Solving the SONET Ring Assignment Problem
using Integer Programming Models

Elder M. Macambira*! Nelson Maculan'! Cid C. de Souzat?

! Universidade Federal do Rio de Janeiro
Programa de Engenharia de Sistemas e Computacio, COPPE
Caixa Postal 68511, 21941-972

e-mail: {elder,maculan}@cos.ufrj.br

2 Universidade Estadual de Campinas
Instituto de Computacao
Caixa Postal 6176, 13084-971

e-mail: cid@ic.unicamp.br

Abstract:

In this paper, we study the problem of assigning a set of customer sites using SONET
rings of equal capacity. Each customer has to be assigned to exactly one ring and these
rings have to be connected through a single federal ring. A capacity constraint on each
ring is considered. The objective is to minimize the number of rings in the network
subject to a ring capacity limit. This problem is called SONET Ring Assignment
Problem (SRAP). The SRAP is known to be A'P-hard and it can be described formally
as a node-partitioning problem.

We propose two new integer linear programming formulations for the SRAP. Com-
parisons with other formulations presented earlier in the literature are made. Com-
putational results are discussed and empirical evidence indicates that our formulations
perform significantly better than the existing ones. While previous formulations cannot
be solved to optimality in a reasonable amount of maximum CPU time, our formu-
lations are computed much faster and optimal solutions are obtained in minutes in a
typical desktop machine.

Keywords: SONET Ring Assignment, Integer Programming Models, Telecommunica-
tions.

“The author is supported by CNPq (grant 146245/1999-7) and FAPERJ (grant E-26/152.603/2001).
fcorrespondig author.
iThe author is supported by CNPq (grant 300883/94-3).

1 Introduction

Due to the international increasing use of fiber-optic technology in telecommunications,
mainly in the transmission and multiplexing standard for high speed signal, the telecom-
munications provider has adopted a new network design concept. One of the most popular
designs is the Synchronous Optical Network (SONET) which is more widely used in North
America.

The typical topology of a SONET network corresponds to a collection of local rings, or
simply rings, directly connecting a subset of customer sites (see [2, 9, 10]). Each customer
site sends, receives and relays messages through a device called Add-Drop Multiplexer
(ADM). This requires that the ring must have a capacity. The capacity is limited and
corresponds to the volume of traflic between all pairs of customer sites connected by the
ring. Finally, the inter-ring relations are then possible. All rings are connected together
by a special ring, called federal ring, through a device - the Digital Cross-connect System
(DCS) - which joins each ring to the federal ring. The number of DCS’s required for the
design network corresponds to the cost-effective of the network.

Problem Definition In the design of real optical networks, a set of rings has been taken
into account: maximum length of a ring, maximum number of customer sites in a ring
and maximum traffic on a ring. In this paper, we will exclusively deal with the problem
of forming such rings. This problem requires three conditions. The first one assumes that
each customer site has to be assigned to exactly one ring; the second condition assumes
that the maximum capacity of each ring is bounded by a common value; and finally, the
third condition establishes that the number of rings, i.e., the cost of DCS’s installed, has
to be minimized. The problem is called SONET Ring Assignment Problem (SRAP) with
equal capacity constraints.

‘:I customer sites
Q local ring

4 A .
.+ federal ring
N

Figure 1: A SONET network.

The SONET Ring Assignment Problem can be described formally as a node-partitioning
problem for a given graph G. The nodes of G represent the customer sites to be linked, and

2

the edge weights correspond to the traffic demands between cutomer sites. The clusters of
a solution to our problem are clusters of customer sites that will be placed on the same
SONET ring.

Example An example of SONET network is given in Figure 1. In this example, we have
one network with 20 nodes and 3 rings.

Previous Work We refer to [4] for a more detailed discussion on the architecture of
SONLET networks and a review of the literature on the SRAP. In their work the authors
proved that SRAP is N'P-hard. They also introduce an integer programming formulation
for the problem and propose heuristics and exact methods to solve it. Another recent work
on heuristics for SRAP can be found in [1] where tabu and scatter search meta-heuristics
are proposed.

Contributions In [4], Goldschmidt et al. pointed out to the inadequacy of solving SRAP
instances using their integer programming formulation and commercial linear programming
solvers. In this paper we are interested to overcome these drawbacks. With this objective, we
propose some variants of IP formulations for SRAP and tested the performance of standard
branch-and-bound algorithms implemented in a commercial code when computing them.
The results are significantly better than those reported earlier in the literature.

Outline The paper is organized as follows. In Section 2, we present the original model
developed for the SRAP. In Section 3, we present two integer programming formulations
and explore properties of these formulations, for example these formulations are based in
packing problem. In Section 4, we present our computational results for randomly-generated
instances and discuss empirical results to support the claim that these models may be
adequate in solving SRAP instances of moderate size to optimality. Finally, concluding
remarks are given in Section 5.

2 Mathematical Models Review

It is by now well-known that the choice of a “good” model may crucially affect our ability
to solve large instances of integer programming problems. For a compreensive discussion of
this point, see Nemhauser and Wolsey [8], and Wolsey [11]. In this section, we present an
integer linear programming formulation for the SRAP. This formulation was proposed by
Goldschmidt et al. [4].

