions, resource management, and the manipula-
tion of remote data, to be able to work efficiently
and effectively. Both projects are also pioneers on
grid computing systems and helped to develop sev-
eral second generation projects. FAFNER was the
precursor of projects such as SETI@home (The
Search for Extraterrestrial Intelligence at Home)
[95] and Distributed.Net [29]. I-WAY was the pre-
decessor of the Globus [93] and the Legion [53]
projects.

The second generation projects have a focus on
middleware to support large scale data and compu-
tation. The two most representative projects are Le-
gion and Globus.

The Legion object oriented system [53, 21] was
developed at the University of Virginia and it is
now a commercial product of Avaki. Legion is a
middleware with several components, such as, re-

source management, data management, security,
etc. In Legion, active objects communicate via re-
mote method invocation. Some system responsibil-
ities are delegated to the user level, as for exam-
ple, Legion classes create and locate their objects
as well as are responsible for selecting the appro-
priate security mechanisms and the objects alloca-
tion policy.

The Globus Project has been developed by the
Argonne National Laboratory, University of South-
ern California’s Information Sciences Institute, and
University of Chicago. The most important re-
sult of the Globus Project is the Globus Toolkit
[49, 93]. The Globus Toolkit (GT) is an open
source software. The GT version 2 can be classified
as a second generation system since it is mainly a
set of components that compose a middleware.

The GT2 design is highly related to the archi-
tecture proposed by Foster et al. [41]. This open
and extensible architecture aims to identify re-
quirements to a generic class of components and
has four layers under the Application layer. Fig-
ure 2 [41] shows this architecture and its relation-
ship with the Internet protocol architecture.

Figure 2. The layered grid architec-
ture and its relationship to the Inter-
net protocol architecture [41]

The Resource and Connectivity protocols are
the main parts and aid the sharing of individual re-
sources. The protocols of these layers are designed
to be implemented on top of several resources de-
fined in the lower layer, called Fabric, and to be
used to build several global services and specific
application behavior in the Collective layer. The
Collective layer deals with the coordinated use of
multiple resources.

During the period where projects were iden-
tified as belonging to the second generation, we

7

highlight two important publications. These publi-
cations emphasized the importance of middleware
construction for a grid environment and presented
the main guidelines and concepts for exploiting
this kind of environment. One is the already re-
ferred “Grid Anatomy” [41], which starts using the
term grid. The “Metasystems” paper [52] is the
other paper that, actually, was published first. In
this paper, the authors state that the challenge to
the computer science community is to provide a
solid, integrated middleware foundation on which
to build wide-area applications.

Finally, the third generation is the current gen-
eration where the emphasis shifts to distributed
global collaboration, a service oriented approach,
and information layer issues.

In the context of the third generation is the Open
Grid Services Architecture (OGSA) [110] proposal
that aims to define a new common and standard ar-
chitecture for grid-based applications. The version
3 of the Globus Toolkit (GT3) has a new philoso-
phy of grid services and implements the Open Grid
Service Infrastructure (OGSI) [40]. The OGSI is a
formal and technical specification of the concepts
described in OGSA, including Grid Services.

Similar to the GT3 philosophy is the Seman-
tic Grid proposal [91]. This architecture adopts
a service-oriented perspective in which distinct
stakeholders in the scientific process, represented
as software agents, provide services to one another,
under various service level agreements, in various
forms of marketplace.

2.4. Considerations

We conclude this section by emphasizing that
grid is the result of several years of research. Fig-
ure 3 illustrates the main grid related systems and
their time line. In this figure, PBS (Portable Batch
System) [13] and Condor [104] are both cluster
schedulers. They are presented to stress that most
of the current local schedulers used in grid envi-
ronments are mature projects being developed and
maintained for several years. Y-Way and FAFNER
are first generation systems while Globus, Legion,
Seti@home and Distributed.net are second gener-
ation. Condor-G is an “evolution” of Condor and
Globus and will be discussed later on.

There are several open research problems, and
this work proposes solutions to some of them.

An important issue to allow the application ex-
ecution in a grid environment is the applica-
tion management. Application management, as we
present in the next section, is concerned with ques-
tions such as how to partition and describe the
application.

Once the application is partitioned, one of the
main challenges is the mapping of the application
to the large number of geographically distributed
resources. Solutions to these problems will be dis-
cussed in the subsequent sections.

3. Application Management

In this section, we discuss application manage-
ment related issues. According to our taxonomy
presented in Subsection 2.2, an application can be
represented as a graph, where each node represents
a task and the edges represent the task precedence
order. This graph needs to be represented in some
format or syntax. In the literature, usually, the user
uses description languages such as VDL [42] and
the DAGMan language [107]. Once the application
is properly represented as a graph, this needs to be
managed to dispatch the tasks in the right order. In
this section, we discuss how to partition the graph
(Subsection 3.1) and how to represent it (Subsec-
tion 3.2).

3.1. Application Partitioning

One of the characteristics of grid applications
is that they usually spread a very large number of
tasks. Very often, these tasks present dependencies
that enforce a precedence order. In a grid, as in
any distributed environment, one important issue
to get performance is how to distribute the tasks
among resources. Although research in schedul-
ing is very active, efficient partitioning of appli-
cations to run in a grid environment is an emerg-
ing research topic. A distributed application can
be partitioned through grouping related tasks aim-
ing to decrease communication costs. The parti-
tioning should be such that dependencies between
tasks and data locality are maintained. Few parti-
tioning works deal specifically with the high re-
source heterogeneity and dynamic nature of grid
environments.

In the next sections, we discuss several appli-
cation partitioning related issues. First we present
the partitioning problem definition in our work
(Subsection 3.1.1). Then, we present some related
works on graph partitioning techniques applied to
the application partitioning problem (Subsection
3.1.2).

3.1.1. Problem Definition Usually, dis-
tributed applications can be expressed as a
graph

���������	��

, where

�
is a set of weighted

nodes representing tasks and
�

is the set of
weighted edges that represent dependencies be-
tween tasks [35, 63, 56]. This graph is usu-

8

Figure 3. Main grid related systems timeline

ally undirected [63] and is sometimes a Directed
Acyclic Graph (DAG) [107].

There are different applications that can be ex-
ecuted in a grid environment. Some applications
have only independent tasks and are usually called
bag-of-tasks applications. They are equivalent to
graphs without edges. In this case, partitioning is
simpler. Dependent tasks introduce complexity to
the problem because tasks should be grouped un-
der predefined criteria to obtain good performance.

Application partitioning can be defined as fol-
lowing: tasks must be placed onto machines in
such a way as to minimize communication and
achieve best overall performance of the application
[57]. Thus, application partitioning, in our work, is
to divide the application task graph in subgraphs
such as they can be allocated to different available
processors efficiently. Efficiency can be measured
considering the interprocessor communication and
the execution time. If they are kept low, the effi-
ciency is high. Thus, application partitioning can
be done using graph partitioning techniques.

Graph Partitioning can be defined as the prob-
lem of dividing a set of nodes of a graph into dis-
joint subsets of approximately equal-weight such
that the number of edges with end points in differ-
ent subsets is minimized. Graph partitioning is an
NP-hard problem [46], thus heuristics must be ap-
plied.

3.1.2. Related Graph Partitioning Techniques
The standard graph partitioning approach di-
vides the nodes into � equally weighted sets while
minimizing interprocessor communication (cross-
ing edges between partitions). In other words,
traditional graph partitioning algorithms com-
pute a � -way partitioning of a graph such that

the number of edges that are cut by the partition-
ing is minimized and each partitioning has an
equal number of nodes.

Hogstedt et al. [57] consider a graph
� �

�����	� ���

, with a set of nodes

�
, a set of edges�

, and a set of distinguished nodes
� � �

, de-
noting machine nodes. Each edge has a weight, de-
noted ��� for an edge �
	 � . Each node ��	 � can
be assigned to any of the machine nodes �	 �

.
The machine nodes

�
cannot be assigned to each

other. Any particular assignment of the nodes of
�

to machines
�

is called a cut, in which the weight
of the cut is the sum of the weights of edges be-
tween nodes residing on two different machines.
The minimal cut set of a graph minimizes the in-
terprocessor communication.

They present five heuristics to derive a new
graph, which is then partitioned aiming to ob-
tain the minimal cut (min-cut) set for the origi-
nal graph. The five heuristics are the following: (1)
dominant edge: there is a min-cut not containing
the heaviest edge � , so we can contract 1 � to obtain
a new graph G’; (2) independent net: if the commu-
nication graph can be broken into two or more in-
dependent nets, then the min-cut of the graph can
be obtained by combining the min-cut of each net;
(3) machine cut: let a machine cut

���
be the set

of all edges between a machine �
and non ma-

chine nodes N. Let � �
be the sum of the weight

of all edges in the machine cut
���

. Let the � �
’s

1 The contraction of ��� ���������
corresponds to replacing

the vertex � and
�

by a new vertex � , and for each ver-
tex � not in ��� �����

replacing any edge ��� � � �
or � � � � �

by
the edge � � � � �

. The rest of the graph remains unchanged. If
the contraction results in multiple edges from node � to an-
other node � they are combined and their weights added.
[57]

9

be sorted so that ��� � ��� � ��� �������
. Then

any edge which has weight greater than �	� cannot
be present in the min-cut. (4) zeroing: if a node �
has edges to each of the machines with weights
�
��� ���� ����� � ��� , we can reduce the weights
of each of the edges from � to the machines by
� � without changing min-cut assignment; (5) ar-
ticulation point: nodes that would be disconnected
from all machines if node � was deleted cannot be
in min-cut, thus they can be contracted.

Hendrickson et al. [56] also consider that min-
imizing the number of graph edge cut minimizes
the volume of communication. But they argue that
the partitioning and mapping should be generated
together to also reduce message congestion. Thus,
they adapt an idea of the circuit placement commu-
nity called terminal propagation to the problem of
partitioning data structures among processors of a
parallel computer. The basic idea of terminal prop-
agation is to associate with each vertex in the sub-
graph being partitioned a value which reflects its
net preference to be in a given quadrant board. In
parallel computing, the quadrants represent proces-
sors or sets of processors. Their major contribution
is a framework for coupling recursive partitioning
schemes to the mapping problem.

Karypis and Kumar [61] extend the stan-
dard partitioning problem by incorporating an
arbitrary number of balancing constraints. A vec-
tor of weights is assigned to each vertex, and the
goal is to produce a � -partitioning such that the
partitioning satisfies a balancing constraint as-
sociated with each weight, while attempting to
minimize the edge-cut.

Hendrickson and Kolda [55] argue that the stan-
dard graph partitioning approach minimizes the
wrong metrics and lacks expressibility. One of the
metrics is minimizing edge cuts. They present the
following flaws of the edge cut metric: (1) edges
cuts are not proportional to the total communica-
tion volume; (2) it tries to (approximately) mini-
mize the total volume but not the total number of
messages; (3) it does not minimize the maximum
volume and/or number of messages handled by any
single processor; (4) it does not consider distance
between processors (number of switches the mes-
sage passes through). To avoid message contention
and improve the overall throughput of the message
traffic, it is preferable to have communication re-
stricted to processors which are near each other.

Despite the limitations of edge cut metric, the
authors arguee that the standard approach is ap-
propriated to applications whose graph has local-
ity and few neighbors.

Hendrickson and Kolda [55] also argue that the
undirected graph model can only express symmet-

ric data dependencies. An application can have the
union of multiple phases, and this cannot generally
be described via an undirected graph.

Kumar et al. [63] propose the MiniMax scheme.
MiniMax is a multilevel graph partitioning scheme
developed for distributed heterogeneous systems
such as the grid, and differs from existing partition-
ers in that it takes into consideration heterogeneity
in both the system and workload graphs. They con-
sider two weighted undirected graphs: a workload
graph (to model the problem domain) and a sys-
tem graph (to model the heterogeneous system).

Finally, an interesting work is the AR-
MaDA framework proposed by Chandra and
Parashar [20]. It does not perform DAG par-
titioning. ARMaDA is defined by its authors
as an adaptative application-sensitive partition-
ing framework for structured adaptative mesh re-
finement (SAMR) applications. The goal is to
adaptively manage dynamic applications on struc-
tured mesh based on the runtime state. The authors
argue that no single partitioning scheme per-
forms the best for all types of applications and
systems:

“Even for a single application, the
most suitable partitioning technique
and associated partitioning parame-
ters depend on input parameters and the
application’s runtime state. This necessi-
tates adaptative partitioning and runtime
management of these dynamic appli-
cations using an application-centric
characterization of domain-based parti-
tioners.” [20]

We believe that this statement applies to DAG
partitioning problems as well.

3.2. Representing an Application as a
Graph

As far as we know, in the grid literature, the only
systems that deal with task precedence are Chi-
mera [42] and DAGMan [107].

In these systems, the user needs to specify de-
pendencies among tasks using a description lan-
guage. In DAGMan, the user explicitly specifies
the task dependence graph, where the nodes are
tasks and edges represent dependencies that can be
through data files or simply control dependencies.
In Chimera, the user only needs to specify the data
files manipulation.

We use in this section the DAG example of Fig-
ure 4 to illustrate how DAGs are expressed in both
systems.

10

Figure 4. Simple DAG example

3.2.1. DAGMan The Directed Acyclic Graph
Manager (DAGMan) [26, 107, 104] manages de-
pendencies between tasks at a higher level in-
voking the Condor Scheduler to execute the
tasks. Condor, as we will present in Subsec-
tion 4.4.3, finds resources for the execution of
tasks, but it does not schedule tasks based on de-
pendencies. DAGMan submits jobs to Condor in
an order represented by a DAG and processes the
results. Presently, DAGMan is a stand-alone com-
mand line application.

DAG Representation DAGMan receives a file de-
fined prior to submission as input, which describes
the DAG. Each node (task) of this DAG has a Con-
dor submit description file associated to be used by
Condor. As DAGMan submits jobs to Condor, it
uses a single Condor log file to enforce the order-
ing required for the DAG. DAGMan is responsible
for submitting, recovery, and reporting for the set
of programs submitted to Condor.

The input file used by DAGMan specifies four
items: (1) a list of the tasks in the DAG. This serves
to name each program and specify each program’s
Condor submit description file; (2) processing that
takes place before submission of any program in
the DAG to Condor or after Condor has completed
execution of any program in the DAG; (3) descrip-
tion of the dependencies in the DAG; and (4) num-
ber of times to retry if a node within the DAG fails.
The items 2 and 4 are optional.

Figure 5 presents the DAGMan input file that
describes the DAG example of Figure 4. The first
four lines describe the tasks. Each task is described
by a single line called a Job Entry: job is the key-
word to indicate it is a job entry, the second ele-
ment is the name of the task and the third is the
name of the Condor submit file. Thus, a job en-
try maps a job name to a Condor submit descrip-
tion file.

A job entry can also have the keyword DONE
at the end, which identifies a job as being already
completed. This is useful in situations where the
user wishes to verify results, but does not require
that all jobs within the dependency graph to be ex-
ecuted. The DONE feature is also utilized when an
error occurs causing the DAG to not be completed.

DAGMan generates a Rescue DAG, a DAGMan in-
put file that can be used to restart and complete
a DAG without re-executing completed programs
[26].

#
first_example.dag
#
Job A A.condor
Job B B.condor
Job C C.condor
Job D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

Figure 5. DAGMan input file

The last two lines in Figure 5 describe the de-
pendencies within the DAG. The PARENT key-
word is followed by one or more job names. The
CHILD keyword is followed by one or more job
names. Each child job depends on every parent job
on the line. A parent node must be completed suc-
cessfully before any child node may be started. A
child node is started once all its parents have suc-
cessfully completed.

Figure 6 presents four Condor job description
files to describe the four tasks of the DAG example.
In this example, each node in a DAG is a unique
executable, each with a unique Condor submit de-
scription file.

Figure 7 is an alternative of code to implement
the DAG example. This example uses the same
Condor submit description file for all the jobs in
the DAG. Each node within the DAG runs the same
program (/path/dag.exe).

The $(cluster) macro is used to pro-
duce unique file names for each program’s
output. $(cluster) is a macro, which sup-
plies the number of the job cluster. A cluster is a
set of jobs specified in the Condor submit descrip-
tion file through a queue command. In DAGMan,
each job is submitted separately, into its own clus-
ter, so this provides unique names for the output
files. The number of the cluster is a sequen-
tial number associated with the number os sub-
missions the user had done. For example, in
the tenth Condor submission the cluster num-
ber will be called “10”, and the first task of this
cluster “1” or more precisely “10.1”. In our exam-
ple, if task A receives a cluster number “10”, its
output file will be called “dag.out.10”, and the out-
put file for task B will be called “dag.out.11” due
to the order of the task definitions in the DAG-
Man input file.

