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Abstract. The basic knowledge-based model for concurrent multi-agent
systems (MAS ) [Lam78] captures local and global views of a distributed
computation. The usual knowledge modal language associated [FHM+95]
is capable of expressing things from one agent’s local point of view, and
about the whole system as well. This approach is very suggestive to talk
about rational interactions at the knowledge level: each agent has it’s
part of local knowledge and uncertainty and, as interaction takes place,
this knowledge can be changed by gaining new information and refin-
ing uncertainties, just like it happens in many real life situations. The
growing relevance of social software field [MP02] drives attentions to for-
mal modelling and verifying multi-agent rational interaction by means of
computational methods. Since Model Checking [EC81] is a very success-
ful technique for verifying finite state concurrent systems, we consider
it an appropriate tool to be explored within this field. In this paper we
propose a formal language and the corresponding Model Checking pro-
cess to model and verify multi-agent systems at the knowledge level. The
language we use is an extension of CTL, which we call KCTL, with an
operator (Kk) that provides the capability of observing the occurrence of
an event from the point of view of one agent k. Algorithms for checking
it’s semantics in a branching time model (like the one for CTL) are also
presented.

1 Introduction

The growing relevance of social software field [MP02] drives attentions to formal
modelling and verifying multi-agent rational interaction by means of computa-
tional methods.

Model Checking is a very powerful and mature technique for verifying finite
state concurrent systems [EC81], and many efforts are being made to contem-
plate social software aspects with model checking facilities.

The use of temporal epistemic models to formalize and check compositional
systems in linear time was presented in [EJT99].
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In [BGL98], agents are modelled as concurrent reactive non-terminating finite
state processes able to have BDI atitudes, i. e., beliefs, desires and intentions,
reflecting in an specification with two ortogonal aspects: temporal and “mental
attitudes”. The mental attitudes are represented for each possible state of mind
of each agent, in an hierarchical structure where all levels of knowledge are
explicitly represented, what requires special computational treatment.

These initiatives, as many others, drive our attention to plausibility of auto-
matic verification when epistemic aspects need to be considered.

This paper presents a formal language and the corresponding Model Checking
process to model and verify Multi-Agent Systems (MAS ) at the knowledge level.

We extend branching time CTL logic with knowledge operators Kk for each
agent k. The resulting language, which we call KCTL, provides the capability of
observing the occurrence of an event from the point of view of one agent k. A
semantics based on equivalence “possibility relations” is given for KCTL.

Model Checking algorithms to verify KCTL formulae over state transition
systems (interactive MASs representations) are defined and described in detail.

This paper is organized as follows. Section 2 reviews the branching-time tem-
poral logic CTL [EC81] and the corresponding model checking process [CGP+99].
Section 3 states the requirements to talk about knowledge in MASs. We present
our approach to handle knowledge in a Model Checking process in section 4,
and in section 5 we state the algorithms of interest. Section 6 presents an exam-
ple model for the alternating bit protocol in this logic. Our final remarks go on
section 7 .

2 CTL branching-time temporal logic and Model
Checking

In [BAMP81], Ben-Ari et al. presented for the first time the logic of branching-
time CTL with the aim of dealing with the set of every possible execution tree
generated by a given program. This logic was specially designed to take care of
the consequences of the non-determinism just like the one generated by programs
that interact asynchronously.

It was in [EC81] where Emerson and Clarke gave the final shape to CTL
providing a decision procedure, and that is the reason why the way we present
the logic is close to that of the previously mentioned article.

2.1 CTL Language

Definition 21 (Syntax of CTL formulae)

Let P be a set of propositions. The language of CTL formulae is defined as
follows:

ForCTL(P) is the smallest set For of formulae such that:



- p ∈ For iff p ∈ P,
- {¬φ1, φ1 ∨ φ2, ∃Xφ1, ∃Gφ,∃[φ1Uφ2]} ⊆ For iff {φ1, φ2} ⊆ For.

