COPPE
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

GERENCIA DE RECURSOS CIENTIFICOS:
APOIANDO A REALIZACAO DE EXPERIMENTOSIN SILICO

(SCIENTIFIC RESOURCESMANAGEMENT:
TOWARDSAN IN SILICO LABORATORY)

RELATORIO TECNICO ES-605/03

Autores:

Maria Claudia Reis Caval canti
Marta Lima de Queirés Mattoso
Maria Luiza Machado Campos

RIODE JANEIRO, RJ - BRASIL
JUNHO 2003

COPPE
FEDERAL UNIVERSITY OF RIO DE JANEIRO

SCIENTIFIC RESOURCES MANAGEMENT:
TOWARDSANIN SILICO LABORATORY

TECHNICAL REPORT ES-605/03

This work is an extended version of the thesis presented to COPPE/UFRJ as a partia
fulfilment of the requirements for the degree of

Doctor of Science (D.Sc.)
In Computer Science and Systems Engineering

By

Maria Claudia Rel's Cavalcanti

Committee Members;

Prof. Marta Lima de Queirés Mattoso, D.Sc. (Chair, Advisor)
Prof. Maria Luiza Machado Campos, Ph.D. (Advisor)

Prof. Jano Moreira de Souza, Ph.D.

Prof. Marcos Roberto da Silva Borges, Ph.D.

Prof. Rubens Nascimento Melo, D.Sc.

Prof. Claudia Maria Bauzer de Medeiros, D.Sc.

Prof. Paulo Mascarello Bisch, D.Sc.

RIODE JANEIRO, RJ - BRAZIL
JUNE 2003

SCIENTIFIC RESOURCES MANAGEMENT:
TOWARDS AN IN SLICO LABORATORY

Maria Claudia Reis Caval canti

Advisors: Prof. Marta Lima de Queirds Mattoso
Prof. Maria Luiza Machado Campos

Department: Systems Engineering and Computer Science

One of the main challenges of scientific applications is to allow scientists to
share their scientific resources. Besides scientific data, scientific programs and models
are also valuable resources to exchange. Usually, scientific programs are available for
local installation, in compressed files with configuration scripts. Data input and output
files are rarely organized and in silico essays are frequently lost. The database
community has been working on data management for the last four decades. However,
managing models, programs and workflows as well as data is a new issue and complex
task. To facilitate the exchange, reuse and dissemination of information we propose a
Web services based architecture for managing distributed scientific resources. The
main contribution of this thesis is an architecture (SRMW) and an enhanced metadata
(SPMW) support system for effective management of distributed scientific resources.
The architecture and metamodel have been studied under two real scientific
applications evidencing important and innovative decisions on the design of SRMW and
SPMW, such as: (i) definition of three basic metamodel categories, i.e., model, program
and data; (ii) characterization of experiments and essays, (iii) publication and

navigation of scientific resources using Web services platform.

O 1 11 e 18 o1 o TP 1
2. Scientific ReSOUrCeS Man@QEMENL........c.oucuecrieeurieeeteeesises s sese s sessssssenans 6
21 Environmental APPliCaLiONS........ccireerieerieereereee s 7
211 Farm Field Damage PreVention..........c s sssesssesssessens 8
2.1.2 Diagnosisand Prevention of Biocorrosion on Petroleum Production................... 9

2.1.3 Air POHULION FOIECASL.....cocvererrersersetseeeeseeseeee e ses st sss s sss s essensens 10

2.2 BiophysiCal APPlICALTIONS.......coveirreeeereieeeere et 11
2.3 Defining SCIENtific RESOUICES........c.overiererererrerrerernerersee e seessssesneans 13
231 SCIENtTIC MOUELS ... 14

2.3.2 SCIENLITIC PrOgramSc.occorieeerieceiieest et 18
2.3.3 SCIENLTIC DBIA...c. et s 20
2.3.4 SCIENtific WOIKFIOWS.......cviiiiceiieieee e 21

235 SCIENtific EXPEMIMENES ..ottt ettt see st sse s enaes 2

24 Requirements for Scientific Resources Managementcocvereenernerneeneeneeneenesnene. 24

3. cientific Resources Management Systems

3.1 Handling Distribution and Heterogeneity of Scientific Resources..........ccccovveunee. 28
311 L SEECE ettt
312 WED SEIVICES ..ottt
3.1.3 Grid Computing based Systems
3.2 Describing scientifiC reSoUrCes.........oenerrencrrecereeenn:
3.21
3.2.2
3.2.3 MYGIid PrOjeCt.....cciciicccreeeeseses et
3.2.4 GriPhyN Project......ccoovrirnnessrercsssesessessessessesnens
3.25 ESSW PrOJECLoviereeirerererereeesesesesssseeesessssssesessssnsnens
3.2.6 ESP2NEt ProjeCt......ccccovereeererererrereseeeseseeesesessesenenens
3.2.7 ECOBASMIF PrOjECE.....ccvreiererireeeerireneesiesesesesisesesesessesesssseees
3.3 Managing Scientific Workflows and Registering their Use............
3.3 1 WSA 8N OGSA ..ottt
3.3.2 MYGIid PrOjECt.....ciiciicccreeeeresee et
3.3.3 GriPhyN Project ...t
3.3.4 ESSW and ESP2Net Projects
3.35 ZOO SYSIEM ...euieirreereeteeisesieeesessssisesssessessesssessnes
336 WASA s
3.3.7 AGROMET ..ot
34 DiSCUSSION....ouerrieiriereteressiessseee s
4. Specification of a Scientific Resources Management Infrastructure...........cocvveveneens 70

4.1 S Y AN o2 a1 (T (0 (< 70

4.1.1 Resource Operation MOAUIE ... 72
4.1.2 Resource DesCription MOUUIE ... aes s 74
4.1.3 PUDIICEIION MOUUIE ...ttt 75
4.1.4 Navigation MOQUIE.......cooeeeeseccr ettt Vad
4.1.5 EXperimentation MOUUIE. ...t ssssens 78
4.2 Scientific Publication Metamodelccernrernrnerereeee s 80
421 SPM CONCEPLS.....coerieieerrereererreresrersesesssssesessss s asessessasessse s ssssesssssnesesssesnns 81
4.2.2 SPM AQVaNCEd CONCEPLS......cceuereeereeerrieeerieeeseesessssessisessssess s ssese s ssessssssssssssesssnes 83
4.3 Analysing SRM in the light of the requirementscooevrrnenecneeneenereeenn. 0
5. Web Servicesbased SRM architecture Implementation...........covrreeeneeneneneneeneeneeneens 92
5.1 SRMW Architecture Implementation...........cocvrenrnernerneeeseeesenees s 92
5.1.1 Resource Operation MOAUIE ... sesssssessssesses 93
5.1.2 Resource DesCription MOUUIE ..o sessessessessssesees A
5.1.3 Web Access Layer Implementation [SSUES..........ovrreereereeeeeereeneenernersersersesseseeenes 9%
52 SPMW IMPIEMENTALION ...ttt 9%
5,21 SPMW XML SCREMA ...cceieiiiricirirereeri et et sensss e senssnsens 98
5211 Model — SPMIMOCEL ..o 9
5.2.1.2 Model Data Category — SPmM:MOADC ... 101
5.2.1.3 Program — SPM:PrOgramccovirrnenreseeesissesesesseesesesesesesessssesessesanens 102
5.2.1.4 Program Data Category— spm:ProgDC........cccovmmnininnnnnnsnnesssiesennns 104
5.2.1.5 Code Resource— spm:COdERESOUICEcccoveuvercrereeecierenes s 105
5.2.1.6 DataResource— spm:DataRESOUICE........cccuvvrinneseeee e 106
52.1.7 WOrkflow—spm:WOrKFIOWccooerrerierrerisieseeee s ssesssssseneens 107
5.2.1.8 Experiment— SPMEXPENMENToovviirecirierieie s 108
5.2.2 Extending aWSDL AOCUMENT ..ot ssesesseaes 110
6. Using SRMW with Scientific APPliCatIONS.......ccueeeireereererrirneeree e sseeneens
6.1 Souring APPHICALTION ...
6.1.1 Publishing Kuznetsovamodelcccccounrnniereenes
6.1.2 Publishing Kuznetsova Program..........c.cccceevervueennnen.
6.1.3 Publishing Kuznetsova Code Resource
6.1.4 Publishing the KuznetSova WorkflOw...........ccevrnennenensnecncneeeeeseenenes
6.1.5 Publishing CabiunNas Dal@.........c.cceiureerreerieerreeeinesesesseessesssess s
6.1.6 Navigating through BiOCOIT0SION RESOUICES.........cveereeerecerieceieeensiensresesseserseans 126
6.1.7 Publishing the Cabiunas EXPErIMENL.........ccccovveeeneneieenesecie et ssesssessssesaeens 127
6.1.8 Executing the Cabiunas EXPErimEnt.........ccocovviecineneeenesecie s ssessssssssessesns 128
6.2 Structural GenomiC APPIICALIONc.ccuveeeereee e 130
6.2.1 Publishing BLAST @l gOrithm........ccccccurrinieierisescneses s sssessssssesessssssssessnens 131
6.2.2 Publishing BLASTP PrOQraM.......ccocecurrinrerieresisenesesesssesesesseessssessssssssesssssesesssssns 135
6.2.3 Publishing MHOL-BLASTP COUE [ESOUICE.........cereureeerereerieeerieesnssensssesessesesseans 139

6.2.4 Publishing MHOLIINE WOTKFIOWcccvuerrierrieereinenerresneeiseeeseiesssiesssesesseseneaes 140

6.2.5 Publishing Genoma data rESOUICES..........ccvueerreeerreerererresseresseseesesseessssesssessssssesseans 141

6.2.6 Publishing the Genoma EXPEriMmENtccccoevveeernereieerneseeie st ssesssesessesasens 142

6.2.7 Navigating through Structural GENOMIC RESOUICES..........cccerrrrereeereerensesreneeaeens 143

6.2.8 Executing the GEnoma EXPEMENTcccevveeenereeesesese s sessesaeens 144

6.3 Final COoNSIAEIAtiONS........cureuiereeeireeeireee ettt eaen 145

T CONCIUSION.....ceiiierertereateressiste et ses bbb a bbbttt 147
7.1 (@010] o111 4o L3P 148
7.2 Current and FULUrE@ WOTKcccuriicierereerreee ettt 150

8. REFEIENCES ... bbb 154
9 Y] o 1= 1 | ORI 163
9.1 SPMW XML SCHEMA ...ttt bbb 163

vi

Figures

Figure 1: The Cranberry Application (AILAMAKI, A.; IOANNIDIS, Y.; LIVNY, M., 1998)

Figure 2: Biocorrosion Application

Figure 3: Pollution Control Application

Figure 4: Structural Genomic Application

Figure5: Le Select Architecture (XHUMARI, F. et al., 2000)

Figure 6: Web services Requestor/Provider Architecture

Figure 7. GRAM Architecture (adapted from FOSTER, I., KESSELMAN, C., et al., 2002)

Figure 8: Web services Architecture

Figure 9: WSDL schema (simplified)

Figure 10: Some WSDL schema global elements (simplified)

Figure 11: OGSl WSDL extension

Figure 12: Extending WSDL with OGSl elements example (adapted from OGS-WG, 2003)
Figure 13: MyGrid Architecture (WROE, C. et al., 2003)

Figure 14: MyGrid suite of ontologies (WROE, C. et al., 2003)

9
10
11
12
30
32
33
37
39
40
41
42
44
45

Figure 15: Chimera System Architecture (adapted from FOSTER, |., VOECKLER, J., WILDE, M., ZHAO,

Y., 2003)

Figure 16: Chimera Virtual Data Schema

Figure 17: ESSW Architecture (adapted from FREW, J.; BOSE, R., 2001)

Figure 18: LN Database Schema (FREW, J.; BOSE, R., 2001)

Figure 19: ASSISS Architecture (ESP2NET PROJECT)

Figure 20: SEML Structure (KAESTLE, G., SHEK, E.C., DAO, S K., 1999)

Figure 21: REM-ECOBAS Systems Architecture
Figure 22: REM database structure (REM)

Figure 23: ECOBAS MIF Structure

Figure 24: ECOBAS MIF examples (BENZ, J; HOCH, R., 1999)

Figure 25: ESSW Experiment

Figure 26: Comparative Analysis of Related Work

Figure 27: SRM Architecture

Figure 28: SRM Architecture, a distributed View.

Figure 29: Resource Operation module

Figure 30: Resource Description module

Figure 31: Publication module

Figure 32: Navigation module

Figure 33: Experimentation module

Figure 34: SPM Generic Concepts

Figure 35: SPM operational resources related concepts

Figure 36: SPM transformation related concepts

Figure 37: SPM model derivation and calibration concepts

Figure 38: SPM data category related concepts

46
48
49
51
53
54
55
56
57
58
63
67
71
72
73
75
76
78
79
80
8l
83
84
85

vii

Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44.
Figure 45:
Figure 46:
Figure47:
Figure 48:
Figure 49:
Figure 50:
Figure51:
Figure 52:
Figure53:
Figure54:
Figure55:
Figure 56:
Figure57:
Figure 58:
Figure 59:
Figure 60:
Figure61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74.
Figure 75:
Figure 76:
Figure77:
Figure 78:

SPM parameter and constraint concepts

86

SPM Schema overview

88

SPM advanced concepts (experiment and wor kfl ow)

89

Requirements review for SRM

91

SRM Architecture based on Web services (SRMW)

93

WSDL and SPMW mapping (abstract part). SPMW elements are painted.
WSDL and SPMW mapping (concrete part). SPMW elements ar e painted.

SPMW main elements

97
98
98

Model XML Schema diagram

Model Key and Keyref definitions

Model Data Category XML Schema diagram

Model Data Category Key definition

Program XML Schema

Program Key and Keyrefs definitions

Program Data Category XML Schema diagram

Program Data Category Key and Keyrefs definitions

Code Resource XML Schema diagram

Code Resource Key and Keyrefs definitions

Data Resource XML Schema diagram

Data Resource Key and Keyrefs definitions

Workflow XML Schema diagram

Workflow Key and Keyrefs definitions

Experiment XML Schema diagram

Experiment Key and Keyrefs definitions

Model Data Category Basic Cations Publication

Model Data Category Basic Cations XML document

Model Publication for Kuznetsova Model (part 1)

Model Publication for Kuznetsova Model (part 1)

Model XML document

WSDL document for Kuznetsova Program (abstract part)

Kuznetsova Program Publication

Program and ProgDC XML document for Kuznetsova Program

WSDL document for Kuznetsova Program (concr ete part)

Kuznetsova Code Resource Publication

Kuznetsova Wor kflow Publication

Kuznetsova Wor kflow XML document

Cabiunas Data Resource Publication

Navigating through Experiments

Cabiunas Experiment Publication

Cabiunas Experiment XML document

100
101
102
102
103
104
104
105
106
106
107
107
108
108
109
110
116
117
118
119
119
120
121
122
123
124
125
125
126
127
128
128

viii

Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:

Kuznetsova parameter input

BLAST Algorithm Input Model Data Category Publication

Model Data Categories XML document for BLAST Algorithm
BLAST Algorithm Publication

Model XML document for BLAST Algorithm

WSDL document for BLASTP Program (abstract part)

BLASTP Program Input Data Category Publication

BLASTP Program Publication

Programand ProgDC XML document for BLASTP program

WSDL document for BLASTP Program (concrete part)

MHOL-blastp Code Resource Publication

MHOLIine Workflow Publication

MHOLIine Workflow XML document

Genoma Data Resource Publication

Publishing Experiments using the MHOLIine workflow

Genoma Experiment XML document

Navigating through Programs

BLASTP program parameter input Interface

129
132
133
134
134
136
137
138
139
140
140
141
141
142
143
143
144
145

1. Introduction

Scientific experiments have traditionally evolved in isolation, i.e., scientists
from different disciplines used to work on their own experiments. However, as science
complexity increased over time, scientific experiments now depend on the cooperation

among scientists from different disciplines and organizations.

Typicaly, scientists work with experiments based on scientific models, which
are ssimplified representations of real phenomena. A scientific experiment can be viewed
as a flow of data transformations that starts from raw data and finally produces data
with added scientific value. Therefore, programs and data are some of the most valuable
scientific resources at scientific laboratories. These labs usually have multiple versions
of a single program, as well as multiple formats of a data set (images, flat files,
databases, etc.). Also, multiple data sets may be used as input to those programs.
Moreover, due to technology improvements, scientific data from different sources
became largely available in digital media. Scientists can take advantage of such data

availability by using them to enhance their experiments.

All these versions, formats and experiments are not easy to manage. As the
number of programs grows, scientists find it more and more difficult to manage such
resources. One of the reasons is the complexity of new programs coming up in the
scientific scenario. Another difficulty is the natural need for composing chains of
programs by combining their output/input data. In addition, the use of script languages
is very popular within scientific communities. However, it does not facilitate the
cooperation among scientists. Since scripts are not remotely accessed and usualy
demand programs to be installed locally, scientists cannot share their experiments with

other scientists.

An experiment may begin when a scientist selects models and relevant input
data for the problem to be studied, determining or developing an adequate flow of
programs that can process the selected input data. Many of these programs are
implemented for some specific platform, such as high performance and parallel
machines. In this scenario, the main difficulties begin with trying to find the right
program for each experiment and the interoperability with other scientific resources,

such as programs and data. To find the right program means first to find the right model

and this may not be a smple task. Information about the applicability of a model can
feedback its users with more accurate model pre-conditions. Furthermore, to fully
understand a model, the scientist may need to investigate previous case studies that have
successfully used that model.

Usually, it is the scientist’s previous experience that guides the choice of a
model for a new experiment. To take advantage of such knowledge, the scientist should
be able to access documentation on previous experiments. This documentation is not
always available and may not be described within a common framework. Specially
when dealing with empirical models, the scientist has to analyze contextual details of

such experiments, verifying similarities with the problem in hand.

