

UFRJ - UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COPPE - COORDENAÇÃO DOS PROGRAMAS DE PÓSGRADUAÇÃO DE ENGENHARIA
PESC - PROGRAMA DE ENGENHARIA DE SISTEMAS E COMPUTAÇÃO

PARALLEL STRATEGIES FOR PROCESSING
SCIENTIFIC WORKFLOWS

Luiz Antônio Vivacqua Corrêa Meyer
Marta Lima de Queirós Mattoso

RIO DE JANEIRO, RJ – BRAZIL

APRIL, 2004

 2

GENERAL INDEX

I - INTRODUCTION..5

II – TECHNOLOGICAL INFRASTRUCTURE...............................8

II.1 - GRID COMPUTING.. 8
II.1.1 – Globus Toolkit .. 9
II.1.2 - Grid Data Access .. 10

II.2 – SCIENTIFIC WORKFLOWS ... 12
II.2.1 - DAGMAN APPLICATIONS.. 14
II.2.2 – BPEL4WS... 15
II.2.3 – GSFL .. 16
II.2.4 – DAML-S.. 17
II.2.5 – XScufl ... 18

III – RELATED WORK..21

II.1 - WASA .. 22
II.2 - METEOR ... 22
II.3 - SDM ... 23
II.4 – GRNA... 25
II.6 – SRMW ... 26
II.7 - CHIMERA ... 27
II.8 - PEGASUS .. 29
II .9 - MYGRID... 30
II.10 - GRIDFLOW... 30
II.11 – DISCUSSION.. 31

IV – WORKFLOW PARALLEL PROCESSING.........................34

IV.1 - WORKFLOW PARALLEL STRATEGIES... 34
IV.2 – WORKFLOW PARALLEL DESIGN & EXECUTION.................................... 40
IV.3 – INITIAL HEURISTICS ... 42

V – PRELIMINARY RESULTS...44

V.1 – MHOLLINE WORKFLOW.. 44
V.2 PARALLEL MHOLLINE DESIGN .. 45
V.3 EXPERIMENTAL RESULTS ... 45

 3

Figure Index

Figure 1 - OGSA Grid Service [25].. 8
Figure 2 - Globus toolkit main services [26].. 9
Figure 3 - Grid file data access .. 10
Figure 4 - Grid Database Access [25] ... 11
Figure 5 - DAGMAN input file and respective Diamond DAG (adapted from [33])....... 14
Figure 6 - BPEL Document Structure (adapted from [34]) ... 15
Figure 7 – Web Services and GSFL Workflow Models [36] .. 17
Figure 8 - Process modeling Ontology [37]... 18
Figure 9 – Xscufl example (adapted from [61]) ... 19
Figure 10 - WASA Architecture (adapted from [42])... 22
Figure 11 - Meteor architecture [43] ... 23
Figure 12 - Scientific Workflow Management System architecture [45] 24
Figure 13 - BioOpera Architecture [47] .. 25
Figure 14 – SRMW Architecture [58] .. 26
Figure 15 - VDC main components [15] .. 27
Figure 16 - VDL specification and the correspondent acyclic graph (adapted from [16])
... 28
Figure 17 - Configuration of Pegasus when driven by Chimera [50].............................. 29
Figure 18 - GridFlow architecture [53]... 31
Figure 19 – Inter-workflow parallelism with grouped input data distribution 35
Figure 20 - Inter-workflow parallelism with individual input data distribution 35
Figure 21 - Intra-Workflow Parallelism for a pipeline of programs (sequential pattern)36
Figure 22 – Intra-program parallelism for input data processing independently 37
Figure 23 - Intra-Program Parallelism with dataset partition .. 37
Figure 24 – The theoretical Wf1 workflow.. 38
Figure 25 – Inter-workflow strategy to execute Wf1... 38
Figure 26 – First intra-workflow strategy to execute wf1... 39
Figure 27 - Second intra-workflow strategy to execute wf1.. 39
Figure 28 – Workflow parallel execution architecture.. 41
Figure 29 - The parallel workflow design architecture.. 41
Figure 30 - WFDB Class Diagram... 42
Figure 31 - Parallel Workflow Execution Architecture.. 42
Figure 32 - The MholLine Workflow components .. 44
Figure 33 - Implemented Architectures .. 45
Figure 34 – Inter workflow parallelism strategy with grouped and circular distribution46
Figure 35 – Intra workflow parallelism strategy and for the three executions together.. 47

 4

Table Index

Table 1 – Basic workflow control patterns [54]... 13
Table 2 – Primitive activities .. 16
Table 3 – Structure activities...16
Table 4 – Workflow Projects General Aspects ... 32
Table 5 – Estimated time to process Wf1 in a homogeneous environment 39
Table 6 - Estimated time to process Wf1 in a heterogeneous environment....................... 40
Table 7 – Workflow patterns and respective heuristics .. 43
Table 8 - Schedule for 2004 ...Erro! Indicador não definido.
Table 9 - Schedule for 2005 ...Erro! Indicador não definido.
Table 10- Schedule for 2006 ..Erro! Indicador não definido.

 5

I - INTRODUCTION
__

Scientific resources like programs and data present characteristics of distribution,
heterogeneity and in some cases huge volume of information. Multiple sites [1, 2, 3, 4, 5,
6] make their data and programs available through the use of customized interfaces
allowing scientists to submit their work. One alternative to this remote use is
downloading the data and the programs and installing them in their own site. Frequently,
scientists need to combine these resources to perform a higher-level function. In these
cases, programs and data are composed in an execution chain such that the output of a
program execution can be used as the input of another. As observed by Deelman et al [7],
scientific communities like physicists, astronomers and biologists are no longer
developing applications as monolithic codes. Instead, standalone components are being
combined to process data. In this scenario, scientific applications can be viewed as
scientific workflows.

 Scientific programs often generate and process large datasets [52]. Therefore, one
problem that can arise when running scientific workflows is the time needed to
accomplish their execution. The execution of some components and consequently the
entire workflow can be a time consuming task. Thus, in order to enhance the performance
of scientific workflows parallelism can be exploited.

One possible way to exploit parallelism is to use a parallel machine. However,
this solution presents some drawbacks like the high costs for hardware and software
acquisition. Another possibility is to use a distributed environment like a PC cluster,
which can provide computation performance equivalent to a parallel machine but with
much lower costs. A third alternative can be the use of Computational Grids [14]. Grids
are emerging as platforms for higher performance and for integration of networked
resources. A Grid can be defined as a virtual environment where distributed and
heterogeneous resources, owned by independent organizations, can be shared and
aggregated to form a virtual computer.

One typical scenario in scientific applications is having a set of input data to be

processed by a workflow. Thus, one question that can be made is how to process this
scientific workflow in parallel. The adoption of the traditional parallel techniques to
scientific workflows may not apply. Firstly many scientific workflow components are
legacy programs. Therefore, it is not possible to modify their code and they have to be
treated like black box components. Secondly, although applying data parallelism for each
program individually is straightforward, this may not lead to the best solution. There are
many alternatives to execute a scientific workflow in parallel because programs and data
can be distributed among the nodes in many ways. Choosing the best strategy for parallel
execution is difficult because this choice must consider:

• The dependencies among the components;
• The unbalanced execution time of the programs;
• The different size of datasets;

 6

• The computational resources available.

The choice of best execution alternative is even more difficult in a Grid than in a

parallel machine or a PC cluster due the heterogeneity and the dynamic nature of the Grid
environment. Although services mechanisms for information, security, resource
management and data management are already available in a Grid environment,
according to Foster et al [18], choosing the best strategy for a workflow execution in a
Grid is a challenging research area. Decisions to replicate procedures and datasets have to
be taken either on demand or pre-staging in order to provide better performance.
However, as pointed out by Blythe et al [20], finding an optimal allocation of processors
for tasks in a workflow is NP-hard and tools must focus on finding reasonable heuristics
or on identifying families of problems that can be solved efficiently.

Besides defining a parallel strategy for a workflow execution, there is also a need

to manage the parallel execution of the workflow, to perform the initial distribution of the
work among the nodes and also to collect and re-distribute the partials results in order to
have the workflow processed.

The complex aspects involved in a workflow parallel processing point to the need

to develop tools to provide users with a workflow parallel design and a workflow parallel
execution. The development of such tools can make scientists independent from parallel
processing specialists in order to have their scientific workflows executed with better
performance.

Many initiatives to enhance the performance of scientific applications can be
found in the literature. In the bioinformatics area for example, there are several studies
[10, 11, 12, 13, 41] addressing the parallel execution of bioinformatics programs in PC
cluster and Grid environments using data and program parallelism techniques. However,
these works deal with the parallelism of individual programs. There are also many
projects [42, 43, 45, 46] that enable the design and execution of scientific workflows, but
with no exploitation of parallel processing. Workflow parallel processing is showed in
Chimera [18] and GridFlow works [53]. However, in [18] details regarding how the
workflow parallel design was achieved are not given, and in Gridflow, parallelism seems
to be achieved only if a workflow component is already a parallel program.

Scientific workflows can benefit from both data and program parallelism. The

combined use of data and program parallelism can improve the execution of: multiple
instances of a workflow, one instance of a workflow and a single component of a
workflow. However, it is mandatory to have an adequate workflow execution strategy.

Database Management Systems (DBMS) have been using parallel processing to

achieve better performance in their operations. The parallel hardware allows DBMS to
use inter-query parallelism, intra-query parallelism and intra-operation parallelism. In the
former case, many queries can be executed at the same time, each by one respective
processor. In the intra-query parallelism, also called “pipelined”, the output of one
operator is streamed into the input of another operator so both operators can work in
parallel within the same query or, if two operators from the same query are independent

 7

they can also execute in parallel. Finally, by partitioning the table among multiple
processors, one single operation from a query can execute in parallel, with each process
running the same operation but working on a specific part of the table. This partitioned
data with parallel execution characterizes the intra-operation or partitioned parallelism
[19].

In the same way, a parallel hardware can be used to gain better performance to

execute scientific workflows. Like a relational query, formed by a set of operators that
can communicate their results, a workflow is composed by a chain of programs, in
general processing the antecessor results. So an analogy to parallel processing in DBMS
can be done, and three strategies of parallelism can be accomplished when executing
workflows: “inter-workflow”, “intra-workflow” and “intra-program” parallelism.

The main goal of our work is to provide a software layer that can propose and

execute a parallel plan for a scientific workflow. We intend to do experiments with
different forms of parallel strategies, in order to propose heuristics to automate the design
and execution of scientific workflows. The idea is to provide non-specialists in parallel
processing a parallel solution to execute their scientific workflow.

The rest of this work is organized as follows. Section two provides some
background about the technologies regarding Grid computing and scientific workflows.
Section 3 discusses the main aspects of projects that deal with definition and execution of
scientific applications in Cluster, Grid and Web environments. The fourth section
characterizes workflow parallel processing and presents guidelines of heuristics to
execute workflow components. The fifth section presents experimental results obtained
for MholLine [21], a structured genomic workflow used in our experiments. Finally,
section 6 shows the planning of this work for the next two years.