The rest of the propositional operators are defined in terms of negation (“¬”)
and disjunction (“∨”) in the usual way. Let φ, ψ ∈ ForCTL(P), then the rest of
the temporal operators are defined as follows: ∃Fφ = ∃[trueUφ], ∀Xφ = ¬∃X¬φ,
∀Gφ = ¬∃F¬φ, ∀[φUψ] = ¬∃[¬ψU(¬φ ∧ ¬ψ)] ∧ ¬∃G¬ψ and ∀Fφ = ¬∃G¬φ.

The intended meaning of CTL formulae is given as usual in terms of Kripke
models.

Definition 22 (Kripke model)
Let P be a set of propositions. Then M = 〈S, S0, R,P,L〉 is said to be a Kripke
model if it satisfies the following properties:

- S is a non-empty set of states,
- S0 ⊆ S and S0 6= ∅,
- R ⊆ S × S and Dom(R) = S 3,
- L : S → 2P .

Definition 23 (Set of runs of a Kripke model)
Let M = 〈S, S0, R,P,L〉 be a Kripke model. Then, the runs of M, denoted by
R∞M are characterized as follows:

R∞M = {σ ∈ seq∞(S) | π1(σ) ∈ S0 ∧ (∀i ∈ IN : πi(σ) R πi+1(σ))}.4

We will use RM to denote the infinite set of finite prefixes of the sequences
of R∞M.

Notation 21 (Prefix of a run)
Let M = 〈S, S0, R,P,L〉 be a Kripke model, T ⊆ R∞M, σ ∈ R∞M and i ∈ IN , iσ
will denote the prefix of length i of σ, defined as iσ = σ′ ∈ seq(S) | Length(σ′) =
i ∧ (∀j ∈ IN : 1 ≤ j ≤ i =⇒ πj(σ′) = πj(σ)).

Definition 24 (Satisfiability relation for CTL formulae)
Let M = 〈S, S0, R,P,L〉 be a Kripke model, the satisfiability relation is defined
as follows:

3 Dom is the set-theoretical domain function, and this restriction states that every
state in S has at least one successor through the accessibility relation R.

4 We use seq∞(S) to denote the set of infinite sequences of elements taken from the
set S, and πi as the projection of the ith element of a sequence.



M, 〈σ, i〉 |= p iff p ∈ L(πi(σ))
M, 〈σ, i〉 |= ¬φ iff M, 〈σ, i〉 6|= φ
M, 〈σ, i〉 |= φ ∨ ψ iff M, 〈σ, i〉 |= φ or M, 〈σ, i〉 |= ψ
M, 〈σ, i〉 |= ∃Xφ iff ∃σ′ ∈ R∞M : iσ

′ = iσ ∧M, 〈σ′, i + 1〉 |= φ
M, 〈σ, i〉 |= ∃Gφ iff ∃σ′ ∈ R∞M : iσ

′ = iσ ∧ ∀j : i ≤ j =⇒ M, 〈σ′, j〉 |= φ
M, 〈σ, i〉 |= ∃[φUψ] iff ∃σ′ ∈ R∞M : iσ

′ = iσ∧
(∃j ∈ IN : i < j ∧M, 〈σ′, j〉 |= ψ∧

(∀k ∈ IN : i ≤ k < j =⇒
M, 〈σ′, k〉 |= φ))

2.2 CTL Model Checking

Given a Kripke Model M = 〈S, S0, R,P,L〉 that represents a finite state concur-
rent system with it’s properties of interest and a CTL formula f expressing some
desired specification, the model checking problem is to find the set of states in S
that satisfy f [CGP+99]: {s ∈ S|M, s |= f}. In other words, the state-transition
system underlying a Kripke structure is checked to see whether it is a model of
the specification written in CTL.

Normally some states are designated initial states, and we say that the system
satisfies the specification provided that all of the initial states are in the set.
Formally, M, S0 |= f means ∀s0∈S0M, s0 |= f .

