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Abstract

In this paper we introduce a new barrier function
n∑

i=1

(2xi − 1)[ln xi − ln(1 − xi)] to

solve the following optimization problem: min f(x) subject to: Ax = b; 0 ≤ x ≤ e. We
show that this function is a (3/2)n-self-concordant barrier on the hypercube [0, 1]n. We
prove that the central path is well defined and that under an additional assumption on the
objective function, which includes linear and convex quadratic problems, the primal central
path converges to the analytic center of the optimal set (with respect to the given barrier).
Finally, we present a new polynomial long step path following algorithm to solve the problem
when the objective function is linear. For that algorithm we give an upper bound for the
total number of Newton iterations to obtain an ε-optimal solution, with similar complexity
to the classic logarithmic barrier, that is O(n ln(nµ0/ε)).

Keywords: Interior point methods, self-concordant function, barrier function, Newton meth-
ods.



1 Introduction

The logarithmic barrier function, proposed by Frisch [9] in 1955 and further developed by
Fiacco and McCormick [8], plays a fundamental role to obtain polynomial interior point meth-
ods for certain classes of convex optimization problems, for instance linear programs, convex
quadratic programs and semidefinite programs. Other barrier functions have been proposed,
ensuring convergence properties for their algorithms, but unfortunately they were not poly-
nomial, see [5], [7], [23]. Observe that all of them are not self-concordant barriers, property
that was introduced by Nesterov and Nemirovskii [18]. Those authors develop a general ap-
proach that allows the using of interior point methods to solve convex program based on that
class of barriers. They have proved that self-concordant barriers associated with Newton meth-
ods permit the development of performing algorithms in both points of view: theoretical and
practical. Although the theoretical importance of that approach, actually the unique known
self-concordant barrier is just the logarithmic function. So, a natural question arises: is it pos-
sible to obtain other self-concordant barriers with similar properties to the classic logarithmic
barrier function? That is the motivation to the present work. The outline of this paper is as
follows. In subsection 1.1 we give the notation used along this paper and in subsection 1.2 we
review some facts on Riemannian manifolds. In section 2, we present the linear constrained
convex optimization problem with bounded variables, studied in this paper, we impose some
assumptions on that problem, and introduce a new barrier for the hypercube [0, 1]n, defined

by B(x) =
n∑

i=1
(2xi − 1)[lnxi − ln(1− xi)]. In section 3 we prove that the Riemannian manifold

〈0, 1〉n endowed with the metric X−2(I − X)−2, where X = diag(x1, x2, ..., xn), which is the
Hessian of the barrier B, has suitable geometric properties. In Section 4 we prove that the in-
troduced barrier B is (3/2)n-self-concordant on the hypercube [0, 1]n. In Section 5 we propose
a new interior penalized optimization problem to solve the original problem, and define central
path, obtaining some feasibility properties. In Section 6 we prove that the primal central path,
defined in the previous section, converges, and its limit point is the analytic center of the op-
timal set of the problem. In Section 7, we present an application for linear programming. For
that class of problems, we present a new polynomial long step path following algorithm, deriv-
ing upper bounds to obtain an ε-solution. The complexity of our algorithm is O(n ln(nµ0/ε)),
for the number de iterations, identical to the long step path following algorithm that uses the
logarithmic barrier function.

1.1 Notation

The following notation is used throughout this paper:

1. [0, 1]n = [0, 1]× [0, 1]× ...× [0, 1] (n times)

2. 〈0, 1〉n = 〈0, 1〉 × 〈0, 1〉 × ...× 〈0, 1〉 (n times)

3. Given a subset M ⊂ IRn, ri(M) denotes the relative interior of M .

4. bound[0, 1]n is the boundary of [0, 1]n.

5. lnX = diag(lnx1, ..., ln xn) and ln(I −X) = diag(ln(1− x1), ..., ln(1− xn)).

6. C∞(< 0, 1 >n) = {f :< 0, 1 >n→ IR such that f is a infinitely differentiable function }.
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1.2 Basic aspects of Riemannian geometry

In this subsection we introduce some fundamental properties and notation for Riemannian
manifolds, that will be applied in section 3, where we study the geometric properties of our
barrier. Those basic facts can be encountered, for example, in do Carmo [6].

Let S be a differential manifold. We denote by TxS the tangent space of S at x ∈ S and
TS =

⋃
x∈S

TxS. TxS is a linear space and has the same dimension as S. Because we restrict
ourselves to real manifolds, TxS is isomorphic to IRn. If S is endowed with a Riemannian
metric g then S is a Riemannian manifold and we denoted it by (S, g). The inner product of
two vectors u, v ∈ TxS is written 〈u, v〉x := gx(u, v), where gx is the metric at the point x. The
norm of a vector v ∈ TxS is defined by ||v||x :=

√〈v, v〉x.
The metric can be used to define the length of a piecewise smooth curve α : [a, b] → S

joining p′ to p through L(α) =
∫ b
a ‖α′(t)‖dt, where α(a) = p′ and α(b) = p. Minimizing this

length functional over the set of all curves we obtain a Riemannian distance d(p′, p) which
induces the original topology on S.

Given two vector fields V and W in S (a vector field V is an application of S in TS), the
covariant derivative of W in the direction V is denoted by ∇V W . In this paper ∇ is the Levi-
Civita connection associated to (S, g). This connection defines an unique covariant derivative
D/dt, where for each vector field V : S → TS, along a smooth curve α : [a, b] → S, another
vector field is obtained, denoted by DV/dt. A curve α is a geodesic, starting from the point x
with direction v ∈ TxS, if α(0) = x, α′(0) = v and

d2αk

dt2
+

n∑

i,j=1

Γk
ij

dαi

dt

dαj

dt
= 0, k = 1, ..., n, (1.1)

where Γk
ij are the Christoffel’s symbols expressed by

Γm
ij =

1
2

n∑

k=1

{
∂

∂xi
gjk +

∂

∂xj
gki − ∂

∂xk
gij

}
gkm, (1.2)

(gij) denotes the inverse matrix of the metric g = (gij), and xi and vi are the coordinates
of x and v, respectively. Now, suppose that V and W are represented by V =

∑n
i=1 uiVi,

W =
∑n

i=1 ziVi, for some local basis Vi for TxS, then ∇XiXk =
∑n

j=1 Γj
ikXj . A Riemannian

manifold is complete if its geodesics are defined for any value of t ∈ IR.
Given the vector fields V,W,Z on S, we denote by R the curvature tensor defined by

R(V, W )Z = ∇W∇V Z −∇V∇W Z +∇[V,W ]Z, (1.3)

where [V, W ] := WV − V W is the Lie bracket. If R(V, W ) = 0, for all vector fields V , W , then
S is called a null curvature Riemannian manifold.