 8

II – TECHNOLOGICAL INFRASTRUCTURE
__

II.1 - GRID COMPUTING

 Grid computing has been described using an analogy to a power grid. When we
turn on some electrical device, we do not know where the electrical power comes from.
The local utility company provides the interface into a complex network of generators
and power sources providing us with an acceptable quality of service for our energy
demands [22]. The vision of Grid computing is similar. Diverse geographically
distributed computing resources can be aggregated to form a virtual computer, but this
resources are not visible to the user just as the consumer of electric power does not know
how their electricity is being generated. Grid technologies and infrastructures support the
sharing and coordinated use of these resources.

 The Global Grid Forum (GGF) [23], is a community forum of researchers and
practitioners. According to its home page, GGF aims “to promote and support the
development, deployment and implementation of Grid technologies and applications via
the creation and documentation of ‘best practices’ – technical specifications, user
experiences and implementation guidelines”. GGF contains several area groups and,
within these areas, working groups dealing with a particular Grid-related problem. The
current areas are information services, security, scheduling and management,
performance, architecture, data, and applications and models.

One GGF specification is the Open Grid Service Architecture (OGSA) [24]. The
core of OGSA architecture is the Grid Service [25], which may be a computational
resource, storage resource, program or database. A Grid service is defined as a Web
Service that provides a set of well-defined interfaces and that follows specific
conventions. The interfaces address discovery, dynamic service creation, lifetime
management, notification and manageability. The conventions address naming and
upgrade ability.

Figure 1 - OGSA Grid Service [25]

 9

Figure 1 shows on the top a set of interfaces defining a Grid service. The

mandatory GridService interface defines an operation FindServiceData, for querying and
retrieving service data. Associated with each grid service interface is a set of service data
elements, which provide a standard representation for information about Grid service
instances. Finally, a Grid Service can be implemented in a variety of ways and host it in
different environments. Nothing in grid service specification imposes how Grid Services
are written, what operating system they run on, what languages they use or the
programming model they conform to.

II.1.1 – Globus Toolkit

 The Globus alliance [26] is a joint effort of researchers and developers from
around the world to develop the fundamental technologies needed to build computational
Grids. The alliance provides software tools that make it easier to build computational
Grids and Grid-based applications. These tools are called the Globus Toolkit. The
composition of the Globus Toolkit can be pictured as the following three pillars showed
in figure2.

Figure 2 - Globus toolkit main services [26]

Security is the foundation common to all three pillars. The first pillar of the

Globus Toolkit provides Resource Management, which involves the allocation of Grid
resources. It includes such packages as the Globus Resource Allocation Manager
(GRAM) and Globus Access to Secondary Storage (GASS). The second pillar of the
Globus Toolkit is for Information Services, which provide information about Grid
resources. The third pillar of the Globus Toolkit is for Data Management, which involves
the ability to access and manage data in a Grid environment. This involves such utilities
as GridFTP and the Reliable File Transfer (RFT) service, which are used to move files
between Grid-enabled devices.

 10

II.1.2 - Grid Data Access

 Data, for many kinds of grid applications, are stored in flat files. In order to
provide better performance for the user community, these files are replicated among
different sites. One typical scenario depicted for this kind of data access is shown in
figure 3. An application wanting to access some specific information looks for it in a
metadata service that returns the logical name of the file containing the desired data.
Having the knowledge of this logical name, the application can interact with a replication
service that is responsible for maintaining a replica catalog. The replica catalog associates
a logical file name to its physical file names. At this point, the application can access
directly the file or requests a replica selection service to choose the most appropriate
replica to be accessed. At last, the file should be transferred using some type of transport
protocol.

Figure 3 - Grid file data access

Although efficient for applications that need to process an entire file, this

approach seems not to be adequate in situations where there are relationships between
records stored in different files or for applications that only need to process a subset of
the records. In the first case, if only one of these files is transmitted, retrieving the
associated records may not be possible, since the associated records were not transferred
too. In the second case, transmission of the whole dataset instead of the part of it can
generate performance troubles.

Although most scientific applications that use grids store their data in files, there
are also many other e-Science projects with an urgent need for the interconnection of pre-
existing and independent databases. The GGF Data Access and Integration Services
(DAIS-WG) working group, seeks to promote standards for the development of grid
database services, focusing principally on providing consistent access to existing,
autonomously managed databases. The OGSA-DAI project [27] implements an

Metadata
Catalog

Metadata
Catalog

Tape Library

Disk Cache

Logical Collection e
Logical File Name

Disk Array Disk Cache

ApplicationApplication

Replica 2 Replica 3

GRIDFTP

Replica
Catalog
Replica
Catalog

Replica
Selection
Replica

Selection

Replica 1

 11

architecture based on Grid services for generic data access. Three kinds of Grid services
are implemented: Grid Data Service Registry (GDSR), Grid Data Service Factory
(GDSF) and Grid Data Service (GDS). GDSR maintains a collection of Grid Service
Handles for a set of GDSF and GDS. GDS provides the point of access to data sources
and can be persistent or transient. GDSF is a specialized factory service, which can create
new GDS.

Figure 4 illustrates a situation in which an application wants to discover, acquire

and employ remote services to create a new database using data from a number of online
databases.

Figure 4 - Grid Database Access [25]

Initially, the application contacts the registry service to identify service providers

who can provide the required data and storage capabilities. The registry returns handles
identifying a miner factory and a database factory maintained by service providers that
meet application requirements. In the third step, the application issues requests to both
factories specifying details such as the operation to be performed, the form of the
database to be created to hold results and initial lifetimes for the two new service
instances. Then, the two new service instances are created. The miner service initiates
queries against appropriate remote databases and results are returned to the newly created
database.

There are many other works focusing the problem of grid data access. The Storage
Resource Broker (SRB)[28] is a client-server based middle-ware implemented at SDSC
to provide uniform access interface to different types of storage devices. It employs a
DBMS to store all its metadata and provides access to data stored in many types of file
systems and DBMSs. It also provides capabilities to store replicas of data. The Spitfire
project [29], developed in the context of the European Data Grid Project (EDG), provides
a uniform way to access many Relational DBMSs through standard Grid protocols and
Grid interfaces. The Spitfire middleware mediates between a RDBMS and a Grid client,

 12

converting HTTP requests made by the client into JDBC requests to the DBMS, and
mapping the results from the DBMS into an XML output to the client. Work is in
progress to evolve Spitfire towards a Grid web service.

II.2 – SCIENTIFIC WORKFLOWS

According to The Workflow Management Coalition (WFMC) [30], workflow is

“the computerized facilitation or automation of a business process, in whole or in part,
during which documents, information or tasks are passed from one participant to another
for action, according to a set of procedural rules”. A Workflow Management System
(WfMS) is “ a system that completely defines, manages and executes workflows through
the execution of software whose order of execution is driven by a computer
representation of the workflow logic. It consists of a modelling as well as a runtime
component”.

Although the above definitions make reference to “business process”, workflow is

not only employed by business applications. Scientists also use workflows in order to
build their scientific applications. However, there are differences between business and
scientific workflows. Medeiros et al [42] identified that in a scientific environment,
scientists will typically specify their workflows themselves, while in a business
environment, a system administrator is commonly responsible for this task. Another
characteristic of scientific workflows pointed in their work is the need to trace workflow
executions. A scientist may need to reuse a workflow in order to reproduce results. The
operations a user performs on given data must be recorded in order to provide scientists
with the benefits of successful and unsuccessful workflows.

The characteristics, requirements and differences between business and scientific

workflows are still being discussed. In two recent events, the Scientific Data
Management Framework Workshop [59] and the e-Science Workflow Services [60],
scientific workflow issues like workflow representation, parallelism, service composition,
separate runtime & language, service description, mapping to resources, relation to
distributed data queries, implementation, optimization, and the relation to business
workflow languages, among others were debated. The goal of these two international
events was to bring together researchers in these fields to discuss position papers about
the projects being developed, the current state of the art, and to identify requirements for
scientific data management and for scientific workflows.

As pointed out in these events, scientific workflows are more data-flow oriented

while business workflows are more control-flow oriented. Business workflows require
the coordination of a number of small messages and document exchanges. In scientific
workflows no documents undergo modifications. Instead, often a dataset is obtained via
analysis of another dataset. Business workflows need complex control flow, but they are
not data-intensive pipelines. On the other side, scientific workflows must deal with the
heterogeneity, complexity, volume, and physical distribution of scientific data. In
addition to these data problems, scientific workflows, in particular bioinformatics

 13

workflows, often deal with legacy or third-party programs, which are also heterogeneous,
and with no source code available.

 The specification of a scientific workflow is often done through the use of some
customized graphical interface, allowing the scientist to select and to compose the
workflow components, or by the use of a workflow language. The design of the workflow
is expressed in terms of an abstract workflow and in terms of a concrete workflow. A
concrete workflow defines the application by program executables and data files. A
workflow engine is a software that executes a concrete workflow. By the use of different
semantic levels, abstracts workflows can specify the components in a way that is
abstracted from the syntactic details of data formats or invocation mechanisms. For
example, in an abstract bioinformatics workflow, a user would specify a component that
can perform a gene sequence homology task and when generating a concrete workflow
an executable program that performs such task would be assigned. In another semantic
level, still abstract, a user would specify the components of a workflow by their logical
names like Blast-p and PDB. However, in both cases, there is a need to have catalogs or
repositories in order to map the abstract components of a workflow into the concrete
ones, for example NCBI Blast-p and NCBI PDB version 5.2.3. Anyway, in the context of
this work, we will assume the following definitions:
• Abstract workflow is a set of programs and datasets expressed by their logical names

along their dependencies among each other. We can have several semantic levels of
abstract workflows.

• Concrete workflow is a set of program executables and data files expressed by their
physical name, that is, their full location. A logical name does not characterize a
concrete workflow, since a program or dataset can be assigned to multiple physical
names. This is the lowest level of a workflow definition, prior to its execution.

Workflows have their components modeled according to a number of patterns.

These patterns address distinct workflow functionalities. According to Aalst et al [54],
almost every workflow language supports the basic control patterns listed bellow.
Table 1 – Basic workflow control patterns [54]

PATTERN NAME DESCRIPTION
 Sequential The execution of a program can be done after the execution of the predecessor

 Parallel Split Programs B and C have to be executed after program A

 Exclusive Choice Program B or program C must be executed after program A

 Synchronization Program C can only executes when programs A and B finished

 Simple Merge Program C can execute if program A or program B finish

 14

In the next subsection, we show some existing technologies that address the
design of scientific workflows for Grid and web environments. There is no established
consensus regarding which is the best language to specify a scientific workflow. In
general each project uses a specific workflow design tool or workflow language. The
Grid scientific workflows are being expressed in terms of jobs or web services. Since
OGSA defines Grid services as extensions to web services, languages developed to
compose business web services can also be employed to compose scientific web services
in Grid environments.

