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Abstract: It's a well-known fact that the new GIS applications need to keep track of temporal information. 
Among other operations, a spatiotemporal DBMS should efficiently answer the spatiotemporal join. The best-
known spatial index structure, the R-Tree (and its variants), does not preserve the MBRs’ evolution. New 
indexing structures were proposed in the literature allowing the retrieval of present and past states of data, and 
most of them are R-Tree based. This paper presents an evaluation of spatiotemporal join algorithms using these 
new structures, particularly a partially persistent R-Tree called Temporal R-Tree and the 2+3D R-Tree. Starting 
from spatial join algorithms, we present algorithms for processing spatiotemporal joins over time instants and 
intervals on both spatiotemporal data structures. Finally, we implement and test these new algorithms with a 
couple of generated spatiotemporal data sets. Our experiments show that our algorithms´ performance is good 
even in extreme cases, showing its good scalability – especially for the TR-Tree. In addition, with minor 
adaptations, the main ideas of our algorithms can be used for evaluating joins using partially persistent 
structures. 
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1 Introduction 
One of the main tasks to be supported by a Spatiotemporal Database Management System 
(STDBMS) is the efficient indexing and retrieval of spatiotemporal objects. According to 
[16], there are two main types of spatiotemporal queries: selections and joins. This paper 
presents a first study on the spatiotemporal join processing using partially persistent data 
structures based on R-Trees like the Temporal R-Tree (TR-Tree) [19] and the Partially 
Persistent R-Tree (PPR-Tree) [6]. A refined algorithm to perform spatiotemporal joins 
specifically for partially persistent structures is presented and a performance evaluation is 
done using a number of join queries on generated datasets. Moreover, the main ideas 
presented in this paper may be used to design join algorithms for partially persistent data 
structures either for spatiotemporal or just temporal data. The algorithms for the 
spatiotemporal joins were implemented and tested in an experimental environment and then 
compared to some other spatiotemporal access methods. 

As stated in [16], a STDBMS must (i) offer appropriate data types and a query 
language to support (static or moving) spatial data, (ii) provide efficient indexing and retrieval 
methods, and (iii) exploit cost models for specialized spatiotemporal operations for query 
processing and optimization purposes. Relevant applications that a STDBMS must support 
include Temporal Geographical Information Systems (TGIS), Mobile Applications, 
Multimedia Systems, Statistical and Scientific Databases. 

A fundamental and very costly operation in databases is the join operation. A 
spatiotemporal join is an operation that is used to combine spatiotemporal objects of two sets 
according to some spatiotemporal property. The spatiotemporal intersection join is of great 
interest, which intends to find all pairs of objects that have a common area (overlap) during 
their lifespan. Also, the query can be bounded by a specific region and/or by a specific time 
interval. As stated in [16], the spatiotemporal intersection join is a crucial operation in 
spatiotemporal databases. 

This paper is organized as follows. Section 2 defines the problem and the terms used 
in this paper. Section 3 presents a brief overview of related works. Section 4 discusses the 
spatiotemporal join in more detail and presents our algorithms. Section 5 contains the data set 
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and the join queries descriptions as well as the experimental results. Finally, section six 
concludes the paper and gives an outlook to future work. 

2 Defining the Problem 
A Spatiotemporal Access Method (STAM) is an index that organizes spatiotemporal data by 
its spatial key (the minimum bounding rectangle (MBR)), and its temporal key (the lifespan 
interval). The prime goal of the STAM is to efficiently handle query processing. The broader 
the set of queries supported, the more applicable and useful the access method becomes. A set 
of fundamental query types is ([16]): 
• Selection queries: are queries of the form “find all objects that have lied within a specific 

area (or at a specific point), during a specific time interval (or at a specific time instant)”.  
• Join queries: are queries of the form “find all pairs of objects that have lied spatially 

close (i.e., within distance d), during a specific time interval (or at a specific time 
instant)”.  

In the context of spatial databases, selection queries are also called window queries, and join 
queries are also called spatial joins [3]. We will adopt an analogous naming convention. 
Moreover, for performance reasons, it is a good idea to define a more powerful join operator: 
the primitive join operation can combine a selection window. Thus, our join query definition 
will be: “find all pairs of objects that have lied spatially close (i.e., within distance d) and 
within a specific area (or at a specific point), during a specific time interval (or at a specific 
time instant)”. We call this a window spatiotemporal join. These kinds of queries are expected 
to be one of the most common addressed by STDBMS users. Table 1 shows the queries that a 
STAM should efficiently address. The time interval queries are termed time range queries. 

 
 Window query Window spatial join 

Time 
Instant 

Time Instant Window Query: find all 
objects that intersect a given window at 

a given time. 

Time Instant Spatiotemporal Join: 
find all pairs of intersecting objects at 

a given time. 
Time 

Range 
Time Range Window Query: find all 

objects which intersect a given window 
during a given time interval. 

Time Range Spatiotemporal Join: 
find all pairs of intersecting objects 

during a given time interval. 
Table 1 - Queries that a STAM should address. 

3 Related Work 
In this section, we will summarize some work done in related areas. We will show the main 
ideas and principles of current work on spatiotemporal indexing. 

3.1 Spatiotemporal Access Methods 
According to [16], at the time of that publication, only four spatiotemporal indexing methods 
had appeared in the literature: 3D R-trees [17], MR-trees and RT-trees [18], and HR-trees 
[11]. These approaches have the following characteristics: 
• 3D R-trees treat time as another dimension using a “state-of-the-art” spatial indexing 

method, namely the R-tree [4], [2]. 
• RT-trees couple time intervals with spatial ranges in each node of the tree structure by 

adopting ideas from R-trees and TSB-trees [9]. 
• MR-trees [XLH90] and HR-trees [11] use overlapping techniques in R-trees (Hilbert [5] 

for the latter one) to represent successive states of the database [10]. 
To this list, we should add three other access methods: RST-Trees [12], PPR-Trees [6] and 
Temporal R-Trees [20], which will be discussed in details in section 3.  