In the following discussion, we describe SRAP as a graph optimization. We describe it
in terms of the network design application presented in Section 1. Next, we describe the
SONET Ring Assignment Problem as an integer linear programming problem.

The SRAP can be described formally as the following graph optimization problem:
given an undirected graph G = (V, E) with nonnegative edge weight d,,, associated for each
e = (u,v) € F, an integer B, and an integer | < n = |V, partition the set of nodes of G at
most [digjoint clusters, c.g., Vi, Vo, ..., V}, so that [is minimized and the constraints about
capacity of the clusters

Z duv‘l‘zdquBa e=1,...,1, (1>
u,wEV; ueV;
u<v vgV;

l

S Y S < B @)

i=1 j=i+1ucV; veVj

may be satisfied. Note that each cluster Vi, with k& € {1,...,l}, corresponds to a ring.

Now we present an integer linear programming for the SRAP. Tt has for groups of binary

2 variables z,; one for each pair

variables, namely x, y, p and z. In the first group, we have n
u € V and i € V. The value of x,; is one if and only of vertex u is assigned to ring ¢. In the
sccond group, there arc n variables cach representing a possible local ring to be opened in
a feasible solution. We say that a ring is open if there is at least one vertex assigned to it.
Therefore, the variable y; is one if and only if the i-th ring is opened. For every edge (u,v)
in F, with v < v, and ¢ € V, py; is one if and only if both vertices v and v are assigned to
ring ¢. The third group of variables has mn elements. Finally, in the fourth group we have
2mn z variables. Each z variable is indexed by three elements, the first two taken from
V x V\ {{u,v)|u € V} and the last one from V. The variable z,,; is then defined to be
one if and only if » is in ring 7 while v is not. A possible formulation for SRAP with these
variables is given below.

(P1)

minimize Z Ui (3)
=1

subject to:

n—1 n n n

Z Z duvpuvi + Z Z Aypzyvi < B, Vi € V, (4>

u—=1lv=u+l u—=1lv=1

n—1 n n

Z Z Zduvzuvi <B, (5)

u—=1lv=u+l1 i=1

3 zui=1, Vu €V, (6)

i=1

Tyi — Yi S 07 VU,Z € V7 (7)

Toi + Twi — Puvi < 1, Yu,v € Viu <w, Vi eV, (8)

Tui — Lvi — Zuvi < 0, Yu,v €V, VieV, (9)

Zyi € {0,1}, YuecV, VieV, (10)

y; € {0,1}, Vi €V, (11)

Puvi € {0,1}, Yu,v € Vu<wv, VieV, (12)

Zuwi € 10,1}, Vu,v €V, VieV. (13)

Let us briefly examine the constraints in formulation (P1). The objective function (3)
minimizes the number of rings. Constraints (4) limit the total demand of each ring to the
bandwidth B. Constraint (5) assures the capacity of the federal ring to be less than or
equal to B. Remember that the federal ring needs to carry all the traffic among customer
sites on different rings. Constraints (6) assure that each customer site is assigned to exactly
one ring. Constraints (7) impose that one ring is active if a customer site is placed on it.
For a proper triple (u,v,%), constraint (8) forces py,; to one if both vertex u and vertex v
are assigned to ring ¢ while constraint (9) forces z,,; to one if vertex u is assigned to ring ¢
and v is not assigned to that ring. Constraints (10)-(13) observe the integrality conditions
on the variables x,;, ¥;, Puvi and zy,;, respectively.

The mindful reader has certainly noticed that equations (8)-(9) are not enough to ex-
press the inteded relationship between z and p (z) variables. However, as observed by
Goldschmidt et al. [4], given a proper triple (u,v,%) and a feasible solution to (P1) if
puvi = 1 and either x,; = 0 or z,; = 0, another feasible solution with the same cost is ob-
tained by simply setting py,: t0 zero. An analogous reasoning applies if z,,; = 1 and either
Zyi = 0 or z,; = 1. Therefore, we can drop from the SRAP formulation the constraints that
force the p or z variables to zero.

The efficiency of most models is dependent on their ability to solve instances within
an average computing time. We are now going to evaluate the formulation (P1) described
on the basis of this criterion. Goldschmidt et al. [4] made computational experiments
using some instances of moderate size. The results indicated that CPLEX took within a,
maximum computing of 46,000 CPU seconds to solve the instances. It is worth noting that
this formulation is not useful for solving the SRAP with a commercial and general purpose
code (e.g., CPLEX), due to the enormous computing times.

3 New Integer Programming Formulations

In this section, we propose two integer programiming formulations for the SRAP (see Macam-
bira [6]). Furthermore, we show that these formulations correctly describe the SRAP.

3.1 First IP Formulation

Goldschmidt et al. [4] observed in their paper that formulation (P1) is not suitable to
identify SRAP instances which are infeasible. A possible way to overcome this disadvantage
is to relax the previous model by replacing constraints (6) by constraints of the form

Y zui <1, Yuev. (14)
i=1

However by doing that we also have to change the objective function so that it favors the
feasible solutions that are actual partitions of the vertex set if they exist. This technique is
not a novelty in the solution of hard combinatorial problems. Examples of its application
can be found for the generalized assignment problem (see Martello and Toth [7]) or traveling
salesman problem (see Grotschel and Padberg [5]). Let us briefly describe this change.