II.2.1 - DAGMAN APPLICATIONS

 A directed graph [31] consists of a set of vertices and a set of arcs. A Directed
Acyclic Graph, or DAG, is a directed graph with no cycles and can be used to represent a
scientific workflow. The programs are the nodes (vertices) in the graph and the edges
(arcs) represent the dependencies.

 Condor [32] is a specialized batch system for managing compute-intensive jobs
that uses the computer power of workstations that communicate over the network. Users
submit their jobs to Condor, Condor puts the jobs in a queue, runs them, and then informs
the user as to the result. Condor finds machines for the execution of programs, but it does
not schedule programs (jobs) based on dependencies.

Figure 5 - DAGMAN input file and respective Diamond DAG (adapted from [33])

The Directed Acyclic Graph Manager (DAGMan) [33] is a meta-scheduler for
Condor jobs. DAGMan submits jobs to Condor in an order represented by a DAG and
processes the results. The DAG itself is defined by the contents of a DAGMan input file.
The input file used by DAGMan specifies four items:

Filename: diamond.dag
#
Job A A.condor
Job B B.condor
Job C C.condor
Job D D.condor
#
Script PRE A top_pre.csh
Script PRE B mid_pre.perl $JOB
Script POST B mid_post.perl $JOB $RETURN
Script PRE C mid_pre.perl $JOB
Script POST C mid_post.perl $JOB $RETURN
Script PRE D bot_pre.csh
#
PARENT A CHILD B C
PARENT B C CHILD D

Retry C 3

1

2

3

4

A

B C

D

 15

1. A list of the programs in the DAG,
2. Pre and Pos processing that takes place for each program submission,
3. The description of the dependencies in the DAG,
4. Number of retries in case of fails.

Figure 5 shows an example of a DAG and its DagMan input file. DAGMan allows
Interworkflow parallelism to be achieved if the workflow input data is partitioned in
advance. Intraworkflow parallelism can be achieved through the use of the descriptions
of the dependencies in the DAG and by allocating concurrent programs to different
nodes. DAGMan has been used to execute scientific workflows in Grid environments but
it does not deal with the workflow for web services. However, the concept of using a
DAG to represent a set of programs where the inputs, outputs and the execution are inter-
dependent can be applied to describe the dependencies between web services.

II.2.2 – BPEL4WS

 Business Process Execution Language for Web Services (BPEL4WS) [34]
represents a convergence of the ideas in XLANG and WSFL specifications, developed by
Microsoft and IBM respectively. The BPEL Process (workflow) is an XML-based
grammar that can be executed by an Orchestration engine like BPWS4J [35] from IBM.
This engine reads the BPEL document and invokes the web services in the order required
by the workflow. The workflow itself is a web service and is invoked as such.

Figure 6 - BPEL Document Structure (adapted from [34])

<process name=”process1”
<partners>
 <partner name=”client”, …/>
 <partner name=”provider”, …/>
</partners>

<containers>
 <container name=”request” …/>
 <container name=”response” …/>
</containers>

<sequence>
 <receive name=”receive1” partner=”client”…./>
 <invoke name=”invokeservice”
 inputContainer=”request”
 outputContainer=”response”
 …
 </invoke>
 <reply name=”reply” partner=”client” …./>
</sequence>

</process>

 16

The main structure of a BPEL document consists of the following elements:
partners for interaction, containers for holding messages and a set of activities. The
definition of a process begins with the <process> element. The next step is to declare the
parties involved. These partners send and receive messages that are accessed by activities
like receive and reply. In BPEL this data is stored in data containers. Once the partners
and containers are defined, the activities that form the composition can be added to the
document. Figure 6 illustrates the structure of a BPEL document that involves two
parties: a client and a service provider.

BPEL4WS documents have two types of activities: primitive activities (table1)
and structure activities (table2). The first type are low level activities representing the
work in the process and the second type activities have the ability to define an ordered
sequence of steps, to indicate that a collection of steps should be executed in parallel, to
define a loop, to execute one of several paths, and to execute one of several alternative
paths.

BPEL4WS process itself does not indicate how a partner is bound to a specific

service. That is considered a runtime-binding step that must be supported by the
BPEL4WS implementation.
 Table 2 – Primitive activities Table 3 – Structure activities

II.2.3 – GSFL

 The Grid Services Flow Language (GSFL) [36] is an XML based language that
allows the specification of workflow descriptions for Grid services in the OGSA
framework. Differently from BPEL4WS, which defines a workflow in such a way that
the workflow engine has to coordinate the execution of each web service, GSFL
workflow specification allows the communication between the services. According to
GSFL authors, Grid services usually exchange large amounts of data and thus, having a
central workflow engine to distribute data between the services is a bad idea. Figure 8
depicts the both models.

<invoke> Invoke the operation
of a web service

<receive> Wait for a request
<reply> Generate a response
<wait> Wait for some time

<assign> Copy data values
<throw> Throw an exception
<catch> Catch an exception

<terminate> Finish the entire
process instance

<empty> Do nothing

<sequence> Sequential execution of
primitive activities

<flow> Parallel execution of
primitive activities

<switch> Case-statement approach
<while> Defines a loop
<pick> Executes one of several

paths
<scope> Groups a set of activities

as a single transaction

 17

Figure 7 – Web Services and GSFL Workflow Models [36]

The main components of GSFL language are: Service providers, Activity model,

Composition model and Lifecycle model. All services that are part of the workflow have
to be specified in the list of service providers. They have a unique name and can be
located using the locator element. The activity model lists all the operations belonging to
the individual service providers. The composition model describes how the different Grid
services are composed to form a new Grid service. It describes the control and data flow
between various operations of the services, and also direct communication between them
in a peer-to-peer way. The lifecycle model addresses the order in which the services are
supposed to execute.

GSFL is a work in progress at Argonne National Laboratory in the context of

Globus project. However there is not much documentation about it nor real experiments
describing GSFL use. According to the language authors, ideas for future features include
automatic integration with a graphical workflow editor and the development of constructs
such as loops and switch statements.

II.2.4 – DAML-S

 DAML (DARPA Agent Markup Language) [37] goal is to develop a language and
tools to facilitate the concept of the Semantic Web. HTML allows people to visualize the
information on the web, but it does not provide much capability to describe the
information in ways that facilitate the use of software programs to find or interpret it.
XML allows information to be more accurately described using tags and DAML
language is being developed as an extension to XML and the Resource Description
Framework (RDF) which provide a lightweight ontology system to support the exchange
of knowledge on the Web. The latest release of the language is named DAML+OIL.

GSFL Workflow ModelWeb Services Workflow Model

 18

Figure 8 - Process modeling Ontology [37]

 DAML-S [38] is an ontology developed to describe web services and process
(workflows) based on web services. The ontology to describe processes is illustrated in
figure 8. A Process can have any number of inputs, outputs, participants and
preconditions. It has a subclass CompositeProcess, which in turn has a variety of
subclasses of control structures. Composite processes are processes that have additional
properties called components to indicate the ordering and conditional execution of the
subprocesses from which they are composed. There are two fundamental relations
between processes and composite processes. The EXPAND relation associates a Process
with the CompositeProcess describing its component subprocesses, while its inverse, the
COLLAPSE relation represents the association of the CompositeProcess to its atomic
Process form. Expanding is intended to provide a “glassbox” and collapsing a “blackbox”
view of the process. The subclasses of control structures enable the execution of
processes in sequence, parallel, with determined order, without order, satisfying
conditions, etc.

DAML-S is an initiative of the Semantic Web community to facilitate automatic
discovery, invocation, composition, interoperation and monitoring of web-services
through their semantic description. However the language presents some drawbacks [39].
First, there are few and artificially examples about its use. Second, it is necessary to know
DAML, WSDL and SOAP to start writing DAML-S descriptions, making its use
difficult.

II.2.5 – XScufl

 XScufl [61] is the XML dialect of the Simple Conceptual Unified Flow Language.
The language was developed to be used in myGrid project, in order to fulfill the

ProcessModel

Process ProcessControl

CompositeProcess

Sequence

Split
RepeatUntil

collapse

expand

...

 19

workflow requirements established by the project. A Xscufl file consists of the following
tags: <processor>, <link>, <source>, <sink> and <coordination>. A processor tag
defines a single processing step. A link tag defines a data link between two processors. A
data link represents a flow of information of some processor output by an input of some
other processor. A source tag defines a workflow source and is used to get input data to
the workflow. A Sink tag is similar to the source tag and is used to send a processor
output data to the workflow sink, making it visible outside the workflow. The
coordination tag is used to restrict the execution of processors when there are no data
dependencies between them.

Figure 9 illustrates the structure of an XScufl document that involves three
processors in a sequential pattern. The coordination block states that processor
“processor3” should only be allowed to transition from “scheduled” to “running” if the
processor “processor2” has achieved status “completed”. The available states are:
Scheduled, Running, Completed and Aborted.

Figure 9 – Xscufl example (adapted from [61])

<?xml version="1.0" encoding="UTF-8" ?>
 <s:scufl xmlns:s="http://org.embl.ebi.escience/xscufl/0.1alpha" version="0.1"

log="3">
 <s: processor name=”processor1” />
 <s: processor name=”processor2” />
 <s: processor name=”processor3” />

<s:link>
 <s:input=”processor1” …/>
 <s:output=”processor2” …/>
</link>
<s:link>
 <s:input=”processor2” …/>
 <s:output=”processor3” …/>
</link>
<s:source>input_file</s:source>
<s:sink>output_file</s:sink>
<s:coordination name=”testcoordination”>
 <s:condition>
 <s:target>processor2</s:target>
 <s:state>completed</s:state>
 </s:condition>
 <s:action>
 <s:target>processor3</s:target>
 <s:stagechange>
 <s:from>scheduled</s:from>
 <s:to>running</s:to>
 </s:statechange>
 </s:action>
</s:coordination>

</s:scufl>

 20

According to Xscufl authors, the decision of myGrid to design the language was
taken to address the support for a set of requirements, like cost, quality, semantic level
specification and provenance that other languages do not offer. However, Xscufl is
proprietary solution and can only be executed by the Freefluo [62] workflow
orchestration tool.

 21

III – RELATED WORK
__

Cluster of PCs, Grids and the Web are being used as platforms for the execution

of scientific programs and workflows. Many initiatives can be found in the literature
exploiting these distributed environments to enhance the performance of scientific
applications. This section describes some important works along their main
characteristics related to the execution of scientific applications, particularly in the
bioinformatics scenario.

In many scientific areas we can find works exploiting cluster of PCs to improve
the response time of their applications. For example, in the bioinformatics field, there are
several works that exploit parallelism in sequence comparison and alignment operations.
Braun et al [12] explore in their work, the use of BLAST in batch mode processing of
multiple query requests against a database replicated at all nodes. Meanwhile it is not
showed details of the implementation and also practical results. Pappas [11] used a
network of Dec Alpha workstations to set up a service for BLAST requests. The service
was implemented using PVM for parallel interface. The sequence database was
fragmented and accessed via NFS simulating a shared-disk configuration. Costa and
Lifschitz [10] present a more accurate work where different approaches to distribute the
query requests are examined. The services were implemented using MPI and were
executed in a 32 PC cluster with different input databases and with replication and
fragmentation polices. Their parallel algorithms show significant improvements for the
sequential implementation of BLASTP, which compares protein queries to proteins
databases. However, none of these works exploit parallelism to improve the performance
of a combination of programs. They are focused on one single isolated program
execution.

