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I - INTRODUCTION  
________________________________________________________________________ 
 
 

Scientific resources like programs and data present characteristics of distribution, 
heterogeneity and in some cases huge volume of information. Multiple sites [1, 2, 3, 4, 5, 
6] make their data and programs available through the use of customized interfaces 
allowing scientists to submit their work. One alternative to this remote use is 
downloading the data and the programs and installing them in their own site. Frequently, 
scientists need to combine these resources to perform a higher-level function. In these 
cases, programs and data are composed in an execution chain such that the output of a 
program execution can be used as the input of another. As observed by Deelman et al [7], 
scientific communities like physicists, astronomers and biologists are no longer 
developing applications as monolithic codes. Instead, standalone components are being 
combined to process data. In this scenario, scientific applications can be viewed as 
scientific workflows.  
 

 Scientific programs often generate and process large datasets [52]. Therefore, one 
problem that can arise when running scientific workflows is the time needed to 
accomplish their execution. The execution of some components and consequently the 
entire workflow can be a time consuming task. Thus, in order to enhance the performance 
of scientific workflows parallelism can be exploited.  
 

One possible way to exploit parallelism is to use a parallel machine. However, 
this solution presents some drawbacks like the high costs for hardware and software 
acquisition. Another possibility is to use a distributed environment like a PC cluster, 
which can provide computation performance equivalent to a parallel machine but with 
much lower costs. A third alternative can be the use of Computational Grids [14]. Grids 
are emerging as platforms for higher performance and for integration of networked 
resources. A Grid can be defined as a virtual environment where distributed and 
heterogeneous resources, owned by independent organizations, can be shared and 
aggregated to form a virtual computer. 

 
One typical scenario in scientific applications is having a set of input data to be 

processed by a workflow. Thus, one question that can be made is how to process this 
scientific workflow in parallel. The adoption of the traditional parallel techniques to 
scientific workflows may not apply.  Firstly many scientific workflow components are 
legacy programs. Therefore, it is not possible to modify their code and they have to be 
treated like black box components. Secondly, although applying data parallelism for each 
program individually is straightforward, this may not lead to the best solution. There are 
many alternatives to execute a scientific workflow in parallel because programs and data 
can be distributed among the nodes in many ways. Choosing the best strategy for parallel 
execution is difficult because this choice must consider: 

• The dependencies among the components; 
• The unbalanced execution time of the programs; 
• The different size of datasets; 
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• The computational resources available. 
 
The choice of best execution alternative is even more difficult in a Grid than in a 

parallel machine or a PC cluster due the heterogeneity and the dynamic nature of the Grid 
environment. Although services mechanisms for information, security, resource 
management and data management are already available in a Grid environment, 
according to Foster et al [18], choosing the best strategy for a workflow execution in a 
Grid is a challenging research area. Decisions to replicate procedures and datasets have to 
be taken either on demand or pre-staging in order to provide better performance. 
However, as pointed out by Blythe et al [20], finding an optimal allocation of processors 
for tasks in a workflow is NP-hard and tools must focus on finding reasonable heuristics 
or on identifying families of problems that can be solved efficiently.   

 
Besides defining a parallel strategy for a workflow execution, there is also a need 

to manage the parallel execution of the workflow, to perform the initial distribution of the 
work among the nodes and also to collect and re-distribute the partials results in order to 
have the workflow processed. 

 
The complex aspects involved in a workflow parallel processing point to the need 

to develop tools to provide users with a workflow parallel design and a workflow parallel 
execution. The development of such tools can make scientists independent from parallel 
processing specialists in order to have their scientific workflows executed with better 
performance. 
 

Many initiatives to enhance the performance of scientific applications can be 
found in the literature. In the bioinformatics area for example, there are several studies 
[10, 11, 12, 13, 41] addressing the parallel execution of bioinformatics programs in PC 
cluster and Grid environments using data and program parallelism techniques. However, 
these works deal with the parallelism of individual programs. There are also many 
projects [42, 43, 45, 46] that enable the design and execution of scientific workflows, but 
with no exploitation of parallel processing. Workflow parallel processing is showed in 
Chimera [18] and GridFlow works [53]. However, in [18] details regarding how the 
workflow parallel design was achieved are not given, and in Gridflow, parallelism seems 
to be achieved only if a workflow component is already a parallel program. 

 
Scientific workflows can benefit from both data and program parallelism. The 

combined use of data and program parallelism can improve the execution of: multiple 
instances of a workflow, one instance of a workflow and a single component of a 
workflow. However, it is mandatory to have an adequate workflow execution strategy. 

 
Database Management Systems (DBMS) have been using parallel processing to 

achieve better performance in their operations. The parallel hardware allows DBMS to 
use inter-query parallelism, intra-query parallelism and intra-operation parallelism. In the 
former case, many queries can be executed at the same time, each by one respective 
processor. In the intra-query parallelism, also called “pipelined”, the output of one 
operator is streamed into the input of another operator so both operators can work in 
parallel within the same query or, if two operators from the same query are independent 
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they can also execute in parallel. Finally, by partitioning the table among multiple 
processors, one single operation from a query can execute in parallel, with each process 
running the same operation but working on a specific part of the table. This partitioned 
data with parallel execution characterizes the intra-operation or partitioned parallelism 
[19].   

 
In the same way, a parallel hardware can be used to gain better performance to 

execute scientific workflows. Like a relational query, formed by a set of operators that 
can communicate their results, a workflow is composed by a chain of programs, in 
general processing the antecessor results. So an analogy to parallel processing in DBMS 
can be done, and three strategies of parallelism can be accomplished when executing 
workflows: “inter-workflow”, “intra-workflow” and “intra-program” parallelism. 

 
The main goal of our work is to provide a software layer that can propose and 

execute a parallel plan for a scientific workflow. We intend to do experiments with 
different forms of parallel strategies, in order to propose heuristics to automate the design 
and execution of scientific workflows. The idea is to provide non-specialists in parallel 
processing a parallel solution to execute their scientific workflow.  
 

The rest of this work is organized as follows. Section two provides some 
background about the technologies regarding Grid computing and scientific workflows. 
Section 3 discusses the main aspects of projects that deal with definition and execution of 
scientific applications in Cluster, Grid and Web environments. The fourth section 
characterizes workflow parallel processing and presents guidelines of heuristics to 
execute workflow components. The fifth section presents experimental results obtained 
for MholLine [21], a structured genomic workflow used in our experiments. Finally, 
section 6 shows the planning of this work for the next two years.   
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II – TECHNOLOGICAL INFRASTRUCTURE 
________________________________________________________________________ 
 
II.1 - GRID COMPUTING 

 
 Grid computing has been described using an analogy to a power grid. When we 
turn on some electrical device, we do not know where the electrical power comes from. 
The local utility company provides the interface into a complex network of generators 
and power sources providing us with an acceptable quality of service for our energy 
demands [22]. The vision of Grid computing is similar. Diverse geographically 
distributed computing resources can be aggregated to form a virtual computer, but this 
resources are not visible to the user just as the consumer of electric power does not know 
how their electricity is being generated. Grid technologies and infrastructures support the 
sharing and coordinated use of these resources.  
 
 The Global Grid Forum (GGF) [23], is a community forum of researchers and 
practitioners. According to its home page, GGF aims “to promote and support the 
development, deployment and implementation of Grid technologies and applications via 
the creation and documentation of ‘best practices’ – technical specifications, user 
experiences and implementation guidelines”.  GGF contains several area groups and, 
within these areas, working groups dealing with a particular Grid-related problem. The 
current areas are information services, security, scheduling and management, 
performance, architecture, data, and applications and models. 
 

One GGF specification is the Open Grid Service Architecture (OGSA) [24]. The 
core of OGSA architecture is the Grid Service [25], which may be a computational 
resource, storage resource, program or database. A Grid service is defined as a Web 
Service that provides a set of well-defined interfaces and that follows specific 
conventions. The interfaces address discovery, dynamic service creation, lifetime 
management, notification and manageability. The conventions address naming and 
upgrade ability.  
 
  
 
 
  
 
 
 
 
 
 
 
 
Figure 1 - OGSA Grid Service [25] 
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Figure 1 shows on the top a set of interfaces defining a Grid service. The 

mandatory GridService interface defines an operation FindServiceData, for querying and 
retrieving service data. Associated with each grid service interface is a set of service data 
elements, which provide a standard representation for information about Grid service 
instances. Finally, a Grid Service can be implemented in a variety of ways and host it in 
different environments. Nothing in grid service specification imposes how Grid Services 
are written, what operating system they run on, what languages they use or the 
programming model they conform to.  
 
