
Applying Scheduling by Edge Reversal to
Constraint Partitioning

Marluce Rodrigues Pereira 1 Patrı́cia Kayser Vargas 1 2

Felipe M. G. França 1 Maria Clicia Stelling de Castro 1 3 Inês de Castro Dutra 1

1 COPPE - Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil�
marluce,kayser,felipe,clicia,ines � @cos.ufrj.br

2 Curso de Ciência da Computação, Centro Universitário La Salle, Canoas, RS, Brasil
3 Instituto de Matemática e Estatı́stica, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

Abstract—
Scheduling by Edge Reversal (SER) is a fully distributed

scheduling mechanism based on the manipulation of acyclic ori-
entations of a graph. This work uses SER to perform constraint
partitioning of Constraint Satisfaction Problems (CSP). In or-
der to apply the SER mechanism, the graph representing the
constraints must receive an acyclic orientation. Since obtaining
an optimal acyclic orientation is an NP-hard problem, this work
studies three non-deterministic strategies known in the litera-
ture: Alg-Neigh, Alg-Edges, and Alg-Colour. We implemented
the three algorithms and the SER scheduling mechanism, ap-
plying them to the CSP constraint networks generated from 3
applications. Our results show that SER has a great potential
to perform a good partitioning of the constraint graphs.

Keywords—Distributed scheduling, Scheduling by Edge Re-

versal, partitioning, Constraint Satisfaction Problems

I. INTRODUCTION

This work proposes the utilisation of the technique
known as Scheduling by Edge Reversal (SER) [13, 5,
2, 3] to perform partitioning of Constraint Satisfaction
Problems (CSP). These applications have characteris-
tics that can benefit from local computations on subsets
of constraints to reduce time and space complexity.

There are several methods in the literature to parti-
tion constraints [6, 9, 17, 18]. Their major objective is
to speedup the execution in one processor by separating
independent blocks of constraints, or to speedup execu-
tion through actual parallelisation, where each block of
constraints can be computed independently by a differ-
ent processor.

The use of constraint partitioning techniques is then
twofold: (1) to identify independent blocks of con-
straints and (2) to minimise communication in a parallel
implementation.

Most methods used in the literature to perform con-
straint partitioning either have a very high complexity
or produce solutions far from optimal. Some of them
perform manual partitioning. In our work we show that
the use of SER can overcome these problems and pro-
duce automatically near-optimal solutions on Parallel
Constraint Programming environments.

SER is a fully distributed scheduling mechanism
based on the manipulation of acyclic orientations of a
connected undirected graph � . Each node represents a
process and two nodes are connected by an edge if and
only if the corresponding processes share a resource.
A resource is therefore represented in � by a clique,
that is, a completely connected subgraph, since all pro-
cesses that share the same resource will be connected.
Note that a process can access an arbitrary number of
resources.

At any time, a node is either idle or operating. An
idle node waits for a resource. A node in operating
state uses one or more of the resources it shares with
other nodes. Thus � represents a system called neigh-
borhood constrained, i.e, a system in which processes
are constrained by their neighborhoods to operate.

In the SER synchronous distributed algorithm, the
first step is to get an acyclic orientation of the graph � .
Let the sinks in this orientation be the nodes that have
no outgoing edge and that are in operating state. Since
every acyclic orientation has at least one sink, there is
no deadlock or starvation. At the next step, the edges
incident to the sinks are reversed modifying this orien-
tation and resulting in a new acyclic orientation, as well
a new set of sinks. So, the scheduling can be regarded
as the evolution in time of acyclic orientations of � and

the schedule as an infinite sequence of orientations.
In a greedy schedule, a new acyclic orientation is ob-

tained from the previous one by reversing all sinks. Un-
der this assumption, orientations repeat themselves pe-
riodically from a certain time. Thus, period is the se-
quence of distinct orientations ��� ,..., ���	��
 such that ��
= ������� � ��
������������ , where ������� � ��
������������ is the orien-
tation obtained from � � � ��
���� ����� under greedy opera-
tion and ! is the period’s length. All nodes operate the
same number " of times in a period. The concurrency
of a period is defined by the coefficient "$#%! [5].