In summary, collaboration among scientists is based on the exchange of not only
data but aso scientific models, their implementations (programs), program
compositions and experiment results. Therefore, scientists need an environment that
supports geographically distributed team collaboration, and that enables scientific
resources exchange between different teams. ldeally, a distributed information
management architecture should enable scientists to publish (that is, make publicly
available) their scientific data, models and programs. Program providers should be able
to make their programs available to other scientists, describing and guiding their remote
use. In addition, data providers should be able to make their data sets available to other
scientists by describing data structure and providing the necessary means to get them.
On the other hand, scientists and decisionrmakers should be able to search, select and
manipulate published data, models and programs that are relevant to their experiments

and decisions.

In order for distributed scientific resources to become part of alarge information
system on the Internet, they must be located, understood and efficiently accessed over
the network. Sharing scientific data requires identifying not only data but also what
model and model implementations (programs) are useful, where these programs are
located and when (in which order) should programs be executed. It also requires
enabling remote data access for execution at program locations. Moreover, based onthis
distributed approach, scientists should be able to configure their own combinations of

programs provided by different teams.

A step towards this direction includes providing program and model descriptions

to facilitate the selection of the appropriate model and consequently the appropriate

2

program. However, this is not a simple task. First of all, model developers come from
many different areas, dealing with different kinds of models and description standards.
Also, each model description should include its use conditions, i.e., contextual and
operational constraints, which are difficult to formalize. Now, suppose a user
understands a model and selects it, finds the correspondent program and runs it.
Feedback information on such model usage is valuable, as other users may need to

investigate previous case studies involving that model to fully understand it.

In the past, several technologies have been proposed to address these issues.
Among the more important ones are Heterogeneous and Distributed Database Systems
(HDDYS) (SHETH, A. P; LARSON, J. A, 199%0), Model Management Systems (MMS) (GUARISO, G;;
HITZ, M.; WERTHNER, H., 1996) (BANERJEE, S; BASU, A., 1993) (BENZ, J; HOCH, R., 1999) (BRAZ, M. H., MELO, R.
N., 1989) and Scientific Workflow Management Systems (WESKE, M.; VOSSEN, G.; MEDEIROS, C,
1996) (AILAMAKI, A.; IOANNIDIS, Y.; LIVNY, M., 1998). These approaches are not sufficient to

address al those issues smultaneously, however, their combination can be helpful.

We present the combination of the desired functionality through an architecture
and a metamodel using Web services (ws) technology. Data and programs can be
published as Web services. Web services classes may be used to categorize and classify
data and programs. These classes can be used in service composition, which can
become a workflow. However, this is not a smple task. Aggregating equivalent
programs and data means to overcome their heterogeneity. The Web services
Description Language (WSDL) (wspL, 2003) provides an abstract level for program and
data resources descriptions. However, WSDL is not sufficient to address the
heterogeneity problem, specially in the scientific environment, where programs are
based on scientific models. Since WSDL was originally proposed for generic service
description, it lacks application-related semantic descriptors. To aggregate scientific
resources we had to extend WSDL to provide a better metadata support.

The main goal of our approach is to provide a Web services environment, to
deliver semantic information about these scientific resources. We propose the Scientific
Resources Management (SRM) architecture where scientific users can remotely access
and share programs and data, as well as scientific workflow definitions and
experiments. To make these resources really useful, SRM embeds the Scientific
Publishing Metamodel (SPM) to harmoniously describe them. SPM relates models,
programs and data through specific categories and semantic relationships. SRM is then

implemented as an enhanced Web services architecture (SRMW) where SPM is
represented as an extension of WSDL (SPMW). SRMW architecture provides seamless
interoperability among published data and programs. In addition, equivalent programs

can be described and grouped in one service.

The main contribution of our work is to combine a metamodel-based
architecture for managing scientific resources to a promissing and adequate technology,
i.e,, Web services. Through this combination, we successfully address what HDDS,
MMS and WfMS approaches individually fail to address. In addition, our approach isan

innovative contribution to the scientific area.

We have exercised SPMW metamodel, applying it to scientific resources of two
different research teams. The first one took place at the Petrobras Research Centre
(CENPES), with the collaboration of the biocorrosion team of specialists. The second
one took place at the Institute of Biophysics Carlos Chagas Filho (IBCCF), UFRJ, with
the collaboration of dynamic molecular biology specialists. In both teams, scientists and
specialists can browse metadata that describe scientific resources to find useful
information for their research projects. Then, they can use these resources published as

Web services to perform new experiments.

We have shown that our metamodel-based approach has provided a cricial
support to scientific applications development. In our approach, ®veral conceptual
levels are captured in SPMW metamodel specially designed to those applications, and
scientific resources are described according to this metamodel. One of the main
contributions is the distinction between models and their implementations. Also, like in

traditional scientific laboratories, SPMW is able to register the ongoing experiments.

This work is organized as follows. In section 2, we have briefly described some
scientific applications. These applications have motivated our work on providing a
scientific resources management solution. Then we discuss the main scientific
resources, characterizing each one of them. Finally, we close the section with the

identification of requirements for an adequate solution.

In section 3, we have described some of the current main approaches that
address scientific resources management. Some approaches include recent technologies,
while others embed these technologies in relevant research projects. We organize them

according to their focus, in three subsections. handling the distribution and

heterogeneity of scientific resources; describing scientific resources, managing
scientific workflows and registering their usage. Finally, we close the section with an

analysis of the solutions presented so far.

In section 4, we describe our solution to scientific resources management. The
functionality of the SRM architecture is described in modules. Each of SRM modulesis
described in detail. AsSRM is a metamodel based architecture, its metamodel (SPM) is
also presented in this section. SPM is represented as a UML diagram, which is
explained in parts. Subdiagrams are extracted from the main diagram, and each of the
concepts is defined and exemplified. Finally, we analyse SRM in the light of related

work.

In section 5, we introduce SRM as a Web services based architecture. We revisit
SRM modules explaining how we have implemented them. To cope with the
implemented architecture, SPM is expressed as an XML Schema (SPMW), which is
also presented in this section. At the end, we explain how SPMW extends WSDL

documents, by referring to its elements.

In section 6, we have described how SRMW can be used. We have instantiated
SPMW documents according to real scientific application resources. First we describe
resources of a biocorrosion application and then, we describe resources of a structural

genomic application.

Finally, we conclude this work summarizing its contents and including some
perspectives for future directions. Also, we have included an appendix with the
complete SPMW XML schema.

2. Scientific Resources Management

A scientific application can be defined as a computer application that addresses a
specific science investigation, typically astronomy, biology, physics, engineering,
geology among others. The main users of such applications are scientists, some playing
the role of application developers, and others playing the role of fina users. Usualy,
these applications are computer programs or g/stems developed within some research
laboratory tools, such as pollution control systems, molecular dynamics simulators,

astronomy image processing programs, weather forecast systems, etc.

Throughout the years, scientific applications evolved together with computer
technology. Nowadays, scientific applications involve different resources, such as
complex programs and large data sets. However, scientific groups have difficulties to
organize their application resources. Some of these applications use many @mputer
programs that may have different versions, which may derive from different
abstractions, or models. It is aso a hard task to manage data sets used as input and
produced by those programs. In addition, combining sequences of programs is also a
usual requirement. Therefore, the increasing complexity of scientific applications and
the difficulty of dealing with the diversity and quantity of the scientific application
resources have driven scientists to develop scientific resources management solutions.

The objective of this section is to identify the requirements for scientific
resources management through the analyses of typical scientific applications and the
identification of the necessary resources. We have chosen two typical scientific
applications examples. environmental and biophysical. Both applications make use of
different scientific resources, which are identified and characterized.

Sections 2.1 and 2.2 briefly describe environmenta and biophysical
applications, respectively, and include some illustrative examples, where some of the
difficulties faced by these applications are identified. Particularly, we were able to
examine closely a biocorrosion application, which was part of a research project called
SIMBIO (Moura, FA.,2001), as well as a structural genomic application, which is now part
of an ongoing research project called MHOLIline (ROSSLE, s, RIBEIRO, S, et al., 2002). Section

2.3 identifies which resources are typicaly handled by scientists, and defines them.

Finally, section 2.4 identifies the requirements for providing a solution for scientific

resources management.

2.1 Environmental Applications

Environmental applications are designed to represent environmental systems.
Environmental systems involve elements of the Earth surface and their relationship,
which means that spatiality, is an inherent characteristic. These systems focus on the
structure, functionality and/or dynamics of the elements they involve. Considering the
variety of elements involved and aso the different ways they may relate to each other, it

is easy to envision the complexity of such systems.

Environmental systems may be divided into two broad categories. Ecosystems
and Geosystems (CHRISTOFOLETTI, A, 1999). The former one concentrates on ecological
issues related to biologic communities, their habitat and characteristics, while the latter
concentrates on the geographic distribution of the elements. Ecosystems are defined as
systems that cover a relatively homogeneous area of live organisms interacting with
their environment (non-living elements). The living beings are the main elements of
such systems. Among the relationships between the elements present in these systems
are the energy exchange, the nutrients exchange, the productivity, the population
dynamics, etc. For geosystems, also known as physical environmental systems, he
geographic aspect is the most important. Whichever elements are present in these
systems (climate, topography, rocks, water, vegetation, animals, soils, etc.); they are
always related to some point in space.

The understanding and solutions for environmental issues involve the design of
applications that use many other techniques, such as numerical anaysis, computing
optimisations, econometric evaluations, etc. For instance, in order to solve some
problems related to pollution, like oil spills or gas leaks, it is necessary to use wind or
ocean stream numerical calculations to predict the oil/gas behaviour and calculate the
affected areas. The term environmental applies whenever these techniques are used
together with a major objective: the evaluation of human impacts. For example, the
ocean stream analysis is a specific theme of oceanography. However, when applied to
the study of oil spills and its effects over the ocean life, it gets an environmental

perspective.

The inherent complexity of environmental systems is due to the many elements
and processes involved, and it can be addressed by specific disciplines, such as,
geomorphology, climatology, geology, biology, meteorology, physics, chemistry, etc.
Therefore, it is difficult to find a single environmental specialist, because a person
rarely gets skilled in that many disciplines. Usualy, what happens is a natura
separation of specialists, each one working on a slice of the same environmental
problem. For instance, biologists work on biocorrosion of oil pipes and oceanographers
work on ocean stream behaviour, but both may be involved on the same environmental
problem: an oil spill from underwater pipes. They may be working at different agencies
of the same company, or even in different companies, focusing on different aspects of
the same problem. Therefore, environmenta applications are usually a combination of
programs developed by different specialists. Some typical environmental applications

are described in the next sub-sections.

2.1.1 Farm Field Damage Prevention

Ailamaki et al. (AILAMAKI, A.; IOANNIDIS, Y.; LIVNY, M., 1998) present a typical example
of the combination of programs and data from different disciplines. Atmosphere and
soil specialists cooperate through the use of meteorological programs and data to build a
scientific application to be used in the prevention of overnight frost damages in
cranberry bogs, as Figure 1 shows. This application is used regularly to monitor
temperatures. Initially, the Atmospheric Sciences Department uses an US forecast
program to provide atwenty-four hour forecast of the atmosphere temperature based on
satellite and ground information. Then, a second program (Bog Forecast extraction)
uses this output to generate the temperature forecast for twenty-five meters above the
vine locations. This output is then sent to the Soils Sciences Department that processes
it using the CranEB program to derive a forecast for the canopy level. Later in the day,
as new weather observations become available, the initial twenty-five meters forecast
can be updated by a statistical analysis program, which compares CranEB output
forecasts with new observed weather conditions, and provides corrections to the original
twenty-five meters forecast. Then, CranEB is rerun to produce updated canopy-level
forecast, which is fed into a visualization tool, which generates forecast graphs.

In this application, scientists were able to cooperate with each in order to

understand each others programs and combine them harmoniously. However, program

combination is a frequent issue in environmental applications and program combination
must be addressed more effectively.

Satellite
Observations

Forecast

US Forecast Graphs
Model
é US Forecast]
Ground-based)
; Bog Forecast
observations E%(traction Visualization

1 H

25 m Bog Canopy-Level
f———
Forecast CranEB Bog Forecast
Ground-based
observations
ot 25 mBog
Statlstlgal Forecast
Analysis updated
1 Obs-Level

Forecast

Figure 1: The Cranberry Application (AILAMAKI, A.; IOANNIDIS, Y.; LIVNY, M., 1998)

2.1.2 Diagnosis and Prevention of Biocorrosion on

Petroleum Production

A research group working at the Petrobras Research Centre (CENPES), in Rio
de Janeiro, is dedicated to monitor of biophenomena in the corrosion process of oil
pipes. These scientists' activities are organized in case studies. Each case study involves
the investigation of the affected region, some laboratory and computational analyses.
Either the observation of a possible sign of biocorrosion, a prevention study or even a
simple investigation may start a new case study. First, scientists collect water, soil or
pipe samples from the region under investigation. There are regions where sampling
data is provided by specia field sensors. Alternatively, laboratory analyses provide
numerical data sets from manually collected samples, such as chemical components
indexes. These data sets are then interpreted or analysed by means of scientific formulas
in order to derive new data, or some useful conclusion, sich as "there is evidence of a
certain type of bacterid’, "there is no evidence of a certain type of bacteria, some other

type should be checked" or "re-sampling is needed".

Biocorrosion scientists (e.g. biologists or chemical engineers) are usually guided
by the investigation of previous archived case studies, where they keep documented the
use of formulas, programs and data. In addition, data collected from field sensors
eventually need some computational treatment. Although distributed sensors may

9

continuously obtain data, thisis not always true for all case studies. Raw data should be
invariably treated by data cleaning programs, which are derived for example from
interpolation techniques. The combination of resources such as biocorrosion anaytical
programs and statistical programs typically characterize biocorrosion applications, as

Figure 2 shows.

Sample
data

Data
Sensor cleaning
data

»| Biocorrosion | —m8 —
analysis Biophenomena
interpretation

Cleaned
data

Figure 2: Biocorrosion Application

In biocorrosion case studies, to find the right formula for each case is the main
difficulty, and program understanding is secondary. Therefore, for this kind of
application, it is important to have a detailed description of models and access to

previous case studies.

2.1.3 Air Pollution Forecast

At the National Institute of Research in Informatics and Automation (INRIA), in
Paris, researchers had worked on a project called DECAIR (PROJECT DECAIR, 1999-2002). The
aim of this project was to provide companies in charge of forecasting urbanair pollution
with good quality data derived from Earth Observation (EO) devices, in order to
improve the results of existing air quality forecast results. The idea of the project was to
provide support for the definition of scientific applications, combining satellite images
treatment programs and air quality forecast programs. The development of such
applications requires the collaboration of two kinds of scientists: those specialized in air
quality forecasting and those speciaized in satellite image analysis. In a typical air
pollution control application, satellite data are delivered to a pre-processing program for
image treatment, feeding two regiona air quality programs, running in Berlin and
Madrid, with EO-derived input data, as Figure 3 shows.

10

In this kind of application, the combination of programs is also an issue. It is
required to understand programs and their constraints, such as which geographic area

they were built for.

Satellite images Image Berlin
ges /., g > Forecast ﬁ
Treatment Program
Forecast
Land Usage maps Scenarios
Cloud cover maps Analysis
Madrid T
> Forecast
Program

Figure 3: Pollution Control Application

2.2 Biophysical Applications

In the last decades, biochemical laboratories have been developing scientific
applications. Programs and data are some of the most valuable scientific resources in
these labs. They usually run exhaustively a single program with different data sets. This
single program can be available at different sites, in different versions or formats. The
data sets can dso vary in versions, as well as multiple formats (images, flat files,
databases, etc.). Typically, each program is studied and installed by one or two
scientists. Other scientists, who are not familiar with these programs, usually request
gpecidlists to configure and run these programs, using their skill. As these program
executions increase, the number of data sets used as input and produced by those
programs also increases. Besides, each of these input data sets has a particular format

and has been prepared by one specific scientist.

As the number of programs increases, scientists find it more and more difficult
to manage such resources. All these programs, data versions and formats are not easy to
manage. Even under rigid lab rules it is very difficult to keep track of these resources.
Usually, scientists count on the file directory structure to organize data inputs and
outputs, labelling them according to the research project, program or scientist. However,
this was proved not to be sufficient as many of these labs have been hiring or consulting

database specialists to provide solutions for their resources management problems.

More importantly, there is a natura need for composing chains of programs
through the combination of their output/input data. Multiple possible combinations

make biophysical applications even more complex. Structural genomic applications are

11

atypica example of bioinformatics program composition that is described in the next
sub-section.

The Institute of Biophysics Carlos Chagas Filho (IBCCF) of the Federa
University of Rio de Janeiro is one of the few research centres that are developing
sructural genomic projects. These projects are producing a vast amount of protein
sequences as data resources, emerging the need for using high throughput methods to
predict structures and assign functions to these proteins. However, the analysis of
several genome sequences indicates that the function of proteins cannot be inferred from
a significant fraction of the gene products. In fact, isolate sequence homology searches
do not always provide al the answers, since some proteins may not keep sequence
homology throughout evolution. On the contrary, the molecular (biochemical and

biophysical) function of a protein is tightly coupled to its three-dimensional structure.

A good approach that contributes to the prediction of three-dimensional protein
structures is comparative modelling, which predicts a reliable structure for a sequence
using related protein structures as templates. This approach consists of the following
steps. finding known structures related to the sequence to be modelled; selecting related
sequences as templates; aligning the sequence with the templates; building a model, and
finally, validating the protein structure, as illustrated in Figure 4. There are several
programs addressing each of these steps. To enable large-scale modelling the IBCCF is
developing an application called MHOLIine (ROssSLE, s, RIBEIRO, S, e al., 2002), Which
assembles these steps in an automated program sequence, using a set of strategically

chosen programs.

