
Formal Verification of Knowledge Based
Programs

Carla Delgado, Mario Benevides and Michel Carlini

COPPE/Sistemas - Universidade Federal do Rio de Janeiro (UFRJ)
P.O. Box 68.511 - 21.945-970 - Rio de Janeiro - RJ - Brazil

{delgado, mario, mcar}@cos.ufrj.br

Abstract. In this work we investigate two approaches for representing
and reasoning about knowledge evolution in Multi-Agent System (MAS),
and presents a translation method from one formalism to another. We
use a formal Language for Time and Knowledge [7] as a specification
language for the whole system, and for each agent, we use Knowledge
Based Programs, [6]. After introducing both approaches, we propose a
translation method to translate a representation in KBP into a set of
TKL formulas. The translation method presented provides an strategy
to model and verify MAS without being attached to local or global rep-
resentations, giving the alternative to switch from one representation to
another. In order to illustrate usefulness of the translation method two
MAS are presented: the Muddy Children Puzzle and the Bit Exchange
Protocol.
Keywords: formal verification, modal logic, knowledge based programs.

1 Introduction

When representing a Multi-Agent System (MAS) we have two main approaches.
We can look at the system by means of agents’ individual behavior or as a global
unity reacting to the surrounding environment. In this work we investigate two
methods and their relationship.

For the global approach, we use a formal Language for Time and Knowledge,
TKL, to specify the global behavior of MASs . TKL is a logic language capable
of representing knowledge evolution in a group of agents. A complete axiomatic
characterization of these notions is given in [7].

For the individual agent’s approach, we use Knowledge Based Programs
(KBP) [6], which aims to describe the activities of a MAS considering agent’s
knowledge and abstracting from implementation details. In this approach a MAS
is a collection of KBPs, one to each agent, that executes in accordance with
knowledge tests applied to the agent’s local state.

Using TKL formulas, it is possible to formally verify interesting global prop-
erties of the system, as deadlock, agreement, global stability, distributed knowl-
edge and everybody’s knowledge. On the other hand, there is a great variety of
problems that can be represented by a KBP. The ability to build a KBP from
a MAS’ specification written in TKL would be interesting in order to model the

2 Carla Delgado, Mario Benevides and Michel Carlini

behavior of each agent in the system as an autonomous process, and to show the
relationship between knowledge and actions. Conversely, if we obtain an specifi-
cation of a KBP expressed in TKL from the KBPs, we would get both a concise
global representation of the whole system and a framework for checking global
properties using theorem provers available [2].

In this paper we propose a set of rules to generate a specification in TKL
formulas from a set of local KBPs composing a MAS. Each rule basically de-
scribes how to generate formulas in TKL from items of specific sections of the
KBP system. The complete translation is obtained by applying some applicable
rules of transformation to each KPB that belongs to the system. To formalize
the translation method, we define these rules as functions from the KBPs items
into sets of formulas written in TKL.

The methods of translation presented in this work offers an strategy to model
and verify MASs in two levels: local and global, allowing one to switch from one
representation to another. Sections 2 and 3 present TKL and the KBP for-
malisms. Section 4, defines the translation methods with application examples.
Section 5 sketches the proofs of theorems about important properties of the
translation methods, and in section 6 we state our conclusions.

2 A Language for Knowledge and Time

In order to be able to reason about knowledge in a MAS it is necessary to
assume that agents are capable of reasoning about the world and also about
other agents’ knowledge. As MAS is a dynamic entity, we need a representation
of knowledge that captures the evolving knowledge spread out among agents.
A complete axiomatic characterization of the notion of knowledge and common
knowledge, and an accurate analysis of the role played by time in MAS’ evolution
was given in [7].