Several works used SER to solve scheduling prob-
lems in different contexts [10, 7, 11, 1, 4]. Most of
these problems do not require a special initial acyclic
orientation, because the graphs that represent the ap-
plications have an implicit orientation, i. e., they are
directed graphs.

For undirected graphs, one simple way to obtain an
acyclic orientation is to assign distinct, totally ordered
identifications to all nodes and then orient the edges ac-
cording to this total order. However, unless it can be
assumed that nodes start out with these identifications,
it may be necessary to resort to probabilistic techniques
to make sure that they are distinct [5]. Therefore the
concurrency provided by deterministic acyclic orienta-
tion could be worse than a random acyclic orientation.
In fact, this was the case for our applications. In order to
apply SER we used three non deterministic algorithms
to impose an initial acyclic orientation.

While most works in the literature use SER during
execution to determine when an element must operate,
our work uses the SER mechanism at compile time to
decide how to perform constraint partitioning. The op-
erational control is performed by the parallel CSP sys-
tem.

Our results show that SER has a great potential to
perform a good partitioning of constraint graphs.

The paper is organised as follows. Section II de-
scribes our representation of the constraint network in
a graph. In Section III we describe the three acyclic
orientation algorithms used in this work. Section IV
presents our applications describing their characteris-
tics. Implementation details are presented in Section V.
The analysis of the impact of the acyclic orientation al-
gorithms and of the SER mechanism are presented in
Section VI. Finally, in Section VII, we conclude our

work and present perspectives of future work.

II. DISTRIBUTED CONSTRAINTS USING

SCHEDULING BY EDGE REVERSAL

Finite domain Constraint Satisfaction Problems
(CSP) usually describe NP-complete search problems.
Arc-consistency (AC) algorithms are an approach used
to working locally on constraints and their related vari-
ables, pruning the search space in an efficient way [16].
Generally, arc-consistency algorithms work with con-
straint graphs where each node represents a variable and
edges correspond to constraints relating two or more
variables. Depending on the nature of the CSP being
solved, these graphs will have different topologies, that
can benefit from a distributed local execution. In fact,
some works in the literature use some techniques to par-
tition the constraint network by taking advantage of the
degree of each node in the graph.

If there are some groups of nodes in the graph that
are strongly connected, all these subgraphs can operate
in a somewhat independent way from each other, al-
lowing for a significant improvement in execution time.
This happens because each subgraph computation does
not need to propagate its values to the other subgraphs.
Partitioning the constraint graph has another advantage:
allows execution of subgraphs in parallel, in the pres-
ence of a multiprocessor or multicomputer machine.
The identification in such independent subgraphs is an
NP-hard problem. Therefore, most work in the litera-
ture shows either approximations to the practical prob-
lem [18, 17] or theoretical results [6, 9].

In a previous work [18, 19] we showed that a good
partitioning of constraints can produce very good per-
formance in both sequential and parallel implementa-
tions. We performed several experiments in both a
shared memory and a distributed memory architecture,
using different constraint partitioning methods, manu-
ally set.

In this work, we use an automatic static schedul-
ing method, based on the SER algorithm, starting from
three different kinds of acyclic orientation.

The first step in our modelling is the mapping of CSP
problems to a graph representation. Any CSP problem
can be represented using constraints that relate one or
more variables. Each variable has an initial domain set
by the user or by the CSP solver. The goal is to get a

valuation for each variable, i.e., each variable will be as-
signed one single value that does not violate any of the
constraints. There are different ways to build a graph
for a CSP problem. The most popular way of build-
ing it is to represent the variables as nodes and the con-
straints between the variables as the edges. Because in
the SER mechanism, each edge corresponds to a shared
resource, we chose to build the graph in an alternative
way, where each constraint is represented as a node, and
edges as dependencies between constraints. So, if two
nodes share a variable, there will be an edge connecting
them.

