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Abstract

Many works have reported simulated performance benefits of stream reuse techniques such as chaining,

batching, and patching to the scalability of VoD systems. However, the relative contribution of such tech-

niques have been rarely evaluated in practical implementations of scalable VoD servers. In this work,

we investigate the efficiency of representative stream reuse techniques on the GloVE system, a low-cost

scalable VoD platform whose resulting performance depends on the combination of the stream tech-

niques it uses. More specifically, we evaluated performance of the GloVE system on delivering multiple

2-hour MPEG-1 videos to clients connected to the server through a 100 Mbps Ethernet switch, and ar-

rival rates varying from 6 to 120 clients/min. We present experimental results including startup latency,

occupancy of server’s channels, and aggregate bandwidth that GloVE demands for several combinations

of stream reuse techniques. Overall, our results reveal that stream reuse techniques in isolation offer

limited performance scalability to VoD systems and only balanced combination of chaining, batching,

and patching explains the scalable performance of GloVE on delivering highly popular videos with low

startup latency while using the smallest number of server’s channels.



1. Introduction

In recent years, considerable research efforts have been concentrated on the design of scalable Video on

Demand (VoD) systems since they represent a key-enabling technology for several classes of continuous

media applications, such as distance learning and home entertainment. In particular, a central problem

VoD designers face is that in a typical VoD System with many videos, even a transmission of a single

high-resolution video stream in a compressed format, consumes a substantial amount of resources of

both the video server and the distribution network, which limits scalable performance of the VoD system.

Given that users can choose any video and start playback at anytime, a significant investment on server’s

hardware will be required to support large audiences. Therefore, it is fundamental that a VoD server

supports stream distribution strategies capable of using efficiently the server’s resources in order to

reduce its cost/audience ratio.

Typically, a VoD server supports a finite pool of stream channels, where the amount of channels

is often determined by the server’s bandwidth divided by the video playback rate. The reason that

Conventional VoD systems cannot scale is because they dedicate one different channel to each active

client, in an one-to-one approach. As a result, the total number of clients a conventional VoD system

supports is equal to the limited number of server’s channels.

The efficiency of a VoD system can be characterized by two metrics: scalability and startup latency.

The former accounts for the number of simultaneous active clients a VoD system can support on transmit-

ting video streams without network jitters whereas the latter defines the average time difference between

a client request and starting video playback.

Due to the scalability limitation of the one-to-one approach, several scalable streaming techniques

have been proposed in the literature. Basically, such techniques allow multiple clients to share the

stream contents that are delivered through each of the server’s channels, in an one-to-many approach.

Two important examples of scalable streaming techniques are Chaining [22], where earlier arriving

clients transmit video streams to the new clients, forming stream chains across the network, and Patch-
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ing [12], in which active clients provide extra short streams, namely the patches, to the other active

clients. In previous work, we proposed a new streaming technique, which we called the Cooperative

Video Cache (CVC) [13] that combines chaining and patching under a P2P model. Essentially, CVC

extends the functionality of clients’ playout buffers1, by treating them as parts of a globally distributed

memory that caches and supplies stream contents to active clients in a cooperative way. In [19, 20] we

reported performance results of a VoD prototype we developed, namely the Global Video Environment

(GloVE) that confirmed that CVC adds scalable performance to conventional VoD servers in practical

environments such as video distribution in an academic department.

In contrast with existing works that evaluated performance of scalable streaming techniques through

simulations, in this work we assess the efficiency of representative streaming techniques in practical

situations. More specifically, since the GloVE prototype allows the evaluation of streaming techniques

either separately or in any combination of them, we examined their relative performance contribution to

the scalability of VoD systems that GloVE encompasses. In addition, we addressed the impact of the

popularity distribution of videos on the effective use of VoD system’s resources.

In summary, the main contributions of our work are:

� We assess the relative contribution of stream reuse techniques to the scalable performance of VoD

systems in practical settings.

� We quantify the influence of video prefetching rate on the performance behavior of a VoD server.

� We evaluate the impact of the distribution of video popularity on VoD system’s performance.