A CTL formula f can be identified with a set of states in a given model M,
namely those states QM ⊆ S that satisfy the formula: QM(f) = {s|M, s |= f}.
Model checking a CTL formula therefore entails the manipulation of sets of
states: S0 ⊆ QM(f). Algorithms for doing so are given in [CGP+99].

3 Knowledge in Concurrent Systems

A Distributed System is a concurrent system composed of a set of agents, each
running it’s corresponding program, that communicate by sending and receiving
messages along previously defined communication channels.

The interesting fact about this model is that it permits to talk in separate
about local and global computation. An agent is not concerned about the way
other agents carries on their local computations. All interaction happens by
sending and receiving messages, just like many computational systems operate.

This approach is very suggestive to talk about rational agents at the knowl-
edge level. Each agent has it’s part of local knowledge and uncertainty and, as
interaction takes place, this knowledge can be changed by gaining new informa-
tion and refining uncertainties.

3.1 Multi-Agent Kripke Models for Knowledge

The usual way to deal with knowledge and uncertainty in Kripke Models is by
means of “indistinguishable states”, presented in [FHM+95].



To accomplish the notion that each agent has it’s own private information
set, we label propositions with its corresponding agent identification, assigning
propositions to one agent information set.

We also enhance the Kripke Model with possibility relations ∼k. For each
agent k, we define an equivalence relation ∼k over S. Two states s and t of S
are related by ∼k if and only if agent k can not tell them apart. This means that
the information agent k has in both s and t states is the same.

Definition 31 (K-extended Kripke Model)
Let {Pk}1≤k≤j be a set of disjoint sets of propositions. Then M = 〈S, S0, R, {∼k

}1≤k≤j ,∪j
k=1Pk,L〉 is said to be a K-extended Kripke Model if it satisfies the

following properties:

- S, S0 and R are as defined for a Kripke Model;
- L : S → 2∪

j
k=1Pk .

- {∼k}1≤k≤j is a set of binary equivalence relations on S.

3.2 A Language for Knowledge

To reason about knowledge in a MAS it is necessary to assume that agents
are able to reason about the world and also about other agents’ knowledge.
A complete axiomatic characterization of the notion of knowledge and common
knowledge, and an accurate analysis of the role played by time in MAS ’ evolution
was given in [Leh84].

We adopt a propositional multi-modal language, with a knowledge modality
Kk for each agent k. Knowledge modalities permits to talk about information
from each agent’s point of view. Intuitively, formula Kkϕ indicates that “agent
k knows ϕ”.

4 Model Checking Knowledge in Multi-Agent Systems

We now present a formal language and the corresponding Model Check process
to verify multi-agent systems at the knowledge level. The language proposed is
an extension of CTL, which we call KCTL. After defining KCTL, we present
Algorithms for checking it’s semantics in a branching time model.

4.1 Multi-agent architecture

Computation in a Multi-agent System (MAS ) is dictated by the local programs
each agent runs. Global states of the system are compositions of local states
of each agent. [Lam78] presents a classic event-based model for Asynchronous
MAS. The model is basically composed by:

– a network with m agents, connected by communication channels;
– a set R of asynchronous runs (distributed computations or parallel runs of

all agents involved);



– a set E of events, including internal actions and communication events;
– a set C of global states of the system; and
– a protocol P (or distributed algorithm) corresponding to a set of local pro-

grams that specifies the behavior of each agent.

For Model Check purposes, we represent the program for each agent in the
MAS as an automaton. Each automaton represents the local states (nodes) and
events from E (edges) for an agent. P is set of all automata.

Definition 41 Automaton
Let Σ be an alphabet, an automaton is a structure A = 〈S, Σ∗, E, {pi}i∈I ,L〉
such that S is a set of states, Σ∗ is the language generated by the alphabet Σ,
E ⊆ S×Σ∗×S a set of edges, {pi}i∈I a set of propositions, and L : S → 2{pi}i∈I

the function that assigns to each state a subset of the propositions.