11

#
task A
#
executable = A
input = test.data
output = A.out
log = dag.log
Queue

#
task B
#
executable = B
input = A.out
output = B.out
log = dag.log
Queue

#
task C
#
executable = C
input = A.out
output = C.out
log = dag.log
Queue

#
task D
#
executable = D
input = B.out C.out
output = final.out
log = dag.log
Queue

Figure 6. Condor submit description
files for DAG example

We could also use the $(cluster) macro
to run a different program for each task. For ex-
ample, the first line could be replaced by
the following statement: executable =

/path/dag_${cluster}.exe

This example is easier to code but less flexible.
A problem is how to specify the inputs. For exam-
ple, task B should receive as input the output of
task A, whose name is dependent on the variable
cluster. But, the Condor DAGMan description
language does not support arithmetics to allow a
code like input=dag.out.{$(cluster)-1}.

An alternative to allow the input description in
this example is to use a VARS entry in the DAG-
Man input file. Each task would have a VARS en-
try to define an input file name (e.g. VARS A

inputfile="test.data"). The Condor sub-
mit file would have an extra line: input =

${inputfile}.
Besides, two limitations exist in the definition

of the Condor submit description file to be used by

#
second_example.dag
#
Job A dag_job.condor
Job B dag_job.condor
Job C dag_job.condor
Job D dag_job.condor
PARENT A CHILD B C
PARENT B C CHILD D

#
dag_job.condor
#
executable = /path/dag.exe
output = dag.out.$(cluster)
error = dag.err.$(cluster)
log = dag_condor.log
queue

Figure 7. Another solution for DAG ex-
ample: DAGMan input file and Condor
submit description file

DAGMan. First, each Condor submit description
file must submit only one job (only one queue
statement with value one or no parameter). The
second limitation is that the submit description file
for all jobs within the DAG must specify the same
log. DAGMan enforces the dependencies within a
DAG, as mentioned, using the events recorded in
the log file produced by the job submission to Con-
dor.

Partitioning The DAGMan literature does not
present any algorithm for doing partitioning. A
job is submitted using Condor as soon as it is de-
tected that it does not have parent jobs waiting to
be submitted.

Management A DAG is submitted using the pro-
gram condor_submit_dag. The DAGMan pro-
gram itself runs as a Condor job. The con-
dor_submit_dag program produces a submit
description file. An optional argument to con-
dor_submit_dag, -maxjobs, is used to specify the
maximum number of Condor jobs that DAG-
Man may submit to Condor at one time. It is com-
monly used when there is a limited amount of in-
put file staging capacity. Thus the user must
be aware of these limitations to avoid prob-
lems.

Before executing the DAG, DAGMan check the
graph for cycles. If it is acyclic it proceeds. The
next step is to detect jobs that can be submitted.

The submission of a child node will not take
place until the parent node has successfully com-
pleted. There is no ordering of siblings imposed
by the DAG, and therefore DAGMan does not im-
pose an ordering when submitting the jobs to Con-

12

dor. For instance, in the previous example, jobs B
and C will be submitted to Condor in parallel.

3.2.2. Chimera The Chimera Virtual Data Sys-
tem (VDS) [43, 42, 5, 27] has been developed
in the context of the GriPhyN project [54]. The
GriPhyN (Grid Physics Network) project has a
team of information technology researchers and
experimental physicists, which aims to provide in-
frastructure to enable Petabyte-scale data intensive
computation.

Chimera handles the information of how data is
generated by the computation. Chimera provides
a catalog that can be used by application environ-
ments to describe a set of application programs
("transformations"), and then track all the data files
produced by executing those applications ("deriva-
tions").

DAG Representation The Chimera input consists
of transformations and derivations described in the
Virtual Data Language (VDL). VDL comprises
data definition and query statements. We will con-
centrate our description on data definition issues.
Note that, in Chimera’s terminology, a transforma-
tion is an executable program and a derivation rep-
resents an execution of a transformation (it is anal-
ogous, respectively, to program and process in the
operating system terminology).

Figure 8 presents VDL code example that ex-
presses the DAG example of Figure 4. The first
two statements define transformations (TR). The
first TR statement defines a transformation named
calculate that reads one input file (input a)
and produces one output file (output b). The
app statement specifies the executable name. The
keyword vanilla indicates one of the execution
modes of Condor (Vanilla Universe as we present
in Subsection 4.4.3). The arg statements usually
describe how the command line arguments are con-
structed. But, in this example, the special argument
stdin and stdout are used to specify a file-
name into which, respectively, the standard input
and output of the application woulde redirected.

The DV statements define derivations. The
string after a DV keyword names the transforma-
tion to be invoked. Actual parameters in the deriva-
tion and formal parameters in the transformation
are associated. Note that these four DV state-
ments define, respectively, tasks A, B, C, and D
of the DAG example shown in Figure 4. How-
ever, there is no explicit task dependency in
this code. The DAG can be constructed us-
ing the data dependency chain expressed in the
derivation statements.

Partitioning and Management Chimera uses a de-
scription of how to produce a given logical file. The

TR calculate{ output b, input a} {
app vanilla = "generator.exe";
arg stdin = ${output:a};
arg stdout = ${output:b};

}
TR analyze{ input a[], output c} {

app vanilla = "analyze.exe";
arg files = ${:a};
arg stdout = ${output:a2};

}
DV calculate { b=@{output:f.a},

a=@{input:test.data} };
DV calculate { b=@{output:f.b},

a=@{input:f.a} };
DV calculate { b=@{output:f.c},

a=@{input:f.a} };
DV analyze{ a=[@{input:f.b},

@{input:f.c}],
c=@{output:f.d} };

Figure 8. DAG example expressed in
Chimera VDL

description is stored as an abstract program execu-
tion graph. This abstract graph is turned into an ex-
ecutable DAG for DAGman by the Pegasus plan-
ner which is included in the Chimera VDS distri-
bution. Chimera does not control the DAG execu-
tion: DAGMan is used to perform this control.

Pegasus (Planning for Execution in Grids) [84,
27] is a system that can map and execute work-
flows 2. Pegasus receives an abstract workflow de-
scription from Chimera, produces a concrete work-
flow, and submits it to Condor’s DAGMan for exe-
cution. The abstract workflow describes the trans-
formations and data in terms of their logical names.
The concrete workflow, which specifies the loca-
tion of the data and the execution platforms, is op-
timized by Pegasus: if data described within an ab-
stract workflow already exist, Pegasus reuses them
and thus reduces the complexity of the concrete
workflow.

3.3. Considerations

As we presented in this section, tasks launched
by the user have some kind of dependence on each
other. Systems like Chimera and DAGMan allow
the user to specify, and, in the case of DAGMan,
control, dependencies among tasks. Although they
deal with task dependency, they do not handle data
locality. Data locality should be preserved in or-
der to avoid unnecessary data transfer, and con-
sequently, reduce network traffic. As the available

2 Workflow is usually related to automation of a business
process. In Pegasus context, workflow represent the com-
putation sequence that needs to be performed to analyze
scientific datasets.

13

systems do not deal with this issue, transient files
can be unnecessarily circulating in the network.

In the next section we discuss resource man-
agement issues that is another topic fundamen-
tal for computational grid environments. We con-
sider that each domain in the grid has a local RMS
which can be accessed remotely to allow applica-
tion scheduling decisions. Using an RMS support,
an application can be executed in the grid through
a metascheduler.

4. Resource Management Systems

A central part of a distributed system is resource
management. In a grid, a resource manager man-
ages the pool of resources that are available and
that can include resources from different providers.
The managed resources are mainly the processors,
network bandwidth, and disk storage. Applications
are executed using RMS information and control.

This section deals with the RMS subject. It
presents some initial background (Subsections 4.1
and 4.2), and then some scheduling systems (Sub-
sections 4.3 and 4.4). We conclude with an analy-
sis of the presented concepts and systems (Subsec-
tion 4.5).

4.1. Resource Management Issues

Scheduling is one of the most important and in-
teresting research topics in the distributed comput-
ing area. Casavant & Kuhl [18] consider schedul-
ing as a resource management problem. This man-
agement is basically a mechanism or policy used to
efficiently and effectively manage the access to and
use of a resource by its various consumers. On the
other hand, according to the GGF’s Grid Schedul-
ing Dictionary [89], scheduling is the “process of
ordering tasks on computer resources and ordering
communication between tasks”. Thus, both appli-
cations and system components must be scheduled.

Two key concepts related to scheduling and re-
source management are task and job. They can be
defined as follows according to Roehrig at al. [89]:

� Task is a specific piece of work required to be
done as part of a job or application.

� Job is an application performed on high per-
formance computer resources. A job may
be composed of steps/sections of individ-
ual schedulable entities.

Implementation of the scheduling mechanisms
can be part of a job management system. The Job
Management System (JMS) [60] generally plays
three roles, often as separate modules: Queuing,
Scheduling, and Resource Management.

The Queuing role has traditionally been played
by batch systems.

The Scheduling role is the process of selecting
which jobs to run, according to a predetermined
policy.

The Resource Management refers to the mon-
itoring, tracking, and reservation of system re-
sources; and enforcement of usage policy.

Gaj et al. [100] consider that the objective of a
JMS is to let users execute jobs in a non-dedicated
cluster of workstations. In this view, the queue el-
ement is not explicitly present in the system ar-
chitecture and the Resource Management has two
modules: Resource Monitor and Job Dispatcher.
Figure 9 [60] presents the interaction of these com-
ponents.

Figure 9. Job management system
components [60]

Therefore, independent of the JMS architec-
ture considered, the Resource Management Sys-
tem (RMS) is a central part of a distributed system.
Note that resource management is traditionally an
operating system problem. Resource management
in a distributed system differs from that in a cen-
tralized system in a fundamental way [103]: cen-
tralized systems always have tables that give com-
plete and up-to-date status information about all
the resources being managed; distributed do not.
The problem of managing resources without hav-
ing accurate global state information is very diffi-
cult. Managing large-scale collections of resources
poses new challenges. The grid environment intro-
duces five resource management problems [25]: (1)
site autonomy: resources are typically owned and
operated by different organizations, in different ad-
ministrative domains; (2) heterogeneous substrate:
sites may use different local RMS or the same sys-
tems with different configurations; (3) policy ex-
tensibility: RMS must support development of new
application domain-specific management mecha-

14

nisms, without requiring changes to code installed
at participating sites; (4) co-allocation: some ap-
plications have resource requirements that can be
satisfied only by using resources simultaneously
at several sites; and (5) online control: RMS must
support negotiation to adapt application require-
ments to resource availability.

An RMS for grids can be implemented in dif-
ferent ways. But, it may not be possible for the
same scheduler to optimize application and system
performance. Thus, Krauter et al. [62] states that
a grid RMS is most likely to be an interconnec-
tion of RMSs that are cooperating with one another
within an accepted framework. To make the inter-
connections possible, some interfaces and compo-
nents were defined in an abstract model. Figure 10
[62] shows the abstract model structure. Krauter et
al.’s model has four interfaces:

� resource consumer interface: used to com-
municate with actual applications or another
RMS that implements a higher layer;

� resource provider interface: communi-
cates with an actual resource or another RMS
that implements a lower layer;

� resource manager support interface: obtains
access to services such as naming and secu-
rity;

� resource manager peer interface: provides
protocols to connect with other RMSs. Sev-
eral protocols may be supported by this
interface, as for example resource discov-
ery, resource dissemination, trading, resolu-
tion, and co-allocation.

Krauter et al. [62] also present a taxonomy
that classifies RMSs by characterizing different at-
tributes. We used some of these criteria and others
to compare the systems we present in the next sec-
tions.

4.2. Scheduling Taxonomy

In this subsection we consider resource man-
agement concerning only job allocation to proces-
sors. Several solutions have been proposed to this
problem, which is usually called the scheduling
problem. Some authors studied solutions to this
problem and presented classifications. We present
in this subsection some of the most known well
classifications.

Casavant and Kuhl [18] is one of the most re-
ferred scheduling taxonomies. They propose a hi-
erarchical taxonomy that is partially presented in
Figure 11, since we selected some of the classi-
fications that are relevant to this study. Besides,

Figure 10. Resource Management
System abstract structure [62]

Casavant and Kuhl also propose a flat classifica-
tion from which we also selected just some issues.

At the highest level, they distinguish between
local and global. Local Scheduling is related with
the assignment of a process to the time-slices of
a single processor. Global scheduling is the prob-
lem of deciding where (in which processor) to ex-
ecute a process.

In the next level, beneath global scheduling, the
time at which the scheduling or assignment deci-
sions are made define static and dynamic schedul-
ing.

Static scheduling can be optimal or subopti-
mal. In case that all information regarding the state
of the system as well as the resource needs of
a process are known, an optimal assignment can
be made based on some criterion function (e.g.
minimizing total process completion time). When
computing an optimal assignment is computation-
ally infeasible, suboptimal solutions may be tried.
Within the realm of suboptimal solutions, there are
two general categories: approximate and heuristic.

The next issue, beneath dynamic schedul-
ing, involves whether the responsibility for the
task of global dynamic scheduling should phys-
ically reside in a single processor (physically
non-distributed) or whether the work involved
in making decisions should be physically dis-
tributed among the processors. In this text,
we use for simplicity non-distributed (or cen-
tralized) and distributed scheduling instead of
physically non-distributed and physically dis-
tributed. Within the range of distributed dy-
namic global scheduling, there are mechanisms
which involve cooperation between the dis-

15

� �

� �

local

global

�
� �

�
� �

static

dynamic

�
�

optimal

suboptimal

�
�

approximate

heuristic

� �

� �

physically

distributed

physically

non-distributed

�
�

cooperative

non-cooperative

Figure 11. Part of the Casavant and
Kuhl’s taxonomy [18]

tributed components (cooperative) and those in
which the individual processors make decisions in-
dependent of the actions of the other processors
(non-cooperative).

In addition to the hierarchical portion of the tax-
onomy, Casavant and Kuhl [18] present other dis-
tinguishing characteristics which scheduling sys-
tems may have:

� Adaptive versus Nonadaptive: an adaptive so-
lution to the scheduling problem is one in
which the algorithms and parameters used to
implement the scheduling policy change dy-
namically according to the previous and cur-
rent behavior of the system in response to pre-
vious decisions made by the scheduling sys-
tem. A nonadaptive scheduler does not neces-
sarily modify its basic control mechanisms on
the basis of the history of system activity.

� One-Time Assignment versus Dynamic Reas-
signment: One-time assignment can techni-
cally correspond to a dynamic approach, how-
ever it is static in the sense that once a de-
cision is made to place and execute a job,
no further decisions are made concerning the
job. In contrast, solutions in the dynamic re-
assignment class try to improve on earlier de-
cisions. This category represents the set of
systems that (1) do not trust their users to
provide accurate descriptive information, and
(2) use dynamically created information to
adapt to changing demands of user processes.
This adaptation is related to migration of pro-
cesses.

The scheduling algorithm has four compo-
nents [97]: (1) transfer policy: when a node can
take part of a task transfer; (2) selection pol-
icy: which task must be transferred; (3) location
policy: which node to transfer to; and (4) in-
formation policy: when to collect system state
information. Considering the location policy com-
ponent, a scheduling algorithm can be classified
as receiver-initiated (started by the task im-
porter), sender-initiated (started by the task
exporter), or symmetrically initiated. Their perfor-
mance are closely related to system workloads.
Sender-initiated gives better performance if work-
ers are often idle and receiver-initiated performs
better when the load is high.

Another important classification is dedicated
and opportunistic scheduling [116, 86]. Oppor-
tunistic scheduling involves placing jobs on non-
dedicated resources under the assumption that the
resources might not be available for the entire du-
ration of the jobs. Using opportunistic schedul-
ing, resources are used as soon as they become
available and applications are migrated when re-
sources need to be preempted. Dedicated schedul-
ing algorithms assume the constant availability of
resources to compute fixed schedules. Most soft-
ware for controlling clusters relies on dedicated
scheduling algorithms. The applications that most
benefit from opportunistic scheduling are those
that require high throughput rather than high per-
formance. Traditional high-performance applica-
tions measure their performance in instantaneous
metrics like floating point operations per second
(FLOPS), while high throughput applications usu-
ally use such application-specific metrics, and the
performance might be measured in TIPYs (trillions
of instructions per year).