5

This replacing is possible by adding one artificial variable for each constraint (6). Let
ty,=1— Z?Zl Zy; be this artificial variable and 6, > 0 the cost associated to every variable
t, with u € V. Hence, the objective function (3) can be written as:

zZ= 1nZyZ+Z®t (15)

u=1

Note that the cost associated to the variable z,,; is equal to zero in the objective function
(3). Thus, the new objective function, namely (15), is penalizing the vectors z. So, the
constraint (14) is satisfied as one inequality strict, e.g., >, Zy; = 1 for each u € V.

By eliminating the artificial variables ¢, in (15), we obtain the following objective func-
tion:

zZ = mmzn:szrzn:@utu =
=1 u=1
= minZyi + Z O,(1 — me) =
= mlnz Yi — Z Z Ouzy; + Z Oy, (16)

u=1i—1 u=1

defined just in terms of variables z,; and y;.

Now, we will transform the objective function (16) into the maximization problem:

Ezmaxzze)uxm Zyz Z@ (17

u=11=1

In this way, an equivalent objective function of the problem is obtained.

If the constant O, represeting the vertex assignment costs are suitably chosen, any
solution corresponding to a vertex partition has a larger objective value than a pure packing
solution where one of the vertex remains unassigned. It is a easy test to check that ©, = n+1
fulfills this property. This is the value used for ©, in our computations.

In the sequel, we shall present the first IP formulation proposed in this work. As before,
we consider the variables Zy;, ¥i, Puyi and zy,; defined in the formulation (P1). Thus, the
SONET Ring Assignment Problem can be stated as the 0-1 integer linear programming
problem:

(P2)

n n n n
maximize E E OuTyi — E Yi — E O,
i=1 u=1

u=1 1=1
subject to:
n—I1 n n on
Z Z yvPuvi + Z Z dyyzyvi < B, ViV,
u=1v=u+t1 u=1v=1

n—1 n n
Z Z Zduvzuvi S 37

u=1v=u+1i=1

n
Zme‘ <1, Yu eV,

=1

Ty — Yi <0, Yu,i €V,

Toi + Toi — Puwi < 1, Vu,v e Vu <wv, VieV,
Tui — Toi — Zuvi <0, Vu,v eV, VieV

Ty; € {0,1}, VueV, VieV,

yi €{0,1}, Viev,

Puvi € {0, 1}, Yu,v € V,u <wv, Vi€V,
Zuvi € 10,1}, Yu,v €V, Vi e V.

Inspecting this formulation, we observe that it requires the same number of binary
variables and constraints of the formulation (P1), e.g., n? + 3mn + n binary variables and
n? 4+ 3mn+2n+ 1 constraints, where n is the number of customer sites and m is the number
of the pair of customer sites which communicate.

Note that if ©, = 1 the integer solution obtained by formulation (P2) corresponds to a
feasible partition of V', e.g., the rings V7,..., V], that satisfies the capacity constraints. So,
in this case, we can deduce that any optimal solution of the formulation (P2) is optimal
solution of the formulation (P1).

In the sequel, we shall present the second IP formulation for SRAP.

3.2 Second IP Formulation

Next we derive a new model for SRAP based on a slightly different set of variables. The
purpose is to reduce the number of variables with respect to the previous formulations while
keeping the same number of constraints. We hope by doing so, we end up with a model
which is easier to compute. The second IP formulation also features a packing problem.

In order to describe this alternative formulation, consider a feasible solution for SRAP
where the vertices of V' are partitioned into sets Vi,...,V;. For every j € [1,...,1], the
internal and external demands of ring j are respectively D; and W;, where

D; = Z Z dyy, foreach j =1,...,1, (18)

ueV; veV;
u<lv
W= > du. (19)
ueV; vgV;
u<v

Let us denote he total demand by D and the total demand of ring j by d;, i.e.,

D= Z duva (20)

(uW)EFE

dj =D; +Wj. (21)

According to those definitions, the demand flowing throug the federal ring is computed
as

D=D-> D (22)
j=1
and we have that
k
2xD=Y W, (23)
J=1

Finally, the capacity constraint on the federal ring implies that

D<B=—D+D<D+B—

22 !

(:lﬁ+E+ZDj§D+B:>
j=1

1 I
@ZW]'—FZDJ'SD-FB- (24)
J=1 Jj=1

Thus, equation (24) gives us another way to express the capacity constraint for the
federalring. It also suggests that we can define new binary variables for the edges in G. For
all (u,v) in E with u < v and i € V', fy,; is set zero if and only if both vertices u and v are
not assigned to ring ¢. In other words, for a fixed ring 4, the edges with f,,; = 1 are those
which are internal to ring ¢ or link vertices of ring ¢ to vertices at some other ring.

To ensure the correct relationship among z and f, the following constraints are added
to the new IP formulation for SRAP:

fuvi — Ly > 07 VU,,U € V?“' <, Vi € V7 (25)
fuvi — Ty > 07 VU,,U € V?“' <, Vi € V7 (26)
Suvi — Twi — Tpi <0, Vu,v e Viu<wv, VieV. (27)

The constraints (25) enforce that if the customer site (or node) u belongs to the ring 1,
e.g., Ly; = 1, so the variable f,,; is equal to 1. The same sense can be applied with relation
the constraints (26); however, it is took the customer site v. Constraints (27) assure that
if both customer sites u and v do not belong to the ring 4, e.g., £,; = x4 = 0, then f,,; is
equal to 0.