The RST-Tree proposed by [12], tries to solve the current time now in the context of 
bitemporal spatiotemporal databases. The problem is solved letting the MBRs grow with time, 
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taking a stair-like aspect and an area close to a triangle, reducing considerably the search area, 
consequently the nodes visited in a query. As stated there, before this work, the data structures 
were only able to handle data related to the current time now for transaction time using 
partially persistent techniques, which was made possible also for valid time. 
The TR-Tree is a specialization of MVB-Tree to handle spatial data, i.e., it makes some 
modifications on the structure and the algorithms of the MVB-Tree to use a spatial data 
structure, the R-Tree [4], and then extends the R-Tree algorithms using the R*-Tree [2] 
techniques. A complete description of the TR-Tree algorithms as well as a performance 
evaluation may be found in [19]. 

The PPR-Tree, proposed in [6], is very similar to the TR-Tree. It is an effort to extend 
the techniques presented in [1] for the MVB-Tree to spatial data using R-Trees. This data 
structure is similar to the Bitemporal R-Tree [7, 8]. The main differences between them is that 
the Bitemporal R-Tree is used for scalar data and have the valid time dimension, but this valid 
time dimension may be changed by another data dimension and then the structures would be 
equal. Their work does not perform entry reinsert on node overflow; five merge heuristics are 
proposed to handle this situation. 

Also, there are a number of new proposals for indexing moving points or objects. We 
will not mention them here since they are outside of the scope of this work. Here, we assume 
that geometry cannot change continuously, but only in discrete steps, and hence we are not 
talking about moving objects. According to [16], this case is of great interest for 
spatiotemporal databases. 

3.2 The Temporal R-Tree 
In this section we describe the TR-Tree structure in terms of modifications in the original R-
Tree, as it was first presented in [4]. The complete algorithms’ description and performance 
evaluation of the TR-Tree can be found in [20]. 

The TR-Tree index structure is very similar to the R-Tree with some modifications to 
handle temporal information and structural changes of the tree.  Each entry in the TR-Tree 
will have a MBR, an identifier and a pair of timestamps of birth and death. The lifespan of an 
MBR will be the right-open interval of birth and death, represented by [birth, death). The 
special timestamp “*” is used to indicate now, that is, the world current time. The TR-Tree’s 
last time is the time when the last update has occurred. The leaf nodes will hold entries in the 
form �<MBR, tuple-identifier, birth-time, death-time>. Non-leaf nodes contain entries in the 
form <MBR, child-pointer, birth-time, death-time>. The tuple identifier is a surrogate to the 
polygon representation and will be omitted in our examples. Also, each node will have two 
more attributes, birth-time and death-time, indicating its lifespan.  

Whenever a new MBR of a polygon is added to the database at time ti its lifetime 
interval is set to [ti,*). A MBR remains live until it is deleted or updated. A real world 
deletion at time ti is implemented in the database as a logical deletion, by changing the death-
time attribute of the MBR entry from “*” to ti. Updating a MBR at time ti is implemented by 
the logical deletion of the corresponding entry and the insertion of a new entry with the new 
MBR. A MBR is said to be live at time ti if birth-time ≤ ti < death-time, that is, ti ∈ [birth-
time, death-time).  

Likewise, when the TR-Tree creates a new node at time ti its lifetime interval is set to 
[ti,*). A corresponding entry is set to [ti,*) in the parent of this node. When the MBR of a 
node is updated at time tk its corresponding entry death-time is set to tk, and a new entry is 
inserted with the new MBR. Thus, many different entries may exist for a node, but at each 
time t only one entry is live. If a node should be removed from the tree, due to structural 
changes like node overflow or underflow, it is logically deleted by setting the death-time 
attribute of both the node and its corresponding entry. A node is said to be alive at time ti if 
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birth ≤ ti < death, that is, ti ∈ [birth, death). A non-live node is a killed node, and can’t be 
modified anymore – it is a read-only node.   

Another important modification in the TR-Tree is that it may have more than one root 
node pointing to the R-Trees, i.e. it will have more than one tree inside of the structure of the 
TR-Tree. However, at a given time, there will be one and only one root associated to it. As a 
consequence, the TR-Tree should not be seen as a tree, but as a directed acyclic graph. Also, 
there is an array structure indexing the root nodes of the TR-Tree and its related lifespan.  We 
will call this the root array structure.  

Time and space efficiency of the R-Tree is based on the properties proposed by 
Guttman, specially the assumption R1. This property ensures that the height of the R-Tree 
with N tuple identifiers is at most |logmN|-1. To maintain this efficiency, the properties of the 
R-Tree must be generalized to handle the existence of different version entries in a node. Let 
M be the maximum number of entries that will fit in one node and let m=M/k be a parameter 
specifying the minimum number of live entries in a node, where k is a constant, k≥2.  Those 
properties should be modified as follows (changes are bold faced): 
R1. Every node contains at least m live entries and at most M entries, unless it is the root; 
R2. For each entry in a node, MBR is the smallest rectangle that spatially contains the 

rectangles in the children nodes (for non-leaf nodes) or the data object (for leaf nodes); 
R3. The root node has at least two live children nodes, unless it is a leaf; 
R4. All leaves of the same root node appear on the same level. 
We call the property R1 the weak version condition. Note that a live entry means that it is 
alive during node lifespan. Now we can state how structural changes are triggered in the TR-
Tree: 
T1. A node overflow occurs as the result of an insertion of an entry into an already full node. 
T2. A weak version underflow occurs when the number of live entries in a node becomes less 

than m (two for root nodes).  
T3. A node underflow never occurs, since entries are never deleted from nodes but only 

marked as dead. 
A structural change to handle a node overflow or to restore the weak version condition is 
performed based on the block copy operation, i.e. the node is marked as dead and the current 
version entries are copied into a new node. We call this operation version-split. Considering a 
node overflow, in most cases the live node created by the version-split will be an almost full 
block or even a full block. To avoid this case and the similar phenomenon of an almost empty 
block, we state the following new property R5 that must be satisfied after a structural change, 
and call this set of properties the strong version condition. 
R5. The number of live entries in a node after a structural change must be in the range from 