II.1.1 – Globus Toolkit 

 
 The Globus alliance [26] is a joint effort of researchers and developers from 
around the world to develop the fundamental technologies needed to build computational 
Grids. The alliance provides software tools that make it easier to build computational 
Grids and Grid-based applications. These tools are called the Globus Toolkit. The 
composition of the Globus Toolkit can be pictured as the following three pillars showed 
in figure2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 - Globus toolkit main services [26] 

 
Security is the foundation common to all three pillars. The first pillar of the 

Globus Toolkit provides Resource Management, which involves the allocation of Grid 
resources.  It includes such packages as the Globus Resource Allocation Manager 
(GRAM) and Globus Access to Secondary Storage (GASS). The second pillar of the 
Globus Toolkit is for Information Services, which provide information about Grid 
resources. The third pillar of the Globus Toolkit is for Data Management, which involves 
the ability to access and manage data in a Grid environment.  This involves such utilities 
as GridFTP and the Reliable File Transfer (RFT) service, which are used to move files 
between Grid-enabled devices. 
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II.1.2 - Grid Data Access 

 
 Data, for many kinds of grid applications, are stored in flat files. In order to 
provide better performance for the user community, these files are replicated among 
different sites. One typical scenario depicted for this kind of data access is shown in 
figure 3. An application wanting to access some specific information looks for it in a 
metadata service that returns the logical name of the file containing the desired data. 
Having the knowledge of this logical name, the application can interact with a replication 
service that is responsible for maintaining a replica catalog. The replica catalog associates 
a logical file name to its physical file names. At this point, the application can access 
directly the file or requests a replica selection service to choose the most appropriate 
replica to be accessed. At last, the file should be transferred using some type of transport 
protocol.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 - Grid file data access 

 
Although efficient for applications that need to process an entire file, this 

approach seems not to be adequate in situations where there are relationships between 
records stored in different files or for applications that only need to process a subset of 
the records. In the first case, if only one of these files is transmitted, retrieving the 
associated records may not be possible, since the associated records were not transferred 
too. In the second case, transmission of the whole dataset instead of the part of it can 
generate performance troubles. 
 

Although most scientific applications that use grids store their data in files, there 
are also many other e-Science projects with an urgent need for the interconnection of pre-
existing and independent databases. The GGF Data Access and Integration Services 
(DAIS-WG) working group, seeks to promote standards for the development of grid 
database services, focusing principally on providing consistent access to existing, 
autonomously managed databases. The OGSA-DAI project [27] implements an 
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architecture based on Grid services for generic data access. Three kinds of Grid services 
are implemented: Grid Data Service Registry (GDSR), Grid Data Service Factory 
(GDSF) and Grid Data Service (GDS). GDSR maintains a collection of Grid Service 
Handles for a set of GDSF and GDS. GDS provides the point of access to data sources 
and can be persistent or transient. GDSF is a specialized factory service, which can create 
new GDS.  

 
Figure 4 illustrates a situation in which an application wants to discover, acquire 

and employ remote services to create a new database using data from a number of online 
databases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4 - Grid Database Access [25] 

  
Initially, the application contacts the registry service to identify service providers 

who can provide the required data and storage capabilities. The registry returns handles 
identifying a miner factory and a database factory maintained by service providers that 
meet application requirements. In the third step, the application issues requests to both 
factories specifying details such as the operation to be performed, the form of the 
database to be created to hold results and initial lifetimes for the two new service 
instances. Then, the two new service instances are created. The miner service initiates 
queries against appropriate remote databases and results are returned to the newly created 
database. 
 

There are many other works focusing the problem of grid data access. The Storage 
Resource Broker (SRB)[28] is a client-server based middle-ware implemented at SDSC 
to provide uniform access interface to different types of storage devices. It employs a 
DBMS to store all its metadata and provides access to data stored in many types of file 
systems and DBMSs. It also provides capabilities to store replicas of data. The Spitfire 
project [29], developed in the context of the European Data Grid Project (EDG), provides 
a uniform way to access many Relational DBMSs through standard Grid protocols and 
Grid interfaces. The Spitfire middleware mediates between a RDBMS and a Grid client, 
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converting HTTP requests made by the client into JDBC requests to the DBMS, and 
mapping the results from the DBMS into an XML output to the client. Work is in 
progress to evolve Spitfire towards a Grid web service. 
 
 
II.2 – SCIENTIFIC WORKFLOWS 

 
According to The Workflow Management Coalition (WFMC) [30], workflow is 

“the computerized facilitation or automation of a business process, in whole or in part, 
during which documents, information or tasks are passed from one participant to another 
for action, according to a set of procedural rules”. A Workflow Management System 
(WfMS) is “ a system that completely defines, manages and executes workflows through 
the execution of software whose order of execution is driven by a computer 
representation of the workflow logic. It consists of a modelling as well as a runtime 
component”.  

 
Although the above definitions make reference to “business process”, workflow is 

not only employed by business applications. Scientists also use workflows in order to 
build their scientific applications. However, there are differences between business and 
scientific workflows. Medeiros et al [42] identified that in a scientific environment, 
scientists will typically specify their workflows themselves, while in a business 
environment, a system administrator is commonly responsible for this task. Another 
characteristic of scientific workflows pointed in their work is the need to trace workflow 
executions. A scientist may need to reuse a workflow in order to reproduce results. The 
operations a user performs on given data must be recorded in order to provide scientists 
with the benefits of successful and unsuccessful workflows. 

 
The characteristics, requirements and differences between business and scientific 

workflows are still being discussed. In two recent events, the Scientific Data 
Management Framework Workshop [59] and the e-Science Workflow Services [60], 
scientific workflow issues like workflow representation, parallelism, service composition, 
separate runtime & language, service description, mapping to resources, relation to 
distributed data queries, implementation, optimization, and the relation to business 
workflow languages, among others were debated. The goal of these two international 
events was to bring together researchers in these fields to discuss position papers about 
the projects being developed, the current state of the art, and to identify requirements for 
scientific data management and for scientific workflows. 

 
As pointed out in these events, scientific workflows are more data-flow oriented 

while business workflows are more control-flow oriented. Business workflows require 
the coordination of a number of small messages and document exchanges. In scientific 
workflows no documents undergo modifications. Instead, often a dataset is obtained via 
analysis of another dataset. Business workflows need complex control flow, but they are 
not data-intensive pipelines. On the other side, scientific workflows must deal with the 
heterogeneity, complexity, volume, and physical distribution of scientific data. In 
addition to these data problems, scientific workflows, in particular bioinformatics 
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workflows, often deal with legacy or third-party programs, which are also heterogeneous, 
and with no source code available. 
 
 The specification of a scientific workflow is often done through the use of some 
customized graphical interface, allowing the scientist to select and to compose the 
workflow components, or by the use of a workflow language. The design of the workflow 
is expressed in terms of an abstract workflow and in terms of a concrete workflow. A 
concrete workflow defines the application by program executables and data files. A 
workflow engine is a software that executes a concrete workflow.  By the use of different 
semantic levels, abstracts workflows can specify the components in a way that is 
abstracted from the syntactic details of data formats or invocation mechanisms. For 
example, in an abstract bioinformatics workflow, a user would specify a component that 
can perform a gene sequence homology task and when generating a concrete workflow 
an executable program that performs such task would be assigned.  In another semantic 
level, still abstract, a user would specify the components of a workflow by their logical 
names like Blast-p and PDB. However, in both cases, there is a need to have catalogs or 
repositories in order to map the abstract components of a workflow into the concrete 
ones, for example NCBI Blast-p and NCBI PDB version 5.2.3. Anyway, in the context of 
this work, we will assume the following definitions: 
• Abstract workflow is a set of programs and datasets expressed by their logical names 

along their dependencies among each other. We can have several semantic levels of 
abstract workflows. 

• Concrete workflow is a set of program executables and data files expressed by their 
physical name, that is, their full location. A logical name does not characterize a 
concrete workflow, since a program or dataset can be assigned to multiple physical 
names. This is the lowest level of a workflow definition, prior to its execution. 

 
Workflows have their components modeled according to a number of patterns. 

These patterns address distinct workflow functionalities. According to Aalst et al [54], 
almost every workflow language supports the basic control patterns listed bellow. 
Table 1 – Basic workflow control patterns [54] 

PATTERN NAME DESCRIPTION 
 Sequential The execution of a program can be done after the execution of the predecessor 

 Parallel Split Programs B and C have to be executed after program A 

 Exclusive Choice Program B or program C must be executed after program A 

 Synchronization Program C can only executes when programs A and B finished 

 Simple Merge Program C can execute if program A or program B finish 
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In the next subsection, we show some existing technologies that address the 
design of scientific workflows for Grid and web environments. There is no established 
consensus regarding which is the best language to specify a scientific workflow. In 
general each project uses a specific workflow design tool or workflow language. The 
Grid scientific workflows are being expressed in terms of jobs or web services. Since 
OGSA defines Grid services as extensions to web services, languages developed to 
compose business web services can also be employed to compose scientific web services 
in Grid environments.  