With the variables z and y defined as before, the new IP formulation for SRAP reads
as follows:

(P3)

n n n n
maximize Z Z OuTui — Z Y — Z ©..
i=1

u=1 i=1 u=1
subject to:
n—1 n.
Z Z duvfuvi < B7 Vi € Va (28)
u=1v=u+1

n—1 n n
> > > dwfuwi <D+ B, (29)

u=1v=u+1 i=1

n
qui <1, Yu €V,

i=1

Tyi —Yi <0, YueV,icV,

Juvi — Tui 2 0, Vu,v € Viu <wv, Vi€V,

Juvi — Ty 20, Vu,v € V,u <w, Vi€V,

Juvi = Tui — Tos <0, Yu,veV,u<v, VieV,

Ty € {0,1}, YucV, VicV,

yi € {0, 1}, VicV,

Juvi € {0,1}, Yu,v € V,u <w, Vi € V. (30)

Let us briefly discuss the model. The objective function is the same as that for the (P2)
model, and as discussed earlier, if ©, taken to be n + 1, every partition, if there is one,
has a more attractive cost than any packing of the vertex set. The first set of inequalities,
constraints (28), assures that the capacity of each ring is equal to B. The second set of

9

inequalities, constraint (29), refers to the capacity limitation of federal ring. Finally, the
constraints (30) observe the integrality conditions on the variables fy,;. Thus, an optimal
solution to this 0-1 integer linear programming corresponds to the optimal feasible partition
of V.

Note that the second IP formulation requires n? + mn + n binary variables and n? 4
3mn + 2n + 1 constraints. So, this formulation is more compact than first 1P formulation
that requires n? + 3mn -+ n binary variables.

4 Computational Results

In this section, we show some empirical results obtained from computational experiments.
Our goal is to confirm that the formulations proposed here are useful when optimizing
the instances of the SRAP, e.g., suppose one is given some instance of the problem and a
linear and integer program solver, what would be the most promising formulation to choose:
(P1), (P2) or (P3)? In order to answer this question, we established two criteria: number
of branch nodes in the enumeration tree and CPU time.

Our computational experiments were performed on a Linux PC AMD K6/450 MHz with
256 Mbytes of main memory. Initially, we describe two classes of instances used in the tests.
Next, we present the results obtained by formulations.

4.1 Test Instances

We used the following classes of instances, namely, classes C1 and C2, for our experiments.

Class C1

The class of instances C1 was generated by Goldschmidt et al. [4]. Their instances were
divided into two types of random test data:

e gcomctric instances representing natural cluster, i.c., customer sites try to communi-
cate more with close neighbors than with distant ones;

e random instances were generated from complete graphs and retaining edge (u, v) with
probability p, e.g., each edge of the complete graph exists in the random instance if

p € (0,1).

Each type of random test data contains both high and low demand graphs, namely the
high-demand cases, where 622M/bs ADM are being considered, and the low-demand cases,
where the ring capacity is 155M bs.

We have tested 23 high-demand and 24 low-demand instances. Finally, the dimension
of the instances is 15 and 25 customer sites (or nodes). The distribution of these instances
among geometric and random, high and low-demands, and values of n, are reported in Table
1.

10

Type Capacity (B) Cardinality (|V])

15 25
geometric 155Mbs 4 5
geometric 622M bs 4 7
random 166M bs 7 8
random 622Mbs 7 5

Table 1: Distribution of the instances tested in class C1.

Class C2

This class of instances was generated by Aringhieri and Dell’Amico [1]. The authors gener-
ated harder instances with respect to those belonging to class C1. Aringhieri and Dell’ Amico
defined one instance as hard if the greedy algorithms, proposed by Goldschmidt et al. [4],
are not able to find the optimal solution, within a reasonable computing time.

We tried to solve 10 high-demand and 20 low-demand instances. The dimension of the
instances is equal to the instances belonging to class Cl, e.g., 15 and 25 customer sites.
Table 2 presents the distribution of these instances.

Type Capacity (B) Cardinality (|V])
15 25
geometric 155Mbs 5 5
geometric 622M bs 0 5
random 155Mbs 6 4
random 622M bs 5 0

Table 2: Distribution of the instances tested in class C2.

4.2 Comparing Formulations

In this subsection, we present and discuss the results obtained from formulations (P1), (P2)
and (P3) for the classes of instances presented above.

For comparison, the instances have been solved by XPRESS version 12.05 (see [3]) within
a maximum computing time cqual to 18,000 scconds. We have also cstablished that the
maximum number of nodes for the branch-and-bound procedure has been set to 300,000
nodes. Furthermore, we have defined ©, as being equal to n + 1 for each customer site
uev.

4.2.1 Class C1

Tables 3-8 below contain the results for these instances obtained with formulation (P1) and
the formulations proposed in this work, namely (P2) and (P3). A total of 47 instances were

11

used in the study. The results are divided with respect to the type, e.g., geometric and
random instances.

Those tables have the following columns: name: the instance tested; z*: the optimal
value of the instance; #nodes: total number of nodes explored in the enumeration tree; z:
value of lower bound reached by formulation; gap (%): relative gap between the optimal
value and the lower bound, that is

gap (%) = (Z*Zj z) % 100; (31)

time (sec.): time in CPU seconds required by XPRESS to find the optimal (or lower
bound) solution for the instance tested using one formulation.