A Selected hit
e il ST T
sequences sequences
sequences templates v
Align sequence
with target
template
Final 3D | Evaluate | Build
protein models model 3D model Selected Hit
Coord. sequences aligned

Figure 4: Structural Genomic Application

In this kind of application, again it is clear the need for understanding programs,

their constraints, and their background, such as the algorithm that originated it. Without

12

this knowledge it is hard to provide support for program combination, as it seems to be

the case of most scientific applications.

2.3 Defining Scientific Resources

The resources used in the scientific applications described in sections 2.1 and 2.2
are mainly programs and data. It is worth noting that these applications involve chained
programs, which means several programs are executed in an organized way. These
program chains are called scientific workflows. Once defined, these workflows can be

reused by other applications, what turns them into valuable scientific resources.

It is important to note also, that most of the programs used in these applications,
due to their scientific foundation, were developed based on a previous
conceptualization. In the examples described before, some programs were implemented
based on model representations such as. a formula, an interpolation technique, a forecast
eguation, an algorithm, etc. Within the scientific community, these are scientific model
representations. Scientific models are even more vauable than the programs that

implement them, and should also be considered as scientific resources.

Another important characteristic of the scientific community is the fact that their
work is usualy based on previous works and experiences. Daily, scientists deal with
scientific models and programs, building or capturing input data sets and producing new
ones, comparing results, tuning programs, repeating program executions, etc. All this
activity requires documentation. In organized labs, scientists prepare written reports on
a daily basis, registering models, programs and data used. These reports, that we refer

here as scientific experiments, are also considered valuable scientific resources.

According to the scientific scenario described here we have identified five main
scientific resources, which are. models, programs, data sets, workflows and
experiments. The scientific applications described earlier are examples where these
resources are exchanged among scientists within a research project. However, it may
sometimes happen across projects. In this work, we are particularly interested in
providing support for cooperation intra and inter-projects. To make these resources
really useful for the scientific community it is necessary to fully describe them. Next

sub-sections characterize each of these resources, based on the scientific community

13

literature. Beginning with models, programs and data, we try to identify characteristics
that would be useful to describe them.

2.3.1 Scientific Models

According to (HAGGET, P; CHORLEY, R. J, 1967. &S quoted by CHRISTOFOLETTI, A., 1999) @
model is defined as a ssimplified abstraction of the reality and presents, in a generic way,
characteristics or important relations between elements of such reality. Although models
are highly subjective approximations of reality, since they do not include al the
associated observations and measurements, they are considered valuable because, by

hiding some details, they represent fundamental aspects of redlity.

The term “model” is a constant source of confusion as it is used in many
different contexts. Therefore, as our focus is on the scientist perspective, it is helpful to
clearly define what we mean by “scientific model”. Scientists are dedicated to the
development of an understanding of how the natural world works, which is achieved
through the conceptualization of models of various natural processes. Thus, a scientific
model can be defined as a set of ideas that describe a natural process (CARTIER, J, RUDOLPH,
J, STEWART, J, 2001). It is also important to stress that a ‘ scientific model’ is distinct from
its representation. Physical replicas of systems (e.g. solar system), formulas, equations,
algorithms (e.g. image processing algorithms), graphics, and maps are examples of
scientific model representations. In this work we are especialy interested in those
scientific model representations that might be implemented as programs and might be
executed throughout the Internet. From now on, we will use the term model meaning

scientific models that can be implemented as programs.

To provide for scientific resources exchange means that each resource needs to
be described and this is aso true for scientific models. The process of building a model,
also known as modelling process, is a good starting point. Through the modelling
process it is possible to identify the elements that best describe a model. Some guides
for building models can be found in the literature (RICHARDSON, G. P. AND PUGH IiI, A. L., 1999)
(GOLDBARG, M., LUNA, H., 2000) (SPRIET, J. A., VANSTEENKISTE, G. C., 1982) (HAEFNER, J. W., 1996) (GRANT,
w. E, 1986), Where the modelling process includes three main steps. problem
identification, formulation and validation. Problem identification includes the awareness
of a problem and an unambiguous definition of it, by describing the context, listing

symptoms and stating model purpose. Formulation means to delimitate the system to be

14

modelled, by identifying the elements to be focused, establishing the system boundary,
raising hypotheses and representing them. The validation step involves the
implementation of the hypothesis (e.g., in some programming environment), testing and
validating it for correctness. The validation step is used to check model results with redl
data. If any inconsistency is found in this step, one should go back to the second step,
reformulate hypotheses, etc. In the last decade, some techniques have been used to
implement models, such as programs, fractals, expert systems, fuzzy logic, neura
networks, etc. Feuvrier (FEUVRIER, C. V., 1971) states that a model substitutes the redlity it
smplifies. It is important to have in mind though, that no matter how precise it is the

technique used to build a mode|, it is never a substitute to redlity.

Some of the main elements for describing scientific models identified are: input
and output variables, application area, scope, purpose, constraints, precision, hypothesis,
parameters, classification, and bibliography. Some models can be derived or calibrated
based on other models. The information about the relationship between models is also
important to describe. Therefore, model derivation and calibration are also elements to
consider in model description. All these elements are described in more detail along this
section.

While formulating a model the scientist defines which variables are relevant to
the problem at hand. These variables take part on the structure of the model, both as
input and output. When formulating a model, the scientist first deals with the model
conceptualization. At this point, model input and output are not committed to any form
of implementation yet. Instead, model data input and output can be described in terms of
the quantities to be considered, such as length, time, mass, temperature, pressure,
energy, moment of inertia, force, etc. For instance, the temperature quantifies
(measures) the intensity of the heat, i.e. the hotness or coldness of an object, such as a
water sample. After figuring out which quantities to consider, the scientist starts
implementing and testing the model, by taking sample objects and measuring them. The
numbers used to express the model quantities are magnitudes, which are usualy
expressed as a multiple of a standard unit. For instance, a magnitude may represent the

temperature expressed in degrees Celsius.

A variable of a scientific model may be not quantifiable. In this case, it may be
described in terms of its classification. The values assumed by the corresponding

implemented variable are expressed according to the formats that are used to express

15

such class of objects. For instance, an image treatment algorithm may deal with the
class of raster images. A raster image can be defined as an abstraction of a real world
image where spatial datais expressed as a matrix of cells or pixels, with spatial position
implicit in the ordering of the pixels. The implemented variable that corresponds to the
model variable may assume values on a specific raster format, which may be, for

instance, the bitmap format (.omp).

A scientific model is usually associated to an application area. Some examples
of model application areas are: industrial, economic, social, political, environmental,
etc. More specifically, a model is conceived to address a specific target within its
application area. The target or scope of a model corresponds to the natural world
system/process it represents. For instance, a model scope may be a specific

hydrographic basin, a geographic region, or an enterprise.

Each model has a specific purpose, for which it is designed. In genera, every
model purpose is to understand some dlice of reality. In their work, Richardson et al.
(RICHARDSON, G. P. AND PUGH Il1, A. L., 1999) State that the model formulation is guided by its
purpose and present many examples of purpose statements. A statement of a specific
production/distribution model says “... examination of possible fluctuating or unstable
behaviour arising from the principal organizational relationships and management

policies at the factory, distributor, and retailer. ...”.

A model is not exactly true or false, its value is judged according to the
contribution it brings to explain the system it represents (FEUVRIER, C. V., 1971). Precision is
the measure that expresses how much a model is faithful to the system it represents. The
greater is the model fidelity level the better it represents the system, and higher is its
precison. For smplification purposes, a model is built consdering some reduction
factors. These factors are aso known as model constraints. For example a
“transportation model” may not consider traffic jam or a possible mechanic problem.
Another example of model constraint can be found in a smple nodel of the moon’s
orbit around Earth, where geology details of both space bodies are not considered, but
just their masses and the distance between them (GLEISER, M., 2002). Although a model is
built based on restrictions, the quality and volume of the experimental data used in its
construction may determine its precison. In summary, a model that has a solid

empirical base guarantees better precision (FEUVRIER, C. V., 1971).

16

Every modd isinitialy a hypothesis. Building a model represents the expression
of a scientific hypothesis that needs to be validated (CcHrRisTOFOLETTI, A, 1999). There are
two basic approaches for model validation used in scientific research: the deductive ard
the inductive. The deductive approach usually starts with a model, assuming some
hypothesis, while in the inductive approach it is assumed that any pre-conceived idea or
hypothesis would ruin the necessary impartiality of a scientific investigation. The
inductive approach involves the study of collected data and derivation of many
generaizations. Then, if any generalization is validated, it becomes a law. In the
deductive approach, if the initially stated hypothesis is validated, it becomes a law.

Otherwise, there might be a reformulation of the model or a new model is created.

Considering that systems evolve with time, models that represent them may get
old. Therefore, models loose precision as they age. It is a usual procedure to update
models or to adapt them to new targets. This procedure is known as model derivation.
Scientists derive new models based on studies over some existing model. A study might

consider, for instance, the influence of a new variable such as temperature.

Another important concept with respect to a scientific mode is called
calibration. To calibrate a model means to “tune’ it precisely for a particular situation.
Calibration is in a sense customizing a generic model. A generic model is conceived to
address a generic system. However, it includes variables that assume values according
to particular systems. These variables are referred to as parameters, to differentiate them
from the other model input variables. Usually, a default value is provided. The
calibration process usually involves multiple executions of the model with normal input
for which the output is known, to provide the parameter estimation. The model output is
then compared to real data and a correction factor is found. This value is then used as
the parameter value. Sometimes these values are aso called model constants as they
become invariable for a particular situation. Frequently, the calibration of a model
involves a lot of time and effort. Therefore, a calibrated model may be as useful as its

generic version.

Traditionaly, when selecting a model to use, scientists refer to its scientific
publications and related explanatory material. In special, the scientific publication plays
an important role on the model credibility. Therefore, a scientific model description

should include or point to its bibliographic information.

17

Another helpful criterion for describing a model is its classification. There are
many different proposals for classifying scientific models. Feuvrier (FEUVRIER, C. V., 1971)
classifies them mainly according to logic and mathematic categories. Algorithmic,
simulation, deductive, and probabilistic models are examples of model subcategories.
Other aspects are also considered to provide more specific classifications, such as time
dependence (dynamic and static models), stability (stable and unstable models),
openness (open/closed models), durability (change-prone/long-lasting models), etc. The
model classification presented by Banerjee and Basu (BANERJEE, S; BASU, A., 1993) groups
models according to their goal, while other authors (Ecosag classify them according to
their application domain area. Christofoletti CHRISTOFOLETTI, A, 1999) presents various
model classifications adopted by different domain areas. geomorphology, hydrology,
climatology, etc. Possibly, there are many other classifications proposed. We consider it
is important to use some classification standard to describe scientific models. However,
due to the difficulty of achieving a consensus on model classification, we do not

propose the use of a specific one.

2.3.2 Scientific Programs

The implementation of a model is part of the validation step of the modelling
process. Scientific programs can be defined as scientific model computational
implementations. As scientific programs are valuable and exchangeable scientific
resources, they need to be described. A conventional program description is usually
based on its interface, i.e, its input ard output variables. A scientific program can aso
start to be described likewise. However, the scientific program description is associated
to the correspondent model description. For each model variable, there is a
corresponding program variable. The variables described in terms of quantities and
classifications at the formulation step, are now program variables that are described in

terms of units, type and format. Thisis also true for model parameters.

A programming language usually supports a variety of datatypes. Each program
variable is associated to a data type that will assume numeric or non-numeric values.
Numeric values are magnitudes used to represent model quantities, expressing them as
multiples of a standard unit. For instance, a magnitude may represent the temperature
expressed in degrees Celsius. In the case of non-numeric variables, the model variable is

described through its classification, and the correspondent program variable assumes

18

values on a specific format, which is processed by the program. Raster images, for
instance, may assume different images such as windows bitmap image file (.bmp) and
graphic image file (.gif). Therefore, a variable unit and format are aso useful
information to describe program variables. This information is usually hidden inside the

program code as comments, and if not informed it may generate bad output data.

Although widely accepted for model implementation, computers may impose
severe restrictions to the model performance and credibility. The well known problem
on designing scientific programs is the natura difficulty of representing “real” numbers
in a computer. No matter what programming language the scientist chooses, this
problem will be present. Each programming language offers some limitation on the
representation of real numbers, providing different levels of precision. They usually
provide a data type that may store numbers with a limited storage capacity. In C
programming language, for instance, it is possible to manipulate real numbers using one
of two keywords to declare a variable: float and double. A float or floating point number
takes four bytes to store and has about seven digits of precision, while a double, or
double precision, number takes eight bytes to store and has about 15 digits of precision
(Mscic++). These representation limitations may result in a small imprecision. However,

when a small error is repeated many times, it may incur in abig one.

To overcome such limitations, programmers usually make use of more computer
memory and processing time. Therefore, scientific programs typically add parameters
for controlling the use of computer resources, allowing the user to choose between

precision and resource consumption.

The software engineering area has lrought into the programming community
several tools, such as maintenance and development tools, that typicaly support the
programming activity. Especially in large development project teams, to manage
program versions and their compilations demand a considerable effort. Thisis aso true
for the scientific community. Besides its interface, scientific programs may also be
described by information such as author, programming language, version, compiled
code, host operationa system, hardware configuration, etc. For the scientific
community, to learn about the computer resources where an executable code is hosted is
very useful. Multiprocessing capabilities, for instance, may determine how to better tune

a program precision parameter to get more accurate results.

19

More than one scientific program may be implemented based on the same
scientific model. We may say that a model description works as scientific programs
classification. As a consequence, program variables are classified by model variables.
This mapping is especialy useful when searching for smilar programs, while alowing

for aricher program description.

2.3.3 Scientific Data

Typicaly, scientific data are usually measured data. High technology
mechanisms allow for the collection of a vast amount of scientific data. Satellites are
constantly monitoring the earth and the stars, while sensors and detectors are spread all
over the Earth continents and oceans, both collecting large quantities of raw data
everyday. In addition, as computers become more powerful, and sophisticated data
transformation models are implemented, more data are generated. Summed to the
conventional data, all these data are becoming more and more unmanageable. Some
data management issues have been recently discussed in the Workshop of Data
Derivation and Provenance (WDDP) BUNEMAN, P, FOSTER, I., 2002). One of the position
papers at the workshop (LEsk, M., 2002) defines the term “data curation” to be the collection
and maintenance in a useful form of large amounts of scientific data, and the software
needed to facilitate the usage of this data by others. Data curators should be able to
provide information about data provenance, such as data version, generation mechanism
and date. The gereration mechanism may correspond to a code execution. Through this
information it might be possible to trace back data derivation, identifying related data
sets, which were used to derive those data, up to the raw data that started the

transformation process.

Data derivation information, also known as data lineage, is not always sufficient
for its complete understanding. As a transformation model is a smplification of redlity,
it is important to be aware of the reduction factors, when using it, and therefore, provide
a careful interpretation of its results.

Besides data provenance, data structure is other important information for
describing scientific data. In general, most database management systems provide
structural information in the form of a data schema. This information is highly useful,
however, to provide richer semantic information about data demands more than the data
schema. Especially with respect to scientific data, there is the need for providing

20

information about the units and formats used to represent those data. As we have seen
before, scientific programs descriptions include variables specific units and formats. To
turn data sets into exchangeable scientific resources within the scientific community,
data descriptions should be similar to program variable descriptions. Thus, it becomes
possible to compare scientific program and data descriptions, and verify if they match.
In WDDP we also presented a position paper that addressed these metadata issues

(CAVALCANTI, M., CAMPOS, M. L.; MATTOSO, M., 2002).

2.3.4 Scientific Workflows

According to the Workflow Management Coalition (WfMC), a workflow is the
automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according to a
set of procedura rules (WfMC-a, 1999). The workflow definition consists of a network
of activities and their relationships, some criteria to indicate the start and termination of
the process, and some information about individual activities, such as participants,
associated applications and data, etc (WfMC-a, 1999). A large number of Workflow
Management Systems (WfMS) are commercially available, each one providing different
workflow definition languages (/AN DER AALST, w. et 4., 2000). These systems are able to
interpret these definitions and execute the workflow, generating what is known as a
workflow instance.

Typicaly, scientific applications rely mainly on program use expertise, where
scientists combine different programs with the objective of solving application
problems. Environmental and biophysical applications are examples where these
combinations are frequent. Environmental applications are typically multidisciplinary
demanding the combination of expertise from different disciplines, while in biophysical

applications, biologists depend on the combined use of bioinformatics expertise.

In order to reuse them, scientific programs compositions can be documented as
exchangeable sciertific resources. A workflow definition language can be used to define
these scientific workflows. Each scientific program corresponds to a step or task of a
workflow specification, which defines a certain procedural logic (step precedence,
loops, conditions and paralelism). In particular, the empirica nature of some
experiments demands some sort of tight control. Often, certain steps are not successful

and have to be re-executed, leading to unexpected loops in the process.

21

Scientific workflows are different from business workflows (LEYMANN, F,
ALTERHUBER, W.,1994). Some of the main characteristics that make clear this difference have
already been identified (MEDEIROS, C, VOSSEN, G.; WESKE, M.; 1995). First, scientific problems
are usually complex and not known in advance, and hence tasks are frequently not
predictable, which means that ad hoc workflows are a common practice. Indeed,
workflows are typically built on demand by final users (i.e., scientists) in contrast to
previousdy planned business workflows, which are built by specialists or system
administrators.