2 Definition of the problem and the new barrier function

In this paper we are interested in solving:

(P ) min f(x)
Ax = b
0 ≤ x ≤ e

(2.1)
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where f : IRn → IR is a twice continuously differentiable convex function, A is a m × n
matrix with m ≤ n, e is a n dimensional vector whose components are 1, b and c are m−and
n−dimensional vectors respectively; the n−dimensional vector x is the variable. We shall
observe that all the results obtained in this paper are easily extendable to general hypercubes,
given by α ≤ x ≤ β, for any n dimensional vectors α and β.
We denoted by

F = {x ∈ IRn : Ax = b, 0 ≤ x ≤ e}
the feasible set of the problem (2.1) and

F 0 = {x ∈ IRn : Ax = b, 0 < x < e}
its relative interior. We impose the following assumptions on the problem (2.1)

Assumptions:

1. The set F 0 is non-empty.

2. The objective function satisfies the following condition: there exists a vector subspace W
of IRn, such that ker(∇2f(x)) = W , for all x ∈< 0, 1 >n.

3. The matrix A has full rank, that is, rank(A) = m.

We point out that 1 is a standard assumption in interior point methods. The assumption 2, will
be important to prove the convergence of the primal central path to the analytic center of the
optimal set of the problem (2.1). This assumption is satisfied by self-concordant functions (see
Nesterov and Nemirovskii [18], Corollary 2.1.1), in particular, the linear and quadratic convex
objective functions. The assumption 3, could be discarded in our development, however we
keep it since it will simplify the arguments.
Due to the fact that f is a continuous function on the compact set F , it achieves a global
minimum point on F . Besides, the convexity of f implies that any local minimum is a global
minimum. Thus, the set of optimal solutions of the problem (2.1), that we denote by sol(P ),
is a non-empty and bounded convex set.
The Wolfe dual problem formulation of (2.1) is:

max d(x, y, s, w) = f(x)− yT (Ax− b) + wT (x− e)− sT x
AT y + s− w = ∇f(x)

w, s ≥ 0
y ∈ IRm; x, s, w ∈ IRn

(2.2)

A feasible point (x, y, s, w) for (2.2), with (s, w) > 0 is called an interior dual feasible solution.
Now, we define in the n-dimensional hypercube [0, 1]n the function:

B(x) =
n∑

i=1

(2xi − 1)[lnxi − ln(1− xi)]. (2.3)

We have immediately the following properties:

• If x → bound[0, 1]n (x approaches the boundary) then B(x) →∞.

• B(x) ≥ 0, for all x ∈ [0, 1]n

• B ∈ C∞(〈0, 1〉n), and the second order derivative of B is X−2(I −X)−2.
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Consequently, B is a strictly convex barrier function infinitely differentiable on 〈0, 1〉n.

In the following section we show that the Hessian X−2(I − X)−2 of the barrier function
B gives a very rich geometric structure on the manifold 〈0, 1〉n, that is, 〈0, 1〉n is a complete
Riemannian manifold with null curvature. The first one means, essentially, that there is a
geodesic between any two points, so we can measure distances in a appropriate way, through
the minimum length geodesic. The second one means that the Riemannian manifold and the
Euclidean space have similar geometric properties.

3 Geometric properties: completeness and null curvature

This section is motivated by the following fact: if we consider the Riemannian manifold

IRn
++ endowed with the Hessian metric X−2 of the logarithmic barrier function

n∑
i=1

ln xi, it can

be proved that Rn
++ is complete with null curvature (see Oliveira and Cruz Neto [20]). The

following two theorems show that our barrier also satisfies those properties. We notice that the
null curvature is a general property of diagonal Riemannian metrics on 〈0, 1〉n (see Papa Quiroz
and Oliveira [21]), but for the sake of completeness we will give the proof. For a general study
of Riemannian geometry applied to optimization we refer the reader to the following references:
Luenberger [14], Gabay [10], Karmarkar [13], Cruz Neto et al., [3], Udriste [26], Rapcsák [25],
Nesterov and Todd [19], and their references.

Theorem 3.1 The Riemannian manifold
(〈0, 1〉n, X−2(I −X)−2

)
is complete.

Proof. By definition 〈0, 1〉n is complete if its geodesic curves are defined for any value of t ∈ IR.
We will obtain the explicit geodesic curves α : [a, b] → 〈0, 1〉n, and verify that property. As
in our case (gij) = X−2(I − X)−2 and so (gij) = X2(I − X)2, we have that the Christoffel’s
symbols (1.2) are reduced to:

Γm
ij = − 2αi − 1

αi(1− αi)
δimδij . (3.1)

Substituting this expression in (1.1) we obtain that the geodesic equation is equivalent to:
∫ 1

αi(1− αi)
dαi = ait + bi, i = 1, ..., n

for some constants ai, and bi in IR, such that αi(0) = xi and α′i(0) = vi, i = 1, ..., n. Solving
the integral equation, and considering the initial conditions, gives

αi(t) =
1
2

{
1 + tanh

(
1
2

vi

pi(1− pi)
t +

1
2

ln
pi

1− pi

)}
, i = 1, ..., n. (3.2)

where tanh(z) = (ez − e−z)/(ez + e−z) is the hyperbolic tangent function. This geodesic curve
is well defined for all t ∈ IR, so the manifold 〈0, 1〉n is complete.

Theorem 3.2 The Riemannian manifold
(〈0, 1〉n, X−2(I −X)−2

)
has null curvature.

Proof. Given p ∈ 〈0, 1〉n, let {Vi}i=1,...,n be a basis for Tp(〈0, 1〉n) = IRn, then, we can write

V =
n∑

i=1
uiVi, W =

n∑
j=1

vjVj , Z =
n∑

k=1
wkVk. As the curvature tensor R is trilinear we have:

R(V, W )Z =
∑

i,j,k

uivjwkR(Vi, Vj)Vk.
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¿From the definition of R (see section 1.2) we obtain:

R(Vi, Vj)Vk = ∇Vj (∇ViVk)−∇Vi(∇VjVk) +∇[Vi,Vj ]Xk

Now, for the Riemannian connection, we have [Vi, Vj ] = 0, and

R(Vi, Vj)Vk = ∇Vj (∇ViVk)−∇Vi(∇VjVk)

If i = j then R(Vi, Vj)Xk = 0. For i 6= j, recall, from section 1.2, that

∇ViVk =
n∑

j=1

Γj
ikVj

Substituting the Christofell’s symbols (3.1) we get

∇ViVk = − 2xi − 1
xi(1− xi)

δikVi (3.3)

Therefore:
∇Vj (∇ViVk) = ∇Vj

(
− 2xi − 1

xi(1− xi)
δikVi

)
.