When we put all the agents running together, we get to a global automaton
that is the parallel asynchronous composition of the automata for each agent.

The idea is that the states of the composed automaton are n-tuples where
its components corresponds to a local state of each of the agents, and the edges
corresponds to all edges of local automata.

Definition 42 Parallel Asynchronous Composition of Automata
Let Ai = 〈Si, Σ

∗, Ei, {pk}k∈Ii ,Li〉 be an automaton for all i ∈ [1, . . . , n]. Then
the parallel asynchronous composition of the automatons, denoted as ||1≤i≤nAi,
is the structure 〈S,Σ∗, E,P,L〉 defined as follows:

- S = Π1≤i≤nSi,
- ((s1, . . . , sn), l, (s1

′, . . . , sn
′)) ∈ E iff

∨
1≤i≤n l ∈ Π2(Ei) 5,

- P =
⋃

1≤i≤n Pi

- L((s1, . . . , sn)) =
⋃

1≤i≤n Li(si)

States in the composed automaton corresponds to the MAS ’s global states,
and are the elements in C. The set of runs can be easily obtained from the global
automaton: each run in R is a path on the global automaton’s computation tree.

When making the Parallel Asynchronous Composition of a set of Automata
where each automaton dictates the behavior of an agent, it is possible and rea-
sonable to get a composed global automaton G = 〈S, Σ∗, E,P,L〉 where many
states from S corresponds to the same local state component for a particular
agent. When two such states s and t with the same local state component for
agent i are connected by an edge (s, l, t) ∈ E, l ∈ Π2(Ej), j 6= i, this means that
agent i is incapable of noticing that a global state change has occurred when the
global state passes from s to t. This edges denote local actions made by other
agents different from i, and for this reason are imperceptible for agent i.

An equivalence relation for each agent can be defined over the states with
this “indistinguishable” property.
5 Given a label l ∈ Σ∗, a set of states S and a set of edges E ∈ S×Σ∗×S, l ∈ Π2(E)

if and only if there exists s, s′ ∈ S such that (s, l, s′) ∈ E.



Definition 43 Possibility Relation ∼i for agent i
Let ||1≤i≤nAi = 〈S, Σ∗, E,P,L〉 be the parallel asynchronous composition of
automata Ai = 〈Si, Σ

∗, Ei, {pk}k∈Ii
,Li〉 for all i ∈ [1, . . . , n]. The possibility

relation ∼i∈ S×S for each agent i is the smaller equivalence relation containing
all pairs (s, t) such that s, t ∈ S and there is an edge (s, l, t) ∈ E, l ∈ Π2(Ej)
and j 6= i.

Intuitively, two states are related by ∼i if agent i, being in one of them,
considers it possible that the other one is the current state. In other words,
agent i can’t tell the current state from the other possible states.

4.2 Extended CTL Language: KCTL

We describe here a logic to reason about knowledge in state transition systems
as the ones presented in the previous section. The language we will use is an
extension of CTL with an operator (Kk) that provides the capability of observing
the occurrence of an event from the point of view of one of the automaton
involved in the system. From now on, this language will be referred as KCTL.

As in CTL, KCTL formulae reason about (knowledge) properties of com-
putation trees. The tree is formed just by unwinding the global automaton (or
Kripke Structure [CGP+99]) that represents the MAS from it’s initial state. The
computational tree illustrates all possible runs in R.

Definition 44 (Syntax of KCTL formulae)
Let j ∈ IN and {Pk}1≤k≤j be the set of disjoint sets of propositions. The language
of KCTL formulae is defined as follows:

ForCTL(j, {Pk}1≤k≤j) is the smallest set For of formulae such that:

- p ∈ For iff there exists k such that 1 ≤ k ≤ j and p ∈ Pk,
- Ki(φ) ∈ For iff 1 ≤ k ≤ j and φ ∈ For,
- any other compound formula is formed in the same way as in CTL (see

definition 21).