The remainder of this paper is structured as follows. Section 2 presents an overview of stream reuse

techniques. In Section 3, we describe briefly the main characteristics of the GloVE platform. In Section 4

we analyze GloVE’s performance results for several configurations of streaming techniques with various

workloads. Section 5 describes related works. Finally, we conclude in Section 6.

1Clients use playout buffers to hide the network jitter and inherent variations of VBR videos
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2. Stream Reuse Techniques

This section presents briefly scalable streaming techniques that are representative examples of the class

of multicast-based stream reuse techniques that have been proposed in the literature[15]. These tech-

niques can be categorized as proactive or reactive depending whether the VoD server transmits periodi-

cally video streams through its channels independently of client requests or the VoD server sends streams

through its channels in response to client requests.

2.1. Proactive Streaming Techniques

Broadcasting. Usually, broadcast schemes [11] divide the video stream into segments that are trans-

mitted periodically to clients through dedicated server’s channels. In this way, while a video segment

plays back, its subsequent segment will arrive on time, thus guaranteeing no interruptions to the video

playback. Despite its high scalability, broadcasting wastes many channels and imposes high latency

(typically in the order of hundreds of seconds).

2.2. Reactive Techniques

Batching. In this approach, requests issued within a certain time interval to the same video are first

enqueued and are served afterwards by a single multicast stream [5]. Two alternatives can be used to

service the queue: the queue’s length and waiting time. In the former, a multicast stream is sent to the

waiting clients only after the queue length reaches a determined value. In the later, arriving clients are

inserted into the queue and waits until a determined time, after which a video stream will be transmitted

to them. Note that the first client that requested the video will wait more time than the subsequent

ones, which tends to create unfairness on startup latency, especially when batching allows relatively

long queuing time in an attempt to reduce channel occupancy.

Patching. In this technique [12], the server first starts a full video multicast to the first client. It has

to be a full stream transmission because the server has to provide all video segments to the first client.
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However, subsequent clients that request the same video will be added to the existing video multicast

group while storing temporarily the streaming contents they receive in their local buffers. Concurrently,

the server will transmit to each new client an extra video stream, which is called the patch, that contains

the initial video segment the new client missed. Once the patch arrives, the client can start to playback

the video patch, after which it switches to its local buffer to playback the next video segments. Assuming

the VoD system uses a stream rate equal to its playback rate, the duration of the patch stream will be

proportional to the time interval between the first request and the new one. Thus, a potential disadvantage

of patching is that it may require local buffers with high capacity to cope with large patches.

Chaining. The strategy this technique [22] uses is to create chains of client buffers. Specifically, as

long as a certain client holds in its buffer the initial part of a video, a subsequent request for the same

video can be served by the playout buffer of that earlier client rather than the video server. We assume

clients start video playback from the beginning. Note that chaining follows the peer-to-peer model,

which is highly scalable. In practice, however, the scalability of chaining depends on the aggregated

bandwidth that the distribution network supports, since it limits the amount of active streams across the

network.

Cooperative Video Cache (CVC). This technique implements a global video cache management over

the video streams that are dynamically stored in the client’s local buffers. In addition, it uses a com-

bination of chaining and patching to reuse video streams from the global video cache. Basically, CVC

reuses the distributed video contents by chaining client buffers while applying patches whenever these

offer effective reuse of active multicast streams [13]. Also, CVC exploits the Batching [5] technique to

enable clients that arrive in a given time interval to form multicast groups. More detail of CVC can be

found in [19, 20].

In this work we focus on reactive streaming techniques, which allow often to combine low latency

with high scalability.
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3. The GloVE System

In this section, we describe briefly the main features of the GloVE (Global Video Environment) a scal-

able peer-to-peer VoD system.
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Figure 1. The architecture of the Global Video Environment (GloVE).

GloVE (Figures 1) implements the cooperative video cache while supporting a peer-to-peer system

with a centralized metadata component, namely the CVC Manager (CVCM). The CVCM monitors

globally the video contents stored in the playout buffers of the clients. The CVC Client (CVCC) software

allows client buffer’s contents to be shared with the other clients, reducing the demand on the CVC

Server (CVCS). GloVE assumes that the communication network has IP multicast support and that the

VoD server manages the video as a sequence of blocks with random access. Next, we describe the

GloVE components in more detail.