(1+ε)×m to (k–ε)×m, where ε is a tuning constant, ε�0, to be defined more precisely in the 
following. 

After a version-split, if the node violates the strong version condition, then the R-Tree-like 
structural change takes place: overflow leads to a R-Tree standard node split and underflow 
leads to a real node deletion and all its entries are reinserted. This is the only case that a 
physical deletion can occur. One should note that this kind of node deletion is the result of a 
single insert or update operation, so the nodes deleted are intermediate states of the TR-Tree 
that don’t need to be stored.  

Since m=M/k, we assure that after a structural change on a node at least ε×m+1 
insertions or deletions of entries can be performed on this node before the next structural 
change becomes necessary. The choice of ε can be done in the same way as in [1], but with no 
merge restrictions of a B-Tree. So, k≥1/α+(1+1/α)×ε−1/m, where α is the rate of minimum 
node utilization for the original R-Tree (at most 0.5). In our tests, we have stated α  to be 0.5, 
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k to be 3 and ε to be 0.3. Thus, for a node capacity of 90 entries, the TR-Tree parameters 
would be as in Table 2.  

Max. entries/node 90 Weak Version 
Conditions Min. live entries/node 30 

Max. entries/node 81 Strong 
Version 
Conditions  

Min. live entries/node 39 

Table 2 - Typical TR-Tree parameters 
The algorithms of the TR-Tree were designed to allow a block of operations to be done before 
a new version is created. In this way someone should explicitly do the creation of new 
versions of the tree. It is an improvement appropriate for a number of cases like massive 
updates, intermediate steps produced by the application of referential integrity constraints, and 
other operations that generate invalid or useless data that the system does not need to store, 
like entries’ re-insertion of deleted nodes. Finally, the main ideas used here to make the R-
Tree a partially persistent data structure were the same used in the Bitemporal R-Tree [7, 8] 
that originated from [1]. 

3.3 Comparisons Between STAMs 
The main differences we can state between the TR-Tree and the PPR-Tree reside in the 
treatment of node underflow and in the implementation of the R*-Tree algorithms. The 
authors of the PPR-Tree, the same ones of the Bitemporal R-Tree, did not propose a solution 
for entry re-insertion in nodes with less than m entries. It is known that the idea of entry re-
insertion generates better-organized structures than those coming from node merges due to the 
lack of a complete ordering of the space in more than one dimension. The choice of the 
neighbor node to be joined to the node with less than m entries is extremely difficult and not 
always optimal. In [7, 8] five attempts are proposed to finding the better neighbor on which to 
insert the entries of the node in underflow. We expect, for these reasons, that the structure of 
the TR-Tree present itself far more organized than that of the PPR-Tree, and with this, that the 
search and join algorithms achieve better performance. 

Finally, we may divide the spatiotemporal structures into 2 classes according to a 
characteristic extremely relevant to the execution of the joins (and of the queries also) and that 
is: if the structure considered duplicates or not the entries. From the structures mentioned until 
now we can state that the 2+3D R-Tree and the RT-Tree do not duplicate the entries, where, 
on the other hand, the TR-Tree, the HR-Tree and the MR-Tree duplicate them.  

In the HR-Tree and in the MR-Tree, entry duplication occurs every time a node must be 
updated: the entire node is copied and updated, and a new entry is created in its father, 
repeating the process up to the root node. With this, at every insertion or removal, the path 
from the root to the leaf where an update occurred is recorded. Thus from this fact, we note 
the low adequacy of these trees in the treatment of data sets where the update rate varies from 
medium to large. 

On the other hand, the TR-Tree duplicates nodes/entries only when there’s a structural 
update, in other words, an overflow or an underflow. This method results in much less data 
duplication or redundancy. 

4 The Spatiotemporal Join 
In this section we shall present the algorithms for the execution of spatiotemporal joins using 
as an index structure the 2+3D R-tree and the TR-Tree. We shall assume the preexistence of 
indexes on both sets of data to be used in the join. We chose these two structures for the 
following reasons:  
• In [19], it is evident that the TR-Tree is the most promising structure to be used as a 

generic spatiotemporal index, capable of carrying out well both queries over a time 
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instant, as over a time interval, for on average in a set of queries, it was the one with the 
best performance.  

• Only the HR-Tree and the 2+3D R-Tree were able to surpass the TR-Tree’s performance 
in the time instant and time interval queries, respectively. The other structures evaluated 
did not present satisfactory performance.  

• The HR-Tree is not appropriate to index data with a medium to large update rate where it 
creates much duplication, resulting in very large indices. In fact, its performance in 
queries involving intervals degrades rapidly as the time interval increases.  

• Finally, the PPR-Tree, besides being structurally very similar to the TR-Tree, is based on 
the R-Tree, where the TR-Tree is actually based on the R*-Tree, which in its turn has 
proven better performance over the simple R-Tree. 

