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Abstract

The Riemannian Geometry has been utilized in Mathematical Optimization as an impor-
tant tool for the analysis of continuous trajectory, convergence and complexity of algorithms,
as well to obtain new class of methods. In this paper, we generalize the invariant Rieman-
nian metric concept and study the general diagonal metrics defined on the manifolds IRn

++

and 〈0, 1〉n, obtaining some geometric properties useful to the development of new interior
point methods.

We propose the diagonal Riemannian metrics π2 csc4(πx) and X−2(I − X)−2 on the
manifold 〈0, 1〉n. We get two new examples of geodesic algorithms and a proximal point
algorithm to solve the problem min f(x) s.to: 0 ≤ xi ≤ 1, i = 1, 2, ..., n , whose convergence
results are known, for general metrics. Finally, using those metrics we introduce two barrier
functions:

b1(x) = −1
6

n∑

i=1

{4 ln(sin πxi)− cot2(πxi)},

b2(x) =
n∑

i=1

(2xi − 1)[ln xi − ln(1− xi)].

We show that those functions have self-concordant properties. The first barrier is a self-
concordant function and the second one is a (9/4)n-self-concordant barrier. Thus, in the
last case, we have a polynomial algorithm to solve the problem min cT x s.to: Ax = b; 0 ≤
xi ≤ 1, i = 1, 2, ..., n, with similar complexity to classic logarithm barrier applied to the
first octant.

Keywords: Riemannian metric, geodesic algorithm, self-concordant function, barrier function,
interior point methods.



1 Introduction

The Linear Optimization (LO in the sequel) has a broad range of applications in the most
diverse fields of sciences and engineering. For instance, in economics, finances, industries,
telecommunications, transports, etc. Due to that, LO is object of constant study by the re-
searchers that act on those areas.

Since Karmarkar [7] introduced his polynomial-time algorithm for LO, the field of interior
point methods for both Linear Optimization and certain Convex Optimization problems have
been developed at a rapid rate, due to their excellent computational and theoretical properties;
see for example, den Hertog [4], Nesterov and Nemirovski [11], S.Wright [21]. On the other
hand, the perspective of metrics that underlies continuous optimization is evident in many
algorithm developments and their theoretical analysis, see Nazareth, [10], for nonlinear un-
constrained minimization; for interior point methods, see Karmarkar, [8], and Cruz Neto and
Oliveira, [1]. An interesting point is the exploring of the dependent metric gradient concept,
that allows the construction of a large set of directions, including some provided by interior
point methods, which can be seen as Cauchy (or gradient) ones, see the quoted [8] and [1].
Then, as Luenberger [9] did with his descent geodesic method, but applying the more general
framework of Riemannian manifolds, it is possible to show the convergence and linear rate
of convergence for a large class of primal algorithms applied to linear and nonlinear convex
optimization problems, see Cruz Neto et, al. [2]. In the same way, Ferreira and Oliveira [5],
[6] generalized, respectively, the sub gradient and proximal point methods to the context of
Riemannian manifolds. Karmarkar [8], using tools of Riemannian Geometry, proved that the
complexity of his algorithm is related to the curvature of the trajectory. The deep analysis of
Nesterov and Todd [12] on the Riemannian Geometry defined by self-concordant barriers, leads
the authors to interesting conclusions about the optimality of the trajectories of primal-dual
polynomial algorithms that are near to some geodesic.

The diagonal class of metrics (IRn
++, X−r), for r ≥ 1 has been utilized to create new families

of interior point algorithms, see Saigal [19], a primal algorithm applied to LO, Pinto et al.[18],
a primal method for convex linear problems, Den Hertog, [4], in a barrier context, Oliveira
and Oliveira [13], a proximal algorithm for convex problems in the non negative octant, and
Pereira and Oliveira [17], which considered the nonlinear complementarity problem. In this
paper, we make some advances on those ideas. First, we observe that, in the point of view of
the application of Riemannian geometry tools, the minimum to demand is the completeness of
the manifold, this means that there is a geodesic between any two points, so we can measure
distances in appropriate way, through the minimum length geodesic. Second, in the point of
view of the interior point theory, self-concordant barrier are welcome. Both properties are, in
general, absent on the quoted papers, and we will be able to ensure part of them.

The paper is organized as follows. In the next section we review some basic facts on
Riemannian Geometry. In section 3 we generalize the method to obtain invariant Rieman-
nian metric and study the general diagonal metrics on the feasible regions of the linear opti-
mization problems, considered as Riemannian manifolds, specifically on the positive octant
IRn

++, the hypercube Cn
0 = 〈0, 1〉n and the product of positive octants IRn

++ × IRn
++. In

section 4, we study the geometric properties of the general diagonal metric, obtaining sim-
ple equations for geodesic curves in closed form, null curvature of the Riemannian mani-
folds, sufficient conditions that ensure completeness, explicit expressions for gradient and Hes-
sian of smooth functions, explicit geodesic curves for certain Riemannian manifolds defined
on IRn

++ and Cn
0 = 〈0, 1〉n. In section 5, we present some applications. First, introducing

the metrics π2 csc4(πx) = diag(π2 csc4(πx1), π2 csc4(πx2), ..., π2 csc4(πxn)) and X−2(I −X)−2
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on the hypercube, we present new examples of geodesic algorithms to solve min f(x) s.to:
0 ≤ xi ≤ 1, ∀i = 1, 2, ..., n, and a proximal point algorithm for the same problem. Second,
introducing the barrier functions

b1(x) = − 1
6π2

n∑

i=1

{4 ln(sinπxi)− cot2(πxi)}

b2(x) =
n∑

i=1

(2xi − 1)[lnxi − ln(1− xi)].

we show that they are self-concordant, and the second is also a (9/4)n-self-concordant barrier.
Thus we have a new polynomial algorithm for the problem min cT x s.to: Ax = b; 0 ≤ xi ≤
1, i = 1, 2, ..., n with similar complexity to the classic logarithm barrier applied to the
hypercube.

2 Some Tools of Riemannian Geometry

In this section we introduce some fundamental properties and notation on Riemannian
manifolds. Those basic facts can be seen, for example, in do Carmo [3].