Just like in section 2, the semantics of the set of KCTL formulae is given
in terms of Kripke models, but this time, considering as the set of propositions
the union of all the components of the set of sets provided as argument for the
construction of the set of KCTL formulae.

The intuition behind the next definition is that of a run where, given a binary
relation over the set of states, successions of states which are related via that
relation are compressed keeping only one of them, for instance, the first one.
This definition somehow establishes a notion of indistinguishability of states in
a run.

Definition 45 (∼-quotient of a run)
Let S be a non-empty set, and ∼⊆ S × S a binary relation on S, we define the



∼-quotient of a sequence, of elements of S, σ as σ|∼ = σ′ ∈ seq∞(S) | π1(σ) =
π1(σ′)∧ (∀i ∈ IN : (∃j, k ∈ IN : j < k∧πi(σ′) = πj(σ)∧πi+1(σ′) = πk(σ)∧ (∀r ∈
IN : j ≤ r < k =⇒ πr(σ) ∼ πj(σ)))).

The satisfiability relation for a KCTL formula will be slightly modified to
consider the previous definition to give meaning to the operator “K”.

Definition 46 (Satisfiability relation for KCTL formulae)
Let {Pk}1≤k≤j be a set of disjoint sets of propositions and M = 〈S, S0, R, {∼k

}1≤k≤j ,∪j
k=1Pk,L〉 be a K-extended Kripke Model, the satisfiability relation is

defined in exactly the same way that it was done for CTL formulae, except for
the new operator that is interpreted as follows:

M, 〈σ, i〉 |= Kk(φ) iff ∀σ′ ∈ R∞M : ∀j ∈ IN : jσ
′|∼k = iσ|∼k =⇒

M, 〈σ′, j〉 |= φ

4.3 A Model Checking Process for Knowledge

We now present algorithms for the model checking problem described in sec-
tion 2.2. We use an explicit representation of K-extended Kripke Models M =
〈S, S0, R, {∼k}1≤k≤j ,∪j

k=1Pk,L〉 as automata where each state is labeled with
the propositions associated by L.

The process is the usual model checking process presented in [CGP+99]: “To
check whether a KCTL formula f is satisfied in some state(s) of S, the process
consists on labeling each state s ∈ S with the set label(s) of subformulae of f
which are true in s. Initially, label(s) is L(s). Then the algorithm goes through a
series of iterations, adding subformulae do label(s). During ith iteration, subfor-
mulae with i− 1 nested KCTL operators are processed and added to the labels
of states where it is satisfied. At the end, M, s |= f if and only if f ∈ label(s)”.

For the intermediate stages of the algorithm, it is necessary to handle seven
cases: atomic formulae, ¬,∨, ∃X, ∃G, ∃U and K. The six first cases are the same
for CTL:

For formulae of the form:

– Atomic formulae, already handled;
– ¬f1, label those states that are not labeled by f1;
– f1 ∨ f2, label those states that are labeled by either f1, f2 or both;
– ∃Xf1, label those states that have a sucessor labeled by f1;
– ∃Gf1, first construct a restricted Kripke Model M′6, then partition the graph

(S′, R′) into strongly connected components, next find those states that be-
long to nontrivial components, and then work backwards using the converse
of R′ and find all of those states that can be reached by a path in which each
state is labeled with f1, finally label these states with ∃Gf1;

6 M′ = 〈S′, S′0, R′, {∼k}′1≤k≤j ,∪j
k=1Pk,L′〉 is obtained from M by deleting from S all

those states at which f1 does not hold and restricting R and L accordingly. R′ may
not be total



– ∃[f1Uf2], first find all states labeled with f2, then work backwards using the
converse relation R and find all states that can be reached by a path in which
each state is labeled by f1, then label all this states with ∃[f1Uf2];

Detailed algorithms for this cases with time complexity of O(|S| + |R|) are
given in [CGP+99].