 
 
II.2.1 - DAGMAN APPLICATIONS 

 
 A directed graph [31] consists of a set of vertices and a set of arcs. A Directed 
Acyclic Graph, or DAG, is a directed graph with no cycles and can be used to represent a 
scientific workflow. The programs are the nodes (vertices) in the graph and the edges 
(arcs) represent the dependencies.  
 
 Condor [32] is a specialized batch system for managing compute-intensive jobs 
that uses the computer power of workstations that communicate over the network. Users 
submit their jobs to Condor, Condor puts the jobs in a queue, runs them, and then informs 
the user as to the result. Condor finds machines for the execution of programs, but it does 
not schedule programs (jobs) based on dependencies. 
  
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 - DAGMAN input file and respective Diamond DAG (adapted from [33]) 

The Directed Acyclic Graph Manager (DAGMan) [33] is a meta-scheduler for 
Condor jobs. DAGMan submits jobs to Condor in an order represented by a DAG and 
processes the results. The DAG itself is defined by the contents of a DAGMan input file. 
The input file used by DAGMan specifies four items:  

# Filename: diamond.dag
#
Job  A  A.condor 
Job  B  B.condor 
Job  C  C.condor
Job  D  D.condor
#
Script PRE  A top_pre.csh
Script PRE  B mid_pre.perl $JOB
Script POST B mid_post.perl $JOB $RETURN
Script PRE  C mid_pre.perl $JOB
Script POST C mid_post.perl $JOB $RETURN
Script PRE  D bot_pre.csh
#
PARENT A CHILD B C
PARENT B C CHILD D

Retry  C 3

1

2

3

4

A

B C

D
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1. A list of the programs in the DAG, 
2. Pre and Pos processing that takes place for each program submission, 
3. The description of the dependencies in the DAG, 
4. Number of retries in case of fails. 

Figure 5 shows an example of a DAG and its DagMan input file. DAGMan allows 
Interworkflow parallelism to be achieved if the workflow input data is partitioned in 
advance. Intraworkflow parallelism can be achieved through the use of the descriptions 
of the dependencies in the DAG and by allocating concurrent programs to different 
nodes. DAGMan has been used to execute scientific workflows in Grid environments but 
it does not deal with the workflow for web services. However, the concept of using a 
DAG to represent a set of programs where the inputs, outputs and the execution are inter-
dependent can be applied to describe the dependencies between web services. 
 
II.2.2 – BPEL4WS  
 
 Business Process Execution Language for Web Services (BPEL4WS) [34] 
represents a convergence of the ideas in XLANG and WSFL specifications, developed by 
Microsoft and IBM respectively. The BPEL Process (workflow) is an XML-based 
grammar that can be executed by an Orchestration engine like BPWS4J [35] from IBM. 
This engine reads the BPEL document and invokes the web services in the order required 
by the workflow. The workflow itself is a web service and is invoked as such. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 - BPEL Document Structure (adapted from [34])  

<process name=”process1” 
<partners> 
         <partner name=”client”, …/> 
         <partner name=”provider”, …/> 
</partners> 
 
<containers> 
         <container name=”request” …/> 
         <container name=”response” …/> 
</containers> 
 
<sequence> 
          <receive name=”receive1” partner=”client”…./> 
          <invoke name=”invokeservice” 
                        inputContainer=”request” 
                        outputContainer=”response” 
                        … 
          </invoke> 
          <reply name=”reply” partner=”client” …./> 
</sequence> 

</process> 
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The main structure of a BPEL document consists of the following elements: 
partners for interaction, containers for holding messages and a set of activities. The 
definition of a process begins with the <process> element. The next step is to declare the 
parties involved. These partners send and receive messages that are accessed by activities 
like receive and reply. In BPEL this data is stored in data containers. Once the partners 
and containers are defined, the activities that form the composition can be added to the 
document. Figure 6 illustrates the structure of a BPEL document that involves two 
parties: a client and a service provider. 
 

BPEL4WS documents have two types of activities: primitive activities (table1) 
and structure activities (table2). The first type are low level activities representing the 
work in the process and the second type activities have the ability to define an ordered 
sequence of steps, to indicate that a collection of steps should be executed in parallel, to 
define a loop, to execute one of several paths, and to execute one of several alternative 
paths.  

 
BPEL4WS process itself does not indicate how a partner is bound to a specific 

service. That is considered a runtime-binding step that must be supported by the 
BPEL4WS implementation. 
    Table 2 – Primitive activities                                     Table 3 – Structure activities 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II.2.3 – GSFL  

 
 The Grid Services Flow Language (GSFL) [36] is an XML based language that 
allows the specification of workflow descriptions for Grid services in the OGSA 
framework. Differently from BPEL4WS, which defines a workflow in such a way that 
the workflow engine has to coordinate the execution of each web service, GSFL 
workflow specification allows the communication between the services. According to 
GSFL authors, Grid services usually exchange large amounts of data and thus, having a 
central workflow engine to distribute data between the services is a bad idea. Figure 8 
depicts the both models.  

 

<invoke> Invoke the operation 
of a web service 

<receive> Wait for a request 
<reply> Generate a response 
<wait> Wait for some time 

<assign> Copy data values 
<throw> Throw an exception 
<catch> Catch an exception 

<terminate> Finish the entire 
process instance 

<empty> Do nothing 

<sequence> Sequential execution of 
primitive activities 

<flow> Parallel execution of 
primitive activities 

<switch> Case-statement approach 
<while> Defines a loop 
<pick> Executes one of several 

paths 
<scope> Groups a set of activities 

as a single transaction 
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Figure 7 – Web Services and GSFL Workflow Models [36] 

 
The main components of GSFL language are: Service providers, Activity model, 

Composition model and Lifecycle model. All services that are part of the workflow have 
to be specified in the list of service providers. They have a unique name and can be 
located using the locator element. The activity model lists all the operations belonging to 
the individual service providers. The composition model describes how the different Grid 
services are composed to form a new Grid service. It describes the control and data flow 
between various operations of the services, and also direct communication between them 
in a peer-to-peer way. The lifecycle model addresses the order in which the services are 
supposed to execute. 

 
GSFL is a work in progress at Argonne National Laboratory in the context of 

Globus project. However there is not much documentation about it nor real experiments 
describing GSFL use. According to the language authors, ideas for future features include 
automatic integration with a graphical workflow editor and the development of constructs 
such as loops and switch statements. 
  
 
II.2.4 – DAML-S 

 
 DAML (DARPA Agent Markup Language) [37] goal is to develop a language and 
tools to facilitate the concept of the Semantic Web. HTML allows people to visualize the 
information on the web, but it does not provide much capability to describe the 
information in ways that facilitate the use of software programs to find or interpret it. 
XML allows information to be more accurately described using tags and DAML 
language is being developed as an extension to XML and the Resource Description 
Framework (RDF) which provide a lightweight ontology system to support the exchange 
of knowledge on the Web. The latest release of the language is named DAML+OIL. 

GSFL Workflow ModelWeb Services Workflow Model
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Figure 8 - Process modeling Ontology [37] 

 
 DAML-S [38] is an ontology developed to describe web services and process 
(workflows) based on web services. The ontology to describe processes is illustrated in 
figure 8. A Process can have any number of inputs, outputs, participants and 
preconditions.  It has a subclass CompositeProcess, which in turn has a variety of 
subclasses of control structures. Composite processes are processes that have additional 
properties called components to indicate the ordering and conditional execution of the 
subprocesses from which they are composed. There are two fundamental relations 
between processes and composite processes. The EXPAND relation associates a Process 
with the CompositeProcess describing its component subprocesses, while its inverse, the 
COLLAPSE relation represents the association of the CompositeProcess to its atomic 
Process form. Expanding is intended to provide a “glassbox” and collapsing a “blackbox” 
view of the process. The subclasses of control structures enable the execution of 
processes in sequence, parallel, with determined order, without order, satisfying 
conditions, etc.  
 

DAML-S is an initiative of the Semantic Web community to facilitate automatic 
discovery, invocation, composition, interoperation and monitoring of web-services 
through their semantic description. However the language presents some drawbacks [39]. 
First, there are few and artificially examples about its use. Second, it is necessary to know 
DAML, WSDL and SOAP to start writing DAML-S descriptions, making its use 
difficult.  