Anocther important characteristic is that scientific workflows are highly
changeable while business workflows are usually invariant. Since scientific processesin
general are not fully specified before they start, scientific workflows should have
flexible definitions, enabling a scientist to modify some of its steps. This change may
simply consist of choosing an aternative program to perform a given step of the
workflow. For example, various image analysis techniques can be used for a given
image depending on its accuracy and the context in which the image was taken (e.g.,
meteorological conditions, and date). The choice of a given program usually depends on
program constraints directly associated with its input (e.g., meteorological condition,
cloud-cover maximum). These constraints can be verified for already existing data sets.
However, this is not possible for those data sets that have to be computed on-demand,
which are computed by the execution of previous steps of the workflow. Thus, the
choice of program has to be done incrementally, backward or forward, along the

execution of the workflow.

Finally, a third particularly significant characteristic of scientific workflows is
the user need for workflow instances reuse, differently from users of business
workflows. The scientific process is strongly based on experimental investigation,
evidence accumulation and result assimilation. Therefore, successful and unsuccessful

workflow instances are interesting scientific resources.

2.3.5 Scientific Experiments

Scientific results should be disseminated and reused. Typically, scientists keep
track of al the performed experiments, even if they have falled. This is because

scientists learn from their past experiences, even if they ended up erroneously.

22

In this work, our focusis on what is called in silico experiments. This expression
has become particularly popular within the life sciences area. It is an analogy to the
Latin expression in vitro, which means “in glass’, and relates to experiments performed
in an artificial environment outside the living body, such as a test tube or culture dish. In
silico means in silicon, and relates to experiments performed with the help of computer

chips.

Although we have been focusing on in silico experiments, we can refer to a
traditional definition of experiment Rubio, F. v, 1978) that states “ The experiment is a
situation, created in laboratory, which aims to observe, under control, the relationship
between phenomena. The word control is used to indicate that there were efforts to
eliminate, or at least reduce, as much as possible, the occasional mistakes during an
observation. These efforts are materialized as procedures ... rigorous techniques, which
aim at the control of variables that will be observed... The experiment is used to verify

hypotheses.”

Based on this experiment definition we can argue that an experiment is
associated to a set of controlled actions. These actions are usually similar to each other,
and their results are commonly compared to each other to verify or not the experiment
hypothesis. Scientists have well evolved in performing in silico experiments, building
scientific applications where experiments usually involve the execution of scientific
workflows. These workflow executions are analogous to the controlled actions of
traditional experiments. Thus, within the scope of this work, we can define a scientific

experiment asan in silico experiment that is associated to a set of scientific workflows.

A scientific experiment should keep track of the whole in silico experiment. To
do this, scientific experiments should be able to document al instances related to the
associated scientific workflows. This registry should include al scientific models,

programs and data resources used in each workflow instance.

Finally, we may conclude that scientific experiments are also valuable scientific
resources to be exchanged. Besides its association to a set of scientific workflows, and
their correspondent instances, a scientific experiment should be described by other
important information, such as the hypothesis the scientist is aming to prove, the
research project the experiment belongs to, as well as the scientist report containing the

experiment annotations and conclusions.

23

2.4 Requirements for Scientific Resources

Management

Inferring models from observations and studying their properties is realy what
science is about. (NG, L., 1987). There is a vast amount of scientific models in the
literature of many domain areas. Nowadays, scientists make use of different multimedia
digital scientific resources. Especially after the emergence of computers, scientific
models have become easier to infer, which increased the scientific production
considerably. As a consequence, scientific data have become easier to generate. With
the advances of computer technology, the scientific community has become more and
more dependent on the use of models and programs as tools for understanding rea
phenomena. This dependency has determined the rapid growth of the quantity and
variety of the scientific resources available. For instance, it is now possible to collect
large amounts of data every hour from satellite sources, and these data can be
transformed by computer models into new data. Even within a specific domain area it
has become difficult to manage the amount of scientific models available and al the
related resources that come with them, such as programs, data, experiment reports, etc.
In addition, research project teams are frequently international or inter-institution,

making scientific resources management even harder.

Scientists need an environment with several facilities such as. to support
geographically distributed team collaboration, and to enable scientific resources
exchange between different teams. Program providers should then be able to make their
programs available to other scientists, describing and guiding their remote usage.
Moreover, based on this distributed approach, scientists should be able to configure
their own scientific workflows by combining programs provided by different teams. On
the other hand, data providers should aso be able to make their data sets available to
other scientists by describing their correspondent data structure and providing the

necessary means to get them.

There are many computer systems developed to deal with scientific resources.
Systems like Simile (MUETZELFELDT, R. AND TAYLOR, J, 2001), Stella ®icHMOND, B, 1994), and
many others (ceorrrION, A. M., 1987) were designed to address the modelling process. In
this work we focus on management systems, where models are already developed and

implemented, and need to be exchanged.

24

Scientific resources are quite heterogeneous with respect to their storage models,
schemas, semantic meanings, and processing environments. First of all, data sources can
be provided according to different storage models. relational or object-oriented
databases; files; spreadsheets; Web sites; etc. Consequently, access to data is also
diversified, ranging from standard languages like SQL or OQL to specific protocols and
APIs. Second, syntax and semantic conflicts may arise, because similar data may be
stored according to different schemas, and similar schemas may represent data with
different meanings. Third, mode-based programs are available in a variety of
processing environments: different versions, different software and hardware platforms.
Managing the use of these programs means to support their remote execution, using data
from elsewhere and generating new data that should also be available for access. The
management of such distributed and heterogeneous scenario may face some hard
obstacles, such as to host programs that are not remotely accessible, to host the results
of program executions, to adapt data into programs input format, to filter data according
to program constraints, among others. Therefore, in a multidisciplinary and distributed
scientific environment, scientists and specialists need a scientific management system
able to provide interoperability between heterogeneous and distributed programs and

data resources.

More than to provide support for accessing different platform data and program
resources, scientists need to understand how to use them. Furthermore, semantic
integration is also required. To provide support for semantic description of scientific
heterogeneous resources, several domain specific description standards have been
proposed. However, a universally accepted standard has not yet been proposed. Indeed,
it is hard to identify a complete and sufficient set of descriptors that may encompassthe
range of heterogeneous resources handled by the scientific community. Moreover,
besides this set of descriptors, each scientific subarea may have its own set of specific
resource descriptors. Future initiatives for scientific resources description should
provide extensibility mechanisms. This extensibility guarantees that any special aspect
of resources from different areas could also be included in its description. Therefore,
scientific management systems need a generic and extensible description mechanism to

address scientific resources description.

Typicaly, scientific applications usually require combining multiple
mathematical and algorithmic model-based programs. Specially when addressing

25

environmental problems, required models are usually composed by linked sub-models
(scotT, E. M, 19%), origindly from different disciplines. Also, in bioinformatics
laboratories, scientists need to combine various different scientific programs. Scientific
program and model combinations were defined as scientific workflows. However, to
address the scientific community, and provide for scientific workflow management,
traditional business WfMS are not sufficient. Scientific workflows require special
facilities, such as to deal with incomplete workflow definitions, to alow for on the fly

workflow definitions, and to register workflow instances.

When performing scientific experiments, the choice of a scientific model is
usually guided by the scientist’s previous experiences. Based on these experiences, the
scientist can compare the use of different models to solve similar problems, find
equivalent programs that implement the same model, choose the best program to the
problem at hand, and more importantly, use the adequate parameter values. However,
previous experiences are hard to reuse. The experience from a successful (or not)
program execution is not always registered, and if registered, it is usually available only
in paper reports. Consequently, scientists have difficulties in taking advartage from a
large number of previous experiences. Therefore, scientific experiment registry is a

fundamental requirement to scientific resources management systems.

In summary, to address scientific resources management, we have outlined four
main requirements that these systems should provide support: scientific resources
heterogeneity and distribution, scientific resources description, scientific workflow

management, and scientific experiments registry.

In the next section we present the available technology and initiatives addressing
each of these four issues. Scientific resources heterogeneity and distribution in section
3.1, scientific resources description in section 3.2, and both scientific workflow
management and scientific experiments registry in section 3.3. We also comment on the
main research projects that relate to each of these issues. In section 3.4 we discuss why

these projects fail while addressing scientific resources management issues as awhole.

26

3. Scientific Resources Management

Systems

Historically, the database community has initially addressed the scientific
community. The first initiatives emerged around the 80’'s, when Model Management
Systems (MMS) were proposed. These systems were specially developed for dealing
with local scientific resources by providing functions, such as model description, model
selection and model design. Borrowing ideas from the DBMS, MMS architectures
maintain a model base (poLk, D., KONSYNSKI, B. R, 1984). Basically, these architectures offer
three modules: model design, model manipulation and model control, which interact
with the model base. Model design supports the modelling process, which means
building models. Model manipulation includes standard functionality of storage (insert,
update, delete, display, etc.). Model control involves issues of access authorization,
security and privacy, integrity, etc. Then, because of the diversity of models and
problems to solve, model selection activity has emerged as a new module in the
architecture, and the model manipulation restricted its functionality to model description
(BANERIEE, S, BASU, A., 1993). Also, the importance of keeping track of previous experiments
in an experiment base (GUARISO, G.; HITZ, M.; WERTHNER, H., 1996) increased the importance of

the model control module, including experiment registry as one of its functions.

MMS aone does not address properly the scientific community. Frameworks
such as distributed architectures, metadata management and workflow management
systems should be combined, embracing MMS functionality, to address this community.
In addition, technologies such as Web services and Grid computing should be the
foundation of these frameworks. Scientific resource management systems need to
provide solutions to four main problems. (i) how to handle the distribution and
heterogeneity of scientific resources; (ii) how to describe scientific resources; (iii) how
to manage scientific workflows; and (iv) register their usage. Next sub-sections discuss
these four problems. Some of these approaches include recent technologies, while
others embed them in relevant research projects. These discussions include presenting
the most relevant technological foundations and representative research projects on each
of the four problems. Some projects, such as MyGrid and GriPhyN address three issues,

while others concentrate on one or two. Thus we separate the projects along the four

27

problems. Problems (i) and (ii) are discussed in section 3.1 and 3.2, while problems (iii)
and (iv) are discussed in section 3.3. On the last section we discuss the existent

approaches and relate them to our work.

3.1 Handling Distribution and Heterogeneity of

Scientific Resources

There are severa technologies that have been proposed in the area of databases,
information systems, and cooperative information systems that can be useful to address
heterogeneity and distribution problems. The concept of information mediation, initially
presented by Wiederhold (wieperHOLD, G, 1992), IS one of the most important contributions
to HDDS. It consists of defining an intermediate layer between information sources and
applications. This intermediate layer provides an integrated view of information for
gueries without having to physically integrate data sources. So far, severa mediator-
based HDDS have been successful: DiscO (TOMASIC, A; RACHID, L.; VALDURIEZ, P., 1998),
TSIMMIS (GARCIA-MOLINA, H.; PAPAKONSTANTINOU, Y.; QUASS, D. Etal, 1997), Garlic (CAREY, M. J; ET

AL,1995) and Himpar (PIRES, P., 1997).

However, most HDDS usually focus on heterogeneous but structured data and
do not address other scientific resources, such as programs. To deal with scientific
resources, HDDS should be able to address aso heterogeneous and distributed
programs. In 1998, the Asilomar Report on database research (BERNSTEIN, P. et al., 1998), the
database community has proposed to focus on the problem of handling programs,
besides data. A few years later, Le Select (LeseLecT) was the first HDDS initiative to
address directly programs distribution and heterogeneity. In the next sub-sections we
present some recent initiatives on this direction. Le Select is discussed in section 3.1.1,
followed by Web services and Grid (sections 3.1.2 and 3.1.3 respectively), which are
more recent available supporting technologies for handling distribution and

heterogeneity of data and programs.

3.1.1 Le Select

Developed at INRIA, Le Select (eseLect) acts as a mediator-based HDDS.
However, differently from traditiona HDDS, Le Select was specially developed to

support environmental applications, offering unique features to share both data and

28

programs, while maintaining the general principles of mediator/wrapper architectures.
Le Sdlect implements a framework that facilitates the publication of distributed and
heterogeneous data and programs, and provides common facilities to query published
data and to invoke published programs (XHUMARI, F. et al., 2000). Users publish data in their
original format and location. There is no need for transformation or replication of these
data. Similarly, programs remain installed in their original configuration and computer
platform. Therefore, scientists may run their experiments, by feeding these programs
with remotely published data, and by using programs from multiple disciplines, which
are served in sites over the Internet.

Figure 5 presents the Le Select architecture. The intermediate layer, between
information sources and applications, integrates information from multiple data sources
without having to physically integrate them. In Le Select, data from each data source are
wrapped into a common relational model of data. Thisis done via a piece of code called
a data wrapper, i.e., publishing information of a given type (e.g., HTML file, C program
or database) requires creating a specific wrapper for it. Each data wrapper interfaces
with a local mediator called Le Select server, to form a publishing site, which is
accessible from applications. When an application needs to access data from multiple
data sources, it can connect itself to a Le Select client, which provides a JDBC interface
to access multiple publishing sites (Le Select Servers) in a single SQL query. Facilities
offered by mediators and wrappers enable the sharing of data without forcing each

application to redundantly encode data transformation and data processing parts.

29

Client Web

application browser
A y
' v Le Select
i Client . i
| Sites | Le Select Client !

; I JDBC i
: v i
< Network > '
: 3 i

Publishing A 4 E
sites Le Select Server Le Select Server
wrapper wrapper wrapper wrapper
Data Data Services Data

Figure 5: Le Select Architecture (XHUMARI, F. et al., 2000)

Le Select also enables sharing services, which are available in a specific source,
via a particular kind of wrapper, which interfaces with a Le Select server within a
publishing site. A publishing site can be interfaced simultaneously with both data and
service wrappers. On the other extreme of the architecture, a client application can
invoke a given service that uses data from multiple publishing sites via a Le Select
Client.

Wrappers manage metadata by providing a uniform representation of data,
functions and programs with an extended relational model, and manage the execution of
gueries on local sources. The publishing mediator (Le Select Server) maps global
queries into local queries, each for a different wrapper, and a composition query for
producing the final result. It also has a runtime system to integrate the results of local
gueries. Global queries are expressed in an SQL-like language, that is, an SQL subset

with specific extensions, which allows invoking functions or programs on data sources.

Publication sites can be organized as a hierarchy. Thus, a publication site can
include a wrapper to a virtual database schema whose query-based specification can
refer to information published by other publication sites. In this case, the schema

corresponds to an integrated view of information published by other sites. The maor

30

advantage of this architecture is that the process of information publishing is completely
decentralized via the publication sites.

Le Select’s approach contrasts with previous information mediation systems
such as Garlic, Disco, Himpar and Tsimmis, with respect to the integration policy. In
these systems, publishing data at some site requires that a set of view definitions should
be provided in some mediator located at another site. Their goal is to provide data
transparency, which means hiding integration transformation details. When there are
new data to be published, sometimes it is a difficult task for the publisher to reflect the
changes into view definitions. Le Select does not automatically provide full
transparency of data distribution because when building distributed SQL queries, alLe
Select client references tables by their identifier, which contains the address of the
publication site where the corresponding data have been published. However, the view
definition service provided by Le Select enables the publication of virtua derived data,
i.e, views. Hence, queries over the views hide the physical distribution of the

underlying data from which the views are defined.

As a pioneer initiative on addressing data and programs heterogeneity and
distribution management, Le Select did not adopt new coming standards like Web
services and Grid computing. Instead, it relies on well-established open standards for
interoperability. Network communication between Le Select components is assured via
a CORBA protocol, athough other means of communication are also possible. That is,
JDBC statements between Le Select components (clients or servers) are embedded into
CORBA/IIOP messages. However, Le Select is an isolated and proprietary initiative,
which difficult its adoption by others.

3.1.2 Web Services

Web services are a new tendency that is going through a standardization process.
The main concept behind Web services is the notion of publishing services over the
Web, to be used by other programs. Web services relies on a service oriented
architecture (SOA) (WS Architecture, 2002). SOA counts on the Web client/server
infrastructure and uses a simpler and yet higher level protocol (Simple Object Access
Protocol - SOAP). The idea is to alow different software applications, running on a
variety of platforms to communicate. Through SOAP protocol, an application can have

access to other applications' method invocation across the Internet, i.e., a method can be

31

invoked remotely, and have its results delivered to the application that invoked it.
Indeed, this feature addresses directly the problem of handling distributed program

resources.

To become a Web service provider, there are two basic requirements: the ability
to build and/or parse SOAP messages, and the ability to communicate over the network.
Typically, a SOAP server (SOAP router) running together with a Web application
server performs these functions. For instance, a Java class can have its methods
“deployed” as services using the Apache AXIS engine (axis), which sends and
processes SOAP messages. Alternatively, a programming language-specific runtime
library can be used to provide them. In addition, each Web service provider publishesits
interface as an XML document, using the Web Service Description Language (WSDL)
(wspL, 2003). This document specifies the service interface so that client applications can
automatically bind to the Web service. After getting the binding information, the Web
service requestor interacts with the provider by exchanging SOAP messages. Based on
the WSDL document information, the requestor builds a SOAP message and sends it to
the provider. Then, the provider receives the message, unwraps it, processes it, builds a
SOAP message with the response, and sends it back to the requestor. Service provider
and service requestor roles are logical constructs and a service may exhibit
characteristics of both.

Legacy programs can also be encapsulated as Web services, but a Web service
adapter has to be developed for each program to enable them as a service. Similarly to
Le Select, to publish alegacy program as a Web service means to provide a wrapper for
that legacy. In the case of the Web service architecture, the wrapper is a Web service
adapter that is served by a Web service provider as shown in Figure 6.