Let S be a differential manifold. We denote by TxS the tangent space of S at x and
TS =

⋃
x∈S

TxS. TxS is a linear space and has the same dimension of S. Because we restrict
ourselves to real manifolds, TxS is isomorphic to IRn. If S is endowed with a Riemannian
metric g, then S is a Riemannian manifold and we denoted it by (S, g). Observe that g can
always be represented by some matrix. The inner product of two vectors u, v ∈ TxS is written
as 〈u, v〉x := gx(u, v), where gx is the metric evaluated at the point x. The norm of a vector
v ∈ TxS is ||v|| :=

√〈v, v〉x. A Lie Group is a differential manifold with a group structure •
such that the map ρ : S × S → S with ρ(x, y) = x • y−1 is differentiable. For an element y ∈ S
the left translation by x is the map Lx : S → S defined by Lx(y) = x • y. Note that the left
translation Lx is a differentiable difeomorphism. Let S be a Lie group, a Riemannian metric g
on S is said to be left invariant if for each x ∈ S the left translation Lx is an isometry, that is

< u, v >y=< d(Lx)yu, d(Lx)yv >Lxy, ∀y ∈ S. (2.1)

The metric can be used to define the length of a piecewise smooth curve c : [a, b] → S
joining x′ to x by L(c) =

∫ b
a ‖c′(t)‖dt, where c(a) = x′ and c(b) = x. Minimizing this length

functional over the set of all curves we obtain a Riemannian distance d(x′, x) which induces the
original topology on S.

Given two vector fields X, Y : S → TS, along a smooth curve α : [a, b] → S, the covari-
ant derivative of Y in the direction X is ∇XY . Levi-Civita theorem ensures that, given a
Riemannian manifold (S, g), there exists a unique connection ∇, which defines the covariant
derivative D/dt, is symmetric and compatible with the metric (that means: d/dt < X, Y >=<
DX/dt, Y > + < X, DY/dt >. That is called a Riemannian connection. A curve α(t) is a
geodesic starting from a point p with direction v, if α(0) = p, α′(0) = v and

d2αk

dt2
+

∑

i,j

Γk
ij

dαi

dt

dαj

dt
= 0, k = 1, ..., n (2.2)

where Γk
ij are the Christoffel symbols, expressed by

Γm
ij =

1
2

∑

k

{
∂

∂xi
gjk +

∂

∂xj
gki − ∂

∂xk
gij

}
gkm, (2.3)
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(gij) denoting the inverse matrix of the metric g = (gij). Now, suppose that X and Y are

represented by X =
n∑

i=1
uiXi, Y =

n∑
i=1

viXi, for some local basis {Xi} for TxS, then ∇XiXk =
n∑

j=1
Γj

ikXj . A Riemannian manifold is complete if its geodesics are defined for any value of t.

We denote by R the curvature tensor defined by

R(X, Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z (2.4)

where X,Y, Z are vector fields of S and [X, Y ] := Y X −XY is the Lie Bracket. Indeed, that
formula can be simplified, as [Xi, Xj ] = 0. Clearly, the curvature, in a Riemannian manifold,
is tri-linear. Now, the sectional curvature with respect to X and Y is defined by

K(X, Y ) =
〈R(X, Y )Y, X〉

‖X‖2‖Y ‖2 − 〈X, Y 〉2 .

If K(X, Y ) = 0, S is a null curvature Riemannian manifold.
The gradient of a differentiable function f : S → IR, gradf , is a vector field on S defined

by df(X) = 〈gradf, X〉 = X(f), where X is also a vector field on S. Now, if f is twice-
differentiable we can define the Hessian Hf , as the covariant derivative of the gradient vector
field, that is, Hf = Dgrad f/dt. Thus, the Hessian of f at a point x ∈ S on the direction
v ∈ TxS is Hf

x (v) = (Dgrad f/dt)(x) = ∇vgrad f (x).

3 Invariant Riemannian Metrics

Karmarkar [8] used the invariance under translation property of the Riemannian metric
associated to his method, in order to study the respective continuous trajectory. That prop-
erty, which, essentially, means independence under change of coordinates, is also useful to the
construction of appropriate metrics underlying interior point methods for LO. We generalize
the classical method to obtain invariant Riemannian metric, and we call this generalization
invariant Riemannian metric through H-translation.

Let S be a differential manifold, x ∈ S and H : S → S a differential mapping from S to
itself. To construct a invariant Riemannian metric through H-translation the following steps
must be followed:

Construction of invariant Riemannian metric through H-translation

1. Define on S a Lie group structure.

2. Given x ∈ S, consider the element LH(x)−1x, define a inner product

〈, 〉LH(x)−1x : TLH(x)−1xS × TLH(x)−1xS → IR.

3. ∀u, v ∈ Tx(S) define the metric

< u, v >x= 〈d(LH(x)−1)xu, d(LH(x)−1)xv〉LH(x)−1x

Clearly the metric defined by this method is left invariant at the point x (see 2.1). In the fol-
lowing, the algorithm above will be applied to generate diagonal Riemannian metrics associated
to some natural feasible sets for linear optimization problems.
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Example 1 Diagonal metrics on the positive octant IRn
++ .

Consider the differential manifold IRn
++, and let H : IRn

++ → IRn
++ be a function such that

H(x) = (h1(x1), h2(x2), ..., hn(xn)), where hi : IR++ → IR++ are differentiable functions.
Step 1: defining a Lie group structure.

Let x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn
++, set:

x • y = (x1.y1, x2.y2, ..., xn.yn)

That operation defines a group structure with identity element e = (1, 1, 1, ..., 1) and the inverse
of an element x = (x1, x2, ..., xn) given by x−1 = ( 1

x1
, 1

x2
, ..., 1

xn
).

Step 2: defining an inner product at LH(x)−1x.

Let x = (x1, x2, ..., xn) ∈ IRn
++, then LH(x)−1x = H(x)−1 • x =

(
x1

h1(x) ,
x2

h2(x) , ...,
xn

hn(x)

)
. As

TH(x)−1•xIRn
++ = IRn, we can define a inner product at this point as a Euclidean inner product:

〈v, w〉LH(x)−1x = (v, w) = vT w

Step 3: defining the metric for all x ∈ IRn
++

First, we shall obtain d(LH(x)−1). The application LH(x) : IRn
++ → IRn

++ is by definition:
LH(x)y = H(x) • y = (h1(x1)y1, h2(x2)y2, ..., hn(xn)yn). Then d(LH(x))y : IRn → IRn can be
expressed by the matrix

d(LH(x))y = diag(h1(x1), h2(x2), ..., hn(xn))

and, consequently

d(LH−1(x))y = diag(
1

h1(x1)
,

1
h2(x2)

, ...,
1

hn(xn)
).