 
 
II.2.5 – XScufl 

 
 XScufl [61] is the XML dialect of the Simple Conceptual Unified Flow Language. 
The language was developed to be used in myGrid project, in order to fulfill the 
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workflow requirements established by the project. A Xscufl file consists of the following 
tags: <processor>, <link>, <source>, <sink> and  <coordination>. A processor tag 
defines a single processing step. A link tag defines a data link between two processors. A 
data link represents a flow of information of some processor output by an input of some 
other processor.  A source tag defines a workflow source and is used to get input data to 
the workflow. A Sink tag is similar to the source tag and is used to send a processor 
output data to the workflow sink, making it visible outside the workflow. The 
coordination tag is used to restrict the execution of processors when there are no data 
dependencies between them.  
 

Figure 9 illustrates the structure of an XScufl document that involves three 
processors in a sequential pattern. The coordination block states that processor 
“processor3” should only be allowed to transition from “scheduled” to “running” if the 
processor “processor2” has achieved status “completed”. The available states are: 
Scheduled, Running, Completed and Aborted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 9 – Xscufl example (adapted from [61]) 

 

 
<?xml version="1.0" encoding="UTF-8" ?>  
  <s:scufl    xmlns:s="http://org.embl.ebi.escience/xscufl/0.1alpha" version="0.1" 

log="3"> 
     <s: processor name=”processor1” /> 
      <s: processor name=”processor2” /> 
      <s: processor name=”processor3” /> 

<s:link> 
         <s:input=”processor1” …/> 
         <s:output=”processor2” …/> 
</link> 
<s:link> 
         <s:input=”processor2” …/> 
         <s:output=”processor3” …/> 
</link> 
<s:source>input_file</s:source> 
<s:sink>output_file</s:sink> 
<s:coordination name=”testcoordination”> 
     <s:condition> 
               <s:target>processor2</s:target> 
               <s:state>completed</s:state> 
     </s:condition> 
     <s:action> 
               <s:target>processor3</s:target> 
               <s:stagechange> 
                        <s:from>scheduled</s:from> 
                        <s:to>running</s:to> 
              </s:statechange> 
     </s:action> 
</s:coordination> 

</s:scufl> 
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According to Xscufl authors, the decision of myGrid to design the language was 
taken to address the support for a set of requirements, like cost, quality, semantic level 
specification and provenance that other languages do not offer.  However, Xscufl is 
proprietary solution and can only be executed by the Freefluo [62] workflow 
orchestration tool.  
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III – RELATED WORK 
________________________________________________________________________ 
 

 
Cluster of PCs, Grids and the Web are being used as platforms for the execution 

of scientific programs and workflows. Many initiatives can be found in the literature 
exploiting these distributed environments to enhance the performance of scientific 
applications. This section describes some important works along their main 
characteristics related to the execution of scientific applications, particularly in the 
bioinformatics scenario.  
 

In many scientific areas we can find works exploiting cluster of PCs to improve 
the response time of their applications. For example, in the bioinformatics field, there are 
several works that exploit parallelism in sequence comparison and alignment operations. 
Braun et al [12] explore in their work, the use of BLAST in batch mode processing of 
multiple query requests against a database replicated at all nodes. Meanwhile it is not 
showed details of the implementation and also practical results. Pappas [11] used a 
network of Dec Alpha workstations to set up a service for BLAST requests. The service 
was implemented using PVM for parallel interface. The sequence database was 
fragmented and accessed via NFS simulating a shared-disk configuration. Costa and 
Lifschitz [10] present a more accurate work where different approaches to distribute the 
query requests are examined. The services were implemented using MPI and were 
executed in a 32 PC cluster with different input databases and with replication and 
fragmentation polices. Their parallel algorithms show significant improvements for the 
sequential implementation of BLASTP, which compares protein queries to proteins 
databases. However, none of these works exploit parallelism to improve the performance 
of a combination of programs. They are focused on one single isolated program 
execution.   

 
Already widely used in projects by physicists, astronomers and engineers, the 

grids are beginning to be used by also the bioinformatics community.  The Grid 
Application Development Software (GrADS) project [40] is developing a framework to 
simplify the preparation and execution of programs on a computational Grid. Yarkhan 
and Dongarra [41] describe how to enable the biological sequence alignment application 
FastA to run on the GrADS framework. Their work adopts database replication strategies 
to distribute data with a master-slave approach to process the query sequences, and also 
improves the performance of a single application.  

 
Since the main focus of our work is the execution of scientific workflows instead 

of the execution of isolated programs, we will next present in more detail, the main 
projects that are related to this subject. A set of characteristics was selected to be 
analyzed aiming to better understand the resources these works provide. We begin 
discussing the WASA [42] project. Although not developed for distributed environments, 
WASA was one of the first dealing with design and execution of scientific workflows. 
Next, we discuss nine projects that enable the specification and execution of scientific 
workflows in distributed environments: Meteor [43, 44], SDM [45], gRNA[46], 
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BioOpera [47, 48], SRMW[57, 58], Chimera [15, 18], Pegasus [16, 20, 49, 50], myGrid 
[17, 51, 52] and Gridflow [53]. 
 
II.1 - WASA 
 
 The WASA project (A Workflow-Based Architecture to Support Scientific 
Database Applications) [42], proposes an architecture to integrate database and workflow 
technologies to support the management of scientific experiments in domains of 
geosciences and biocomputing. Figure 10 sketches the main components of WASA 
architecture.  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 10 - WASA Architecture (adapted from [42]) 

 
The user starts the design of a new workflow using the specification design 

facility. When the user finishes a specification, the runtime manager may be invoked to 
execute the experiment, and the results will be seen through the browsing and 
visualization facility. The Data Manipulation facility allows users to access and update 
data concerning the experiments. The database layer of WASA contains two categories of 
data: application-specific data and WASA-specific data. The first one is supposed to be 
stored in a number of databases and includes text data, references to bibliography data 
and other data resources. The second one is a repository used to store data needed to run a 
workflow. 

 
WASA was not developed for execution in distributed environments. Therefore it 

is not clear if or how parallelism is achieved during the execution of a workflow. Another 
point that is not mentioned is whether WASA has the ability to deal with abstract 
workflows nor how workflow definitions are stored. 
 
II.2 - METEOR 

 
Meteor is a workflow management system developed at LSDIS laboratory of the 

Computer Science Department at the University of Georgia [43, 44].  Its architecture 
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includes four services: Workflow Builder, Workflow Repository, Workflow Enactment 
and Workflow Manager (figure 11). 

 
   
 
 

 
 
 
 
 
 
 
 
 

Figure 11 - Meteor architecture [43] 

 
The Builder Service is used to graphically design and specify a workflow. The 

specification includes the dependencies between the tasks and data passed among them. It 
also includes details of task invocation. The workflow definition is independent of the 
runtime system and is stored in the workflow repository. 

 
The Repository Service is responsible for maintaining information about 

workflow definitions and also interacts with the Enactment Service providing the 
necessary information about a workflow application to be invoked. Workflows are stored 
as XML documents. The user can access the workflow repository to perform dynamic 
changes. 
 
 Two enactment services for METEOR have been developed: ORBWork and 
WebWork. The first one based in the CORBA middleware and the second one, based on 
Web technology. Both services have code generators to be used to build workflow 
applications from the specifications stored in the repository. METEOR has been used by 
applications in medicine, engineering and biology. 
 
 METEOR was not developed to address workflow design and execution in cluster 
or grid environments. Therefore performance is not the main goal of the project. 
However, since the workflow components may be distributed to different hosts, the 
workflow administrator may distribute the processing of the tasks of a running workflow 
to a host that become available allowing for better load balance. 
 
II.3 - SDM 
  

The Scientific Data Management Center Project (SDM) [45] is carried out by US 
Department of Energy and many Universities to address data management challenges in 
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science applications. Figure 12 shows the Scientific Workflow Management System 
architecture.  

 
 

 
 
 
 

 
 

 

 

 

 

 

 
 

  

Figure 12 - Scientific Workflow Management System architecture [45] 

 
The core idea of the project is to allow a scientist to design an abstract workflow 

from the repository of abstract tasks while the system generates an executable workflow 
from the abstract definition in terms of the available web services. In order to assist the 
user in the abstract workflow design, domain ontology is used to link abstract tasks with 
semantic types. Executable tasks are stored in a web service repository. 

 
 The workflow designer defines single abstract tasks in terms of executable tasks 

using the WF-pilot GUI. For example, after defining the abstract task of cluster-analysis, 
the designer has to create a concrete instance of cluster-analysis by associating it with a 
specific cluster analysis tool such as CLUSFAVOR. In general the designer may create 
several concrete instances for the same abstract task. In this case, the conditions that 
allow the system to select at runtime one executable task must be provided. If the system 
cannot determine a unique instantiation, the user is prompted for a decision at runtime. 

 
In the execution mode, the user can add breakpoints in the workflow to inspect 

intermediate results and to decide which intermediate data should be made persistent. The 
Scientific Workflow Management System was used in a bioinformatics application, the 
Promoter Identification Workflow (PIW).  