Our second step is to build an undirected comple-
mentary graph from the original graph. Sinks in the
same state, represent a clique in the original graph.
Thus these sinks represent constraints that share one
or more variables and must be kept in the same group.
This approach of using the complementary graph was
also used in França et al [12].

Once we have the graph, we need to impose an ini-
tial acyclic orientation on it. This is another important
step, because the amount of concurrency achieved is
highly dependent upon this orientation of � . However,
finding the optimal amount of concurrency of � is an
intractable problem. So, there are proposals to get a
random acyclic orientation as will be discussed in Sec-
tion III.

After obtaining the initial acyclic orientation, we then
can apply the SER algorithm, by reversing edges, until
a period is found. Only the orientations belonging to
the period are considered as a result, because all nodes
operate the same number of times. The final step is the
process mapping. The sink nodes in the same orienta-
tion are associated to the same process.

Next section discusses the different algorithms to ob-
tain an acyclic orientation, used in this work.

III. ACYCLIC ORIENTATION ALGORITHMS

Determining an initial acyclic orientation of the
graph that minimises dependencies among groups is
NP-hard [5, 8]. However, there are several algorithms
that can get a non-optimal initial orientation. In our
experiments we studied the qualitative impact of three
different algorithms to get non-optimal acyclic orienta-
tions: Alg-Neigh, Alg-Colour, and Alg-Edges [14, 15].

Alg-Neigh is an extension of Calabrese and França
algorithm [7]. Alg-Neigh uses a dice with & faces to
generate random values associated to each node. Ini-
tially, all nodes obtain a random value between ' and
& -1. Each node compares its value with all its neigh-
bour’s values. If it has the greatest value, all edges are
oriented to itself and it becomes inactive, i.e, a deter-
ministic node. All nodes that do not have all edges ori-
ented continue active. These active nodes are proba-
bilistic and they will participate in the next step. The
described procedure repeats until all nodes become de-
terministic.

Alg-Colour is an extension of Alg-Neigh. It has two
phases: colouring and orientation. In the first phase,
it uses a dice with & faces to generate random values
associated to each node. Initially, all nodes obtain a
random value between ' and & -1. Each node compares
its value with all its neighbour’s values. If it has the
greatest value, it sets a colour represented by a non neg-
ative integer and it becomes a deterministic node. This
colour must be the minimum value different from its
neighbour’s colours. All nodes that do not have a colour
yet assigned continue active, and will participate in the
next step. This phase continue until all nodes become
deterministic. In the second phase each edge is oriented
from the node with the greater colour to the node with
the smaller colour.

Alg-Edges is an evolution of Alg-Neigh and Alg-
Colour. This algorithm also uses a dice with & faces
to generate random values associated to each node. Ini-
tially, all nodes obtain a random value between ' and & -
1. Each edge is oriented from the node with the greatest
value to the node with the smallest value. When two
neighbours draw the same value, they must get a new
random value to orient this edge. The algorithm pro-
ceeds until all edges become oriented.

The three algorithms differ in their complexity to
converge and quality of results. Alg-Colour and Alg-
Neigh present a similar convergency (()�+* � [14]). How-
ever, Alg-Colour has a better quality orientation with
respect to the application of the SER algorithm: it pro-
duces a short path and consequently the shortest period.
Alg-Edges will cause SER to produce the longest pe-
riod and thus is not suitable to our applications.

IV. APPLICATIONS

We used three applications to study the impact of
both the acyclic orientation algorithms and the SER par-
titioning. These applications were studied before, but
using other techniques to partition the constraints [20,
21, 18].

The first benchmark, Arithmetic, is a synthetic bench-
mark. It defines , blocks of arithmetic relations,-/.
10323232/0 .54�6 , where each block contains 7 equations
and inequations relating 8 variables. Blocks

.:9
and. 9<;
 are connected by an additional equation between

a pair of variables, one from
.=9

and the other one from. 9<;
 . Coefficients were randomly generated. The goal
is to find an integer solution vector. This kind of con-
straint programming is very much used for decomposi-
tion of large optimisation problems. Table I describes
the main characteristics of the instances of the Arith-
metic problem we used. The connectivity represents
the percentage of connection between the nodes. Con-
nectivity is the number of graph edges > divided by
the number of edges in a corresponding fully connected
graph with * nodes (connectivity = ?@ ACB � A ��
��EDGF�H). Note
that all our results present connectivity related to the
complementary graph.