We have the following cases to analyze. If i 6= k, it is immediate that ∇Vj (∇ViVk) = 0.
Otherwise, if i = k, and j 6= k, we obtain, applying (3.3)

∇Vj (∇Vk
Vk) = ∇Vj

(
− 2xk − 1

xk(1− xk)
Vk

)
=

2xk − 1
xk(1− xk)

δjk
2xj − 1

xj(1− xj)
Vj = 0

Thus
∇Vj (∇ViVk) = 0

In the same way we have
∇Vi(∇VjVk) = 0

Those results lead to:
R(Vi, Vj)Xk = 0, i, j, k, l = 1, ...n.

therefore R(V, W )Z = 0. Then, the Riemannian manifold 〈0, 1〉n, endowed with the metric
X−2(I −X)−2, has null curvature.

4 A self-concordant barrier

In this section, we show that the function B is a (3/2)n-self-concordant barrier for the
hypercube 〈0, 1〉n. Let recall the definition given by Nesterov and Nemirovskii, [18].

Definition 4.1 Let E be a finite dimensional real vector space, Q ⊂ E be a open nonempty
convex subset of E and B : Q → IR a function. B is called self-concordant barrier on Q with
parameter c > 0 (c-self-concordant barrier) if:

1. B ∈ C3 is a barrier function on Q.

2. B is a convex function on Q.
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3. for any x ∈ Q and h ∈ E:

|∇3B(x)[h, h, h]| ≤ 2(∇2B(x)[h, h])
3
2

4. there exists c > 0 such that B satisfied:

|∇B(x)[h]| ≤ c
1
2 (∇2B(x)[h, h])

1
2

Theorem 4.1 The function B(x) =
n∑

i=1
(2xi − 1)[lnxi − ln(1 − xi)] is (3/2)n-self-concordant

barrier on 〈0, 1〉n.

Proof. First, we consider the general term

b(z) = (2z − 1)[ln z − ln(1− z)], z ∈ 〈0, 1〉

The first, second and third order derivatives are, respectively:

b′(z) = 2 [ln z − ln(1− z)]− 1
z

+
1

1− z

b′′(z) =
1

z2(1− z)2

b′′′(z) =
2(2z − 1)
z3(1− z)3

It easy to check that b(z) satisfies the two first conditions, so we prove the remaining. As

|b′′′(z)|
2(b′′(z))

3
2

= |2z − 1| ≤ 1.

we obtain that b(z) satisfies the third condition (sometimes called 1-self-concordant condition).
To prove the last condition, let c = 3/2, then:

|b′(z)|
c

1
2 (b′′(z))

1
2

=
|2 ln( z

1−z ) + (2z − 1) 1
z(1−z) |

c
1
2

1
z(1−z)

=
1

c
1
2

∣∣∣∣2z(1− z) ln
(

z

1− z

)
+ 2z − 1

∣∣∣∣ .

Now, equaling to zero the derivative of the last expression, we get

(1− 2z) ln(
z

1− z
) + 2 = 0

We solve that equation by using Matlab, [15], obtaining the roots z1 = 0.0832217 and z2 =
0.916779, both leading to c = (1.19968)2, which is smaller than 3/2, as wanted. Due to the
stability property with respect to the direct product, see Propositions (2.1.1) and (2.3.1) in
[18], we obtain that the function B is a (3/2)n-self-concordant barrier on 〈0, 1〉n and, therefore,
the proof is completed.
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5 The Central Path

In this section we propose a new interior penalized problem to solve (2.1) and study the
behavior of the (primal-dual) central path, obtained by its KKT optimality conditions. We
will observe that a property of this path is its primal feasibility, with respect to (2.1), and dual
infeasibility, with respect to the dual problem (2.2), by a term µ[lnX(µ)− ln(I −X(µ))]e, that
converges to zero when µ converges to zero.

To solve the problem (2.1) we propose a new penalized problem:

min φB(x, µ) = f(x) + µ
n∑

i=1
(2xi − 1)[lnxi − ln(1− xi)]

Ax = b
(0 < x < e)

(5.1)

where µ > 0 is a positive parameter. The first and second order derivatives of φB are:

g = g(x, µ) := ∇f(x) + 2µ[ln X − ln(I −X)]e− µX−1e + µ(I −X)−1e (5.2)

H = H(x, µ) := ∇2f(x) + µX−2(I −X)−2. (5.3)

Since φB(x, µ) is strictly convex (because f is a convex function, and X−2(I−X)−2 is a strictly
positive symmetric matrix) on the relative interior of the feasible set, and takes infinite values
on the boundary of F , that function achieves the minimal value in its domain (for fixed µ) at
a unique point. Let x(µ) that point, which is called the µ center. The necessary and sufficient
first order KKT optimality conditions for x(µ) are:

AT y + s− w = ∇f(x) + 2µ[lnX − ln(I −X)]e (5.4)
Ax = b (5.5)
Xs = µe (5.6)

(I −X)w = µe (5.7)
(s, w) ≥ 0 (5.8)
(0 < x < 1) (5.9)

The unique solution of this system, denoted by (x(µ), y(µ), s(µ), w(µ), µ > 0), is called the
primal-dual central path. Clearly, this path is primal feasible and dual infeasible with respect
to the problems (2.1) and (2.2) respectively.

Lemma 5.1 Let x(µi) := arg min{φB(x, µi) : Ax = b, 0 < x < e}, i = 1, 2, and let 0 < µ2 <
µ1. Then the following is true:

1. φB(x(µ2), µ2) < φB(x(µ1), µ1)

2.
n∑

i=1
(2xi(µ1)− 1)[lnxi(µ1)− ln(1− xi(µ1))] ≤

n∑
i=1

(2xi(µ2)− 1)[lnxi(µ2)− ln(1− xi(µ2))]

3. f(x(µ2)) ≤ f(x(µ1))

Proof. Is sufficient to consider the fact that the barrier B ≥ 0.

Lemma 5.2 If x∗ is an optimal solution to the problem (2.1), and µ > 0, then

f(x∗) ≤ f(x(µ)) ≤ φB(x(µ), µ)
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Proof. Use the following fact: f(x∗) ≤ f(x(µ)), for any µ > 0, and B ≥ 0.

Proposition 5.1 For all r > 0 the set {(x(µ), s(µ), w(µ)) : µ < r} is bounded.