4.1 The Performance of the Spatial Join over the MBRs through R-Trees 
Being the R-Tree a recursive structure, the algorithm that uses it to perform a spatial join is 
also recursive. Thus, given 2 trees represented by the rectangles associated to the nodes of the 
highest level (the root node), we shall investigate the children of each one of these nodes, in 
pairs as in a Cartesian product. We shall perform joins in the sub-trees represented by the 
pairs of child nodes whose rectangles intersect. In each sub-tree join, we shall repeat the 
process recursively until we reach the leaves, where we shall then obtain the pairs of MBRs 
that form the response set for the MBR join. Figure 1 shows this process. Note that the 
information on the dimension of the rectangle is not relevant anywhere in the process: the 
same algorithm will work for any number of dimensions, just as the R-Tree will. In [3] there’s 
a detailed study on the performing of spatial joins using R*-Trees. In this work, we performed 
the optimizations pointed out in [3] up to the SJ3 algorithm, which is the join using a plane-
sweep algorithm to compare a node with another node. The following algorithms obtain small 
gains, because they deal basically with optimizations that affect the disk’s cache performance, 
where it only involves the exchange in the order of comparison of the nodes. We decided not 
to implement these improvements because the LRU cache used presented satisfactory results, 
in a way that these optimizations would result in gains with little significance in the two trees. 

 
Figure 1 – Join through an R-Tree 

One of the advantages of this algorithm is that each pair of MBRs shall be listed only once in 
the set of candidates, for each MBR can only be inserted in one node. The great disadvantage 
of the algorithm results from the overlaying of the rectangles corresponding to the nodes of 
the R-Tree. In order to investigate the MBRs that are in a certain area where there is an 
overlay of two or more nodes, we shall have to explore more than one sub-tree. When we 
attempt to perform the join, the problem will become worse, i.e., with quadratic complexity: if 
m rectangles of a tree intersect a point i and if n rectangles of another tree also intersect this 
same point i, then it will be necessary to perform m x n joins in the sub-trees. 

4.2 The Spatiotemporal Join in the 2+3D R-Tree 
In its essence, the structure of each one of the two trees that compose the 2+DR-Tree is 
identical to the original R-Tree: only one of them has two dimensions (the one that stores the 
live objects in current time); the other one has three dimensions. To perform a join over two 

A 
B 1 

2 

3 

4 

The join of blocks A and B shall 

be done through the performing 

of two joins on the sub-trees 

represented by blocks 1 and 2

and by blocks 3 and 4. The 

other blocks shall not be 
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2+3D R-Trees is then similar to performing four joins in R-Trees: one join over a pair of trees 
with two dimensions, another over a pair of trees of 3 dimensions, and finally two joins over 
trees with two and three dimensions. Only the last case holds a particularity, which makes it 
different from the original algorithm: the performance of a join over trees with different 
dimensions. Nevertheless, it is important to remind the reader that the number of dimensions 
is different only in what concerns the structural algorithms of the tree, or, the insertion and the 
splitting of the nodes. Implicitly we have stored in the two-dimensional tree the information 
of the third dimension. This dimension corresponds exactly to the time of validity: the entries 
in this tree have a field with their time of creation and it is known that these are all alive. 
Therefore, the missing dimension shall always be represented by [a,*), where a is the time of 
creation of the entry (in the case of the nodes, time of creation of the oldest entry contained in 
the node). In this way, we are leveled with the case of performing joins in three-dimensional 
MBR trees. It is also important to observe that the structure of the 2+3D R-Tree doesn’t 
duplicate entries, in a way that, although we have to perform four complete joins, it is not 
necessary to eliminate the pairs of duplicated responses. 

4.3 The Spatiotemporal Join on the TR-Tree 
As depicted previously, the TR-Tree is a structure that duplicates entries, in other words, a 
single node or spatial object can have more than one entry in the tree. This shall bring us the 
following problem: if we perform the spatiotemporal join in a way analogous to the spatial 
join in R*-Trees, we shall report pairs of duplicated entries. The problem is a little more 
serious, for we should remember that a duplicated entry for one node will mean that this node 
will be visited twice, which implies that all of its entries be reported two times. Figure 2 
illustrates this problem.  

 
Figure 2 – Spatiotemporal Join – the duplicated pair problem 

Worse even, if they are reported in another node for which there is also a duplicated entry, 
they will be reported two times also in this other node, and so forth in each level of the tree up 
until the root. Clearly this is not a good approach. 

4.4 Avoiding Duplicates 
Hence it is necessary to elaborate a strategy that reports each MBR pair only once. More 
even, for efficiency’s sake, it would be useful if each node pair (intermediate MBRs) be 
considered only once during a join. To achieve this, we should first stress a couple of TR-Tree 
properties. We shall consider entries, generically, not only the entries to spatial objects, but 
also the entries to nodes of the TR-Tree. The demonstrations, here constrained by the limited 
space, are only outlined, but it is easily verifiable that all of them can be proven formally. 
Take the following assumption: let E be an entry with a life-span [C,M), contained in the 

Tree A 

Tree B 

Node A65 [10, *) 

X [8, *) 

... 