 
SDM aims to hide the low-level details of web services so the scientist can focus 

on the design of a scientific workflow at the conceptual level. Like METEOR, SDM was 
not designed to scientists to create workflows to be executed in cluster or grid 
environments and consequently performance is not the main concern of the system and 
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there is no performance results reported. Abstract tasks are stored in a abstract task 
repository and executable tasks in a web services repository. However details on how 
these repositories store the data are not discussed. 
 
II.4 – gRNA 

 
 gRNA [46] operates on a cluster of multiple computers that communicate over 
Ethernet and provides an environment for development of life sciences applications based 
in a set of APIs. Data from biological sources are gathered and stored in warehouses 
using XML structures. These data can be queried using the XomatiQ component, a visual  
XML-based query interface. Although the main goal of GRNA is data integration, the 
project has a workflow management system, named HyperThesis, that enable users to 
build, in a graphical way, ad-hoc workflows. HyperThesis stores the workflows 
definitions in a repository. However, it is not clear how GRNA addresses issues like 
workflow parallel execution, abstract workflow concept and the workflow definition 
storage. 
 
II.5 - BIOOPERA 

 
BioOpera [47, 48] is being developed at the Information and Communication 

Systems Research Group of ETH Zürich, and provides resources for development and 
execution of scientific applications in cluster of PCs, UNIX workstations and Grid 
environments. Its architecture is divided into two layers: The User Interface Front-end 
and Back-end (figure 13). 

 
Workflows are specified using a graphical tool where the user defines its input, 

output, tasks and their dependencies. The tasks (programs) are selected from a library and 
are linked by drawing connections between them. The graphical representation is turned 
into a textual representation using an internal programming language to represent and 
manipulate workflows. When registering a new program, the user must specifies the 
input/output parameters, how to run it and the ranges of nodes where it can be invoked. 
This information is stored in a database and can be dynamically changed. The database 
also stores runtime information such as the states of the tasks, execution logs, load and 
availability of each node.  

 
 
 
 
 
 
 
 

 
Figure 13 - BioOpera Architecture [47] 



 26

When executing a workflow, BioOpera analyses the control flow dependencies 
and concurrently schedules all tasks that are found to be independent. If enough 
computing resources are available, these tasks will be executed in parallel. The user can 
interact with BioOpera to restrict the set of nodes used for execution and to check 
intermediate results. It is also possible to kill, suspend, resume and restart a program or 
the entire workflow. The dynamic scheduling and load balance mechanisms allow 
BioOpera to work with a cluster that shrinks or grows in size dynamically. The system 
may start applications running on different operational systems (Linux, Solaris, 
Windows) and execution platforms (Condor, CORBA, RPC, Web Services).  

 
Experimental results are shown for a bioinformatics application. In this case, data 

parallelism is achieved, but in the context of a single task and not in a workflow 
processing. This computation involved a cross comparison of the SwissProt protein 
database and was done by partitioning the database among several servers which 
performed the work. In BioOpera there is no use of abstract workflow concept. The 
workflow may be constructed through the combination of executable programs.  

 
 

II.6 – SRMW 

 The Scientific Resource Management project (SRM) [57, 58] proposes an 
architecture where scientific users can remotely access and share programs, data and 
scientific workflows definitions and experiments. SRM embeds the Scientific Publishing 
Metamodel (SPM) that relates models, programs and data through specific categories and 
semantic relationships. SRM is implemented as a web service architecture (SRMW), 
which provides interoperability among published data and programs. Web services 
classes may be used to classify data and programs, which can be used in service 
composition to become a workflow. The SRMW architecture is showed in figure 14.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14 – SRMW Architecture [58] 
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The publication module publishes WSDL documents in a metadata repository. 
This metadata can be retrieved by the navigation module. The experimentation module 
monitors the execution by mediating communications between the user and the real 
service provider. Data and program publishers are responsible for building a Web Service 
Provider for their resources, so that they can become available to Web users. Publishers 
have to use the Web Service Registry module to register their code and data resources as 
services in the UDDI Service repository. Publishers should also publish the 
correspondent WSDL documents. 
 
 SRMW allows scientists to configure their own workflows by dynamically 
combining programs provided by different research teams and was used in biological 
experiments in a real structure genomic workflow. SRMW is a work in development. 
Parallel processing is not yet provided and only serial workflows can be defined through 
SRMW web interface. 
 
 
II.7 - CHIMERA 

 
The Chimera [15, 18] prototype implements the Virtual Data Grid, an architecture 

to integrate data, and the computational procedures used to manipulate it. Chimera 
includes two primary components: a virtual data schema and a virtual data system. The 
first one is used to store the information about the procedures, invocations of those 
procedures and the datasets produced during their execution, while the second one has the 
goal of allowing users to construct and maintain this information in a distributed context. 
The virtual data schema is not tied to any specific technology like RDBMS or XML 
repository and defines five entities as illustrated in figure 15. 

 
 

 
 
 
 
 
 
 

 
 

 

  

Figure 15 - VDC main components [15]  

Dataset is the unit of data managed within the system and can have associated 
multiple physical copies with different properties such as location. Transformation 
represents computational procedures and a Derivation specifies the arguments to execute 
a transformation. Last, an Invocation store information about the environment (e.g., date, 
time, OS) in which its associated derivation was executed. 
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The Chimera Virtual Data Language allows the users to specify the 

transformations and derivations needed to generate the datasets. Figure 14 shows an 
example of the VDL statements used to define the transformations and derivations that 
correspond to a workflow, represented as a Directed Acyclic Graph (DAG), which is 
showed in the right side. 

 
The VDL definitions are translated to XML format before being inserted in the 

Virtual Data Catalog (VDC). The abstract workflow (AWF) is then generated based on 
the information stored in the VDC. The AWF is represented as another XML document 
where the transformations and derivations are substituted by jobs and contain the logical 
names of the executables and files. Therefore a DAG is the result of the Chimera abstract 
planner and is expressed in terms of logical entities. These logical entities are mapped to 
physical instances by the concrete planner that selects an execution site for each node, 
and determines how to obtain and transport the data needed by each computation. The 
concrete DAG generated in this step is represented as a script file that is submitted into 
the Grid via Condor-G [32] and DAGMan [33] a meta scheduler for Condor jobs 
developed at Wisconsin University.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

  

Figure 16 - VDL specification and the correspondent acyclic graph (adapted from [16]) 

 
Chimera has been used in the context of the GriphyN project in the data analysis 

problem of the identification of galaxy clusters within the Sloan Digital Sky Survey. In 
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this work, inter-workflow parallelism is exploited by the fragmentation of the input 
dataset and replicating the workflow programs among a large number of machines in four 
universities. Intra-workflow parallelism can be achieved in Chimera since Dagman can 
submit multiple Condor jobs at the same time. However, it seems that intra-program 
parallelism cannot be specified with VDL, that is, there is no way to define that a 
transformation in the abstract workflow can be executed in this way. Another limitation 
in Chimera is that workflow execution is restricted to Condor jobs.  

 
II.8 - PEGASUS 

 
Pegasus [16, 20, 49, 50] is another project that addresses the problem of 

generating abstracts and concretes workflows for Grids and is being developed at ISI as 
part of GriPhyn and SCE/IT projects. Pegasus uses several Globus services and can 
execute workflows on the Grid. Pegasus can be integrated to Chimera. In this 
configuration (see figure 15), Pegasus receives an abstract workflow from Chimera, 
produces a concrete workflow and submits it to Condor-G for execution.     

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

  

Figure 17 - Configuration of Pegasus when driven by Chimera [50] 

 
The abstract workflow (AW) describes the transformations and data by their 

logical names. The concrete workflow (CW) specifies the location of data and the 
execution platforms. If there is any dataset specified in the AW that already exists, the 
Pegasus planner will reuse it and thus reduce the complexity of the CW. The choice of 
the location where the transformation will be executed is done querying the 
transformation catalog. Data files can also be replicated in various locations. The 
Metadata Catalog Service (MCS) links application-specific metadata with the logical 
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names of the data files. Given a logical file name, the Replica Location Service (RLS) 
can be used to find the physical locations for the file. The Monitoring and Discovery 
Service (MDS) is used to find the appropriate resources given the requirements of the 
application components. Pegasus contains a Virtual Data Language generator that can 
populate the Chimera virtual catalog.  

 
Pegasus can also be configured to perform the generation of the abstract workflow 

based on application metadata. In this case, AI-based planning technologies are used to 
construct both AW and CW. Like Chimera, Pegasus uses Dagman and Condor to submit 
the workflow for execution and has been used in physics applications. 