Proof. As x(µ) ∈ 〈0, 1〉n, the set {x(µ)} is bounded, particularly, when µ < r. Now, we will
prove that {(s(µ), w(µ)) : µ < r} is also bounded. We know that (x(µ), y(µ), s(µ), w(µ)) solves
the equation

AT y + s− w = ∇f(x) + 2µ[lnX − ln(I −X)]e

so, defining the Lagrangian

L(x, y, s, w) = f(x)− yT (Ax− b)− sT x + wT (x− e) + 2µeT [X lnX + (I −X) ln(I −X)]e

we have
∇xL(x(µ), y(µ), s(µ), w(µ)) = 0 (5.10)

where ∇x denotes the gradient of L with respect to the x variables. Now, observing that
L(., y(µ), s(µ), w(µ))) is a strictly convex function on 〈0, 1〉n, (5.10) implies

x(µ) ∈ arg min{L(x, y(µ), s(µ), w(µ))), x ∈ 〈0, 1〉n}.

On the other hand, we have: f(x(µ))− L(x(µ), y(µ), s(µ), w(µ))
= s(µ)T x(µ)− w(µ)T (x(µ)− e)− 2µeT [X(µ) ln X(µ) + (I −X(µ)) ln(I −X(µ))]e
= nµ + nµ− 2µeT [X(µ) lnX(µ) + (I −X(µ)) ln(I −X(µ))]e
≤ 2nµ(1 + ln 2)
Then, due to assumption 1, we can take x0 primal feasible, getting

f(x(µ))− 2nµ(1 + ln 2) ≤ L(x(µ), y(µ), s(µ), w(µ)))

≤ L(x0, y(µ), s(µ), w(µ))
≤ f(x0)− s(µ)T x0 + w(µ)T (x0 − e),

the last inequality being a consequence of the feasibility of x0, and
n∑

i=1
[x0

i ln x0
i + (1−x0

i ) ln(1−
x0

i )] ≤ 0. Thus

f(x(µ))− 2nµ(1 + ln 2) ≤ f(x0)− s(µ)T x0 + w(µ)T (x0 − e) (5.11)

Since 0 < x0
i < 1, i = 1, .., n, the quantity ξ defined by

ξ = min{x0
i , 1− x0

i , i = 1, ..., n}

is positive. Now, let f∗ be the optimal value of the problem (2.1). From (5.11), and using
µ ≤ r, we find:

||s||1 + ||w||1 ≤ 1
ξ
(f(x0) + 2nµ(1 + ln 2)− f(x(µ)))

≤ 1
ξ (f(x0) + 2n(1 + ln 2)r − f∗)

where ||.||1 is the 1-norm (for u ∈ IRn, ||u||1 =
n∑

i=1
|ui|). Therefore the set {(x(µ), s(µ), w(µ)) :

µ < r} is bounded.

We take notice of the fact that the functions ln(xi(µ)) − ln(1 − xi(µ)) being not bounded
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on the interval 〈0, 1〉, we are not able to prove the boundedness of the path {y(µ), µ > 0}.

In the remaining of the text we use the following notation:

(xk, yk, sk, wk) = (x(µk), y(µk), s(µk), w(µk))

The following theorem is a well known property for general positive barriers

Theorem 5.1 Let (µk) be a sequence of positive real numbers such that µk → 0 as k → ∞.
Then

1. µkB(xk, µk) → 0, when k →∞.

2. Any cluster point of the sequence {xk} is an optimal solution of the problem (2.1)

Proof. See Bazaara [2].

Corollary 5.1 Let (xk), k ∈ M ⊂ IN be a subsequence such that xk → x∗, where x∗ is an
optimal solution of the problem (2.1). Then

µk[ln xk
i − ln(1− xk

i ))] → 0, k →∞, i = 1, ..., n

Proof. Taking in mind that b(xk
i ) = (2xk

i − 1)(lnxk
i − ln(1 − xk

i )) ≥ 0, the previous theorem
leads to

µk

n∑

i=1

[
(2xk

i − 1)(lnxk
i − ln(1− xk

i ))
]
→ 0, k →∞,

so
µkb(xk

i ) → 0, k →∞, i = 1, ..., n,

or, equivalently

2µk[xk
i ln xk

i + (1− xk
i ) ln(1− xk

i )]− µk lnxk
i − µk ln(1− xk

i ) → 0, k →∞, i = 1, ..., n (5.12)

The sequence γ(xk
i ) := xk

i lnxk
i + (1− xk

i ) ln(1− xk
i ) is bounded. Now, as µk → 0, k →∞, i =

1, ..., n, we have
2µkγ(xk

i ) → 0, k →∞, i = 1, ..., n. (5.13)

Subtracting the expression (5.13) from (5.12), as both are convergent sequences, it gives

−µk ln xk
i − µk ln(1− xk

i ) → 0, k →∞, i = 1, ..., n

Besides, we have xk
i ∈ 〈0, 1〉n, then −µk lnxk

i > 0 and −µk ln(1− ln xk
i ) > 0, i = 1, ..., n. So

µk ln xk
i → 0, k →∞, i = 1, ..., n (5.14)

−µk ln(1− xk
i ) → 0, k →∞, i = 1, ..., n. (5.15)

Adding (5.14) and (5.15) we conclude that

µk[ln xk
i − ln(1− xk

i ))] → 0, k →∞, i = 1, ..., n
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6 Convergence of the Primal Central Path

In this section we prove that the primal central path converges, that is, there exists the limit
of x(µ) when µ goes to zero. Furthermore we are able to characterize this limit point: it is the
analytic center of the optimal solution set sol(P ). To prove this fact we will use the assumption
2. Additionally, we prove (applying the implicit function theorem) that (x(µ), y(µ), s(µ), w(µ)),
for µ > 0, is continuously differentiable.

The analytic center of the optimal set is defined as the solution of

min
∑
j∈J

(2xi − 1)[lnxj − ln(1− xj)]

x ∈ ri(sol(P )) (6.1)

where ri(sol(P )) is the relative interior of the optimal solution set of the problem (2.1), and
J = {j ∈ {1, 2, ..., n} : ∃ x ∈ sol(P ), 0 < xj < 1}. Observe that, from the convexity of sol(P ),
it follows that

ri(sol(P )) = {x ∈ sol(P ) : 0 < xJ < 1}
If sol(P ) is an unitary set, the unique solution is an extreme point of [0, 1]n, then J = ∅, and,
by convention

∑
j∈J

(2xj − 1)[lnxj − ln(1− xj)] := 0. Notice that the objective function in (6.1)

is strictly convex on ri(sol(P )), and diverges on the relative boundary of sol(P ). Then, due
to the property that sol(P ) is bounded, the analytic center is well defined.

