
Handling Dissimilarities of Autonomous Equivalent 
Web Services 

Valdino Azevedo, Marta Mattoso, Paulo F. Pires 

1 COPPE- System Engineering and Computer Science Program  
DCC-IM/NCE2 

Federal University of Rio de Janeiro 
P.O. Box 68511, Rio de Janeiro, RJ, 21945-970, Brazil 

Fax: +55 21 22906626 
{valdino, marta, pires}@cos.ufrj.br  

Abstract: The web services technology provides an essential building block for 
dynamic e-business, facilitating program-to-program interaction and the 
composition of new services. However, the need to specify service ports (or 
interfaces) in a service composition may constraint the usage of such 
technology. Given the existence of several semantically equivalent services on 
the Internet, we need a more flexible and loosely coupled way to include 
services in compositions. Instead of including specific services, a composition 
should deal with service classes, which group services with the same semantic 
functionality. During runtime, one or more services inside a service class can be 
scheduled to run, offering a dynamic mechanism for service execution. 
However, aggregating autonomous services that provide the same semantic 
functionality involves handling their dissimilarities such as transaction support, 
quality of service, message format and application domain. In this paper, we 
present mediation services for building classes of Web services. Such mediation 
layer is respon sible for aggregating semantically equivalent services, thus 
providing a homogenized view of them , treating dissimilarities that may exist. 
Semantically equivalent services are grouped on service classes and 
compositions are specified on top of these classes. We also present an execution 
model that supports dynamic service executions by choosing services inside a 
service class based on their quality properties. 

1 Introduction 

Considering the number of companies currently connected to the World Wide 
Web, there is a real potential for appearing a huge number of Web services in the near 
future. In such an environment, it is likely to be found many different Web services, 
yet offering the same semantic functionality, i.e., services providing the same 
operations but having distinct WSDL interfaces. For example, consider two Web 
services providing hotel reservation from two different hotels. Both services may 
have different input message formats, however they provide the same kind of service, 
hotel reservation.  These services can be considered equivalent Web services with 
respect to their functionalities.  



2      Valdino Azevedo, Marta Mattoso, Paulo F. Pires 

It is important that a system, willing to offer value-added services, provides 
mechanisms for aggregating those equivalent Web services, which facilitates the 
building of compositions. A business process can be composed of services built upon 
a layer of aggregated Web services. Such layer hides the dissimilarities, and even the 
existence of many different Web services, providing a single common interface, 
which is used to build the composition. Therefore, a developer of a composition can 
concentrate in the business rules while building a value-added service without having 
to deal with the specific behavior of each available Web service. Since a service 
within a Web service composition may be implemented by several available 
equivalent services, without mechanisms for homogenizing such equivalent, but 
heterogeneous Web services, it would be very unlikely that one could take some 
benefit when composing value-added services. 

Web services can be heterogeneous in four different levels: (i) structural 
dissimilarities (i.e., message formats), (ii) content (i.e.: domains of their input and/or 
output objects), (iii) transactional support, and (iv) quality characteristics. To 
homogenize such semantically equivalent, though heterogeneous, Web services, all 
these dissimilarities must be handled. One way of dealing with Web services 
heterogeneity is to provide a layer of software components that provides mechanisms 
to homogenize heterogeneous Web services.  

The problem of solving structural dissimilarities of services is similar to the 
problem of solving data dissimilarities occurring in mediator systems[22] and 
heterogeneous database systems[6,11,18]. Other works address the problem of 
solving structural and content dissimilarities in the Web through Wrapper-mediator 
technology [6]. However, such techniques cannot be directly used to solve structural 
dissimilarities of services since the problem of solving data dissimilarities is 
commonly related to the homogenization of different (data) schemas while the 
problem of solving structural dissimilarities of Web services is related the 
homogenization of different service interfaces (message formats).  

Besides structural dissimilarities, Web services can differ regarding their content 
capabilities. For instance, a car reservation service from company A might be able to 
make reservation only in Brazil, while a car reservation service from company B 
might be able to make world wide reservations. Whether the content capability of 
Web services is available, it is possible select only those Web services capable of 
handling a specific execution, avoiding unnecessary calls to other Web services.  