On performing the join of the two trees A and B, 

suppose the entries X and W have 

intersections. Therefore, node A56 shall intersect 

node B63, and node A65 shall intersect node B63

and B78. Note that the node A56 has a spatial 

intersection with node B78, but not a temporal 

intersection. With this, the pair (X,W) shall be 

reported thrice: in A56 X B63, in A65 X B63, and in 

X [8,*) 

W [6,15) 

Node A56 [5, 10) 

X [8, *) 

Y [6,9) 

Node B63 [6, 12) 

W [6, *) 

Z [6,8) 

Node B78 [12, 18) 

W [6, 15) 

... 
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nodes X1, X2, ... Xn of the tree A, and let the intervals [c1,m1), [c2,m2), ... [cn,mn) be the 
respective lifespan of each node. Obviously each ci < mi for 1 ≤ i ≤ n. We have: 
P1. mi = ci+1, for 1 ≤ i < n.  
Reason: Entries are duplicated only through the operation of version split, or, the structural 
update suffered by a node. In this case, all of the entries are inserted in the node created 
necessarily in the current time, and the node that suffered the structural update is marked as 
dead. No entry that was duplicated can be inserted in a node that was not created in current 
time, in some time different from the time of death of the node that contained the entry. In this 
way, along the lifespan of a certain data object or node, in each instant, one and only one node 
possesses the entry E for the referred object or node. We shall call X successor to E the node 
which contains the entry E after X’s death. Note that the dead entries in X do not have 
successors, for they will not be copied when X dies. 
P2. C ∈ [c1,m1).  
Reason: on creation, an entry should be inserted in some node that has already been created 
and that is alive. 
P3. M ∈ [cn,mn), or E is alive and Xn is, too.  
Reason: if the entry E died in the time M, then it will no longer be copied when the node that 
contains it dies. Moreover, dead entries are not copied. Thus, if M died, it died after insertion 
in Xn and before the death of Xn. If M did not die, then Xn didn’t either, because, in this case, 
E should’ve been copied to another node created at the time of Xn’s death. 
P4. Only one entry for E, the one contained in Xn, could be marked with the time of death of 

the spatial object or node.  
Reason: comes directly from P3. 

From P4 emerges a good indication for a query algorithm, pointed out in [19]. It 
consists in rewriting the original query “find all the MBRs which have overlaps on the R 
rectangle” into “find all the MBRs which have overlaps on the R rectangle and that, either 
they are alive at the end of the query or were killed during this interval”. This small 
modification suggests an algorithm that consists in walking through the tree reporting the 
entries that intercept the query rectangle, but on the dead nodes, listing only the dead entries, 
for the live entries will be listed later in the successors of this node for each one of the live 
entries. For the nodes that are alive by the end of the query interval (are really alive or died in 
an instant after the end of the query interval), we should report all of its entries because we 
shall not investigate these node’s successors for any entry, because these will have creation 
time outside the query interval. We can easily demonstrate that this algorithm works fine by 
using induction at the height of the tree. This algorithm was really implemented in [19], tested 
and brought good results. 

Following this idea, we can establish an algorithm with a similar strategy to the join 
and that doesn’t report duplicated entry pairs. Let us suppose that the algorithm investigates 
each pair of nodes that have a spatial and temporal intersection only once. Undoubtedly, as 
we’ve seen in figure 2, there will be pairs that will appear more than once. We should then 
establish criteria to decide if a certain pair should or not be listed. A good approach would be 
to list the objects on the last time of its insertion, for as we have seen, although the tree 
duplicates entries, only one of them, the one associated to the node that doesn’t have 
successors, can mark its death. The interval join transformation, analogous to the one done for 
the search, would be: “find all the pairs of MBRs with overlays that have the last moment of 
its intersection during the query interval, or that they are alive in the final time of this 
interval”. We shall note that the time instant spatiotemporal join for the time instant t should 
use a time interval spatiotemporal join with time interval [t,t+1), and all assumptions made for 
the time interval spatiotemporal join are valid also to the time instant spatiotemporal join. 

Using the query above we can then establish criteria to decide if two pairs of candidate 
entries should or should not be reported when found. We shall call entry candidate pairs the 
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pair of entries that have a spatial and temporal intersection, and every time we mention if a 
node or entry is dead, we refer to its state at the final instant of the query interval: 
1) If the nodes where the entry candidate pair are situated are live nodes at the end of the 

query interval, we understand that these nodes don’t have successors (or their successors 
shall not be visited because they were created after the end of the query interval.), 
therefore all of the entry candidate pairs should be reported at this moment, for there 
won’t be a new chance to report them. 

2) If one of the nodes is dead and the other is alive at the final time of the query, we should 
report only the candidate pairs in which the entries that belong to the dead node are also 
dead, for the entry candidate pairs that contain the live entries of the dead node shall 
appear again in the successors of this node for each one of the entries, and, certainly, each 
one of these successors will have an intersection with the live node. 

3) If both are dead, things get a little more complicated: the candidate pairs, in which we 
have both of the live entries, certainly should not be reported, for the same shall appear 
again as a candidate pair in the respective successors. Analogously, the candidate pairs 
that have only dead entries should also be reported because this is the last time that they 
will appear in the tree (they don’t have successors). But, in the entry pair where there is a 
dead and a live entry, there is the following difficulty: let A be the node that contains the 
live entry, and B the node that contains the dead entry. If A died before B, the successor of 
A shall be compared to B, and in it we shall again find the same entry candidate pair. Note 
that this problem will not emerge if both nodes died at the same time, for none of the 
successors shall be compared with the other node. Thus, we should not list the entry pairs 
in which one is alive and the other is dead if the node that contained the live entry died 
before the node that contained the dead entry. 

