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Abstract

The b-chromatic number o(G) of a graph G is defined as the largest
number k for which the vertices of G' can be colored with k colors sat-
isfying the following property P : for each ¢, 1 < ¢ < k , there exists
a vertex x; of color ¢ such that for all j # 4, 1 < j < k there ex-
ists a vertex y; of color j adjacent to z;. A graph G is bw-perfect if
@(H) = w(H) for every induced subgraph H of G. We prove that ev-
ery Py-free graph is bw-perfect if and only if it is 2D-free and 3 Ps-free.
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1 Introduction

Parameters involving vertices or edges coloring have attracted a lot of
attention and have been extensively studied [5]. The interest in these
parameters comes mostly from the algorithmic graph theory.

In this paper, we define a k—coloring of G as a function ¢ defined on
V(G) into a set of colors C = {1,2,--- k} such that any two adjacent
vertices have different colors. The term proper coloring is sometimes
used when one wants to insist on the condition c¢(z) # c¢(y) for all
zy € F(G). The minimum cardinality k for which G has a k—coloring
is the chromatic number x(G) of G. It is well known that determin-
ing the chromatic number of a graph is NP-hard for general graphs,
but polynomial-time solvable for certain classes of graphs [3, 6]. For
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instance, a graph has chromatic number 2 if and only if it is bipartite.
Earlier, in 1941 Brooks [2] proved that: x(G) < A(G) + 1.

In this paper, we are interested in the b-chromatic number ¢(Q)
defined as the largest number & for which the vertices of G are colored
with k colors satisfying the following property P : for each ¢, 1 <14 <
k , there exists a vertex x; of color 7 such that forall j £, 1 < j <k
there exists a vertex y; of color j adjacent to z;. Each vertex z; is said
to be (p-dominant.

The b-chromatic number was first defined and studied by Irving
and Manlove [4]. They showed that determining ¢(G) is NP-hard for
general graphs, but polynomial-time solvable for trees.

A graph G is bw-perfect if ¢(H) = w(H) for every induced sub-
graph H of G. A graph is bw-minimal imperfect if it is not bw-
perfect and all its induced subgraphs are bw-perfect. Let b = ¢(G).

The aim of this work is to prove the following result.

Theorem 1 Let G be a Py-free graph, then we have the equivalence:
(i) G is bw-perfect
(ii) G is 2D-free and 3Ps-free.

It is obvious that if G contains 2D or 3P5 then G is not bw-perfect.

The proof of “ (ii ) implies (i)” will be done by contradiction.
Consider G, a Py-free 2D and 3P3 free, bw-minimal imperfect graph.

We observe that no component of G is a clique, otherwise it con-
tains no ¢-dominant vertex, and we will have a contradiction with the
minimality of G.

From now one each vertex ¢-dominant will be said dominant.

2 Definitions and preliminary results

We consider simple non oriented simple graphs. In a graph G, we de-
note by N(z) the neighborhood of a vertex z, by w the order of a max-
imum clique of G. Any clique considered here is a maximum clique. A
graph is Py-free if it contains no induced path with &k vertices (Py). A



graph is diamond free or D-free if it contains no diamond: a complete
graph with four vertices minus an edge (K4 — e). It is known [1] that
in any connected graph Pj-free, any maximum clique is dominating.
Furthermore, if the graph is not 2-connected but connected, then it
has exactly one cutvertext xo, and this cutvertex dominates the graph.

We shall prove the following results.

Proposition 2.1 If H is a Py-free 2-edge connected graph, not a
clique and w(H) > 3, then H contains a diamond.

Proof: It is sufficient to consider a maximum clique and a vertex y
outside this clique. We know that there exists at least an edge [y, c|
with ¢ vertex of the clique. There is a vertex u of the clique such that
y and u are independent. As H is 2-edge connected, there exists a
path P(y,a) (with a # ¢) from y to the clique. As H is Py-free, we
have a diamond containg the triangle (u,a,c). O

It follows that: If H is a Pj-free, imperfect graph and w(H) > 3,
then H contains a diamond. Furthermore if H is not 2-connected then
it contains at least 2 diamonds (2D).

Observations:

1. In a connected graph, but not 2 connected, Py-free, there is a
unique cutvertex and this cutvertex is a universal vertex, so it is
in every clique.

2. In any minimal (connected or not) imperfect graph, any vertex
t which is outside a clique K is either the unique neighbour of
colour ¢(t) of some dominant or the unique dominant of colour

c(t).

From now on we consider minimal imperfect graphs of minimal
order. We remark that any dominant vertex is a center of a Pj.

It follows that if G is not connected, it is 3P; free and minimal
imperfect, then:

remark 1 G has most 2 components G; and G2; we may suppose

that w(G1) = w(G).



remark 2 At most w dominant vertices of different colours of G are
in G1 and at least one is in Go:

Indeed: if we have p > w + 1 dominant vertices z1 ,...,zp of
different colours of G in GGy, we get a p-dominating colouring of
G1 by coloring the non dominant vertices z; of a colour ¢ > p+1
by a colour in {1,...,p} missing in N(z;). We get a p dominant
coloring of G; which is a contradiction with the minimality of G
as w(G1) < p.

remark 3 For any maximal clique in GG1, as G is P4-free, the clique
dominates G1, so at least one vertex of the clique is ¢ dominant.
As (@) > w and G is Py-free, at least one vertex of this clique
is not dominant.

remark 4 No dominant vertex y;, of colour i, which is outside a
clique, is adjacent to a non dominant vertex u contained in
the clique. Otherwise if b is a colour external to the clique,
either ¢ = b it is obvious, or y; is adjacent to a vertex r, and
{Tb, i, u,u;} induces a Py, where u; is a vertex of K of colour .