At this point, we will prove that the primal central path converges to the analytic center of
the optimal set. The arguments are similar to those used for the logarithmic barrier, in Graña
Drummond and Svaiter [12].

Theorem 6.1 The primal central path x(µ) converges to the analytic center of sol(P )

Proof.
We are interest in the case when J 6= ∅ ( If J = ∅, sol(P ) is a unitary set and the unique

solution is an extreme point, so Theorem 5.1, 2, implies the convergence of x(µ) to that point).
As the primal central path {x(µ)} is bounded, there exists a cluster point x∗. Let (µk) be the
sequence of positive numbers such that

µk → 0, and x(µk) → x∗ when k →∞

Denote xk = x(µk). Let x̄ be the solution of (6.1). We will prove that 0 < x∗J < 1 and∑
j∈J

(2x∗j − 1)[lnxj
∗ − ln(1 − x∗j )] ≤

∑
j∈J

(2x̄j − 1)[ln x̄j − ln(1 − x̄j)]. The first condition implies

that x∗ is feasible, the second one implies that x∗ is a minimum for (6.1). Defining the sequence
pk = x̄+xk−x∗ we immediately obtain that pk → x̄ when k →∞. First, we will prove that for
k large enough, pk is an strictly feasible solution for problem (6.1). Clearly, xk being feasible
and x∗ an optimal solution, (see Theorem 5.1), we have that Apk = A(x̄+xk−x∗) = b, for all k.
Now, suppose j /∈ J . We are going to show that x̄j = x∗j = 0 or x̄j = x∗j = 1. Indeed, suppose
x̄j 6= x∗j , for some j /∈ J . Clearly, z(t) = x∗ + t(x̄ − x∗) solves (P ) for any t ∈ [0, 1].Therefore,
f(z(t)) = f((1 − t)x∗ + tx̄) ≤ (1 − t)f(x∗) + tf(x∗) = f(x∗). For the j index above, we have
zj(t) = x∗j + t(x̄j − x∗j ). If x̄j = 0, then, from the hypothesis, x∗j = 1, and zj(t) = 1− t, for any
t ∈ [0, 1]. We can take t = 1/2, getting z(1/2) = x∗ + (x̄ − x∗)/2 as a solution for P . Now,
observe that 0 < zj(1/2) < 1, which means that j ∈ J , a contradiction. The proof is analogous
if we let x̄j = 1 and x∗j = 0.

11



Thus, xk
j = pk

j , for j /∈ J , and 0 < pk
j < 1, because 0 < xk

j < 1. On the other hand, for
j ∈ J , since xk

j → x∗j when k → ∞, and 0 < x̄j < 1, then 0 < pk
j < 1 for k large enough. We

conclude that 0 < pk < e for k large enough.
Now, we will prove that

f(pk) = f(xk).

Consider f(x∗ + t(x̄− x∗)) as a function of t ∈ [0, 1]. Since x∗ and x̄ belong to the convex set
sol(P ) and also using the convexity of f, it follows that f(x∗ + t(x̄− x∗)) is constant. Hence,

∇f(x∗)T (x̄− x∗) = 0,

(x̄− x∗)T∇2f(x∗)(x̄− x∗) = 0

Since the Hessian of f is a symmetric positive semi-definite matrix, it follows that

∇2f(x∗)(x̄− x∗) = 0,

thus x̄ − x∗ ∈ ker(∇2f(x∗)). In view of the assumption 2 (see section 2), it is true that
x̄ − x∗ ∈ W , where W is some subspace of IRn. Additionally, by Taylor integral formula, we
have

∇f(xk) = ∇f(x∗) +
∫ 1

0
∇2f(x∗ + t(xk − x∗))(xk − x∗)dt.

We have also ∇2f(x∗ + t(xk − x∗))(xk − x∗) ∈ range(∇2f(x∗ + t(xk − x∗)) = (ker(∇2f(x∗ +
t(xk − x∗)))T )⊥ = (ker(∇2f(x∗ + t(xk − x∗))))⊥ = W⊥, again, due to assumption 2. It follows
that

∫ 1
0 ∇2f(x∗ + t(xk − x∗))(xk − x∗)dt ∈ W⊥, so,

∇f(xk)T (x̄− x∗) = 0. (6.2)

Finally, using the differential characterization of convex functions, the definition of pk, and
(6.2), we get

f(pk) ≥ f(xk) +∇f(xk)T (pk − xk)

= f(xk) +∇f(xk)T (x̄− x∗)
= f(xk).

Thus
f(pk) ≥ f(xk) (6.3)

Similarly, interchanging the roles of xk and pk, we have

f(xk) ≥ f(pk)

which, with (6.3), leads to
f(xk) = f(pk).

Now, since Apk = b and 0 < pk < e, for k large enough, optimality property of xk furnishes,
for k sufficiently large,

f(xk) + µk

n∑

i=1

(2xk
i − 1)[lnxk

i − ln(1− xk
i )] ≤ f(pk) + µk

n∑

i=1

(2pk
i − 1)[ln pk

i − ln(1− pk
i )].

Next, as pk
j = xk

j , for all j /∈ J , and f(xk) = f(pk), we have, also for k large enough:
∑

j∈J

(2xk
j − 1)[lnxk

j − ln(1− xk
j )] ≤

∑

j∈J

(2pk
j − 1)[ln pk

j − ln(1− pk
j )]

12



Taking limits as k goes to infinity in the last inequality, we conclude that 0 < x∗j < 1, for j ∈ J
and ∑

j∈J

(2x∗j − 1)[lnx∗j − ln(1− x∗j )] ≤
∑

j∈J

(2x̄j − 1)[ln x̄j − ln(1− x̄j)]

Since x̄ is unique, we conclude that x∗ = x̄, therefore all cluster points of the primal central
path {x(µ), µ > 0} are equal to analytic center of sol(P ), and the limit of (x(µ)) exists, and
solves the problem (2.1).

7 Application to Linear Optimization

In this section we apply the new barrier to linear optimization problems. We present a
long step path following algorithm and give an upper bound for the total number of Newton
iterations, in order to obtain an ε-optimal solution, achieving a complexity of O(n ln(nµ0/ε))
iterations, where µ0 is the starting algorithm parameter.

