
Hierarchical Resource Management and
Application Control in Grid Environments

Patrı́cia Kayser Vargas 1 � 2
Inês de Castro Dutra 1

Cláudio F. R. Geyer 3

1 COPPE - Engenharia de Sistemas e Computação
Universidade Federal do Rio de Janeiro

Caixa Postal 68511 – CEP 21949-972 – Rio de Janeiro, RJ, Brazil�
kayser,ines � @cos.ufrj.br

2 Curso de Ciência da Computação
Centro Universitário La Salle

rua Victor Barreto, 2288 – CEP 92010-000 – Canoas, RS, Brazil
3 Instituto de Informática

Universidade Federal do Rio de Grande Sul
Caixa Postal 15064 – CEP 91501-970 – Porto Alegre, RS, Brazil

geyer@inf.ufrgs.br

Abstract—
Several works on grid computing have been proposed in the

last years. However, most work presented in the literature, in-
cluding available software, can not deal properly with several
issues such as loss of data, resubmission of faulty jobs, network
control, data locality, unnecessary migration of transient data
files, overload of submit machines, among others. This paper
presents an ongoing work that deals with these limitations, fo-
cusing on applications that spread a very large number of tasks
across the grid network. The central idea of our work is to have
a hierarchical management system. A hierarchical management
mechanism can control the execution of a huge number of dis-
tributed tasks preserving data locality while alleviating the load
of the submit machine.

I. INTRODUCTION

Many applications have a high demand of computa-
tional resources such as CPU cycles and/or data storage.
For instance, research in high energy physics (HEP) and
DNA sequencing usually requires processing of large
amounts of data using processing intensive algorithms.

The Compact Muon Solenoid project (CMS) esti-
mates that 12-14 PetaBytes of data will be generated
each year [28]. Dutra et al [11] reports experiments
of inductive logic programming that generated over 40
thousand jobs that required many resources in order to
terminate in a feasible time. These non trivial appli-
cations need a powerful distributed execution environ-

ment with many resources that currently are only avail-
able across different network sites.

The term grid computing [17, 15] was coined in the
mid-1990s to denote a distributed computing infrastruc-
ture for scientific and engineering applications. A grid
computing environment supports the sharing and coor-
dinated use of heterogeneous and geographically dis-
tributed resources. These resources are made available
transparently to the application independently of its lo-
cation as if they belong to a unique and powerful com-
puter. These resources can be CPUs, storage systems or
network interconnection.

Several works on grid computing have been proposed
in the last years. However, most work presented in
the literature, including available software, cannot deal
properly with several issues such as loss of data, resub-
mission of faulty jobs, network control, data locality,
unnecessary migration of transient data files, overload
of submit machines, among others. This paper presents
an ongoing work that deals with these limitations, fo-
cusing on applications that spread a very large number
of tasks across the grid network. The central idea of
our work is to have a hierarchical management system.
A hierarchical management mechanism can control the
execution of a huge number of distributed tasks preserv-
ing data locality while alleviating the load of the submit



machine.
The remaining of this text is organized as follows.

Section II presents some of the several works on grid
computing that have been proposed in the last years.
Section III discusses some of the problems that need to
be solved to satisfy user needs, which are the motivation
to our model. We present and analyze our proposal to
deal with some of these open problems in Section IV
and presents some implementation issues in Section V.
Finally, Section VI concludes this text with our final
remarks and future work.

II. GRID COMPUTING SYSTEMS

An increasing number of research groups have been
working in the field of network wide-area distributed
computing. They have been implementing middleware,
libraries, and tools that allow cooperative use of geo-
graphically distributed resources. These initiatives have
been known by several names [1, 7] such as metacom-
puting, global computing, and more recently grid com-
puting.

Roure et al [7] identifies three generations in the evo-
lution of grid systems. The first generation includes the
forerunners of grid computing as we recognize it today
and were projects to connect supercomputing sites. At
the time this approach was known as metacomputing.
The early to mid 1990s mark the emergence of the early
metacomputing or grid environment.