The algorithms that perform the time interval spatiotemporal join are listed below: 

Figure 3: Algorithm to decide if a pair of candidate entries should or not be listed. 
Note that the function above should be called during the plane-sweep of a pair of nodes for 
each entry (in our algorithm, we call pairList in the internalLoop procedure). Some function 
call optimizations can be made, like, for example, if both the nodes are alive we should report 
all of the candidate pairs, but they would result in a less didactic code. Just to position the 
reader, we shall show the plane-sweep code of non-optimized nodes (in our tests, we used an 
optimized version). In [3] this algorithm is called sortedIntersectionTest. The variable 
“exchange” indicates if the order of the pairs should be exchanged (so that it is not necessary 
to write two almost identical functions). 

function pairList(eA, eB: Entry; nodeA, nodeB: Node; finalInt: Time): boolean; 
begin 
  if nodeA.alive(finalInt) and nodeB.alive(finalInt) then  
    return true; 
  else if (nodeA.alive(finalInt) and nodeB.dead(finalInt) and  
           eB.dead(finalInt)) or 
          (nodeA.dead(finalInt) and nodeB.alive(finalInt) and eA.dead(finalInt))   
  then return true; 
  else // both of the nodes are dead. 
    if nodeA.timedeath = nodeB.timedeath and  
       (eA.isDead(finalInt) or eB.isDead(finalInt)) then  
      return true; 
    else if (nodeA.timedeath < nodeB.timedeath and eA.isDead(finalInt)) or 
            (nodeA.timedeath > nodeB.timedeath and eB.isDead(finalInt)) then  
      return true; 
    else  
      return false; 
end 
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Figure 4: Algorithm to perform the plane-sweep. 
Because of space constraints, we shall not show here the algorithm that synchronously goes 
through TR-Trees, because it is analogous to the one used to go through an R*-Tree presented 
in [3], and is the same one also used for the trees of the 2+3D R-Tree. It is important to 
emphasize that, at the level of the array of root nodes, we shall perform a join for each pair of 
root nodes that possesses a spatial and temporal intersection. There is no need for 
improvements at this level, for at each moment, each R-Tree of the TR-Tree owns one and 

only one root node, which guarantees that each root node pair be investigated only once. 
Figure 5: Procedure to perform the join on two nodes of the tree. 

A formal proof of the correctness of the proposed algorithm is necessary. Let A and B be two 
nodes with a pair of candidate entries E and F. It means that E is inside the node A and F is 
inside the node B and E ∩ F ≠ ∅, i.e., the E and F MBRs’ intersect. We have to demonstrate 
that the nodes A and B are compared together once and only once by the time interval 
spatiotemporal join algorithm proposed in this paper. 

First, we will show that the algorithm will report all the pairs of candidate entries. The 
algorithm traverses all the root nodes of both TR-Trees in a synchronized way, and then, for 
each pair of trees, a depth search is performed. It is clear then that the result is complete, but it 
is not clear that this result is minimal, i.e., that it does not contain duplicates. 

An induction in the level of the nodes A and B in the tree will be used to show that the 
result is minimal. It is not necessary that the nodes A and B have the same level, but this will 
be assumed to simplify the demonstration. A proof without this assumption would be very 
similar. 

proc sortedIntersectionTest( NodeA, NodeB: Node; rBusca: Rectangle; IntSearch: Interval;  
var output: ListEntries ) 
begin 
  output := EmptyList; i := 1; j := 1; 
  listA := list of Entries of NodeA that have a spatial intersection with rSearch  
           and a temporal with IntSearch, ordered on the lowest coordinate x and  
           on the lowest coordinate y; 
  listB := list of Entries of NodeB which have a spatial intersection with rSearch  
           and a temporal with IntSearch, ordered on the lowest coordinate x and  
           on the lowest coordinate y; 
  while i ≤ listA.size and j ≤ listB.size do 
    if listA[ i ].min.x < listB[ j ].min.x then begin 
      internalLoop(listA[i], j, listB, IntSearch.final,  
                   false, NodeA, NodeB, output); 
      i := i + 1; 
    end 
    else begin 
      internalLoop(listB[j], i, listA, IntSearch.final,  
                   true, NodeB, NodeA, output); 
      j := j + 1; 
    end; 
end 

proc internalLoop( test: Entry; notMarked: integer; list: ListEntries; 
                   finalInt: Time; exchange: boolean; node_1, node_2: Node;var output: 
ListEntries ) 
begin 
  k := notMarked; 
  while k ≤ list.size and list[ k ].min.x < test.max.x do 
  begin 
    if test.min.y ≤ list[ k ].max.y and test.max.y ≥ list[ k ].min.y and 
       test.interval ∩ list[ k ].interval ≠ ∅ and 
       listPair( test, list[ k ], node_1, node_2, finalInt ) then 
      if exchange = false then 
        output.insert( Pair( test, list[ k ] ) ) 
     else 
        output.insert( Pair( list[ k ], test ) ); 
    k := k + 1; 
  end 
end 
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The initial step of the induction occurs when level=0, i.e., we are on the pair of root 
nodes of the TR-Tree. In this level of the structure, there is no overlap between the lifetimes 
of the root nodes in the same structure. Because of this, the initial loop of the algorithm never 
compares two pair of nodes more than once. It can be seen in  Figure 6. 

 
Figure 6: Pairs of root nodes tested inside the initial loop. 

Suppose that the induction hypothesis is true for level n on both TR-Trees, i.e., the pairs of 
nodes in level n of both TR-Trees will be visited once and only once by the time interval 
spatiotemporal join algorithm. It must be shown that this hypothesis is also true for the nodes 
in the level n+1. Suppose that A and B are nodes in level n of the TR-Trees 1 and 2. Let E and 
F be a pair of candidate entries inside the nodes A and B, respectively. 

The algorithm goes down on the structure by the three conditions cited below and 
summarized here to make the demonstration clear: 
Condition 1: If A and B are live nodes at the end of the query time interval, then all pairs of 
candidate entries must be reported. 
Condition 2: If one of the nodes is dead and the other is alive at the end of the query time 
interval, then only the pairs of candidate entries where the entries inside the dead node are 
also dead must be reported. 
Condition 3: If both nodes A and B are dead, the pairs of live candidate entries must not be 
reported, the pairs of dead candidate entries must be reported, and in the case of the pairs of 
candidate entries where one entry is alive and the other is dead, the pair will not be reported if 
the node that contains the live entry died before the node that contains the dead entry. 