We shall give special treatment to the seventh case, where the knowledge
operator must be handled.

Following the intuitive meaning and the semantics defined for Kk operators
in KCTL, to model check a formula of the form Kkf we must look to the indis-
tinguishable states for agent k, related by ∼k equivalence possibility relation.

First, find the set of all states s labeled with f . Then, for each state found
s, recursively check if all states t related to s (the current one) by ∼k (all t such
that s ∼k t) are labeled with f . If this is the case, label all them (the current
state s and all states t, s ∼k t) with Kkf .

In spite of being a recursive process, this procedure is linear to the number of
pairs in ∼k. This is achieved because ∼k is an equivalence relation, what makes
s ∼k t the same as t ∼k s. The algorithm chooses a component and look for the
possibilities for the second component. Each state is elected as first component
just once, because we keep in track the states already elected in set L.

Once we have algorithms to the seven cases listed, to handle an arbitrary
KCTL formula f just successively apply the state-labeling algorithm to the
subformulae of f , starting with the shortest and most deeply nested one, and
work outward until f is entirely checked. The complete process takes time
O(|f | · (|S|+ |R|+ Σj

k=1| ∼k |)).

5 Algorithms

We now examine in detail the new algorithms to model check formulae of the
form Kkf .

Function CheckK(G, f, k)

Data : G [in parameter] is a (global) automaton (representing a MAS);
f [in parameter] is a formula to be evaluated;
k [in parameter] is an agent identifier;
L is a set of states, initially empty;

begin
L := ∅ ; S := {s|f ∈ label(s)}
foreach state s in S do

if RecursiveCheckK(G, f, k, L, s) then
foreach state t in L do

label(t) := label(t) ∪ {Kkf}
end

end
end



Function RecursiveCheckK(G, f, k, L, s)

Data : G [in parameter] is a (global) automaton (representing a MAS);
f [in parameter] is a formula to be evaluated;
k [in parameter] is an agent identifier;
L [in parameter] is a set of states;
s [in parameter] a state;

begin
if s /∈ L then

if f ∈ label(s) then
L := L ∪ {s}
foreach state t ∈ G, so that t ∼k s do

if RecursiveCheckK(G, f, k, L, t) then
return True
else

return False
end

end

else
return True

end
end

6 Example

6.1 The Alternating Bit Protocol

As an example of how the logic presented in this text is proposed to work, we
present a model for the alternating bit protocol [KR00] [Mil89].

The alternating bit protocol is a well-known basic communications protocol.
It is often used as a test case, either for some algebraic formalism or for some
tool for the analysis or verification of concurrent systems.

It consists of three components, or ”agents”: a sender agent, a receiver
agent and a communications channel. The sender agent has a set of mes-
sages to send to the receiver over the communications channel. However, the
channel isn’t reliable, that is, it can lose any messages going through it. It is
assumed that the channel can only transport one message at a time and that it
is bi-directional, that is, it can transport messages from the sender to the receiver
and it can also transport messages from the receiver to the sender.

The protocol starts with the sender selecting the first message to send. This
message is extended with a control bit (initially 0) to form a frame and this
frame is sent along the communications channel. Right as the sending of the
frame starts, the sender also starts a timer. When this timer counts down to
zero, the sender will assume the frame was lost and will retransmit it.

The communications channel then transmits the frames from the sender to
the receiver. There are two situations that can occur. The frame is properly



transmitted, or the frame is lost during transmission. If the fame is lost, there
is nothing to be done but to wait until the timer of the sender to count down to
zero.

If the frame wasn’t lost, the receiver reads the frame from the channel. The
receiver then checks the control bit in the frame. If this bit matches the internal
control bit of the receiver, the message in the frame is acknowledged, that is,
the receiver sends an acknowledgement message with the control bit to the
sender over the communications channel. Receiver then flips his internal control
bit and waits for another frame. If the bit of the received frame was wrong,
the receiver sends a negative acknowledgement (with a flipped control bit), and
waits for a retransmission of the frame.