Two representative projects in the first generation
were FAFNER and I-WAY. FAFNER (Factoring via
Network-Enabled Recursion) [13, 12] was created
through a consortium to make RSA130 factorization us-
ing a numerical technique called Number Field Sieve.
I-WAY (The Information Wide Area Year) [9] was an
experimental high performance network that connected
several high performance computers spread over sev-
enteen universities and research centers using mainly
ATM technology. These projects differ in some ways:
(a) FAFNER was concerned with one specific applica-
tion while I-WAY could execute different applications,
mainly high performance applications; (b) FAFNER
could use almost any kind of machine while I-WAY as-
sumed high-performance computers with a high band-
width and low latency network. Nevertheless, both had
to overcome a number of similar obstacles, including
communications, resource management, and the manip-

ulation of remote data, to be able to work efficiently
and effectively. Both projects are also pioneers on grid
computing systems and helped to develop several sec-
ond generation projects. FAFNER was the precursor of
projects such as SETI@home (The Search for Extrater-
restrial Intelligence at Home) [14] and Distributed.Net
[10]. I-WAY was the predecessor of the Globus [30]
and the Legion [21] projects.

The second generation projects have a focus on mid-
dleware to support large scale data and computation.
The two most representative projects are Legion and
Globus.

The Legion object oriented system [21, 5] was de-
veloped at the University of Virginia and it is now a
commercial product of Avaki. In Legion, active objects
communicate via remote method invocation. Some sys-
tem responsibilities are delegated to the user level, as
for example, Legion classes create and locate their ob-
jects as well are responsible for selecting the appropri-
ate security mechanisms and the objects allocation pol-
icy.

The Globus Project has been developed by the Ar-
gonne National Laboratory, University of Southern Cal-
ifornia’s Information Sciences Institute, and University
of Chicago. The most important result of the Globus
Project is the Globus Toolkit [32]. The Globus Toolkit
[30] (GT) is an open source software. The GT version
2 can be classified as a second generation system since
it is mainly a set of components that compose a middle-
ware.

Finally, the third generation is the current generation
where the emphasis shifts to distributed global collab-
oration, a service oriented approach, and information
layer issues.

In the context of the third generation is the Open Grid
Services Architecture (OGSA) [33] proposal that aims
to define a new common and standard architecture for
grid-based applications. The OGSI is a formal and tech-
nical specification of the concepts described in OGSA,
including Grid Services. The version 3 of the Globus
Toolkit (GT3) has a new philosophy of Grid services
and implements the Open Grid Service Infrastructure
(OGSI) [16].

Similar to the GT3 philosophy is the Semantic
Grid proposal [8]. This architecture adopts a service-
oriented perspective in which distinct stakeholders in



the scientific process, represented as software agents,
provide services to one another, under various service
level agreements, in various forms of marketplace.

Another current classification of grid computing sys-
tems is computational and data grid [27]. The Com-
putational Grid focuses on reducing execution time of
applications that require a great number of computer
processing cycles. The Data Grid provides the way to
solve large scale data management problems. Data in-
tensive applications such as High Energy Physics and
Bioinformatics require both Computational and Data
Grid features.

III. MOTIVATION

Most software developed for grid environments solve
several important issues, but lack features that deal with
data loss, resubmission of faulty jobs, network control,
data locality, unnecessary migration of transient data
files, and overload of submit machines.

Next, we discuss each one of these issues.

A. Data Loss

Most available software can not handle network traf-
fic properly. For example, one of the softwares that
we had experience with, the Condor resource manage-
ment [31] can either loose jobs that were in the job
queue, or generate corrupt data files, because of lack of
network flow control. The user is responsible to man-
ually control the number of jobs that will be simulta-
neously submitted in order to avoid network conges-
tion. As a consequence of the little attention given to
flow control and data management data loss can oc-
cur due to overflow when too much traffic is gener-
ated on data and code transfers. Some experiments
reported on [11] illustrate this problem. From 45,000
tasks launched, around 20% failed for several reasons,
including data corrupted due to packet loss, and had to
be re-submitted.