“»

Furthermore, whenever appears for gap entries, the formulation has reached the
optimal solution, for the corresponding instance, but the LP optimality was not proved,
due to the maximum CPU time.

Geometric instances

As one should notice from Tables 3-5, optimality was proved for 16 out of the 20 instances
solved by formulation (P3). It should also be noticed that the formulation (P2) has proven
optimality in 16 out of 20 instances, whereas the formulation (P1) has found optimal solution
for only 9 instances.

Furthermore, in relation to the results presented in Tables 3-5, for the remaining 4
instances which are left unsolved (to proven optimality), gaps between the best lower bound
and optimal value have been closed by at most 50% for the formulation (P2), in just 4
instances, whereas for the formulation (P3) optimal solution has been reached, but LP
optimality was not proved. Finally, the gap has been closed by at least 33.33% and at most
50% for the formulation (P1). As it can be appreciated, the gap is very weak when we used
the formulation (P1). This shows that our formulations may provide a tight lower bound
on the optimum integer solution.

It should also be noticed that the number of branch nodes is typically fairly small, in
most instances tested, when using formulations (P2) and (P3). Finally, we also observe
that the CPU time for the formulations (P2) and (P3) run at least 1.22 and 11.82 times,
respectively, small than the CPU time obtained by formulation (P1).

Random instances

Results were reported in Tables 6-8. Across 27 instances tested, the formulation (P3)
found the optimal solution in 21 instances. It is interesting to observe that the formulation
(P2) proved the optimality for 20 out of 27 instances. Furthermore, the formulation (P1)
found the optimal solution in 15 instances tested. Once again, as before, this confirms the
effectiveness of the formulations proposed here.

It should also be noticed that for the remaining instances that were left unsolved, the

12

formulation (P3) reached the optimal solution. However, optimality was not proved, due
to maximum CPU time. The relative gap obtained by formulation (P2) have been closed
by at least 33.33% (in just one instance) and by at most 50% (in 6 instances). Finally, the
gap for the formulation (P1) have been closed by at least 33.33% (in 5 instances) and by at
most 50% (in 7 instances).

As can be appreciated from the results, the number of branch nodes in the enumeration
tree was small when the formulation (P3) was used to solve those instances. Moreover,
one should also notice that the CPU times required to prove optimality have been modest
for the formulation (P1), while the solution times for the formulations (P2) and (P3) are
significantly better. In particular, for most of the instances tested, the overall CPU time
spent by formulation (P2) dominated at least 1.01 the CPU time required by formulation
(P1), whereas the CPU time required by formulation (P3) was better than the CPU time
required by formulation (P1) at least 2 times.

B = 155Mbs

name z* #nodes z gap (%) time (sec.)
gl 151 3 7208 3 0 851
gl 154 3 7317 3 0 823
gl 157 3 7450 3 0 800
gl 159 3 300000 2 33.33 7414
gl 251 4 16100 2 50 18000
gl 253 3 32600 2 33.33 18000
gl 25 4 4 15300 2 50 18000
gl 257 3 16600 2 33.33 18000
gl 25_8 4 13200 2 50 18000
B =622Mbs

name z* #nodes z gap (%) time (sec.)
gh_ 151 3 46806 3 0 2847
gh 152 3 27695 3 0 8888
gh_15_8 3 7047 3 0 3053
gh 159 3 20324 3 0 3096
gh 251 3 8600 2 33.33 18000
gh 252 2 3261 2 0 1808
gh 253 2 2162 2 0 962
gh 254 3 7000 2 33.33 18000
gh 257 4 5200 2 50 18000
gh 258 3 7700 2 33.33 18000
gh 259 3 7000 2 33.33 18000

Table 3: Results obtained by formulation P1 for class Cl: geometric instances.

4.2.2 Class C2

Tables 9-14 reported the results obtained by some instances belonging to class C2. A total
of 30 test instances were used in the study. As before, we compared the performance of the

13

B = 155Mbs

*

name z* #nodes z gap (%) time (sec.)
gl 151 3 4873 3 0 654
gl 154 3 3994 3 0 665
gl 157 3 9838 3 0 1880
gl 159 3 16030 3 0 1875
gl 251 4 16500 2 50 18000
gl 253 3 12568 3 0 11289
gl 25 4 4 106200 2 50 18000
gl 257 3 12612 3 0 14755
gl 25_8 4 12400 2 50 18000
B =622Mbs

name z* #nodes z gap (%) time (sec.)
gh_ 151 3 11954 3 0 2222
gh_ 152 3 7424 3 0 2296
gh_15_8 3 3645 3 0 1731
gh 159 3 12357 3 0 2599
gh 251 3 3202 3 0 2481
gh 252 2 923 2 0 451
gh 253 2 1233 2 0 689
gh 254 3 8466 3 0 2942
gh 257 4 7100 2 50 18000
gh 258 3 2781 3 0 4325
gh 259 3 7420 3 0 10261

Table 4: Results obtained by formulation P2 for class C1: geometric instances.