Our second benchmark, N-Queens, consists of plac-
ing I queens in an I x I chessboard in such a way
that no queen attacks each other in the same row, col-
umn and diagonal. The constraints are all inequations.
Table II shows the number of constraints, number of
edges, and the connectivity of each graph for each of
the instances. We can observe that the number of con-
straints and edges tend to grow exponentially for this
application.

Table II

N-Queens APPLICATION CHARACTERISTICSJ
-Queens Constraints Edges Connectivity

4 22 69 0.30
8 92 2,422 0.58

16 376 54,300 0.77
24 852 305,394 0.84
32 1,520 1,016,056 0.88
40 2,380 2,557,230 0.90
64 6,112 17,532,144 0.94

Our third benchmark, the Parametrisable Binary
Constraint Satisfaction Problem (PBCSP), is a syn-
thetic benchmark. Instances of this problem are ran-

domly generated given four parameters: number of
variables (*�K), the size of the initial domains (LNM), den-
sity, and tightness. Density and tightness are defined
as follows:

APOAPQ ��
 and RTS A ��VU�W , respectively, where *YX
is the number of constraints involving one variable (it
is the same for all of them), and *�! is the number of
pairs that satisfies the constraints. In our experiments,
the domain size (20) and tightness (0.85) are the same
to all experiments. We used different sets of pairs of
variable and density. Table III presents the number of
constraints and edges, and the connectivity of each of
these sets.

Table III

PBCSP APPLICATION CHARACTERISTICS
Vars. Density Constraints Edges Connectivity

25

0.35 233 23,452 0.868
0.55 359 55,158 0.858
0.65 409 71,436 0.856
0.75 483 99,382 0.854

50

0.35 914 386,929 0.927
0.55 1,368 864,861 0.925
0.65 1,620 1,211,985 0.924
0.75 1,864 1,603,765 0.924

100

0.35 3,538 6,018,790 0.962
0.55 5,530 14,695,230 0.961
0.65 6,532 20,499,574 0.961
0.75 7,538 27,296,710 0.961

V. IMPLEMENTATION

Our implementation receives as input a file generated
by a special Prolog program. This file contains the con-
straint network necessary to execute the constraint sat-
isfaction application. The constraint network consists
of a list of constraints, that relates several variables.
The partitioning generated by the SER algorithm is pre-
sented to the user as a Prolog program, that consists of
a database of Prolog facts. This format is suitable to
be used as input to a Constraint Logic Programming
Solver.

Our program has three main steps: (1) reading input
data and graph generation, (2) graph orientation, and (3)
partitioning using SER and writing output data.

In the first step, the input file is read, and: (a) each
constraint is represented as a node of a vector element;
(b) each node receives a sequential integer identifica-
tion; (c) each node stores the variables expressed in the
constraint.

An * x * matrix is created to represent the comple-

Table I: Arithmetic APPLICATION CHARACTERISTICS
App. Blocks Equations /

Inequations
Variables
per block

Total of
variables

Constraints Edges Connectivity

eq6 2 2 2 6 11 39 0.71
eq38 8 7 3 38 101 4,672 0.93
eq126 16 15 6 126 381 69,180 0.96
eq254 32 31 6 254 1,277 793,708 0.97
eq446 32 31 12 446 1,469 1,051,276 0.97

mentary constraint graph. It uses the data structure built
from the input data with * being the number of con-
straints.

Then, the graph is oriented using one of the algo-
rithms described in Section III. The user can choose the
orientation algorithm to be used.

After getting the initial orientation, the SER algo-
rithm is executed as follows:

1 while a period is not found
2 sinks are detected checking the matrix rows;
3 sinks are stored in a history structure;
4 sinks’ incoming edges are reversed;
5 end-while
6 history is presented as the final result,

excluding the initial state that does not
belong to the period

The history obtained is presented to user as a set of
Prolog facts into an output file.