There are several works in the network research area
that deal with network control flow [23, 19] and some
of them could be adapted to grid applications needs.

MonaLISA [25], a software to monitor network and
machine status, is a step towards the goal of achieving
network flow in a grid environment and to avoid data
and job loss.

B. Overload of Submit Machines

Usually, applications are launched in the user ma-
chine. Because most grid aware softwares create one
connection or a new process to each launched job, the
submit machine can become overloaded and have a very
low response time, preventing any useful work to be
done.

C. Resubmission of faulty jobs

In a grid environment we can assume that things can
go wrong for several reasons. The source of the failure
can be malfunctioning software or hardware. Most cur-
rent grid aware softwares can deal with hardware faults
or inclusion of new hardware. However, they can not
deal properly with all fault possibilities. Therefore, we
need to guarantee that jobs not completed because of
some failure need to be re-submitted. To the best of
our knowledge, no current grid aware software can deal
with this problem.

D. Data Locality

Usually, tasks launched by the user have some
kind of dependence on each other. Systems like
Chimera [18] and DAGMan [31] allow the user to spec-
ify dependencies among tasks. They build a task graph
where the nodes represent tasks and edges represent de-
pendencies through data files. In that case, data locality
must be preserved in order to avoid unnecessary data
transfer. Because the available systems do not deal with
this issue, transient files can be unnecessarily circulat-
ing in the network.

IV. MODEL

The main ideas to solve some of these problems pre-
sented on Section III are the following:

� to control execution of a huge number of dis-
tributed tasks;� to manage data placement;� to preserve data locality and to take advantage of
transient data;� to control network flow to avoid congestion;� to use a hierarchical organization;� to have adaptive behavior, i.e., management deci-
sions can change due to system dynamics.



These main ideas can be concretized through a hier-
archical management system. We present in the next
sections some details of this model, starting with our
assumptions.

A. Assumptions

The main premises assumed to the environment
where our system will run are the following:

Heterogeneous environment We suppose that ma-
chines could have different software and hardware con-
figurations, and probably will have as one could expect
in any grid environment. This heterogeneity must be
taken into consideration in our scheduling decisions.

A huge number of tasks can be submitted This as-
sumption is fundamental in the definition of several de-
tails in our model. By a huge number of tasks we mean
applications that generates thousands of jobs. These
kinds of applications could not be easily controlled by
hand.

Huge files can be used in computation Huge file
transfer could cause network congestion. So, some kind
of action must be taken to control file transfer avoiding
package lost and network saturation. Besides, it takes
a considerable transfer time. Data locality and caching
techniques could help minimizing performance losses
due to data transfer latency.

Tasks do not communicate by message passing
This is not a strong imposed restriction, i.e., we proba-
bly will treat parallel application with message passing
in the future. We just decided to postpone the analysis
of this kind of application to narrow our initial scope,
simplifying our model conception. Besides, we have at
this moment several applications to use in our experi-
ments that do not use message passing.

Tasks can have dependencies with other tasks due
to file sharing A bag-of-tasks is the simpler way the
application can be organized: there is no dependencies
between tasks, so they can be executed in any order.
Some Monte Carlo simulations can be classified in this
group. The grid system MyGrid [6] is an example of a

system that deal properly with this kind of application.
The task can also can be seen as a dependency graph
due to file sharing. For example, if a task � produces
an output file ��� that task � uses as its input file, then �
must wait until task � finishes. In this example, � and
� are nodes and there is an edge from � to � , therefore
� can only be launched after � finishes its execution.
This is a common assumption as presented in Condor’s
DAGMan [31] and Globus’ Chimera [18].

Huge number of files can be manipulated by tasks
Tasks can communicate and synchronize through files,
so, each task usually will manipulate at least two files
(one input and one output). Since we assume a huge
number of tasks, a very high number of files must be
managed. Efficient algorithms to keep data locality and
to efficiently transfer files are crucial to the success of
the model under these assumptions.