Since Web services are strictly autonomous units, they may expose different types 
of transaction support, even none support. Therefore, to provide a homogenized view 
of autonomous services, a service class must somehow expose a uniform transaction 
interface even though its aggregated services support dissimilar transaction 
mechanisms. In the multidatabase research area[13], there are transaction models that 
provide mechanisms to support the integration of data repositories with heterogeneous 
transaction support. However, these models have been designed with the assumption 
that all processing entities provide support for a set of transaction facilities such as 
supporting a two-phase commit interface[8], which restricts the processing entities to 
database systems. In a Web service environment, this functionality may not be 
present, since we are dealing with services running inside arbitrary systems that may 
not have transaction support or may not expose transactional interfaces. Moreover, 
these models were not designed to deal with semantically equivalent, but syntactically 



Handling Dissimilarities  of Autonomous Equivalent Web Services       3 

and behaviorally dissimilar processing entities, which is likely to occur in the Web 
services environment.  

Equivalent Web services may be also different regarding their quality 
capabilities, like security mechanisms, response time and monetary cost. Different 
users will probably have distinct expectations about services behavior, i.e., one user 
can specify that only secure services can be executed, while other can specify that the 
service with the lowest response time should be invoked, independently of its 
monetary cost. Therefore, a layer of homogenized services should allow a client 
application to inform its expectations about how services should behave, indicating 
what quality characteristics a service must present. Only services supporting all 
quality aspects indicated should be scheduled for execution. 

The main contribution of this work is to show how database mediation 
technologies can be adapted to solve Web Services heterogeneity for aggregating 
equivalent Web services. In previous works [10,12], we presented the specification of 
the WebTransact framework showing how reliable Web services compositions can be 
specified through such a framework.  In this paper, we focus on the problem of 
homogenizing equivalent Web services, showing how this problem is solved within 
the WebTransact. Details on how transactional, message formats, content and quality 
dissimilarities are handled are shown. We also present the WebTransact Execution 
Model, which provides a runtime environment for scheduling a (sub)set of 
semantically equivalent Web services inside a service class to be executed. However, 
in this paper we concentrate on how such an execution model makes use of 
WebTransact mechanisms for homogenizing Web services. Implementation details as 
well as different strategies for dynamic web services executions supported by the 
WebTransact Execution Model are discussed in [1].  

The remainder of this work is organized as follows. In Section 2, we present a 
general picture of the WebTransact architecture. Next, it is described how 
dissimilarities of Web services are solved, with examples being shown about how 
mediation among heterogeneous web services occurs. In Section 4, it is presented the 
WebTransact Execution Model. Finally, related work and concluding remarks are 
shown in Sections 5 and 6.  

2 The WebTransact Architecture  

As shown in Figure 1, WebTransact enables Web service composition by adopting 
a multilayered architecture of several specialized components [10,12]. Application 
programs interact with composite mediator services written by composition 
developers. Such compositions are defined through transaction interaction patterns of 
mediator services . Mediator services pro vide a homogenized interface of (several) 
semantically equivalent remote services. Remote services integrate Web services 
providing the necessary mapping information to convert messages from the particular 
format of the Web service to the mediator format. Besides resolving structural and 
content conflicts, remote services also provide information on the interface and the 
transaction behavior supported by Web services.  
 



4      Valdino Azevedo, Marta Mattoso, Paulo F. Pires 

 
 

Web Service Provider at Site 1 

RM a RM b RM c 

Web Service  Provider at Site 2 

Mediator 
Service  X 

Mediator 
Service Y 

Remote  
Service  A 

Remote 
Service B 

Remote 
Service C  

RM d 

WSDL WSTL 

Web service A 

WSDL WSTL  

Web service  B 

WSDL WSTL  

Web service  C 

Composite Mediator 
Service 

Mediator Service  
Layer  

Composition  
Layer  

WebTransact  

Application Programs 

Remote Service  
Layer 

Service  
Description 

Service  
Integration 

Service  
Aggregation 

Service  
Composition 

 
Fig.1. The WebTransact framework architecture 
 

WebTransact integrates Web services thr ough two XML-based languages: Web 
Service Description Language (WSDL) [20], which is the current standard for 
describing Web service interfaces, and Web Service Transaction Language (WSTL) 
[10], which is our proposal for describing the transaction support of heterogeneous 
Web services. WSTL is built on top of WSDL extending it with functionalities for 
enabling the transaction composition of Web services. Through WSDL, a remote 
service understands how to interact with a Web service. Through WSTL, a remote 
service knows the specific transaction support of a Web service. This language is also 
used to specify other mediator related tasks such as: the specification of mapping 
information for resolving representation and content dissimilarities, the definition of 
mediator service interfaces, and the specification of transactional interaction patterns 
of Web service compositions. 