The language is a propositional multi-modal language. For each agent i, there
is a modality Ki representing knowledge from agent’s i point of view. Intuitively,
the formula Kiϕ indicates that “agent i knows ϕ”. For simplicity, the language
may also include modality Bi, dual of Ki, which means that “agent i believes
ϕ is true”. We also have modal temporal operator ©ϕ, which means that ϕ
is true at next moment. Other temporal modalities are ¤ (always) and Until .
The modal operators for knowledge in a group of agents, Distributed Knowledge
DG, Everybody’s Knowledge EG and Common Knowledge CG, are defined in
the usual way [6].

A brief formal description for the Temporal Knowledge Language (TKL):
ϕ ::= p| ⊥ |¬ϕ|ϕ ∧ ψ|ϕ ∨ ψ|ϕ → ψ|Kiϕ|Biϕ| © ϕ|ϕUntilψ|¤ϕ , where p

ranges over the propositional symbols and i over the set of agents.
A model for TKL is a tuple M = 〈S, ω, l, R1, R2, · · ·〉 where S is set of states

or possible worlds (an infinite sequence of states will be called a history), ω ∈
SN is the real history, l is a labelling function l : S → 2P , and for every agent i,
Ri is an infinite sequence of equivalence relations, i. e. for any k ∈ N , on Rk

i is
an equivalence relation on SN

k , the set of all possible histories at instant k. The

Formal Verification of Knowledge Based Programs 3

intuitive meaning for Rk
i is that any two histories ω and τ are equivalent with

respect to i and k if the knowledge that agent i has gathered about the world
and its history up to instant k is not enough for her to distinguish between ω
and τ .

Formula ϕ is True for a history σ and instant k ∈ N at a model M :

1. M, k, σ |= p iff p ∈ l(σk);
2. M, k, σ |= ¬ϕ iff not M, k, σ |= ϕ;
3. M, k, σ |= ϕ ∧ ψ iff M, k, σ |= ϕ and M,k, σ |= ψ;
4. M, k, σ |= Kiϕ iff M,k, τ |= ϕ for all histories τ such that (σ, τ) ∈ Rk

i ;
5. M, k, σ |= Biϕ iff M, k, τ |= ϕ for some history τ such that (σ, τ) ∈ Rk

i ;
6. M, k, σ |= ©ϕ iff M, k + 1, σ |= ϕ;
7. M, k, σ |= ¤ϕ iff for all n ≥ k M, n, σ |= ϕ;
8. M, k, σ |= ϕ Until ψ iff for all n ≥ k such that M, n, σ 6|= ϕ there is some m,

k ≤ m ≤ n such that M, m, σ |= ψ.

A complete axiomatization for this logic is presented in [7].

3 Knowledge-Based Programs

Most models for distributed systems suggest that each entity is a program that
executes its actions in accordance with tests applied to agent’s local state [8,
1]. Each test together with its associated actions is called a guard. Knowledge
Based Programs were defined in [6] intending to describe the activities of a
MAS considering agent’s knowledge and abstracting from implementation de-
tails. This can be done including knowledge tests to agent’s local state, together
with conventional tests.

A knowledge test for agent i is a boolean combination of formulas of the
form Kiϕ or ¬Kiϕ, where ϕ can be an arbitrary formula that may include other
modal operators, like common knowledge, other agents knowledge and temporal
ones [6] (for simplification, the dual of Ki, Bi, may also be used in knowledge
tests). The agent selects an action based on the result of applying the standard
test to local state and knowledge test to knowledge state. Standard programs
are a special cases of KBPs.
Standard Program KBP

Program Progi Program KBPi

initial: initial conditions initial: initial conditions, initial knowledge
repeat repeat

case of case of
(a) test 1 do action 1 (a) test 1 ∧ knowledge test 1 do action 1
(b) test 2 do action 2 (b) test 2 ∧ knowledge test 2 do action 2
· · ·

end case end case
until termination test until knowledge termination test

end end

4 Carla Delgado, Mario Benevides and Michel Carlini

KBPs provide a interesting level of abstraction to represent the relation be-
tween knowledge and actions. Depending on the granularity of knowledge and
actions representation, a KBP may have different levels of abstraction. This is
illustrated in the example below. The Muddy Children Puzzle offers an inter-
esting study about the knowledge involved in a MAS. It consists of a system
formed by n children and their father.

