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Abstract. We consider the problem K(x)uxx = ut , 0 < x < 1, t ≥ 0, where
K(x) is bounded below by a positive constant. The solution on the boundary
x = 0 is a known function g and ux(0, t) = 0. This is an ill-posed problem
in the sense that a small disturbance on the boundary specification g, can
produce a big alteration on its solution, if it exists. We consider that 1/K(x)
is Lipschitz and we prove that the existence implies in the uniqueness of the
solution u(x, ·) ∈ L2(R). We use a Wavelet Galerkin Method with the Meyer
Multiresolution Analysis.

1. Introduction

We consider the following problem, for 0 < α ≤ K (x) < +∞,

{
K(x)uxx(x, t) = ut(x, t) , t ≥ 0 , 0 < x < 1

u(0, ·) = g , ux(0, ·) = 0
(1.1)

We assume that this problem has a solution u(x, ·) ∈ L2 (R), for K continuous, and
we extend u(x, t) and g to R assuming that both vanish for t < 0.

Problem (1.1) is ill-posed in the sense that a small disturbance on the boundary
specification g, can produce a big alteration on its solution, if it exists. This means
that if the solution exists, it does not depend continuously on g (see [2, p. 14]).

We consider the Meyer Multiresolution Analysis. The advantage in making use
of the Meyer wavelet, is that it has good localization in the frequency domain,
since its Fourier transform has compact support. The orthogonal projection onto
Meyer scaling spaces, can be considered as a low pass filter, cutting off the high
frequencies.

From the variational formulation of the approximating problem on the scaling
space Vj , we get an infinite-dimensional system of second order ordinary differential
equations with variable coefficients. The ill-posedness of the problem is regularized
approaching it by well-posed problems (see Theorem 3.4 in [2, p. 11]).

We consider that 1/K(x) is Lipschitz and we prove that the existence implies
the uniqueness of the solution u(x, ·) ∈ L2(R).

For a function h ∈ L1 (R)
⋂

L2 (R) its Fourier Transform is given by ĥ (ξ) :=∫

R

h (x) e−ixξ dx. We use the notations ex and exp x indistinctly.
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2. Uniqueness

The scaling function of the Meyer Multiresolution Analysis is the function ϕ
defined by its Fourier Transform by

ϕ̂ (ξ) :=





1 , |ξ| ≤ 2π
3

cos
[

π
2 ν

(
3
2π |ξ| − 1

)]
, 2π

3 ≤ |ξ| ≤ 4π
3

0 , otherwise

where ν is a diferentiable function satisfying

ν (x) =
{

0 se x ≤ 0
1 se x ≥ 1

(2.1)

ν (x) + ν (1− x) = 1(2.2)

The associated mother wavelet ψ, called Meyer Wavelet, is given by (see [1])

ψ̂ (ξ) =





e
iξ
2 sin

[
π

2
ν

(
3
2π
|ξ| − 1

)]
, 2π

3 ≤ |ξ| ≤ 4π
3

e
iξ
2 cos

[
π

2
ν

(
3
4π
|ξ| − 1

)]
, 4π

3 ≤ |ξ| ≤ 8π
3

0 , otherwise

We will consider the Meyer Multiresolution Analysis with scaling function ϕ.

Lemma 1. The operator Dj(x) defined by
[
(Dj)lk (x)

]
l∈Z, k∈Z

=
[

1
K (x)

〈
ϕ′jl , ϕjk

〉]

l∈Z, k∈Z

satisfies:

1) (Dj)lk (x) = − (Dj)kl (x)

2) (Dj)lk (x) = (Dj)(l−k) 0 (x). Hence, (Dj)lk (x) are equal along diagonals.

3) ‖Dj(x)‖ ≤ π2−j

K(x)

Proof. See Lemma 3.2 in [2, p. 6].