This demonstration will be divided into three distinct cases: 
1. If both of the nodes are alive at the end of the query time interval. In this case, the 
algorithm visits the pair of candidate entries E and F and then goes down on the structure 
reaching the nodes X and Y appointed by E and F respectively, or reporting E and F in case 
the nodes A and B are leaves. The nodes A and B do not have successors, once they are alive. 
The algorithm would visit the nodes X and Y only if it went down by E and F inside some 
antecessor of A and B. There are three possibilities: 

1.1. The pair of nodes is an antecessor of A and B. All antecessors of A and B are dead, so, 
only the condition 3 can be satisfied. The entries E and F are alive inside these nodes, 
otherwise they would not be copied to A and B. For dead nodes and live entries, condition 
3 is not satisfied. In this case, the algorithm would not report the entries E and F. 
1.2. The pair of nodes contains an antecessor of node A and node B. All antecessors of 
node A are dead. There is a dead node (antecessor of A) and a live node (B). Only 
condition 2 can be satisfied, but the entry E is alive in all antecessors of node A, what 
invalidates condition 2. 
1.3. The pair of nodes contains an antecessor of node B and node A. This is the same case 
shown before in 1.2. 
In this way, if both of the nodes A and B are alive, the algorithm goes down by the entries 

E and F only on these nodes, because they do not have successors and for the antecessors the 
conditions to go down on the structure are not satisfied. 

A B 

W X Y Z 

1

2

Time 

In this example, when performing 

the join between TR-Tree 1 and TR-

Tree 2, the pairs of root nodes that 

will be compared by the algorithm 

are: (A,W), (A,X), (A,Y), (B,Y), 

(B,Z). Node Y is compared more 

than once, on (A,Y) and on (B,Y), 

but never with the same node. 
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2. If both nodes A and B are dead at the end of the query time interval, three distinct cases 
may occur: 

2.1. Both entries E and F are alive. These entries will not be reported because any of the 
three conditions is satisfied. One should note that these entries would be reported on the 
successors of A and B. 
2.2. Both of the entries E and F are dead. These entries will be reported by the algorithm 
through condition 3. These entries will not be present on the successors of the nodes A and 
B because they area alive. So they may be related only on the antecessors of the nodes A 
and B where they are alive. Three cases may occur: 

2.2.1. The pair of nodes contains both antecessors of nodes A and B. In this case, the 
antecessors are dead and the entries E and F are alive. None of the conditions is 
satisfied for this case. 
2.2.2. The pair of nodes contains an antecessor of the node A (A’) and node B. All the 
antecessors of node A are dead and entry E inside them is alive. The other node, node 
B, is dead and entry F is also dead. Condition 3 of the algorithm will report the entries 
E and F only if the node A’ died before the node B. If it occurs, nodes A and B would 
not be compared by the algorithm, because they would not have temporal intersection, 
and consequently, E and F would not have temporal intersection either. But it is 
assumed on the graphical of the proof that E and F is a pair of candidate entries. This 
statement is true only in the case that E and F are both dead. Figure 7 shows 
graphically this problem. 

 
Figure 7: Problem of the case 2.2.2. 

2.2.3. The pair of nodes contains an antecessor of node B and of node A. This is the 
same case shown below in 2.2.2. 

2.3. One of the entries is dead and the other is alive. Suppose, without loss of generality, 
that the entry that is alive is the entry E inside node A. Node B consequently contains the 
dead entry F. Condition 3 is satisfied if node A died after node B. So, it is not necessary to 
check any successors of node A. It is not necessary to check any successors of node B 
because the entry F inside of node B is dead and is not present on any successor. Three 
cases may occur: 

2.3.1. The nodes are both antecessors of A and B. In this case, both of the nodes are 
dead and the entries E and F are alive. It has been shown before that no condition may 
be satisfied for this case. 
2.3.2. The pair of nodes contains an antecessor of node A (A’) and node B. In this 
case, the antecessor of node A, node A’, is dead and entry E inside it is alive. The 
nodes being tested, A’ and B, are both dead, one (A’) containing a live entry (E) and 
other (B) containing a dead entry (F). This case has the same properties of case 0, so, 
the entries E and F will not be reported. 
2.3.3. The pair of nodes contains an antecessor of node B (B’) and of node A. As what 
happens in the last case, it has the same properties of case 1.1.2. 

A’ E A E 

B’ F B F 

This is the case when the nodes 

A and B are both dead and the entries E 

and F inside these nodes are also both 

dead. If the node B died before any 

successor of the node A, A’ for example, 

B would have die before the born of the 

node A. So, the nodes A and B would not 

have temporal intersection. 
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3. One of the nodes is alive and the other dead at the end of the query time interval. Suppose, 
without loss of generality, that node A is alive and that node B is dead. The algorithm will 
report only the dead entries in node B. These entries will not appear on any successor of node 
B, and only antecessors of A and B must be checked. Three cases may occur: 

3.1. The pair of nodes contains both antecessors of nodes A and B. In this case, both of the 
nodes are dead and both of the entries E and F are alive. It has been shown before that no 
condition may be satisfied for this case. 
3.2. The pair of nodes contains one antecessor of node B and node A. In this case, the 
antecessor of node B is dead and entry F is alive, which invalidates all conditions. 
3.3. The pair of nodes contains one antecessor of node A and node B. All antecessors of 
node A are dead and the entry E inside them is alive. If entry F is alive in node B, condition 
3 cannot become true. Otherwise, condition 3 may be satisfied only if the node antecessor 
of A which contains the live entry E died after the node B that contains the live entry F. 
This case is impossible as it was on case 2.2.2. and can be better viewed in Figure 4. 