Bind |
c » WSDL Document |
o - c
=5 Service 22
: T
% L Provider 835
S — o=
o a
< Service ‘Al (SOAPmessage) web |[soAP|[ws o=

Requestor ~ <«— Response (SOAP message), Loerver] | router [|Adapter

Figure 6: Web services Requestor/Provider Architecture

32

3.1.3 Grid Computing based Systems

Grid computing Systems GRID coMPUTING INFO CENTRE) focus on scaling up the
computational power to process and access multi-Petabyte data. Typicaly, Grid
computing based systems use the Globus infrastructure (cLosus) to distribute the
execution of scientific programs. In Grid architectures, geographically distributed,
heterogeneous collections of computing resources are accessed through a single point of
contact. The Globus infrastructure has been proposed in the form of a toolkit
(czAXowsKI, K., FOSTER |., et a., 1998) (FOSTER, I., KESSELMAN, C., 1999), Which includes basic
services to address Grid computing issues. The job execution service controls the
submission and execution of jobs on remote machines. In the Globus toolkit, this

service is called Globus Resource Allocation Management (GRAM).

GRAM service provides functionality that can be viewed as a threetier
architecture as shown in Figure 7. The client tier submits jobs to a remote resource.
Each job is identified by a job ID that can be used to check on its status. Also it is
possible to get a job status through event notification sent by the GRAM Server tier
(middle tier). The middle tier consists of two basic elements. gatekeeper and job
manager. The gatekeeper is responsible for the client authentication based on a
previousy defined security policy. Once the job request is approved, the GRAM server
starts up a job manager for that request. From that moment on, the job manager will
interact with the GRAM client. Finaly, the backend tier is where the job actually runs.

Client Tier Middle Tier Backend Tier

GRAM server

| [

GRAM
client

Gatekeeper

Scheduling

J system

=

Figure 7: GRAM Architecture (adapted from FOSTER, I., KESSELMAN, C,, et al., 2002)

Many projects within Grid computing community are concerned with data
retrieval (GRID DATAFARM PROJECT) (DATAGRID) (ALLCOCK, B., FOSTER, I., ET AL., 2001). These
projects focus on managing access to multi-Petabyte distributed data. Chervenak et al.
(CHERVENAK, A., FOSTER, I., ET AL., 2001) propose a two-layer Data Grid architecture. The first

layer includes two basic services. storage systems and metadata management. The

33

second layer includes higher-level services: replica management, replica selection and
data filtering. The idea of having replicas is useful because some storage locations may
offer better performance or availability for accesses to or from particular locations. For
instance, the selection service may consider starting parallel connections to replicas,
accessing complementary subsets of data. Particularly to scientific applications, most
data resources requests are for read-only access, in which case, replica management
becomes simpler. However, because the focus is on improving performance of data
resources access, that is, offering more computational power, Grid based projects end

up not addressing the data heterogeneity problem.

3.2 Describing scientific resources

Scientific resources management is not possible without describing them.
Traditionally, the database community has contributed significantly to resources
description, providing metadata solutions. Some definitions of metadata would ssimply
define it as data that describes data (Nnmon, B., 1996). However, the increasing complexity
of information systems requires a more sophisticated definition. Within the scientific
community, where there is a high degree of resources heterogeneity and distribution,
users need metadata not only for describing data but also for describing programs,
models, workflows and experiments. A better definition is given by the Meta Data
Coalition (MDC): “descriptive information about the structure and meaning of data and

of the applications and processes that manipulate data’ (Mbc, 1999).

Large metadata needs management. Metadata management has gained increased
importance especially because of the demand for integration of distributed and

heterogeneous systems. There are two main approaches to address metadata

management: metamodelling and ontology. The fundamental difference between these

two approaches is on the attachment to the application. While metamodels are
specifically built to support a metadata application, ontologies consist of relatively
generic knowledge that can be reused by different kinds of applications (spyns, P,

MEERSMAN, R., JARRAR, M., 2002).

Metadata models have been created within specific domains aiming to help
interoperability. UDK model (GUENTHER, O.; VOISARD, A., 1997), for instance, is an agreed

metadata model for describing data from environmental applications. These models

have been helpful, but the inherent heterogeneity of scientific applications can not

prevent new data models to emerge independently.

In a first initiative to establish standard data models, Microsoft and other
partners have developed the Open Information Model (OIM), which was accepted as a
standard by the MDC. Another initiative on the same direction emerged from IBM and
other companies. They have developed the Common Warehouse Metadata (CWM),
which was adopted by the Object Management Group (OMG) (oma, 2000). The purpose
of OIM and CWM initiatives was to support tool interoperability across technologies
and companies via shared metadata, by providing a formal description of domain
specific metamodels. However, tools whose metamodels were not members of the set of

domain-specific submodels could not interoperate.

To support the coexistence of different metamodels and facilitate the
interoperability between applications that hold them, OMG has proposed the Meta-
Object Facility (Mor, 1997). The MOF model corresponds to the most fundamental layer
in a traditional 4 layer metamodelling architecture. This is a proven architecture for
defining the precise semantics required by complex models that need to be reliably
stored, shared, manipulated, and exchanged across tools. As it is used for defining
metamodels, the MOF model is considered to be a meta- metamodel. A meta- metamodel
can define multiple metamodels. To each metamodel there is a least one meta
metamodel associated (implicitly or explicitly), and then, a metamodel can be viewed as
an instance of a meta-metamodel. Metamodels primary goal is to define a language for
specifying models. A set of models that are instances of the same metamodel can easily
share their metadata.

OMG officially adopted the Unified Modelling Language (UML) (umML REvISION
TASK FORCE, 1999) as its object modelling standard (koBrYN, c., 1999). UML is specified via a
metamodel, derived from the meta- metamodel layer of the 4-layer architecture. In

particular, the UML model is an instance of the MOF meta- metamodel.

Ontologies have been used as second approach, to address the metadata
management problem. Analogously to the meta- metamodel (MOF) approach, domain
ontologies are conceived to address a set of applications that need to interoperate on the
metadata level. A domain ontology expresses a community’s consensus knowledge
within a given domain. A computer ontology is defined as an “agreement about a

shared, formal, explicit and partial account of a conceptualization” (GUARINO, N., GARETTA,

35

P, 1995) (USHOLD, M., KING, M., 1995). Each domain ontology contains the vocabulary of terms
and the definition of concepts and their relationships for that domain. In many ontology
based applications, the instances (domain resources) are included in the ontology (spyns,

P, MEERSMAN, R, JARRAR, M., 2002), together with the concepts and their relationships.

Some domain-specific ontologies, such as the Gene Ontology @SHBURNER M.,
LEWIS S, 2002), have been proposed. However, neither a standard metamodel has yet been
universally accepted, nor a generic scientific resources ontology has yet been proposed.
Without such representation formalism, independent initiatives have been developed to
address scientific resources management. Although none of these approaches are
definitive, they contribute for a future efficient metadata management of scientific
resources. We have selected some of the most relevant contributions to scientific

resources metamodelling, which are discussed in the next sub-sections.

In section 2.3 we have evidenced programs and models as distinct resources.
This distinction is particularly important because it allows scientists to etrieve and
consider similar programs as alternatives to solve the same problem. Some of the
approaches described here provide ways for finding program resources and learning
how to use them correctly. Initially, we present Web services' (section 3.2.1) and Grid's
(section 3.2.2) support for describing the program resources they publish. Then, on the
following sections we present the most representative projects that focus on metadata
issues for scientific resources. A final discussion is left to the last section, where we
point out that most of them do not consider programs and models as distinct resources,

and consequently find difficulties in their management.

3.2.1 WSA

More than to address communication between program components, the Web
services architecture (WSA) (ws Architecture, 2002) also addresses program description and
program search. As shown in Figure 8, the complete Web service architecture comprises
three roles. requestor, provider and registry. The third role acts as a service discovery
agency, where the service provider publishes (step 1) its service description. Then, the
service requestor uses a find (step 2) operation available at the service discovery agency
to retrieve the desired service. Then the service requestor uses the service description to
bind (step 3) with the service provider and invokes (step 4) the Web service

implementation.

36

A Web service may be published at multiple service registries. Each service
provider has its own registry service, thus allowing for direct bindings with the service
requestors. Direct binding usualy occurs between two business partners that have
previously agreed on terms of doing ebusiness over the Web. Typically, a requestor
does not know where to find available services. Therefore, independent services registry
servers are needed. There may be severa types of registries, which are characterized
according to their restrictions to specific domain communities, such as, the internal
enterprise departments, the set of external partners of a company (company portal
registry), the business public (generic registry), among others. The Universa
Description, Discovery and Integration (UDDI) (Upbi) specification for Web service
registry was proposed by an industry consortium lead by IBM, Microsoft and Ariba.
Another registry specification is the ebXML Registry (EBxmL), which has been proposed
by OASIS. Both propose a data model for registering, storing and finding Web services
description documents (WSDL documents).

| Web service 2:find
Requestor
y
3: bind Web Service
Registry
A
1: publish
4: call
| Web service
Provider

Figure 8: Web services Architecture

While program search is provided through the Web service registry, program
description is provided through WSDL documents. A WSDL document contains a set of

inter-related specifications to describe services, such as nessages, ports, port
t ypes, and bi ndi ngs, presented in Figure 9. These specifications can be classified
as abstract and concrete. The abstract specifications describe the program abstract
interface (port type), and its input and output nmessages. The concrete

specifications actually extend the abstract descriptions to describe how to access the real

code (service instance). The concrete protocol and data format specification for a
particular port type definesareusable bi ndi ng. Associating a network address to

anexisting bi ndi ng specifiesaport. Finaly, aser vi ce isdefined as a collection

37

of network endpoints or port s. This separation of abstract and concrete definitions
allows abstract definitions to be reused, i.e., the same program can be served at different

network locations, while sharing the same abstract description.

A WSDL document begins with a root tag called definitions. Figure 9 shows a
simplified view of the WSDL schema, where the main elements are defined under the
definitions element. The port Type element is described by a set of operati on
elements. Each port Type operation has exactly one input and one output
relationship. Each one of these relationships refers to one nessage element instance.
A nessage element is described by a set of part elements, and each part eement
must refer to a type description. WSDL does not introduce a new type definition
language. Instead, it supports XML Schema (xmL schema) as its type system. Thus, each
part element refersto a basic XML Schema data type or to an XML Schema element
or complex type previously defined under the t ypes element. Nevertheless, the use of
XML Schema type system is not obligatory, as WSDL allows the use of other type

definition languages, through its extensibility mechanism.

At the concrete level, a binding to specific message encodings and protocols are
assgned to the abstract definitions. The bi ndi ng element refers to a specific
port Type element, through itst ype attribute. The bi ndi ng element is described by
aset of bi ndi ngOper ati on elements. For each bi ndi ngOper ati on element
there is a correspondent port Type oper ati on eement. The servi ce eement is
described by a set of port elements, and each port eement refers to a specific
bi ndi ng element. In addition to its vocabulary, WSDL also alows the use of specific
binding extensions to support the specification of protocols and message encodings.
Therefore, other vocabulary tags are used inside the bi ndi ng element definition, to
define, for instance, the style and transport protocol used during the message exchange
(e.g. RPC style, SOAP protocol).

38

00 O

+refbrsTo

portType
¢

operation

Schema
(from XMLSchema)

bindingOperation

+refersTo

RegResOperation

1.

+hasInput

Type
(from XMLSchema)

+hasOutput

Abstract Concrete

Figure 9: WSDL schema (simplified)

Figure 10 shows a simplified fraction of the WSDL XML schema (wsbL Schema)
where the main elements appear under the group named
anyTopLevel Opti onal El enent. The any tag is a specia XML element that
allows for the insertion of literally any element into the XML document instance.
According to this schema, any extensibility element is allowed under the definitions
element. Therefore, we can create other description elements that may be included in a

WSDL document through thei nport eement.

<element name ="definitions” type ="wsdl:tDefinitions” />
<complexType name="tDefinitions”>
<complexContent>
<extension base="wsdl:tExtensibleDocumented”>
<sequence>
<group ref="wsdl:anyTopLevelOptionalElement” minOccurs="0"
maxOccurs="unbounded”/>
</sequence>
<attribute name ="targetNamespace” type="anyURI" use="optional’/>
<attribute name="name” type="NCName” use="optional’/>
</extension>
</complexContent>
</complexType>
<complexType name="tExtensibleDocumented” abstract="true">
<complexContent>
<extension base="wsdl:tDocumented”>
<sequence>
<any namespace="##other” minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>
<group name="anyTopLevelOptionalElement”>
<choice>
<element name ="import” type="wsdl:timport”/>
<element name ="types” type="wsdl:tTypes”/>
<element name ="message” type="wsdl:tMessage” />
<element name ="portType” type="wsdl:tPortType"/>
<element name ="binding” type="wsdl:tBinding”/>
<element name ="service” type="wsdl:tService"/>
</choice>
</group>

39

Figure 10: Some WSDL schema global elements (simplified)

Web services are on the right track to add semantic to Web resources. Although
they are now limited to program description, they can be extended to provide higher-
level descriptions, such as model descriptions. Web services registries data models
intend to provide solutions towards this, acting as a WSDL complement, and adding
higher-level description elements to the ones presented in Figure 9. However, WSDL
alone will not solve semantic interoperability issues. They provide a uniform accessto a
metamodel management, but ontologies and metadata on a specific domain are still
needed.

3.2.2 OGSA

A recent work FOSTER, 1.; KESSELMAN, C.; NICK, J. M.; TUECKE, S,
2002) from Globus Roject is bringing Grid and Web services technologies together
through the Open Grid Services Architecture (OGSA). This is a workgroup proposition
still under discussion within the Global Grid Forum (GGF), which has draft updates
coming up frequently (almost monthly). The Open Grid Service Infrastructure (OGSl)
document (ocsi-wa, 2003) presents a draft with a full specification of the behaviours and
WSDL interfaces that define a Grid service. A just released APl implementation is also
available for use, the Globus Toolkit 3.0 (GT3).

OGSA proposes to represent every Grid service as a Web service that conforms
to a set of conventions and supports standard interfaces. These conventions and
interfaces are useful for building higher-level service descriptions. Grid service
interfaces correspond to port Types in WSDL, as shown in Figure 11. According to
OGSA, al but one of these interfaces are optional. The required one is the
Gi dSer vi ce portType, which is responsible for the user control over the service
state. There are other optional portTypes that may be optionally available, such as the
Fact ory, responsible for the service creation, the Regi stry, responsible for the
service registration, and the Not i fi cati on-sink and Noti fi cati on-source,

to provide notification facilities.

40

definitions | GridServicelnterfaces
(from WSDL)
portType
(from WSDL)

<

gwsdl:portType

ANAN N

| GridService " Factory " Registry " NotificationSink| NotificationSource

Q

Figure 11: OGSI WSDL extension

The main idea is to capture service semantic with respect to the service
instance’ s state information to service requestors for query and change notification. The
term used is Ser vi ceDat a, whose elements are accessible through operations defined
at the Gi dServi ce porttype. The Gri dSer vi ce portType includes three basic
operations. Fi ndSer vi ceDat a, Dest r oy and Set Ter mi nati onType. The first
one returns information about a service's state, execution environment and additional
semantic details. The destr oy operation alows an authorized client to kill the
executing instance of a service. Findly, the Set Ter m nati onTi me operation

extends the lifetime of a service, asit is usually associated to an expiration date.

An OGSl extended WSDL document includes new port Type eements that
are extensions of the WSDL portType element. Basically, the extension involves the
inclusion of anew port Type child element named ser vi ceDat a, used to define
servi ceDat a elements, associated with that portType. Optionaly, initial values for
those ser vi ceDat a elements (marked as “static” ser vi ceDat a elements) may be
specified using the st ati cServi ceDat aVal ues element within portType. The
example in Figure 12 shows a GridService portType, which is not the original WSDL
port Type dement, as it is under the gwsdl namespace, which includes

ser vi ceDat a dements.

41

<wsdl:definitions xmins:tns="xxx" targetNamespace="xxx">
<types >
<xsd:schema ...>
<xsd:complexType name="someComplexType">

</xsd:schema >
</types>

<gwsdl:portType name="GridService”>
<wsdl:operation name ="NCName" >

<sd:serviceData name="sd1" type ="xsd:String” mutability="static"/>
<sd:serviceData name="sd2” type="tns:someComplexType” />
<sd:serviceData name="factoryHandle” type="ogsi:HandleType”
minOccurs="1" mutability ="constant” nillable ="true"/>
<sd:serviceData name="gridServiceHandle” type="ogsi:HandleType”
minOccurs="0" maxOccurs="unbounded” mutability="extendable"/>

<sd:staticServiceDataValues>
<tns:sd1>initValue</tns:sd1>
</sd:staticServiceDataValues>

</gwsdl:portType>
</wsdl:definitions>

Figure 12: Extending WSDL with OGSI elements example (adapted from OGSI-WG, 2003)

Through available WSDL documents (including the standard portTypes
mentioned), Grid clients are able to access Grid service descriptions and dynamically
discover, register and compose Grid services. However, athough Grid service
descriptions are not limited to what Web services can provide, so far the Grid
community focus has been on service execution information, and not on higher-level

service information, such as information about the service business area.

3.2.3 MyGrid Project

MyGrid (MYGRID PROECT) iS a research project that is based on the Grid
framework, focusing on bioinformatics applications. A recent work (wRoE, C. al., 2003)
describes in more detail the Grid system under development, highlighting that it
provides avariety of supplementary services to OGSA-based systems.

MyGirid architecture is shown in Figure 13. The client framework provides user
access to MyGrid server functionality, through a Web portal, which includes repository,
workflow and ontology clients. The server includes workflow management facilities,
which have access to Bioinformatics programs. The workflow repository stores
workflow specifications, and the enactment engine is responsible for workflow
instantiations and actual executions. MyGrid assumes that Bioinformatics programs are
encapsulated as Web Services. Scientists can then run those programs through Web

services requests. The personal repository acts like a laboratory electronic log, where

42

scientists personal data and provenance information is stored. Each Web service

execution is logged into the personal repository.