CVC Server (CVCS). CVCS works as block-based, unicast-only video server. CVCS receives requests

from clients and sends back 64K blocks to them using the UDP protocol over unicast transmission.
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CVCS guarantees the arrival of blocks at the clients, and uses sub-block retransmission when necessary.

Two types of server access are employed: coarse and smooth. With coarse accesses, clients request

blocks without rate control, so that the response time is dependent on the available server’s bandwidth

which is inversely proportional to the amount of clients receiving streams from the server. With smooth

server’s accesses, clients request blocks at the playback rate.

CVC Client (CVCC). CVCC runs on the client device and manages its local playout buffer. CVCC

uses multiple threads to implement the following main tasks: 1) Request/Receive blocks to fill the buffer,

2) Retrieve blocks from the buffer and send them to a third-part video decoder software, and 3) Send

blocks through a multicast stream when signalized by the CVC manager.

CVC Manager (CVCM). CVCM can execute in the same server’s unit, and uses a structure that keeps

information on active clients in the system, such as the stream’s last block, and last transmitted block.

Based on these data, CVCM uses a state machine to categorize the clients and to support new requests

according to three different options: (1) Prefetching requests, for which CVCM uses batching; (2) Play-

back without discarding, for which CVCM creates a full new multicast stream; (3) Playback with dis-

carding, CVCM inserts the client into the group of receivers of the multicast stream already active, and

orders a patch from the server to the client. Given these multiple options, GloVE supports two provider

policies in the CVCM, which influence the resulting performance of the VoD system. First, the Em-

phasis on Chaining (PEC) policy, in which the CVCM always tries to create a new complete multicast

stream from a client that is not a provider yet and has not discarded the first video blocks from its buffer.

If CVCM cannot find such a client, it attempts to reuse an active multicast stream in combination with

a patch. This strategy may lead to long chains of clients, where the majority of multicast streams serves

single clients, although it is easier to recover from chain disruptions. However, it tends to cause a huge

consumption of aggregated network bandwidth. Second, the Emphasis on Patching Policy (PEP), which

gives priority to stream reuse, and requires less aggregated bandwidth, but as various clients share the

same stream, it increases the complexity of recovering from broken chains, besides it uses a significant
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amount of patches.

3.1. Operation Modes

Another interesting feature of the design of CVCM is the possibility to set different operation modes

based on several combinations of stream reuse techniques available in the VoD prototype (Chaining,

Patching, and Batching). So far, we have defined six operation modes, as follows.

� Conventional, which mimics a conventional VoD system without stream reuse.

� Chaining, which implements chaining as we proposed, creating client chains where all streams

have only one receiving client.

� Batching, while a client prefetches for a new video for the first time new arriving clients that

request the same video will form a receiving group to which the first client will transmit to.

� Patching+Batching, which implements a combination of patching and batching modes.

� CVC, which implements CVC whose operation is influenced by the provider policy it adopts either

PEC or PEP.

� CVC+Batching, which implements the batching extension to the CVC mode.

In this work, we will present results only for the CVC+Batching mode under the emphasis on patching

(PEP) policy, which produced the best performance according to our past experiments [19, 20].

4. Experimental Methodology

In this section, we present our testbed, the evaluation methodology, and experimental results we ob-

tained.

8



4.1. Hardware Platform

The experiments we describe below were performed on a 6-node cluster of Intel Pentium IV 2.4 GHz, 1

GB RAM, running Rocks Linux 2.3.2 with kernel 2.4.18 using a Fast Ethernet switch with IP Multicast

support (3Com Superstack II 3300, version 2.69). One node executed both the video server (CVCS) and

the CVC manager (CVCM) whereas each of the other five nodes executed multiple instances of clients.

4.2. Evaluation Methodology

We used a MPEG-1 video (352x240, 29.97 frames/s) of Star Wars IV movie, with average transmission

rate near to 1.45 Mbps. To allow multiple clients per node, we developed an emulator of MPEG-1

decoder, which uses a trace file containing the playback time of each segment of the video. The trace file

was obtained by collecting the blocks’ consumption pattern of the real decoder over a previous execution

of the video. The workload we assumed ranges from medium to high clients’ arrival rates according to

a Poisson process with values of 6, 10, 20, 30, 60, 90, and 120 clients/min.