 
II .9 - MYGRID 

 
The myGrid [51, 52] project aims to develop middleware to support in silico 

experiments in biology and is building services for integration such as resource 
discovery, workflow enactment and distributed query processing.  The architecture of the 
project is based on services, initially implemented by Web services but is intended to be 
delivered as Grid Services. Like Chimera, MyGrid is concerned with the provenance of 
derived data and aims to identify all input data, intermediate and final results together 
with the process used to create the results.  

 
In order to fulfill the workflow requirements established by the project like 

specification of provenance data and workflow semantics, a workflow language (Scufl) 
and enactor (Freefluo) were developed. These tools allow interaction with the user during 
the enactment process. The user can then be asked to choose which of the services 
available at that time should be used. Although MyGrid has been developed for use by e-
scientists in a grid environment, none of the works describe performances results 
regarding workflow executions. Also, issues like strategies to perform data and program 
distribution and replication are not mentioned. 
 
II.10 - GRIDFLOW 
 
 GridFlow [53] is a workflow management system being developed by several 
research institutes with the goal to enable grid users to construct, simulate, execute and 
monitor grid workflows. A workflow is represented as a flow of several different 
activities each activity represented by a sub-workflow. A sub-workflow is a flow of 
related tasks that is to be executed in a predefined sequence on resources within a local 
grid (one organization). Tasks are MPI and PVM jobs, data transfers or archiving of large 
datasets. Figure 16 shows GridFlow architecture. The User Portal enables users to 
construct a workflow in a graphically way. To construct a workflow, a user needs to 
define properties of each sub-workflow and task and their execution sequences. The 
abstract workflow is represented using a XML specification, which is send to the 
Workflow Management. If the user knows where a task or a sub-workflow will be 
executed, he can define this location within the portal. However if the user has no 
knowledge about the available grid services and resources, the workflow management 
service will provide the services automatically. 
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The workflow management service provides three functionalities: simulation, 

execution and monitoring. Simulation takes place before the execution of a workflow and 
provides the workflow schedule. Execution provides the workflow execution according 
to the simulation schedule. Monitoring provides interfaces that allow access to real-time 
status reports of tasks or sub-workflows execution. The Sub-workflow scheduling 
schedules tasks onto grid resources within a local grid.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 - GridFlow architecture [53] 

 
It is not clear how users interact with the portal in order to specify the workflow 

and how the parallel environment of the grid is exploited to execute the workflow in 
parallel. Apparently the system does not provide a repository containing the tasks stored 
allowing users to choose the workflow components. The mapping between abstract and 
concrete workflow is not well explained either. Since tasks or sub-workflows are 
executed inside a local grid, it seems that parallelism can be achieved if a task is already a 
parallel application. The use of the GridFlow in a real application study was not reported.  

 
 

II.11 – DISCUSSION 
 
 Table 3 summarizes all the systems described in the last section according to a set 
of workflow features we found relevant to the context of this thesis: execution 
environment, workflow definition storage, run time, scientific area, parallelism and 
abstract workflow definition. The execution environment is related to the distributed 
environment, which is addressed by the system: web, cluster or grid. Storage informs the 
technology like RDBMS or XML files used to store definitions about the workflow. Run 
time specifies the kind of executables that are run by the system. Area is related to the 
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scientific area where the system has been employed and parallelism informs the level of 
workflow parallel processing that can be achieved by the system. Finally, AWF is 
characterized by its semantic level, language used to specify the abstract workflow and 
by the presence or not of a graphical user interface. 
 
Table 4 – Workflow Projects General Aspects 
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As can be noted from the projects discussed before, several scientific workflow 
projects allow users to specify in a friendly way, the components that compose the 
workflow application. The use of tools like a graphical interface and an abstract 
workflow definition language can allow scientists to focus on the design of a scientific 
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workflow at the conceptual level, hiding the low-level details and intricacies of program 
interactions and invocations. Therefore, using such features, scientists would be free to 
concentrate on how to solve a problem rather than on how to map a solution onto 
available resources, or to acquire better performance. However there must be software 
components to provide an adequate workflow execution strategy.  

 
The simultaneous execution of different programs within a workflow, i.e., intra-

workflow parallelism, seems to be addressed in almost every system. However, the 
simultaneous execution of the same workflow, i.e., inter-workflow parallelism, is only 
showed in Chimera work. But in this case, the input data to be processed by the workflow 
was previously fragmented over the several machines. None of the other presented works 
perform the distribution of the workflow input data during the workflow execution. 
Therefore, in these works the input data is always processed by the first program of the 
workflow with no data parallelism. 

 
 Also, we did not find systems allowing the specification for data fragmentation 

and/or data replication for single components. Therefore, intra-program parallelism, 
which is very used to improve the performance of isolated scientific programs, appears to 
be not exploited during the execution of a workflow component in these systems. The 
graphical user interfaces and languages used to design the scientific workflows do not 
allow users to specify this kind of feature. Thus, in order to have intra-program 
parallelism exploited during the workflow processing, it is necessary to have this 
information provided by the workflow designer. 
 

Regarding the workflow specification storage, XML is the data format most used 
to store the abstract workflow definitions. This is important since an XML provides a 
data structure for a document. Therefore, the use of XML for defining abstract workflows 
can certainly make the development of services that have to interpret an abstract 
workflow definition, like for example to generate a parallel execution strategy for the 
workflow, easier.  

 
Most works address the design and execution of scientific workflows in Physics 

and Biology fields. This fact makes evident the need for scientists in these areas to 
compose and integrate different resources like programs and data to build their scientific 
applications.  
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IV – WORKFLOW PARALLEL PROCESSING 
 

 
Parallelism has already been used by scientific and database communities to 

improve the performance of programs and database operations respectively. SPMD 
(Single Program Multiple Data) and MPMD (Multiple Program Multiple Data) 
characterize strategies for parallel program execution. Also inter-query, pipelined and 
partitioned parallelisms characterize strategies for parallel query processing in DBMS.  
However, we did not find works characterizing strategies for parallel execution of 
scientific workflows. The goal of this section is to propose a set of parallel strategies and 
an architecture to execute scientific workflows in parallel. In subsection IV.1 we propose 
a characterization of such parallel strategies. Then in subsection IV.2 we show an 
architecture that provides the design and the execution of scientific workflows in parallel. 
Finally, in subsection IV.3 we propose a set of initial heuristics considering workflow 
patterns that can be used to generate the parallel execution design.  
 
IV.1 - WORKFLOW PARALLEL STRATEGIES 
 
 Scientific programs often generate and process large datasets. Therefore, the 
execution of such programs can be a time-consuming task and data parallelism strategy 
has already been used to improve the performance of isolated programs. When 
combining these programs to compose scientific workflows, the simultaneously 
execution of different programs can also be exploited. We propose here a characterization 
of three kinds of strategies to process a scientific workflow in parallel: Inter-workflow 
parallelism, Intra-workflow parallelism and Intra-program parallelism. These 
strategies can be employed in order to provide parallel solutions to execute scientific 
workflows with better response times.  
 

One typical scenario in scientific applications is having a set of input data to be 
processed by a workflow. We define a workflow Wf as a set of programs to be executed 
according to modeling patterns. A modeling pattern defines the order and the conditions 
to execute each program. Let WF  be the set of workflows Wfi, where 1≤i≤N. For each 
Wfi there is a set of programs Pji  (1≤j≤P) that compose the workflow Wfi,, a set of input 
data Iki (1≤k≤M) that has to be processed by WFi and a set of output data Oji (1≤j≤P)  
generated by each program Pji. Inter-workflow parallelism can be characterized by the 
simultaneous execution of the same workflow Wfi, each one processing a subset of the 
input data Iki. This parallelism can be reached by allocating all the programs Pji of a 
workflow Wfi at each node of the system but can only be exploited if the input data 
elements Ikj can be processed independently. The set of output data Oji generated in each 
node must be joined in order to produce the final result. 
 