UNIX operating system this is not exactly a model
restriction. It is just a matter of simplification in our ini-
tial phase of implementation and of requirement detec-
tion. This assumption is based in our own environment
where most machines have some UNIX-flavor, mostly
Linux.

B. The Hierarchical Management System Overview

Figure 1 represents a schematic view of an applica-
tion submission in our environment. This schematized
view is presented to help understanding the function of
all our model components.

Figure 1. Hierarchical task dispatching example



First, the user submits in his home machine an appli-
cation with, for example, 10 thousand tasks. If all the
submission and the control were done in the home ma-
chine, probably this machine would stall and the user
would not continue to work there. This problem is al-
ready known in the literature. For example, Condor [31]
allows the user to specify a limit of jobs that can be sub-
mitted in a specific machine. This is not the best solu-
tion, since users must have some previous experience in
job submission to infer the appropriated limit avoiding
his/her machine stall and getting a good concurrency.
So, in our model, this task submission process will be
delegated to specialized managers.

Each manager, running in separate machines, can
submit and take care of a set of tasks that present sev-
eral task subgraphs. The Manager launches processes
to accomplish the submission and the control. These
processes are illustrated in Figure 1 as the 	�
 circles.

Then, each 	 
 process takes care of one or more task
in a remote machine, illustrated in the figure as the �
circles. The scheduler associated to the manager must
choose the resources appropriated considering task spe-
cific characteristics such as memory usage, operating
system version, and disk space.

The dynamics presented in this example becomes
concrete in our model through the three components
– Master Submit, Submission Manager, and
Task Manager – that will be presented in the next
subsection.

C. Model Components

Submitting a huge amount of tasks under the con-
trol of our system can only be done through a Submit
Machine. A submit machine is a machine that has the
Master Submit component installed. The Master
Submit is in charge of:

� receiving an user input file describing the tasks to
be executed. We are formalizing our description
language trying to get the best ideas from our ex-
perience with other languages such as VDL [18],
DAGMan [31], and ClassAds [29];� partition the tasks in groups and send each group
to a different Submission Manager. Ide-
ally, each Submission Manager receives an
independent group, i.e., any task depends on ex-
ternal task results. However, many applications

could not be solved with this restriction. Then,
when partitioning, the Submit Machine se-
lects groups minimizing communication and dis-
tributes according to the Submission Man-
ager capacity;� show in a user friendly way the status and monitor-
ing information received from all Submission
Managers.

Note that the Master Submit does not have infor-
mation about resources available in the system. It only
keeps track of the Submission Managers status to
avoid communicate with a failure node or with an over-
loaded one.

The Submission Managermain functions are :
� to do graph partitioning using the scheduling by

edge reversal technique (SER) [20, 2]. SER is a
scheduling mechanism based on the manipulation
of acyclic orientations of a connected graph. We
use this technique to get subgraph of related pro-
cesses;� to create daemons called Task Manager to con-
trol real task execution. Each daemon keeps con-
trol of a subgraph of tasks defined by the partition-
ing;� to keep information about computational re-
sources;� to communicate periodically with the Submis-
sion Manager. The idea is to work using the
lease concept, in a similar way that Sun’s JINI
model [24]. A lease is a grant of guaranteed ac-
cess over a time period;� to supply monitoring and status information useful
to the user. It stores in log files the information in
a synthetic way. These log files can be consulted
by the user but are not intended to be human read-
able. These information are sent to the Master
Submit that has the responsibility to present data
to the user. This periodic information flow is also
used to detect failures.

The Task Manager is responsible for commu-
nicating with remote machines and launching remote
jobs. Its main functions are :

� to communicate with the remote scheduler to ne-
gotiate remote execution task;� to run tasks according to task graph;� to allocate tasks keeping data locality;



� to keep information about task graph evolution;� to control data transfer avoiding data loss and con-
gestion.