3 Overcoming Web Services Heterogeneity 

The WebTransact framework provides mechanisms for mediating Web services 
dissimilarities. Transactional dissimilarities are handled through the usage of a 
specific model for transaction management (specified through the WSTL language). 
Structural and content dissimilarities are resolved using the mediator technology, 
where mediators aggregate semantically equivalent web services and expose a single 
interface to be used in compositions. Finally, quality dissimilarities of Web services 
are treated by the WebTransact Execution Model, that selects one or more 



Handling Dissimilarities  of Autonomous Equivalent Web Services       5 

semantically equivalent Web services inside a service class to be scheduled to run, 
based on its quality characteristics and on constraints specified by a client application. 

3.1 Resolving Transactional Dissimilarities of Web Services 

Besides its signature, an operation of a specific Web service in WebTransact has 
a well-defined transaction behavior. The transaction behavior defines the level of 
transaction support that a given service exposes. In order to accommodate different 
levels of transaction support, four types of transaction behavior of  services were 
defined (which are adaptations from distributed transactional control [15,23] for the 
Web services technology): compensable, virtual-compensable, retriable, and pivot. 
An operation is compensable if, after its execution, its effects can be undone by the 
execution of another operation. Therefore, for each compensable operation, it must be 
specified which other operation has to be executed in order to undo its effects. The 
virtual-compensable operation represents all remote operations whose underlying 
system supports the standard 2PC protocol [8]. Services offering such operations are 
treated like compensable services, but, actually, their effects are not compensated by 
the execution of another service. Instead, they wait in the prepare-to-commit state 
until the composition reaches a state in which it is safe to commit the operation. An 
operation is retriable, if it is guaranteed that it will succeed after a finite set of 
repeated executions. An operation is pivot , if it is neither retriable nor compensable.  

Like remote services operations, mediator service operations have a signature and 
a well-defined transaction behavior , which can be either compensable , retriable, or 
pivot. The transaction behavior of one mediator service operation is based on the 
transaction behavior of its aggregated remote operations. If all aggregated remote 
operations have the same type of transaction behavior, e.g. compensable, then the 
transaction behavior of mediator service operation will have the same value, i.e., 
compensable. On the other hand, if the mediator service operation aggregates remote 
operations with different transaction behaviors, then its transaction behavior will be 
the least restrictive transaction behavior among the transaction behaviors of its 
aggregated remote operations. The most restrictive transaction behavior is the pivot, 
followed by the retriable transaction behavior, while both the compensable and 
virtual-compensable transaction behaviors are the least restrictive transaction 
behavior. The concept of least/most restrictive transaction behavior defines whether a 
mediator service operation can participate in a given composition execution. A 
mediator service operation, aggregating at least one remote operation that is 
compensable (or virtual -compensable), can participate in any composition execution. 
On the other hand, a mediator service operation aggregating only pivot (or retriable) 
operations can participate only in compositions that call this mediator operation after 
it reaches a state where it is ready to successfully commit.  

In this Section, we have only shown the main ideas behind the transaction 
behavior concept. Examples of WSTL documents describing WSDL operation 
supporting different types of transaction behavior can be found in [10]. 

 
 



6      Valdino Azevedo, Marta Mattoso, Paulo F. Pires 

3.2 Resolving Structural and Content Dissimilarities of Web Services 

In order to provide a homogenized layer of services, each mediator service exposes 
a single interface that is used by composition specifications. Since mediators 
aggregate equivalent services, which possibly have different interfaces, it is necessary 
to provide mapping information between the interface supported by the mediator 
service and each one of the interfaces supported by its aggregated services. A remote 
service links a mediator service to a WSDL port type element. It provides mapping 
information between mediator service operations and port type operations, and 
specifies the content description  of the remote service. The mapping information 
prescribes how input and output parameters of a remote service operation are 
constructed from the input and output parameters of its related mediator service 
operation. The content description specifies whether a remote service is able to 
execute a particular service invocation, specifying a domain of values for a specific 
operation parameter. In next Section, it is shown an example about how these 
mapping efforts are done. 

3.2.1 Remote Service Integration Example 
 
In this Section, we illustrate the definitions of a mediator service and the 

integration of a remote service using WSTL[ 10].  Figure 2 shows a WSTL definition 
of a mediator service (msBookShopServices) providing book shops services. This 
mediator service supports two operations: GetBookPrice (that returns a book price 
given an ISBN number)  and BuyBook (for buying books). In next  paragraphs, we will 
detail the BuyBook operation. 

The BuyBook operation has six input parameters: ISBN (ISBN number of the 
book), CardNumber, CardType, FirstName and LastName (related to the credit 
card specified by a client) and PreferredShop (that specifies in which shop this buy 
will be made). The return value of the BuyBook operation (RequestID) is an 
identification of this buy. The BuyBook  operation may return one fault message 
identified by the value of the attribute faultMsg/@errorCode. The input 
parameters PreferredShop and CardType have their content description defined. 
For PreferredShop  parameter, the content description specifies that this parameter 
can accept only elements within the domain of values {BookShopWorld, 
WebBookSell, BookExpress}. For CardType parameter, the content description 
specifies that this attribute accepts the following values : {American Express, 
Visa, Mastercard}. 