In 1998, Berman [10] classified the scheduling
mechanisms for grid in three groups. Nowadays, a
current concept is the Metascheduler as presented
by the GGF [89]. Thus, we consider that the sched-
uling mechanisms can be classified in four groups:

� task schedulers3 (high-throughput sched-
ulers) promote the performance of the
system (as measured by aggregate job perfor-
mance) by optimizing throughput. Through-
put is measured by the number of jobs exe-
cuted by the system.

� resource schedulers coordinate multiple re-
quests for access to a given resource by op-
timizing fairness criteria (to ensure that all re-

3 Berman called this kind of scheduler as job scheduler. We
changed it to be consistent with the terminology adopted in
this text.

16

quests are satisfied) or resource utilization (to
measure the amount of resource used).

� application schedulers (high-performance
schedulers) promote the performance of in-
dividual applications by optimizing perfor-
mance measures such as minimal execution
time, speedup, or other application-centric
cost measures.

� meta-scheduler is a scheduler that allows to
request resources of more than one machine
for a single job. May perform load balancing
of workloads across multiple systems. Each
system would then have its own local sched-
uler to determine how its job queue is pro-
cessed. Requires advance reservation capabil-
ity of local schedulers.

4.3. Job Management Systems for Clusters

We consider that a cluster may be made of a set
of workstations, multiple CPU systems, or a set of
nodes in a parallel computer. Usually, this set of
execution nodes or hosts have a single batch server
that manages batch jobs. The batch processing is
related to the following concepts [89]:

� Queue is a collection of schedulable enti-
ties, e.g. jobs (or job-related tasks) within the
(batch) queuing system. Each queue has a set
of associated attributes that determine which
actions are to be performed upon each job
within the queue. Typical attributes include
queue name, queue priority, resource limits,
destination(s), and job count limits. Selection
and scheduling of jobs are implementation-
defined. The use of the term “queue” does not
imply the ordering is “first in, first out”.

� Batch is a group of jobs which are submitted
for processing on a computer and the results
of which are obtained at a later time.

� Batch Processing is the capability of run-
ning jobs outside the interactive login session
and providing for additional control over job
scheduling and resource contention.

� Batch Queue is an execution queue where the
request actually is started from.

� Batch Server is a persistent subsystem (dae-
mon) upon a single host that provides batch
processing capability.

� Batch System is a set of batch servers that are
configured for processing. The system may
consist of multiple hosts, each with multiple
servers.

The single batch system or centralized job man-
agement system lets users execute jobs on a clus-
ter. This system must perform at least the follow-
ing tasks [105]: (a) monitor all available resources;
(b) accept jobs submitted by users together with re-
source requirements for each job; (c) perform cen-
tralized job scheduling that matches all available
resources with all submitted jobs according to the
predefined policies; (d) allocate resources and ini-
tiate job execution; (e) monitor all jobs and collect
accounting information.

Some of the most well know centralized job
management systems are LSF (Load Sharing Fa-
cility) [72, 73] from Platform Computing Corpo-
ration, SGE (Sun Grid Engine) [102] from Sun
Microsystems, and PBS (Portable Batch System)
[13]. The original version of PBS is a flexible batch
queuing system developed for NASA in the early
to mid-1990s. Nowadays, the Altair Grid Tech-
nologies offer two versions: OpenPBS [80], the un-
supported older original version and PBS Pro [83],
the commercial version.

These three systems are general purpose dis-
tributed queuing systems that unite a cluster of
computers into a single virtual system to make bet-
ter use of the resources on the network. Most of
them perform only dedicated scheduling, but SGE
is also capable of performing opportunistic sched-
uling.

Although they can automatically select hosts in
a heterogeneous environment based on the current
load conditions and the resource requirements of
the applications, they are not suitable for grid envi-
ronments. Actually, these systems are very impor-
tant in our study since they will take part in a grid
environment as a “grid node”. However, they can-
not be used to manage a grid environment since
they have scalability problems, have a single point
of failure, and not provide security mechanisms to
schedule across administrative domains.

4.4. Scheduling Mechanisms for Grid En-
vironments

Grid environments are composed by several
trust domains. Usually, each domain has its pri-
vate scheduler, which works isolated from each
other. A resource manager grid aware is nec-
essary to allow all these isolated schedulers to
work together taking advantage of all grid po-
tential. Several works in the literature present
scheduling mechanisms for grids. In this sub-
section we present some of the most well know
works: Legion (Subsection 4.4.1), Globus (Sub-
section 4.4.2), Condor-G (Subsection 4.4.3), My-
Grid (Subsection 4.4.4), the GrADS’s Metasched-

17

uler (Subsection 4.4.5), and ISAM (Subsection
4.4.6).

4.4.1. Legion The Legion Project of University
of Virginia started in 1993. The main result is the
Legion system [53, 21, 69], which is nowadays
an Avaki commercial product. Legion is an object
oriented infrastructure for grid environments lay-
ered on top of existing software services. It uses
the existing operating systems, resource manage-
ment tools, and security mechanisms at host sites
to implement higher level system-wide services.
The Legion design is based on a set of core ob-
jects.

In Legion, resource management is a negotia-
tion between resources and active objects that rep-
resent the distributed application. In the alloca-
tion of resources for a specific task there are three
steps [108]: decision (considers task’s characteris-
tics and requirements, the resource’s properties and
policies, and users’ preferences), enactment (the
class object receives an activation request; if the
placement is acceptable, start the task), and moni-
toring (ensures that the task is operating correctly).

Figure 12 presents the main components that
are responsible for resource management. The Le-
gion object hierarchy rectangle presents the main
classes that can be instantiated to represent appli-
cations and resources. The LegionClass object is
the root class that is extended to create all other
core classes, including user defined classes (e.g.
MyObjClass). It defines that objects in Legion are
active objects. A LegionClass is also a manager of
its instances. Two main core objects represent the
basic resource types in Legion: Vaults and Hosts.

The Host is a machine’s representative to Le-
gion: it is responsible for executing objects on the
machine, protecting objects from each other, de-
activating objects, and reporting object exceptions.
It periodically updates its local state. When it re-
ceives a reservation request, it must ensure that the
Vault is available, there are enough resources, and
local allocation policy allows object instantiation.
Hosts can grant reservation for future service.

The Vault represents persistent storage. It does
not have a dynamic information.

The Collection acts as a repository for informa-
tion describing the state of resources comprising
the system. Each record is stored as a set of Le-
gion object attributes. Users can obtain information
about resources by issuing queries using a specific
query language. Chapin et al. [21] presents the fol-
lowing query to find all hosts that run the IRIX op-
erating system version 5.x:

match($host_os_name, "IRIX") and
match($host_os_name, "5\..*")

The Scheduler computes the mapping of objects
to resources. It obtains information by querying the
Collection and computes a mapping of object in-
stances to resources. Then, the mapping is passed
to the Enactor.

The Enactor “executes” each entry in the re-
ceived schedule. If all mappings succeed, then
scheduling is complete. If not, then a vari-
ant schedule, that contains a new entry for the
failed mapping, is selected.

The steps in object placement, as illustrated in
Figure 12, are as follows [21]: (1) The Collection
is populated with information describing the re-
sources. (2) The Scheduler queries the Collection,
and (3) based on the result and knowledge of the
application, computes a mapping of objects to re-
sources. This application-specific knowledge can
either be implicit (in case of an application-specific
Scheduler), or can be acquired from the applica-
tion’s classes. (4) This mapping is passed to the
Enactor, which (5) invokes methods on hosts and
vaults to (6) obtain reservations from the resources
named in the mapping. (7) After obtaining reser-
vations, the Enactor consults the Scheduler to con-
firm the schedule, and (8) after receiving approval
from the Scheduler, (9) attempts to instantiate the
objects through member function calls on the ap-
propriate class objects. (10) The class objects re-
port success/failure codes, and (11) the Enactor re-
turns the result to the Scheduler. (12) If, during ex-
ecution, a resource decides that the object needs
to be migrated, it performs an outcall to a Moni-
tor, (13) which notifies the Scheduler and the En-
actor that rescheduling should be performed.

4.4.2. Globus Globus [38, 93] is one of the most
well know projects on grid computing. As already
mentioned in Section 2, the most important result
of the Globus Project is the Globus Toolkit. The
toolkit consists of a set of components that imple-
ment basic services, such as security, resource lo-
cation, resource management, data management,
resource reservation, and communication. From
version 1.0 in 1998 to the 2.0 release in 2002 and
the latest 3.0, the emphasis is to provide a set of
components that can be used either independently
or together to develop applications. The Globus
Toolkit version 2 (GT2) design is highly related to
the architecture proposed by Foster et al. [41]. The
Globus Toolkit version 3 (GT3) design is based on
grid services, which are quite similar to web ser-
vices. GT3 implements the Open Grid Service In-
frastructure (OGSI) [40].

The Globus Resource Allocation Manager
(GRAM) [25] is one of the available services in
Globus. Each GRAM is responsible for a set of re-
sources operating under the same site-specific

18

Figure 12. Legion Resource Manager [21]

allocation policy, often implemented by a local re-
source management system, such as LSF or Con-
dor. GRAM provides an abstraction for remote
process queuing and execution with several pow-
erful features such as strong security and file
transfer.

Thus GRAM does not provide scheduling or re-
source brokering capabilities but it can be used to
start programs on remote resources, despite local
heterogeneity due to the standard API and proto-
col. The Resource Specification Language (RSL)
is used to communicate requirements.

To take advantage of GRAM, a user still needs
a system that can remember what jobs have been
submitted, where they are, and what they are do-
ing. To track large numbers of jobs, the user
needs queuing, prioritization, logging, and ac-
counting. These services cannot be found in
GRAM alone, but is provided by systems such as
Condor-G [107].

The Globus research group and IBM started to
work on the WS-Resource Framework [117]. They
released an initial architecture and specification
documents with co-authors from HP, SAP, Aka-
mai, TIBCO and Sonic on January 20, 2004. The
WS-Resource Framework (WSRF) is an extension
of OGSI. WSRF is a set of six Web services speci-
fications. To date, drafts of three of these specifica-
tions have been released, along with an architecture
document that motivates and describes the WS-
Resource approach to modeling stateful resources
with Web services.

4.4.3. Condor and Condor-G Condor High
Throughput Computing System [107, 104, 116],
or simply Condor, is a specialized workload/re-
source management system for compute-intensive
jobs. It can be used to manage a cluster of ded-

icated nodes as well as to harness wasted CPU
power from otherwise idle desktop worksta-
tions. Using idle desktop workstation compu-
tational power is the main difference between
Condor and the traditional RMS. The Con-
dor scheduling policy can be classified as oppor-
tunistic.

Condor is composed of a collection of differ-
ent daemons [116]. Figure 13 presents a schematic
view of a Condor pool with the daemons. Con-
dor exercises administrative control over a Con-
dor pool. A pool is a set of resources that report
to a single daemon called the collector. The
collector is the central repository of informa-
tion in the Condor system. Almost all Condor dae-
mons send periodic updates to it. Each update is in
the form of a ClassAd, a data structure consisting
of a set of attributes describing a specific entity in
the system. The machine where the collector
runs is referred to as the central manager.

The central manager also runs the
negotiator daemon, which periodically
performs a negotiation cycle. This cycle is a pro-
cess of matchmaking, where the negotiator
tries to find matches between various ClassAds (re-
source requests and resource offers). Once a match
is made, both parties are notified and are responsi-
ble for acting on that match.

The startd daemon runs on all machines of
the pool and monitors the conditions of the re-
source where it runs, publishes resource offer Clas-
sAds, and it is responsible for enforcing the re-
source owner’s policy for starting, suspending, and
evicting jobs. For example, owners can specify
which users or jobs a resource most prefers to
serve. Any machine running a startd can be re-
ferred to as an execute machine, since it is able to
execute Condor jobs.

19

Figure 13. Architecture of a Condor
pool with the daemons [116]

The user submit his/her jobs to a daemon called
schedd. This daemon maintains a persistent job
queue, publishes resource request ClassAds, and
negotiates for available resources. After it receives
a match for a given job, the schedd enters into
a claiming protocol directly with the startd.
Through this protocol, the schedd presents the
job ClassAd to the startd and requests tempo-
rary control over the resource. Once it has claimed
a given resource, the schedd performs its own
local scheduling to decide what jobs to run. Any
machine running a schedd can be referred to as
a submit machine, since users are able to submit
Condor jobs from that host.

When the schedd starts a job, it spawns a
shadow process on the submit machine and the
startd spawns a starter process on the cor-
responding execute machine. The shadow serves
request for files to transfer, logs the job’s process,
and reports statistics. The starter sets up the ex-
ecution environment and monitors the job.

Condor allows the user to run his/her jobs in
different execution environments called universes.
The main universes supported are the following
[104]:

� Vanilla: is used to run serial (non-parallel)
jobs. Any program that runs outside of Con-
dor will run in the Vanilla Universe.

� Standard: allows a job running under Con-
dor to handle system calls by returning them
to the machine where the job was submitted.
The standard universe also provides the mech-
anisms necessary to take a checkpoint and mi-
grate a partially completed job. To use the
standard universe, it is necessary to relink the
program with the Condor library.

� MPI: allows parallel programs written with
MPI (using the MPICH interface) to be man-
aged by Condor.

� PVM: allows master-worker style paral-
lel programs written for PVM to be used
with Condor. Condor runs the master appli-
cation on the machine where the job was
submitted and workers in other available ma-
chines in the pool.

Checkpointing is done in the Standard Uni-
verse. A checkpointing of an executing program is
a snapshot or the program’s current state. It pro-
vides a way for the program to be continued from
that state later on. It is desirable to ensure that only
the computation done since the last checkpoint is
lost in case of fault or preemption. Condor can be
configured to periodically produce a checkpoint for
a job.

Condor has a mechanism called flocking that al-
lows jobs to be scheduled across multiple Condor
pools [107]. Nowadays, it is implemented as direct
flocking that only requires agreement between one
individual and another organization, but accord-
ingly only benefits the user who takes the initia-
tive. A particular job will only flock to another pool
when it cannot currently run in the pool of submis-
sion. It is a useful feature, but is not enough to en-
able jobs to run in a grid environment, mainly due
to security issues.

Condor-G [107, 44] is the job management part
of the Condor project to allow users to access grid
resources. Instead of using the Condor-developed
protocols to start running a job on a remote ma-
chine, Condor-G uses the Globus Toolkit to start
the job on the remote machine. Thus, applications
can be submitted to a resource accessible through
a Globus interface.

Condor-G uses the protocols for secure inter-
domain communications and standardized access
to a variety of remote batch systems from Globus.
The user concerns of job submission, job alloca-
tion, error recovery, and creation of a friendly exe-
cution environment comes from Condor.

The major difference between Condor flock-
ing and Condor-G is that Condor-G allows inter-
domain operation on remote resources that require
authentication, and uses Globus standard proto-
cols that provide access to resources controlled by
other resource management systems, rather than
the special-purpose sharing mechanisms of Con-
dor [44].

4.4.4. MyGrid MyGrid [22, 81] enables the exe-
cution of bag-of-tasks parallel applications on all
machines the user has access to. A bag-of-tasks ap-
plication has completely independent tasks. The
authors [81] argue that scheduling indepen-
dent tasks, although simpler than tightly cou-
pled parallel applications, is still difficult due

20

to the dynamic behavior and the intrinsic re-
source heterogeneity exhibited by most grids.
The authors also indicate that it is usually diffi-
cult to obtain good information about the entire
grid as well as about the tasks to make the sched-
uling plan. Thus, they propose a solution that does
not require almost any kind of information: My-
Grid uses a dynamic algorithm called Workqueue
with Replication (WQR).

The WQR is a dynamic scheduling algorithm
that is not based on performance information. It
is an extension of the Workqueue algorithm. The
Workqueue algorithm works as follows: Tasks are
chosen in an arbitrary order in the “bag of tasks”
and sent to the processors, as soon as they become
available. After the completion of a task, the pro-
cessor sends back the results and the scheduler as-
signs a new task to the processor. A problem with
the Workqueue arises when a large task is allocated
to a slow machine near the end of the schedule.
When this occurs, the completion of the applica-
tion will be delayed until the complete execution
of this task.