Let us now consider the following approximating problem1 in Vj ,



K(x)uxx(x, t) = Pjut(x, t) , t ≥ 0 , 0 < x < 1

u(0, ·) = Pjg

ux(0, ·) = 0

u(x, t) ∈ Vj

(2.3)

Its variational formulation is{ 〈K (x) uxx − ut , ϕjk〉 = 0

〈u(0, ·) , ϕjk〉 = 〈Pjg , ϕjk〉 , 〈ux(0, ·) , ϕjk〉 = 〈0 , ϕjk〉 , k ∈ Z

1The projection in the first equation of (2.3) is due to the fact that we can have ϕ ∈ Vj with

ϕ′ /∈ Vj (see [2, p. 14]).
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where ϕjk is the orthonormal basis of Vj given by the scaling function ϕ. Con-

sider uj a solution of the approximating problem (2.3), given by uj (x, t) =∑

l∈Z

wl (x) ϕjl (t). Then, we have (uj)t (x, t) =
∑

l∈Z

wl (x) ϕ′jl (t) and (uj)xx (x, t) =

∑

l∈Z

w′′l (x) ϕjl (t). Therefore,

K (x) (uj)xx (x, t)− (uj)t (x, t) = K (x)
∑

l∈Z

w′′l (x) ϕjl (t)−
∑

l∈Z

wl (x) ϕ′jl (t)

Hence

〈
K (x) (uj)xx − (uj)t , ϕjk

〉
= 0 ⇐⇒

〈∑

l∈Z

K (x) w′′l ϕjl −
∑

l∈Z

wl ϕ
′
jl, ϕjk

〉
= 0

⇐⇒
∑

l∈Z

K (x) w′′l 〈ϕjl , ϕjk〉 =
∑

l∈Z

wl

〈
ϕ′jl , ϕjk

〉

⇐⇒ K (x) w′′k =
∑

l∈Z

wl

〈
ϕ′jl , ϕjk

〉
, k ∈ Z

⇐⇒ d2

dx2 wk =
∑

l∈Z

wl
1

K (x)
〈
ϕ′jl , ϕjk

〉 ⇐⇒ d2

dx2
wk =

∑

l∈Z

wl (Dj)lk (x)

where, as defined before, (Dj)lk (x) = 1
K(x)

〈
ϕ′jl , ϕjk

〉
. Thus, we get an infinite-

dimensional system of ordinary differential equations:




d2

dx2 w = −Dj (x) w

w (0) = γ

w′(0) = 0

(2.4)

where γ is given by

Pjg =
∑

z∈Z

γz ϕjz =
∑

z∈Z

〈g, ϕjz〉 ϕjz

We will consider (1.1), for the functions g ∈ L2 (R) such that ĝ (·) . exp
(
|·|
2α

)
∈

L2 (R), where ĝ is the Fourier Transform of g. The Inverse Fourier Transform of
exp

(
− ξ2+|ξ|

2α

)
, for instance, satisfies this condition. Define

f := ĝ (·) . exp
( |·|

2α

)
∈ L2 (R)(2.5)

Theorem 1. Let u be a solution of the problem (1.1) with condition u (0, ·) = g
and let f be given by (2.5). Let vj−1 be a solution of the problem (2.3) in Vj−1

for the boundary specification g̃ such that ‖g − g̃‖ ≤ ε. If j = j (ε) is such that
2−j = α

π log ε−1 then

‖Pjvj−1 (x, ·)− u (x, ·)‖ ≤ ε1−x2
+ ‖f‖L2(R) · ε

1
3 (1−x2)

Proof. See Theorem 3.7 in [2, p. 13]
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The infinite-dimensional system of ordinary differential equations (2.4) can be
written in the following way:




dv
dx = −Dj(x)w + 0v

dw
dx = 0w + v

w(0) = γ and v(0) = 0

or

{ dV
dx = Aj(x)V

V (0) = (0, γ)

where V = (v, w) ∈ X := l2 (R) X l2 (R) , x ∈ [0, 1) and

Aj(x) =

[
0 −Dj (x)

1 0

]

with ‖Aj (x)V ‖X = ‖(−Dj (x)w, v)‖X =
√
‖Dj (x)w‖2l2 + ‖v‖2l2

Lemma 2. For all j ∈ Z , Aj(x) : X −→ X is a linear operator bounded
uniformly on x ∈ [0, 1).