Web services interfaces may be different from the mediator service interface. 
Therefore, a mechanism that maps the interface of a mediator to an interface of a 
specific Web Service is necessary. In WebTransact, remote services definitions are 
used to perform these mapping mechanisms. Figure 3 shows an example of a remote 
service description for the BookShopWorld service, one of the services aggregated 
by the msBookShopServices  mediator. 

The remote service is named rsBookShopWorld . The qualified value 
rs:shopSoap of the attribute remoteService/@portType links the WSTL remote 



Handling Dissimilarities  of Autonomous Equivalent Web Services       7 

service rsBookShopWorld  to the port type element, shopSoap, of the WSDL Web 
Service. The remote service must provide mapping information for operations  of the 
Web service that has different signatures from the ones specified in the mediator 
interface. In this example, only the BuyBook operation of that port type element is 
mapped to its related operation  in the mediator service. 

<wstl:mediatorService id="msBookShopServices"> 
<wstl:operation name="GetBookPrice"> 

<wstl:inputMsg> 
   <wstl:param name="ISBN" type="xsd:string"/> 
 </wstl:inputMsg> 
 <wstl:outputMsg> 
   <wstl:param name="price" type="xsd:float"/> 
 </wstl:outputMsg>    
</wstl:operation> 
<wstl:operation name="BuyBook"> 

<wstl:inputMsg> 
  <wstl:param name="ISBN" type="xsd:string"/> 
  <wstl:param name="CardNumber" type="xsd:string"/> 
  <wstl:param name="CardType" type="xsd:string"/> 
  <wstl:param name="FirstName" type="xsd:string"/> 
  <wstl:param name="LastName" type="xsd:string"/> 
  <wstl:param name="PreferredShop" type="xsd:string"/> 
 </wstl:inputMsg> 

<wstl:outputMsg> 
<wstl:param name="RequestId" type="xsd:string"/> 

 </wstl:outputMsg> 
 <wstl:faultMsg errorCode="ERROR_102"description="Invalid card  

number."/> 
   

<wstl:contentDescription medParam="inputMsg/@PreferredShop "> 
  <wstl:domain value="AmericanExpress"/> 
  <wstl:domain value="Visa"/> 
  <wstl:domain value="MasterCard"/> 
 </wstl:contentDescription> 
 <wstl:contentDescription medParam="inputMsg/@CardType"> 
  <wstl:domain value="BookShopWorld"/> 
  <wstl:domain value="WebBookSell"/> 
  <wstl:domain value="BookExpress"/> 
 </wstl:contentDescription> 
</wstl:operation>   

</wstl:mediatorService> 
Fig.2. WSTL Schema fragment of mediator service msBookShopServices 
 

The operationMap element named BookMap defines a set of parameter-
mappings between message of the port type operation, BookShopBuy and the 
parameters of the mediator service operation, BuyBook .  

The inputMap element prescribes how fields in the input message part of the port 
type operation, BookShopBuy, are constructed from the input parameters of the 
mediator service operation, BuyBook . The first paramMap element defines a 
parameter-mapping that has as target node the XPath expression[21] 
shopSoapIn/@ISBNnumber. There is only one source node for this parameter-
mapping, defined by the XPath expression @ISBN. According to this mapping, the 
field shopSoapIn/@ISBNnumber of the input message part  of the port type 



8      Valdino Azevedo, Marta Mattoso, Paulo F. Pires 

operation BookShopBuy, is constructed from the input parameter ISBN of the 
mediator service operation. 
 
<wstl:remoteService id="rsBookShopWorld"  
         medServ="tns:msBookShopServices" portType="rs:shopSoap"> 
  <wstl:operationMap name="BookMap"  
         ptOperation="rs:BookShopBuy" medOperation="tns:BuyBook"> 
    <wstl:inputMap> 
       <wstl:paramMap targetParam="shopSoapIn/@ISBNnumber"> 
        <wstl:sourceParam XPath="@ISBN"/> 
      </wstl:paramMap>  
      <wstl:paramMap targetParam="shopSoapIn/CreditCard/@number"> 
        <wstl:sourceParam XPath="@CardNumber"/> 
      </wstl:paramMap> 
      <wstl:paramMap targetParam="shopSoapIn/CreditCard/@type"> 
        <wstl:sourceParam XPath="@CardType"/> 
      </wstl:paramMap> 
      <wstl:paramMap targetParam="shopSoapIn/CreditCard/@NameonCard"  
        mapFunction="concatValues"> 
        <wstl:sourceParam XPath="@FirstName"/> 
        <wstl:sourceParam XPath="@LastName"/> 
      </wstl:paramMap> 
     </wst:inputMap> 
 