Now, ∀u, v ∈ Tx(IRn
++) = IRn we define:

< u, v >x= (d(LH−1(x))xu, d(LH−1(x))xv) =
n∑

i=1

ui.vi
hi(xi)2

= uT G(x)v, where

G(x) = diag

(
1

h2
1(x1)

,
1

h2
2(x2)

, ...,
1

h2
n(xn)

)
.

Thus we obtain
gij(x) =< ei, ej >x=

δij

hi(xi)hj(xj)
.

In particular:

• If hi : IR++ → IR++, hi(xi) = x
r
2
i , where r is a non zero scalar, then

G(x) = diag

(
1
xr

1

,
1
xr

2

, ...,
1
xr

n

)
= X−r

where X = diag(x1, x2, ..., xn) This metric, for r ≥ 1, has been utilized to obtain certain
classes of methods in Continuous Optimization, see for example, [4], [13], [17], [18],[19].

• If hi : IR++ → IR++, hi(xi) = s
−r
2

i x
r
2
i , where si ∈ IR++ is a fixed point, and r is a non null

scalar, then

G(x) = diag

(
sr
1

xr
1

,
sr
2

xr
2

, ...,
sr
n

xr
n

)
= SrX−r

That metric seems to be new in the context of continuous optimization.
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Example 2 Diagonal Riemannian metric on the hypercube.

Consider the differential sub manifold Cn
0 = 〈0, 1〉n of IRn

++, and let H : Cn
0 → IRn

++ such that
H(x) = (h1(x1), h2(x2), ..., hn(xn)), where the hi : 〈0, 1〉 → IR++ are differentiable functions.
Now, we can define the metric on Cn

0 as the induced metric of IRn
++, introduced in the previous

example. Thus ∀u, v ∈ Tx(Cn
0 ) = IRn:

< u, v >x=
n∑

i=1

ui.vi

hi(xi)2
= uT G(x)v.

where
G(x) = diag

(
1

h2
1(x1)

,
1

h2
2(x2)

, ...,
1

h2
n(xn)

)

In particular:

• If hi(xi) = (xr
i (1 − xi)r/(xr

i + (1 − xi)r))1/2, for xi ∈ 〈0, 1〉, i = 1, ..., n and r non null,
then we have the metric

G(x) = X−r + (I −X)−r

• If hi(xi) = sin2(πxi)/π, for xi ∈ 〈0, 1〉, we have a trigonometric metric

π2 csc4(πx) = diag(π2 csc4(πx1), π2 csc4(πx2), ..., π2 csc4(πxn))

• If hi(xi) = x
r/2
i (1− xi)r/2, for xi ∈ 〈0, 1〉, r non null, we have the metric:

X−r(I −X)−r

Example 3 Diagonal Riemannian metric on the product of positive octants .

Let Sn
1 and Sm

2 be two Riemannian manifolds with respective inner products 〈, 〉1 and 〈, 〉2,
and let S1 × S2 be the n + m dimension product manifold. Also, we need the projections
π1 : S1 × S2 → S1 and π2 : S1 × S2 → S2, defined by π1(p, q) = p and π2(p, q) = q, where
(p, q) ∈ S1 × S2. It is well-known that the dimension of the tangent space at (p, q) ∈ S1 × S2,
T(p,q)(S1×S2), is n+m. Denote P = dπ1

(p,q) and Q = dπ2
(p,q) the differentials of those projections,

then we can define a metric on S1×S2, by introducing the inner product of u, v ∈ T(p,q)(S1×S2)
as:

〈u, v〉(p,q) = 〈P (u), P (v)〉p + 〈Q(u), Q(v)〉q (3.5)

Now, consider the Riemannian manifolds (IRn
++, G(x)), (IRn

++, G(s)), invariant through H-
translation and T -translation respectively, where H(x) = (h1(x1), h2(x2), ..., hn(xn)) and
T (s) = (T1(s1), T2(s2), ..., Tn(sn)) for functions Ti,Hi : IR++ → IR++, with metrics expressed
by

G(x) = diag

(
1

h1(x1)2
,

1
h2(x2)2

, ...,
1

hn(xn)2

)

and
G(s) = diag

(
1

T1(s1)2
,

1
T2(s2)2

, ...,
1

Tn(sn)2

)

Using (3.5) we introduce a metric on IRn
++ × IRn

++.
Consider the projections

π1 : IRn
++ × IRn

++ → IRn
++, π1(x, s) = x
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π2 : IRn
++ × IRn

++ → IRn
++, π2(x, s) = s.

Due to the fact that T(x,s)(IRn
++ × IRn

++) = TxIRn
++ × TsIR

n
++ = IRn × IRn, the differentials of

the projections at (x, s) ∈ IRn
++ × IRn

++ are respectively:

dπ1
(x,s) : IRn × IRn → IRn,

dπ1
(x,s)(ux, us) = [In×n 0n×n]

[
ux

us

]
= ux

dπ2
(x,s) : IRn × IRn → IRn,

dπ2
(x,s)(ux, us) = [0n×n In×n]

[
ux

us

]
= us

where u = (ux, us), with ux ∈ IRn and us ∈ IRn. Now, we can define for u = (ux, us),
v = (vx, vs) ∈ T(x,s)(IRn

++ × IRn
++) = IR2n

〈u, v〉(x,s) = 〈ux, vx〉x + 〈us, vs〉s
or

〈u, v〉(x,s) = uT G1(x)v + vT G2(s)v

Thus, this inner product defines a Riemannian metric for the “primal-dual” manifold IRn
++ ×

IRn
++. Taking the canonic basis {∂/∂xi}i=1,...,n on IRn × IRn we have that the matrix that

represents the metric on the product manifold IRn
++ × IRn

++ is:

G(x, s) =




G1(x)n×n 0n×n

0n×n G2(s)n×n




(2n×2n)

In particular, if G1(x) = X−r and G2(s) = S−r then we have

G(x, s) =




X−r
n×n 0n×n

0n×n S−r
n×n




(2n×2n)

Remark:
The manner we introduced the construction of invariant Riemannian metrics through H-

translation, includes a great number of possibilities to define metrics. In particular, we refer to
the class obtained by the Hessian of barrier functions defined by hi(xi) = (1/p′′i (xi))1/2 where
pi : IR++ → IR are such that p′′i (xi) > 0. The motivation comes from barrier functions with the
form

p(x) =
n∑

i=1

pi(xi),

see, e. g., (see [14]. pp.15)
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4 The Diagonal Riemannian Metric: Geometric Properties

In this section we derive some geometric properties of the general diagonal Riemannian
metric

G(x) = diag

(
1

h1(x1)2
,

1
h2(x2)2

, ...,
1

hn(xn)2

)

defined on the positive octant IRn
++. In this way, we obtain simple expressions to the Christoffel

symbols, the equation to obtain explicit geodesic curve is simplified to solve an integral of a
certain function. We prove the null curvature of the manifold, present sufficient conditions
that assure its completeness, we give explicit expressions for the gradient and Hessian for C2

functions defined on the manifold. Due to the fact that the metric on the hypercube Cn
0 is

induced by the metric on IRn
++ the results are extendable to the hypercube. Finally, using

properties of Riemannian Geometry, ours results are also extended to IRn
++ × IRn

++. To finish
the section, we give some examples of explicit geodesics through the introduction of some
particular metrics.