Following, we present the results obtained executing
the three applications using the described implementa-
tion.

VI. EXPERIMENTAL DATA AND ANALYSIS

Our experimental platform is a machine with a Pen-
tium IV 1.8 GHz with 1 GByte of memory and the oper-
ating system Red Hat Linux 7.2. Each experiment was
executed 20 times. The three orientation algorithms and
the SER algorithm were executed for each application.
Following we show the results obtained to Arithmetic,
N-Queens, and PBCSP.

Arithmetic Table IV shows the results of applying
SER to the three orientations produced by Alg-Edges,
Alg-Neigh and Alg-Colour, for the 5 instances of the
application. We can observe that for Alg-Colour the
standard deviation was '�2Z'	' for all instances. Note that
this result does not mean a deterministic partitioning.
Each execution produced a different partitioning due to

the random orientation. The period sizes are due to the
longest directed path obtained using this algorithm.

Table IV

Arithmetic: AVG. SIZE OF PERIOD AND STD. DEVIATION

Instances
Orientation Algorithm

Alg-Edges Alg-Neigh Alg-Colour
eq6 8.25 (1.04) 7.80 (1.29) 6.00 (0.00)
eq38 93.95 (2.96) 90.30 (3.20) 38.00 (0.00)
eq126 364.85 (3.69) 355.70 (4.27) 126.00 (0.00)
eq254 1,242.65 (5.23) 1,225.05 (6.23) 254.00 (0.00)
eq446 1,433.20 (5.70) 1,408.35 (6.94) 446.00 (0.00)

Because it would be cumbersome to graphically
show larger instances, we concentrate our detailed
study on the smaller instance called eq6. The corre-
sponding Constraint Logic Program associated to the
instance eq6 is shown in Figure 1. This figure shows
the equations of an instance of the Arithmetic applica-
tion that consists of 2 blocks of equations with 2 equa-
tions per block, relating 2 variables. The total number
of variables is 6, where we have 2 variables per block
plus 2 variables that are the links between the blocks.

main(5) :-
(0,1) domain([Aa,Ab], 1, 8), % 2 8
(2) 0+ 11*Aa + 13*Ab #= 126,
(3) 0+ 10*Aa + 14*Ab + VAb #= 139,
(4,5) domain([VAb, VBa], 1, 8), % 7 2
(6) VAb + VBa #= 9,
(7,8) domain([Ba,Bb], 1, 8), % 3 4
(9) 0+ 3*Ba + 12*Bb + VBa #= 59,
(10) 0+ 4*Ba + 7*Bb #= 40.

Figure 1. Arithmetic APPLICATION WITH 6 VARIABLES

The numbers after the percent symbol show the so-
lutions for each pair of variables. Numbers that appear
between parenthesis before the lines are the constraint
identifiers. According to this program, one good allo-
cation could be to place variables Aa and Ab in one
process, and variables Ba and Bb in another process.
Variables VAb and VBa could be allocated to either pro-

cess. In other words, constraints (2) and (3) will be
clustered in a group and (9) and (10) in another group,
because this clustering will minimise the communica-
tion between the processes.

In our approach, when we represent the application
as a graph, each node is a constraint and the edges are
the common variables between the nodes.

As discussed in Section II, we must generate an
acyclic orientation to the complementary graph before
executing the SER algorithm, in order to obtain a group
allocation to the constraints. Each algorithm generated
a different acyclic orientation, so they generated a dif-
ferent group allocation by the SER mechanism.

Figure 2 shows the execution of the SER algorithm
over each generated orientation: Alg-Edges (a), Alg-
Neigh (b), and Alg-Colour (c). In the graph, each node
represents a constraint of the program shown in Fig-
ure 1. In this figure, we have 11 nodes, 5 of which (2,
3, 6, 9, and 10) represent constraints relating 2 or more
variables, and 6 that represent the constraints associ-
ated to the domain of each variable. We can observe
that Alg-Colour clustered the nodes in a small num-
ber of groups, confirming results in the literature [14].
This clustering avoids too much communication among
processors in parallel environments, and is convenient
when we have a scarce number of resources.