The assumption of a huge number of tasks has im-
portant consequences to scheduling policy design. We
cannot just submit jobs without controlling system pa-
rameters and flow control as some systems. For exam-
ple, MyGrid [6] considers that making a fast scheduling
decision is more important. It is true for many applica-
tions, but for our target applications we need to keep
track of system information. For example, if the appli-
cation take several days to finish, two seconds to find a
suitable cluster is not a problem. The key point here is
adaptation as we can see in the following paragraphs.

Figure 2 illustrates the three main components of our
model and their relationship.

Figure 2. Hierarchical task management main components

When the user submits its application in the Sub-
mit Machine, the Master Submit can already be
active or can be started due to the current request.
When a Master Submit becomes active, it broad-
casts a message to its local network. All Submission
Managers replies to this message to inform their lo-
cation and status. When an application submission re-
quest arrives in the active Master Submit, it uses
its local information and choose one or more Submis-
sion Managers to accomplish all the required tasks.
Then, periodically the Submission Managerswill

communicate with the Master Submit to indicate
the execution progress. This protocol allows online
monitoring information to the user and also fault de-
tection.

There is communication between the Submission
Managers, since some task groups can have depen-
dence. Therefore some synchronization points must
be established. The Master Submit must send, in-
cluded in the group task description, the identification
of each manager that is related to the group.

Our Submission Manager has also a function-
ality similar to the expander daemon of Vadhiyar &
Dongarra’s metascheduler [34]. Task execution occurs
through the instantiation of the Task Managers.
Each Task Manager has the responsibility of exe-
cuting a subgraph of tasks in a specific location. This
decision is made considering information that may be
out dated. Then, while the Task Managers execute
and report progress, the Submission Manager can
find a better alternative to execute the tasks.

D. Flow Control

In our context, flow control is the management of
data flow between nodes in a network so that the data
can be handled at an efficient rate. Too much data arriv-
ing before a device can handle it causes data overflow.

Our proposal is to detect the network characteristics
and to send data according to its latency and bandwidth.
The flow must adapt according to the current status:
sending input or output files can be postponed until the
network can handle it. It is important to remember that
our distributed organization is suitable to make this kind
of control. Data received from remote sites in more than
one machine can minimize contention. Note that each
component must keep track of this information, but all
should send its data. For example, if a Submission
Manager waits too much to send its data, it may run
of disk space.

V. IMPLEMENTATION ISSUES

We are presenting an ongoing work. Our initial pro-
totype has been implemented mainly in C language due
to performance requirements. The Scheduling by Edge
Reversal technique is already implemented and we have
been doing some experiments in the context of parti-
tioning of Constraint Satisfaction Problems.



In a first approach, we decided to perform several
simulations of our modelling to make some implemen-
tation decisions. Simulation has the advantage of al-
lowing the control of several parameters as for example
number of nodes in a cluster, bandwidth, latency, and
mean time between failures. Besides, experiments in
a simulation environment can be reproduced. At this
moment, we are designing our simulation model. We
intend to use a simulation framework as for example
GridSim [3], MicroGrid [22] or the Monarc 2 Simula-
tor [26].

VI. CONCLUSION

This paper presents a general framework for grid en-
vironments, whose central idea is to have a hierarchical
organization where load of the user machine (submit)
is shared with other machines. Our proposal wants to
take advantage of hierarchical structures, because this
seems to be the most appropriate organization for grid
environments. We discussed some problems that must
be solved in grid environments such as data loss, au-
tomatic resubmission of faulty jobs, data locality, and
overload of submit machines. The solution proposed
focuses on these problems. As far as the authors know,
this is the first proposal of a hierarchical management
system for grid environments.

We have implemented and already made some exper-
iments with the partitioning algorithms needed by the
Master Submit and by the Submission Man-
ager components. We are now designing our simu-
lation model. With simulation, several parameters will
be under control and we will try to get the best options
to our system implementation.

As future work, we must finish the implementation
of our model. We intend to test it using applications
from engineering, through a collaboration with the Lab-
oratório de Projeto de Circuitos (LPC) at UFRJ, and
from high energy physics, through the HEPGrid collab-
oration. Another important work is to define the charac-
teristics of grid applications communication, in a sim-
ilar way that has already been done to TCP [4]. This
characterization could be used to get a more effective
flow control policy.