The distribution of the input data to the nodes can be done basically in two ways: 
by groups of Iki elements or individually. In the first case, as illustrated in figure 19, 
dividing the number of input data elements by the number of nodes can generate subsets 
of the input data. In the second approach, as illustrated in figure 20, the input data 
elements can be distributed in a round-robin way, as soon as one node finishes the 
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processing of a previous input data element.  The distribution of the input data to the 
nodes plays an important role, due to the number of messages exchanged during the 
workflow parallel processing. In the first case, the number of messages exchanged by the 
coordinator and the nodes will be equal to the number of the nodes in the system, while in 
the second case, this number will be equal to the number of the input data elements to be 
processed. If the number of nodes is less than the number of input data elements to be 
processed, the first alternative apparently seems to be better. However, there is no 
guarantee that the time needed to process different input data elements will be the same. 
Therefore, one node can finishes its processing and stay idle while another node still has 
a lot of input data to process. The second approach, the individual distribution of the 
input data to the nodes, minimizes this problem since the coordinator can distribute an 
input data element as soon as a node becomes able to process it. 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 19 – Inter-workflow parallelism with grouped input data distribution                                   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20 - Inter-workflow parallelism with individual input data distribution                                   

 
Intra-workflow parallelism can be characterized by simultaneous execution of 

more than one program Pji of the same workflow Wfi. This parallelism can be reached by 
allocating the programs Pji of a Wfi workflow at different nodes of the system. Intra-query 
parallelism is achieved in DBMS when an operator continually streams its result to 
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another operator allowing both operators to work in parallel. This pipeline parallelism 
can also be achieved in a workflow execution. For example, supposing a workflow with 
three programs in a sequential pattern as shown in Figure 21. Intra-workflow parallelism 
could be achieved by having program P3i in node C processing an output O2i previously 
generated by program P2i, program P2i processing the output O1i previously generated by 
program P1i, and program P1i processing an input data I3i provided by the coordinator. 
There are others workflow patterns where intra-program parallelism can naturally be 
exploited. Whenever a parallel-split, exclusive-choice, synchronization, or simple-merge 
occur intra-workflow parallelism can be applied. However, the coordinator must provide 
the programs with the input data needed by them to perform their processing and control 
the synchronism between the executions of the programs.  
 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 21 - Intra-Workflow Parallelism for a pipeline of programs (sequential pattern) 

 
Intra-Program parallelism can be characterized by simultaneous execution of the 

same program Pji of a workflow Wfi in different nodes. If the input data elements Ikj for a 
program can be processed independently then intra-program parallelism can be achieved 
by allocating the same program Pji at different nodes and by distributing the set of input 
data between the nodes, like in the inter-workflow strategy. Figure 22 illustrates this 
situation.  
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Figure 22 – Intra-program parallelism for input data processing independently 

However, if the set of input data cannot be processed independently, intra-
program parallelism can also be achieved if a program Pji processes a dataset that can be 
partitioned. In this case, the program can process in each node the same input data 
element over a fragmented dataset. This kind of data parallelism has been widely used by 
the database community and offers great opportunities to increase performance in shared-
nothing DBMS [19]. In a parallel DBMS architecture, the database is fragmented 
according to some criteria and the generated data fragments are allocated to the different 
nodes. Consequently, slow operations like a full table scan in a large table, can be 
performed in much less time since each node have to scan a subset of the original table. 
In workflows, such strategy could be adapted for programs that process large datasets if 
this data partitioning does not interfere with the final result. Figure 23 illustrates this kind 
of intra-program parallelism. 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

 

Figure 23 - Intra-Program Parallelism with dataset partition  

 
 It must be noted that whenever intra-program parallelism strategy is used, the set 
of output data Oji generated in each node must be joined in order to allow the execution of 
the next program of the workflow or to produce a final result, unless the next workflow 
program can process the antecessor fragmented results.  
 
 Inter-workflow, intra-workflow and intra-program strategies can be combined 
or used independently to execute a scientific workflow in parallel. However, to choose 
the best strategy to parallel process a set of input data is not straightforward. Most of the 
works discussed in section III exploit intra-workflow parallelism if two or more 
programs can execute at same time, like in a parallel-split pattern. But there is no 
guarantee that this strategy will always be the best. To illustrate this fact, we will make a 
theoretical analysis using a workflow Wf1 that presents a sequential and a parallel-split 
pattern and is composed by four programs P1, P2, P3 and P4. Figure 24 illustrates the Wf1 
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workflow. The time to Wf1 process sequentially one input data is 15T and the time to 
execute each program individually is T, 2T, 3T and 9T respectively, where T is assumed 
to be a time unit. 
 
 
 
 
 
 
 
 
 
 

Figure 24 – The theoretical Wf1 workflow 

Supposing that Wf1 can be processed in a system with two nodes, we illustrate two 
parallel strategies for executing Wf1 and compare the estimate time to process Wf1 
according to these strategies. An inter-workflow strategy is shown in figure 25 while 
two intra-workflow strategies are shown in figures 26 and 27. In these cases, the 
parallel-split pattern among the programs determined the distribution of the programs.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 25 – Inter-workflow strategy to execute Wf1 
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Figure 26 – First intra-workflow strategy to execute wf1 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 27 - Second intra-workflow strategy to execute wf1 

 
Table 4 gives the estimated time to process this Wf1 according to the inter-

workflow and intra-workflow strategies showed in the figures 25, 26 and 17 supposing a 
homogeneous environment for the execution and ignoring the time transfer program 
outputs between the nodes. The first column of the table indicates the number of input 
data elements processed. The other three columns indicate the estimated time for 
executing WF1 according to the different parallel strategies. 

 
Table 5 – Estimated time to process Wf1 in a homogeneous environment 

# Input data Inter-workflow 
Strategy 

First Intra-workflow 
Strategy 

Second Intra-workflow 
Strategy 

1 15T 12T 12T 
2 15T 24T 21T 
3 30T 36T 30T 
4 30T 48T 39T 
5 45T 60T 48T 
6 45T 72T 57T 
 
As can be seen, except for the processing of one input data, executing the 

workflow according to the Inter-workflow strategy provides, at least in theory, better 
performance than the Intra-workflow strategies. However, since programs P3 and P4 
can execute at same time, there are two possible Intra-workflow strategies to be done: 
executing program P3 in node 1 with programs P1 and P2 and executing program P4 alone 
in node 2; or in an inverse way, executing program P4 along with programs P1 and P2 in 
node 1 and program P3 in node 2. The second intra-workflow strategy seems to be better 
since program P4 is slower than program P3.  Therefore it is important to gather 
information about the estimated time for execution of the individual programs to 
subsidize workflow components allocation and execution.  
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The estimated results presented in table 4 took into account a homogeneous 
environment for executing Wf1. However, if Wf1 executes in a heterogeneous 
environment like a grid, the performance can be totally different. Table 5 shows the 
estimated times for Wf1 execution, supposing an heterogeneous environment where the 
first node has three times more CPU power than the second node. As can be noted, in this 
situation the first intra-workflow strategy seems to be better. 

 
Table 6 - Estimated time to process Wf1 in a heterogeneous environment 

# Input 
data 

Inter-workflow 
Strategy 

First Intra-workflow 
Strategy 

Second Intra-workflow 
Strategy 

1 5T 4T 10T 
2 15T 8T 19T 
3 15T 12T 28T 
4 15T 16T 37T 
5 30T 20T 46T 
6 30T 24T 55T 

 
Another important information that must be gathered is the possible use of intra- 

program parallelism with some workflow component. However, the decision to employ 
intra-program parallelism strategy cannot be deduced automatically. Many scientific 
programs cannot be executed according this strategy due to program requirements. 
Therefore the scientist responsible for the workflow design must provide this 
information.  

 
The idea of this thesis is to provide non-specialists in parallel processing a parallel 

solution to execute their scientific workflow. However, the execution of a scientific 
workflow in parallel can be done according several strategies. We intend to do 
experiments with different forms of parallel execution and in different environments, in 
order to propose heuristics to provide scientific workflows parallel processing.  
 
IV.2 – WORKFLOW PARALLEL DESIGN & EXECUTION 
 

The execution of scientific workflows in parallel can be decomposed in two 
modules: Parallel Design and Parallel Execution. The goal of the parallel design module 
is to propose a parallel plan to execute a workflow given an abstract workflow definition 
of a scientific workflow. The goal of the parallel execution module is to perform the 
execution of the workflow regarding a parallel plan. Figure 28 illustrates the architecture 
for a workflow parallel execution. 
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Figure 28 – Workflow  parallel execution architecture 

In order to provide a parallel plan exploiting the parallel strategies described in 
section IV.1, the parallel workflow design must consider other kinds of information 
besides that embedded in the abstract workflow. Information about the environment, like 
the computational resources where the workflow will be processed, statistics like the 
estimate execution time for the workflow programs and datasets sizes, hints regarding the 
possible use of intra-program parallelism strategy and the set of heuristics regarding the 
parallel strategies to be employed must be analyzed to propose a plan for the parallel 
execution of the workflow. Figure 29 illustrates the parallel workflow design. 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 29 - The parallel workflow design architecture 

 
 The goal of the WFDB is to store the parallel plan to execute a workflow in 
parallel. Therefore, WFDB keeps information about the workflow components and their 
dependencies relationship. It must also inform how the input data can be fragmented in 
order to allow data partition during the workflow execution. For each program, the 
WFDB indicates if intra-program parallelism strategy can be employed or not, and 
provides the nodes where the component can be executed with the parameters needed for 
its execution. The dependencies between the workflow programs are defined by the 
relationship between programs and patterns. The order of the execution of a program is 
given by the condition associated with this relationship. Figure 26 illustrates the WFDB 
class diagram. 
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Figure 30 - WFDB Class Diagram 

The parallel execution module is responsible to process a scientific workflow 
according the parallel plan. To have a set of input data processed in parallel by a 
workflow, this data and the workflow components must be distributed between the nodes.  
Figure 31 shows the architecture for the parallel execution module. The Partitioner is 
responsible for the fragmentation of the workflow input data.  The Coordinator is 
responsible for the distribution of the input data to the nodes and to coordinate the 
execution of the workflow. To accomplish this task, the coordinator looks for the 
program that must be invocated in the WFDB, and sends a message to the appropriate 
node. If intra-program parallelism strategy is employed, then it is necessary to join the 
partial results for each program execution. The Aggregator component is responsible for 
joining any partial results into a single file. On each node, besides the workflow 
components, there are also two services: The Component Executor Service (CES) and the 
File transfer Service (FTS). The first one executes the component specified by the 
coordinator and the second service transfers results of executed programs between nodes.   