The WQR algorithm uses task replication to
cope with the heterogeneity of hosts and tasks, and
also with the dynamic variation of resource avail-
ability due to the load generated by other users in
the grid. Note that this strategy allows to deal only
with the heterogeneity related to computational ca-
pacity. It works like the Workqueue algorithm until
all tasks are assigned (“the bag-of-tasks becomes
empty”). At this time, hosts that finished their tasks
are assigned to execute replicas of tasks that are
still running. Tasks are replicated until a predefined
maximum number of replicas is achieved (in My-
Grid, the default is one). This replication leads to
wasted CPU cycles. Note that the replication as-
sumes that the tasks do not cause side effects. If a
task does not have side effects, it can be executed
more than once producing always the same final re-
sults.

MyGrid executes at the user level. There is a
machine called home machine that coordinates the
execution of the applications through MyGrid. It
is assumed that the user has good access to the
home machine (often it will be the user’s desktop).
The home machine schedules tasks to run on the
grid machines using the WQR algorithm. Grid ma-
chines do not necessarily share file systems with
the home machine. To access grid resources, there
is a Grid Machine Interface that has four services:
(1) task start-up on a grid machine (remote exe-
cution); (2) cancellation of a running task; (3) file
transfer from the grid machine to the home ma-
chine; and (4) file transfer from the home machine
to the grid machine.

OurGrid [4] extends the MyGrid efforts, includ-
ing the utilization of grid technology on commer-
cial settings and the creation of large-scale com-
munity grids. OurGrid is a resource sharing sys-
tem based on peer-to-peer technologies. The re-
sources are shared according to a “network of fa-
vors model”, in which each peer prioritizes those
who have credit in their past history of interactions.

4.4.5. MetaScheduler in GrADS Project The
GrADS system [11] is an application sched-
uler. Its execution model can be described as
following. The user invokes the Grid routine com-
ponent to execute his/her application. The Grid
Routine invokes the component Resource Selec-
tor. The Resource Selector accesses the Globus
MetaDirectory Service (MDS) to get a list of ma-
chines that are alive and then contact the Network
Weather Service (NWS) to get system informa-
tion for the machines. The Grid Routine then
invokes a component called Performance Mod-
eler with the problem parameters, machines and
machine information. The Performance Mod-
eler builds the final list of machines and send
it to the Contract Developer for approval. The
Grid routine then passes the problem, its parame-
ters, and the final list of machines to the Applica-
tion Launcher. The Application Launcher spawns
the job using the Globus management mech-
anism (GRAM) and also spawns the Contract
Monitor. The Contract Monitor monitors the ap-
plication, displays the actual and predicted times,
and can report contract violations to a resched-
uler. All these components are presented in Figure
14 as white rectangles and ellipse.

Although the execution model is efficient from
the application perspective, it does not take into ac-
count the existence of other applications in the sys-
tem. Thus, Vadhiyar and Dongarra [111] proposed
a metascheduling architecture in the context of the
GrADS Project. The metascheduler receives candi-
date schedules of different application level sched-
ulers and implements scheduling policies for bal-
ancing the interests of different applications. Fig-
ure 14 presents the modified GrADS architecture
where the four new components are represented as
colored rectangles and ellipses: Database Manager,
Permission Service, Contract Negotiator, and Ex-
pander.

The Database Manager maintains a record
for each application submitted to the grid sys-
tem. Other components query this information to
make scheduling decisions.

The Permission Service is a daemon that re-
ceives requests from the applications to grant them
permission to proceed with the use of the grid sys-
tem. It checks if the resources meet the applica-

21

Figure 14. Modified GrADS architecture for metascheduler proposal [11]

tion’s requirements. If not, it tries to accommodate
the new application waiting other applications fin-
ish or stopping resource and time consuming ap-
plications.

The Contract Negotiator is a daemon that re-
ceives application level schedules from the appli-
cations. The schedules are the contracts submitted
to the Contract Developer which presents the final
list of machines that the application obtains from
the Performance Modeler through the employment
of the application specific execution model. The
Contract Negotiator acts as a queue manager con-
trolling different applications of the grid system.

If the Contract Negotiator approves the contract,
the application can proceed to the launching phase,
if not, the application restarts from the resource se-
lection phase. It can reject the contract in the fol-
lowing cases: (1) application got its resource infor-
mation before an executing application started; (2)
the performance of the new application can be im-
proved significantly in the absence of an execut-
ing application; (3) the already executing applica-
tion can be severely impacted by the new applica-
tion.

The Expander is a daemon that tries to improve
the performance of the already executing appli-
cations. When an application completes, the Ex-
pander determines if performance benefits can be
obtained for an already executing application by
expanding the application to utilize the resources
freed by a completed application.

4.4.6. ISAM ISAM (Infra-estrutura de Suporte
às Aplicações Móveis – Support Infrastruture to
Mobile Applications) [119, 118, 120] is a proposal

of an integrated solution, from development to exe-
cution, for general purpose pervasive applications.
These applications are distributed, mobile, adap-
tive an reactive to the context. Aiming at support-
ing the follow-me semantics (the application fol-
lows the user) for the pervasive applications, the
ISAM middleware concerns with resource man-
agement in heterogenous, multi-institutional, net-
works.

The ISAM architecture is organized in lay-
ers with three abstraction level as we can see in
Figure 15. At the high level, ISAM provides a pro-
gramming language, ISAMadapt, which al-
lows the application designer to express adaptions.
ISAMadapt build on the execution model de-
fined by Holo paradigm, being compiled to Java
code which access the ISAM middleware ser-
vices.

The intermediate level provides what can be
called the ISAM middleware. It provides support
the User Virtual Environment, a key component for
supporting user’s mobility. The scheduling is one
of the main components in what concerns to the
management of the pervasive execution.

TiPS (TiPS is a Probabilistic Scheduler) [88, 87]
is part of the scheduling component. TiPS provides
a scheduling strategy based on dynamic sensors,
which includes a bayesian model of the environ-
ment to be managed.

The distributed environment is managed
by ISAM in four levels: (a) hosts are the ma-
chines; (b) network segments are a set of hosts; (c)
computing cells delimits the institutions bound-
aries; (d) cell groups are groups of computing

22

Figure 15. ISAM architecture [88]

cells. Scheduling decisions are made consider-
ing this hierarchy.

Finally, the ISAM low level is the fabric level
with the physical components, the operating sys-
tem, and the Java Virtual Machine.

4.5. Comparison

We presented some of the most representative
RMSs used nowadays in grid research. We now
present a brief comparison of them, summarized
in Tables 2 and 3. We built this table using some
of the characteristics we considered more impor-
tant to our work.

In Table 2, the first column presents our clas-
sification presented in Section 4.1 which includes
Berman’s classification and the GGF metasched-
uler definition. PBS, LSF, and SGE are task sched-
ulers. Condor and Legion are resource schedulers
and both support at some extent scheduling over
multiple domains. MyGrid is the only classified as
application scheduler. However, in the literature,
there are other systems that could be classified as
application scheduler such as the EasyGrid frame-
work [14, 31]. EasyGrid is a framework for the au-
tomatic grid enabling of MPI parallel applications.
It provides services oriented towards the individ-
ual application in such a way that each applica-
tion appears to have exclusive access to a virtual
grid. Globus, Condor-G, the GrADS’ Metasched-
uler, and ISAM can be classified as metaschedulers
or high-level schedulers.

PBS, LSF, and Legion can also be classified
as dedicated schedulers, SGE can work as a ded-

icate scheduler as well as an opportunistic sched-
uler, while Condor is an opportunistic scheduler. In
our table, the symbol “–” means that the classifica-
tion cannot be applied to the corresponding sys-
tem.

The third column indicates that PBS, LSF, SGE,
and Condor have centralized schedulers while Le-
gion, Globus, Condor-G, GrADS’ Metascheduler,
and ISAM are hierarchical. MyGrid was classified
as centralized, but actually there is one instance of
scheduler for each running application.

Other criterion shown in the table (last col-
umn) is Open Source, i.e., if there is source code
available for research purposes. Most of the RMS’
source code are available as our table shows.

Table 3 presents other aspects of these systems
and is a continuation of the previous table. All
RMS use some kind of static information to take
scheduling decisions. The first column indicates
if the RMS also needs some dynamic information
(usually related to resource utilization and avail-
ability). MyGrid is the only one that does not need
any dynamic information to make its decisions.
MyGrid and ISAM use the task replication tech-
nique to obtain fault tolerance and better perfor-
mance at the cost of wasting some CPU cycles.

Since computational grids are dynamic, jobs
should adapt themselves according to characteris-
tics such as availability and load in order to obtain
application performance. Execution must be flex-
ible and adaptive to achieve either robust or even
good performance due to heterogeneity of config-
uration, performance, and reliability in grid envi-
ronments. So, one of the approaches is that jobs

23

System Classification Open Source
PBS task scheduler dedicated centralized OpenPBS – yes

PBSPro – no
LSF task scheduler dedicated centralized no
SGE task scheduler dedicated and op-

portunistic
centralized no

Condor resource scheduler opportunistic centralized yes
Legion resource scheduler dedicated hierarchical no

MyGrid application scheduler – centralized (per
application)

yes

Globus metascheduler – hierarchical yes
Condor-G metascheduler – hierarchical yes
GrADS’
Metascheduler

metascheduler – hierarchical no

ISAM metascheduler – hierarchical yes

Table 2. Comparison of presented schedulers – part I

System Dynamic in-
formation

Migration Replication

PBS yes no no
LSF yes no no
SGE yes no no

Condor yes yes no
Legion yes yes no

MyGrid no no yes

Globus yes no no
Condor-G yes no no
GrADS’
Metasched-
uler

yes yes no

ISAM yes yes yes

Table 3. Comparison of presented
schedulers – part II

are able to migrate. Migration [89] describes the
rearrangement of allocated resources within a re-
source pool. Several works deal with the so called
“opportunistic” migration of jobs when a “better”
resource is discovered [111, 112, 75, 2]. The Mi-
gration’s column indicates if the RMS can migrate
a job after its allocation. Condor, Legion, GrADS’
metascheduler, and ISAM can migrate a running
job for performance reasons. Condor can also mi-
grate to avoid disturbing a user due to opportunistic
scheduling. Note that in Globus and Condor-G mi-
gration in the local RMS can happen, but both can-
not directly control this kind of mechanism.

The two most popular grid-aware systems are
Condor and Globus. As mentioned before, Con-
dor is a specialized workload management sys-
tem for compute-intensive jobs. Like other full-
featured batch systems presented, Condor provides
a job queueing mechanism, scheduling policy, pri-
ority scheme, resource monitoring, and resource
management. Users submit their serial or parallel
jobs to Condor, Condor places them into a queue,
chooses when and where to run the jobs based upon
a policy, carefully monitors their progress, and ulti-

mately informs the user upon completion. Among
other things, Condor allows transparent migration
of jobs from overloaded machines to idle machines
and checkpointing, which permits that jobs can
restart in another machine without the need to start
from the beginning. These are typical tasks of a re-
source manager.

Globus, by its turn, is a whole framework that
includes a set of services used, for example, to se-
curely transfer files from one grid node to another
(GridFTP), to manage meta data (MDS), and to al-
locate remote resources (GRAM). Condor-G [44]
puts together Condor facilities to manage jobs with
the Globus grid facilities such as secure authentica-
tion (GSI) and data transfer.

Condor applies an opportunistic scheduling pol-
icy that concentrates on allocating idle resources to
take advantage of idle CPU cycles. Globus focuses
on providing several different services to execute
secure code on authorized machines.

Application management and control, load bal-
ancing and data locality are not their main focus.

The Condor scheduling system and the
MetaScheduler in the GrADS Project present
some similarities. Both support preemption of ex-
ecuting jobs to either accommodate other jobs or
to transfer the control of the resources to the re-
source owners. However, the first is more con-
cerned to free resources reclaimed by the owners
whereas the second one tries to get perfor-
mance. Besides, the Condor’s Negotiator compo-
nent has similar functionality to the Metasched-
uler’s Contract Negotiator.

An aspect not covered in our tables is related to
resource description. The resources must be repre-
sented in a somehow independent way to manage
the inherent heterogeneity of grid environments.
Legion has adopted the object model as a way to
get a uniform way to access the resources. Globus
and Condor-G have decided to adopt a description

24

language which is translated to an internal repre-
sentation.

All systems present some way to deal with
faults. One important issue that RMS must deal
with is data loss. Most available software can not
handle network traffic properly. For example, Con-
dor, one of the software that we had experience
with, can either loose jobs that were in the job
queue, or generate corrupt data files, because of
lack of network flow control. The user is respon-
sible to manually control the number of jobs that
will be simultaneously submitted in order to avoid
network congestion. As a consequence of the lit-
tle attention given to flow control and data man-
agement, data loss can occur due to overflow when
too much traffic is generated on data and code
transfers. Some experiments reported on [30] il-
lustrate this problem. From 45,000 tasks launched,
around 20% failed for several reasons, including
data corrupted due to packet loss, and had to be re-
submitted.

Other problem concerns application submis-
sion. In some systems, applications are launched
in the user machine. Because most grid aware soft-
ware create one connection or a new process to
each launched job, the submit machine can be-
come overloaded and have a very low response
time.

On the light of this discussion about grid aware
systems and their limitations, we discuss a promis-
ing solution to these limitations in the next section.

5. Toward an integrated system to
manage applications and data in
grid environments

This section aims to address some of the issues
related to the construction of an integrated system
to manage application and data in grid environ-
ment. More specifically, we are concerned with the
execution management of applications that spread
a high number of tasks (thousands) in a grid envi-
ronment.

Figure 16 presents a schematic view of the steps
necessary to execute a distributed application. The
first step is called partitioning: an application com-
posed by several tasks is divided in subgraphs. Par-
titioning aims to get together tasks that are depen-
dent. Then, the obtained subgraphs can be grouped
during the mapping step according to the available
resources. Finally, the allocation step is respons-
able for ensuring the execution of the subgraphs
on actual resources.

Before presenting our model to perform such
steps, we present our premises (Subsection 5.1).
Next, we introduce our application partitioning

Figure 16. Steps to execute a dis-
tributed application

model (Subsection 5.2). We advocate that a hier-
archy of managers that can dynamically distribute
data and tasks can aid the task of application man-
agement for applications that spread a high num-
ber of tasks. Then, we present an overview of our
task submission model (Subsection 5.3), including
the model components (Subsection 5.3.1). We con-
clude this section presenting some final considera-
tions (Subsection 5.4).

5.1. Premises

A premise is an assumption made or implied as
a basis of argument. The main premises assumed
to the conception of our model are the following:

Heterogeneous environment We assume that ma-
chines could have different software and hardware
configurations, and probably will have as one could
expect in any grid environment. This heterogeneity
must be taken into consideration in our scheduling
decisions.

A huge number of tasks can be submitted This as-
sumption is fundamental in the definition of several
details in our model. By a huge number of tasks
we mean applications that will generate hundreds
or thousands of processes.

Suppose the user submits in his/her home ma-
chine an application with, for example, ten thou-
sand tasks. If all the submission and the control
were done in the home machine, probably this ma-
chine would stall and the user would not continue
to work there. This problem is already known in
the literature. For example, Condor [107] allows
the user to specify a limit of jobs that can be sub-
mitted in a specific machine. This is not the best
solution, since users must have some previous ex-

25

perience with job submission in this environment
to infer the appropriate limit avoiding stall his/her
machine and getting a good degree of concurrency.

These kinds of applications could not be easily
controlled by hand. Thus, our proposal needs to be
scalable. It also must provide execution feedback
to users since execution will probably take several
hours or even days.

Tasks do not communicate by message pass-
ing Message passing introduces many aspects
to be considered in the partitioning and allo-
cation phases. We decided to assume that our
applications do not communicate through mes-
sages. This is not a strong imposed restriction,
i.e. we can treat parallel applications with mes-
sage passing in the future. We just decided to
postpone the analysis of this kind of applica-
tion to narrow our initial scope, simplifying our
model conception. Besides, we have at this mo-
ment some applications to use in our experiments
that do not use message passing, e.g. Monte Carlo
simulation for civil engineering [120] and exper-
iments of inductive logic programming (ILP) to
solve biostatistics problems [30].