    <wstl:outputMap> 
      <wstl:paramMap targetParam="@Code"> 
        <wstl:sourceParam XPath="@result"/> 
      </wstl:paramMap> 
    </wstl:outputMap> 
     <wstl:contentDescription medParam="@PreferredShop"> 
      <wstl:domain value="BookShopWorld"/> 
    </wstl:contentDescription> 
    <wstl:contentDescription medParam="@CardType"> 
      <wstl:domain value="Visa"/> 
      <wstl:domain value="MasterCard"/> 
    </wstl:contentDescription> 
  </wstl:operationMap> 
</wstl:remoteService> 
Fig.3. WSTL Schema fragment of remote service rsBookShopWorld 
 

Next parameter-mappings deal with credit card information. In the port type 
operation, BookShopBuy, there is a structure named CreditCard that encapsulates 
all information about credit card data. The parameters CardNumber and CardType of 
the mediator service operation are mapped to the structure fields 
CreditCard/@number and CreditCard/@Type , as specified in the second and 
third paramMap  elements. The fourth paramMap element also handles credit card 
data, but presents a mapFunction element named “concatValues”. This function 
concatenates  both FirstName and LastName  parameter values of the mediator 
operation in one single field of the structure  (CreditCard/@NameonCard ) of the 
port type operation. 

The outputMap element of the BookMap element prescribes how output 
parameters of the mediator service operation are constructed from the fields in the 
output message of the port type operation. In the example, a direct map from 
parameter result of the mediator to the parameter code of the port type is done. 



Handling Dissimilarities  of Autonomous Equivalent Web Services       9 

Finally, the last definition enclosed by the BookMap element is the content 
description for the port type operation, BookShopBuy. In the example, there are two 
contentDescription elements. The first is defined for the input parameter 
@PreferredShop of the mediator service operation. This content description 
specifies that the selected remote service is able to attend requests when the value of 
the parameter @PreferredShop of the mediator service operation is within the 
domain of values {BookShopWorld} (that is, it can only serve requests to buy books 
on BookShopWorld). The other contentDescription  element is defined for the 
input parameter CardType  of the mediator service operation, carReserv. This 
content description specifies that the selected remote service is capable of answering 
requests when the value of the parameter CardType, of the mediator service 
operation, is within the domain of values {Visa, MasterCard}. This means that 
these are the only credit card types accepted by this specific Web service. 

3.3 Resolving Quality Dissimilarities of Web Services 

Semantically equivalent Web services can differ on its non-functional aspects, like 
its quality characteristics and cost parameters A client application, wishing to execute 
a service, can specify which quality characteristics a service must present. Therefore, 
our layer of homogenized services should support this kind of restriction made by 
client applications. 

An operation call in WebTransact (a call to a specific mediator operation) is 
represented as an XML file that, besides the name of the operation being executed and 
its parameters, indicates quality constraints made by a client application. Figure 4 
shows the layout of such XML file. 
 
<operation  name="…"  maxresponsetime="..."    maxprice="..."     

executionmode="..."     priority=”...”    
mandatorycompensate="..."    security="..."  > 

  
<param name="..."></param> 

 ... 
 <param name="..."</param> 
</operation> 
Fig.4. XML document representing a mediator operation call. 
 

The following quality aspects can be defined in an operation call: 
 
?  maxresponsetime: Maximum amount of time desired in service execution. Only 

services whose response times are equal or less than this maximum response time 
can be scheduled for execution. 

?  maxprice: Maximum monetary cost that a client accepts to pay for a service 
execution. Only services whose monetary cost is equal or less than the cost 
specified by the client application can be chosen for execution. 

?  executiomode: The execution mode is based on the relation between response time 
and monetary cost of execution of a service. An application can choose among one 
of the following execution modes: “Minimize Monetary Cost”, “Minimize 



10      Valdino Azevedo, Marta Mattoso, Paulo F. Pires 

Response Time”, “Best Cost/Performance Relation” or “Broadcast”. The selected 
execution mode directly influences the process of services scheduling, as will be 
shown in next section. 

?  priority: Corresponds to the desired priority in the service execution , being 
transmitted in the header of  SOAP messages sent to Web services providers. 