Consider the problem (2.1) when the objective is a linear function:

min cT x
Ax = b

0 ≤ x ≤ e
(7.1)

The assumptions are the same as given in the section 2, but we should observe that, due to
the linearity of the objective function, the assumption 2 is immediately satisfied. Besides, the
function cT x is continuous on the compact set F, so, there exists a minimum point to the
problem. Furthermore, the set of optimal solutions sol(P ) is nonempty and bounded. The
dual formulation of (2.1) is:

max d(y, s, w) = bT y − wT e
AT y + s− w = c

w, s ≥ 0
y ∈ IRm

(7.2)

where y, s are m− and n− dimensional vectors, respectively. Now, we can compute the duality
gap. From (7.1) and (7.2), it is given by:

gap := cT x− (bT y − wT e) = eT (Xs + (I −X)w). (7.3)

It follows that d(y, s, w) ≤ z∗ ≤ cT x, where z∗ denotes the optimal objective value in (7.1). It
is also well known that if x∗ is optimal in (7.1), then there exists (y∗, s∗, w∗) that is optimal for
(7.2), with cT x∗ = d(y∗, s∗, w∗) = z∗. Those solutions are characterized by the Karush-Kuhn-
Tucker (KKT) conditions:

AT y + s− w = c (7.4)
Ax = b (7.5)
Xs = 0 (7.6)

(I −X)w = 0 (7.7)
(s, w) ≥ 0 (7.8)

0 ≤ x ≤ e (7.9)

13



Now, we consider the barrier function for the primal problem (7.1):

φB(x, µ) =
1
µ

(cT x) +
n∑

i=1

(2xi − 1)[lnxi − ln(1− xi)] (7.10)

where µ is a positive parameter. The first and second order derivatives of φB are:

g = g(x, µ) :=
c

µ
+ 2[lnX − ln(I −X)]e−X−1e + (I −X)−1e (7.11)

H = H(x, µ) := X−2(I −X)−2. (7.12)

Since φB(x, µ) is strictly convex on the relative interior of the feasible set and takes infinite
values on the boundary of F , that function achieves the minimal value in its domain (for fixed
µ) at a unique point x(µ). The necessary and sufficient first order optimality conditions (KKT
conditions) for x(µ) are:

AT y + s− w = c + 2µ[ln X − ln(I −X)]e (7.13)
Ax = b (7.14)
Xs = µe (7.15)

(I −X)w = µe (7.16)
(s, w) ≥ 0 (7.17)
(0 < x < e) (7.18)

The unique solution of this system is again denoted by (x(µ), y(µ), s(µ), w(µ)). The duality
gap in this solution satisfies:

gap(µ) := cT x(µ)− d(x(µ), y(µ), s(µ), w(µ)) = 2µ(n− eT [ln X(µ)− ln(I −X(µ))]x(µ)).

We have proved that the term µ[ln X − ln(I − X)]e converges to zero and the primal central
path converges to the analytic center of the solution set sol(P ) (see Corollary 5.1 and theorem
6.1), so the gap converges to zero when µ → 0. The following lemma states that the primal
objective function decreases along the primal path and the dual objective increases along the
dual path. In the proof we will use the following primal-dual barrier function for (7.2):

φd
B(x, y, w, s, µ) =

1
µ

(−yT b + wT e)−
n∑

i=1

ln si −
n∑

i=1

ln wi − 2
n∑

i=1

ln(1− xi)

and the dual problem

min φd
B(x, y, w, s, µ)

AT y + s− w = c + 2µ[lnX − ln(I −X)]e
(7.19)

We observe that the barrier is only convex, then the minimum value can be achieved in different
points.

Lemma 7.1 If µ decreases, then the objective function cT x(µ) of the primal problem (7.1)
is monotonically decreasing, and the objective function d(x(µ), y(µ), w(µ)) of the dual problem
(7.2) is monotonically increasing.
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Proof. The first part is a classical result of Fiacco and McCormick [8] (see also Lemma 5.1).
To prove the second part, first note that φd

B(x, y, w, s, µ) is a convex function. The Karush-
Kuhn-Tucker conditions for a minimizing point are:

AT y + s− w = c + 2µ[ln X − ln(I −X)]e (7.20)
A(µS−1e) = b (7.21)

(I − µS−1)e = µW−1e (7.22)
(I −X)−1e = µ(X−1 + (I −X)−1)S−1e (7.23)

where s > 0, w > 0 and 0 < x < e. Indeed, the Lagrangian function for (7.19) is:
L(x, y, w, s, v) =

1
µ

(−yT b+wT e)−
n∑

i=1

ln si−
n∑

i=1

ln wi−2
n∑

i=1

ln(1−xi)−vT (AT y+s−w−c−2µ[ln X−ln(I−X)]e),

from which we write the necessary and sufficient optimality KKT conditions:

AT y + s− w − c− 2µ[lnX − ln(I −X)]e = 0 (7.24)
−b/µ−Av = 0 (7.25)

e/µ−W−1e + v = 0 (7.26)
−S−1e− v = 0 (7.27)

2(I −X)−1e + 2µ(X−1 + (I −X)−1)v = 0 (7.28)

where s > 0, w > 0 and 0 < x < e. That system rewrites:

AT y + s− w = c + 2µ[ln X − ln(I −X)]e (7.29)
A(−µv) = b (7.30)

Ie− (−µv) = µW−1e (7.31)
−µv = µS−1e (7.32)

(I −X)−1e = −µ(X−1 + (I −X)−1)v (7.33)

where s > 0, w > 0 and 0 < x < e. Substituting (7.32) in (7.30), (7.31) and (7.33), one gets,
respectively, A(µS−1e) = b, (I−µS−1)e = µW−1e and (I−X)−1e = µ(X−1 +(I−X)−1)S−1e.
Thus, we achieve the KKT conditions (7.20), (7.21), (7.22), (7.23).
Now, we prove that the central path (x(µ), y(µ), s(µ), w(µ)) minimizes φd

B(x, y, w, s, µ).
We know that the central path KKT conditions are:

AT y + s− w = c + 2µ[ln X − ln(I −X)]e (7.34)
Ax = b (7.35)
Xs = µe (7.36)

(I −X)w = µe (7.37)
(s, w) ≥ 0 (7.38)
(0 < x < 1) (7.39)

¿From (7.36) we have x(µ) = µS(µ)−1e. Substituting this last expression in (7.35) and (7.37),
it gives, respectively,

A(µS(µ)−1e) = b
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and
(I − µS−1(µ))e = µW (µ)−1e.

Finally, refereing to (7.23), we get (I −X(µ))−1e− µ(X−1(µ) + (I −X(µ))−1)S−1(µ)e= (I −
X(µ))−1e− e− (I −X(µ))−1X(µ)e= (I −X(µ))−1(I −X(µ))e− e = 0. Thus

(I −X(µ))−1e = µ(X−1(µ) + (I −X(µ))−1)S−1(µ)e

Therefore the central path satisfies the optimality conditions (7.20), (7.21), (7.22) and (7.23).
Use again the classical result of Fiacco and McCormick to prove the second part of the lemma.