We assume that the CVCC video server supports at most 56 MPEG-1 streams simultaneously, ac-

cording to previous measurements we made using the same network infrastructure. Also, we evaluated

the playout buffer for sizes 64, 128, and 256 blocks, which can store video sequences of 22, 44, and 88

seconds, respectively.

We evaluate performance of a VoD system under practical network conditions for four operation

modes: CVC+Batching, Chaining, Batching, and Patching+Batching. Specifically, instead of simulation

[16], we employed an emulation approach by setting GloVE variables as follows: 1) 64 KB blocks as the

system access unit; 2)prefetch limit of 32 blocks; 3) patch limit equal to half of playout buffer size minus

4 blocks of tolerance, and 4) discarding limit equal to playout buffer size minus prefetch limit minus 8

blocks of tolerance. The CVC manager introduces a tolerance of 4 blocks due to eventual information

difference in the video contents that the playout buffers actually store and the metadata the manager

maintains of playout buffers in the system.
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The values of GloVE variables determine the time window where contents can be potentially reused.

Given the average consumption rate of the video we used in the tests, the average block playtime is

equal to 0.345 s. The duration of prefetch phase will be determined by the stream source, as follows.

For coarse access to the server, the prefetch duration will depend on the number of active streams in

the server, with a minimal value near to 350 ms. For smooth access to the server the prefetch duration

is about 11 s. When a client is the streaming source, the prefetch duration will depend on the kind of

reuse it is employed, ranging from few seconds with patching up to 22 seconds with batching. As an

example, consider a playout buffer of 128 blocks and the patch limit of 64 blocks. In this way, streams

the clients generate can be reused for patching within 20 s (block play time x patch limit) duration after

their creation. Moreover, a client can provide a new complete stream up to 30 s (block play time x

discard limit) after starting playback.

For the experiments with multiple videos, we emulated a collection of eight videos, where the video

popularity follows a general Zipf distribution with �����	��
 [5]. In addition, we also investigated the

sensitivity of the VoD system to ���� which represents an uniform distribution, and ����� , which

represents Zipf without skew.

4.3. Experimental Results

We present results of our experiments in three separate parts: single video, multiple videos, and a sensi-

tivity analysis of server’s performance to the popularity distribution of the videos.

Experiments with a Single Video

Channel utilization. Figure 2 shows the utilization of server’s channels using block request rate with

smooth and coarse access for different GloVE modes and playout buffer sizes. Note that channel oc-

cupancy indicates the relative degree of scalability of each particular technique. Specifically, the lower
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channel occupancy a technique produces for a given amount of active clients the higher is its scalability.
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Figure 2. Utilization of server channels under each GloVE operation mode. (a) CVC+Batching. (b)
Chaining. (c) Patching+Batching. (d) Batching.

Figure 2(a) shows that the CVC+Batching mode occupies only one channel for playout buffers with

size larger than 64 blocks. For arrival rates lower than 20 clients/min, CVC+batching changed its be-

havior because the average interval between consecutive requests is at least 6 seconds. Recalling that

64-block playout buffers allow stream reuse after starting playback within intervals of at most 8 s for

chaining and 10 s for Patching, the chance of clients missing the reuse window is high for arrival rates

less than 20 clients/min, which reflects the low use of channels. As the reuse window depends on

prefetching for modes that include Batching, the opportunity for stream reuse is higher for smooth ac-

cesses to the server. The reason is that smooth accesses generate long prefetchings, leading to lower

11



channel’s occupation in comparison with coarse accesses, which issue short prefetchings.

Regarding buffer size, the Chaining mode (Figure 2(b)) also presents different behavior with 64-block

playout buffers for low arrival rates. In particular, the reuse window is limited to Chaining within 8 s

intervals, which restricted the minimum occupation to 8 channels. Another characteristic of chaining

mode is the significant influence of the prefetching on arrival rates higher than 20 clients/min. In this

case, the higher is the arrival rate, so is the probability of a client to arrive while previous ones are

either prefetching or providing video streams. Note that as the prefetching phase is shorter with coarse

accesses to the server, the channel occupancy presented slightly lower values.