Tasks can have dependencies with other tasks due
to file sharing A bag-of-tasks is the simplest way
an application can be organized: there are no de-
pendencies between tasks, so they can be executed
in any order. Some Monte Carlo simulations can
be classified in this group. The grid system My-
Grid [81] is an example of a system that deals prop-
erly with this kind of application, and has proved
its usefulness.

Applications can also be modeled as a depen-
dency graph of tasks due to file sharing. For ex-
ample, if a task � produces an output file

���
that

task � uses as its input file, then � must wait until
task � finishes. In this example, � and � are nodes
and there is an edge from � to � , therefore � can
only be launched after � finishes its execution. This
is a common assumption as presented in Condor’s
DAGMan [107] and Globus’ Chimera [42].

We consider that we always have a graph of
tasks. The simplest graph is a bag-of-tasks (only
nodes, no edge) but more complex graphs must
also be supported. Thus, our scheduling decisions
also consider task precedence.

Huge number of files can be manipulated by tasks
Tasks can communicate and synchronize through
files, so, each task usually will manipulate at least
two files (one input and one output). Since we as-
sume a huge number of tasks, a very high num-
ber of files must be managed. Efficient algorithms
to keep data locality and to efficiently transfer files

are crucial to the success of the model under this
assumption.

Huge files can be used in computation Huge file
transfers could cause network congestion, package
loss, and can make transfer times unbearable. So,
some kind of action must be taken to control file
transfer avoiding package loss and network sat-
uration. Preserving data locality, and staging and
caching techniques could help minimizing perfor-
mance losses due to data transfer latency.

Underlying grid environment is secure We assume
that a secure connection is available between grid
nodes. We also assume that user authentication
and authorization are available in the grid environ-
ment. For example, the Globus Security Infrastruc-
ture (GSI) [114] can be used to satisfy our require-
ments.

Each grid node has its local resource manager
Local resource managers (lower-level schedulers)
can have several attributes such as presented in
[94]. We assume the following attributes will be
available at each grid node:

� exclusive control: this attribute indicates if the
local manager is in exclusive control of the
resources. This information is useful to deter-
mine the reliability of the scheduling informa-
tion;

� consideration of job dependencies: the lower-
level scheduler takes dependencies between
allocations into account if they are provided
by the higher-level scheduling instance. For
instance, in case of a complex job request the
lower-level scheduling will not start an allo-
cation if the completion of another allocation
is required and still pending.

We also assume that once a task is allocated it
will not be scheduled again or at least this will be
transparent to the higher level resource managers.

5.2. Application Partitioning Model

We assume users submit applications to our
metascheduler using our description language. Our
description language GRID-ADL is an extension
of DAGMan input description file language, as we
describe next (Subsection 5.2.1). It also presents
the main idea of Chimera’s language: the user does
not have to present explicitly the graph, but only
the data files manipulated. Each application has
several tasks and can be represented as a Directed
Acyclic Graph (DAG). In our DAGs, the nodes rep-
resent tasks and edges represent dependencies be-
tween tasks through data files access. Our system

26

can infer automatically the DAG through the anal-
ysis of the data flow. The weight of a node denotes
the required amount of computation. The user can
specify these values, to allow a better partitioning.
Otherwise, a same default value is set to all nodes.

Since we have a limited number of re-
sources, nodes must be grouped to be executed in
the same execution unit (processor, cluster or lo-
cal network). We refer to this grouping and map-
ping as an application partitioning. We consider
that a good partitioning is the one that mini-
mizes data transfer (i.e. maximizing data local-
ity) and maximizes application performance. Note
that partitioning the DAG is a compromise be-
tween two conflicting forces: keeping nodes
separate increases parallelism at the cost of com-
munication, whereas clustering them causes se-
rialization but saves communication [34]. We
describe how applications are partitioned, con-
sidering our application taxonomy (defined in
Subsection 2.2), in Subsection 5.2.2.

5.2.1. Description Language Generally, users
run their jobs using some kind of descrip-
tion file that contains characteristics such as the
task to be executed, the computational power re-
quired or the full path to the executable. As
most users are acquainted with this kind of rou-
tine, we opted to maintain this classical approach,
and provide to the user a simple description lan-
guage that can quickly represent the user applica-
tions and needs.

Our description language is called GRID-
ADL (Grid Application Description Language).
GRID-ADL has the legibility and simplic-
ity of shell scripts and DAGMan [107] language
while presents data relations that allow to in-
fer automatically the DAG in the same way
Chimera [42] does. The user submits a file de-
scribing only the kind of application (indepen-
dent, loosely-coupled, or tightly-coupled tasks)
and its tasks indicating input and output files.

Our language syntax is represented in Backus-
Naur-Form (BNF) in Figure 21. Since it is self ex-
planatory, we will not explain all details of our de-
scription language. We will only highlight the main
aspects using the three DAG examples presented in
Figure 17.

As already mentioned, our language can be con-
sidered as an extension of the DAGMan descrip-
tion language. Some main differences are the fol-
lowing:

� the user can give a hint on how the task
graph can be classified (“independent",
“loosely-coupled”, or “tightly-coupled”).
This is useful to speedup the partition-

(a) (b)

(c)

Figure 17. DAG used in input file ex-
amples

ing phase, since there are different algo-
rithms for each type of graph as we present in
the next section;

� the task description presents, besides a name
and a submission file, input and output file
names;

� some shell script like constructions are avail-
able to facilitate the description of tasks.

The first two differences can be seen in Figure
18. It presents an example where the user first indi-
cates that his/her application has a loosely-coupled
graph (first statement). The graph keyword is a
hint the user gives to our system. It is an optional
directive that should be used to get a better perfor-
mance when trying to infer the DAG. For instance,
if the user defines that the DAG represents inde-
pendent tasks, it is not necessary to run the algo-
rithm to infer the DAG since there is no precedence
order between tasks.

The next four subsequent lines describe four
tasks using the statement task. For each one the
user needs to define a name, a submission file, one
or more input files, and one or more output files.

1 graph loosely-coupled
2 task A A.sub -i data.in -o a.out
3 task B B.sub -i a.out -o b.out
4 task C C.sub -i a.out -o c.out
5 task D D.sub -i b.out c.out -o data.out

Figure 18. Example of input file for the
simple DAG (17(a))

This example is simpler than the transforma-
tions and derivations used by the Chimera descrip-
tion language while being more powerful than the
DAGMan specification language.

27

Besides these direct and simple statements, we
added to GRID-ADL some shell script like con-
structions as illustrated in Figure 19. The second
statement presents a string variable assignment.
Next, an iteration command is used to declare five
tasks as well to store in the string variable the out-
put file names. Then, the string variable is used to
indicate the input file of task 6. The final command
defines that the files stored in the string variable
would not be copied back to the user workspace,
i.e, they are transient or temporary files.

1 graph loosely-coupled
2 OUTPUT = ""
3 foreach ${TASK} in 1..5 {
4 task ${TASK} ${TASK}.sub -i ${TASK}.in
5 -o ${TASK}.out
6 OUTPUT = ${OUTPUT} + ${TASK}.out + " "
7 }
8 task 6 6.sub -i ${OUTPUT} -o data.out
9 transient ${OUTPUT}

Figure 19. Input file for DAG example
17(b)

The third example, in Figure 20, illustrates with
only three lines how to define an arbitrary num-
ber of tasks. In this case, we define an independent
graph (a bag-of-tasks application) with six tasks.
This example shows a nice feature of our language
not present in the specification languages of sys-
tems like Chimera or DAGMan.

1 graph independent
2 foreach ${TASK} in 1..6 {
3 task ${TASK} ${TASK}.sub -i ${TASK}.in
4 -o ${TASK}.out
5 }

Figure 20. Input file for DAG example
17(c)

5.2.2. Application Partitioning Proposal In a
first instance, we consider application partitioning
without associating it to resources. Our objective
with this first step is to maintain data locality. For
this step, we propose the use of different partition-
ing algorithms according to the application taxon-
omy presented previously.

Therefore in the case of independent tasks, par-
titioning becomes simple, because tasks are not
dependent on each other. We need to partition in

blocks considering the computational power re-
quired for each task, but there is no restriction of
which task will belong to each block.

For loosely-coupled graphs, where tasks can
have a low degree of dependency, we intend to
use classical graph partitioning algorithms to ob-
tain subtrees of the graph and try to allocate se-
quences of dependent tasks in the same grid node.
This will avoid unnecessary data transfers.

For tightly-coupled graphs, we intend to use
and algorithm called Scheduling by Edge Rever-
sal (SER) [8, 7, 45], that can produce good parti-
tioning of complex graphs taking into account re-
duction of network traffic [85].

Once the application is conveniently par-
titioned, we need to solve a second problem
that is how to map the partitions to the avail-
able grid nodes. As explained in Subsection 5.1,
we assume that each grid node will have a lo-
cal RMS to perform the schedule of tasks that
belong to a partition.

Our mapping will be done taking into consider-
ation:

� application requirements such as computa-
tional power and memory, disk, etc;

� node distance (latency should be minimized);
� link capacity (bandwidth should be maxi-

mized);
� node load;

Our intention is to use a predictive model based
on history to choose resources. This will be de-
veloped during our thesis work. This second
step, mapping, may require that some parti-
tions be grouped.

5.3. Task Submission Model

Based on the types of applications we have run
on grid environments, and motivated by experi-
ments carried out by physicists and bioinformat-
ics people, we designed an architectural model to
be implemented at a middleware level.

Our proposal is a hierarchical manage-
ment mechanism that can control the execution
of a huge number of distributed tasks preserv-
ing data locality while reducing the load of
the submit machines. The main idea is to bal-
ance the submission task control load into several
machines. Our architectural model relies on al-
ready available software components to solve is-
sues such as allocation of tasks within a grid node,
or authorization control.

In our design we control the application through
a hierarchical organization of controllers that is

28

<input_file> ::= [<graph_definition>]
<set_of_task_definition>
[<transient_file_definition>]

<graph_definition> ::= "graph" <graph_type>
<graph_type> ::= "independent"

| "loosely-coupled"
| "tightly-coupled"

<set_of_task_definition> ::= <task_definition>
| <loop>
| <assignment>
| <task_definition> <set_of_task_definition>
| <loop> <set_of_task_definition>
| <assignment> <set_of_task_definition>

<task_definition> ::= "task" <task_name>
"-i" <filenames> "-o" <filenames>
["-c" <number>] ["done"]

<task_name> ::= <string> | <var>

<loop> ::= "foreach" <var> "in" <range> "{"
<set_of_task_definition>

"}"
<range> ::= <number> .. <number>

| "{" <symbols> "}"
<symbols> ::= <string>

| <string> ";" <symbols>

<assignment> ::= <string> "=" <assignment’>
<assignment’> ::= <operator>

| <operator> <operation> <operator>
| (<var>|<number>) <math_operation> (<var>|<number>)

<operator> ::= <var>
| <string>
| <number>

<operation> ::= "+" | "-"
<math_operation> ::= "*" | "/" | "^"

<transient_file_definition> ::= "transient" <filenames>

<filenames> ::= <filename_unix>
| <filename_windows>
| <filename_unix> ";" <filenames>
| <filename_windows> ";" <filenames>

<filename_unix> ::= <string>
| <string> <filename_unix>
| <string> "." <string>
| "/" <string> <filename_unix>

<filename_windows> ::= <char> ":" <filename_windows2>
| "\\" <string> "\" <filename_windows2>

<filename_windows2> ::= <string>
| <string> "." <string>
| "\" <string> <filename_windows2>

<var> ::= "${" <string> "}"
<string> ::= <char> <string’>
<string’> ::= <char>

| <special_char>
| <digit>
| <char> <string’>
| <special_char> <string’>
| <digit> <string’>

<char> ::= a..z | A..Z
<special_char> ::= "_" | "-"
<number> ::= <digit>

| <number> <digit>
<digit> ::= 0..9

Figure 21. GRID-ADL syntax in BNF

29

transparent to the user. We believe a distributed hi-
erarchical control organization meets the applica-
tions needs, is scalable and can alleviate the load
of the submit machine avoiding stalling the user
working machine.

The application submission and control is
done through the following hierarchy of man-
agers: (level 0) the user submits an applica-
tion in a submission machine through the Ap-

plication Submit; (level 1) the Applica-

tion Submit partition the application in sub-
graphs and send to some Submission Managers

the task descriptions; (level 2) an Applica-

tion Submit instantiates on demand the Task

Managers that will control the task submis-
sion to the local RMSs on the grid nodes; (level
3) RMSs on grid nodes receive requests from our
Task Managers and schedule the tasks to be ex-
ecuted locally.

Our task submission model can be classified as
a high-level scheduler [94] since it queries other
schedulers for possible allocations. It can also be
considered as a Metascheduler [89] because it al-
lows to request resources of more than one ma-
chine for a single job.

5.3.1. Model Components The higher level of
the application control must infer the DAG and
make the partitioning. The user submits his/her ap-
plication through a submit machine that is a ma-
chine that has the Application Submit compo-
nent installed, which is our higher level controller.
The Application Submit is in charge of:

� processing the user submit file describing the
tasks to be executed;

� partition the tasks into subgraphs. The parti-
tioning algorithm is chosen according to the
kind of the DAG; and

� showing, in a user friendly way, the status and
monitoring information about the application.

Note that the Application Submit does not
have information about individual resources avail-
able in the system. It only keeps track of the Sub-
mission Manager status to avoid communicat-
ing with a failure or overloaded node.

Subgraphs defined by the partitioning algorithm
are assigned to the second level controllers, called
Submission Managers, which will instantiate
the Task Manager processes to deal with the ac-
tual submission of the tasks to the nodes of the grid.
This third level is necessary to isolate implementa-
tion details related to specific local resource man-
agers.

The Submission Manager main func-
tions are:

� to create daemons called Task Manager to
control actual task execution. Each daemon
keeps control of a subgraph of tasks defined
by the partitioning;

� to keep information about computational re-
sources; and

� to supply monitoring and status information
useful to the user. It stores in log files the in-
formation in a synthetic way. These informa-
tion are sent to the Application Submit

that has the responsibility to present data to
the user. This periodic information flow is
also used to detect failures.

The Task Manager is responsible for commu-
nicating with remote machines and launching tasks
to remote nodes. It works similarly to a wrapper
being able to communicate with a specific local re-
source manager. For example, a Task Manager is
instantiated to communicate with a grid node that
uses PBS while another Task Manager can be in-
stantiated to communicate with another grid node
that uses Condor.

We assume that our hierarchy of managers is
running in the local network to (1) avoid forcing
that other sites run our daemons, and (2) to mini-
mize communication time between managers.

5.3.2. Model Components Interaction Fig-
ure 22 illustrates the three main components of
our model and their relationship.

Figure 22. Hierarchical task manage-
ment main components

When the user submits his/her application in
the Submit Machine, the Application Submit

can already be active or can be started due to the
current request. When an Application Submit

30

becomes active, it broadcasts a message to its lo-
cal network. All Submission Managers reply to
this message to inform their location and status.

When an application submission request arrives
to the active Application Submit, the appli-
cation is partitioned in subgraphs. The Appli-

cation Submit uses its local information and
choose one or more Submission Managers to
accomplish the required tasks. The choice is done
based on the following criteria based on heuristics:

� the Submission Managers that have re-
cently communicated with the Application
Submit and reported that are not overloaded
have preference to receive subgraphs. The pe-
riodical communication can detect when a
Submission Manager is faulty or over-
loaded and thus not able to help in the tasks
submission and control;

� the computational power of the machine, con-
sidering CPU and memory, determines
the upper bound on the number of sub-
graphs a Submission Manager can re-
ceive. The more memory and CPU power a
machine has, the more subgraphs its Sub-

mission Manager can handle. This aims at
avoiding to overload the machine;

� the Application Submit keeps a weight
for each Submission Manager. Great-
er values indicate powerful Submission

Managers. This value is based on previ-
ous executions data and indicates how well
the Submission Manager had accom-
plished the tasks it received.

The chosen Submission Managers will re-
ceive subgraphs in an internal representation. At
this moment, there is no transfer of executables or
input data files.

Then, periodically the Submission

Managers will communicate to the Appli-

cation Submit the execution progress. This
communication allows online monitoring in-
formation to the user and also fault detection.
Notice that we are assuming that all Appli-

cation Submit and Submission Managers

will run in machines that belong to the local net-
work to reduce latency and network traffic when
submitting tasks.