1. Christoffel’s Symbols.
We use the relation between metrics and Christoffel’s symbols, given in (2.3). If k 6= m
then gmk = 0, and the expression is reduced to:

Γm
ij =

1
2

{
∂

∂xi
gim +

∂

∂xj
gmi − ∂

∂xm
gij

}
gmm

We consider two cases.
First case: i = j

Γm
ii =

1
2

{
∂

∂xi
gim +

∂

∂xi
gmi − ∂

∂xm
gii

}
gmm

If m = i then
Γm

ii = − 1
hi(xi)

∂hi(xi)
∂xi

otherwise,
Γm

ii = 0.

Second case: i 6= j

Γm
ij =

1
2

{
∂

∂xi
gim +

∂

∂xj
gmi

}
gmm

If m = i then m 6= j and:
Γi

ij = 0

If m = j then m 6= i and:
Γj

ij = 0

If m 6= i and m 6= j then:
Γm

ij = 0

In both cases we have
Γm

ij = − 1
hi(xi)

∂hi(xi)
∂xi

δimδij (4.6)
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2. Covariant Derivative and Parallel Transport

Given a vector field V =
n∑

i=1
viXi on the curve x(t) = (x1(t), x2(t), xn(t)) ∈ IRn

++, where

{Xi}i=1,...,n is a basis for Tp(IRn
++) = IRn. It is well known that

DV

dt
=

n∑

i=1


dvi

dt
+

n∑

i,j=1

vi
dxi

dt
Γk

ij


 Xk (4.7)

Substituting the Christoffel symbols (4.6) in (4.7) we have:

DV

dt
=

n∑

i=1

(
dvi

dt
− 1

hi(xi)
∂(hi(xi))

∂xi
vi

dxi

dt

)
Xi. (4.8)

Now, for V0 = (V 0
1 , V 0

2 , ..., V 0
n ) ∈ Tp(IRn

++), the differential equation that gets the parallel
transport V (t) = (V1(t), ..., Vn(t)) along the curve x(t) is:

dVi

dt
− 1

hi(xi)
∂(hi(xi))

∂xi
Vi

dxi

dt
= 0, ∀i = 1, ...n

with the condition
V (0) = V0.

It is easy to check that this equation is solved by:

V (t) = v0
i hi(xi(t))/hi(pi), ∀i = 1, 2, ..., n (4.9)

Therefore we can define, in closed form, the parallel transport along the curve x(t) as the
application Px(t) : Tp(IRn

++) → Tx(t)IR
n
++ such that

Px(t)(V ) = (v1h1(x1(t))/h1(p1), v2h2(x2(t))/h2(p2), ..., vnhn(xn(t))/hn(pn))

In particular: If hi(xi) = x
r/2
i (G(x) = X−r, r ∈ IR non null) then

Px(t)(V )i = vix
r/2
i /p

r/2
i (4.10)

If hi(xi) = x
r/2
i (1− xi)r/2 (G(x) = X−r(I −X)−r, r ∈ IR non null) with xi ∈ 〈0, 1〉 then

Px(t)(V )i = vix
r/2
i (1− xi)r/2/p

r/2
i (1− pi)r/2 (4.11)

If hi(xi) = sin2(πxi)/π, for xi ∈ 〈0, 1〉, we have

Px(t)(V )i = visin
2(πxi(t))/sin2(πpi) (4.12)

3. Geodesic Equation.

Let p = (p1, p2, ..., pn) ∈ IRn
++ and v = (v1, v2, ..., vn) ∈ Tp(IRn

++) = IRn with

x : I → IRn
++; x(t) = (x1(t), x2(t), ..., xn(t))

such that x(0) = p and dx(0)/dt = v.

9



Substituting the Christoffel’s symbols (4.6) in the equation(2.2) we have:

d2xi

dt2
− 1

hi(xi)
∂hi(xi)

∂xi

(
dxi

dt

)2

= 0, i = 1, ..., n (4.13)

with initial conditions:
xi(0) = pi, i = 1, ..., n
x′i(0) = vi, i = 1, ..., n

It is easy to check that the differential equation (4.13) is equivalent to:
∫ 1

hi(xi)
dxi = ait + bi, i = 1, 2, ..., n

for some constants ai,and bi in IR.

Thus, the unique geodesic of IRn
++ with metric G(x) is a curve x(t) that solve:

∫ 1
hi(xi)

dxi = ait + bi i = 1, ..., n (4.14)

where ai and bi are real constants such that:
xi(0) = pi, i = 1, ..., n
x′i(0) = vi, i = 1, ..., n

4. Null Curvature
Given p ∈ IRn

++, let {Xi}i=1,...,n be a basis for Tp(IRn
++) = IRn. Then, we can write

X =
n∑

i=1
uiXi, Y =

n∑
j=1

vjXj , Z =
n∑

k=1
wkXk. As the curvature tensor R is tri-linear we

have:
R(X,Y )Z =

∑

i,j,k

uivjwkR(Xi, Xj)Xk.

From the definition of R (see Section 2) we obtain:

R(Xi, Xj)Xk = ∇Xj (∇XiXk)−∇Xi(∇XjXk) +∇[Xi,Xj ]Xk

Now, for the Riemannian connection, we have [Xi, Xj ] = 0, and

R(Xi, Xj)Xk = ∇Xj (∇XiXk)−∇Xi(∇XjXk)

If i = j then R(Xi, Xj)Xk = 0. For i 6= j, recall, from section 2, that

∇XiXk =
n∑

j=1

Γj
ikXj

Substituting the Christofell’s symbols we get

∇XiXk =
n∑

j=1

(
− 1

hi(xi)
∂hi(xi)

∂xi
δijδik

)
Xj = − 1

hi(xi)
∂hi(xi)

∂xi
δikXi (4.15)

Therefore:
∇Xj (∇XiXk) = ∇Xj

(
− 1

hi(xi)
∂hi(xi)

∂xi
δikXi

)
.
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We have the following cases to analyze. If i 6= k, it is immediate that ∇Xj (∇XiXk) =
0, i = 1, ..., n. Otherwise, if i = k, and j 6= k, we get, applying (4.15)

∇Xj (∇Xk
Xk) = ∇Xj

(
− 1

hk(xk)
∂hk(xk)

∂xk
Xk

)
=

1
hk(xk)

∂hk(xk)
∂xk

δjk
1

hj(xj)
∂hj(xj)

∂xj
Xj = 0

Thus
∇Xj (∇XiXk) = 0

In the same way we have
∇Xi(∇XjXk) = 0

Those results lead to:

R(Xi, Xj)Xk = 0, i, j, k, l = 1, 2, ...n.

so R(X, Y )Z = 0. Then, the Riemannian manifold IRn
++, endowed with the metric G(x)

has null curvature.