The communications channel then is used to transmit the acknowledgement
from the receiver to the sender. As it is able to lose messages, the acknowledge-
ment can be lost. If it happens, again there is nothing to do but wait until the
timer runs down to zero. The sender will then retransmit the frame and, assum-
ing the frame reaches the receiver, it will cause the receiver to transmit a new
acknowledgement equal to the one which was lost.

The sending of the frame continues until the sender receives the acknowl-
edgement of a successful transmission over the communications channel. Such
acknowledgements are the ones with the control bit matching the internal con-
trol bit of the sender. If the bit doesn’t match, the acknowledgement message is
ignored. After a successful transmission, the sender flips the control bit, selects
the next message to send and starts all over again.

6.2 The agents automata

Diagrams of states

Next, the local automata for sender, channel and receiver, respectively.
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Here, follows the global automaton.
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The databases for sender and receiver

Now, it will be shown the databases for sender and receiver, with the proposi-
tions that holds on each state.

Sender
S0: sent_msg_bit_1

received_Ack1
p

S1: sending_msg_bit_0
receiving_Ack0
p

S2: sent_msg_bit_0
received_Ack0
p

S3: sending_msg_bit_1
receiving_Ack1
p

Receiver
R0: receiving_msg_bit_0

sent_Ack1
q

R1: received_msg_bit_0
sending_Ack0
q

R2: receiving_msg_bit_1
sent_Ack0
q

R3: received_msg_bit_1
sending_Ack1
q

6.3 Queries

High-level queries



Query #1 Is deadlock possible on this protocol?
G, (s0|c0|r0) |= ∃F(¬∃X(Ksp ∨ Krq))
Result for Ksp: All global states
Result for Krq: All global states
Result for (Ksp∨Krq): {all global states} ∪ {all global states} = {all global

states}
Result for ∃X(Ksp ∨ Krq): Set of states which have at least one successor in

{all global states} = {all global states}
Result for ¬∃X(Ksp ∨ Krq): Complementary set of {all global states} = ∅
Result for ∃F(¬∃X(Ksp ∨ Krq)): Is the initial state at the beginning of any

path that contains any state in ∅? No. Then returns false.

Query #2 G, (s0|c0|r0) |= ∃F(Krsending ACK0 ∧ Ksreceiving ACK0)
Result for Krsending ACK0: L1 = {(s0|c2|r1), (s1|c2|r1)}
Result forKsreceiving ACK0: L2 = {(s1|c2|r1), (s1|c3|r2), (s1|c0|r2), (s1|c0|r0),

(s1|c1|r0), (s1|c1|r2)}
Result for Krsending ACK0∧Ksreceiving ACK0: Intersection between L1

and L2 = {(s1|c2|r1)}
Result for ∃F(Krsending ACK0 ∧ Ksreceiving ACK0): As exists the path

(s0|c0|r0) → (s1|c1|r0) → (s1|c2|r1), this query returns true.

Query #3 G, (s1|c0|r0) |= ∃[Kssending msg bit 0 UKrreceiving msg bit 0]
Result forKrreceiving msg bit 0: {(s0|c0|r0), (s1|c1|r0), (s1|c0|r0), (s0|c1|r0),

(s2|c5|r0), (s3|c5|r0), (s2|c4|r0), (s3|c4|r0), (s2|c7|r0), (s3|c7|r0)}
Result for ∃[Kssending msg bit 0 U Krreceiving msg bit 0]: Since

Krreceiving msg bit 0 is satisfied in (s1|c0|r0), this query returns true.