Communication between the Submission

Managers can happen, since some tasks in differ-
ent subgraphs can have dependencies. Therefore
some synchronization points must be estab-
lished. The Application Submit must send,
included in the subgraph description, the iden-
tification of each manager that is related to

this subgraph. For example, suppose a Sub-

mission Manager � � has a task B which
must be executed after task A assigned to Sub-

mission Manager � � . In this case, � �
must send a message to � � when task A fin-
ishes.

Each Submission Manager must find the
most suitable resources to run its subgraphs. A
Submission Manager chooses a grid node us-
ing the following criteria:

� the Submission Managers keep a list of
available grid nodes. Some subgraphs will
have requirements that just some grid nodes
can match. Thus, grid nodes must match tasks
requirements to be selected;

� for each grid node, an upper bound on the
number of subgraphs it can receive will be es-
timated. Besides, the ongoing submissions are
taken into consideration;

� the Submission Manager keeps informa-
tion about previous executions. It uses this in-
formation to calculate a weight based on the
application characteristics. Greater values for
the weight indicate “better” grid node candi-
dates.

It is required a Task Manager, in the same ma-
chine of the Submission Manager, for each grid
node a Submission Manager can access. Task
Managers can be dynamically activated and de-
activated according to the Submission Manager

demands. The Submission Manager sends the
subgraph to a Task Manager according to the
grid node chosen.

The Task Manager is responsible for translat-
ing the internal subgraph description to the appro-
priate format for tasks submission. For example, a
Task Manager that communicates with a Condor
pool must prepare a Condor submit file and send
the appropriate command to start tasks.

5.4. Discussion

The assumption of a huge number of tasks has
important consequences to the scheduling archi-
tecture design. We cannot just submit tasks with-
out controlling system parameters and flow con-
trol as some systems do. For example, MyGrid
[81] considers that making a fast scheduling de-
cision is more important. It is true for many appli-
cations, but for our target applications it is neces-
sary to keep track of system information. For ex-
ample, if the application takes several days to fin-
ish, two seconds to find a suitable cluster is not a
problem.

31

Since it is generally hard to quantify analyti-
cally the efficacy of scheduling policies, experi-
ments should be performed in different scenarios
to perform the evaluation. However, repeatable ex-
periments are very difficult to be conducted on
highly distributed platforms. Specifically on grid
environments, Buyya and Murshed [16] state that
“it is impossible to create a repeatable and con-
trolled environment for experimentation and eval-
uation of scheduling strategies. This is because re-
sources in the grid span across multiple administra-
tive domains, each with their own policies, users,
and priorities.” Then, simulation is presented as a
good alternative for evaluating scheduling and dis-
tributed models in general. This is the approach we
will be taking in this work. In the next section we
will present some simulation tools and our simula-
tion model.

6. Simulation Model

In this section, we discuss some of the avail-
able simulation tools suitable to grid related exper-
iments (Subsection 6.1). We selected MONARC as
our simulation platform, and we present some of
its details (Subsection 6.2). Then, our designed and
started to implement a simulation model (Subsec-
tion 6.3) is presented.

6.1. Grid Simulation Tools

Simulation is a powerful tool to test distributed
models. It is cheaper, simpler, faster, and more flex-
ible than running in a real environment, avoiding
operational problems and implementation depen-
dent issues. Besides, it is possible to reproduce ex-
periments that otherwise would be non determinis-
tic. It is easier to setup different parameters, sim-
plifying debugging and monitoring of events.

Several tools exist for simulation of distributed
systems that allow grid environment simulation
[101]. Some are extensions of already available
simulation tools while others were implemented
from scratch.

We chose four tools to analyze in this work. All
selected tools are ongoing works, but all present
a stable distribution version for downloading. Be-
sides all are free software. Note that some other
tools are present in the literature such as Bricks
[1, 106], but they are discarded since the code is
not available for public download and thus could
not be selected to our experiments.

We summarized some characteristics of the se-
lected tools in Table 4, including their download
addresses. We present and discuss in the next sub-
sections these tools for grid simulation.

6.1.1. MicroGrid MicroGrid [99, 71], devel-
oped in the context of the GrADS Project [50, 11]
from University of California at San Diego, en-
ables evaluation of grid-oriented applications and
services. Globus applications can run unmodi-
fied in MicroGrid.

Globus users can profit from MicroGrid to
run their real applications into a virtual envi-
ronment. Liu et al. [71] present experiments
using the second version of MicroGrid, which in-
cludes peer-to-peer applications and applications
using the GridFTP protocol. Several hardware
and network configurations can be emulated us-
ing the actual user environment. For instance, the
user can run a Globus application in any grid con-
figuration while running the emulations on a ho-
mogeneous cluster.

The main concept to allow the emulation is the
so called virtualization [99], which is the charac-
teristic of applications perceiving only virtual grid
resources independent of the physical resources
being utilized. To provide virtualization, the Mi-
croGrid intercepts all direct use of Globus’ re-
sources or information services.

MicroGrid allows the user to model com-
puter, memory, and disk I/O performance. Since
the network behavior is often a critical ele-
ment of performance, one of the key components
of MicroGrid is the packet-level network simula-
tor MaSSF. MaSSF is a detailed network simu-
lator, which models the behavior of each single
IP packet. The second version uses DaSSF (Dart-
mouth Scalable Simulation Framework) [70] as
the basis for MaSSF. MaSSF aims to include pre-
cise modeling of arbitrary network structure and
on-line simulation (transferring of the communi-
cation traffic to the right destination with the right
delay).

MicroGrid can also introduce in the simulation,
link loss, router loss, and link speed variation.

6.1.2. SimGrid SimGrid [17, 66], presented as
one of the projects of the Grid Research And Inno-
vation Laboratory (GRAIL) in collaboration with
the Laboratoire de l’Informatique du Parallélisme
(LIP), was developed by researchers from Univer-
sity of California at San Diego and École Normal
Supérieure de Lyon. SimGrid is a toolkit simula-
tor that provides a C API for the simulation of
distributed applications. In a single machine, Sim-
Grid, and the next two simulators to be analyzed,
can simulate any (heterogeneous) distributed envi-
ronments.

SimGrid presents two interfaces or layers. SG
is a low-level discrete-event simulation toolkit, that
was deployed as the SimGrid first version [17]. In
this interface, the simulation is done in terms of ex-

32

Simulation
Tool

Free
Soft-
ware

Project Group Download Address

MicroGrid yes GrADS (Grid Application Devel-
opment Software Project)

http://www-csag.ucsd.edu/projects/grid/
MGridDownload.html

SimGrid yes GRAIL (Grid Research And Inno-
vation Laboratory) and LIP (Lab-
oratoire de l’Informatique du Paral-
lélisme)

http://gcl.ucsd.edu/simgrid/dl/

GridSim yes GRIDS Lab (Grid Computing and
Distributed Systems Laboratory)

http://www.cs.mu.oz.au/~raj/gridsim/gridsim2.1/

MONARC 2 yes MONARC (Models of Networked
Analysis at Regional Centres for
Large Hadron Collider Experiments)

http://monalisa.cacr.caltech.edu/MONARC/
Download/index.html

Table 4. Simulation tools: software distribution

plicitly scheduling tasks on resources. It provides a
set of core abstractions and functionalities that can
be used to build simulators.

MSG is an application-oriented simulator [66]
built using SG. This software layer presents a num-
ber of abstractions such as routing and a schedul-
ing agent.

The basic abstractions provided by the MSG
layer are the following:

� agent is an entity that makes scheduling deci-
sions;

� location or host is the place in the simulated
topology at which an agent runs;

� task is an activity of the simulated application
(computation and/or data transfer);

� path interconnects locations and is an abstrac-
tion of message routing;

� channel is used to communication between
agents.

With these abstractions, scheduling algorithms
with SimGrid should always be described in terms
of agents that run at locations and interact by send-
ing, receiving, and processing simulated applica-
tion tasks [66]. Agents do not have access to paths
but can send a task to another location using a
channel (mailbox number).

Legrand et al. [66] indicate that better simula-
tions can be obtained if the network topology of a
real computational grid is discovered using Effec-
tive Network View (ENV) [96]. Using the topol-
ogy information, Network Weather Service (NWS)
[115] can be used to record real-time traces which
are directly usable in SimGrid.

We did not find any reference to faults simula-
tion, such as link or router loss, but we believe that
some kind of fault can be included into simulation
through the trace facility.

6.1.3. GridSim GridSim [16, 76], developed in
the Grid Computing and Distributed Systems Lab-
oratory (GRIDS Lab) of the University of Mel-
bourne, is a Java-based discrete-event grid simula-
tion toolkit. GridSim is mainly concerned with the
simulation of application schedulers for single or
multiple administrative domains. Buyya and Mur-
shed [16] present simulation results for a deadline
and budget constrained scheduling system.

GridSim is built on top of SimJava. SimJava
[58] is a general purpose discrete-event simula-
tion package implemented in Java. The current ver-
sion 2.2 presents facilities to simulate different grid
testbeds and to generate default application sched-
uler source codes.

The main GridSim abstractions are:

� user represents a grid user;
� broker is a scheduler. Every job of a user is

first submitted to its broker and the broker
then schedules the parametric tasks according
to the users’ scheduling policy;

� resource is a grid resource. Brokers can query
resources directly for their static and dynamic
properties;

� grid information service provides re-
source registration services and keeps track
of a list of resources available in the grid;

� input and output allow the flow of informa-
tion among the GridSim entities.

We did not find any reference to faults simula-
tion in the papers or in the API documentation.

6.1.4. MONARC 2 MONARC (Models of Net-
worked Analysis at Regional Center) [67, 68]
is a discrete-event simulation tool that al-
lows distributed system simulation. It is part
of the MONARC Project and has been imple-
mented using Java technology involving a team

33

with members from CERN, Caltech, and Po-
litehnica University of Bucharest. MONARC is
now in its second version [109]. Legrand and New-
man [67] report some experiments used to vali-
date MONARC. They compare simulation results
with theorical expected results based on queu-
ing theory, and they conclude that the simula-
tion is quite close to the theoretical model. They
also show that the simulation tool reproduce re-
sults (job execution time) obtained with a real
testbed.

MONARC is not intended to be a detailed sim-
ulator for basic components such as operating sys-
tems, data base servers or routers [68]. The simu-
lation main abstractions are:

� data container: emulates a database file con-
taining a set of objects;

� database unit: is a collection of containers;
� job: is a running task;
� JobScheduler: is the default scheduling pol-

icy, and different scheduling policies can be
implemented extending this class;

� regional centre: is a complex entity contain-
ing a number of data servers and processing
nodes, all connected to a LAN. It can contain
a mass storage unit and can be connected to
other regional centres.

We did not find any reference to faults simula-
tion in the papers or in the API documentation.

6.1.5. Discussion We now discuss the main is-
sues related to the four simulators presented. Ta-
ble 5 shows the characteristics of the four simula-
tion tools presented. We built it using some of the
taxonomies proposed by Sulistio et al. [101]. The
first column presents the name of the four simula-
tors. The second column presents the usage taxon-
omy: simulator or emulator. Simulator is a tool that
can model and represent the actual system. It runs
at any speed relative to the real world. An emulator
is a tool that acts like the actual system and is use-
ful for accurate and reliable testing without having
the real system. In our table, MicroGrid is classi-
fied as emulator and the others as simulators.

The simulation column presents the simulation
taxonomy according to Sulistio et al.. Simulation
comprises three properties:

� presence of time: A static simulation does
not have real time as part of the simulation,
in contrast to dynamic simulation;

� basis of value: Related to the values that the
simulated entities can contain, a discrete sim-
ulation has entities only possessing one of

many values within a finite range. A contin-
uous simulation has entities possessing one of
many values within an infinite range;

� behavior: Behavior defines how the simula-
tion proceeds. A deterministic simulation has
no random events occurring, so repeating the
same simulation will always return the same
simulation results. On the other hand, a prob-
abilistic simulation has random events.

The platform column indicates the development
language used. In our table, “gcc/Unix” means a
C based implementation, which presents makefiles
and scripts oriented to a Unix-like operating sys-
tem. MicroGrid and SimGrid are implemented in
C while GridSim and MONARC are implemented
in Java. Both GridSim and MONARC 2 are multi-
threaded Java implementations. It is an advantage,
since Java is portable and the use of threads could
be used to get a scalable version of the simulators.
SimGrid is implemented in C, which can possi-
bly allow less time and memory consuming simu-
lations although the system seems to have its porta-
bility limited.

Using Sulistio et al. programming framework
taxonomy, MicroGrid and SimGrid are classified
as structured because they implement a top-down
structured programming design with control pass-
ing down the modules in a hierarchy. GridSim and
MONARC are object-oriented since they express
the program as a set of objects that communicate
with one another to perform tasks. According to
Sulistio et al. [101], the object-oriented framework
is easier to create, maintain and reuse compared to
the structured programming framework. However,
the structured framework normally incurs less run-
time overheads than the object-oriented.

Finally, the last column presents the design en-
vironment taxonomy. Design environment deter-
mines how the user uses the tool to design simula-
tion models. All four tools are classified as library,
since they provide a set of routines to be used in
simulation model building.

We decided to use a simulator in our experi-
ments, instead of the MicroGrid emulator, since
we would have to port our examples to Globus.
All three analyzed simulators have advantages that
would justify its use in our experiments.

In our work, we chose to use MONARC as the
simulation tool. MONARC is a popular tool among
physicists. It is written in Java and thus is portable.
Besides, MONARC presents high level abstrac-
tions suitable to our purposes. We also have access
to its developers and programmers, through HEP-
Grid colaboration, which makes the task of modi-
fying it easier.

34

Simulation Tool Usage Simulation Platform Programming
framework

Design environ-
ment

MicroGrid emulator dynamic, continu-
ous, deterministic

gcc/Unix structured library

SimGrid simulator static, discrete, deter-
ministic

gcc/Unix structured library

GridSim simulator static, discrete, deter-
ministic

Java object-oriented library

MONARC 2 simulator static, discrete, deter-
ministic

Java object-oriented library

Table 5. Simulation tools: comparison

6.2. MONARC 2 Overview

MONARC 2 is a Java object oriented simula-
tor framework. It has seven main packages (set of
related classes stored in the same directory):

� engine: main internal package, normally
not used directly by simulation program-
mers. It contains the implementation of the
core of the simulator. This package imple-
ments classes to manage active objects and
provide communication between them. It
also implements the class Event that de-
fines simulation events.

� network: contains the classes used to sim-
ulate the network entities. There is also the
package network.protocol contain-
ing the implementation of different transport
protocols used in simulations.

� monarc.center: defines some of the base
components of the cpu unit, farm and regional
entities.

� monarc.job: contains different implemen-
tations of jobs used in the simulation, all be-
ing subclasses of engine.AbstractJob
as for example Job, JobFTP, and
JobProcessData

� monarc.datamodel: defines the database
entities such as mass storage units and data
base servers.

� monarc.distribution: defines statisti-
cal distributions that are used during simula-
tion.

� monarc.output: is the main pack-
age for the classes that deal with the out-
put of the simulation. There are also sev-
eral other packages for dealing with output
such as monarc.output.FileClient
and monarc.output.GraphicClient.

Resource sharing is maintained between any
discrete-event, including new job submission,
through an interrupt driven mechanism. The in-
terrupt driven mechanism is implemented into

the simulation engine and it works transpar-
ently from the point of view of the simulation
programmer.

Specific behavior of distributed data process-
ing is mapped to threaded objects (also called ac-
tive objects). There is a base class for threaded ob-
jects called engine.Taskwhich implements the
Java’s Runnable Interface. It must be inherited
by all the entities in the simulation that require a
time dependent behavior [68]. Such entities are the
running jobs, the database servers or the networks.
There is a pool of thread objects to improve effi-
ciency, but this is transparent to the user.

An important subclass of engine.Task is
monarc.center.Activity. An Activity ob-
ject is the base class for all activity processes and
is used to estimate the time dependent job arrival
patterns and correlation. These Activity objects are
in fact the job injectors into the simulation frame-
work.

The processing time of a task is evaluated when
it starts and is implemented by setting the task ob-
ject to a wait state. This wait state is not imple-
mented with any ‘sleep’ or ‘wait’ operating system
facility since the simulation engine must be able to
change the time it remains in wait state any time
another task starts or finishes using a shared re-
source.