5. Sufficient Conditions for Completeness
Essential properties as the convergence of algorithms, needs, from the point of view of
Riemannian geometry applications, the completeness of the manifold. Oliveira and Cruz
Neto [14] have proved a sufficient condition for IRn

++, endowed with a diagonal metric,
which is the Hessian of a certain barrier function. That proof can be generalized to the
diagonal metric G(x).

Theorem 4.1 Let the manifold IRn
++ endowed with the invariant diagonal metric G(x).

The following is true, for each i = 1, ..., n:

(a) If xα
i ≥ βhi(xi)2, with α ≥ 2 for xi ∈ 〈0, 1], or α ≤ 2 for xi ∈ 〈1,∞〉, for some β > 0

then, IRn
++ is isometric with IRn. In particular (IRn

++, G(x)) is complete.

(b) If xα
i ≤ βhi(xi)2, with α < 2 for xi ∈ 〈0, 1], for some β > 0, or

xα
i ≥ βhi(xi)2, with α > 2 for xi ∈ 〈0, 1], for some β > 0, then (IRn

++, G(x)) is
incomplete.

6. The Product Manifold IRn
++ × IRn

++.

We know that the Riemannian manifolds (IRn
++, G1(x)), (IRn

++, G2(s)) have null curva-
ture. Then, due to a result of Riemannian geometry, the product manifold

(
IRn

++ × IRn
++, G(x, s)

)

has null curvature. Moreover, if the manifolds IRn
++ and IRn

++ are complete with geodesic
curves γ1 e γ2, then the product manifold IRn

++ × IRn
++ is complete with geodesic curves

γ1 × γ2.

7. Gradient and Hessian

Let the Riemannian manifold IRn
++ endowed with the metric G(x) = diag(1/h1(x1)2, ..., 1/hn(xn)2),

where hi : IR++ → IR++ , i = 1, 2, ..., n, are differentiable functions, and f : IRn
++ → IR

(a) The gradient and the Hessian of f in the Riemannian manifold IRn
++, denoted, re-

spectively, by ∇IRn
++

f and Hf
x are:

∇IRn
++

f(x) = G(x)−1f ′(q) =
(

h2
1(x1)

∂f

∂x1
(x), ..., h2

n(xn)
∂f

∂xn
(x)

)
(4.16)
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Hf
x = f ′′(x) + G

1
2 (x)(G− 1

2 (x))′F ′(x) (4.17)

where:
F ′(x) = diag

(
∂f(x)
∂x1

, ∂f(x)
∂x2

, ..., ∂f(x)
∂xn

)
and f ′′(x) = diag

(
∂2f
∂x2

1
, ∂2f

∂x2
2
, ..., ∂2f

∂x2
n

)
.

In particular:

i. If hi(xi) = x
r
2
i , r ∈ IR then

∇IRn
++

f(x) =
n∑

i=1

xr
i

∂f

∂xi
(x) = Xrf ′(x)

Hf
x = f ′′(x) +

r

2
X−1F ′(x)

(b) Similarly, the gradient and the Hessian of f in the manifold Cn
0 = 〈0, 1〉n have the

same expressions above, given in (4.16) and (4.17).
In particular:

i. If the metric is given by G(x) = X−r + (I −X)−r then

∇Cn
0
f(x) = (X−r + (I −X)−r)−1f ′(x)

Hf
x = f ′′(x) +

r

2
[X−r + (I −X)−r]−1[X−r−1 − (I −X)−r−1]F ′(x)

ii. If G(x) = π2 csc4(πx) then

∇Cn
0
f(x) =

1
π2

sin4(πx)f ′(x)

Hf
x = f ′′(x) + 2π3X cot(πx)F ′(x).

where cot(x) = diag(cot(x1), ..., cot(xn))
iii. If the metric is G(x) = X−r(I −X)−r then

∇Cn
0
f(x) = Xr(I −X)rf ′(x).

Hf
x = f ′′(x) +

r

2
[X−1 − (I −X)−1]F ′(x)

(c) Let IRn
++ × IRn

++ be the product manifold endowed with the Riemannian metric
under consideration, then we get

∇IRn
++×IRn

++
f(x, s) =




G1(x)n×n O

0 G2(s)n×n







∂f
∂x

∂f
∂s




(d) If we consider the sub manifold M = {x ∈ IRn
++, Ax = b} be endowed with the

metric G(x) induced from IRn
++ then

∇Mf(x) = PM (x)∇IRn
++

f(x)

where PM (x) = (I − G(x)−1AT (AG−1(x)AT )−1A), the known G(x) projection op-
erator.

(e) Consider the sub manifold M = {x ∈ IRn, l(x) = 0}, with induced metric G(x) from
IRn, then

∇Mf(x) = PM (x)∇IRnf(x)

where PM (x) =
(
I −G(x)−1Jl(x)T (Jl(x)G−1(x)Jl(x)T )−1Jl(x)

)
.
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4.1 Examples of Explicit Geodesic Curves:

1. Consider the manifold (IRn
++, X−r). The geodesic curves x(t) = (x1(t), x2(t), ..., xn(t))

defined in this manifold such that x(0) = p = (p1, p2, ..., pn) and x′(0) = v = (v1, v2, ..., vn)
are:

(a) for r 6= 2,

xi(t) =
(

2− r

2

) 2
2−r


 vi

p
r
2
i

t +
2

2− r
p
1− r

2
i




2
2−r

, i = 1, 2..., n.

(b) for r = 2,

xi(t) = piexp

(
vi

pi
t

)
, i = 1, 2..., n.