As Figure 2(c) shows, the Patching+Batching mode is influenced strongly by the server access type.

The fact is that this mode requires initial stream reuse using Batching, because a multicast stream must

be active to allow reuse via Patching. Given a shorter stream prefetching using coarse access to the

server, the use of channels tends to be very high for arrival rates lower than 60 clients/min. In contrast,

with smooth access the opportunity for stream reuse with Batching is increased significantly, so that the

minimum channel occupancy is reached at 20 clients/min. Note that the playout buffer size influences

the chances of using Patching, especially when using larger buffers for low arrival rates, which led to

better use of channels.

As can be seen in Figure 2(d), the server access type also determines the efficiency of the Batching

mode. Specifically, when using the server with smooth access, channel’s occupation is very similar to

that achieved by the Patching+Batching mode. However, Batching mode does not benefit from larger

buffers, as occurred with the Patching+Batching mode for low arrival rates. The difference of channel

occupancy curves of the two models for arrival rates from 20 to 90 clients/min comes from the longer

average prefetching the Batching mode generates. When Patching is used, the average prefetching is

substantially reduced, decreasing the opportunity of stream reuse for the next arriving clients.

Active streams. Figure 3 shows the amount of active streams in the system for each server mode. The
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values in the figure indicate the aggregated bandwidth as required by each mode. Note that the minimum

amount of active streams is at least equal two, which includes one stream from both the server and the

first client.
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Figure 3. Number of active streams under each GloVE operation mode. (a) CVC+Batching. (b)
Chaining. (c) Patching+Batching. (d) Batching.

For the CVC+Batching mode, as shown in Figure 3(a), the number of active streams is practically

the same whether using smooth or coarse accesses to the server. The size of a playout buffer only

influences the amount of active streams for low arrival rates. Another factor that affects the number

of active streams is the type of stream reuse. Whenever Patching can be used no full streams will be

generated. Otherwise, the server attempts to use Chaining, and generates a new stream if possible. The

latter alternative occurs often for low arrival rates and playout buffers with small size.
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Intuitively, the Chaining mode (Figure 3(b)) led to the same amount of active streams and clients,

since the streams Chaining generates have only one receiver and the Chaining mode is independent of

buffer size and server’s access type.

Figure 3(c) presents curves of active streams for the Patching+Batching mode. As the figure shows,

this mode is influenced by both playout buffer size and server access type, especially for arrival rates

lower than 60 clients/min. For smooth access, the server has more opportunities for stream reuse through

Patching, which led to less active streams. For coarse access, as the arrival rate decreases, the probability

of stream reuse using Batching increases with just one receiver per stream, and also with many more

streams coming from the server because no stream reuse is possible.

The number of active streams for the Batching mode as shown in Figure 3(d) depends on both arrival

rate and server access type. For arrival rates higher than 30 clients/min the influence of server access

type is negligible, with many clients sharing the same stream. For arrival rates lower than 30 clients/min,

the majority of streams for a server with coarse access comes from the server itself, because there is no

opportunity to use Batching. When using a server with smooth access, the streams Batching generates

are the dominant ones.

Startup latency. The latency between a video request and its playback is shown in Figure 4. Intuitively,

an efficient yet fair VoD system must have short startup latency with minimum time variance.

Figure 4(a) presents the behavior of startup latency of a server with smooth accesses. The average

latency for the CVC+Batching mode is near to 10 s, which is slightly less than the latency clients

experience (11 s) when they receive streams from the server at playback rate. The minimum latency

value is near to 5 s, which occurs when Patching is used and the patch stream corresponds to the half

of the prefetch limit (16 blocks x block play time = 5.5 s). The maximum value is near to 18 s, which

is achieved when a client is inserted into the group of a prefetching client (maximum latency = 2 x

prefetch limit = 22 s). For the Chaining mode, the average latency is near to 11 s, and the minimum
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Figure 4. Error bars showing playback start latency (max,avg,min) under different modes using
playout buffers of 128 blocks. (a) With smooth prefetching. (b) With coarse prefetching.

and maximum values are very close to the average latency. This occurs because in Chaining all streams

follow the playback rate and no waiting time happens between video request and starting prefetching.