We start with n children playing together. The father tell them that they
should not get dirty. It happens that some of the children get mud on their
foreheads. Each child can see the mud on the others forehead, but not on his
own. After some time, the father returns and says: “At least one of you has
mud on your forehead”. Then, he keeps asking the following question, over and
over: “Does any of you know whether you have mud on your own forehead?”
Suppose that all children are perceptive, intelligent, truthful, and they answer
simultaneously. If there are k muddy children, in the first k−1 times, all children
will answer ‘NO’, but in then the kth time the muddy children will all answer
‘YES’.

The behavior of each child on the Puzzle can be modelled as a KBP, where
proposition childheardi stands for “Child i just heard father’s question”, and
proposition pi stands for “child i is muddy”:

program MCi %% version 1
initial: Kipj , for j={% set of muddy children agent i sees%}

Ki(
W

x=1..n px) %% At least one child is muddy
repeat

case of
(a) childheardi ∧ (Kipi ∨Ki¬pi) do say ‘YES’
(b) childheardi ∧ (¬Kipi ∧ ¬Ki¬pi) do say ‘NO’
end case

until Kipi ∨Ki¬pi

end

The KBP above is too abstract and not very interesting as far as knowledge
representation is concerned. It does not represent knowledge evolution in time.
We would like to have a representation of a KBP showing how pieces of knowledge
are acquired and how an agent produces new consistent knowledge. Below, we
present a more detailed KBP for the same puzzle.

Formal Verification of Knowledge Based Programs 5

program MCi %% version 2
initial: Kipj , for j={% set of muddy children agent i sees%}

Ki(
W

x=1..n px) %% At least one child is muddy
repeat

case of
(a) initiali ∧ childheardi ∧ Kipi do say ‘YES’
(b) initiali ∧ childheardi ∧ ¬Kipi do say ‘NO’
(c) childheard yesi ∧ ¬Kipi do learn Ki¬pi

(d) childheardi ∧ ¬ childheard yesi∧
Bi(¬pi ∧B1(¬p1 ∧ · · · ∧Bk−2(¬pk−2 ∧Bk−1(¬pk−1 ∧Kkpk)) · · ·))) do

learn Bi(¬pi ∧B1(¬p1 ∧ · · · ∧Bk−2(¬pk−2 ∧Kk−1(pk−1 ∧Kkpk)) · · ·)))
say ‘NO’

(e) childheardi ∧ ¬ childheard yesi ∧Bi(¬pi ∧Kjpj), for j <> i do
learn Kipi

say ‘YES’
end case

until Kipi ∨Ki¬pi

end

Propositions childheardi and pi have the same meaning of the previous ex-
ample, and propositions initiali and childheard yesi stands for “Program MCi

has just begun” and “Child i heard answer Yes from any other child” respec-
tively. The command learn denotes the action of acquiring a piece of knowledge.
A detailed explanation of the KBP presented above can be found at [3]. It would
be interesting to provide some explanation about the formula in guard (d), when
the father asks if somebody already knows if there is mud on its forehead, the
state of knowledge of each agent changes from:

Bi(¬pi ∧B1(¬p1 ∧B2(¬p2 ∧ · · · ∧Bk−2(¬pk−2 ∧Bk−1(¬pk−1 ∧Kkpk)) · · ·)))
to: Bi(¬pi ∧B1(¬p1 ∧B2(¬p2 ∧ · · · ∧Bk−2(¬pk−2 ∧Kk−1(pk−1 ∧Kkpk)) · · ·)))
which means that as agents learn more and decrease their uncertainty, some of
their believes are confirmed and turned into knowledge.

The latter version of the KBP presents much more information about the
way agents reason about knowledge, abstracting from how messages are sent or
received, how the local knowledge base of each agent is implemented, and other
implementation details. Now, it is possible to understand how knowledge evolve
on the system. The complete specification of the MAS can be obtained by the
composition of all MCi programs.