Already widely used in projects by physicists, astronomers and engineers, the

grids are beginning to be used by also the bioinformatics community. The Grid
Application Development Software (GrADS) project [40] is developing a framework to
simplify the preparation and execution of programs on a computational Grid. Yarkhan
and Dongarra [41] describe how to enable the biological sequence alignment application
FastA to run on the GrADS framework. Their work adopts database replication strategies
to distribute data with a master-slave approach to process the query sequences, and also
improves the performance of a single application.

Since the main focus of our work is the execution of scientific workflows instead

of the execution of isolated programs, we will next present in more detail, the main
projects that are related to this subject. A set of characteristics was selected to be
analyzed aiming to better understand the resources these works provide. We begin
discussing the WASA [42] project. Although not developed for distributed environments,
WASA was one of the first dealing with design and execution of scientific workflows.
Next, we discuss nine projects that enable the specification and execution of scientific
workflows in distributed environments: Meteor [43, 44], SDM [45], gRNA[46],

 22

BioOpera [47, 48], SRMW[57, 58], Chimera [15, 18], Pegasus [16, 20, 49, 50], myGrid
[17, 51, 52] and Gridflow [53].

II.1 - WASA

 The WASA project (A Workflow-Based Architecture to Support Scientific
Database Applications) [42], proposes an architecture to integrate database and workflow
technologies to support the management of scientific experiments in domains of
geosciences and biocomputing. Figure 10 sketches the main components of WASA
architecture.

Figure 10 - WASA Architecture (adapted from [42])

The user starts the design of a new workflow using the specification design

facility. When the user finishes a specification, the runtime manager may be invoked to
execute the experiment, and the results will be seen through the browsing and
visualization facility. The Data Manipulation facility allows users to access and update
data concerning the experiments. The database layer of WASA contains two categories of
data: application-specific data and WASA-specific data. The first one is supposed to be
stored in a number of databases and includes text data, references to bibliography data
and other data resources. The second one is a repository used to store data needed to run a
workflow.

WASA was not developed for execution in distributed environments. Therefore it

is not clear if or how parallelism is achieved during the execution of a workflow. Another
point that is not mentioned is whether WASA has the ability to deal with abstract
workflows nor how workflow definitions are stored.

II.2 - METEOR

Meteor is a workflow management system developed at LSDIS laboratory of the

Computer Science Department at the University of Georgia [43, 44]. Its architecture

Workflow
Management

System

Database Layer

Browsing and
Visualization

Data
Manipulation

Specification
Design

Runtime
Monitor

 23

includes four services: Workflow Builder, Workflow Repository, Workflow Enactment
and Workflow Manager (figure 11).

Figure 11 - Meteor architecture [43]

The Builder Service is used to graphically design and specify a workflow. The

specification includes the dependencies between the tasks and data passed among them. It
also includes details of task invocation. The workflow definition is independent of the
runtime system and is stored in the workflow repository.

The Repository Service is responsible for maintaining information about

workflow definitions and also interacts with the Enactment Service providing the
necessary information about a workflow application to be invoked. Workflows are stored
as XML documents. The user can access the workflow repository to perform dynamic
changes.

 Two enactment services for METEOR have been developed: ORBWork and
WebWork. The first one based in the CORBA middleware and the second one, based on
Web technology. Both services have code generators to be used to build workflow
applications from the specifications stored in the repository. METEOR has been used by
applications in medicine, engineering and biology.

 METEOR was not developed to address workflow design and execution in cluster
or grid environments. Therefore performance is not the main goal of the project.
However, since the workflow components may be distributed to different hosts, the
workflow administrator may distribute the processing of the tasks of a running workflow
to a host that become available allowing for better load balance.

II.3 - SDM

The Scientific Data Management Center Project (SDM) [45] is carried out by US
Department of Energy and many Universities to address data management challenges in

 24

science applications. Figure 12 shows the Scientific Workflow Management System
architecture.

Figure 12 - Scientific Workflow Management System architecture [45]

The core idea of the project is to allow a scientist to design an abstract workflow

from the repository of abstract tasks while the system generates an executable workflow
from the abstract definition in terms of the available web services. In order to assist the
user in the abstract workflow design, domain ontology is used to link abstract tasks with
semantic types. Executable tasks are stored in a web service repository.

 The workflow designer defines single abstract tasks in terms of executable tasks

using the WF-pilot GUI. For example, after defining the abstract task of cluster-analysis,
the designer has to create a concrete instance of cluster-analysis by associating it with a
specific cluster analysis tool such as CLUSFAVOR. In general the designer may create
several concrete instances for the same abstract task. In this case, the conditions that
allow the system to select at runtime one executable task must be provided. If the system
cannot determine a unique instantiation, the user is prompted for a decision at runtime.

In the execution mode, the user can add breakpoints in the workflow to inspect

intermediate results and to decide which intermediate data should be made persistent. The
Scientific Workflow Management System was used in a bioinformatics application, the
Promoter Identification Workflow (PIW).

SDM aims to hide the low-level details of web services so the scientist can focus

on the design of a scientific workflow at the conceptual level. Like METEOR, SDM was
not designed to scientists to create workflows to be executed in cluster or grid
environments and consequently performance is not the main concern of the system and

 25

there is no performance results reported. Abstract tasks are stored in a abstract task
repository and executable tasks in a web services repository. However details on how
these repositories store the data are not discussed.

II.4 – gRNA

 gRNA [46] operates on a cluster of multiple computers that communicate over
Ethernet and provides an environment for development of life sciences applications based
in a set of APIs. Data from biological sources are gathered and stored in warehouses
using XML structures. These data can be queried using the XomatiQ component, a visual
XML-based query interface. Although the main goal of GRNA is data integration, the
project has a workflow management system, named HyperThesis, that enable users to
build, in a graphical way, ad-hoc workflows. HyperThesis stores the workflows
definitions in a repository. However, it is not clear how GRNA addresses issues like
workflow parallel execution, abstract workflow concept and the workflow definition
storage.

II.5 - BIOOPERA

BioOpera [47, 48] is being developed at the Information and Communication

Systems Research Group of ETH Zürich, and provides resources for development and
execution of scientific applications in cluster of PCs, UNIX workstations and Grid
environments. Its architecture is divided into two layers: The User Interface Front-end
and Back-end (figure 13).

Workflows are specified using a graphical tool where the user defines its input,

output, tasks and their dependencies. The tasks (programs) are selected from a library and
are linked by drawing connections between them. The graphical representation is turned
into a textual representation using an internal programming language to represent and
manipulate workflows. When registering a new program, the user must specifies the
input/output parameters, how to run it and the ranges of nodes where it can be invoked.
This information is stored in a database and can be dynamically changed. The database
also stores runtime information such as the states of the tasks, execution logs, load and
availability of each node.

Figure 13 - BioOpera Architecture [47]

 26

When executing a workflow, BioOpera analyses the control flow dependencies
and concurrently schedules all tasks that are found to be independent. If enough
computing resources are available, these tasks will be executed in parallel. The user can
interact with BioOpera to restrict the set of nodes used for execution and to check
intermediate results. It is also possible to kill, suspend, resume and restart a program or
the entire workflow. The dynamic scheduling and load balance mechanisms allow
BioOpera to work with a cluster that shrinks or grows in size dynamically. The system
may start applications running on different operational systems (Linux, Solaris,
Windows) and execution platforms (Condor, CORBA, RPC, Web Services).

Experimental results are shown for a bioinformatics application. In this case, data

parallelism is achieved, but in the context of a single task and not in a workflow
processing. This computation involved a cross comparison of the SwissProt protein
database and was done by partitioning the database among several servers which
performed the work. In BioOpera there is no use of abstract workflow concept. The
workflow may be constructed through the combination of executable programs.

II.6 – SRMW

 The Scientific Resource Management project (SRM) [57, 58] proposes an
architecture where scientific users can remotely access and share programs, data and
scientific workflows definitions and experiments. SRM embeds the Scientific Publishing
Metamodel (SPM) that relates models, programs and data through specific categories and
semantic relationships. SRM is implemented as a web service architecture (SRMW),
which provides interoperability among published data and programs. Web services
classes may be used to classify data and programs, which can be used in service
composition to become a workflow. The SRMW architecture is showed in figure 14.

Figure 14 – SRMW Architecture [58]

 27

The publication module publishes WSDL documents in a metadata repository.
This metadata can be retrieved by the navigation module. The experimentation module
monitors the execution by mediating communications between the user and the real
service provider. Data and program publishers are responsible for building a Web Service
Provider for their resources, so that they can become available to Web users. Publishers
have to use the Web Service Registry module to register their code and data resources as
services in the UDDI Service repository. Publishers should also publish the
correspondent WSDL documents.

 SRMW allows scientists to configure their own workflows by dynamically
combining programs provided by different research teams and was used in biological
experiments in a real structure genomic workflow. SRMW is a work in development.
Parallel processing is not yet provided and only serial workflows can be defined through
SRMW web interface.

II.7 - CHIMERA

The Chimera [15, 18] prototype implements the Virtual Data Grid, an architecture

to integrate data, and the computational procedures used to manipulate it. Chimera
includes two primary components: a virtual data schema and a virtual data system. The
first one is used to store the information about the procedures, invocations of those
procedures and the datasets produced during their execution, while the second one has the
goal of allowing users to construct and maintain this information in a distributed context.
The virtual data schema is not tied to any specific technology like RDBMS or XML
repository and defines five entities as illustrated in figure 15.

Figure 15 - VDC main components [15]

Dataset is the unit of data managed within the system and can have associated
multiple physical copies with different properties such as location. Transformation
represents computational procedures and a Derivation specifies the arguments to execute
a transformation. Last, an Invocation store information about the environment (e.g., date,
time, OS) in which its associated derivation was executed.

 28

The Chimera Virtual Data Language allows the users to specify the

transformations and derivations needed to generate the datasets. Figure 14 shows an
example of the VDL statements used to define the transformations and derivations that
correspond to a workflow, represented as a Directed Acyclic Graph (DAG), which is
showed in the right side.

The VDL definitions are translated to XML format before being inserted in the

Virtual Data Catalog (VDC). The abstract workflow (AWF) is then generated based on
the information stored in the VDC. The AWF is represented as another XML document
where the transformations and derivations are substituted by jobs and contain the logical
names of the executables and files. Therefore a DAG is the result of the Chimera abstract
planner and is expressed in terms of logical entities. These logical entities are mapped to
physical instances by the concrete planner that selects an execution site for each node,
and determines how to obtain and transport the data needed by each computation. The
concrete DAG generated in this step is represented as a script file that is submitted into
the Grid via Condor-G [32] and DAGMan [33] a meta scheduler for Condor jobs
developed at Wisconsin University.