MONARC receives a configuration file as in-
put which is used in order to define the simula-
tion. It is composed of sections, each one defin-
ing a simulation entity. Each section is defined by
a name. The name of the section must appear as
“[section_name]” and is the first line before the
section. A section is composed of lines of the form
“parameter=value”. If a parameter name is wrong,
the line is ignored. The first section is called the
global section. This section can be defined without
the name. The global section defines the basic pa-
rameters for the simulation such as queue type and
maximum simultaneous threads that are running in
parallel at any given time. To define a data unit,
the name of the data unit must be declared in the
global section. The data unit section must have the
same name as the name declared there and spec-

35

Figure 23. MONARC packages, the new package and the relation between the main
classes

ify attributes such as CPU power and memory.
The regional center section is defined in order to

specify what is inside a regional center. The name
of the regional center must be the same as the name
defined in the global section.

6.3. Simulation Model

To illustrate the main classes modeled, we
adapted the figure presented in [68], which
shows the main packages and the relation be-
tween the main classes. We created a new package
grand (grid robust application deployment).

We created a class for describing each of the ap-
plication management levels of the hierarchy. They
will communicate to make task dispatching. We
also need to extend the MetaJob class, which rep-
resents a collection of jobs that are logically related
and ought to be scheduled together, to have a di-
rected acyclic graph structure.

7. Conclusion

This text presents an ongoing work that deals
with application management in grid environ-
ments, focusing on applications that spread a very
large number of tasks and data across the grid net-
work.

We presented a general framework for grid en-
vironments, whose central idea is to have a flexible
partitioning and a hierarchical organization where
the load of the submit machine is shared with other
machines. Our proposal wants to take advantage
of hierarchical structures, because this seems to be
the most appropriate organization for grid environ-
ments.

Based on the types of applications we can have
been running on grid environments, and moti-
vated by experiments carried out by physicists and
bioinformatics people, we designed an architec-
tural model to be implemented at a middleware
level. In order to design our architecture, we con-
sider that the resources and tasks are modeled as
graphs.

Our architectural model handles three important
issues in the context of applications that spread
a huge number of tasks: (1) partitioning applica-
tions such that dependent tasks will be placed in
the same grid node to avoid unnecessary migration
of intermediate and/or transient data files, (2) par-
titioning applications such that tasks are allocated
close to their required input data, and (3) distribut-
ing the submission process such that the submit
machine do not get overloaded. As far as the au-
thor knows, this is the first proposal of a hierarchi-
cal application management system for grid envi-

36

ronments and is the first grid work that focuses on
data locality to make scheduling decisions [113].

This architectural model relies on already avail-
able software components to solve issues such as
allocation of tasks within a grid node, or authoriza-
tion control.

Our model is concerned with scheduling tasks
whose requirements are mainly memory and CPU.
We are not considering special cases where tasks
must have access to a specific resource such as a
detector, a local database, or a special supercom-
puter. This kind of situation can occur in many
real applications and must be considered in future
works.

Our plan to the next months is (1) to refine our
application partitioning model; (2) to refine our
mapping model; and (3) to add our hierarchical
model to the MONARC simulator. We intend to
test our ideas using applications from Engineer-
ing, through a collaboration with the Laboratório
de Projeto de Circuitos (LPC) at UFRJ, from High
Energy Physics, through the HEPGrid collabora-
tion, and from BioInformatics through a collabora-
tion with the Department of Biostatistics and Med-
ical Informatics at University of Wisconsin. As we
defined the GRID-ADL application specification
language, we have written a parser using JavaCC
[59] for our language.

We also intend to obtain execution traces from
real execution environments through the MonaL-
ISA monitoring tool[79]. This will be very help-
ful to model the resources, resource load, applica-
tion behavior and communication rate per link to
be used as input to our simulation. The use of real
data is fundamental to validate our simulation and
to study how effective our hierarchical model is on
a real environment.

References

[1] K. AIDA, A. TEKEFUSA, H. NAKADA,
S. MATSUOKA, S. SEKIGUCHI, and U. NA-
GASHIMA. Performance evaluation model for
scheduling in global computing systems. The In-
ternational Journal of High Performance Com-
puting Applications, 14(3):268–279, Fall 2000.

[2] G. ALLEN, D. ANGULO, I. FOSTER, G. LAN-
FERMANN, C. LIU, T. RADKE, E. SEIDEL,
and J. SHALF. The Cactus Worm: Experiments
with dynamic resource discovery and allocation
in a Grid environment. The International Journal
of High Performance Computing Applications,
15(4):345–358, 2001.

[3] A. R. ANDINO, L. ARAÚJO, F. SÁENZ, and
J. J. RUZ. Parallel execution models for con-
straint programming over finite domains. In Pro-
ceedings of the International Conference Prin-
ciples and Practice of Declarative Program-

ming (PPDP’99), pages 134–151, Paris, France,
September 29 – October 1 1999.

[4] N. ANDRADE, W. CIRNE, F. V. BRASILEIRO,
and P. ROISENBERG. OurGrid: An approach
to easily assemble grids with equitable resource
sharing. In Proceedings of the 9th Workshop on
Job Scheduling Strategies for Parallel Process-
ing, June 2003.

[5] J. ANNIS, Y. ZHAO, J. VOECKLER,
M. WILDE, S. KENT, and I. FOSTER. Ap-
plying Chimera virtual data concepts to cluster
finding in the sloan sky survey. In Proceed-
ings of the 2002 ACM/IEEE conference on
Supercomputing, pages 1–14, Baltimore, Mary-
land, USA, November 16-22 2002.

[6] M. BAKER, R. BUYYA, and D. LAFORENZA.
The Grid: International efforts in global comput-
ing. In International Conference on Advances
in Infrastructure for Electronic Business, Science,
and Education on the Internet (SSGRR 2000),
Rome, Italy, July 31 – August 6 2000.

[7] V. C. BARBOSA. An Introduction to Distributed
Algoritms. The MIT Press, London, England,
1996.

[8] V. C. BARBOSA and E. GAFNI. Concurrency
in heavily loaded neighborhood-constrained sys-
tems. ACM Transactions on Programming Lan-
guages and Systems, 11(4):562–584, October
1989.

[9] G. BELL and J. GRAY. What’s next in high-
performance computing? Communications of The
ACM, 45(2), February 2002.

[10] F. BERMAN. High-performance schedulers. In
I. FOSTER and C. KESSELMAN, editors, The
Grid: Blueprint for a New Computing Infrastruc-
ture, pages 279–309. Morgan Kaufmann, 1998.

[11] F. BERMAN, A. CHIEN, K. COOPER, J. DON-
GARRA, I. FOSTER, D. GANNON, L. JOHNS-
SON, K. KENNEDY, C. KESSELMAN,
J. MELLOR-CRUMMEY, D. REED, L. TOR-
CZON, and R. WOLSKI. The GrADS Project:
Software support for high-level Grid applica-
tion development. The International Journal
of High Performance Computing Applica-
tions, 15(4):327–344, 2001.

[12] F. BERMAN, G. FOX, and T. HEY. Grid Com-
puting: Making the Global Infrastructure a Real-
ity. John Wiley & Sons Inc., 1 edition, April 2003.

[13] B. BODE, D. M. HALSTEAD, R. KENDALL,
Z. LEI, and D. JACKSON. The Portable Batch
Scheduler and the Maui scheduler on linux clus-
ters. In Usenix Conference, Atlanta, GA, USA,
October 12–14 2000.

[14] C. B. BOERES and V. E. F. REBELLO. Easy-
Grid: Towards a framework for the automatic grid
enabling of mpi applications. In Proc of the
1st International Workshop on Middleware for
Grid Computing (Middleware Workshops 2003),
pages 256–260, Rio de Janeiro, Brazil, June 16–
20 2003.

37

[15] J. J. BUNN and H. B. NEWMAN. Data intensive
grids for high energy physics. In F. BERMAN,
G. FOX, and T. HEY, editors, Grid Computing:
Making the Global Infrastructure a Reality, pages
859–906. Wiley & Sons, 2003.

[16] R. BUYYA and M. MURSHED. GridSim: A
toolkit for the modeling and simulation of dis-
tributed resource management and scheduling for
grid computing. The Journal of Concurrency and
Computation: Practice and Experience (CCPE),
14(13–15), November–December 2002.

[17] H. CASANOVA. SimGrid: A toolkit for the sim-
ulation of application scheduling. In Proceedings
of the IEEE International Symposium on Clus-
ter Computing and the Grid (CCGrid’01), pages
430–437. IEEE, May 15–18 2001.

[18] T. L. CASAVANT and J. G. KUHL. A taxon-
omy of scheduling in general-purpose distributed
computing systems. IEEE Transactions on Soft-
ware Engineering, 14(2), February 1988.

[19] Cave5D Release 1.4. http://www.ccpo.
odu.edu/~cave5d/.

[20] S. CHANDRA and M. PARASHAR. AR-
MaDA: An adaptive application-sensitive parti-
tioning framework for SAMR applications. In
Proceedings of the 14th IASTED International
Conference on Parallel and Distributed Comput-
ing and Systems (PDCS 2002), pages 446–451,
Cambridge, MA, USA, November 2002. ACTA
Press.

[21] S. J. CHAPIN, D. KATRAMATOS, J. KAR-
POVICH, and A. GRIMSHAW. Resource man-
agement in Legion. In Proceedings of the 5th
Workshop on Job Scheduling Strategies for Par-
allel Processing (JSSPP ’99), in conjunction with
IPDPS ’99, April 1999.

[22] W. CIRNE and K. MARZULLO. OpenGrid: a
user-centric approach for grid computing. In Pro-
ceedings of the 13th Symposium on Computer
Architecture and High Performance Computing
(SBAC-PAD 2001), September 2001.

[23] W. CIRNE, E. SANTOS-NETO, and L. BEL-
TRÃO. Levantamento da comunidade grid no
brasil, Novembro 2002. Disponível em http:
//walfredo.dsc.ufpb.br/papers/
levantamentoGridBrasil.v3.pdf.

[24] The Compact Muon Solenoid (CMS) Project,
2003. http://lcg.web.cern.ch/.

[25] K. CZAJKOWSKI, I. FOSTER, N. KARONIS,
C. KESSELMAN, S. MARTIN, W. SMITH, and
S. TUECKE. A resource management architec-
ture for metacomputing systems. In Proc. IPP-
S/SPDP ’98 Workshop on Job Scheduling Strate-
gies for Parallel Processing, pages 62–82, 1998.

[26] Directed Acyclic Graph Manager. http://
www.cs.wisc.edu/condor/dagman/.

[27] E. DEELMAN, J. BLYTHE, Y. GIL, and
C. KESSELMAN. Workflow management in Gri-
PhyN. In J. NABRZYSKI, J. M. SCHOPF, and

J. WEGLARZ, editors, Grid Resource Manage-
ment: State of the Art and Future Trends. Kluwer
Academic Publishers, 2003.

[28] T. A. DeFANTI, I. FOSTER, M. E. PAPKA,
R. STEVENS, and T. KUHFUSS. Overview
of the I-WAY: Wide-area visual supercomput-
ing. The International Journal of Supercomputer
Applications and High Performance Computing,
10(2/3):123–131, Summer/Fall 1996.

[29] Distributed.Net, 2004. http://www.
distributed.net/.

[30] I. d. C. DUTRA, D. PAGE, V. SANTOS COSTA,
J. SHAVLIK, and M. WADDELL. Toward au-
tomatic management of embarrassingly parallel
applications. In 26th International Conference
on Parallel and Distributed Computing (Europar
2003), pages 509–516, Klagenfurt, Austria, Au-
gust 2003.

[31] The EasyGrid project’s research, reference and
resource library. http://easygrid.ic.
uff.br/.

[32] FAFNER overview, 2000. http:
//www.npac.syr.edu/factoring/
overview.html.

[33] RSA130: Getting Started with FAFNER, 2000.
http://cs-www.bu.edu/cgi-bin/
FAFNER/factor.pl.

[34] D. G. FEITELSON and L. RUDOLPH. Paral-
lel job scheduling: issues and approaches. In
D. G. FEITELSON and L. RUDOLPH, editors,
Job Scheduling Strategies for Parallel Process-
ing, pages 1–18. Springer-Verlag, 1995. Lecture
Notes in Computer Science Vol. 949.

[35] P.-O. FJÄLLSTRÖM. Algorithms for graph par-
titioning: A survey. Linköping Electronic Articles
in Computer and Information Science, 3(010),
1998.

[36] I. FOSTER. What is the grid? a three poing
checklist. Grid Today, 1(6), July 22 2002. Avail-
able at http://www.gridtoday.com/02/
0722/100136.html.

[37] I. FOSTER and C. KESSELMAN. Computa-
tional Grids. In I. FOSTER and C. KESSEL-
MAN, editors, The Grid: Blueprint for a New
Computing Infrastructure, pages 15–52. Morgan
Kaufmann, San Francisco, California, USA, 1
edition, 1998.

[38] I. FOSTER and C. KESSELMAN. The Globus
project: A status report. In Proc. IPPS/SPDP
’98 Heterogeneous Computing Workshop, pages
4–18, 1998.

[39] I. FOSTER and C. KESSELMAN. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco, California,
USA, 1 edition, 1998.

[40] I. FOSTER, C. KESSELMAN, J. NICK, and
S. TUECKE. The physiology of the Grid:
An open grid services architecture for dis-
tributed systems integration, June 2002. Available
at http://www.globus.org/research/
papers/ogsa.pdf.

38

[41] I. FOSTER, C. KESSELMAN, and S. TUECKE.
The anatomy of the Grid: Enabling scalable vir-
tual organizations. The International Journal
of High Performance Computing Applications,
15(3):200–222, Fall 2001.

[42] I. FOSTER, J. VOECKLER, M. WILDE, and
Y. ZHAO. Chimera: A virtual data system for rep-
resenting, querying and automating data deriva-
tion. In Proceedings of the 14th Conference on
Scientific and Statistical Database Management,
Edinburgh, Scotland, July 2002.

[43] I. FOSTER, J. VOECKLER, M. WILDE, and
Y. ZHAO. The virtual data grid: A new model and
architecture for data-intensive collaboration. In
Proceedings of the First Biennial Conference on
Innovative Data Systems Research (CIDR 2003),
Asilomar, CA, USA, January 5-8 2003.

[44] J. FREY, T. TANNENBAUM, I. FOSTER,
M. LIVNY, and S. TUECKE. Condor-G: A com-
putation management agent for multi-institutional
grids. Cluster Computing, 5:237–246, 2002.

[45] E. M. GAFNI and D. P. BERTSEKAS. Dis-
tributed algorithms for generating loop-free
routes in networks with frequently changing
topology. IEEE Transactions on Communica-
tions, 1(29):11–18, January 1981.

[46] M. R. GAREY and D. S. JOHNSON. Computers
and intractability: a guide to the theory of NP-
Completeness. Freeman, New York, 1979.

[47] C. F. GEYER, A. C. YAMIN, L. C. SILVA, P. K.
VARGAS, I. d. C. DUTRA, M. PETEK, D. F.
ADAMATTI, I. AUGUSTIN, and J. L. BAR-
BOSA. Regional center and grid development in
Brazil. In LAFEX International School on High
Energy Physics (LISHEP 2002) - GRID Work-
shop, Rio de Janeiro, RJ, Brasil, February 7–8
2002.

[48] Global Grid Forum. http://www.ggf.org/.
[49] The Globus Toolkit, 2004. http://www.

globus.org/toolkit/.
[50] The grid application development soft-

ware (GrADS) project. http://www.
hipersoft.rice.edu/grads/.

[51] D. A. GRIER. Systems for monte carlo work.
In Proceedings of the 19th Conference on Winter
Simulation, pages 428–433. ACM Press, 1987.

[52] A. GRIMSHAW, A. FERRARI, G. LINDAHL,
and K. HOLCOMB. Metasystems. Communi-
cations of the ACM, 41(11):46–55, 1998.

[53] A. S. GRIMSHAW, A. FERRARI, F. KNABE,
and M. HUMPHREY. Wide-area computing: Re-
source sharing on a large scale. IEEE Computer,
32(5):29–36, May 1999.

[54] GriPhyN – grid physics network. http://
www.griphyn.org/.

[55] B. HENDRICKSON and T. G. KOLDA. Graph
partitioning models for parallel computing. Par-
allel Computing, 26(12):1519–1534, 2000.

[56] B. HENDRICKSON, R. LELAND, and
R. VAN DRIESSCHE. Enhancing data lo-
cality by using terminal propagation. In 29th

Hawaii International Conference on System Sci-
ences (HICSS’96) Volume 1: Software Technol-
ogy and Architecture, pages 565–584, Maui,
Hawaii, USA, January 03–06 1996.