4 Translating KBPs into TKL formulas

There is a great variety of problems that can be represented as a set of KBPs.
It is an interesting tool to model the behavior of each agent in the system as
an autonomous and local process, showing the relations between knowledge and
actions. On the other hand, by producing an specification as a set of formulas
written in TKL, we get a concise representation of the system and a framework
for checking global properties such as deadlock detection, agreement, global sta-
bility, distributed and everybody’s knowledge using theorem provers available

6 Carla Delgado, Mario Benevides and Michel Carlini

[2]. In this section we propose a set of rules to generate a specification in TKL
from a set of local KBPs.

The translation process consists on applying some rules of transformation
to each KPB that belongs to the system. Each rule basically describes how to
generate formulas in TKL from specific items of the KBP. To formalize the
translation method, we define these rules as functions from KBP items into a
set of TKL formulas. First, we give an overview of the complete process.

Formulas at the initial section of a KBP are put in the set of formulas cor-
responding to the MAS specification. They represent facts that are true at the
beginning of the system. If a formula is preceded by operator Ki, for some i,
then it represents local knowledge for agent i, and does not interfere with other
agents’ knowledge. On the other hand, formulas that are not preceded by modal
operator for knowledge represents global information.

Example: Bit Sender KBP
keeps sending a bit to it’s partner, Bit Receiver KBP, until convinced
the bit was correctly received
program BtS

initial: Ks(bit = 0), assuming that zero is the initial value of the bit
Ks(bit = 0 ∨ bit = 1)

repeat
case of
(a) ¬KsKr(Bit)ado sendbit
end case

until KsKr(Bit)
end

Looking at initial section, we can straightly extract formulas Ks(bit = 0) and

Ks(bit = 0 ∨ bit = 1) for TKL specification

a the formula KrBit stands for Kr(bit = 0) ∨Kr(bit = 1)

The guards of the KBP correspond to the preconditions of a section of actions
(or commands). Actions affects the system and consequently other agents, so
when representing state change rules in a MAS, we generate, for each guard of
the program, a rule of the kind: cause → consequence; where cause corresponds
to the precondition implied by the guard, and consequence to the effect of the
actions associated to that guard. The test of a guard is already TKL formula,
but actions have to be translated; it is necessary to identify the effect caused by
each action and translate this effect into TKL.

Example: Bit Sender KBP
From guard (a) we identify: cause: ¬KsKr(Bit) consequence: sendbit
cause is already a TKL formula, but the action sendbit needs translation.

Propositions, evaluated at knowledge tests on the KBPs, represent important
information about state changes from the point of view of each agent. Actions
are the only way to change truth value of propositions at knowledge tests. So,
the execution of an action at a KBP is translated into a set of TKL formulas
that change their values as consequence of action execution. Besides, actions

Formal Verification of Knowledge Based Programs 7

in the KBP representing agent i can affect agent i itself or other agents in the
system; actions that affect the agent itself have their results reflected at the right
moment they are performed, but actions that affect other agents will only be
perceived in the next turn of the system.

Example: Bit Sender KBP
Action sendbit is a communication action. When talking about a system where mes-
sages are safely delivered, it’s consequence is that agent receiver will learn the bit value.
As it is an action made by one agent that concerns another, it must be preceded by
the temporal operator: ¬KsKr(Bit) →©Kr(Bit)

Finally, we tackle the translation of the knowledge termination test. A KBP
finishes its execution when a termination condition is achieved, what corre-
sponds to say that the agent being modelled by this KBP is not capable of
doing any other action or perceiving anything else. Whenever all KBPs of the
system has achieved its termination condition, it should finish its computation
and whole system must halt. This can also be represented by a rule cause →
consequence, where cause corresponds to the conjunction of all KBPs termina-
tion condition formulas (

∧
∀i knowledge termination testi), and consequence to

the formula ¤ ⊥.