Figure 16 - VDL specification and the correspondent acyclic graph (adapted from [16])

Chimera has been used in the context of the GriphyN project in the data analysis

problem of the identification of galaxy clusters within the Sloan Digital Sky Survey. In

Generate

F.a

Findrange Findrange

F.bF.c

Analyse

 29

this work, inter-workflow parallelism is exploited by the fragmentation of the input
dataset and replicating the workflow programs among a large number of machines in four
universities. Intra-workflow parallelism can be achieved in Chimera since Dagman can
submit multiple Condor jobs at the same time. However, it seems that intra-program
parallelism cannot be specified with VDL, that is, there is no way to define that a
transformation in the abstract workflow can be executed in this way. Another limitation
in Chimera is that workflow execution is restricted to Condor jobs.

II.8 - PEGASUS

Pegasus [16, 20, 49, 50] is another project that addresses the problem of

generating abstracts and concretes workflows for Grids and is being developed at ISI as
part of GriPhyn and SCE/IT projects. Pegasus uses several Globus services and can
execute workflows on the Grid. Pegasus can be integrated to Chimera. In this
configuration (see figure 15), Pegasus receives an abstract workflow from Chimera,
produces a concrete workflow and submits it to Condor-G for execution.

Figure 17 - Configuration of Pegasus when driven by Chimera [50]

The abstract workflow (AW) describes the transformations and data by their

logical names. The concrete workflow (CW) specifies the location of data and the
execution platforms. If there is any dataset specified in the AW that already exists, the
Pegasus planner will reuse it and thus reduce the complexity of the CW. The choice of
the location where the transformation will be executed is done querying the
transformation catalog. Data files can also be replicated in various locations. The
Metadata Catalog Service (MCS) links application-specific metadata with the logical

Condor-G/
DAGMan

Transformation
Catalog

RLS

(1) Abstract Workflow
(DAG)

(3) Logical File Names
(LFNs)

(4) Physical File Names
(PFNs)

Chimera

Request Manager

(18) Results

VDL Generator
Submit File

Generator for
DAGMan/Condor-G

Concrete PlannerAbstract and
Concrete Planner

(9) Concrete DAG

(10) Concrete
DAG

(11) DAGMan files

CondorG/DAGMan
Submission and

Monitoring

(12) DAGMan files

(15) Monitoring

(7) Logical
Transformations

(8) Physical
Transformations and

Execution Environment
Information

(13) DAG (14) Log FIles

Abstract DAG
reduction

(5) Full Abstract DAG (6) Reduced Abstract DAG

Current Sate
Generator

MDS

(2) Abstract DAG

 30

names of the data files. Given a logical file name, the Replica Location Service (RLS)
can be used to find the physical locations for the file. The Monitoring and Discovery
Service (MDS) is used to find the appropriate resources given the requirements of the
application components. Pegasus contains a Virtual Data Language generator that can
populate the Chimera virtual catalog.

Pegasus can also be configured to perform the generation of the abstract workflow

based on application metadata. In this case, AI-based planning technologies are used to
construct both AW and CW. Like Chimera, Pegasus uses Dagman and Condor to submit
the workflow for execution and has been used in physics applications.

II .9 - MYGRID

The myGrid [51, 52] project aims to develop middleware to support in silico

experiments in biology and is building services for integration such as resource
discovery, workflow enactment and distributed query processing. The architecture of the
project is based on services, initially implemented by Web services but is intended to be
delivered as Grid Services. Like Chimera, MyGrid is concerned with the provenance of
derived data and aims to identify all input data, intermediate and final results together
with the process used to create the results.

In order to fulfill the workflow requirements established by the project like

specification of provenance data and workflow semantics, a workflow language (Scufl)
and enactor (Freefluo) were developed. These tools allow interaction with the user during
the enactment process. The user can then be asked to choose which of the services
available at that time should be used. Although MyGrid has been developed for use by e-
scientists in a grid environment, none of the works describe performances results
regarding workflow executions. Also, issues like strategies to perform data and program
distribution and replication are not mentioned.

II.10 - GRIDFLOW

 GridFlow [53] is a workflow management system being developed by several
research institutes with the goal to enable grid users to construct, simulate, execute and
monitor grid workflows. A workflow is represented as a flow of several different
activities each activity represented by a sub-workflow. A sub-workflow is a flow of
related tasks that is to be executed in a predefined sequence on resources within a local
grid (one organization). Tasks are MPI and PVM jobs, data transfers or archiving of large
datasets. Figure 16 shows GridFlow architecture. The User Portal enables users to
construct a workflow in a graphically way. To construct a workflow, a user needs to
define properties of each sub-workflow and task and their execution sequences. The
abstract workflow is represented using a XML specification, which is send to the
Workflow Management. If the user knows where a task or a sub-workflow will be
executed, he can define this location within the portal. However if the user has no
knowledge about the available grid services and resources, the workflow management
service will provide the services automatically.

 31

The workflow management service provides three functionalities: simulation,

execution and monitoring. Simulation takes place before the execution of a workflow and
provides the workflow schedule. Execution provides the workflow execution according
to the simulation schedule. Monitoring provides interfaces that allow access to real-time
status reports of tasks or sub-workflows execution. The Sub-workflow scheduling
schedules tasks onto grid resources within a local grid.

Figure 18 - GridFlow architecture [53]

It is not clear how users interact with the portal in order to specify the workflow

and how the parallel environment of the grid is exploited to execute the workflow in
parallel. Apparently the system does not provide a repository containing the tasks stored
allowing users to choose the workflow components. The mapping between abstract and
concrete workflow is not well explained either. Since tasks or sub-workflows are
executed inside a local grid, it seems that parallelism can be achieved if a task is already a
parallel application. The use of the GridFlow in a real application study was not reported.

II.11 – DISCUSSION

 Table 3 summarizes all the systems described in the last section according to a set
of workflow features we found relevant to the context of this thesis: execution
environment, workflow definition storage, run time, scientific area, parallelism and
abstract workflow definition. The execution environment is related to the distributed
environment, which is addressed by the system: web, cluster or grid. Storage informs the
technology like RDBMS or XML files used to store definitions about the workflow. Run
time specifies the kind of executables that are run by the system. Area is related to the

 32

scientific area where the system has been employed and parallelism informs the level of
workflow parallel processing that can be achieved by the system. Finally, AWF is
characterized by its semantic level, language used to specify the abstract workflow and
by the presence or not of a graphical user interface.

Table 4 – Workflow Projects General Aspects

AWF

System

Environment

Storage

Run
Time

Area

Parallelism

Semantic Language GUI

WASA

Central

SGBD

?

Geoscience
Biology

None

None

None

Y

Meteor

Web

XML
Files

Corba

Medicine
Engineering
Biology

?

None

Internal

Y

SDM

Web

-
Web

Services

Biology

Intra-Wf

Metadata
Ontology

Internal

Y

GRNA Cluster SGBD SQL
Queries

Biology ? Metadata Internal Y

BioOpera

Cluster

SGBD

Condor
Corba
RPC
Web

Services

Biology

Intra-WF

Programs

Internal

Y

SRMW

Web XML
Files

Web
Services

Biology

None

Metadata

BPEL4WS

Y

Chimera

Grid

XML
Files

Condor

Jobs

Physics

Inter-Wf
Intra-Wf

Logical
Names

VDL

N

Pegasus

Grid

XML
Files

Condor

Jobs

Physics

Intra-Wf

Logical
Names
Metadata

VDL

N

MyGrid

Grid

 ?

Web

Services

Biology

Intra-Wf

Metadata
Ontology

XScufl

Y

GridFlow

Grid

XML
Files

MPI
PVM

?

Intra-Wf

None

XML

Y

As can be noted from the projects discussed before, several scientific workflow
projects allow users to specify in a friendly way, the components that compose the
workflow application. The use of tools like a graphical interface and an abstract
workflow definition language can allow scientists to focus on the design of a scientific

 33

workflow at the conceptual level, hiding the low-level details and intricacies of program
interactions and invocations. Therefore, using such features, scientists would be free to
concentrate on how to solve a problem rather than on how to map a solution onto
available resources, or to acquire better performance. However there must be software
components to provide an adequate workflow execution strategy.

The simultaneous execution of different programs within a workflow, i.e., intra-

workflow parallelism, seems to be addressed in almost every system. However, the
simultaneous execution of the same workflow, i.e., inter-workflow parallelism, is only
showed in Chimera work. But in this case, the input data to be processed by the workflow
was previously fragmented over the several machines. None of the other presented works
perform the distribution of the workflow input data during the workflow execution.
Therefore, in these works the input data is always processed by the first program of the
workflow with no data parallelism.

 Also, we did not find systems allowing the specification for data fragmentation

and/or data replication for single components. Therefore, intra-program parallelism,
which is very used to improve the performance of isolated scientific programs, appears to
be not exploited during the execution of a workflow component in these systems. The
graphical user interfaces and languages used to design the scientific workflows do not
allow users to specify this kind of feature. Thus, in order to have intra-program
parallelism exploited during the workflow processing, it is necessary to have this
information provided by the workflow designer.

Regarding the workflow specification storage, XML is the data format most used
to store the abstract workflow definitions. This is important since an XML provides a
data structure for a document. Therefore, the use of XML for defining abstract workflows
can certainly make the development of services that have to interpret an abstract
workflow definition, like for example to generate a parallel execution strategy for the
workflow, easier.

Most works address the design and execution of scientific workflows in Physics

and Biology fields. This fact makes evident the need for scientists in these areas to
compose and integrate different resources like programs and data to build their scientific
applications.

 34

IV – WORKFLOW PARALLEL PROCESSING

Parallelism has already been used by scientific and database communities to

improve the performance of programs and database operations respectively. SPMD
(Single Program Multiple Data) and MPMD (Multiple Program Multiple Data)
characterize strategies for parallel program execution. Also inter-query, pipelined and
partitioned parallelisms characterize strategies for parallel query processing in DBMS.
However, we did not find works characterizing strategies for parallel execution of
scientific workflows. The goal of this section is to propose a set of parallel strategies and
an architecture to execute scientific workflows in parallel. In subsection IV.1 we propose
a characterization of such parallel strategies. Then in subsection IV.2 we show an
architecture that provides the design and the execution of scientific workflows in parallel.
Finally, in subsection IV.3 we propose a set of initial heuristics considering workflow
patterns that can be used to generate the parallel execution design.

IV.1 - WORKFLOW PARALLEL STRATEGIES

 Scientific programs often generate and process large datasets. Therefore, the
execution of such programs can be a time-consuming task and data parallelism strategy
has already been used to improve the performance of isolated programs. When
combining these programs to compose scientific workflows, the simultaneously
execution of different programs can also be exploited. We propose here a characterization
of three kinds of strategies to process a scientific workflow in parallel: Inter-workflow
parallelism, Intra-workflow parallelism and Intra-program parallelism. These
strategies can be employed in order to provide parallel solutions to execute scientific
workflows with better response times.