REFERENCES

[1] M. Baker, R. Buyya, and D. Laforenza. The grid: Interna-
tional efforts in global computing. In International Confer-
ence on Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet (SSGRR 2000), Rome,
Italy, Jul. 31 – August 6 2000. Also available at http://
www.cs.mu.oz.au/˜raj/papers/TheGrid.pdf.

[2] V. C. Barbosa and E. Gafni. Concurrency in heavily loaded
neighborhood-constrained systems. ACM Transactions on
Programming Languages and Systems, 11(4):562–584, Oct.
1989.

[3] R. Buyya and M. Murshed. Gridsim: A toolkit for the mod-
eling and simulation of distributed resource management and
scheduling for grid computing. The Journal of Concurrency
and Computation: Practice and Experience (CCPE), 14(13–
15), Nov.–Dec. 2002.

[4] R. Cáceres, P. B. Danzig, S. Jamin, and D. J. Mitzel. Charac-
teristics of wide-area tcp/ip conversations. In Proceedings of
the conference on Communications architecture & protocols,
pages 101–112. ACM Press, 1991.

[5] S. J. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw.
Resource management in legion. In Proceedings of the 5th
Workshop on Job Scheduling Strategies for Parallel Pro-
cessing (JSSPP ’99), in conjunction with IPDPS ’99, Apr.
1999. Also available at http://legion.virginia.
edu/papers/legionrm.pdf.

[6] W. Cirne and K. Marzullo. Opengrid: a user-centric ap-
proach for grid computing. In Proceedings of the 13th Sym-
posium on Computer Architecture and High Performance
Computing (SBAC-PAD 2001), Sep. 2001. Also avail-
able at http://walfredo.dsc.ufpb.br/papers/
open-grid-sbac-final.ps.

[7] D. de Roure, M. A. Baker, N. R. Jennings, and N. R. Shad-
bolt. The evolution of the grid. In F. Berman, G. Fox, and
T. Hey, editors, Grid Computing: Making the Global In-
frastructure a Reality, pages 65–100. Wiley & Sons, 2003.
Also available at http://www.semanticgrid.org/
documents/evolution/evolution.pdf.

[8] D. de Roure, N. R. Jennings, and N. R. Shadbolt. The
semantic grid: A future e-science infrastructure. In
F. Berman, G. Fox, and T. Hey, editors, Grid Com-
puting: Making the Global Infrastructure a Reality,
pages 437–470. Wiley & Sons, 2003. Also available at
http://www.semanticgrid.org/documents/
semgrid-journal/semgrid-journal.p%df.

[9] T. A. DeFanti, I. Foster, M. E. Papka, R. Stevens, and T. Kuh-
fuss. Overview of the I-WAY: Wide-area visual supercomput-
ing. The International Journal of Supercomputer Applications
and High Performance Computing, 10(2/3):123–131, Sum-
mer/Fall 1996. Available at citeseer.nj.nec.com/
article/defanti96overview.html.

[10] Distributed.Net. http://www.distributed.net/.

[11] I. C. Dutra, D. Page, V. Santos Costa, J. Shavlik, and M. Wad-
dell. Toward management of embarrassingly parallel applica-



tions. In (Europar 2003), Klagenfurt, Austria, Aug. 2003. to
appear.

[12] Fafner overview. http://www.npac.syr.edu/
factoring/overview.html.

[13] Rsa130: Getting started with fafner. http://cs-www.
bu.edu/cgi-bin/FAFNER/factor.pl.

[14] SETI@home The Search for Extraterrestrial Intelligence at
Home. http://setiathome.ssl.berkeley.edu/.

[15] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1990.

[16] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
physiology of the grid: An open grid services archi-
tecture for distributed systems integration, Jun. 2002.
Available at http://www.globus.org/research/
papers/ogsa.pdf.