Proof. By Lemma 1 and the hypothesis 0 < α ≤ K(x) < +∞, we have

‖Dj(x)‖ ≤ π2−j

K(x)
≤ π2−j

α
:= Kj

If ‖V ‖X = 1 then ‖w‖l2 ≤ 1 and ‖v‖l2 ≤ 1. So,

‖Aj (x)V ‖X =
√
‖Dj (x) w‖2l2 + ‖v‖2l2 ≤

√
K2

j + 1

Thus, the operator Aj(x) is bounded uniformly on x ∈ [0, 1).

Lemma 3. If 1
K(x) is Lipschitz on [0, 1) then x 7−→ Dj(x) is Lipschitz on [0, 1),

∀ j ∈ Z. Consequently x 7−→ Aj(x) is Lipschitz on [0, 1).

Proof. Dj(x) = 1
K(x)Bj(x) , where (Bj)lk = 〈ϕ′jl , ϕjk〉. We have ‖Bj‖ ≤ π2−j (see

proof of the Lemma 3.2 in [2, p. 6]). Then

‖Dj(x)−Dj(y)‖ ≤
[

1
K(x)

− 1
K(y)

]
π2−j ≤ Lj |x− y|

with Lj = L · π2−j , where L is the Lipschitz constant of 1
K(x) .

Now,

‖Aj(x)−Aj(y)‖ = sup
V ∈X , ‖V ‖=1

‖(Aj(x)−Aj(y)) V ‖X

= sup
V ∈X , ‖V ‖=1

‖(Dj(x)−Dj(y)) w‖l2

= sup
w∈l2 , ‖w‖=1

‖(Dj(x)−Dj(y))w‖l2

= ‖Dj(x)−Dj(y)‖
≤ Lj |x− y|
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Lemma 4. For all j ∈ Z, the operator [0, 1) 3 x 7−→ Aj(x) is continuous on
operators uniform topology.

Proof. Let x ∈ [0, 1) and ε > 0. By Lemma 3, Aj(x) is Lipschitzian with Lipschitz
constant Lj . Let δε := ε

Lj
. We have, for y ∈ [0, 1):

|x− y| < δε =⇒ ‖Aj(x)−Aj(y)‖ ≤ Lj |x− y| < Lj · δε = ε

By previous lemmas, we have:

Theorem 2. The infinite-dimensional system of ordinary differential equations
(2.4) has an unique solution.

Proof. The Lemmas above permit to apply the Theorem 5.1 in [3, p. 127].

Theorem 3. Let u be a solution of the problem (1.1) with condition u(0, ·) = g
where g satisfies (2.5). Then for any sequence jn, such that jn −→ −∞ when n −→
+∞, there exists a unique sequence ujn of solutions of the approximating problems
(2.3) in Vjn with conditions ujn(0, ·) = Pjng and, ∀x ∈ [0, 1),

Pjn+1ujn (x, ·) −→ u (x, ·) in L2.

Proof. From Theorem 1 and Theorem 2, using g̃ = g and taking into account that
the choice of j in Theorem 1, depends only on ε and does not depend on u.

Corollary 1. The problem (1.1) has at most one solution, for each x ∈ [0, 1),
where g satisfies (2.5).

3. Conclusion

We had considered solutions u(x, ·) ∈ L2(R) of the problem K(x)uxx = ut, 0 <
x < 1 , t ≥ 0 , with boundary specification g ∈ L2(R) and ux(0, ·) = 0, where K(x)
is bounded below by a positive constant, 1

K(x) is Lipschitz and ĝ (·) . exp
(
|·|
2α

)
∈

L2 (R). We had shown that if the solution exists it is unique.
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