More detailed queries

Query #4 Is possible the receiver to remain in starvation?
G, (s0|c0|r0) |= ∃GKrreceiving msg bit 0

Result for Krreceiving msg bit 0:
CheckK(G, receiving msg bit 0, r)

% States that contains r0

RecursiveCheckK(G, receiving msg bit 0, r, L, (s0|c0|r0))

L = {(s0|c0|r0), (s1|c1|r0), (s1|c0|r0), (s0|c1|r0), (s2|c5|r0), (s3|c5|r0), (s2|c4|r0),
(s3|c4|r0), (s2|c7|r0), (s3|c7|r0)}

Result for ∃GKrreceiving msg bit 0: As exists the path (s0|c0|r0) → (s1|c1|r0)
→ (s1|c0|r0) → (s0|c0|r0) → ..., where all elements there contains
’Krreceiving msg bit 0’, this query returns true.



Query #5 G, (s0|c0|r0) |= ∃FKrKs¬sending msg bit 1

Result for Ks¬sending msg bit 1:
CheckK(G, ¬sending msg bit 1, s)
% States that contains s0

RecursiveCheckK(G, ¬sending msg bit 1, s, L, (s0|c0|r0))
L = {(s0|c0|r0), (s0|c1|r0), (s0|c2|r1), (s0|c3|r2), (s0|c0|r2), (s0|c1|r2)}

% States that contains s1

RecursiveCheckK(G, ¬sending msg bit 1, s, L, (s1|c1|r0))
L = {(s1|c1|r0), (s1|c0|r0), (s1|c2|r1), (s1|c3|r2), (s1|c0|r2), (s1|c1|r2)}

% States that contains s2

RecursiveCheckK(G, ¬sending msg bit 1, s, L, (s2|c4|r2))
L = {(s2|c4|r2), (s2|c5|r2), (s2|c6|r3), (s2|c5|r0), (s2|c4|r0), (s2|c7|r0)}

Result for KrKs¬sending msg bit 1:
CheckK(G, Ks¬sending msg bit 1, r)
% States that contains r0

RecursiveCheckK(G, Ks¬sending msg bit 1, r, L, (s0|c0|r0))
RecursiveCheckK(G, Ks¬sending msg bit 1, r, L, (s3|c7|r0)) ⇒ FAIL!

% States that contains r1

RecursiveCheckK(G, Ks¬sending msg bit 1, r, L, (s1|c2|r1))
L = {(s1|c2|r1), (s0|c2|r1)}

% States that contains r2

RecursiveCheckK(G, Ks¬sending msg bit 1, r, L, (s1|c3|r2))
RecursiveCheckK(G, Ks¬sending msg bit 1, r, L, (s3|c5|r2)) ⇒ FAIL!

% States that contains r3

RecursiveCheckK(G, Ks¬sending msg bit 1, r, L, (s2|c6|r3))
RecursiveCheckK(G, Ks¬sending msg bit 1, r, L, (s3|c6|r3)) ⇒ FAIL!

Result for: ∃FKrKs¬sending msg bit 1: Path (s0|c0|r0) → (s1|c1|r0) → (s1|c2|r1),
where the last state contains ’KrKs¬sending msg bit 1’. Then, the query returns
true.

7 Conclusions

This paper focus on knowledge logics for MAS s and Model Checking. Our con-
tribution is a formal language and the corresponding Model Checking process to
model and verify multi-agent systems at the knowledge level.



First, a model for MAS adequate for Model Checking purposes is defined.
Labeled composed automata, in correspondence to K-extended Kripke Models,
are constructed from local automata given for each agent.

As a language for knowledge, we presented KCTL, an extension of CTL with
knowledge operators Kk for each agent k. KCTL is capable to reason about
knowledge in state transition systems that corresponds to interactive MASs rep-
resentations. A semantics based on equivalence possibility relations is given for
KCTL.

With adequate model and language in hands, a Model Checking process
close to the usual process for CTL [CGP+99] is also defined. The algorithms for
checking Kk formulae, recursively working through the possibility relation over
the set of states, is defined and examined in detail. It’s efficiency is almost the
same for CTL.
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