The three partitionings generated by the algorithms
are not optimal. However, they are very good approx-
imations of a good partitioning for the program shown
in Figure 1. One such good partitioning could be some-
thing like the one shown in Figure 3.

Figure 3. A GOOD PARTITION TO THE Arithmetic APP. (EQ6)

Because the SER algorithm works with an unlim-
ited number of processes, periods can be very long.
Therefore, we may need to rearrange the groups us-
ing an algorithm that minimises the number of edges

among groups. SER can then be applied again to the
new graph. Or one can use another algorithm that will
have small complexity because of the smaller size of the
newer graph.

For all other instances of Arithmetic, the smaller pe-
riods (or groups) were found with the Alg-Colour algo-
rithm. It is interesting to note that for this application,
Alg-Colour always partitions the instances according to
their number of variables.

N-Queens Table V shows the average and the stan-
dard deviation for the period size found by SER using
the orientations produced by Alg-Edges, Alg-Neigh and
Alg-Colour.

Table V

N-Queens: AVG. SIZE OF PERIOD AND STD. DEVIATION

Orientation Algorithm
Alg-Edges Alg-Neigh Alg-Colour

q4 8.9 (1.2) 7.5 (0.9) 4.9 (0.3)
q8 58.6 (4.1) 49.7 (2.1) 9.3 (0.8)
q16 294.2 (7.3) 268.2 (7.6) 17.8 (0.8)
q24 725.4 (8.4) 668.7 (8.5) 26.9 (1.2)
q32 1,347.6 (11.6) 1,277.2 (12.7) 34.8 (1.5)
q40 2,161.8 (11.5) 2,064.9 (14.5) 42.4 (1.4)
q64 5,755.6 (21.5) 5,582.2 (18.5) 67.9 (1.7)

We found out again that the Alg-Colour algorithm
produces the smallest period (or number of groups). It
presents almost the same value as the number of vari-
ables of each instance. For our applications, we also
noticed that Alg-Colour is the algorithm that gives more
stable solutions with a very small variance in period size
among the executions.

PBCSP Table VI shows the average and the standard
deviation for the period size found by SER using the
orientations produced by Alg-Edges, Alg-Neigh and
Alg-Colour.

We can observe that once more Alg-Colour is the al-
gorithm that produces the smallest period that is almost
the same value as the number of variables of each in-
stance.

It is important to notice that, except for the Arithmetic
application, all constraint graphs have a very strongly
connected graph that make it difficult to use any kind of
manual or deterministic algorithm to obtain a good par-

Figure 2: SER PARTITIONING: GRAPHS ORIENTED USING EACH OF THE 3 ALGORITHMS

Table VI

PBCSP: AVG. SIZE OF PERIOD AND STD. DEVIATION
Orientation Algorithm

Vars. Density Alg-Aresta Alg-Viz Alg-Color

25

0.35 202.60 (4.61) 194.00 (3.97) 25.80 (0.81)
0.55 309.75 (6.14) 293.15 (5.76) 26.25 (1.13)
0.65 354.10 (5.19) 333.35 (7.64) 26.55 (1.28)
0.75 416.70 (5.17) 390.95 (5.47) 27.05 (1.36)

50

0.35 847.45 (7.05) 819.05 (9.35) 51.85 (1.31)
0.55 1,266.30 (8.62) 1,225.90 (12.05) 51.70 (1.23)
0.65 1,498.75 (6.91) 1,449.40 (9.26) 52.25 (1.30)
0.75 1,726.10 (8.87) 1,670.00 (7.60) 52.55 (1.40)

100

0.35 3,406.11 (11.01) 3,350.25 (15.71) 101.40 (0.92)
0.55 5,318.75 (15.09) 5,218.60 (6.97) 102.80 (1.17)
0.65 6,280.75 (12.21) 6,172.00 (31.34) 103.20 (1.17)
0.75 7,247.20 (14.25) 7,121.50 (12.82) 102.80 (0.98)

titioning. Therefore, we consider that SER was success-
ful in producing good quality graph partitioning that
can optimise the sequential and/or parallel execution of
Constraint Satisfaction Problems.