One typical scenario in scientific applications is having a set of input data to be
processed by a workflow. We define a workflow Wf as a set of programs to be executed
according to modeling patterns. A modeling pattern defines the order and the conditions
to execute each program. Let WF be the set of workflows Wfi, where 1≤i≤N. For each
Wfi there is a set of programs Pji (1≤j≤P) that compose the workflow Wfi,, a set of input
data Iki (1≤k≤M) that has to be processed by WFi and a set of output data Oji (1≤j≤P)
generated by each program Pji. Inter-workflow parallelism can be characterized by the
simultaneous execution of the same workflow Wfi, each one processing a subset of the
input data Iki. This parallelism can be reached by allocating all the programs Pji of a
workflow Wfi at each node of the system but can only be exploited if the input data
elements Ikj can be processed independently. The set of output data Oji generated in each
node must be joined in order to produce the final result.

The distribution of the input data to the nodes can be done basically in two ways:
by groups of Iki elements or individually. In the first case, as illustrated in figure 19,
dividing the number of input data elements by the number of nodes can generate subsets
of the input data. In the second approach, as illustrated in figure 20, the input data
elements can be distributed in a round-robin way, as soon as one node finishes the

 35

processing of a previous input data element. The distribution of the input data to the
nodes plays an important role, due to the number of messages exchanged during the
workflow parallel processing. In the first case, the number of messages exchanged by the
coordinator and the nodes will be equal to the number of the nodes in the system, while in
the second case, this number will be equal to the number of the input data elements to be
processed. If the number of nodes is less than the number of input data elements to be
processed, the first alternative apparently seems to be better. However, there is no
guarantee that the time needed to process different input data elements will be the same.
Therefore, one node can finishes its processing and stay idle while another node still has
a lot of input data to process. The second approach, the individual distribution of the
input data to the nodes, minimizes this problem since the coordinator can distribute an
input data element as soon as a node becomes able to process it.

Figure 19 – Inter-workflow parallelism with grouped input data distribution

Figure 20 - Inter-workflow parallelism with individual input data distribution

Intra-workflow parallelism can be characterized by simultaneous execution of

more than one program Pji of the same workflow Wfi. This parallelism can be reached by
allocating the programs Pji of a Wfi workflow at different nodes of the system. Intra-query
parallelism is achieved in DBMS when an operator continually streams its result to

InputInput

COORDINATORCOORDINATOR

Wfi
Wfi Wfi

Wfi Wfi
Wfi Wfi

Wfi

Node A Node B Node C Node M

InputInput

O1i
O1i O2i

O2i O3i
O3i O4i

O4i

InputInput InputInput InputInput

COORDINATORCOORDINATOR

Iki

I1i I2i I3i Iki

Wfi
Wfi Wfi

Wfi Wfi
Wfi Wfi

Wfi

Node A Node B Node C Node M

InputInput

O1i
O1i O2i

O2i O3i
O3i O4i

O4i

 36

another operator allowing both operators to work in parallel. This pipeline parallelism
can also be achieved in a workflow execution. For example, supposing a workflow with
three programs in a sequential pattern as shown in Figure 21. Intra-workflow parallelism
could be achieved by having program P3i in node C processing an output O2i previously
generated by program P2i, program P2i processing the output O1i previously generated by
program P1i, and program P1i processing an input data I3i provided by the coordinator.
There are others workflow patterns where intra-program parallelism can naturally be
exploited. Whenever a parallel-split, exclusive-choice, synchronization, or simple-merge
occur intra-workflow parallelism can be applied. However, the coordinator must provide
the programs with the input data needed by them to perform their processing and control
the synchronism between the executions of the programs.

Figure 21 - Intra-Workflow Parallelism for a pipeline of programs (sequential pattern)

Intra-Program parallelism can be characterized by simultaneous execution of the

same program Pji of a workflow Wfi in different nodes. If the input data elements Ikj for a
program can be processed independently then intra-program parallelism can be achieved
by allocating the same program Pji at different nodes and by distributing the set of input
data between the nodes, like in the inter-workflow strategy. Figure 22 illustrates this
situation.

InputInput

COORDINATORCOORDINATOR

P1i
P1i P2i

P2i P3i
P3i

Node A Node B Node C

O1iO1i O1iO1i O2iO2iO2iO2i O3iO3i

I3i

InputInput

COORDINATORCOORDINATOR

P1i
P1i P1i

P1i P1i
P1i P1i

P1i

Node A Node B Node C Node M

O1i
O1i O1i

O1i O 1i
O 1i O1i

O1i

I1i I2i I3i Iki

Iki

 37

Figure 22 – Intra-program parallelism for input data processing independently

However, if the set of input data cannot be processed independently, intra-
program parallelism can also be achieved if a program Pji processes a dataset that can be
partitioned. In this case, the program can process in each node the same input data
element over a fragmented dataset. This kind of data parallelism has been widely used by
the database community and offers great opportunities to increase performance in shared-
nothing DBMS [19]. In a parallel DBMS architecture, the database is fragmented
according to some criteria and the generated data fragments are allocated to the different
nodes. Consequently, slow operations like a full table scan in a large table, can be
performed in much less time since each node have to scan a subset of the original table.
In workflows, such strategy could be adapted for programs that process large datasets if
this data partitioning does not interfere with the final result. Figure 23 illustrates this kind
of intra-program parallelism.

Figure 23 - Intra-Program Parallelism with dataset partition

 It must be noted that whenever intra-program parallelism strategy is used, the set
of output data Oji generated in each node must be joined in order to allow the execution of
the next program of the workflow or to produce a final result, unless the next workflow
program can process the antecessor fragmented results.

 Inter-workflow, intra-workflow and intra-program strategies can be combined
or used independently to execute a scientific workflow in parallel. However, to choose
the best strategy to parallel process a set of input data is not straightforward. Most of the
works discussed in section III exploit intra-workflow parallelism if two or more
programs can execute at same time, like in a parallel-split pattern. But there is no
guarantee that this strategy will always be the best. To illustrate this fact, we will make a
theoretical analysis using a workflow Wf1 that presents a sequential and a parallel-split
pattern and is composed by four programs P1, P2, P3 and P4. Figure 24 illustrates the Wf1

InputInput

COORDINATORCOORDINATOR

P1i
P1i P2i

P2i P3i
P3i

Node A Node B Node C

F1F1 F2F2 F3F3O2i
O2i O3i

O3i

I1i

O1i
O1i

I1i I1i

I1i

 38

workflow. The time to Wf1 process sequentially one input data is 15T and the time to
execute each program individually is T, 2T, 3T and 9T respectively, where T is assumed
to be a time unit.

Figure 24 – The theoretical Wf1 workflow

Supposing that Wf1 can be processed in a system with two nodes, we illustrate two
parallel strategies for executing Wf1 and compare the estimate time to process Wf1
according to these strategies. An inter-workflow strategy is shown in figure 25 while
two intra-workflow strategies are shown in figures 26 and 27. In these cases, the
parallel-split pattern among the programs determined the distribution of the programs.

Figure 25 – Inter-workflow strategy to execute Wf1

T

2 T

3 T 9 T

P 1
P 1

P 2
P 2

P 3
P 3 P 4

P 4

A N D

In p u tIn p u t

W f 1 W o rk f lo w

P1
P1

P2
P2

P3
P3 P4

P4

AND

P1
P1

P2
P2

P3
P3 P4

P4

AND

InputInput

COORDINATORCOORDINATOR

NODE 1 NODE 2

Ik Ik+1

Ik+2

P1
P1

P2
P2

P3
P3

P4
P4

InputInput

COORDINATORCOORDINATOR

NODE 1 NODE 2

Ik O2i

Ik+1

 39

Figure 26 – First intra-workflow strategy to execute wf1

Figure 27 - Second intra-workflow strategy to execute wf1

Table 4 gives the estimated time to process this Wf1 according to the inter-

workflow and intra-workflow strategies showed in the figures 25, 26 and 17 supposing a
homogeneous environment for the execution and ignoring the time transfer program
outputs between the nodes. The first column of the table indicates the number of input
data elements processed. The other three columns indicate the estimated time for
executing WF1 according to the different parallel strategies.

Table 5 – Estimated time to process Wf1 in a homogeneous environment

Input data Inter-workflow
Strategy

First Intra-workflow
Strategy

Second Intra-workflow
Strategy

1 15T 12T 12T
2 15T 24T 21T
3 30T 36T 30T
4 30T 48T 39T
5 45T 60T 48T
6 45T 72T 57T

As can be seen, except for the processing of one input data, executing the

workflow according to the Inter-workflow strategy provides, at least in theory, better
performance than the Intra-workflow strategies. However, since programs P3 and P4
can execute at same time, there are two possible Intra-workflow strategies to be done:
executing program P3 in node 1 with programs P1 and P2 and executing program P4 alone
in node 2; or in an inverse way, executing program P4 along with programs P1 and P2 in
node 1 and program P3 in node 2. The second intra-workflow strategy seems to be better
since program P4 is slower than program P3. Therefore it is important to gather
information about the estimated time for execution of the individual programs to
subsidize workflow components allocation and execution.

P1
P1

P2
P2

P4
P4

P3
P3

InputInput

COORDINATORCO ORDIN ATO R

N O D E 1 N O D E 2

Ik O 2i

Ik+1

 40

The estimated results presented in table 4 took into account a homogeneous
environment for executing Wf1. However, if Wf1 executes in a heterogeneous
environment like a grid, the performance can be totally different. Table 5 shows the
estimated times for Wf1 execution, supposing an heterogeneous environment where the
first node has three times more CPU power than the second node. As can be noted, in this
situation the first intra-workflow strategy seems to be better.

Table 6 - Estimated time to process Wf1 in a heterogeneous environment

Input
data

Inter-workflow
Strategy

First Intra-workflow
Strategy

Second Intra-workflow
Strategy

1 5T 4T 10T
2 15T 8T 19T
3 15T 12T 28T
4 15T 16T 37T
5 30T 20T 46T
6 30T 24T 55T

Another important information that must be gathered is the possible use of intra-

program parallelism with some workflow component. However, the decision to employ
intra-program parallelism strategy cannot be deduced automatically. Many scientific
programs cannot be executed according this strategy due to program requirements.
Therefore the scientist responsible for the workflow design must provide this
information.

The idea of this thesis is to provide non-specialists in parallel processing a parallel

solution to execute their scientific workflow. However, the execution of a scientific
workflow in parallel can be done according several strategies. We intend to do
experiments with different forms of parallel execution and in different environments, in
order to propose heuristics to provide scientific workflows parallel processing.

IV.2 – WORKFLOW PARALLEL DESIGN & EXECUTION

The execution of scientific workflows in parallel can be decomposed in two
modules: Parallel Design and Parallel Execution. The goal of the parallel design module
is to propose a parallel plan to execute a workflow given an abstract workflow definition
of a scientific workflow. The goal of the parallel execution module is to perform the
execution of the workflow regarding a parallel plan. Figure 28 illustrates the architecture
for a workflow parallel execution.