?  man datorycompesate : A boolean attribute indicating if the remote service 
operation must be compensable. 

?  security: A boolean attribute indicating if the remote service must present some 
security mechanism . 

 
After showing how quality dissimilarities are handled, an execution model that 

supports service selection based on its quality aspects is needed. In next section will 
be presented the main steps of the WebTransact Execution Model, implemented in the 
WebTransact to support such service selection. 

4 Scheduling Autonomous Equivalent Web Services 

In its specification[10,12], the WebTransact framework did not have its main 
modules implemented and neither have an execution model that helps on the process 
of dynamic service selection. We have extended this framework with the creation of 
the WebTransact-EM (WebTransact Execution Model), that dynamically schedule 
services at runtime. In order to verify its results, we have implemented the main 
modules of the WebTransact framework together with the model itself. 

Figure 5 shows the main screen of a prototype of the WebTransact-EM. A user can 
specify which constraints a service should support in order to be executed, as shown 
in Section 3.3. In figure 6, a user first enters the parameters needed for an operation 
execution. Then, the WebTransact-EM begins the process of service selection, 
scheduling and execution. 

 

     
Fig. 5. Specifying quality constraints of an          Fig. 6. Execution results of an operation 
operation in WebTransact 
 



Handling Dissimilarities of Autonomous Equivalent Web Services      11 

First, an XML file as the one shown in Section 3.3 is constructed from the 
constraints and parameters specificied by the user. When the WebTransact framework 
receives such an operation call, it must decide which services inside a service class 
will be executed. Four different phases were identified to compose the WebTransact 
Execution Model: (i) selection of candidate services, (ii) ordering of these services 
based on an execution mode, (iii) scheduling of services and finally, (iv) the choice of 
a winner service. These phases will be shown in next paragraphs. 

Candidate services  represent the set of remote services aggregated by a given 
mediator service, which support some quality criteria specified by a client application. 
They are chosen based on the content description of services, presented in Section 3.2 
and on the supported quality aspects  of services, presented in Section 3.3. Only 
services that support quality criteria constraints indicated by a client application can 
be further scheduled to run.  

Next , candidate services  must be ordered based on some criteria derived from Web 
services quality characteristics. In WebTransact, they can be ordered by their response 
times, monetary costs or cost/performance relations, depending on the execution 
mode chosen by the composition specification.  
Given a list of Web services already ordered, the scheduling process begins, taking 
into account the desired execution mode and the transactional behavior of each 
service. Depending on the execution mode, one of the following scheduling strategies 
will be used: 

 
?  Minimize Response Time: The choice of which services are scheduled to run is 

based on the response time only. Thus, it is independent of other costs such as the 
monetary cost involved (the service with the lowest response time is preferable). 
Response time can be minimized through parallel scheduling of all candidate 
services. However, only compensable services (the ones whose results can be 
undone) can be executed concurrently, since only one service will have its results 
committed and returned to a client application (being elected as the “winner 
service). 

?  Minimize Monetary Cost: In this case, the choice of which services must be 
scheduled to run will only consider monetary costs, the response time is not taken 
into account. Services are first ordered (in the previous step) according to its 
monetary costs and the candidate service with the lowest cost is the only one to be 
scheduled to run. 

?  Best Cost/Performance Relation: Now, both parameters are taken into account: the 
response time of a service and its monetary cost. If exists candidate services with 
no monetary cost (equal to zero), all services of this type are executed in parallel, 
in order to reach the best relation of cost and performance. Otherwise, after the 
ordering of candidate services based on their cost/performance relation, the service 
having this best relation is scheduled to run. 

?  Broadcas t: This execution mode indicates that the client application has requested 
the execution of all candidate services and that it desires the results of all of them. 
Therefore, all candidate services are scheduled to run concurrently and their results 
are committed and returned to the client application. 



12      Valdino Azevedo, Marta Mattoso, Paulo F. Pires 

After the scheduling phase, all services scheduled are executed. After services 
finish their executions, we need to choose a winner service (the one whose results will 
be committed, while the others will be aborted or compensated).  

For a broadcast execution, all services are elected as winner services, and the 
results of all of them are returned. Otherwise, if only one service has already ended, 
this one will be the winner and all of the other services being executed (if they exist) 
will be aborted or compensated. If more than one service has ended the winner will be 
the one with the higher compensation cost (in order to avoid the high cost of this 
operation). After the selection of winner services, an execution in WebTransact is 
completed. The complete algorithms for service selection, scheduling and execution 
of the WebTransact -EM can be found in [1]. 