In the algorithm, approximate line search along projected Newton directions are carried
out to minimize φB for fixed µ, i.e., the directions correspond to exact minimization of the
quadratic approximation to φB on the affine space Ax = b. This means that the Newton
direction p = p(x, µ) is determined as the solution of

g + Hp = AT λ (7.40)
Ap = 0 (7.41)

seen as a linear system of equations in p and λ, where H is given in 7.12. As usual, we will
use the ||q||H =

√
qT Hq, q ∈ IRn to measure distances between points. Clearly, ||.||H defines

a norm because H is positive definite.

7.1 Properties Near the Central Path

In this subsection we deal with some lemmas which are needed to obtain an upper bound for
the total number for outer and inner iterations. The following two Lemmas are in essence due
to Nesterov and Nemirovski [18](see also den Hertog [4], for a simplified version of the proofs).

Lemma 7.2 Let x ∈ 〈0, 1〉n and d ∈ IRn arbitrary. If ||d||H(x,µ) < 1, then x + d ∈ 〈0, 1〉n.

Lemma 7.3 Let x ∈ F 0, p be the projected Newton direction and x+ = x + p. If ||p||H < 1
then x+ ∈ F 0 and

||p||H(x+,µ) ≤
1

(1− ||p||H)2
||p||2H

For ||p||H < 3−√5
2 this implies that ||p(x+, µ)|| < ||p||H , thus ensuring the convergence of

Newton’s method. For ||p||H < 1
3 , it holds that

||p||H(x+,µ) ≤
9
4
||p||2H (7.42)

The following Lemma gives an upper bound for the difference in barrier value in a nearly
centered point x and the center x(µ).

Lemma 7.4 If the projected Newton direction p satisfies ||p||H < 1
3 , then

φB(x, µ)− φB(x(µ), µ) ≤ ||p||2H
1− (9

4)2||p||2H
(7.43)
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Proof. The barrier function is convex in x, whence

pT g + φB(x, µ) ≤ φB(x + p, µ)

Now using g = AT λ−Hp and Ap = 0 we have

pT g = −pT Hp = −||p||2H
Substitution gives

φB(x, µ)− φB(x + p, µ) ≤ −pT g = ||p||2H (7.44)

Now let x0 := x, p0 := p and let x1, x2, ..., denote the sequence of points obtained by repeating
Newton steps xk = xk−1 + pk−1, starting at x0, with k = 0, 1, 2, .... By Lemma 7.3 we have

||pk||H ≤ 4
9

(
9
4
||p||H

)2k

So, using (7.44) we may write

φB(x, µ)− φB(x(µ), µ) =
∞∑

k=0

(
φB(xk, µ)− φB(xk+1, µ)

)

≤
∞∑

k=0
||pk||2H

≤
∞∑

k=0

(
4
9

(
9
4 ||p||H

)2k)2

= (4
9)2

∞∑
k=0

(
9
4 ||p||H

)2k+1

≤ ||p||2H
1−( 9

4
)2||p||2H

The next Lemma gives an upper bound for the difference between the objective function
values at a nearly centered point x and x(µ).

Lemma 7.5 If the projected Newton direction p satisfies ||p||H < 1
3 then

|cT x− cT x(µ)| ≤ 1 + 9
4 ||p||H

1− 9
4 ||p||H

µ

√
3n

2
||p||H (7.45)

Proof. As g = c/µ +∇B(x), we have

cT (x + p)− cT x = cT p = µ(gT p−∇B(x)T p) = µ(−||p||2H −∇B(x)T p).

Taking absolute values and using triangular inequality we derive

|cT (x + p)− cT x| ≤ µ(||p||2H + |∇B(x)T p|)

Using the self-concordant barrier property
(
|∇B(x)T p| ≤

√
3
2n||p||H

)
, it follows

|cT (x + p)− cT x| ≤ µ(||p||2H +
√

3
2
n||p||H)
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≤
√

3
2nµ||p||H(1 + ||p||H)

Again, let x := x0, d := d0 e x1, x2, ..., xk denote the sequence of points obtained by repeating
Newton steps, starting at x0. We have

|cT x(µ)− cT x| ≤
∞∑

k=0

|cT xk − cT xk+1|

≤
√

3
2nµ

∞∑
k=0

||pk||H(1 + ||pk||H)

Using the property

||pk||H ≤ 4
9

(
9
4
||p||H

)2k

<
9
4
||p||H

we obtain

|cT x(µ)− cT x| ≤
√

3
2
nµ(1 +

9
4
||p||H)

∞∑

k=0

||pk||H

≤ 1+ 9
4
||p||H

1− 9
4
||p||H

√
3
2nµ||p||H

We notice that if ||p||H = 0, then Lemmas 7.4 and 7.5 imply
φB(y, µ) = φ(x(µ), µ) and cT x = cT x(µ).

7.2 Long-step Path-Following Algorithm

Below we give a long step path following algorithm which we analyze in the next section.
The scalar quantities τ, ε and θ are parameters that must be specified. In our case we use
τ = 1/3 because this condition guarantees the polynomial convergence of our algorithm. It
is also required x0, a starting interior solution of (7.1), and µ0, an initial value of the barrier
parameter. We now describe the algorithm for finding an ε-optimal solution.
Algorithm:
Imput
ε is the accuracy parameter;
τ = 1

3 is the proximity parameter;
θ is the reduction parameter 0 < θ < 1;
µ0 is the initial barrier value;
x0 is a given interior feasible point such that ||p(x0, µ0)||H(x0,µ0) < τ
begin

x := x0; µ := µ0;
while µ > ε

6n do
begin (outer step)

µ := (1− θ)µ;
while ||p||H ≥ τ do
begin(inner step)
−
α:= argminα>0{φB(x + αp, µ) : x + αp ∈ F 0}
x := x+

−
α p

end(inner step)
end(outer step)

end.
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The step length α used at inner iterations can be any value such that x + αp is an interior
solution of (7.1), and a minimum decrease in φB(x, µ) is ensured as given by Lemma 7.8, below.
We also assume that the initial values (x0, µ0) satisfy the proximity criterion ||p||H ≤ τ . For
finding an initial point that satisfies those assumptions we refer the reader to Renegar [24],
Monteiro and Adler [16] and Guler et al.[11].