14

B = 155Mbs

*

name z* #nodes z gap (%) time (sec.)
gl 151 3 1870 3 0 72
gl 154 3 1544 3 0 32
gl 157 3 1405 3 0 46
gl 159 3 5499 3 0 69
gl 251 4 34300 4 - 18000
gl 253 3 3772 3 0 1014
gl 25 4 4 29500 4 - 18000
gl 257 3 2265 3 0 576
gl 25_8 4 42100 4 18000
B =622Mbs

name z* #nodes z gap (%) time (sec.)
gh_ 151 3 8476 3 0 156
gh 152 3 2259 3 0 106
gh_15_8 3 2004 3 0 171
gh 159 3 1758 3 0 68
gh 251 3 2283 3 0 723
gh 252 2 376 2 0 52
gh 253 2 288 2 0 39
gh 254 3 2583 3 0 989
gh 257 4 34300 4 - 18000
gh 258 3 3639 3 0 1327
gh 259 3 1836 3 0 780

Table 5: Results obtained by formulation P3 for class C1: geometric instances.

B =155Mbs

*

name z* #nodes z gap (%) time (sec.)
rl.15.1 3 11671 3 0 1136
rl.15.3 2 170 2 0 2
rl_15.4 3 5449 3 0 992
rl_15_6 3 14729 3 0 1245
rl 158 3 19342 3 0 2343
rl.15.9 3 24793 3 0 1750
rl_15_10 3 11663 3 0 2306
rl 252 3 19100 2 33.33 18000
rl.25.4 4 15160 2 50 18000
rl 255 4 20700 2 50 18000
rl 256 4 148060 2 50 18000
rl 257 4 15900 2 50 18000
rl 258 3 169060 2 33.33 18000
rl 259 4 12800 2 50 18000
rl 2510 4 19100 2 50 18000
B = 622Mbs

name z* #nodes z gap (%) time (sec.)
rh_15_1 3 20188 3 0 4123
rh_154 2 108 2 0 3
rh_ 155 3 29568 3 0 4349
rh_ 156 3 37361 3 0 4335
rh_15_7 2 134 2 0 4
rh_ 158 2 1166 2 0 26
rh_ 159 3 32864 3 0 4140
rh_ 252 3 8100 2 33.33 18000
rh 253 3 9300 2 33.33 18000
rh_ 257 3 9600 2 33.33 18000
rh 259 2 374 2 0 96
rh_25_10 3 10160 2 33.33 18000

Table 6: Results obtained by formulation P1 for class Cl: random instances.

16

B =155Mbs

*

name z* #nodes z gap (%) time (sec.)
rl.15.1 3 9118 3 0 1066
rl.15.3 2 168 2 0 3
rl_15.4 3 5752 3 0 1201
rl_15_6 3 12548 3 0 1816
rl 158 3 9591 3 0 1775
rl.15.9 3 15270 3 0 1730
rl_15_10 3 8853 3 0 1825
rl 252 3 4869 3 0 4037
rl.25.4 4 9200 2 50 18000
rl 255 4 9100 2 50 18000
rl 256 4 8200 2 50 18000
rl 257 4 7200 2 50 18000
rl 258 3 4044 3 0 2136
rl 259 4 23100 2 50 18000
rl 2510 4 12600 2 50 18000
B = 622Mbs

name z* #nodes z gap (%) time (sec.)
rh_15_1 3 4361 3 0 1450
rh_154 2 85 2 0 6
rh_ 155 3 9039 3 0 2378
rh_ 156 3 168060 3 0 3827
rh_15_7 2 187 2 0 10
rh_ 158 2 546 2 0 34
rh_ 159 3 18319 3 0 3629
rh_ 252 3 156060 2 33.33 18000
rh 253 3 2354 3 0 4006
rh_ 257 3 3103 3 0 4588
rh 259 2 353 2 0 77
rh_25_10 3 14037 3 0 13870

Table 7: Results obtained by formulation P2 for class Cl: random instances.

17

B =155Mbs

*

name z* #nodes z gap (%) time (sec.)
rl.15.1 3 1917 3 0 24
rl.15.3 2 53 2 0 1
rl_15.4 3 1990 3 0 53
rl_15_6 3 4503 3 0 59
rl 158 3 4246 3 0 63
rl.15.9 3 3084 3 0 37
rl_15_10 3 1965 3 0 64
rl 252 3 4776 3 0 848
rl.25.4 4 50100 4 - 18000
rl 255 4 66600 4 - 18000
rl 256 4 52400 4 - 18000
rl 257 4 52600 4 - 18000
rl 258 3 14363 3 0 1450
rl 259 4 49400 4 - 18000
rl 2510 4 55500 4 - 18000
B = 622Mbs

name z* #nodes z gap (%) time (sec.)
rh_15_1 3 4417 3 0 114
rh_154 2 52 2 0 1
rh_ 155 3 9093 3 0 203
rh_ 156 3 6648 3 0 119
rh_15_7 2 143 2 0 1
rh_ 158 2 660 2 0 8
rh_ 159 3 7724 3 0 140
rh_ 252 3 178513 3 0 12796
rh 253 3 214700 3 - 18000
rh_ 257 3 33740 3 0 3867
rh 259 2 93 2 0 9
rh_25_10 3 160709 3 0 15650

Table 8: Results obtained by formulation P3 for class Cl: random instances.

18

formulations (P1), (P2) and (P3) with relation to two criteria: the number of branch nodes
and CPU time.