The description and classification of bioinformatics resources (services, data and
workflows) are provided through metadata services and directories. MyGrid classifies
metadata into two broad categories. domain and business metadata. Domain metadata
refer to service classification and abstract service input/output data types (e.g., BLASTn
is a tool for computing sequence homology that uses the BLAST algorithm over
nucleotides). Business metadata refer to specific serviced code resource, its location,
reliability, and version (e.g., BLASTn service offered by EBI is 80% reliable), as well
as information about its usage (e.g., date, time, particular parameter values when a
BLASTN was actually enacted). In fact, they organize these metadata into four layers:
class of service, abstract service, instance service and invoked instance service. This
four layer description helps in finding aternative services, i.e., instance services can be
considered to be valid candidates when they belong to the same service class or abstract
description. The workflow instantiation module can benefit from this layered service
descriptions as it processes abstract workflow specifications. Available candidate

instance services are provided by the service type directory.

MyGrid uses an ontology-based approach, providing a suite of ontologies
expressed in DAML+OIL (Horrocks, 1., 2002). This suite comprises a set of inter-related
ontologies, where each ontology provides a vocabulary of terms or concepts, and their
inter-relationships to form resource descriptions of a specific domain. DAML+OIL
describes each domain in terms of classes and properties, and its formal approach
provides reasoning facilities. This reasoning is particularly useful to support the suite of
ontologies management and to support resource description. For example, after
describing BLASTn and BLASTp code resources, and associating them to the
bioinformatics ontology concepts, the DAML+OIL reasoner automatically generates a
classification hierarchy of these resources. Then, the user can access the ontology client
to browse the layers of metadata available (of the bioinformatics ontology) and find a

list of the equivalent available resources (service instances).

43

Client framework

Repository Workflow Ontology
Client Client Client

Personal Workflow
Repository Repository (Meta Data) DAML+OIL

Ontology Reasoner
Server

(FaCT)

Workflow (Meta Data)
enactment Service Type Matcher
Directory and

Ranker

Service

Bioint . instance
ioin’ orma ics directory
services

Figure 13: MyGrid Architecture (WROE, C. et al., 2003)

MyGrid adopts a four-tiered model to describe services: class of service; abstract
service; instance service; and invoked instance. According to this classification, MyGrid
description does not consider the description of service implementations of a given
abstract service. The instance service description corresponds to the available
compilation, ready to be executed, while the abstract service description corresponds to
the program abstraction, e.g., its algorithm. However, between these two concepts we

believe there should be an extra layer to represent the service implementation.

As MyGrid is based on an ontology approach, there is no metamodel or
conceptual diagram to analyze. Instead, they organize concepts and instances as a suite
of ontologies presented in Figure 14. The Web services ontology uses some of the
concepts included in DAML-S ontology (ANKOLEKAR, A. etal., 2001) and extends it with
some specific concepts to address the bioinformatics domain. One of the main concepts
in DAML-S is the service profile, which describes a service using properties like name,
purpose, function, etc. MyGrid proposes extensions that include the addition of the
uses_met hod property, to describe to which method or algorithm a service should be
associated. This concept is used to connect service descriptions to the bioinformatics
ontology. For instance, service Bl ast-p_service uses_method Bl ast_al gorithm
Although this concept allows associating a program (Blast-p) to its algorithm (Blast), it
works as a simple classification. The idea of describing the agorithm itself as a
scientific model with its own characteristics is not considered. Therefore, we may say
that MyGrid approach does not explicitly represent and manage scientific models as an
independent concept. Also the relationship between programs, data and models are

rather clumsy, since they are not explicitly represented. These concepts and their
instances are al mixed inside the same ontology. Finally, MyGrid suite of ontologies
was specially created to attend bioinformatics applications, but its organization does not
seem to be easy to generdize. It would be useful to have a suite of ontologies designed
to address other specific domain applications, in such a way that it would be necessary

just to have one or two ontol ogies substituted.

Specialises. All concepts are

—_ > :
subclassed from those in the more
general ontology.

Upper level
ontology Contributes concepts to form
* definitions.
Y
Task | _ Informatics Molecular Publishing Organisation
ontology [ontology biology ontology ontology ontology
'

f | |
] : :

i
i .| Bioinformatics
. ontology

Web service
ontology

Figure 14: MyGrid suite of ontologies (WROE, C. et al., 2003)

MyGrid works hard on attending many requirements of bioinformatics
applications. Although it uses an ontology-based approach, it actually uses the Web
services ontology as its metamodel for describing bioinformatics services. A Web
application was developed over this metamodel, and its user interface guides the user on
describing services, counting on the associated ontologies to build specific drop-down
value lists. However, when trying to address other domains, MyGrid approach is not
very flexible. Specific-domain ontologies should be built, and in the absence of practical
methods to build ontologies, this is not an easy task. Also, there are not many available
ontologies that are accepted by scientific communities.

One of the main purposes of an ontology is to provide a generic and common
terminology classification on a specific domain. However domain specialists find it hard
to agree on this common framework. An example is the Gene Ontology initiative
(ASHBURNER M., LEWIS S, 2002). Despite its efforts on being freely available and using
portable technology such as XML, it is not widely accepted and MyGrid choose to use

45

build its own ontology. Therefore, to count on existing ontologies is the main weakness

of MyGrid approach.

3.2.4 GriPhyN Project

The GriPhyN Project, another important project on data lineage, has developed
the Chimera System (FOSTER, I.; VOECKLER, J; WILDE, M.; ZHAO, Y., 2002). The architecture
presented for Chimera is based on the metamodel approach and presents the Chimera
Virtual Data Schema, which provides a representation of the computational procedures
used to derive data. It defines a set of concepts and relationships that are used to capture
and formalize descriptions of how a program can be invoked, and to record its potential

and/or actual invocations.

As shown in Figure 15, a Chimera Client interacts with Chimera through a
Virtual Data Language (VDL), for both data definition and data retrieval statements.
The VDL Interpreter is responsible for translating VDL commands into SQL
commands, which are issued to the Virtual Data Catalog (VDC). The VDC database
implements the Chimera Virtual Data Schema, and actually stores information about
data derivation. The Virtual Data Browser and Planner are examples of Chimera clients,
which use the VDL to explore VDC contents and to develop plans for computations,

respectively.

Chimera Clients

Virtual Data Browser| [Virtual Data Planner

VDL

VDL Interpreter Data Grid Resources

Virtual Data Catalog

Figure 15: Chimera System Architecture (adapted from FOSTER, |., VOECKLER, J., WILDE, M., ZHAO, Y.,
2003)

According to (FOSTER, I., VOECKLER, J, WILDE, M., ZHAO, Y., 2003), VDC information may
be distributed across multiple locations, and hyperlinked. The idea is to identify each

resource by a URL, allowing inter-catalog references.

46

Another interesting aspect of Chimera s its possible integration with Data Grids.
Some Chimera clients were developed to provide such integration. A Chimera client
can, for example, provide for Grid execution planning, based on VDC's transformation
instances. It receives an abstract workflow description from Chimera, produces a

concrete workflow, and submits it to meta-scheduler for execution.

The Chimera Virtual Data Schema defines the concepts and relationships of the
Chimera metamodel, which are presented in Figure 16. The dat aset andrepli ca
concepts describe data resources, while thet r ansf or mat i on concept describes the
programs that transform data. Each dat aset hasat ype, which specifies the various
characteristics of the data set, including its storage structure or representation, data
server information and what kind of data it contains. A dat aset may have multiple

replicas at different locations.

A transformati on is a program interface that may take dat asets of a
given type, by reference. Such association occurs when the user dstarts a
deri vati on that specifieswhich dat aset s will match which t r ansf or mat i on
input t ype. The i nvocati on concept completes the execution information by
describing the physical environment and time of the real execution (e.g., date, time,
processor, operational system, etc.). Note that an invocation may be asociated to a
replica of thedat aset associated tothederi vati on. Ther epl i ca concept is
important especially to data Grid environments, where performance for data processing

is achieved through multiple parallel i nvocat i ons of aderi vati on.

Foster et al. (FOSTER, I.; VOECKLER, J; WILDE, M.; ZHAQ, Y., 2002) highlight the possibility
of a Chimera client to develop plans for computations, i.e., workflow specifications. A
more recent work €osTeR, 1., VOECKLER, J, WILDE, M., ZHAO, Y., 2003) states that there are
compound and simple transformations. A conpound transformation is
composed by one or more transformations in a direct acyclic graph (DAG). However, so

far, this concept has not been explicitly reflected in their schema.

Analysing the Chimera Virtual Schema more carefully, we identify some points
of discussion. The type concept is representing two distinct concepts. the
transformati on input/output data type and the dat aset type. Consider, for
instance that a transformation may have two data inputs of the same t ype. It would be

necessary to instantiate two equal t ypes, to represent both data inputs. More than

47

having this redundant description, it may cause some conflicts. When describing a
dat aset that would fit both t ypes, which dat aset would be a better choice? Y et,
when describing a deri vati on, which dat asets will be associated to which
transf ormati on input type? Do their t ypes have to match? Separating dataset
and transformation input/output types, as two different concepts, may solve such
problem. The last one, should make a reference to the first one, i.e, a

t ransf or mati on input/output t ype should refer toadat aset t ype.

In the first version of their schema there was a clear separation of logical and
physical transformation concepts. We took the liberty of connecting the schemas
presented in both works to discuss them a little further. Please refer to those works to
see the original schema figures. The physi cal transformati on corresponds to
the code resource that fits into a | ogi cal transfornmati on description. A
physi cal transformation is related to exactly one | ogical
transformati on, while a logical transformation may have many
physi cal transformations. Even though the relationship is not present in the
Chimera initia schema, we consider that an i nvocat i on should refer to exactly one
physi cal transformati on (dashed linein Figure 16), describing which physical
transformation was used at the time of the execution. This relationship is particularly
important to address provenance in an environment where code resources can be
replicated, such as Grid computing environments. Finally, it is important to notice that

the logical transformation concept is not representing the model or algorithm associated

to a source code.
Replica n 4 Invocation “'Q“"““"""'"""""":
n n |
1|
1 1 '
n 1 - Physical
Dataset Derivation Transformation
n n
n
1
. n 1 Logical 1
ogica
Type Transformation

Figure 16: Chimera Virtual Data Schema

48

This project is on the right track with respect to scientific resources description,
however, its metamodel needs some further developments to properly address more

abstract concepts such as scientific models.

3.2.5 ESSW Project

The Earth System Science Workbench project Essw ProEcT) proposes a data
management infrastructure for researchers who desire to publish large data sets derived
from environmental models executions and global satellite imagery. They provide a
framework for defining and collecting metadata for Earth science and environmental
models. ESSW takes a metamodel-based approach, where the main concept is the
science object, which is used for defining and collecting metadata for those models.
Essentially, a science object is an entity that represents real world scientific resources
such as models, their inputs and outputs, experiments (model executions) and

experiment steps.

As shown in Figure 17, ESSW architecture consists of two main components.
The Lab Notebook (LN) and the Labware. The Lab Notebook is the digital analogy to
the handwritten laboratory notes of a scientist. It is a client/server application that logs
metadata and lineage for scientific experiments and their related science objects as
XML documents stored in a relational database. These metadata assists researchers or
others with identifying particular data products, as well as tracking the steps leading to
creation of a product, or the data lineage.

ESSW . ND WORM
LN client ;
Operator client
] dd metadata
LN console LN server INID WYOIRI
server
XML docs/queried]
LN DB APl (¢ ND WORM Disk
DB API Storage
i | Area
QL queries

Figure 17: ESSW Architecture (adapted from FREW, J.; BOSE, R., 2001)

The LN client sends metadata as XML documents that are parsed, manipulated
and validated by the LN server. These documents are stored in the LN database. The
LN DB API is responsible for transforming XML documents into table tuples, and for

49

trandating XML queries into SQL queries. The console provides an interface for
submitting XML DTDs to the lab Notebook, and creating metadata templates for
science objects. The LN database contains DTD libraries and templates, and science
objects. There are LN client tools to search, order and manage the LN database. A set of
graph drawing tools generate directed graphs of experiment workflows. The LN lineage

tool can display the metadata for any science object shown by clicking on it.

Labware is the digital analogy to the collection of equipment and instruments in
ascientist’s laboratory. It includes No Duplicate-Write Once Read Many (ND-WORM)
services, which provide robust file archiving. The ND-WORM is a client/server
application that maintains metadata about system files. It acts as a data resource
catalogue. The process of cataloguing files involves assigning each file a unique id,
which is caculated when the file is copied into the disk storage area. Metadata
information about these files also includes the original location of the files, file
hierarchies, and keywords. ND-WORM can provide search tools for retrieving files or
sets of files catalogued under the same keywords or hierarchies. Experiment data
outputs are also catalogued through ND-WORM facilities.

The sci ence obj ect is a the core of the ESSW metamodel. Essertially,
science objects represent real world scientific items such as files and data processing
routines. Other important concepts are associated to the science object, such as
experi ment and nodel . An experi nment is defined as the execution of some
nodel . Each experiment consists of one or more experi nent steps, which
represents a computational process with i nput s and out puts. However, each
experi ment is related to only one nodel , meaning these steps correspond to
different executions of the same model. The relationship between two science objectsis
represented by the Sci enceQbj ect Li nk table. This relationship alows for the

registry of the lineage for an exper i ment , linking two subsequent executions.

The ESSW metamodel is extensible to represent user defined science objects.
When metadata templates that define new science objects (inputs/outputs) for a model
are needed, a new table is created for the new type of science object. The scientist is
free to provide his own metadata templates in the form of XML DTD’s. The new table

is named after the DTD root. The new table structure includes some attributes inherited

50

from the science object table, and some attributes reflecting the DTD structure (XML
tags).

Since the ESSW metamodel is focused on tracking experiment lineage, in its
metamodel, a nodel publication occurs in the context of documenting an
experi nent . Actualy, the nodel concept represents an executable code. As we
pointed out before, in the scientific community domain, there are three concepts that
should be explicitly represented: the model itself, its implementation (the program) and
the code that is actualy executed (compilation). In the ESSW metamodel, these three

concepts are represented in one concept. This concept overload does not help the

management of scientific resources.

Another point of discussion is how ESSW registers scientific experiments. The
scientific community needs tools for annotating multiple models or programs
experiments. The ESSW metamodel is now limited to register single model executions
and how they are linked to each other, being able to retrieve workflow instances.
However, since the experiment concept is associated to a single model execution, there
is not an explicit concept to represent experiments that involve a set of mode
executions. Moreover, although workflow instances are implicitly registered, it is worth
mentioning that the workflow specification is not covered by the ESSW metamodel.

elementName ElementDeclarationReference

databaseType
description
minimum

rootElement [FK]
I typeVersion [FK]
umna}:(;mum elementName [FK]

iSPCDATA columnized
fast

=

ScienceObijectType ScienceObject
rootElement [FK]
version

scienceObjectiD datalocation

current_version typeName [FK]
userid typeVersion [FK] dataLocation
time_stamp objectName data_in_db

tableName userid Py
time_stam| y X
elementSetName byt p scienceObjectID [FK]

elementSetVersion metadata

ScienceObjectLink

fromID [FK]
J tolD [FK]

linkID

fromTableName
toTableName

Model

r—-_ - Experiment
scienceObjectlD [FK] scienceObjectID [FK]
o -eserpen

url
dag_url

Figure 18: LN Database Schema (FREW, J.; BOSE, R., 2001)

51

Despite being extensible, the ESSW metamodel needs further enhancements to
address scientific resources descriptions. Particularly, it lacks adequate abstract
definitions for scientific programs and models, which would provide a richer scientific

resources description and enable workflow definitions.

3.2.6 ESP2Net Project

Similar to ESSW, the Earth Science Partners Private Network project (Ese2ner
proxECT) focus is on interchanging scientific datasets and publishing the experiments that
generated them. They propose an active semi-structured information sharing system
architecture (ASSISS) that combines several complementary means of sharing the
experiences from scientific experiments: browsing, searching, and active dissemination.
Within this architecture, they adopt a metamodel-based approach. Although we could
not find an explicit presentation of their metamodel, in the work (KAESTLE, G., SHEK, E.C.,
DAO, S. K., 1999) the authors propose its representation as a Scientific Experiment Markup
Language (SEML) based on XML to capture scientific experiments.

ASSISS interfaces with distributed scientific information repositories and
services for transparent distributed access and processing of large scientific datasets. As
experiments are being conducted, SEML documents capturing the experiments can be
proactively disseminated by means of reliable multicast to groups of users interested in

some aspect of the activity, as shown in Figure 19.

Browsing is achieved by extended Internet browsers with the ability to display
SEML documents. All SEML documents are stored as BLOBs into a relationa DBMS,
and descriptive attributes are extracted for indexing and faster query. ASSISS aso
provides a harvester that harvests SEML repositories and their documents, and builds a
master index that alows scientists to manage experiments locally, but to search for
experiments nationally. SEML provides a Web-based interface to browse, search and

mine a SEML repository.

52

Semantic Multicast
Infrastrocture

XM
Repasitories

[s |
Lo e
Client Apent P __‘.‘.‘-“-E \ |
SEMIL IE “_m‘ lll L prowy |

Brm¥ser and i
Workspave 4’ [Xy

ey .
S " xprl N
1 LY] |— |_| —|Clutpu1 Featuras
e A
Disribuied = CAGHIN Y
Campiming Servires lat | | | | Input Datazats |- P]
fan Ftima SEML
Annokakicns) Dacuments
Crocumertatian
Distribuled Dals Svurces Experiments

Figure 19: ASSISS Architecture (ESP2NET PROJECT)

SEML is implemented as a Document Type Definition (DTD). SEML DTD is
said to be under cortinuous evolution to fit the changing needs of the scientific
community. However, a more recent version of it could not be found. SEML attempts to
explicitly capture the experiment process where datasets are involved. A collection of
SEML documents can be viewed as an electronic experiment log, which can be useful

for future reuse or tuning.