We observe that when r = 2, the geodesic curve x(t) is defined for all t ∈ IR. Moreover,
the Riemannian distance from p = x(0) to q = x(t0), t0 > 0, is given by:

d(p, q) =
∫ t0

0
‖x′(t)‖dt =

{
n∑

i=1

[
ln

(
qi

pi

)]2
} 1

2

Therefore, (IRn
++, X−2) is complete with null curvature.

2. Consider the manifold (Cn
0 , π2 csc4(πx)), where hi(xi) = 1

π sin2(πxi). The geodesic curve
x(t) = (x1(t), x2(t), ..., xn(t)) defined in this manifold, such that x(0) = p = (p1, p2, ..., pn)
and x′(0) = v = (v1, v2, ..., vn) is:

xi(t) =
1
π

arctan
(
−π csc2(πpi)vit + cot(πpi)

)
, i = 1, 2..., n. (4.18)

The geodesic curve is well defined for all t ∈ IR. The Riemannian distance from p = x(0)
to q = x(t0), t0 > 0, is given by:

d(p, q) =
∫ t0

0
‖x′(t)‖dt =

{
n∑

i=1

[cot(πqi)− cot(πpi)]
2

} 1
2

(4.19)

Thus, this manifold is complete with null curvature.

3. Finally, consider (Cn
0 , X−2(I − X)−2) with hi(xi) = xi(1 − xi). The geodesic curve

x(t) = (x1(t), x2(t), ..., xn(t)) defined in this manifold, such that x(0) = p = (p1, p2, ..., pn)
and x′(0) = v = (v1, v2, ..., vn) is:

xi(t) =
1
2

{
1 + tanh

(
1
2

vi

pi(1− pi)
t +

1
2

ln
pi

1− pi

)}
i = 1, 2..., n. (4.20)

where tanh(z) = (ez − e−z)/(ez + e−z) is the hyperbolic tangent function. The geodesic
curve is well defined for all t ∈ IR. The Riemannian distance from p = x(0) to q =
x(t0), t0 > 0, is given by:

d(p, q) =
∫ t0

0
‖x′(t)‖dt =

{
n∑

i=1

[
ln

(
qi

1− qi

)
− ln

(
pi

1− pi

)]2
} 1

2

(4.21)

In the same way, this manifold is complete with null curvature.
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5 Applications

In this section we present some applications of Riemannian geometry to solve optimization
problems. The first class we are interested is min f(x) s.t: 0 ≤ xi ≤ 1, i = 1, 2, ..., n, where f
can be a differentiable or non-differentiable function. We show some new examples of (explicit)
descent geodesic algorithms. The convergence results for those algorithms need convexity hy-
pothesis, and have been proved for general Riemannian metrics by da Cruz Neto et al. [2],
for the differentiable case, and Ferreira and Oliveira [5], for non-smooth functions. Besides, we
observe, that, for the smooth case, the application of Luenberger’s idea, see [9], in his descent
geodesic gradient projection method, the ensuring of linear rate of convergence for that method,
allows, under some reasonable hypothesis, to guarantee the same property for the usual line
search corresponding algorithm. A second application is the using of the proximal algorithm
for the same problem above, where f can be a non-differentiable function. The convergence
theory is given in [6]. To finish the section, we introduce two barrier functions to solve the
problem, min f(x) s.to Ax = b, 0 ≤ xi ≤ 1, i = 1, 2, ..., n. We prove that those barriers have
self-concordant properties, one of them being a (9/4)n-self-concordant barrier, so we have a
new class of polynomial algorithms, with identical complexity to classic logarithmic barrier.

5.1 Application 1: Geodesic Algorithms

Some examples of geodesic methods to solve minimization problems on the positive octant
and the unitary simplex have been reported by Cruz Neto and Oliveira [1]. In this subsection
we get more examples, for the minimization on the hypercube.

Let the problem:
min f(x)

s.to
0 ≤ xi ≤ 1 i = 1, 2, ..., n

(5.22)

where f : Cn → IR, x = (x1, x2, ..., xn) ∈ 〈0, 1〉n.
We take 〈0, 1〉n, and two Riemannian manifolds: the first endowed with the metric G(x) =

X−2(I−X)−2, and the second, with M(x) = π2 csc4(πx). Before we present the algorithms we
will deduce some geometric properties that are useful to obtain convergence properties.

• the manifolds 〈0, 1〉n are geodesic convex. Indeed, let p, q ∈ 〈0, 1〉n, then, for G(x), the
unique geodesic x : [0, 1] → 〈0, 1〉n, joining p and q, where x(0) = p and x(1) = q is:

xi(t) =
1
2

[
1 + tanh

(
1
2

{[
ln

(
qi

1− qi

)
− ln

(
pi

1− pi

)]
t + ln

(
pi

1− pi

)})]
,

and, for M(x),

xi(t) =
1
π
arccotan[cot [(cot(πqi)− cot(πpi))t + cot(πpi)] ,

It is easy to check, for both cases, that 0 < xi(t) < 1, i = 1, 2, ..., n. Thus, 〈0, 1〉n is
geodesic convex.

• The manifolds are connected (trivial)

• The manifolds are complete and have null curvature, with explicit geodesics (see 4.18 e
4.20)

• The gradient and the Hessian of differentiable functions defined on the manifold are
explicit (see 4.16 and 4.17).
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5.1.1 Differentiable Case: Cauchy algorithm

We present the geodesic descent algorithm, that works essentially as follows. In the first
step, it takes the direction of the negative gradient of the function f , given by d = −∇Cn

0
f(x)

(the gradient obtained through the specific Riemannian metric). In the second step, it takes
the geodesic starting at point p with direction d, and the last step, makes a search along the
geodesic. We consider Armijo and fixed step search. We guarantee the weak convergence (that
is, the geodesic distance between two consecutive iterations converge to zero) for arbitrary dif-
ferentiable functions, and global and linear rate of convergence under some convexity conditions
for the function f.
Algorithm A: Cauchy algorithm with Armijo search

1. Given a tolerance ε > 0, xk = (xk
1, x

k
2, ..., x

k
n), k ≥ 0, feasible, compute the metric G(xk) =

X−2
k (I −Xk)−2 (M(xk) = π2 csc4(πxk) respectively), where Xk = diag(xk

1, x
k
2, ..., x

k
n)

2. Compute the descent direction dk = −G(xk)−1f ′(xk) = −X2
k(I −Xk)2f ′(xk)

(dk = −M(xk)−1f ′(xk) = − 1
π2 sin4(πxk)f ′(xk) respectively)

3. Let the unique geodesic x(t), t ≥ 0, such that x(0) = xk and x′(0) = dk, given by:

xk
i (t) =

1
2

{
1 + tanh

(
1
2

dk
i

xk
i (1− xk

i )
t +

1
2

ln
xk

i

1− xk
i

)}
, i = 1, 2..., n.