[17] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations. In-
ternational Journal of Supercomputer Applications, 15(3),
2001. Also available at http://www.globus.org/
research/papers/anatomy.pdf.

[18] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera:
A virtual data system for representing, querying and au-
tomating data derivation. In Proceedings of the 14th
Conference on Scientific and Statistical Database Manage-
ment, Edinburgh, Scotland, Jul. 2002. Also available at
http://www.globus.org/research/papers/VDS02.pdf.

[19] E. W. Fulp and D. S. Reeves. Distributed network flow control
based on dynamic competive markets. In Proceedings Inter-
national Conference on Network Protocol (ICNP’98), Austin
Texas, Oct. 13-16 1998. Available at http://citeseer.
nj.nec.com/fulp98distributed.html.

[20] E. M. Gafni and D. P. Bertsekas. Distributed algorithms
for generating loop-free routes in networks with frequently
changing topology. IEEE Transactions on Communications,
1(29):11–18, Jan. 1981.

[21] A. S. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey.
Wide-area computing: Resource sharing on a large scale.
IEEE Computer, pages 29–36, May 1999. Also available at
http://www.cs.cornell.edu/Courses/cs614/
2003SP/papers/legion-ieeecomp.p%df.

[22] X. Liu, H. Xia, and A. Chien. Network emulation tools for
modeling grid behaviors. Submitted to The 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGrid 2003). Available at http://www-csag.ucsd.
edu/papers/ccgrid2003-final.pdf.

[23] L. Massoulié and J. Roberts. Bandwidth sharing: objec-
tives and algorithms. IEEE/ACM Transactions on Networking
(TON), 10(3):320–328, 2002.

[24] Sun Microsystems. Jini architecture specification, Jun. 2003.
Also available at http://wwws.sun.com/software/
jini/specs/jini2_0.pdf.

[25] H. B. Newman, I C. Legrand, P. Galvez, R. Voicu, and
C. Cirstoiu. Monalisa: A distributed monitoring service ar-
chitecture. In Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, California, USA, Mar. 24-28 2003.

[26] The MONARC Project Models of Networked Analysis at Re-
gional Centres for LHC Experiments. Distributed computing
simulation. http://monarc.web.cern.ch/MONARC/
sim_tool/.

[27] S.-M. Park and J.-H. Kim. Chameleon: A resource scheduler
in a data grid environment. In 3st International Symposium on
Cluster Computing and the Grid, pages 258–, Tokyo, Japan,
May 12 - 15 2003.

[28] The Compact Muon Solenoid (CMS) Project. http://
lcg.web.cern.ch/LCG/.

[29] R. Raman, M. Livny, and M. Solomon. Matchmaking:
Distributed resource management for high throughput com-
puting. In Proceedings of the Seventh IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting, Chicago, USA, Jul. 28-31 1998. Also available at
http://www.cs.wisc.edu/condor/doc/hpdc98.ps.

[30] T. Sandholm and J. Gawor. Globus toolkit 3 core – a
grid service container framework. White paper. Avail-
able at http://www-unix.globus.org/toolkit/
3.0beta/ogsa/docs/gt3_core.pdf.

[31] D. Thain, T. Tannenbau, and M. Livny. Condor
and the Grid, chapter BERMAN, Fran et al (edi-
tors). Grid Computing: Making The Global Infras-
tructure a Reality. John Wiley, 2003. Available at
http://media.wiley.com/product_data/
excerpt/90/04708531/0470853190.pdf.

[32] The Globus Toolkit. http://www.globus.org/
toolkit/.

[33] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, C. Kesselman, and P. Vanderbilt. Grid ser-
vice specification, 2002. Available at http:
//www.gridforum.org/ogsi-wg/drafts/GS_
Spec_draft03_2002-07-17.pdf.

[34] S. Vadhiyar and J. Dongarra. A metascheduler for the
grid. In 11th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC-11), pages 343–
354, Edinburgh, Scotland, Jul. 24 – 26 2002. Also avail-
able at http://hipersoft.cs.rice.edu/grads/
publications/hpdc_meta.pdf.