The Patching+Batching mode has similar behavior to that of CVC+Batching. In particular, it led to a

slightly decrease on the average latency for arrival rates ranging from 20 to 60 clients/min, because the

use of Patching is increased within this range. For the Batching mode, the average latency is near to 13

s because a lot of clients will be inserted into the group of a client that performs prefetching, which also

increases the minimum startup latency to about 8 seconds.

Figure 4(b) presents startup latency for a server with coarse accesses. Notice that all modes have min-

imum latency near to 350 ms, which is experienced by the first client that received a stream from server.

For the CVC+Batching mode, the average latency is close to 4 s, with maximum value less than 12 s,

which happened to a client that was inserted in the group of a prefetching client (350 ms + 11 s). For

the Chaining mode, the average latency is approximately 9 s for arrival rates from 10 to 30 clients/min.

However, for higher arrival rates, the average latency starts to decrease due to the prefetching effect,

which required additional server channels. The maximum value is similar to that of CVC+Batching.

The Patching+Batching mode has an average latency that is dependent on the arrival rate. As the arrival

rate increases, so does the average latency because more clients are served through Patching instead of
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the VoD server. The maximum Latency value is near to 9 s, and follows the Patching behavior. For the

Batching mode, the average latency increases according to the arrival rate until 60 clients/min, at which

the average latency is 12 s, while maintaining this value for higher arrival rates. Batching produced the

maximum average startup latency for this server’s access type, near to 17 s, as the result of a client being

inserted into the multicast group of a prefetching client.

Experiments with Multiple Videos

Channel utilization. Figure 5 presents the utilization of server’s channels as required by the different

GloVE modes with eight videos stored in the VoD server. The videos’ popularity follows a Zipf dis-

tribution with �����	��
 . In the best case, at least one channel will be used for each different video the

clients requested. In the worst case, one channel will be used for each client request, which is ultimately

the behavior of a conventional VoD system.

The curves of Figure 5(a) show that the minimum amount of channels the server used was reached with

at least 20 clients/min and 256-block playout buffers. The curve for 128-block playout buffers indicates

that the minimum amount occurred at 60 clients/min. Recall that for a single video the minimum was

reached with near to 10 clients/min. The same relationship remained for 64-block playout buffers, which

demonstrates the direct influence of the number of videos on channel occupancy. The negative impact

of the server access type on channel occupancy was significant for average playout buffers and average

arrival rates. This result contrasts with the case of a single video where the negative impact was restricted

to playout buffers with the lowest size and small arrival rates.

Similarly to the single video case, the Chaining mode (refer to Figure 5(b)) continued to suffer the

negative consequence of prefetching, specially for arrival rates higher than 30 clients/min. At this arrival

rate, we noticed the minimum channel occupancy with 16 channels. For the same reason, as in the single

video case, Chaining achieved better performance using the server with coarse access.
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Figure 5. Utilization of server channels under each GloVE operation mode. (a) CVC+Batching. (b)
Chaining. (c) Patching+Batching. (d) Batching.

For Patching+Batching mode, the observations we pointed out for single video hold also for multiple

videos, as can be seen in Figure 5(c). The main difference is that there exist considerably less oppor-

tunities to reuse streams with either Batching or Patching. For arrival rates ranging from 60 to 120

clients/min, the minimum channel occupation is reached with smooth accesses to the server. Note that

with coarse access to the server, 20 channels is the minimum occupancy value that is achieved for the

highest arrival rate.

In Figure 5(d), channel’s occupancy behavior is very similar to that of Patching+Batching mode pre-

viously analyzed. However, it led to slightly higher channel occupancy for arrival rates ranging from 10

to 90 clients/min.
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Active streams. The amount of active streams appears in Figure 6. The minimum number of active

streams tends to be 16 provided that all the videos are requested twice at least.
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Figure 6. Number of active streams under each GloVE operation mode. (a) CVC+Batching. (b)
Chaining. (c) Patching+Batching. (d) Batching.