Lemma 2.2 Let G be a graph Py-free. Let P = (a,b,c) and P' =
(d, e, f) be two disjoint induced paths of length 2 in G with independent
centers b and c. If the vertices a,b are independent from d, then the
sets {a,b,c} and {d,e, f} are relatively independent.

Lemma 2.3 If G is bw-minimal imperfect, then o(G) =w + 1, and
for each colour j, there exists a clique K;

Proof: Let ¢ be any color. Let C; be the set of vertices of colour 1.
We have w(G) < p(G) —1 < (G — C; ), then by minimality of G,
(G — C;) = w(G@ — C;) < w(G). It follows that we get the
equalities

w(G) =¢(G) —1=¢(G - C;) O

We may suppose that the colours are {1,2,...,b} withb=w + 1.

Corollary 2 Let G be bw-minimal imperfect and Py-free, let wy be
the mazimum number of dominant vertices contained in a cligue of G,
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let K = KE be a clique containing wi dominant vertices and let D be
a set of dominant vertices of different colours contained in G — K.
Then we have:

1.1 < w < w — 1. The number of nondominant vertices in
G — K is atleast wlw — wi ),

2. D is a stable set.

Proof: We may suppose K C Gj.
Proof of 1)

We know by remark 3, that wy # 0. If w; = w, each vertex of K has
a neighbour outside K of colour . By maximality of the order of the
clique, there does not exist a common neighbour to all the vertices of
K. So by minimality of the graph G, we have at least two vertices u
and uy, of colour b outside K, with priviliged neighbour,respectively,
z1 and zo in K; and {up ,z1 , 22 ,uf) } induces a Py. We have a
contradiction. Then 1 < w; < w — 1. By remark (4), a non dominant
vertex is contained into at most one clique. By Lemma 2.3, there are
at least (w 4+ 1) cliques, so we have at least w(w — w; ) non dominant
vertices outside K.

Proof of 2)

Case G not connected: D is composed by 2 sets Wy and Ws. Let Wo
be a maximal set of dominating vertices of different colours contained
in Gy, let W3 be a set of dominating vertices of all the colours with
no dominant vertex in G, one vertex by colour.

Let wo = |[Wa|, Let w)y = |W3 |.

e there is at most one vertex of colour b, which is neighbour of the
w1 dominant vertices contained in K.

ee Fach y € Wy needs at most w — 1 neighbours outside K; each
vertex of W needs at most w neighbours. Suppose that two vertices
y; and y; ,of Wy or W are adjacent (as G is Py-free ).

i)if y; and y; are in Wy,
the two vertices y; and y; need in common at most w — 2 colours,
so the number of the non dominant outside K is at most :

ww —w; ) —wy +1
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ii) if y; and y; are in W5”, they need at most w — 2 neighbours. So
the number of the non dominant outside K is at most :
ww —wy; ) —ws . Incase (i) we > 2. By (1), this case cannot holds.
In the second case, by (1), we have wy = 0, and there is exactly one
edge in D (a). Either wy > 2, we have a 2Ds: one containing two
dominant vertices contained in K, and the other one containing y; y;;
or w; = 1,by maximality of K, as the 2 dominant vertices are in a
triangle, then necessarily w > 4, w —w; + 1 > 4. At least three
dominant vertices are in W5. We have a P3 in G, and by (), we
have a 2P3; with centers in D.

Case G connected: Two vertices of D which are adjacent need at most
(w — 2) neighbours together. So outside K we have at most

(w = 1)(w — w1 —1) +(w — 2) non dominant vertices; which is at
most (w — 1 )(w — wi ). We have a contradiction with (i).

3 Proof of the theorem

We use the notations of the precedent section. Let n’ be the number
of non dominant vertices outside K. We consider the set D. Let ¢(z)
denote the colour of z. Let r be the number of common neighbours
of at least 2 vertices of D. Then

n<ww —w+1) — wy — r+1.

So by (ii) of the precedent corollary, r < w — we —1. So, each vertex
y; of D, either in Gy or in G2, has at least one priviliged neighbour,
(i), outside K. Either ¢(r;) # b, and as there is a vertex u of colour
c(r;) in K, or ¢(r;) = b and there exists a vertex u of colour ¢(y;), not
dominant, in K. Then u is independent from r;. As G is without Py,
it follows that N(y;) N K C N(r;). As r(i) is not dominant by (ii)
and G is Py-free, then there exists necessarily outside K, a neighbour
r'(i) ¢ of y; which is independent from (7).

If w—w; > 2, there are at least three dominant vertices outside K.
By applying two times Lemma, 2.2, we see that we have at least three
paths of length 2 which are independent. If w—w; = 1, by maximality



of wy each vertex outside K is independent from at least a dominant
vertex contained in K. As G is Py-free, there exists at least a dominant
vertex xj € K which is independent from y; and y, € D. With the
path [u;, zx,up |, and by Lemma 2.2, we get three independent paths
centered in D U x. This proofs the theorem. &
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