Example: Bit Sender KBP
Termination condition will be made from the conjunction of Bit Sender KBP termina-
tion test and the other KBPs involved, i. e., the Receiver’s.

KsKr(Bit)∧ knowledge termination testreceiver → � ⊥
This rules can be summarized as follows.

– Each formula at the initial section of each KBP becomes a formula of the
MAS specification.

– For each guard (on each KBP) of the form: test i ∧ knowledge test i do
action1

i , action2
i · · ·, generate formula: test i ∧ knowledge test i→ effect of action1

i

∧ effect of action2
i · · ·

– For the termination conditions of all KBPs of the system, generate formula:∧
∀iknowledge termination testi → ¤ ⊥

The formula effect of actionn
i represents the fact that becomes true as conse-

quence of the action being performed. effect of actionn
i is a TKL formula involv-

ing propositional operators and operators for individual knowledge, if the action
affects only the agent who performed it; if the action affects other agents, it will
turn into a formula preceded by temporal operator ©, due to the fact that it
will only be perceived at the next turn of the system.

These rules can be formalized by a translation function ΨMAS that maps
KBPs into a set of formulas written in TKL. The function ΨMAS : P → 2S ,
where P is a set of KBPs and 2S is the power set of formulas of TKL. ΨMAS

can be defined in terms of a subfunction ψmas from KBP items into formulas in
TKL, based on the rules explained above.

8 Carla Delgado, Mario Benevides and Michel Carlini

For each KBP of the system:
ψmas: initial section translation

For each knowledge logic formula ϕ at initial section: ψmas(ϕ) = ϕ
ψmas: guards translation

For each guard G of the form: test i ∧ knowledge test i do action1
i action2

i · · ·
ψmas(G) = knowledge test i →

effect of actionn
i , if actionn

i affects only agent i
©effect of actionn

i , otherwise
(for all associated actions)

ψmas: termination condition translation
For knowledge logic formula knowledge termination test from all KBPs
ψmas(knowledge termination test) =

V
∀iknowledge termination testi→ � ⊥

In section 3, we present two KBPs for the Muddy Children Puzzle. The first
one is too abstract and the second one quite detailed. If we extract a specification
from the former, it would be also too abstract and not very useful to reasoning
about knowledge evolution. From the later, we can obtain a more detailed spec-
ification and prove interesting properties about how knowledge evolves at the
KBP. In order to illustrate the use of translation function ΨMAS we apply it to
the KBP of second example for the Muddy Children Puzzle, MCi version 2.

Applying ΨMAS to MCi version 2:

ψmas(Kipj): Kipj , for j={% set of muddy children agent i sees%}
ψmas(Ki(

W
x=1..n px)): Ki(

W
x=1..n px)

ψmas(a): (initiali ∧ childheardi ∧ Kipi) →© V
j∈G childheard yesj

ψmas(b): (initiali ∧ childheardi ∧ ¬Kipi) →© V
j∈G childheard noj

ψmas(c): (childheard yesi ∧ ¬Kipi) → Ki¬pi

ψmas(d): (childheardi ∧ ¬ childheard yesi∧
Bi(¬pi ∧B1(¬p1 ∧ ... ∧Bk−2(¬pk−2 ∧Bk−1(¬pk−1 ∧Kkpk))...)))) →
Bi(¬pi ∧B1(¬p1 ∧ ... ∧Bk−2(¬pk−2 ∧Kk−1(pk−1 ∧Kkpk))...)))∧
© V

j∈G childheard noj

ψmas(e): (childheardi ∧ ¬ childheard yesi ∧Bi(¬pi ∧Kjpj), for j <> i) →
Kipi ∧ ©V

j∈G childheard yesj

ψmas(Kipi ∨Ki¬pi):
V
∀i(Kipi ∨Ki¬pi) → � ⊥

Formal Verification of Knowledge Based Programs 9

With this specification in hands, we can prove some interesting properties:

For a group of n children where k have muddy foreheads:
For any turn m ≤ k, no children hears any affirmative answer.