[57] K. HOGSTEDT, D. KIMELMAN, V. T. RAJAN,
T. ROTH, and M. WEGMAN. Graph cutting al-
gorithms for distributed applications partitioning.
ACM SIGMETRICS Performance Evaluation Re-
view, 28(4):27–29, 2001.

[58] F. HOWELL and R. McNAB. SimJava: A dis-
crete event simulation package for Java with ap-
plications in computer systems modelling. In Pro-
ceedings of the First International Conference on
Web-based Modelling and Simulation, San Diego,
CA, USA, January 1998. Society for Computer
Simulation.

[59] javacc: Javacc project home. https://
javacc.dev.java.net/.

[60] J. P. JONES. NAS requirements checklist
for job queuing/scheduling software. Tech-
nical Report NAS-96-003, NASA Ames Re-
search Center, USA, April 1996. Avail-
able at http://www.nas.nasa.gov/
Research/Reports/Techreports/
1996/nas-96-003-ab%stract.html.

[61] G. KARYPIS and V. KUMAR. Multilevel algo-
rithms for multi-constraint graph partitioning. In
Proceedings of the 1998 ACM/IEEE Conference
on Supercomputing, pages 1–13. IEEE Computer
Society, 1998.

[62] K. KRAUTER, R. BUYYA, and M. MAH-
ESWARAN. A taxonomy and survey of grid re-
source management systems for distributed com-
puting. Software – Practice and Experience,
32(2):135–164, 2002.

[63] S. KUMAR, S. K. DAS, and R. BISWAS. Graph
partitioning for parallel applications in hetero-
geneous grid environments. In International
Parallel and Distributed Processing Symposium
(IPDPS’02), Fort Lauderdale, CA, USA, April
15–19 2002.

[64] K.-i. KURATA, C. SAGUEZ, G. DINE,
H. NAKAMURA, and V. BRETON. Evalu-
ation of unique sequences on the european data
grid. In Proceedings of the First Asia-Pacific
bioinformatics conference on Bioinformat-
ics 2003, pages 43–52. Australian Computer
Society, Inc., 2003.

[65] D. LAFORENZA. Grid programming: some in-
dications where we are headed. Parallel Comput-
ing, 28(12):1733–1752, December 2002.

[66] A. LEGRAND, L. MARCHAL, and
H. CASANOVA. Scheduling distributed ap-
plications: the SimGrid simulation framework.
In Proceedings of the 3rd International Sympo-
sium on Cluster Computing and the Grid (CC-
Grid’03), pages 138–145. IEEE, May 12 - 15
2003.

[67] I. LEGRAND and H. B. NEWMAN. The
MONARC toolset for simulating large network-

39

distributed processing systems. In Winter Simu-
lation Conference 2000, pages 1794–1801, 2000.

[68] I. C. LEGRAND, C. M. DOBRE, and
C. STRATAN. MONARC 2 (Models
of Networked Analysis at Regional Cen-
ters) – distributed systems simulation.
http://monalisa.cacr.caltech.
edu/MONARC/Papers/MONARC_
Implementation.zi%p.

[69] M. J. LEWIS, A. J. FERRARI, M. HUMPHREY,
J. F. KARPOVICH, M. M. MORGAN, A. NA-
TRAJAN, A. NGUYEN-TUONG, G. S. WAS-
SON, and A. S. GRIMSHAW. Support for ex-
tensibility and site autonomy in the Legion Grid
system object model. Journal of Parallel and Dis-
tributed Computing, (63):525–538, May 2003.

[70] J. LIU and D. M. NICOL. DaSSF
3.1 User’s Manual, April 2001.
http://www.cs.dartmouth.edu/
~jasonliu/projects/ssf/papers/
dassf-manual-%3.1.ps.

[71] X. LIU, H. XIA, and A. CHIEN. Network
emulation tools for modeling grid behav-
iors. Submitted to The 3rd IEEE/ACM In-
ternational Symposium on Cluster Comput-
ing and the Grid (CCGrid 2003). Available at
http://www-csag.ucsd.edu/papers/
ccgrid2003-final.pdf.

[72] Load Sharing Facility (LSF). http://accl.
grc.nasa.gov/lsf/.

[73] Plataform LSF Family. http://www.
platform.com/products/LSFfamily/.

[74] P. LU. The Trellis project. http://www.cs.
ualberta.ca/~paullu/Trellis/.

[75] R. S. MONTERO, E. HUEDO, and I. M.
LLORENTE. Grid resource selection for op-
portunistic job migration. In 26th International
Conference on Parallel and Distributed Comput-
ing (Europar 2003), pages 366–373, Klagenfurt,
Austria, August 2003.

[76] M. MURSHED and R. BUYYA. Using the
GridSim toolkit for enabling grid computing ed-
ucation. In Proceedings of the International
Conference on Communication Networks and
Distributed Systems Modeling and Simulation
(CNDS 2002), San Antonio, Texas, USA, January
27–31 2002.

[77] Z. NEMETH and V. SUNDERAM. A compar-
ison of conventional distributed computing envi-
ronments and computational grids. In Proceed-
ings of the International Conference on Computa-
tional Science (ICCS2002), pages 729–738, Am-
sterdam, Netherlands, April 2002. LNCS 2329.

[78] Z. NEMETH and V. SUNDERAM. A formal
framework for defining grid systems. In Proceed-
ings of the Second IEEE/ACM International Sym-
posium on Cluster Computing and the Grid (CC-
GRID2002), pages 202–211, Berlin, Germany,
May 21–24 2002.

[79] H. B. NEWMAN, I. C. LEGRAND, P. Galvez,
R. Voicu, and C. Cirstoiu. MonALisa: A dis-
tributed monitoring service architecture. In Com-
puting in High Energy and Nuclear Physics
(CHEP03), La Jolla, California, USA, March 24-
28 2003.

[80] Open PBS (Portable Batch System). http://
www.openpbs.org/main.html.

[81] D. d. S. PARANHOS, W. CIRNE, and F. V.
BRASILEIRO. Trading cycles for information:
Using replication to schedule bag-of-tasks appli-
cations on computational grids. In Proceedings
of the 26th International Conference on Parallel
and Distributed Computing (Euro-Par 2003), Au-
gust 2003.

[82] S.-M. PARK and J.-H. KIM. Chameleon: A re-
source scheduler in a data grid environment. In
Proc of 3st International Symposium on Clus-
ter Computing and the Grid, pages 258–, Tokyo,
Japan, May 12 - 15 2003.

[83] PBS Pro Home. http://www.pbspro.
com/.

[84] Planning for execution in grids. http://www.
isi.edu/~deelman/pegasus.htm.

[85] M. R. PEREIRA, P. K. VARGAS, F. M. G.
FRANÇA, M. C. S. CASTRO, and I. d. C. DU-
TRA. Applying Scheduling by Edge Reversal
to constraint partitioning. In The 15th Sympo-
sium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD 2003), São Paulo,
SP, November 10-12 2003.

[86] R. RAMAN, M. LIVNY, and M. SOLOMON.
Matchmaking: Distributed resource management
for high throughput computing. In Proceed-
ings of the Seventh IEEE International Sympo-
sium on High Performance Distributed Comput-
ing, Chicago, USA, July 28-31 1998.

[87] R. A. REAL, A. YAMIN, I. AUGUSTIN,
L. C. d. SILVA, G. FRAINER, J. L. BARBOSA,
and C. GEYER. Tratamento da incerteza no
escalonamento de recursos em pervasive com-
puting. In Conferência IADIS Ibero-Americana
WWW/Internet, pages 167–170, Algarve, Portu-
gal, November 2003.

[88] R. A. REAL, A. YAMIN, L. d. SILVA,
G. FRAINER, I. AUGUSTIN, J. BARBOSA,
and C. F. R. GEYER. Resource scheduling on
grid: handling uncertainty. In Proceedings of the
IEEE/ACM 4TH International Workshop on Grid
Computing, Phoenix, Arizona, November 2003.

[89] M. ROEHRIG, W. ZIEGLER, and P. WIEDER.
Grid scheduling dictionary of terms and
keywords. Document gfd-i.11, Global
Grid Forum, Nov 2002. Available at
http://forge.gridforum.org/
projects/ggf-editor/document/
GFD-I.11/en/1.

[90] D. D. ROURE, M. A. BAKER, N. R. JENNINGS,
and N. R. SHADBOLT. The evolution of the

40

Grid. In F. BERMAN, G. FOX, and T. HEY, edi-
tors, Grid Computing: Making the Global Infras-
tructure a Reality, pages 65–100. Wiley & Sons,
2003.

[91] D. D. ROURE, N. R. JENNINGS, and N. R.
SHADBOLT. The semantic Grid: A future e-
science infrastructure. In F. BERMAN, G. FOX,
and T. HEY, editors, Grid Computing: Making the
Global Infrastructure a Reality, pages 437–470.
Wiley & Sons, 2003.

[92] V. SANDER and et al. Networking issues
of grid infrastructures. Document draft-
ggf-ghpn-netissues-0, version 1, Global Grid
Forum, June 2003. Available at http:
//forge.gridforum.org/projects/
ggf-editor/document/Networking_
Issu%es_of_Grid_Infrastructures/
en/1/Networking_Issues_of_Grid_
Infrastructures.pdf.

[93] T. SANDHOLM and J. GAWOR. Globus Toolkit
3 Core – A Grid Service Container Framework,
May 2003. White paper. Available at http:
//www-unix.globus.org/toolkit/3.
0beta/ogsa/docs/gt3_core.pdf.

[94] U. SCHWIEGELSHOHN and R. YAHYAPOUR.
Attributes for communication be-
tween scheduling instances, Decem-
ber 2001. Available at http://ds.
e-technik.uni-dortmund.de/
~yahya/ggf-sched/WG/sched_attr/
Sch%edWD.10.6.pdf.

[95] SETI@home – The Search for Extraterres-
trial Intelligence at Home, 2004. http://
setiathome.ssl.berkeley.edu/.

[96] G. SHAO, F. BERMAN, and R. WOLSKI. Using
effective network views to promote distributed
application performance. In Proceedings of the
International Conference on Parallel and Dis-
tributed Processing Techniques and Applications,
June 1999.

[97] M. SINGHAL and N. G. SHIVARATRI. Ad-
vanced Concepts in Operating Systems: Dis-
tributed, Database, and Multiprocessor Operat-
ing Systems. MIT Press, New York, 1994.

[98] L. SMARR and C. E. CATLETT. Metacomput-
ing. Communications of the ACM, 35(6), June
1992.

[99] H. J. SONG, X. LIU, D. JAKOBSEN, R. BHAG-
WAN, X. ZHANG, K. TAURA, and A. CHIEN.
The MicroGrid: a scientific tool for modeling
computational grids. In Proceedings of SC2000,
Dallas, Texas, USA, November 4-10 2000.

[100] A. V. STAICU, J. R. RADZIKOWSKI, K. GAJ,
N. ALEXANDRIDIS, and T. EL-GHAZAWI.
Effective use of networked reconfigurable re-
sources. In 2001 MAPLD International Confer-
ence, Laurel, Maryland, September 2001.

[101] A. SULISTIO, C. S. YEO, and R. BUYYA.
A taxonomy of computer-based simulations and
its mapping to parallel and distributed systems

simulation tools. International Journal of Soft-
ware: Practice and Experience, Wiley Press, 2003
(accepted in Sept. 2003 and in print) Avail-
able at http://www.cs.mu.oz.au/~raj/
papers/simulationtaxonomy.pdf.

[102] Sun Microsystems. Sun cluster grid archi-
tecture. Sun one grid engine white papers,
Sun Microsystems, 2002. Available at http:
//wwws.sun.com/software/grid/
SunClusterGridArchitecture.pdf.

[103] A. S. TANENBAUM and R. VAN RENESSE.
Distributed operating systems. ACM Comput-
ing Surveys (CSUR), 17(4):419–470, December
1985.

[104] T. TANNENBAUM, D. WRIGHT, K. MILLER,
and M. LIVNY. Condor – a distributed job sched-
uler. In T. STERLING, editor, Beowulf Cluster
Computing with Linux. MIT Press, October 2002.

[105] TAREK EL-GHAZAWI, P. I. et al. Con-
ceptual comparative study of job management
systems. Technical report, George Mason
University, USA, February 21 2001. Avail-
able at http://ece.gmu.edu/lucite/
reports/Conceptual_study.PDF.

[106] A. TEKEFUSA, O. TATEBE, S. MATSUOKA,
and Y. MORITA. Performance analysis of sched-
uling and replication algorithms on grid data-
farm architecture for high-energy physics appli-
cations. In Proceedings of the 12th IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing (HPDC-12), pages 34–43,
Seattle, Washington, June 22–24 2003.

[107] D. THAIN, T. TANNENBAUM, and M. LIVNY.
Condor and the Grid. In F. BERMAN, G. FOX,
and T. HEY, editors, Grid Computing: Making
The Global Infrastructure a Reality. John Wiley,
2003.

[108] The Legion Group. Legion 1.8 – developer man-
ual, 2001.

[109] The MONARC Project – Models of Net-
worked Analysis at Regional Centres for LHC
Experiments. Distributed computing simu-
lation. http://monarc.web.cern.ch/
MONARC/sim_tool/.

[110] S. TUECKE, K. CZAJKOWSKI, I. FOS-
TER, J. FREY, S. GRAHAM, C. KESSELMAN,
and P. VANDERBILT. Grid service specifi-
cation, 2002. Available at http://www.
gridforum.org/ogsi-wg/drafts/GS_
Spec_draft03_2002-07-17.pdf.

[111] S. S. VADHIYAR and J. J. DONGARRA. A
metascheduler for the grid. In 11th IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing (HPDC-11), pages 343–354,
Edinburgh, Scotland, July 24 – 26 2002.

[112] S. S. VADHIYAR and J. J. DONGARRA. A per-
formance oriented migration framework for the
grid. In 3rd International Symposium on Cluster
Computing and the Grid (CCGRID 2003), pages
366–373, Tokyo, Japan, May 12 – 15 2003.

41

[113] P. K. VARGAS, I. d. C. DUTRA, and C. F.
GEYER. Hierarchical resource management and
application control in grid environments. Techni-
cal report, COPPE/Sistemas - UFRJ, 2003. Re-
latório Técnico ES-608/03.

[114] V. WELCH, F. Siebenlist, I. Foster, J. Bresna-
han, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, and S. Tuecke. Se-
curity for grid services. In 12th IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing (HPDC’03), Seattle, Wash-
ington, June 22–24 2003. Also available
at http://www.globus.org/security/
GSI3/GT3-Security-HPDC.pdf.

[115] R. WOLSKI, N. SPRING, and J. HAYES. The
Network Weather Service: A distributed resource
performance forecasting service for metacomput-
ing. Journal of Future Generation Computing
Systems, 15(5–6):757–768, October 1999.

[116] D. WRIGHT. Cheap cycles from the desktop
to the dedicated cluster: combining opportunistic
and dedicated scheduling with condor. In Pro-
ceedings of the Conference on Linux Clusters:
The HPC Revolution, Champaign - Urbana, IL,
USA, June 2001.

[117] The WS-Resource Framework, 2004. http://
www.globus.org/wsrf/.

[118] A. YAMIN, I. AUGUSTIN, J. BARBOSA, and
C. F. GEYER. ISAM: a pervasive view in dis-
tributed mobile computing. In Proceedings of the
IFIP TC6 / WG6.2 & WG6.7 Conference on Net-
work Control and Engineering for QoS, Security
and Mobility (NET-CON 2002), pages 431–436,
October 23–25 2002.

[119] A. YAMIN, I. AUGUSTIN, J. BARBOSA,
L. C. d. SILVA, R. A. REAL, G. CAVALHEIRO,
and C. F. GEYER. Towards merging context-
aware, mobile and grid computing. International
Journal of High Performance Computing Appli-
cations, 17(2):191–203, June 2003.

[120] A. YAMIN, J. BARBOSA, L. C. d. SILVA,
R. A. REAL, C. F. GEYER, I. AUGUSTIN, and
G. CAVALHEIRO. A framework for exploiting
adaptation in high heterogeneous distributed pro-
cessing. In Proceedings of the XIV Symposium
on Computer Architecture and High Performance
Computing (SBAC-PAD), Vitória, ES, Brasil, Oc-
tober 28–30 2002.

42