5 Related Work 

Current frameworks that support service compositions [4,7,16], do not  handle the 
inherent heterogeneity of Web services nor presents an execution model for dynamic 
services executions. We propose a solution for this problem through the specification 
and implementation of a mediator layer that homogenizes services interfaces and their 
transactional behaviors. Works in the bioinformatics area [14] also propose the 
mediator technology, in addition to the Web services Technology, to homogenize 
legacy applications. However, these works do not employ an execution model 
supporting dynamic service execution, and neither handle transactional, content and 
quality dissimilarities that may exist among these applications.  

Existent works in the area of e-service composition (WSFL [9], XLANG [17], 
WSCL [1 9], BPEL4WS [5]) are concentrated in defining primitives for composing 
services and automating service coordination. However, these primitives for 
composition do not directly address the problems associated with the necessary 
homogenization of Web services. In this sense, mechanisms presented in this paper 
can complement such works. 

More recently, other specifications were made for the definition of transaction 
languages for Web services, such as the WS-Transaction[3] together with the WS-
Coordination[2] specifications. Several concepts that exist in the WSTL language [10] 
are also present in WS-Transaction and WS-Coordination, such as the usage of a Web 
service that acts as a coordinator for the execution of distributed transactions 
(mechanism used for virtual-compensable services in WSTL) and the concept of 
compensation activities to avoid resources locking for a great amount of time. 
However, the definition of a transaction behavior for each operation of a service, 
made through the WSTL language, makes simpler the transactional management of 
activities that do not use a protocol such as the 2PC [8], since they do not need to be 
related to a coordinator service. In this case, there must exist a platform (the 
WebTransact, for example) that handles the transactional management of such 
activities. Finally, as several concepts used in both specifications are similar, we 
believe that both languages (WS-Transaction and WSTL) can coexist without any 
compatibility problem if a service that relies on WSTL for transactional management 
wishes to communicate with another service that uses the WS-Transaction. 



Handling Dissimilarities of Autonomous Equivalent Web Services      13 

6 Conclusions 

T here is a real potential for appearing a huge number of semantically equivalent, 
but heterogeneous, Web services in the near future. Since such services will be 
published by autonomous companies, they may expose dissimilar interfaces and 
behavior. Therefore, the utilization of such heterogeneous Web services can be 
improved by a software layer responsible for mediating their dissimilarities. Such a 
mediation layer hides the dissimilarities and even the existence of many different 
equivalent Web services, providing a single common interface, which is used to build 
new business processes. Equivalent Web services can differ on several aspects, like 
their transactional support, their interfaces and their quality characteristics. Therefore, 
the mediation layer must somehow resolve these dissimilarities. 

The main contribution of this work is to show how Web services dissimilarities are 
solved in WebTransact , a framework for reliable execution of Web services 
compositions. Transactional, structural, content and quality dissimilarities of Web 
services are handled through the creation of service classes, which is responsible for 
mediating service dissimilarities. A service class hides dissimilarities of semantically 
equivalent but different and autonomous Web services, exposing to client programs a 
homogenized view of such services. When a service class is invoked, the 
WebTransact Execution Model acts automatically choosing one or more of its 
semantically equivalent Web services for execution.  

Through the mechanisms presented in this paper, a business process can be built 
using service classes instead of directly access specific Web service implementations. 
Since service classes aggregate a set of semantically equivalent Web services and 
handle all the inherent heterogeneity of them, developers of such business process are 
unburdened of dealing wit h the heterogeneity and the distribution of such services. 
Moreover, the use of service classes improves the robustness and reduces the response 
time and the impact of Web service changes in a business processes. Since a service 
class aggregate a set of semantically equivalent Web services, even when a subset of 
these services are unavailable, the service class can successfully execute if at least one 
of its aggregated services were available. Finally, since business process do not 
directly references Web service interfaces, changes in the latter does not directly 
affect the former (only the mapping information must change).  It is important to note 
that the concept of service classes along with the WebTransact Execution Model can 
easily be used to aggregate value to other platforms, such as platforms for Web 
service composition [4,7,16]. Since service classes are regular Web services, they can 
be seamlessly incorporated in any platform adherent to the Web services technology. 

References 

1. Azevedo, V., Mattoso, M., Pires, P. F. , “Strategies for Dynamic Execution of 
Semantically Equivalent Web Services”. In: Intenational Conference on Web Services – 
Europe (ICWS-Europe), Erfurt, Germany, September, 2003 (submitted). 