7.3 Complexity Analysis

In this section we obtain a complexity bound for the long step path following algorithm
above. In the algorithm we will use τ = 1/3. We start with a general self-concordant barrier
property.

Lemma 7.6 Let B be a ν-self-concordant barrier. Then for any x, y ∈ domB, we have

(y − x)T∇B(x) ≤ ν (7.46)

Proof. See Nesterov [17].

Lemma 7.7 Let µ > 0, and z∗ the optimal cost for problem (7.1). We state that

cT x(µ)− z∗ ≤ 3
2
nµ (7.47)

Proof. Due to previous Lemma, the property 3n/2-self-concordant barrier for B, and the ex-
pression g = c/µ +∇B(x), leads to the aimed result.

The following theorem gives an upper bound for the number of outer iterations.

Theorem 7.1 After at most
1
θ

ln
(

6nµ0

ε

)
(7.48)

outer iterations, the long step barrier algorithm ends with a primal solution verifying cT x−z∗ ≤
ε.

Proof. The algorithm stops when µK = (1 − θ)Kµ0 ≤ ε/6n. Equivalently, taking logarithms
produces

−K ln(1− θ) ≥ ln
6nµ0

ε

Since θ ≤ − ln(1− θ), this certainly holds if

K ≥ 1
θ

ln
6nµ0

ε
.

Now we prove that the difference between cT x and z∗ is ε.

cT x− z∗ = (cT x− cT x(µk)) + (cT x(µk)− z∗)

≤ 1+ 9
4
||p||H

1− 9
4
||p||H µK

√
3n
2 ||p||H + 3n

2 µK

≤ 3
2µK(7

3

√
n + n)
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≤ ε
4n(7

3

√
n + n)

≤ ε,

where the first inequality is due to Lemma 7.5 and Lemma 7.7 respectively.

The following lemma adapts to our barrier a general self-concordant property.

Lemma 7.8 Let
−
α= (1− ||p||H)−1 then

∆ = φB(x, µ)− φB(x+
−
α, µ) ≥ ||p||H − ln(1 + ||p||H) > 0 (7.49)

Proof.(den Hertog [4]).

The following theorem gives an upper bound for the total number of inner iterations in each
outer iteration.

Theorem 7.2 Each outer iteration requires at most

22θ

(1− θ)2

(
7
3

√
3n

2
+

3n

2

)
+

22
3

(7.50)

inner iterations.

Proof. We denote the barrier parameter value in an arbitrary outer iteration by
=
µ, while the

parameter value in the previous outer iteration is denoted by
−
µ. The iterate at the beginning of

the outer iteration is denoted by x. Hence x is centered with respect to x(
−
µ), and

=
µ= (1− θ)

−
µ.

By Lemma 7.8, during each inner iteration the decrease in the barrier function value is at least

4 =
1
3
− ln(1 +

1
3
) >

1
22

.

Let N denote the number of inner iterations during one outer iteration. We have

N

22
< N4 ≤ φB(x,

=
µ)− φB(x(

=
µ),

=
µ). (7.51)

Now, define the function
ΨB(x,

=
µ) := φB(x,

=
µ)− φB(x(

=
µ),

=
µ)

According to the Mean Value Theorem there exists
∼
µ∈ (

=
µ,
−
µ) such that

ΨB(x,
=
µ) = ΨB(x,

−
µ)− d

dµ
ΨB(x, µ)|

µ=
∼
µ
(
−
µ − =

µ) (7.52)

Remembering that φB(x, µ) = cT x/µ + B(x), we get

d

dµ
φB(x, µ) = −cT x

µ2
,

and, denoting the derivative of x(µ) with respect to µ by x′,

d

dµ
φB(x(µ), µ) = −cT x(µ)

µ2
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So

− d

dµ
ΨB(x, µ)|

µ=
∼
µ

=

(
cT x− cT x(µ)

µ2

)
|
µ=

∼
µ

≤ | cT x−cT x(
=
µ)

=
µ

2 |

where the last inequality follows from fact that
=
µ<

−
µ and cT x(

=
µ) ≤ cT x(

∼
µ).

Substituting this into (7.52) gives

ΨB(x,
=
µ) ≤ ΨB(x,

−
µ) + cT x−cT x(

=
µ)

=
µ

2 (
−
µ − =

µ)

≤ ΨB(x,
−
µ) +


 |cT x(

−
µ)− cT x|

=
µ

+
cT x(

−
µ)− cT x(

=
µ)

=
µ



−
µ − =

µ
=
µ

(7.53)

Because ||p(x,
−
µ)||

H(x,
−
µ)

< 1
3 , Lemma 7.4 implies

ΨB(x,
−
µ) ≤ 1

3

Now, note that due to Lemma 7.5 and ||p||H < 1
3 :

|cT x− cT x(
−
µ)| ≤ 7

3

√
3
2
n
−
µ

also we have
cT (

−
µ)− cT x(

=
µ)

=
µ

≤ cT x(
−
µ)− z∗
=
µ

≤
3
2n

−
µ

=
µ

Plugging all these upper bounds in (7.53) gives

ΨB(x,
=
µ) ≤ 1

3
+

(
7
3

√
3
2
n +

3
2
n

)
θ

(1− θ)2
. (7.54)

Substituting the last bound in (7.51) we have

N ≤ 22

(
1
3

+

(
7
3

√
3
2
n +

3
2
n

)
θ

(1− θ)2

)

≤ 22θ
(1−θ)2

(
7
3

√
3
2n + 3

2n
)

+ 22
3

Finally, we can combine theorems 7.1 and 7.2, obtaining the total number of Newton itera-
tions required for the algorithm:

Theorem 7.3 An upper bound for the total number of Newton iterations is given by
[

22
(1− θ)2

(
7
3

√
3
2
n +

3
2
n

)
+

22
3θ

]
ln

(
6nµ0

ε

)
(7.55)

This makes clear that to obtain an ε−optimal solution the algorithm needs O(n ln(nµ0/ε))
Newton iterations for the long-step variant (0 < θ < 1).
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8 Concluding Remarks

We introduced a new self-concordant barrier for the hypercube and we proved that the
central path, under standard assumptions, converges to the analytic center of the optimal
solution set. This barrier can be extended for the following class of Semidefinite Optimization.
Let consider the problem: min C • X s.t: Ai • X = bi, 0 ¹ X ¹ I, where • represents the
matrix trace scalar product. That family is motivated by some problems, as the minimization
of the sum of the largest eigenvalues of symmetric matrices, see Alizadeh [1]. Now, we propose
the barrier:

B(X) = tr [(2X − I)(lnX − ln (I −X))]

We are studying that barrier in Papa Quiroz et al., [22].
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