(
xk

i (t) =
1
π

arctan
(
−π csc2(πxk

i )d
k
i t + cot(πxk

i )
)

, i = 1, 2..., n respectively
)

4. Choose tk = 2−ik t̄, where t̄> 0 is given, ik is the least positive natural number such that

f(x(tk)) ≤ f(xk)− βt2k‖dk‖2

where β ∈ 〈0, 1〉
5. Make xk+1 = xk(tk), and compute the geodesic distance between the points xk and xk+1,

as:

d(xk, xk+1) =





n∑

i=1

[
ln

(
xk+1

i

1− xk+1
i

)
− ln

(
xk

i

1− xk
i

)]2




1
2


d(xk, xk+1) =

{
n∑

i=1

[
cot(πxk+1

i )− cot(πxk
i )

]2
} 1

2

, respectively




6. Stop test: if ||d(xk, xk+1)|| < ε, stop. Otherwise, make xk ← xk+1 and return the step 1.

Convergence Results Algorithm B: Cauchy algorithm with fixed step
This algorithm is analogous to the previous one, except the step 4, which is substituted by:
Given δ1 > 0 and δ2 > 0 such that δ1Γ + δ2 < 1, choose

tk ∈
(

δ1,
2
Γ

(1− δ2)
)

where Γ is the Lipschitz constant associated to ∇Cn
0
f(x), that is, Γ satisfies the following

property: for any p, q ∈ Cn
0 and any geodesic segment α : [0, a] → Cn

0 joing p and q we have

|∇Cn
0
f(α(t))− Pα(∇Cn

0
f(p))| ≤ Γd(α(0), α(t)) (5.23)
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for any t ∈ [0, a], where Pα is the parallel transport, see 4.11, and 4.12.

We have the following results, all of them, proved for general metrics in Cruz Neto et al
[2](We observe that for the Algorithm B the objective function must verify the property (5.23))

Theorem 5.1 (Theorem 5.1 [2])
Let f ∈ C1, and {xk} be a sequence of points generated by Algorithm A, then

1. There exists a constant β such that

f(xk+1) ≤ f(xk)− βt2k‖dk‖2 (5.24)

In particular f(xk) is non-increasing.

2. The sequence {xk}is weakly convergent, in the following sense,

(a) {xk} is bounded.

(b) lim
k→∞d(xk+1, xk) = 0

(c) Any accumulation point of {xk} is a critical point of f .

Theorem 5.2 (Theorem 5.3 [2])
Let f ∈ C1 be a geodesic convex function, then the sequence {xk} converges globally to a

minimum point, should it exist.

Theorem 5.3 (Theorem 5.4 [2])
Let f ∈ C2 and strong geodesic convex, that is, a ≤ Hf ≤ b, where Hf is the Hessian of f ,

and 0 < a < b. Then the convergence rate of Cauchy algorithm with Armijo search is given by
the Kantorovich ratio.

5.1.2 Non differentiable case: sub gradient algorithm

The sub gradient algorithm in Riemannian manifolds is a natural extension of the sub
gradient algorithm, introduced by Shor, [20].

Consider that the function f in problem (5.22) is geodesic convex on the Riemannian man-
ifold 〈0, 1〉n with metric G(x) = X−2(I − X)−2 (M(x) = π2 csc4(πx),respectively). Let O
denotes the set of minimizers of f , f∗ = inf f(x) is its minimum value and ∂f(x) is the sub
differential of f at a point x ∈ 〈0, 1〉n. The problem is to estimate f∗ and also to find a point
in O, if such point exist, that is, if O 6= ∅.

Algorithm C
Given a sequence {tk} of real numbers with tk > 0, k = 1, 2, ...

1. Initialize. Choose x1 ∈ 〈0, 1〉n and obtain s1 ∈ ∂f(x1). Make k = 1

2. If sk = 0, stop. Otherwise, compute the unique geodesic x(t) such that x(0) = xk and
x′(0) = dk = − sk

||sk|| , as:

xk
i (t) =

1
2

{
1 + tanh

(
1
2

dk
i

xk
i (1− xk

i )
t +

1
2

ln
xk

i

1− xk
i

)}
, i = 1, 2..., n.

(
xk

i (t) =
1
π

arctan
(
−π csc2(πxk

i )d
k
i t + cot(πxk

i )
)

, i = 1, 2..., n, respectively
)
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3. Make xk+1 = xk(tk)

4. Compute sk+1 ∈ ∂f(xk+1), and return to step 2.

Convergence Result
The following result is an adaptation to our Riemannian manifolds on 〈0, 1〉n, with metric

G(x) = X−2(I −X)−2 (M(x) = π2 csc4(πx), respectively) from a general theorem obtained by
Ferreira and Oliveira [5].

Theorem 5.4 (Teorema 5.1 [5]). Let f be a convex function on the manifold 〈0, 1〉n and {xk}
a sequence of points generated by the algorithm B. If the sequence {tk}, with tk > 0, k = 1, 2...
is chosen to satisfy:

∞∑

k=0

tk = ∞;

∞∑

k=0

t2k < ∞

then, inf f(xk) = f∗, when k →∞. In addition, if O 6= ∅, then the sequence {xk} converges to
a point x∗ ∈ O.

5.2 Application 2: Proximal Point Algorithm

Consider the problem given by (5.22). To each x ∈ 〈0, 1〉n, the Moreau-Yosida regularization
to f , with β > 0 is given by:

fβ(x) = min {f(y) + β
2 d2(x, y)}

s.to
y ∈ 〈0, 1〉n

(5.25)

In this application, the distance d can be chosen as (4.19), or, (4.21).

Definition 5.1 The point
−
x=

−
x (x) = arg min fβ(x), is called the proximal point of x with

respect to β, f and d2

The proximal point algorithm generates, for a starting point x0 ∈ 〈0, 1〉n, a sequence {xk} ⊂
〈0, 1〉n through the iteration:

xk+1 = arg min {f(y) + βk

2 d2(xk, y)}
y ∈ 〈0, 1〉n (5.26)

where βk satisfies
∞∑

k=0

1
βk = ∞.

Based on the preview results on null curvature, completeness of the manifold 〈0, 1〉n, and
geodesic distance, we can present the proximal point algorithm.

Algorithm D

Given a starting point x0 ∈ 〈0, 1〉n and β0 > 0. Choose the sequence βk such that
∞∑

k=0
1/βk =

∞;.