2. Cabrera, F., Copeland, G., Freund, T., “Web Se rvices Coordination (WS-Coordination)”, 
2002. Available at: http://www-106.ibm.com/developerworks/library/ws-coor 



14      Valdino Azevedo, Marta Mattoso, Paulo F. Pires 

3. Cabrera, F., Copeland, G., Cox, B.,“Web Services Transaction (WS-Transaction)”, 2002. 
Available at: http://www-106.ibm.com/developerworks/library/ws-transpec 

4. Casati, F., Ilnicki, S., Jin, L., et al., “Adaptive and Dynamic Service Composition in 
eFlow”. In: Proceedings of CaiSE 2000, Stockholm, Sweden, pp. 13-31, June 2000. 

5. Curbera, F., Goland, Y., Klein, J., et al. “Business Process Execution Language for Web 
Services Version 1.0”, 2002. Available at: 
http://www.ibm.com/developerworks/library/ws-bpel/ 

6. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., et al., “The TSIMMIS Approach to 
Mediation: Data Models and Languages”, Journal of Intelligent Information Systems 
(JIIS), v. 8, n. 2, pp. 117-132, 1997 

7. Keidl, M., Seltzam, S., Stocker, K., Kemper, A., 2002 , “ServiceGlobe: Distributing E-
Services Across the Internet”. In: Proc. of the 28 th VLDB Conference, Hong Kong, China, 
August, 2002. 

8. Lampson, B. W., “Atomic Transactions”. In: Goos, G., Hartmanis, J. (eds.), Distributed 
Systems - Architecture and Implementation: An Advanced course, Spring-Verlag, pp. 
246-265, 1981 

9. Leymann, F., "Web Services Flow Language (WSFL 1.0)”. [http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf], May, 2001. 

10. Pires, P., WebTransact: A Framework for Specifying and Coordinating Reliable Web 
Services Composition.  Technical Report  ES-578/02, COPPE/UFRJ, Brazil, 2002. 

11. Pires, P.F., Raschid, L., “MedTransact: Transaction Support for Mediation with Remote 
Service Providers”. In: Proceedings of the 3rd International Conference on 
Telecommunications and Electronic Commerce, Dallas, USA, November, 2000. 

12. Pires, P.F., Mattoso, M., Benevides, M., “Building Reliable Web Services Compositions” 
In: Proc. of the NET.Object Days Conference (WS-RDS'02), Erfurt, Germany, 2002. 

13. Pitoura, E., Bukhres, O. A. and Elmagarmid, A. K., “Object Orientation in Multidatabase 
Systems”, ACM Computing Surveys, v. 27, n. 2, pp. 141-195, 1995. 

14. Rocco, D., Critchlow,  T., Discovery and Classification of BioInformatics Web Services. 
Technical Report, Lawrence Livermore National Laboratory, September, 2002. 

15. Schuldt, H., Alonso, G., Schek, H.J., “Concurrency Control and Recovery in 
Transactional Process Management”. In: Proc. of the Symposium on Principles of 
Database Systems (PODS), Philadelphia, Pennsylvania, pp.316-326, 1999. 

16. Sheng, Q., Benatallah, B., Dumas, M., Mak, E., “SELF-SERV: A Platform for Rapid 
Composition of Web Services in a Peer-to-Peer Environment”. In: Proc. of the 28 th VLDB 
Conference, Hong Kong, China, August, 2002. 

17. Thatte, S., “XLANG: Web Services for Business Process Design”. 
[http://www.gotdotnet. com/team/xml_wsspecs/xlang-c/default.htm], Microsoft 
Corporation, 2001. 

18. Tomasic, A., Raschid, L., Valduriez, P., “Scaling Access to Heterogeneous Data Sources 
with DISCO”, IEEE Transactions on Knowledge and Data Eng ineering, v. 10, n. 5, pp. 
808-823, 1998. 

19. W3C (World Wide Web Consortium) Note, "Web Services Conversation Language 
(WSCL) 1.0”. [http://www.w3.org/TR/2002/NOTE-wscl10-20020314/], March 2001. 

20. W3C (World Wide Web Consortium) Note, "Web Services Description Language 
(WSDL) 1.1”. [http://www.w3.org/TR/2001/NOTE-wsdl-20010315], March 2001. 

21. W3C (World Wide Web Consortium) Recommendation, "XML Path Language”. 
[http://www.w3.org/TR/1999/REC-XPath-19991116], November 1999. 

22. Wiederhold, G., “Mediation in Information Systems”, ACM Computing Surveys, v. 27, n. 
2, pp. 265-267, 1995. 

23. Zhang, A., Nodine, M.H., Bhargava, B.K., Bukhres, O., “Ensuring Relaxed Atomicity for 
Flexible Transactions in Multidatabase Systems”. In: Proc. of the ACM SIGMOD 
Conference, pp. 67-78, 1994. 