In the CVC+Batching mode (Figure 6(a)), the curves remained similar for both coarse and smooth

accesses to the server. The size of the playout buffer affected arrival rates from low to medium. As

explained in the case of a single video, the emphasis on Patching led to the lowest amount of active

streams. Naturally, Chaining tends to be used more within shorter arrival rates and with smaller playout

buffers.

In Chaining mode (Figure 6(b)) the number of active streams is equal to the number of active clients,
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as in the case of single video.

Comparing the two modes as shown in Figures 6(c) and (d), it becomes clear that both modes are

similar. The main differences appear mainly for playout buffer sizes of 128 and 256 blocks. With ei-

ther playout buffer size, the Patching+Batching mode generates less streams due to the opportunity of

stream reuse through Patching, which is not available in the Batching-only mode. Also, while the former

achieved a minimum count of 16 streams , the latter created as many as 26 streams at least.

Startup latency. The startup latency between a client request and starting video playback is shown in

Figure 7.
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Figure 7. Error bars showing playback start latency (max,avg,min) under different modes using
playout buffer of 128 blocks. (a) With smooth prefetching. (b) With coarse prefetching.

Figure 7(a) shows the startup latency when using a server with smooth access. Again, all values the

Figure presents are very similar to those of a single video, so the same observations remained valid.

Figure 7(b) presents the startup latency for a server with coarse accesses. In contrast with smooth

access, the average values for this access mode revealed interesting modifications to the startup latency,

especially for Patching+Batching and Batching modes. As the number of clients receiving streams from

the server raised significantly, the average startup latency decreased to values near to 1 for arrival rates

lower than 60 clients/min. For higher arrival rates, the average startup latency started to increase.
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The Effects of the Distribution of Video’s Popularity on Server’s Performance

Figure 8 illustrates the impact of the distribution of video’s popularity on the occupancy of server’s

channels.
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Figure 8. Utilization of server channels under different values of Zipf skew. (a) smooth access. (b)
coarse access.

As can be seen in Figures 8(a) and (b), the variations on the distribution of popularity of videos did

not impact significantly the amount of channels the VoD system required to service the client requests.

Indeed, none of the operation modes presented variations higher than 20% on the occupancy of server’s

channels .

4.4. Discussion

In the following, we discuss results presented in the previous section. We assume the average values we

obtained with playout buffers of 128 blocks for arrival rates of 6, 10, 20, 30, 60, 90, and 120 clients/min2.

Table 1 presents the results for a server with single video. These values show that the CVC+Batching

mode achieved the best results for all the performance metrics we evaluated.

2Except for latency and popularity distribution, which did not consider the value of 6 clients/min.

20



Operation Mode Server Channels Amount of Streams Latency (ms)
smooth coarse smooth coarse smooth coarse

CVC+Batching 1.2 1.4 8.7 8.7 10048 4010
Chaining 17.3 14.0 55.7 55.5 10886 7832

Patching+Batching 4.1 23.6 10.4 26.5 10204 2234
Batching 4.7 17.1 18.2 26.1 13146 9828

Table 1. Average results measured for single video and playout buffer size of 128 blocks.

Table 2 summarizes the average results for multiple videos. Again, the CVC+Batching mode outper-

formed the other modes for all the performance metrics we tested.

Operation Mode Server Channels Amount of Streams Latency (ms)
smooth coarse smooth coarse smooth coarse

CVC+Batching 14.5 15.7 31.2 31.9 10789 4507
Chaining 30.9 25.8 55.6 55.3 10797 5769

Patching+Batching 24.6 49.2 35.2 51.9 10960 1232
Batching 26.0 49.8 43.4 53.8 12260 1538

Table 2. Average results measured for multiple videos and playout buffer size of 128 blocks.

Finally, Table 3 shows average channel occupancy for several videos’ distribution of popularity. The

results in the table demonstrate clearly the low impact of the � value on channel occupancy. Also, they

give evidence that the system should perform well in widely different environments.