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

Figure 31 - Parallel Workflow Execution Architecture 
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Based on the basic control patterns listed in section II, we propose a set of initial 
heuristics to execute the workflow programs in parallel. Table 4 illustrates the workflow 
patterns and respective heuristics. Depending on the kind of the heuristic, additional 
actions must be performed in order to have the parallel execution achieved.  
 

 

 

 

 

Table 7 – Workflow patterns and respective heuristics 
 

  
PATTERN 

 

 
DESCRIPTION 

 
HEURISTICS 

 
ADDITIONAL 

ACTION 
 
 
 
    Sequential  

The execution of a 
program can be done 
after the execution of the 
predecessor 

Execution of the 
programs in the same 
site 

    None 
 
 

 

 
 
 
 

 
    
 Parallel Split 

Programs B and C have 
to be executed after 
program A 

Programs B and C 
executes in different 
sites. Program A 
executes along with 
either B or C 
 

 

The output of 
program A must 
be sent to the 
sites of programs 
B and C 

 
 
 

 
 

 
 Exclusive Choice 

Program B or program C 
must be executed after 
program A 

 
 
 
 

Programs A, B and C 
execute in the same 
site 

None 

 
 
 
 
 
 
 
Synchronization  

Program C can only 
executes when programs 
A and B finished 

Program C execute in 
the same site of 
program A or program 
B 

The output of 
program A or the 
output of 
program B must 
be sent to the site 
of program C 

 
 
 
 
 
    Simple Merge 

Program C can execute if 
program A or program B 
finish 

Program C executes in 
the same site of 
program A or program 
B, preferably along the 
faster one 

The output of 
program A or the 
output of 
program B must 
be sent to the site 
of program C 
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V – PRELIMINARY RESULTS 
 
 
 The goal of this section is to describe some preliminary results obtained with the 
execution of MholLine workflow. Two different strategies for parallel execution were 
implemented: inter-workflow parallelism and intra-workflow parallelism. Both strategies 
showed speedup results.   
 
V.1 – MHOLLINE WORKFLOW 

 
Genome sequencing projects are producing a vast amount of protein sequences, 

emerging the need to use high throughput methods to predict structures and assign 
functions of these proteins. Analysis of several genome sequences indicates that the 
function cannot be inferred to a significant fraction of the gene products. In fact, isolate 
sequence homology searches do not always provide all of the answers, since some 
proteins may not keep sequence homology throughout evolution. On the contrary, the 
molecular (biochemical and biophysical) function of a protein is tightly coupled to its 
three-dimensional structure. 
 

One of the methods that contributes to the prediction of protein three-dimensional 
structures is the comparative modeling, a computational procedure that predict the most 
reliable structure for a sequence using related protein structure as template. This approach 
consists of four steps: finding known structures (templates) related to the sequence to be 
modeled; alignment of the sequence with the templates, building a model, and the 
validation of the structure. Actually, other type of structure information can also be 
generated by threading approach, detecting structural similarities that are not 
accompanied by any detectable sequence similarity, becoming possible its use for fold 
recognition, pointing for a possible protein function. There are several programs 
addressing each of these steps. MHOLline is a biological workflow that combines a 
specific set of programs for the comparative modeling approach. For template structure 
identification it uses the BLAST [8] algorithm for the search against the Protein Data 
Bank.  
 
 
 

 
 

 

 

Figure 32 - The MholLine Workflow components 

 
A refinement in the template search step was implemented with the development 

of a program called BATS (Blast Automatic Targeting for Structures). BATS identifies 
the sequences that comparative modeling technique can be applied, choose the templates 
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sequences from the BLAST output file depending on the given scores for expectation 
values, identity and sequence coverage, and also construct the input files for the 
automated alignment and the model building carried out by MODELLER [9], of the 
selected sequences. When a 3D model cannot be built using the comparative modeling 
approach, BATS identifies these sequences and construct the input file for the execution 
of THREADER3 [55] that will aggregate structural information through threading, for 
sequences that didn’t generate any 3D model. The MHOLline workflow is illustrated in 
figure 32. 
 
 
V.2 PARALLEL MHOLLINE DESIGN 
 

The distribution of the programs and the data among the nodes can be done in 
different ways. We adopted in this work two scenarios. In the first one, all the workflow 
programs and respectively files were placed in every cluster node. This strategy allowed 
inter-workflow parallelism to be exploited. On a second approach, the Modeller and the 
Threader programs, which are the slowest ones, were replicated, while Blast and Bats run 
on only one node. This strategy allowed intra-workflow parallelism to be exploited. 
Figure 33 illustrates these approaches.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 33 - Implemented Architectures 

 
 
V.3 EXPERIMENTAL RESULTS 
 
 

This subsection presents the results obtained during the execution of MholLine 
according to the architectures described in last section. The experiments took place in an 
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Itautec Cluster Mercury running Linux Red Hat 7.3, with 16 nodes. Each node has 
512Mb of RAM memory, 18 Gb of disk storage and two Pentium III processors with 1 
Ghz. They are linked with a Fast-Ethernet (100 MB/s) network. Perl programs wrapped 
the workflow components and we used MPI to implement the coordinator. The input file 
had 66 sequences and the data sources used in our experiments were: pdbaa [56] with 
nearly 30 MB used by BLASTP, a set of pdb files extracted from Protein Data Bank with 
approximately 5 MB, used by Modeller, and the tdb files with almost 300 MB used by 
Threader.  BATS selected seven input sequences to Modeller (sequences 4, 6, 7, 8, 11, 64 
and 65) and three entry input sequences to Threader (sequences 12, 14, and 22). The 
figure 34 shows the results for the executions using the inter-workflow parallelism 
strategy with a grouped and a circular distribution of the input sequences.  

 
As can be observed, the circular distribution acquired better performance than the 

grouped distribution. Since Threader is the slowest program of the workflow, the best 
results were obtained when it could be executed in parallel. The fully parallel execution 
of Threader only happened in the grouped distribution, when running with 12 nodes. 
Running with 4, 8, 10 and 14 nodes implied having two sequences submitted for 
threading in the same node.  When running with 2 and 6 nodes, the three sequences were 
submitted for threading in the same node. The second distribution strategy provided 
better load balance among the nodes and consequently best results.  

 
Figure 35 shows on the left chart the results for the intra-workflow strategy. Since 

BLAST and BATS run much faster than Modeller and Threader, we allocated the first 
two programs in only one node, and replicated the last two programs among the rest of 
the nodes in such way that in one node or Modeller or Threader could execute. The 
results for this approach were similar to the results observed in the inter-workflow 
parallelism with circular distribution. In fact, in both situations, the number of the 
sequences processed by Threader in parallel was the same, except when running with two 
nodes.  
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Figure 34 – Inter workflow parallelism strategy with grouped and circular distribution  

 

Aiming to provide a better comparative analysis, Figure 35 also shows on the 
right side, the results for the three approaches together. 
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Figure 35 – Intra workflow parallelism strategy and for the three executions together 

 
As can be observed, using more than 6 nodes did not interfered in the speedup. 

This happened due the few number of sequences selected by BATS to be submitted to 
Threader and Modeller in our experiments. However, the results show linear speedup 
when executing with two nodes in the interworkflow parallelism strategy and when 
executing with four nodes in the intraworkflow parallelism strategy.  
 
 These initial experiments allowed us to evaluate two different parallel strategies to 
execute a scientific workflow. The results show that parallelism can be used to increase 
the performance of a bioinformatic workflow. We believe that the techniques showed 
here can also be applied to others scientific workflows. However, it is mandatory to 
perform more experiments exploiting the combination of the all parallel strategies 
discussed previously in order to identify heuristics to automate the choice of the best 
parallel strategy.  In the next section, we list the next steps we intend to do to accomplish 
this goal.  
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