Geometric instances

For these instances, the results are shown in Tables 9-11. A total of 15 instances were tested.
As one should notice from Tables 9-10, optimality was not proved for all the instances tested
here, whenever we used the formulation (P1) and (P2). The instances were not solved
to optimality within maximum CPU time, e.g .18,000 seconds. However, as one should
also notice from Table 11, optimality was proved for 5 out of the 15 instances solved by
formulation (P3). Furthermore, in relation to the results in this table, for the remaining
10 instances that were left unsolved (to proven optimality), formulation (P3) reached the
optimal solution, but the LP optimality is not proved due to maximum CPU time.

A direct comparison of the results in Table 9 with those in Tables 10-11 appear very
conclusive with relation to our formulations. Results show that the number of nodes in the
enumeration tree is small when using formulations (P2) and (P3). At this point, the results
indicate that our formulations seem to be more attractive than formulation (P1).

Random instances

Results were presented in Tables 12-14. For the 15 instances, note that formulation (P1)
obtained the optimal solution in 8 instances, whereas formulations (P2) and (P3) solved to
optimality 7 and 10 instances, respectively. On the other hand, in most instances, where
the optimality was proved, the number of branch nodes in the enumeration tree required
by our formulations, (P2) and (P3), was significantly smaller than the number of nodes
required by formulation (P1).

Although formulation (P1) found the optimal solution value in half of the instances
tested, we noticed that formulations (P2) and (P3) obtained a small relative gap in most
instances. Among those instances, just one has been closed by at most 50% for formulation
(P2), and just five instances the formulation (P3) reached the optimal solution, but the LP
optimality is not proved. So, these tighter formulations allow us to substantially reduce the
CPU times required by XPRESS to prove optimality.

5 Conclusion

In this work, we have briefly surveyed some of the previous attempts to solve a problem
that comes up in network design. It is called SONET Ring Assignment Problem. We have
argued that these attempts usually give rise to IP formulations which provide weak bounds
on the optimal solution value of the SRAP.

We have proposed two new alternative IP formulations, namely, (P2) and (P3). These IP
formulations have been tested through extensive computational experiments, using bench-
mark instances from the literature. Regarding computational results, some examples have

19

B =155Mbs

name z* #nodes z gap (%) time (sec.)
gl 15.3.1 4 65800 3 25 18000
gl 15.3.2 4 59400 3 25 18000
gl 15.3.3 4 69800 3 25 18000
gl 15.3.4 4 58100 3 25 18000
gl 15.3.5 4 53400 3 25 18000
2l 25.9.1 4 14300 2 50 18000
gl 25.9.2 4 18400 2 50 18000
2l 25.9.4 4 10800 2 50 18000
gl 25_10.4 5 4200 2 60 18000
gl 25.10.5 5 3900 2 60 18000
B = 622Mbs

name z* #nodes z gap (%) time (sec.)
gh 25.5.2 4 6100 2 50 18000
gh 25.5.3 4 2600 2 50 18000
gh 25.5.4 4 1800 2 50 18000
gh 25.5.5 4 2600 2 50 18000
gh 25.5.6 4 8000 2 50 18000

Table 9: Results obtained by formulation P1 for class C2: geometric instances.

B =155Mbs

name z* #nodes z gap (%) time (sec.)
gl 15.3.1 4 40000 3 25 18000
gl 15.3.2 4 37500 3 25 18000
gl 15.3.3 4 37200 3 25 18000
gl 15.3.4 4 33500 3 25 18000
gl 15.3.5 4 37500 3 25 18000
gl 25 9.1 4 16600 2 50 18000
gl 25.9.2 4 148060 2 50 18000
gl 25.9.4 4 10500 2 50 18000
gl 25.10.4 5 20300 2 60 18000
2l 25_10.5 5 26300 2 60 18000
B =622Mbs

name z* #nodes z gap (%) time (sec.)
gh 25.5.2 4 4800 2 50 18000
gh 25.5.3 4 3200 2 50 18000
gh 25.5.4 4 44060 2 50 18000
gh 25.5.5 4 4200 2 50 18000
gh 25.5.6 4 2900 2 50 18000

Table 10: Results obtained by formulation P2 for class C2: geometric instances.

20

B =155Mbs

*

name z* #nodes z gap (%) time (sec.)
gl 15.3.1 4 221627 4 0 5882
gl 15.3.2 4 218671 4 0 5924
gl 15.3.3 4 273976 4 0 7355
gl 15.3.4 4 232905 4 0 6309
gl 15.3.5 4 216932 4 0 6023
2l 25.9.1 4 49100 4 18000
gl 25.9.2 4 60700 4 - 18000
gl 25.9.4 4 60600 4 - 18000
gl 25_10.4 5 29400 5 - 18000
gl 25.10.5 5 29500 5 - 18000
B = 622Mbs

name z* #nodes z gap (%) time (sec.)
gh 25.5.2 4 27000 4 - 18000
gh 25.5.3 4 29600 4 - 18000
gh 25.5.4 4 38400 4 - 18000
gh 25.5.5 4 31000 4 - 18000
gh 25.5.6 4 34800 4 - 18000

Table 11: Results obtained by formulation P3 for class C2: geometric instances.