 PARALLEL
DESIGN

PARALLEL
DESIGN

PARALLEL
EXECUTION
PARALLEL

EXECUTION

PARALLEL
PLAN

PARALLEL
PLAN

AWF

 41

Figure 28 – Workflow parallel execution architecture

In order to provide a parallel plan exploiting the parallel strategies described in
section IV.1, the parallel workflow design must consider other kinds of information
besides that embedded in the abstract workflow. Information about the environment, like
the computational resources where the workflow will be processed, statistics like the
estimate execution time for the workflow programs and datasets sizes, hints regarding the
possible use of intra-program parallelism strategy and the set of heuristics regarding the
parallel strategies to be employed must be analyzed to propose a plan for the parallel
execution of the workflow. Figure 29 illustrates the parallel workflow design.

Figure 29 - The parallel workflow design architecture

 The goal of the WFDB is to store the parallel plan to execute a workflow in
parallel. Therefore, WFDB keeps information about the workflow components and their
dependencies relationship. It must also inform how the input data can be fragmented in
order to allow data partition during the workflow execution. For each program, the
WFDB indicates if intra-program parallelism strategy can be employed or not, and
provides the nodes where the component can be executed with the parameters needed for
its execution. The dependencies between the workflow programs are defined by the
relationship between programs and patterns. The order of the execution of a program is
given by the condition associated with this relationship. Figure 26 illustrates the WFDB
class diagram.

PARALLEL
WORKFLOW

DESIGN

PARALLEL
WORKFLOW

DESIGN

HINTS

AWF

RESOURCES

HEURISTICS WFDBWFDB
STATISTICS

ENVIRONMENT

PARALLEL
STRATEGIES

ESTIMATES

Workflow

Pattern Program

Node

* *

1
*

ConditionCondition

ParameterParameter
*

*

Input DataInput Data

*
1

 42

Figure 30 - WFDB Class Diagram

The parallel execution module is responsible to process a scientific workflow
according the parallel plan. To have a set of input data processed in parallel by a
workflow, this data and the workflow components must be distributed between the nodes.
Figure 31 shows the architecture for the parallel execution module. The Partitioner is
responsible for the fragmentation of the workflow input data. The Coordinator is
responsible for the distribution of the input data to the nodes and to coordinate the
execution of the workflow. To accomplish this task, the coordinator looks for the
program that must be invocated in the WFDB, and sends a message to the appropriate
node. If intra-program parallelism strategy is employed, then it is necessary to join the
partial results for each program execution. The Aggregator component is responsible for
joining any partial results into a single file. On each node, besides the workflow
components, there are also two services: The Component Executor Service (CES) and the
File transfer Service (FTS). The first one executes the component specified by the
coordinator and the second service transfers results of executed programs between nodes.

Figure 31 - Parallel Workflow Execution Architecture

IV.3 – INITIAL HEURISTICS

INPUTINPUT

WFDBWFDB

Node a Node b Node i Node j Node k

LOGLOG

CESCES

FTSFTS

WF/PWF/P

CESCES

FTSFTS

WF/PWF/P

CESCES

FTSFTS

WF/PWF/P

COORDINATORCOORDINATOR

AGREGATORAGREGATOR

PARTITIONERPARTITIONER

CESCES

FTSFTS

WF/PWF/P

CESCES

FTSFTS

WF/PWF/P

 43

Based on the basic control patterns listed in section II, we propose a set of initial
heuristics to execute the workflow programs in parallel. Table 4 illustrates the workflow
patterns and respective heuristics. Depending on the kind of the heuristic, additional
actions must be performed in order to have the parallel execution achieved.

Table 7 – Workflow patterns and respective heuristics

PATTERN

DESCRIPTION

HEURISTICS

ADDITIONAL

ACTION

 Sequential

The execution of a
program can be done
after the execution of the
predecessor

Execution of the
programs in the same
site

 None

 Parallel Split

Programs B and C have
to be executed after
program A

Programs B and C
executes in different
sites. Program A
executes along with
either B or C

The output of
program A must
be sent to the
sites of programs
B and C

 Exclusive Choice

Program B or program C
must be executed after
program A

Programs A, B and C
execute in the same
site

None

Synchronization

Program C can only
executes when programs
A and B finished

Program C execute in
the same site of
program A or program
B

The output of
program A or the
output of
program B must
be sent to the site
of program C

 Simple Merge

Program C can execute if
program A or program B
finish

Program C executes in
the same site of
program A or program
B, preferably along the
faster one

The output of
program A or the
output of
program B must
be sent to the site
of program C

 44

V – PRELIMINARY RESULTS

 The goal of this section is to describe some preliminary results obtained with the
execution of MholLine workflow. Two different strategies for parallel execution were
implemented: inter-workflow parallelism and intra-workflow parallelism. Both strategies
showed speedup results.

V.1 – MHOLLINE WORKFLOW

Genome sequencing projects are producing a vast amount of protein sequences,

emerging the need to use high throughput methods to predict structures and assign
functions of these proteins. Analysis of several genome sequences indicates that the
function cannot be inferred to a significant fraction of the gene products. In fact, isolate
sequence homology searches do not always provide all of the answers, since some
proteins may not keep sequence homology throughout evolution. On the contrary, the
molecular (biochemical and biophysical) function of a protein is tightly coupled to its
three-dimensional structure.

One of the methods that contributes to the prediction of protein three-dimensional
structures is the comparative modeling, a computational procedure that predict the most
reliable structure for a sequence using related protein structure as template. This approach
consists of four steps: finding known structures (templates) related to the sequence to be
modeled; alignment of the sequence with the templates, building a model, and the
validation of the structure. Actually, other type of structure information can also be
generated by threading approach, detecting structural similarities that are not
accompanied by any detectable sequence similarity, becoming possible its use for fold
recognition, pointing for a possible protein function. There are several programs
addressing each of these steps. MHOLline is a biological workflow that combines a
specific set of programs for the comparative modeling approach. For template structure
identification it uses the BLAST [8] algorithm for the search against the Protein Data
Bank.

Figure 32 - The MholLine Workflow components

A refinement in the template search step was implemented with the development

of a program called BATS (Blast Automatic Targeting for Structures). BATS identifies
the sequences that comparative modeling technique can be applied, choose the templates

 45

sequences from the BLAST output file depending on the given scores for expectation
values, identity and sequence coverage, and also construct the input files for the
automated alignment and the model building carried out by MODELLER [9], of the
selected sequences. When a 3D model cannot be built using the comparative modeling
approach, BATS identifies these sequences and construct the input file for the execution
of THREADER3 [55] that will aggregate structural information through threading, for
sequences that didn’t generate any 3D model. The MHOLline workflow is illustrated in
figure 32.

V.2 PARALLEL MHOLLINE DESIGN

The distribution of the programs and the data among the nodes can be done in
different ways. We adopted in this work two scenarios. In the first one, all the workflow
programs and respectively files were placed in every cluster node. This strategy allowed
inter-workflow parallelism to be exploited. On a second approach, the Modeller and the
Threader programs, which are the slowest ones, were replicated, while Blast and Bats run
on only one node. This strategy allowed intra-workflow parallelism to be exploited.
Figure 33 illustrates these approaches.

Figure 33 - Implemented Architectures

V.3 EXPERIMENTAL RESULTS

This subsection presents the results obtained during the execution of MholLine
according to the architectures described in last section. The experiments took place in an

B ats

...

D 1

D 2 D 3

B last

M T

D 1

D 2

M

IN PU T

D 3

T

B ats

B last

IN PU T

C O O R D IN A TO R C O O R D IN A TO R

B ats

D 1

D 2 D 3

B last

M T

D 1

(a) (b)

PA R T IT IO N E R PA R T IT IO N E R

 46

Itautec Cluster Mercury running Linux Red Hat 7.3, with 16 nodes. Each node has
512Mb of RAM memory, 18 Gb of disk storage and two Pentium III processors with 1
Ghz. They are linked with a Fast-Ethernet (100 MB/s) network. Perl programs wrapped
the workflow components and we used MPI to implement the coordinator. The input file
had 66 sequences and the data sources used in our experiments were: pdbaa [56] with
nearly 30 MB used by BLASTP, a set of pdb files extracted from Protein Data Bank with
approximately 5 MB, used by Modeller, and the tdb files with almost 300 MB used by
Threader. BATS selected seven input sequences to Modeller (sequences 4, 6, 7, 8, 11, 64
and 65) and three entry input sequences to Threader (sequences 12, 14, and 22). The
figure 34 shows the results for the executions using the inter-workflow parallelism
strategy with a grouped and a circular distribution of the input sequences.

As can be observed, the circular distribution acquired better performance than the

grouped distribution. Since Threader is the slowest program of the workflow, the best
results were obtained when it could be executed in parallel. The fully parallel execution
of Threader only happened in the grouped distribution, when running with 12 nodes.
Running with 4, 8, 10 and 14 nodes implied having two sequences submitted for
threading in the same node. When running with 2 and 6 nodes, the three sequences were
submitted for threading in the same node. The second distribution strategy provided
better load balance among the nodes and consequently best results.

Figure 35 shows on the left chart the results for the intra-workflow strategy. Since

BLAST and BATS run much faster than Modeller and Threader, we allocated the first
two programs in only one node, and replicated the last two programs among the rest of
the nodes in such way that in one node or Modeller or Threader could execute. The
results for this approach were similar to the results observed in the inter-workflow
parallelism with circular distribution. In fact, in both situations, the number of the
sequences processed by Threader in parallel was the same, except when running with two
nodes.

Inter-Workflow Parallelism

Grouped Distribution

0

50

100

150

200

250

1 2 4 6 8 10 12 14

Number of Nodes

Ti
m

e(
M

in
)

Inter-Workflow Parallelism
Round-Robin Distribution

0

50

100

150

200

250

1 2 4 6 8 10 12 14

Number of Nodes

Ti
m

e(
M

in
)

Figure 34 – Inter workflow parallelism strategy with grouped and circular distribution

Aiming to provide a better comparative analysis, Figure 35 also shows on the
right side, the results for the three approaches together.

 47

Intra-Workflow Parallelism

0

50

100

150

200

250

1 2 4 6 8 10 12 14

N umber o f N o des

Comparative Results

0

50

100

150

200

250

2 4 6 8 10 12 14

Number of Nodes

Ti
m

e(
M

in
)

InterWF(grouped) InterWF(circular) IntraWF

Figure 35 – Intra workflow parallelism strategy and for the three executions together

As can be observed, using more than 6 nodes did not interfered in the speedup.

This happened due the few number of sequences selected by BATS to be submitted to
Threader and Modeller in our experiments. However, the results show linear speedup
when executing with two nodes in the interworkflow parallelism strategy and when
executing with four nodes in the intraworkflow parallelism strategy.