Operation Mode Zipf with ����� Zipf with �����	��
 Zipf with �����
smooth coarse smooth coarse smooth coarse

CVC+Batching 13.6 14.8 12.1 13.1 11.3 11.9
Chaining 30.7 25.9 30.3 24.6 27.0 22.9

Patching+Batching 23.4 47.7 20.5 48.1 18.5 47.3
Batching 24.7 48.2 22.1 48.8 20.3 47.6

Table 3. Average channel occupancy for different Zipf skews and playout buffer size of 128 blocks.
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5. Related Work

Works focusing on reactive stream reuse techniques. The original works that introduced the tech-

niques studied in this work are Batching [5], Chaining, Patching, and CVC [13]. GloVE uses the Batch-

ing technique in a different way as proposed in its original form [5]. Specifically, in GloVE clients

instead of the server can apply the Batching technique 3. Regarding to Chaining, the GloVE imple-

ments the standard approach described in the original work we described in previous section. GloVE

implements the original Patching technique as previously explained. Transition Patching was proposed

in [4] that allows patches for patch streams, which GloVE does not support. The work in [2] presents a

comparison of stream merging algorithms, but does not report results of any practical implementation.

Works focusing on peer-to-peer systems. The explosive growth of peer-to-peer systems started with

the development of file-sharing software, noticeably Napster [17] and Gnutella [7]. Napster employed

a centralized server to keep the metadata of contents stored at the peers across the Internet. Gnutella

introduced the distributed metadata approach, which obviated the need for a central management. GloVE

is similar to Napster in the sense that it uses CVCM, which is a central metadata manager. In the

context of peer-to-peer video streaming, various works have been developed in recent years, which are

closely related to GloVE: CoopNet [18], P2Cast [8], ZigZag [23], GnuStream [14], DirectStream [9],

and PROMISE [10] are valuable academic examples whereas Allcast [1], vTrails [24], and C-span [3]

are examples of commercial software. The idea behind CoopNet is to use clients as stream providers of

contents they received from the server previously, but only over periods of server overload (called “flash

crowd”). P2Cast uses clients to create application level multicast trees for streaming, where these clients

can send patches to other clients to recover from video sequences they missed. ZigZag also proposes

an application-level multicast tree scheme, but its main goal is to support small end-to-end delay. The

current version of GloVE uses IP Multicast facility as provided by typical LANs, but can be extended

3Refer to [6] for a classification of Batching Policies.
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to work with application-level multicast too. GnuStream introduced the novelty of working over the

widespread Gnutella network, which offers already a huge amount of continuous media. DirectStream

is an on-demand video streaming service that uses a directory server to administer active clients in a

manner very similar to that of GloVE. PROMISE offers support for client heterogeneity, reliability, and

limited capacity, which make the system suitable for the Internet as shown in the reported experiments.

This is not the case of our current version of GloVE. Given the limited information about commercial

examples, no direct relationship can be made with GloVE. In general, such works report simulated

performance of their proposals, in contrast with our work that evaluated a prototype using real network

traffic.

6. Conclusions and Ongoing Work

In this work we have compared the efficiency of reactive stream reuse techniques in a practical peer-

to-peer VoD system called the Global Video Environment (GloVE) we implemented in the Parallel

Computing Laboratory at COPPE/UFRJ. In particular, we described the design and evaluation of differ-

ent operation modes of GloVE according to stream reuse techniques it uses, namely Batching, Patching,

Chaining, and CVC. Also, we measured the influence on system behavior of client’s access pattern to

the server. Finally, we analyzed the impact of video popularity distribution on the system behavior.

Overall, the CVC+Batching mode outperformed the other modes on all the metrics we assessed, both

for a single video and for multiple videos stored in the server. Also, CVC+Batching is not significantly

affected by the server’s access pattern, which gives evidence that such a combining technique works

with different servers. Furthermore, we showed that skews on videos’ popularity distribution did not

impact substantially the VoD system’s performance. Thus, we speculate that the VoD system will have

good performance for different audiences.

Currently, we are working on mechanisms that will support scalable peer-to-peer VoD systems for

mobile environments with heterogeneous devices. Also, we plan to improve GloVE as to dynamically
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self-adapt to variations on network and peer conditions [21].
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