Having fulfilled all the possibilities, the statement that the induction hypothesis is true for 
level n+1 can be inferred. This statement, together with the initial step of the induction 
finalizes the proof of the minimalism of the time interval spatiotemporal join algorithm. 

4.5 Temporal Joins using the MVB-Tree 
Notice that the proposed algorithm can be adapted to work on the MVB-Tree and solve the 
same problem of duplicated entries, since it doesn’t use any spatial property in order to not 
list the duplicated pairs, and the MVB-Tree has the same temporal properties listed as P1, P2, 
P3 e P4. In fact, in a technical report presented by [21], a similar approach is used, under the 
name of BCO, although it uses conditions that are different from those presented here. In the 
future we shall investigate the similarities between the two algorithms because both were 
developed to solve a similar problem, although in different domains. 

4.6 Spatiotemporal Joins using the MV3R-Tree 
This work can be extended to propose an efficient algorithm to perform spatiotemporal joins 
using the MV3R-Tree [14], once this STAM is a mix of a 3D R-Tree and a structure similar 
to the TR-Tree. This work can also be applied to choosing when to use the 3D R-Tree or the 
TR-Tree when performing the spatiotemporal join. The time instant selection query under the 
MV3R-Tree is performed using the TR-Tree and the time interval selection query is 
performed using the 3D R-Tree. 

5 Experimental Results 
5.1 Data Set Generation 
For our performance evaluation tests, we generated random data sets using the GSTD 
(Generate SpatioTemporal Data) software proposed in [15]. There are four kinds of data sets 
according to the number of versions of 250, 500, 750 and 1000. Each data set has 100.000 
rectangle objects initially inserted and the same number of modifications into the existing 
objects, resulting on 200.000 insertions and 300.000 operations (insertions plus deletions). 
For each number of versions, we have generated two pairs of data sets varying the seed for the 
random numbers, leading to 8 pairs of data sets. We used 4 Kbytes pages and an independent 
LRU disk cache for each structure with 97 pages of 4 Kbytes each, plus a cache with the 
height of the tree (in our tests, 3 at most) to keep the path from the root node to the leaves. 
The machine used was an Intel Pentium III 700MHz with 256 Mb of main memory, running 
Linux Conectiva Server 6.0 and gcc 2.95 compiler. We have tried to eliminate the influence 
of the Linux Operating System disk cache in our tests. The total CPU time was calculated 
using the real measured computational time minus the real measured disk accesses time. This 
measured disk accesses time was calculated using the number of disk accesses multiplied by a 
mean time of one access (in our tests this was about five milliseconds). 
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Table 3 shows the space utilization of the nodes for the two structures in question with 
4 kbytes pages. 

 
 TR-Tree 2+3D R-Tree 
  2D R-Tree 3D R-Tree 
Min. Entries / Node 64 85 72 
Max. Entries / Node 128 170 145 

Table 3 – Space utilization of the nodes with 8 kbytes page. 
We measured the index construction time as well as the size in bytes of the index files. 
These results are shown in the charts of Figure 8. The numbers shown in these charts are 
the mean one for each of the five data sets with the same characteristics. 

 
Figure 8: Index construction time chart (left) and size in bytes of the index files (right). 

We can state, with the help of these figures, that the index size and the index creation time of 
both of the indexes almost do not suffer from the influence of the number of versions in the 
structure. However the index size of the TR-Tree is almost double the 2+3D R-Tree, its 
creation is about five times faster. 

5.2 Evaluated Joins 
For each data set we executed 50 time instant spatiotemporal joins and 50 time interval 
spatiotemporal joins. The spatial selection window and the time interval or time instant were 
chosen randomly. 

Figure 9 shows the resulting sum of the total time for all time instant spatiotemporal 
queries for each data set. 

 
Figure 9: Time Instant Spatiotemporal Join 

We can note in this figure that the TR-Tree index structure has a much better performance 
than the 2+3D R-Tree for data sets with a large number of versions. We can also note that the 
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algorithm stated in this paper to perform the time instant spatiotemporal join in the TR-Tree 
has good scalability, once the total time spent is almost the same for all kinds of data sets. On 
the other hand, the algorithm, proposed for the 2+3D R-Tree, does not have this good 
characteristic. 

Figure 10 shows the resulting sum of the total time for all time interval spatiotemporal 
queries for each data set. 

 
Figure 10: Time Interval  Spatiotemporal Join. 

We can note again the good behavior of the join algorithm proposed for the TR-Tree against 
the increase of the number of versions. For the time interval spatiotemporal join, the 
difference between the two STAMs compared here is not that big as it was for the time instant 
spatiotemporal join. 

Another good observation here is that the CPU time is not appalling, and in some 
cases, especially for the 2+3D R-Tree, it is half of the total query time. 

6 Conclusion  
After performing all these queries, using different datasets, we can conclude that our 
algorithm, evaluated in the TR-Tree, has better performance than the 2+3D R-Tree using an 
R*-tree-like join approach. In addition, the TR-Tree’s index construction was five times faster 
than the 2+3D R-Tree, although the TR-Tree size was two times the 2+3D R-Tree size. 

This is a preliminary work on performance evaluation of spatiotemporal joins. Much 
more work has to be done comparing other STAMs proposed in the literature recently, like 
MVR-Trees [14] for example. 

As ongoing work, we are investigating the use of TR-Trees in real applications, some 
of them with some kind of temporal or spatial dominance. Additionally, we are working on a 
parallel version of our algorithms – both the TR-Tree index updates and query evaluation.  
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