VII. CONCLUSIONS AND FUTURE WORKS

In this work we used a technique known as Schedul-
ing by Edge Reversal (SER) to perform the partitioning
of constraints to be used in a Parallel Constraint Pro-
gramming environment. Constraint Satisfaction Prob-
lems (CSP) have characteristics that can benefit from
local computations on subsets of constraints to reduce
time and space complexity. Since SER works with
graphs where the edges represent shared resources, we
mapped the CSP problems to graphs where each edge

represents shared variables between two constraints.

The results produced by SER are sensitive to an ini-
tial orientation of the graph. We then implemented three
orientation algorithms to obtain this initial orientation:
Alg-Edges, Alg-Neigh and Alg-Colour.

Alg-Edges is the algorithm that generates orienta-
tions in less time, but with period size greater than the
others, as was shown in Section VI. Alg-Neigh gen-
erates orientations in less time than Alg-Edges with
smaller periods. Alg-Colour is the algorithm that gen-
erates periods with smaller size and better concurrency.

In a previous work [18], we used two kinds of con-
straint partitioning to study their impact in the per-
formance of a parallel constraint logic programming
solver. This was a non-trivial task for all applications,
because some of the graphs were strongly connected.
This task became even more difficult as the problem
size increased. The advantage of using an algorithm
such as SER is that constraint partitioning is performed
with good quality for any application independent of
their sizes or graph characteristics, automatically.

One disadvantage of using SER is that because it
works with an unlimited number of processes, periods
can be very long. Therefore, we may need to rearrange
the groups using an algorithm that minimises the num-
ber of edges among groups. SER can be applied again
to the new graph or deterministic algorithms that min-
imise dependencies between nodes can be used with
a small complexity because of the smaller size of the

newer graph.
Overall, we consider that SER was successful in pro-

ducing good quality graph partitioning that can opti-
mise the sequential and/or parallel execution of Con-
straint Satisfaction Problems.

As future work, we intend to use the output of our im-
plementation to confirm that the Constraint Satisfaction
graphs partitioned by SER produce a good speedup ei-
ther in a sequential or in a parallel constraint satisfaction
solver. We also would like to investigate the impact of
acyclic orientation algorithms that support weights as-
sociated to each node. This is important in the context
of CSP problems, because each connection between
two nodes can represent more than one variable being
shared. In our current implementation, each edge in the
graph supports only one kind of sharing without taking
into account the number of shared variables.

REFERENCES

[1] V. C. Alves, F. M. G. França, and E. P. Granja. A BIST scheme
for asynchronous logic. In 7th. Asian Test Symposium, pages
27–32, Singapore, Dec 02–04 1998. IEEE.

[2] V. C. Barbosa. An Introduction to Distributed Algoritms. The
MIT Press, London, England, 1996.

[3] V. C. Barbosa. An Atlas of Edge-Reversal Dynamics. Chap-
man and Hall/CRC, 2000.

[4] V. C. Barbosa. The combinatorics of resource sharing. In
R. Corrêa, I. Dutra, M. Fiallos, and F. Gomes, editors, Models
for Parallel and Distributed Computation: Theory, Algorith-
mic Techniques and Applications. Kluwer Academic Publish-
ers, 2002.

[5] V. C. Barbosa and E. Gafni. Concurrency in heavily loaded
neighborhood-constrained systems. ACM Transactions on
Programming Languages and Systems, 11(4):562–584, Oct
1989.

[6] C. Bliek, B. Neveu, and G. Trombettoni. Using graph decom-
position for solving continuous csps. In Michael J. Maher and
Jean-Francois Puget, editors, Principles and Practice of Con-
straint Programming, 4th Intl. Conf., Pisa, Italy, volume 1520
of Lecture Notes in Computer Science, page 102. Springer,
Oct 26-30 1998.