 These initial experiments allowed us to evaluate two different parallel strategies to
execute a scientific workflow. The results show that parallelism can be used to increase
the performance of a bioinformatic workflow. We believe that the techniques showed
here can also be applied to others scientific workflows. However, it is mandatory to
perform more experiments exploiting the combination of the all parallel strategies
discussed previously in order to identify heuristics to automate the choice of the best
parallel strategy. In the next section, we list the next steps we intend to do to accomplish
this goal.

 48

BIBLIOGRAPHY
__

1. Protein Data Bank, www.rcsb.org/pdb/
2. BLAST, www.ncbi.nlm.nih.gov/BLAST
3. GenBank, www.ncbi.nlm.nih.gov/Genbank
4. ModBase, http://salilab.org/modbase/
5. SwissProt, http://www.ebi.ac.uk/swissprot
6. Bio Grid, http://www.eurogrid.org/wp1.html
7. Deelman E., Blythe J., Gil Y., Kesselman C., Mehta G., Vahi K., Blackburn K.,

Lazzarini A., Arbree A., Cavanaugh R., Koranda S., “Mapping Abstract
Workflows onto Grid Environments”, Journal of Grid Computing, V.1, No. 1,
pp25-39,2003.

8. Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. (1990) “Basic
local alignment search tool.” J. Mol. Biol., 215: 403

9. Sali A. and Blundell T.L.(1993) “Comparative protein modeling by satisfaction of
spatial restraints.” J. Mol. Biol., 234: 779

10. Costa R., Lifschitz S., “Database Allocation Strategies for Parallel BLAST
Evaluation on Clusters”, Distributed and Parallel Databases, vol. 13, num. 1, Jan
2003, pp 99-127.

11. Pappas, A., ”Parallelizing the Blast applications on a network of Dec Alpha
Workstations”, available at http://www.cslab.ece.ntua.gr/~pappas.

12. Braun R., Pedretti K., Casavant T., Scheetz T., Birkett C., Roberts C., “Three
Complementary Approaches to Parallelization of Local BLAST Service on
Workstation Cluster, 5th International Conference on Parallel Computing
Technologies (PaCT), LNCS. Vol. 1662, 1999, pp. 271-282.

13. Waugh A., Willians G., Wei L., Altman R., “Using Metacomputing Tools To
Facilitate Large-Scale Analyses of Biological Databases”, in Proceedings of
Pacific Symposium of Biocomputing, 2001, pp. 360-371.

14. Foster,I., Kesselman, C.. Chapter 2 of "The Grid: Blueprint for a New Computing
Infrastructure", Morgan-Kaufman, 1999.

15. Foster,I., Voeckler, J., Wilde, M., Zhao, Y., “Chimera: A Virtual Data System for
Representing, Querying and Automating Data Derivation”, Proceedings of the
14th Conference on Scientific and Statistical Database Management, Edinburgh,
Scotland, July 2002.

16. Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal, A., Mehta, G., Vahi, K.,
“The Role of Planning in Grid Computing”, ICAPS 2003

17. Greenwood, M., Wroe, C., Stevens, R., Goble, C., Addis, M., “Are
bioinformaticians doing e-Business?”, Proceedings Euroweb 2002: The Web and
the GRID - from e-science to e-business - December 2002.

18. Foster,I., Voeckler, J., Wilde, M., Zhao, Y., “The Virtual Data Grid: A New
Model and Architecture for Data-Intensive Collaboration”, Proceedings of the
14th Conference on Innovative Data System Research – CIDR-2003, January
2003.

 49

19. ÖZSU, T., VALDURIEZ, P., 1999, Principles of Distributed Database Systems.
Prentice Hall, 2nd Edition.

20. Blythe, J., Deelman E., Gil,Y., “Planning for Workflow Construction and
Maintenance on the Grid”, ICAPS 2003, Workshop on Planning for Web
Services, Trento, Italy, June 2003.

21. Rössle S., Carvalho, P., Dardenne, L., Bisch, P., “Development of a
Computational Environment for Protein Structure Prediction and Functional
Analysis”, Second Brazilian Workshop on Informatics, Brazil, 2003.

22. Jacob, B.,”Taking advantage of Grid computing for application enablement”,
http://www-106.ibm.com/developerworks/library/gr-overview/

23. Global Grid Forum, http://www.ggf.org
24. Foster, I., Kesselman, K., Nick, J., Tuecke, S., “The Physiology of the Grid: An

Open Services Architecture for Distributed Systems Integration”, Open Grid
Service Infrastructure WG, Global Grid Forum, June 22, 2002.

25. Foster, I, Kesselman, C, Tuecke, S., Nick, J., Tuecke, S., “Grid Services for
Distributed System Integration, Computer 35(6), June 2002

26. Globus Alliance, http://www.globus.org
27. OGSA-DAI, http://www.ogsadai.org
28. Rajasekar, A., Wan, M., Moore, R., “MySRB & SRB – Components of a Data

Grid”, The 11th International Symposium of High Performance Distributed
Computing, Edinburgh, Scotland, June 2002.

29. Hoschech, W., McCance, W., “Grid Enabled Relational Database Middleware,
Global Grid Forum, Frascati, Italy, October 2001.

30. Workflow Management Coalition, http://www.wfmc.org/
31. Aho, A., Hopcroft, J., Ullman, J., “Data Structures and Algorithms”, Addison-

Wesley Publishing Company, 1987.
32. Condor-G, http://www.cs.wisc.edu/condor/condorg/.
33. DagMan, http://www.cs.wisc.edu/condor/dagman/.
34. BPEL4WS, http://www.ibm.com/developerworks/library/ws-bpel/
35. BPWS4J, http://www.alphaworks.ibm.com/tech/bpws4j
36. Krishnan, S., Wagstrom, P., Laszewski, G., “GSFL: A Workflow Framework for

Grid Services”, http://www-unix.globus.org/cog/projects/workflow/gsfl-paper.pdf
37. DAML, http://www.daml.org
38. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McIlraithe,

S.A., Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K., and Zeng, H.,
"DAML-S: Semantic Markup for Web Services". International Semantic Web
Workshop (SWWS), 2001

39. Sabou, M., Richards, D., Splunter, S. van, “An experience report on using
DAML-S”. Proceedings of WWW 2003 Workshop on E-Services and the
Semantic Web (ESSW'03), 2003

40. Kennedy et al, “Toward a Framework for preparing and Executing Adaptative
Grid Programs”, Proceedings of Next Generation Systems Program Workshop,
International Parallel and Distributed Processing Symposium, 2002, Fort
Lauderdale, Florida.

 50

41. Yarkhan, A., Dongarra, J., “Biological Sequence Alignment On The
Computational Grid Using The Grads Framework”, submitted to Jounal on Grid
Computing, July 2003.

42. Medeiros,C.,Vossen,G.,Weske,G., ”WASA: A Workflow-Based Architecture to
Support Scientific Database Applications”, DEXA 1995, pp 574-583.

43. Kochut, K., Arnold, J., Seth, A., Miller, J. Kraemer, E., Arpinar, B., Cardoso,
J.,”IntelliGEN: A Distributed Workflow System for Discovering Protein-Protein
Interactions”, Distributed and Parallel Databases, vol. 13, num. 1, Jan 2003, pp
43-72.

44. Hall,D., Miller,J., Arnold,J., Kochut, K., Sheth,A., Weise,M., "Using Workflow
to Build an Information Management System for a Geographically Distributed
Genome Sequence Initiative," Genomics of Plants and Fungi, R.A. Prade and H.J.
Bohnert, Eds, Marcel Dekker, Inc., New York, NY, 2003, pp. 359-371.

45. Altintas,I. Et al,”A Modelling and Execution Environment for Distributed
Scientific Workflows”, Proceedings of the 15th International Conference on
Scientific and Statistical Database Management, SSDBM 2003, pp. 247-250.

46. Bhowmick,S., Singh,D., Laud, A., “Data Management in Metaboloinformatics:
Issues and Challenges”, DEXA 2003, pp392-402,2003.

47. Bausch, W., Pautasso, C., Schaeppi, R., Alonso, G., “BioOpera: Cluster-aware
Computing”, Proceedings of the 4th IEEE International Conference on Cluster
Computing, 2002.

48. Bausch, W., Pautasso, C., Schaeppi, R., Alonso, G., “Programming for
Dependability in a Service-Based Grid”, 3rd International Symposium on Cluster
Computing and the Grid, Tokyo, Japan, May 2003.

49. Blythe, J., Deelman, E., Gil, Y., Kesselman, C., “Transparent Grid Computing: a
Knowledge-Based Approach”, Proceedings of the 15th Conference on Innovative
Applications of Artificial Inteligence, Acapulco, August 2003.

50. Deelman,E., et al, “Mapping Abstract Complex Workflows onto Grid
Environments”, Journal of Grid Computing, vol. 1, number 1, pp. 25-39, 2003.

51. Stevens, R., Robinson,A., Goble, C.,”myGrid: Personalised Bioinformatics on the
Information Grid”, Bioinformatics vol 19, suppl 1, 2003, Eleventh International
Conference on Intelligent Systems for Molecular Biology.

52. Addis,M. et al, “Experiences with e-Science Workflow Specification and
Enactment in Bioinformatics”, Proceedings of UK e-Science All Hands Meeting,
September 2003.

53. Cao,J., Jarvis, S., Saini, S., Nudd, G.,”GridFlow: Workflow Management for Grid
Computing”, 3rd International Symposium on Cluster Computing and the Grid,
Tokyo, Japan, May 2003.

54. Aalst,V., Hofstede, A., Kiepuszewski, B., Barros, A., “Workflow patterns”,
Distributed and Parallel Databases, 14(3), pages 5-51, July 2003.

55. Miller R.T., Jones D.T. and Thornton J.M. (1996) “Protein fold recognition by
sequence threading tools and assessment techniques”. FASEB J., 10: 171

56. PDBAA, ftp://www.ncbi.nih.gov/blast/db
57. Cavalcanti, M., Baião, F., Rössle, S., Bisch, P., Targino, R., Pires, P., Campos, M,

Mattoso, M.., "Structural Genomic Workflows Supported by Web Services", In:
14th International Conference on Database and Expert Systems Applications

 51

(DEXA 2003), International Workshop on Biological Data Management
(BIDM'03), Prague, Czech Republic, sep 2003, IEEE CS Press, ISBN 0-7695-
1993-8, pp. 45-50.

58. Cavalcanti, M., Baião, F., Rössle, S., Bisch, P., Targino, R., Pires, P., Campos, M,
Mattoso, M., ”Managing Structural Genomic Workflows Using Web Services”,
submitted to Data and Knowledge Engineering Journal special issue on
Bioinformatics.

59. Scientific Data Management framework Workshop, Argonne National Lab, USA,
August2003, http://sdm.lbl.gov/~arie/sdm/SDM.Framework.wshp.html

60. e-Science Workflow Services, Edinburgh, December 2003,
http://www.nesc.ac.uk/esi/events/303/index.html

61. Xscufl, Taverna Users Guide, http://www.cs.man.ac.uk/~markg/taverna/TavernaUserGuide.pdf
62. Freefluo, http://freefluo.sourceforge.net/