1. Make k = 0
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2. (Stop criterion) check the optimality of xk.

3. Compute
xk+1 = arg min {f(y) + βk

2 d2(xk, y)}
y ∈ 〈0, 1〉n (5.27)

4. Update βk, k, xk, and return to step 2.

Convergence result

Theorem 5.5 (from Ferreira and Oliveira [6]) If f is geodesic convex on the manifold 〈0, 1〉n
and there exists an optimal solution then, the sequence generates by algorithm C converges
globally to the minimum of the problem.

An important fact is that this algorithm does not need the geodesic.

5.3 Application 3: Barriers for Central Path Following Methods

In this section, motivated by the study of diagonal metrics, we introduce two new barrier
functions, one of them being a self-concordant barrier. The problem we are interested is

min f(x)
s.to
Ax = b
0 ≤ xi ≤ 1 i = 1, 2, ..., n

(5.28)

where f : Cn → IR is a differentiable function, A ∈ IRm×n is an m×n, m < n, matrix with full
range.

5.3.1 Self-concordant Properties

Consider the unitary hypercube Cn = [0, 1]n as the environment space. Let Cn
0 be the

interior of Cn. In Cn
0 we introduce two barrier functions:

b1(x) = −1
6

n∑

i=1

[4 ln(sinπxi)− cot2(πxi)],

b2(x) =
n∑

i=1

(2xi − 1)[lnxi − ln(1− xi).]

The first and the second-order derivatives are, respectively:

b′1(x)i = −π

(
cot(πxi) +

1
3

cot3(πxi)
)

, i = 1, ..n.

b′′1(x) = π2 csc4(πx)

b′2(x)i = 2 [lnxi − ln(1− xi)] + (2xi − 1)
[

1
xi(1− xi)

]
, i = 1, ..n.

b′′2(x) = X−2(I −X)−2

Clearly, both Hessians are positive definite, so the respective barrier functions are strictly
convex. In addition, if x → ∂(Cn) (x approaches the boundary) then b1(x) →∞ and b2(x) →
∞.
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Definition 5.2 (see[11]) Let E be an open convex finite dimensional vector space, Q ⊂ E
and B : Q → IR a function. B is called self-concordant on Q with parameter a > 0 (a-self-
concordant) if:

1. B ∈ C3

2. B is a convex function on Q.

3. For any x ∈ Q and h ∈ E:

|∇3B(x)[h, h, h]| ≤ 2a−
1
2 (hT∇2B(x)h)

3
2

If, furthermore, there exists c > 0 such that B satisfied:

|∇B(x)[h]| ≤ c
1
2 (hT∇2B(x)h)

1
2

then, B is called self-concordant barrier with parameter c (c-self-concordant barrier).

Due to the stability of that property wit respect to direct product, see Proposition (2.1.1) in
[11], we restrict our analysis to a general term of the barrier:

b1(z) = −1
6
{4 ln(sinπz)− cot2(πz)}

b2(z) = (2z − 1)[ln z − ln(1− z)]

Theorem 5.6

1. The function b1 is a 1/4 self-concordant function, but it is not self-concordant barrier.

2. The function b2 is a 1-self-concordant function and a 9/4-self-concordant barrier.

Proof.
First, we prove 1. Let z ∈ 〈0, 1〉. We have b′1(z) = −{cot(πz)+cot3(πz)/3}/π, b′′1(z) = csc4(πz),
and, b′′′1 (z) = −4π3 csc4(πz) cot(πz). Let a = 1/4. Then

|b′′′1 (z)|
2a

−1
2 (b′′1(z))

3
2

=
4π3 csc4(πz)| cot(πz)|

2(2π3)(csc4(πz))
3
2

= | sin(πz) cos(πz)| ≤ 1.

This proves that b1 is 1/4-self-concordant. To prove that it is not a self-concordant barrier, let
c be an arbitrary positive real number. Then

|b′1(z)|
c
√

b1”(z)
=

π| cot(πz) + 1
3 cot3(πz)|

cπ(csc4(πz))
1
2

=
1
3c
| sin(πz) cos(πz)||3 + cot2(πz)|

Now, it is easy to show that the last term is unbounded at the middle point z = 1/2, so, b1 is
not a self-concordant barrier.
Next, we prove 2. Let z ∈ 〈0, 1〉. We have b′2(z) = 2 [ln z − ln(1− z)] + (2z − 1)[z(1 − z)]−1,
b′′2(z) = z−2(1− z)−2 and b′′′2 (z) = 2(2z − 1)z−3(1− z)−3. As a consequence,

|b′′′2 (z)|
2(b′′2(z))

3
2

= |2z − 1| ≤ 1,
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therefore b2 is 1-self- concordant. To show that it is a 9/4-self-concordant barrier, take:

|b′2(z)|
c

1
2 (b′′2(z))

1
2

=
|2 ln( z

1−z ) + (2z − 1) 1
z(1−z) |

c
1
2

1
z(1−z)

=
1

c
1
2

∣∣∣∣2z(1− z) ln
(

z

1− z

)
+ 2z − 1

∣∣∣∣ ,

which gives:
|b′2(z)|

c
1
2 (b′′2(z))

1
2

≤ 1

c
1
2

{∣∣∣∣2z(1− z) ln
(

z

1− z

)∣∣∣∣ + |2z − 1|
}

In the right hand side, the analysis of the critical or extremum points of the first expression,
furnishes the following results: for z = 0, z = 1/2, and z = 1, its value is zero. The approximate
critical points z = 0.176041 and z = 0.823959, lead to a value strictly smaller than 2× 0.45. As
|2z − 1| ≤ 1, the result follows.
Additionally, due to the stability of that property with respect to the direct product, we have
b2(x) a (9/4)n-self-concordant barrier.

6 Conclusions

We proposed a generalization of the method to obtain invariant Riemannian metrics. It
has a wide potential to get new algorithms for continuous optimization. Furthermore, using
the hypercube as a model in IRn, we present some new examples of geodesic methods, we

introduce two barrier functions with self-concordant properties . Specially, the barrier
n∑

i=1
(2xi−

1)[lnxi−ln(1−xi)] is a (9/4)n−self-concordant barrier. Therefore, using the results of Nesterov
and Nemerovski [11] we can obtain polynomial algorithms, to solve the problem of min cT x
s.to Ax = b, 0 ≤ xi ≤ 1, i = 1, 2, ..., n, with similar complexity as the classic logarithmic
barrier. Forthcoming papers exploit those ideas in a context of linear programming, [15], and
semidefinite programming, [16].
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