[7] A. Calabrese and F. M. G. França. Randomized distributed
primer for updating control of anonymous anns. In Proc. of
the Intl. Conf. on Artificial Neural Networks (ICANN), Sor-
rento, Italy, May 26-29 1994.

[8] A. Calabrese and F. M. G. França. Distributed computing on
neighbourhood constrained systems. In Proc. of the 3rd Intl
Conf. On Principles Of Distributed Systems, pages 219–234,
Hanoi, Vietnam, October 1999.

[9] M. Ferris and O. Mangasarian. Parallel constraint distribution,
1991.

[10] F. M. G. França, V. C. Alves, and E. P. Granja. Edge reversal-
based asynchronous timing synthesis. In Proc. of the IEEE
Intl. Symp. on Circuits and Systems, volume II, pages 45–48,
Monterey, CA, USA, May-June 1998.

[11] F. M. G. França and L. Faria. Optimal mapping of
neighbourhood-constrained systems. In Parallel Algorithms
for Irregularly Structured Problems, Second Intl. Workshop,
IRREGULAR ’95, volume 980 of Lecture Notes in Computer
Science, pages 165–170, Lyon, France, September 4-6 1995.
Springer.

[12] F. M. G. França, J. A. Muylaert Filho, and G. A. L. Pail-
lard. Uma proposta de um escalonador para gamma. In Anais
do II Workshop em Sistemas Computacionais de Alto Desem-
penho (em conjunto com o SBAC-PAD’2001), pages 47–54,
Pirenópolis, GO, setembro 2001.

[13] E. M. Gafni and D. P. Bertsekas. Distributed algorithms
for generating loop-free routes in networks with frequently
changing topology. IEEE Transactions on Communications,
1(29):11–18, January 1981.

[14] G. M. Arantes Jr. Orientações Acı́clicas em Sistemas Dis-
tribuı́dos Anônimos e suas Aplicações no Compartilhamento
de Recursos. Dissertação de mestrado, COPPE/Sistemas –
UFRJ, Rio de Janeiro, RJ, Brazil, 1999.

[15] G. M. Arantes Jr., F. M. G. França, and C. A. Martinhon. Al-
goritmos randômicos para a geração de orientações acı́clicas
em sistemas distribuı́dos. In Anais do Simpósio Brasileiro de
Pesquisa Operacional (XXXIV SBPO), RJ, Brazil, Nov 8-11
2002.

[16] K. Marriot and P. J. Stuckey. Programming with constraints:
An Introduction. MIT Press, 1998.

[17] T. Müller. Solving set partitioning problems with constraint
programming. In Proceedings of the 6th Intl. Conf. on the
Practical Application of Prolog and the 4th Intl. Conf. on the
Practical Applications of Constraint Technology (PAPPACT),
pages 313–332, London, UK, Mar 1998. The Practical Appli-
cation Company Ltd.

[18] M. R. Pereira, I. C. Dutra, and M. C. S. Castro.
Arc-consistency algorithms on a software dsm platform.
Colloquium on Implementation of Cronstraint and Logic
Programming Systems - CICLOPS 2001, (NMSU-CSTR-
003/2001):103–117, December 2001.

[19] M. R. Pereira, I. C. Dutra, and M. C. S. Castro. Parallelisa-
tion of arc-consistency algorithms. In Jornadas Chilenas de
Computación, 2002. VI Workshop on Distributed Systems and
Parallelism, Copiapó-Chile, Nov. 2002. Sociedad Chilena de
Ciencia de la Computación.

[20] A. Ruiz-Andino, L. Araujo, and J. Ruz. Parallel solver for
finite domain constraints. Technical Report SIP 71/98, Uni-
versidade Complutense de Madri, 1998.

[21] A. Ruiz-Andino, L. Araujo, F. Sáenz, and J. Ruz. Parallel
execution models for constraint programming over finite do-
mains. In Gopalan Nadathur, editor, Principles and Practice
of Declarative Programming, Intl. Conf. PPDP, Paris, France,
volume 1702 of Lecture Notes in Computer Science, pages
134–151. Springer, Sep 29–Oct 1 1999.