According to the SEML DTD, a SEML document may be divided into three
parts. identification, documentation and experiment, as shown in Figure 20. The
identification part includes information about the people and organizations involved in
the experiment, for further contact. The documentation part contains information about
the experiment as a whole, as well as specific information, embedded in a particular
element. Findly, the experiment part includes information about all the pr ocesses
involved in the exper i ment , aswell astheir i nput s and out put s. Each i nput
out put or process may be associated to elements at the documentation part, such as
anannot ati on orar esour ce element. Ther esour ce element containsalink to
a resource over the network. A process eement may be smply a document
describing what was done to transform a certain i nput into acertain out put ; or a
distributed computing service that is actually invoked to transform acertain i nput into
out put results. To alow references between SEML document elements, the

referenced items must have unique identifiers.

53

SEML documents were designed to document past experiments, however they
can be viewed as templates to further similar experiments. Although the whole
experiment may be reused, SEML DTD does not provide reusability for the internal
elements. All the concepts representing scientific resources are defined within an
experiment. In the scientific community, resources like processes and data are used
independently for the composition of different types of experiments. As SEML
documents do not provide support for reusing these resources, their descriptions have to

be replicated in every document that needs to include them.

Another point of discussion is related to the process concept. This concept
represents an executable code. Its description may exist implicitly, as an annotation
within the document that uses it. Therefore, SEML structure does not include elements
to explicitly describe models and/or programs related to it. Analogously, data input and
output are also concepts related to real data resources, meaning their description is also

implicitly and optionally available within annotation elements.

SEML

!
title | |documentati0n| | experiment |
| <]
People involved input | | processes | | output I—
e process —_—i
person
l
Multidimensional
point set
[t

Figure 20: SEML Structure (KAESTLE, G., SHEK, E.C,, DAO, S. K., 1999)

ESP2Net language needs further enhancements to address scientific resources
descriptions, and a metamodel design would help. Similarly to ESSW metamodel
enhancement suggestions, it would be useful to provide abstract definitions for scientific
programs and models, providing a richer scientific resources description and enabling

workflow definitions.

3.2.7 ECOBAS-MIF Project

The ECOBAS Modé Interchange Format (ECOBAS_MIF) (Benz, J; HOCH, R., 1999)
(GABELE, T,; BENZ, J; HOCH, R, 19%9) iS a project of the International Society for Ecological
Modelling (ISEM-Europe). It was developed to support the exchange of models
between various System Dynamics simulators. In the MIF format, for a complete
documentation of a model, the characterization of the ecological environment for which
the mathematical model has been created and validated is provided. Although MIF
format is presented in the form of a structured list of descriptors, the ECOBAS-MIF can
be viewed as a metamodel-based approach.

In an attempt to solve the problem of model documentation and retrieval, Benz
et al. (BENZ, J; HOCH, R; GABELE, T., 1997), produced the REM-ECOBAS system. It organizes
model documentation in two levels of information. REM, the Register of Ecological
Models, is in charge of the first level, which includes metainformation about nodels,
such as a contact address of the author(s), abstract, references, Internet based links
(URL’s) to sources of information and comments by model developers or users.
ECOBAS is in charge of the second level, which provides detailed and complete
descriptions of the mathematics of each model.

WWW T
REM ECOBAS - -
Documentation | Documentation Documentation Simulation
Interface Interface
Model
Text Editor

Processor

MDL
Converter

Simulation
System
Simplex I, ...)
Search Search
Interface Interface

Figure 21: REM-ECOBAS Systems Architecture

An overview of ECOBAS architecture is given in Figure 21. In REM and
ECOBAS systems, a search engine is avalable at the Web, to find model
documentation. A documentation interface is also available at the Web, where users can

describe their models. The ECOBAS documentation interface generates an ECOBAS-

55

MIF format file, which is stored in the database. An important aspect & ECOBAS

system is the coupling of documentation and source code. Once some model

documentation is completed, it can be used to generate text documents linked with the

source code of the corresponding simulation model. For that purpose, a text processor
that trandates an ECOBAS-MIF file into a TEX file format has been implemented.

Other file conversion options are under development, which includes a model generator,

agraphical model editor and converters to integrated simulation system environments.

REM database currently stores 647 models (rRem). For each model a so called
info-sheet is created and stored in the REM database, according to the structure shown

in Figure 22.
Section

field/category referringto other (more
detailed) information

1. General Model |nformation

Name

Acronym

Main medium
Main subject
Organization level
Type of model
Keywords
Contact

Author(s)
Abstract

Il. Technical Information

I1.1 Executables
I1.2 Source-code
1.3 Manuals

I1.4 Data

LI1. Mathematical |nformation

I11.1 Mathematics

[11.2 Quantities
111.2.1 Input
111.2.2 Output
V. References

V. Further information in the World-

Wide-Web

V1. Additional remarks

Figure 22: REM database structure (REM)

+ + o+

=+

+ (ECOBAS)

The ECOBAS-MIF consists of a set of elements that describes a model. These

elements are organized in three main sections: Type, Specification and Domain sections

as shown in Figure 23. The Type section is responsible for information about model

abstract structure,

e.g., Iits components, procedures and

functions. The

56

Speci fi cat i on section contains more specific information about the model, such as
parameter values and ranges. The Domai n section includes information about the

application area to which the model is used for.

Type [Specification | [Domain]|
General General Classification
Information Information of Domain
connections -
Figures
Procedures Tech. Inform.
and Functions
Figures
Tech. Inform.

Figure 23: ECOBAS_MIF Structure

The General information section contains information about model
identification, e.g., model name, authors, reviewers, keywords and application domain.
The process ssimulation type is aso declared in this section. It provides an overall model
classification according to time dependency (event, static, discrete, continuous and
aggregate). The Vari abl es element is used to declare a list of: constants, state
variables, time variables, dependent variables, input variables and space variables. It is
important to notice that the type section includes information about model interna
procedures and functions, characterizing a white box description approach.
Components must be declared in the Modul e connecti on section when the
simulation process type is an aggregate. The Descr i pti on section is used to explain
the purpose of the model, hypotheses and equations in free text form. The
Ref er ences section is used to include bibliographic references, and the Techni cal

i nf or mat i on section is used to declare

The Speci fi cati on section includesa Quant i ti es subsection, which is
used to declare numerical default values and allowed ranges for the variables declared

inthe Type section.

57

Type Section
GENERAL | NFORMATI ON:
NAME: nitrification-in-water;
AUTHOR: J. Benz; benz@M z. uni- kassel . de;
MODEL: CERES WHEAT;
KEYWORDS: nitrification; amonium nitrate
REVI EW N. Nobody; nnobody@u z. uni - kassel . de;
SI MTYPE: event
CONSTANT:
F[n]: probability of fertility
P[n]: probability for survival
| NPUT:
POP_O[n]: initial distribution of nunber of individuals
n: nunber of age classes; type= M
M\: mineral nitrogen content of soil;
XJ 3,4]: substrate carbon;
COVPONENTS:
conmponent [1] =soi | | ayer _0;
conponent [2-9] =soi | | ayer _1;
PROCEDURE:
step(A B->C D);
C=A+B
D=A- B=A>B) ; A*B
FUNCTI ON:
funci (x,y, 2);
funci =x+y"2-z
CONSTRAI NTS: a<b
CONDI TI O\ x==25
START: t==0
REF: L99;
AUTHOR= Schwi nning S.;
AUTHOR= Parsons A J.;
TI TLE_ART= Anal ysis of the coexi stence mechani sns for
grasses and | egunes in grazing systens;
Speci fication section

QUANTI TI ES:
CONSTANT:
NH 4: g*m2; water; value=0.3
| NPUT:
XQ0: g*m 2; water
STATE:
XC. g*m2; water
TI ME:
t: s; time
SPACE:

z: km space

Figure 24: ECOBAS_MIF examples (BENZ, J; HOCH, R., 1999)

Finally, the Domain section is considered to be an extra section that includes
model classifications from different application areas. In order to contribute to efficient
retrieval of similar nodels, ECOBAS MIF uses international standards. For instance,
the FAO-classification (DRIESSEN, P. J, DUDAL, R, 1991) for soil type was previousy
registered by the system, so that when specifying a model, the user can choose the most
appropriate one from a classfication list. There are classification lists also for soil

texture, climate type, ecosystem, and biological taxonomy available.

Both REM and ECOBAS-MIF structures include descriptors that contribute to a
rich scientific model description. However, these structures do not explicitly represent

relationships between models and their implementations, which difficult their

58

management. Again, a metamodel design would help on representing all relationships
explicitly. Moreover, scientific data, workflows and model use are not considered in

ECOBAS-MIF as useful associated descriptions.

3.3 Managing Scientific Workflows and
Registering their Use

Workflow Management Systems (WfMS) define, manage and execute
workflows through the execution of software whose order of execution is driven by a
computer representation of workflow logic (wrmc, 1999). WEMS basic functionality
includes workflow definition, workflow instantiation and execution. The workflow
logic is the result of the workflow definition. It corresponds to the specification of all
necessary information about the process to guide the workflow instantiation and
execution. To instantiate a workflow the WfMS interprets the workflow definition and
occasionally asks the user for complementary data/information. As the instantiation
proceeds the WfMS starts the workflow execution, invoking software programs when

necessary.

To address the scientific community though, WfMS basic functionality is not
enough. Interoperability, integration, abstract workflow definition, dynamic definition,
and workflow auditing are some of the required extra functions. Interoperability may be
provided through the association with a middieware layer responsible for invoking
remote applications and data, as well as the communication ability with other WfMS.
When dealing with multi-domain and multi-platform applications, as it is the case
within the scientific community, the WfMS must provide some metadata support for

resolving heterogeneity conflicts and to allow the integration of such systems.

Another important feature with respect to scientific workflow management is the
possibility of defining abstract workflows. A workflow can be defined in terms of task
classes or their abstract description. Alternative task instances can be considered to be
equivalent when they belong to the same task class or abstract description. The
workflow instantiation and execution module can benefit from these layered service
descriptions, as it can choose from a list of available candidate tasks provided by the
task class directory. This late binding allows the instantiation module to use aternative

instance tasks when some are not available. Moreover, scientific workflows are usually

59

not fully specified before it starts being instantiated. Some definitions are left for the
instantiation moment. Thus, WfMS need to support workflow dynamic definition, i.e.,
allow workflow definitions to be modified, as they are instantiated, demanding a tight
evolution control.

WIMS workflow auditing facility involves tracing workflow instantiations. In
slico experiments are directly associated to workflow instantiations. To register
scientific workflows use means to document a scientific experiment. Specific code
executions, with specific input and output data resources, and specific parameter values
are all part of a scientific experiment. In the case of scientific workflows, WfMS should
report all scientific resources involved in each workflow instance associated to a

scientific experiment.

Most of the time, WIMS adopt a task-centric approach that is reflected by their
architecture, in which a Database Management System (DBMYS) is used to store task
descriptions, and which includes al workflow functionality in modules that run on top
of the DBMS. However, in scientific workflows data set descriptions are as important as
the description of tasks that processes them because the quality of an input data set often
impacts the quality of the output of the program that has processed it. Furthermore, the
quality of data used and generated along an experiment influences the workflow
instantiation associated to that experiment. Therefore, to address scientific workflows a

WIMS should combine task and data-centric approaches.

Web services are already heading to workflow management, however, as a
generic purpose technology it needs additiona facilities to fully address scientific
workflows management. On the other hand, some research projects were specifically
conceived to address scientific workflows and scientific resources use. Although these
initiatives do not address al the problems raised here, they represent relevant
contributions.

In the next sub-sections (3.3.1, 3.3.2, 3.3.3 and 3.3.4) we revisit some of the
projects discussed so far, with respect to their support for workflow management and
registry. Le Select and ECOBAS-MIF do not address these issues, and are not discussed
here. Other three initiatives that especially address scientific workflow management are
briefly discussed: ZOO (section 3.3.5), WASA (section 3.3.6) and AGROMET (section
3.3.7).

60

3.3.1 WSA and OGSA

Web services architecture also provides the necessary mechanisms to define
workflow processes through the composition of Web services. Such compositions are
defined through XML-based languages expressing the data should be processed across a
collection of Web services, just like traditional workflow specification languages.
Therefore, through the use of Web services technologies, an escientist can define

scientific workflows based on the specification of standard and reusable Web services.

A number of proposals for such Web services composition language came from
the major industry players. However, recently, some of them came to an agreement
(IBM, Microsoft and BEA) and released BPEL4WS — Business Process Execution
Language for Web services (CURBERA, F.,, GOLAND, Y, et al., 2002). BPELAWS is a XML-based
language for coordinating business process over the Web, which relies on Web services
technology. Since BPEL4WS is the first joint industrial effort to define a specification
for Web services composition, it is a strong candidate to become the standard language
for specifying Web services compositions. BPEL4WS provides a language to formally
specify a business processes and business interaction protocols. It extends the
interaction model of WSDL to define a process that provides and consumes multiple

Web services interfaces.

With respect to scientific workflow management, interoperability and
integration are already provided by Web services. AsaWSDL document may consist of
abstract definitions of services, we may say then that BPELAWS is able to describe
abstract workflows. However, abstract workflow instantiation, workflow dynamic

definition and auditing are up to the workflow processing engines.

Finally, as OGSA is based on Web services architecture, it can also benefit from
the facilities provided by WSA described here.

3.3.2 MyGrid Project

MyGrid (WROE, . et al, 2003) recognizes that bioinformatics scientists need to tie
code resources together into scientific workflows. According to MyGrid architecture
(Figure 13) the workflow modules provide the basic WfMS functionality, and adds to it
abstract workflow definition, instantiation and execution. So far, MyGrid project uses

the workflow language WSFL (wsrL) for workflow definitions. MyGrid alows for

61

workflow reuse, taking a user definition and comparing it to previously authored
definitions. Some of these workflows may have fixed instance services (pre-set
binding), others profit from the late binding feature (abstract workflow definition). Once
the user has selected the appropriate workflow definition and data, MyGrid counts on
existing WSFL processing engines to execute them. Finaly, the workflow results are
stored and available for future processing. As MyGrid plans to count on the Web
services infrastructure, interoperability and integration of data and programs are

provided.

In their work (WRoE, c. et al., 2003), the authors claim to track experiments and to
document them so they can be re-executed and data provenance can be available
(workflow auditing). MyGrid registers invoked instance service descriptions, which
include information about the execution of a particular code resource, on a particular
date, using particular parameter values. However, it is not clear how these executions
are registered in the scientist personal repository, that is, if there is a metamodel
supporting the registry. Moreover, it is aso unclear if the registered resources can be
exchanged with other scientists.

3.3.3 GriPhyN Project

The GriPhyN Project has a special interest in registering scientific resources use.
The Chimera System Data Schema (FOSTER, 1., VOECKLER, J,, WILDE, M., ZHAO, Y., 2003) includes
concepts that are specially focused on data lineage: invocation and derivation concepts.
These concepts are responsible for keeping data lineage information on a metadata
repository. Through them it is possible to document which dataset matched which
program input. Also, it is possible to keep track of which program has generated a

specific dataset. However, it does not provide workflow management facilities.

3.3.4 ESSW and ESP2Net Projects

Although no workflow management facilities are provided, ESSW was specially
conceived to collect metadata about scientific experiments involving program
executions. The LN database shown in Figure 17 captures metadata about science
objects such as executable models (program codes) and data types. These metadata is

then used to register program executions. There is no support for workflow definitions,

62

but workflow instances are implicitly registered as the execution of a sequence of

programs.

ESSW provides visualization tools to map these workflow instances in terms of
each science object and their connections, as a directed acyclic graph (DAG) showing
the linked steps, as example inFigure 25 shows. Each step is described based on

previousy described science objects, e.g. models (rectangles), and their inputs and

inputs
Experiment
2

model A

Q\? Inputs/outputs

C§/C)utput

Figure 25: ESSW Experiment

outputs (circles).

Similar to ESSW, the ESP2Net project focus is on interchanging scientific
datasets, by publishing the experiments that generated them. However, it a'so does not
provide workflow management facilities.

3.3.5 ZOO System

The ZOO system (I0ANNIDIS, Y.; LIVNY, M.; GUPTA, S; PONNEKANTI, N., 1996) iS a desktop
experiment management environment. It supports domain-specific teams of scientists,
although the development has taken a generic approach. At the core of ZOO system, the
workflow is viewed as a Web of data objects interconnected with active links that carry
process description. In Ailamaki et al. (AILAMAKI, A.; I0ANNIDIS, Y ; LIVNY, M., 1998), the DBM S
incorporates the WfMS functionality, representing workflows as schemas. Workflow
dynamic definition and auditing are more easily provided. Although ZOO's centralized
approach provides benefits, such as a unique access language and point of control, it
does not address distributed and heterogeneous environments, which is the case of

scientific applications. Also, abstract workflow definitions are not supported.

63

3.3.6 WASA

Another interesting work that considers scientific WIMSs (WESKE, M.; VOSSEN, G;;
MEDEIROS, C,1996) describes the WASA architecture, whose goal is to provide a supportive
environment for data-intensive scientific applications. WASA’s main contributions are
the support for dynamic execution of tasks (workflow dynamic definition), by
combining active and tempora database facilities, and the support for experiment re-
usability (auditing) and reproducibility, by means of the documentation and versioning
facilities. Although WASA can be seen as a generic architecture for scientific
workflows, it was not developed for distributed and heterogeneous scientific programs,
lacking interoperability facilities. Also, it is not clear whether WASA is able to deal

with abstract workflows.

3.3.7 AGROMET

AGROMET system @INTO et al., 2002) supports scientific work in a cooperative
way, involving document, knowledge and workflow management. AGROMET provides
a data integration middleware to support interoperability between autonomous
distributed and heterogeneous data repositories. The workflow management module
supports the definition of abstract workflows and provides experiment reuse, stored in
an experiment base (workflow auditing). In addition, AGROMET includes a
cooperative work support module on top of al the other modules, to help on
collaborative analysis in scientific projects. However, scientific applications demand
support for distributed and heterogeneous programs, which is not addressed by
AGROMET.