B =155Mbs

name z* #nodes z gap (%) time (sec.)
rl.15.2.1 3 10286 3 0 2143
rl.15.2.2 4 56300 3 25 18000
rl.15.2.3 3 28293 3 0 4513
rl.15.5.1 3 12619 3 0 2351
rl.15.5.2 3 7329 3 0 2128
rl.15.5.3 3 5782 3 0 1822
rl25.3.1 4 17760 2 50 18000
rl25_3.2 4 15500 2 50 18000
rl25_3.3 4 143060 2 50 18000
rl25_3.5 4 17960 2 50 18000
B =622Mbs

name z* #nodes z gap (%) time (sec.)
rh_15_10.1 3 11190 3 0 6188
rh_15_10.2 3 17964 3 0 11246
rh_15_10.4 3 30100 2 33.33 18000
rh_15_10.6 3 10064 3 0 5826
rh_15_10.8 3 31200 2 33.33 18000

Table 12: Results obtained by formulation P1 for class C2: random instances.

21

B =155Mbs

*

name z* #nodes z gap (%) time (sec.)
rl.15.2.1 3 o783 3 0 858
rl.15.2.2 4 114900 3 25 18000
rl.15.2.3 3 9514 3 0 1221
rl.15.5.1 3 17745 3 0 6673
rl.15.5.2 3 15193 3 0 4803
rl.15.5.3 3 3009 3 0 981
rl 25.3.1 4 10700 2 50 18000
rl 25_3.2 4 5400 2 50 18000
rl 25.3.3 4 17000 2 50 18000
rl25_3.5 4 12260 2 50 18000
B = 622Mbs

name z* #nodes z gap (%) time (sec.)
rh_15_10.1 3 11260 2 33.33 18000
rh_15.10.2 3 3421 3 0 4113
rh_15_10.4 3 11160 2 33.33 18000
rh_15_10.6 3 12533 3 0 15542
rh_15.10.8 3 11200 2 33.33 18000

Table 13: Results obtained by formulation P2 for class C2: random instances.

B =155Mbs

name z* #nodes z gap (%) time (sec.)
rl.15.2.1 3 10744 3 0 181
rl.15.2.2 4 300000 4 - 9303
rl.15.2.3 3 8281 3 0 191
rl.15.5.1 3 1113 3 0 28
rl.15.5.2 3 2552 3 0 68
rl.15.5.3 3 2774 3 0 62
rl 25.3.1 4 54100 4 18000
rl25_3.2 4 54500 4 18000
rl25_3.3 4 59700 4 - 18000
rl25_3.5 4 48400 4 - 18000
B =622Mbs

name z* #nodes z gap (%) time (sec.)
rh_15_10.1 3 9943 3 0 643
rh_15_10.2 3 7740 3 0 716
rh_15_10.4 3 14690 3 0 817
rh_15_10.6 3 13631 3 0 1287
rh_15_10.8 3 14690 3 0 819

Table 14: Results obtained by formulation P3 for class C2: random instances.

22

shown that these IP formulations may be adequate to solve instances of the SRAP to op-
timality, as long as these formulations provide stronger bounds on the optimal value of the
problem.

An interesting question for the future research is to strengthen the IP formulations by

deriving additional classes of valid inequalities. More precisely, we would like to give a
partial description of the polyhedron, whose extreme points are the (-1 solutions of the
system (7), (10), (11), (14), (25)-(27), (28), (29) and (30).

References

[1]

[11]

R. Aringhieri and M. Dell’Amico. Solution of the sonet ring assignment problem with
capacity constraints. Technical Report DISMI TR-12, Dipartimento di Scienze e Metodi
dcll’Ingegneria, Universita di Modena ¢ Reggio Emilia, 2001.

S. Cosares, D. Deutsch, I. Saniee, and O. Wasem. SONET toolkit: a decision support
system for designing robust and cost-effective fiber-optic networks. Interfaces, 25(1):30—
40, 1995.

Dash Optimization, Inc. XPRESS-MP: user manuals, 1999. Version 12.05.

O. Goldschmidt, A. Laugier, and E. V. Olinick. SONET/SDH ring assignment with
capacity constraints. Discrete Applied Mathematics, 129:99-128, 2003.

M. Grotschel and M. Padberg. Polyhedral theory. In R. Kan e D. B. Shmoys (eds.)
L. Lawler, J. K. Lenstra, editor, The Traveling Salesman Problem: a guided tour of
combinatorial optimization, pages 251-305. John Wiley & Sons, 1985.

E. M. Macambira. Modelos e Algoritmos de Programacdo Inteira no Projeto de Redes
de Telecomunicacées. PhD thesis, Universidade Federal do Rio de Janciro, Programa,
de Engenharia de Sistemas e Computacao, May 2003. In portuguese.

S. Martello and P. Toth. An algorithm for the generalized assignment problem, pages
589 603. Operational Research, volume 81. North Holland, Amsterdam, 1981.

G. L. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley &
Sons, 1988.

J. Sosnosky and Tsong ho Wu. SONET ring applications for survivable fiber loop
networks. TEEE Communications Magazine, 29(6):51-58, June 1991.

0. J. Wasem, Tsong-Ho Wu, and R. H. Cardwell. Survivable SONET networks -
design methodology. IEEFE Journal on Selected Areas in Communications, 12(1):205—
212, January 1994.

L. A. Wolsey. Integer Programming. Wiley & Sons, 1998.

23