î

©© · · ·©| {z }
m times

¬childheard yesi, for i = 1 to n

After k turns if child j is dirty, she knows it.

pj →©© · · ·©| {z }
k times

Kjpj

What leads to an affirmative answer that will be heard soon, letting everyone aware
about one’s own forehead after the kth turn.

î

©© · · ·©| {z }
k+1 times

childheard yesi ∧ (Kipi ∨Ki¬pi), for i = 1 to n

A child that is not dirty will only became aware of it after she hears an affirmative
answer.

¬pi → (¬Ki(pi ∨ ¬pi) until childheard yesi)

5 Relation Between KBP and TKL formulas Specification

An important property of MAS specifications written in TKL obtained from a
set of KBPs using the translation methods is stated by the following theorem:

Theorem 1. Let S be a set of TKL formulas, obtained applying function ΨMAS

to a KBP representing one agent in a MAS. All executions of P satisfies S.

Proof. The proof is by induction on the structure of program P . All formulas in
S are obtained applying a rule ψmas to a KBP item, so to preserve the validity
implied by the execution of P .

6 Conclusions

In this work we investigate two different approaches for representing and rea-
soning about knowledge in a MAS. We use a formal Language for Time and
Knowledge [7] as specification language to represent global properties of the sys-
tem, and for each individual agent, we use Knowledge Based Programs [6]. The
latter is more suitable for modelling the behavior of each agent in the system as
an autonomous process and observe how interaction takes place; the latter has
the advantage of providing a concise representation of the whole system and the
possibility of checking global properties using theorem provers available [2].

This paper proposes a translation method, which consists of a set of rules to
generate a specification in TKL formulas from a set of local KBPs composing

10 Carla Delgado, Mario Benevides and Michel Carlini

a MAS. The translation method presented provides an strategy to model and
verify global properties of a MAS presented as a set of KBPs.

Two examples of MAS were presented in order to illustrate the translation
method: the Muddy Children Puzzle and the Bit Exchange Protocol. The Muddy
Children Puzzle illustrates the relations between knowledge and time in a group
of agents, and the Bit Exchange Protocol evidences the role played by interaction
in MASs. This approach could be used to model many practical problems related
to MASs, as for example, the implementation of protocols of communication and
games.

As future work, we could define another translation method to accomplish the
inverse process, that is the construction of a set of KBPs from a set of formulas
corresponding to a specification of a MAS written in TKL. But it seems to be
a more complex translation, as KBPs have hidden semantic properties that are
embedded in its structure.

References

1. Barbosa, V.: An Introduction to Distributed Algorithms. MIT Press (1996).
2. Dixon, C., Nalon, C., Fisher, M.: Tableaux for Temporal Logics of Knowledge:

Synchronous Systems of Perfect Recall Or No Learning. Proceedings of 10th In-
ternational Symposium on Temporal Representation and Reasoning and Fourth
International Conference on Temporal Logic. Cairns, Queensland, Australia(2003).

3. Delgado, C., Benevides, M.: Dynamic Knowledge Logics. Proceedings of Encontro
Nacional de Inteligência Artificial (ENIA). Fortaleza, Brazil (2001)

4. Fagin, R., Vardi, M.: Knowledge and Implicit Knowledge in a Distributed Environ-
ment. In: Proceedings of the Conference on Theoretical Aspects of Reasoning about
Knowledge, (1986) 187–206

5. Fagin, R., Halpern, J., Moses, Y. and others: Reasoning About Knowledge. MIT
Press (1995).

6. Fagin, R., Halpern, J., Moses, Y. and others: Knowledge-Based Programs. Dis-
tributed Computing, Vol. 10(4), (1997) 199–225

7. Lehmann, D.: Knowledge, common knowledge, and related puzzles. In Proc. 3rd
Ann. ACM Conf. on Principles of Distributed Computing, pages 62–67, 1984.

8. Lamport, L.: Time, clocks and the ordering of events in a distributed system. Com-
munications of the ACM, Vol 21(7), (1978) 558–565.