3.4 Discussion

Scientific resources management systems presented here am to address
scientific applications by handling distribution and heterogeneity of scientific resources,
describing these resources, managing sciertific workflows and registering their use.
Most of these technological and project approaches bring relevant contributions to
scientific applications. These efforts adopt different strategies to deal with scientific
resources management. In some cases, the emphasis is on distribution and

heterogeneity, without taking into account higher level description facilities such as

models and experiments. In other cases, the focus is on workflow, without providing
program distribution and heterogeneity. Also, a lack of workflow instances and
experiments registry facilities are frequently found, making it hard to rerun previous
experiments or obtain data provenance. Figure 26 presents a table that summarizes al
the systems described in the last sections, indicating the facilities they provide () or

not (=), or yet whether it is not reported (?), according to those three issues.

With respect to the handling distribution and heterogeneity issue, we first define
which Client/Server technology is used. Grid and Web services (WS), as well as IDBC
and CORBA, are some of the technologies used. Some projectsinitiatives use a
proprietary technology solution or none at al. Then we describe each system facilities
with respect to data and program distribution handling, and data and program
heterogeneity handling. We aso describe their ability for remote execution and
execution control. Remote execution means the code may be executed on another host
machine, and that the system will be able to handle data transfer. Execution control
means to be able to monitor a service execution, asking about its status while it runs. A

high level of control would enable to cancel an execution.

The description facilities include the ability of each project or system to
represent scientific resources. There two main approaches adopted by these projects to
address these facilities: the metamodel-based (MM) approach and the ontol ogy-based
(Ont) approach. As a first desired facility, we have identified the need to represent
scientific models, and distinguish them from their implementations (programs) and
available compilations (codes). So, codes should be related to a program description,
which should relate to its input/output, classified under data types. Analogoudly,
scientific data sets should also be described independently of programs, and related to
data types. Another desirable description facility is to define data replicas, monitoring
the use of aternative equivalent datasets. Finally, description extensibility means to be

able to provide description extensions, according to some specific-domain users.

To provide workflow facilities means to be able to manage scientific workflows,
which includes: workflow definition, abstract workflow definition, workflow execution
dynamic workflow definition, and workflow partial execution. To provide registry
facilities means to be able to provide data provenance, i.e., when a code execution has
started, which data input/output was used, etc. A code execution registry means to

register every single code execution individually, while the workflow instance registry

65

means to have it registered as set of linked executions. Finally, an experiment registry
means to have a set of workflow instance registries as belonging to a specific

experiment.

66

Le Select

Z

S

GryPhiN

ESSW
ESPINet

FCOBAS-MIF

Z00

WASA
AGROMET

ibution and Heterog

eneity facilities

C/S Technology

JOBC/
CORBA

WS
Grid

Grid

JOBC

CORBA
JRMI

Prop

3
o
°

Data Distribution

b\

X

Data
Heter ogeneity

Program
Distribution

Program
Heter ogeneity

Prog. remote
execution

RIR|RI&|R

X| X[X| X

X| X[X| X|X

X| X[X| X|X

Execution control

R R|R| R

RIRIR|&R|&R|R
RIRIR|&| &K

b\

X

R X R X (IR

X

Some

gxxx&&
| X X | x| &R

Descripti

on faci

lities

Appr oach

Ont

MM

<
<

Model
description

X

X

Program
description

Program |O
description

Data Type
description

X| X[X| X

X| X[X| X

Code description

Data description

Datareplica
description

X IRIR & R|R] X
X IRIR &R KR|R

x[& (| x| x| x| x[E

Description
Extensibility

x| X|&|&

R x[R|&|R|&RIK

&5 | &5

O RIRRR] x| &

&5

x| x|’ (&

XX xR R|RI&| R

x| x (&R &R K] x[E

x| x|&R|R| -9 o o x[2

x| x|®R|R| -0 o o x[E

Wor kflow and

Registry faciliti

es

Wf definition

Scripts

Abstract wf
definition

X

Wf dynamic
definition

X

Wf execution

Run
scripts

Wf partial
execution

X

Code exec.
Registry

Wf instance
registry

Bl &R| x| X| X[X|X

Experiment
registry

X| X| X[X| X| X| X[X

X| X| x| x| x| x| &|~&

X| X| x| x| x| x| & |KR

| x| x| R x| &RIR
X| X| ®R| X| x| x| &R |KR

&5
&5
X

&5

x| x| x| x| x| x| x|x
X BRI R[] &R|&RI-0K
X R R|R|R[xR
X[R &I x[&|&

Figure 26: Comparative Analysis of Related Work

67

With respect to the distribution and heterogeneity technology, Le Select and
Web services architecture have taken distinct paths, but they ended up sharing the same
objective: to provide a cross platform approach to component-based devel opment. Even
though Le Select came first, Le Select is not a technological middleware such as Web
services. Le Select adds software layers for database management. It also proposesale
Select closed community, similarly to the Grid community, whereas Web services is a
Web open architecture proposed by W3C (ws), and therefore more easily adopted by the

market, and particularly by the scientific community.

Furthermore, Web services architecture goes further than Le Select, providing a
service catalog provider (discussed in section 3.2), which allows service requesters to
find the service they need. Grid computing, currently merging to Web services through
OGSA, is aso sharing these benefits. Some of the main Component-based Development
Environments in the market, such as BEA WebLogic and IBM WebSphere for Sun
J2EE platform, and the Microsoft .NET platform, are already considering Web Services.
Theideaisto open their environments to provide, alternatively, Web services compliant
components, i.e., a component that could also interoperate with components from any
other client/platform. However, none of them alone can provide al the semantic

description that scientific resources need.

While WSA, OGSA, MyGrid and GryPhiN are close to what scientific resources
need in terms of description, they do not describe scientific models nor do they cover
experiment registry completely. ECOBAS-MIF fails completely in terms of experiment
registry, while it is the only one that recognizes scientific models as important resources
to describe. On the other hand, projects like ESSW and ESP2Net fail in terms of
description, but concentrate on experiment registry. Finally, with respect to which
description facilities ZOO, WASA and AGROMET provide, it is important to mention
that, as their corresponding metamodels were not explicitly published (to the best of our

knowledge), most of the table cellsin this section carry some degree of uncertainty.

Other interesting scientific resources description proposals can be found in the
literature (HousTIs, C.; LALIS, S, 2001) (CRITCHLOW, T.; MUSICK, R; SLEZAK, T., 2001). However, they
also fail on presenting a complete metamodel or functionality to address scientific

resources facility.

There are basicaly two approaches for describing scientific resources:
metamodel and ontology-based. We believe that a metamodel-based approach is best

68

suited to describe scientific resources, however, none of the proposals found so far have
completely addressed the requirements for this kind of application. The metamodel-
based approach is particularly good because its focus is on the development of
management applications. In this approach, several conceptual levels are captured in a
metamodel, and resources are described according to this metamodel. In the ontology
approach, concepts and resources are equally represented in specific-domain ontologies.
In this approach, there is not a clear distinction between the resource and description
levels. In contrast with ontology flexibility, the metamodel approach counts on a pre-
defined structure, which guarantees that each resource is described according to it. This
is evidenced in MyGrid project where several “independent” ontologies, one for each
“context”, are built and later a different ontology has to be built to alow navigation
from one context to another. For instance, the extended DAML-S ontology is used to
alow navigation from services to bioinformatics ontologies. This navigation is an

inherent concept of the metamodel approach.

Metamodel and ontology approaches are not conflicting; in fact they are
complementary (sPYNs, P, MEERSMAN, R, JARRAR, M., 2002). We believe that it is possible to
combine both approaches, to get the best each one can offer. While the metamodel
provides the basis for navigation through scientific resources, ontologies helps on the
search and classification of each resource described by the metamodel. However, it is
worth to mention that building ontologies requires a hard and specialized effort that
should be done for each different scientific application domain. Moreover, there is not
an established methodology to support ontology building, which compromises the
quality of the existing ontologies. Therefore, we believe that scientific management will
benefit from the metamodel approach, in a short term. These initiatives could later on be

improved as the ontology expertise and supporting methodol ogies evolve.

The next section presents our metamodel-based solution to address scientific
resources management. In our proposal we have concentrated on the metamodel
development, and combined it with the most recent middleware technology to provide

the required functionality.

69

4. Specification of a Scientific Resources

Management Infrastructure

A scientific resources management infrastructure should be provided to address
scientific applications. In section 3 we specified three main requirements that a
scientific resources management architecture should provide: (i) handling distribution
and heterogeneity, (ii) describing scientific resources, (iii) managing scientific
workflows and registering its use. Among these three, we consider resource description
requirement the fundamental issue that impacts all the others. Despite many recent
initiatives in attending these requirements, so far we have not found any architecture
that offers support for al three with a strong emphasis in metadata issues. Therefore, we
present here an architecture with focus on a metamodel, to manage scientific resources
available throughout the Web, where scientists are able to publish models for direct real

Ccase usage.

We have proposed the Scientific Resources Management (SRM) architecture
(CAVALCANTI, M. e al., 2002 § Where some of these mechanisms are provided. Here, we

extend SRM to encompass scientific workflows and experiments support.

SRM is based on a metamodel approach. The Scientific Publishing Metamodel
(SPM) (cAavALCANTI, M. etal, 2002 a) iS a fundamental feature to provide support to the SRM
architecture. In section 4.1 we present the SRM architecture. Section 4.2 presents the
SPM metamodel that offers the foundation for SRM architecture, describing each of the

concepts it represents.

4.1 SRM Architecture

The Scientific Resources Management architecture addresses most of the
problems raised in section 2.4 and 3 by the combination of five modules: Navigation,
Publication, Experimentation, Resource Operation, and Resource Description modules.
Referring to the three main requirements listed previously, the Resource Operation
module addresses item (i), while the Publication and Resource Description modules
address item (ii). Finally, the Experimentation and Publication modules address item
(iii).

70

Figure 27 shows SRM has two layers: one for enabling Web access services and
the other for scientific resources management. There are two main modules to manage
scientific resources. the Resource Operation module and the Resource Description
module. The Resource Operation module (RO) deds with data and programs. The
Resource Description module (RD) is a metadata repository manager, dealing with data

and program descriptions, and aso with model, experiment and workflow descriptions.

The Web Access layer (WAL) is composed of three other modules: Publication,
Experimentation and Navigation. The Navigation module allows scientists to browse
scientific resources and their correspondent descriptions. The Experimentation module
allows the user to perform in silico experiments. Within an experiment, the user is able
to choose, instantiate and execute workflows specifications, which may be composed of
programs or models. The Experimentation module interacts with the user, helping
him/her on the workflow instantiation process. Then, if the workflow is completely
defined, the Experimentation module interacts with the Resource Operation module by
issuing remote execution messages with the specified input data. After this, the
Experimentation module keeps track of the ongoing experiments, by publishing each
essay. In summary, the Experimentation module guides the user on the correct use of
the available models, providing an onthe-fly interface for executing them. Finaly, the
Publication module is responsible for publishing scientific resources. When a publisher
enters some resource descriptions, the module checks these inputs by interacting with
both the Resource Operation and Resource Description modules. Once validated, the

Resource Description module stores these inputs.

Web ‘

Access
Layer

Navigation Publication
Module Module

Experimentation
Module

1
| 3

Resource Operation Module Resource Description Module

Resources I t
Management
Layer ﬁ ﬁ

Figure 27: SRM Architecture

SRM is a distributed architecture (Figure 28). The Web Access layer (WAL.:
Navigation, Publication and Execution) corresponds to he client side of SRM, and

provides access to the other two modules, the Resource Description (RD) and Resource

71

Operation (RO) modules, which act as servers. An SRM client is able to connect to one
or more Resource Description and Resource Operation modules. Each RD server may
store descriptions about resources served in more than one RO servers. The idea is to
organize RD servers of related resources. In this scenario, the SRM client connects itself
to one or more RD servers to access resources descriptiors. According to the user

choices, the SRM client then connects to one or more RO servers.

WAL —— AL
. I nteppét \
Clients WAL\
Servers (
RD
Modelseexperiments. RD\ / Modas
of tide simulation
RO~ V s and WFs for
RO RO . Biocorrosion
Codesfor Tide simulation . Code:
Kuznetsova
Reynolds
Codefor image Sample &
. colectors
processing

Figure 28: SRM Architecture, a distributed View.

4.1.1 Resource Operation Module

In SRM architecture there are two main roles: the publisher ard the user. The
user basically navigates through described resources, trying to find some useful
resource, and then actually accesses it. On the other hand, the publisher is basically a
resource provider. Therefore, the publisher role is in charge of providing a Resource
Operation (RO) module, which actually accesses data and executes code. In general,
each RO module may be serving a set of data/code resources, grouped according to their
location or platform. Each RO module works like a wrapper that allows the code or data

to have a uniform interface in accordance with the distributed environment standard.

The Experimentation module receives requests for data retrieval and for code
execution. As shown in Figure 29, it provides resources requestors that establish
connections with RO modules. The idea of the SRM architecture is to work on top of
the Web infra-structure. Therefore, the RO module should embed a Web server, which
interacts with the Execution module through Web protocols. At the other end of the RO

72

server is the legacy code and its invocation is specific. However, the RO module aims to
be a generic way of enabling the invocation of any code. To address this goal, the RO
module provides an extralayer of interaction between the code requestor and the legacy
code itself. Within this extra layer, a generic invocation protocol is used to invoke the
legacy code. Besides the Web server, other two facilities are necessary to provide this
generic invocation: a message router and a code wrapper. The message router is used to
process the generic invocation protocol and to invoke the code wrapper. The code
wrapper is what has to be built to deal with the legacy code specificity, i.e., it knows
how to invoke the legacy code and how to deal with its results, sending them back to the

message router using the same generic protocol.

Data access is similar to code invocation. Each data set is stored according to a
data model, which either may be associated to a specific query language, or provide a
specific query interface application to manipulate its content. In this case, a data
wrapper is aso necessary to deal with data sources heterogeneity. The SRM architecture
assumes a standard data model as the generic interface between the data requestor and
the data repository. The message router is used to process the generic data invocation
protocol and to invoke the data wrapper. The data wrapper knows how to access the
data repository, and how to transform them into the standard data model expected by the
caler.

Despite the different data models available, data sources are not as
heterogeneous as legacy code. There are many data sources that use the same data
model (e.g., the relationa model). In this case, standard data wrappers can be built to
help the publisher in providing an RO server for a data resource. Within the scientific

scenario though, scientists commonly use structured text files. In this case, specific data

wrappers are needed.
y 4
Experimentation Resource Operation
Module Module
Code Call —— Web |[msg || Code
Requestor <— Response Server|| router | Wrapper|

Requestor <+— Response Server|| router [| Wrapper

Data Call > Web |[msg || Data _I_i

Figure 29: Resource Operation module

73

4.1.2 Resource Description Module

To allow SRM users to access data or code resources provided by RO modules,
each resource must be described in the Resource Description (RD) module. The
publisher may either provide an RD module or use an existing one. It is natura to have

agroup of related distributed data/code resources described in one RD server.

The RD module manages metadata of scientific resources. The Scientific
Publication Model (SPM) is the metamodel (schema) behind the Resource Description
module, and is described in more detail in Section 4.2. Each resource description is
stored in accordance with the SPM. Considering some of the requirements raised before,
XML seems to be the most adequate language to express scientific resources
descriptions. Therefore, the SPM is expressed as an XML Schema. The idea of having a
metadata repository manager came from the need to store semi- structured descriptions
expressed in XML.

The RD module (Figure 30) includes a DBMS server. XML-enabled DBMS and
native XML DBMS are both alternatives for XML storage. In the case of XML-enabled
database systems, to guarantee that XML documents will be properly stored in that
database, it is necessary to use or exterd existing XML APIs. Therefore, the RD module
embeds not only a DBMS server, but also a client application that includes an XML
API.

In the RD module, the DBMS server maintains three main collections: XML,
X8D, and Xix. The XML database stores all XML documents with metadata about any
scientific resources area, e.g. Biology, Oceanography, etc. The XSD database stores
XML Schemas used for XML documents validation. In this architecture, XSD contains
the SPM XML Schema, which specifies how scientific resources such as data category,
transformation, data, code and experiment should be described. Finally, the Xix
database stores an index over the XML documents to provide direct access to these
documents, facilitating keyword searches. The Indexer facility is responsible for
building the Xix database by indexing XML documents stored in the DBMS.

74

Web Access Layer

Web based protocol
Resource XML API

Description
Module

| DBMS client |

DBMS server Indexer

Generates
XSD XML XIx XML Index

Figure 30: Resource Description module

Each module of the Web Access layer (WAL) interacts with the RD module
through Web-based protocols. The Publication module (Section 4.1.3) feeds the RD
module with XML documents, while the Navigation module (section 4.1.4) interacts
with it by issuing queries and retrieving XML documents for navigation. Finally, the
Experimentation module (Section 4.1.5) issues queries to the RD module for validating
code executions, and then feeds it with experiment descriptions. The XML APl is

responsible for retrieving and returning XML documents that satisfy the issued queries.

4.1.3 Publication Module

The Publication module is responsible for scientific resource description capture.
According to the SPM metamodel, each scientific resource has specific metadata that
describes it. Therefore, the Publication module Figure 31) provides a different entry
form for each of them, through the Resource Publication Interface facility. These forms
are built based on the SPM, which is expressed as an XML Schema. In fact, considering
the evolutionary nature of metamodels, especialy in the scientific scenario, we have
designed the Publication module to be adaptable to different (versions of) metamodels.
As we chose to have the metamodel stored in the metadata repository, it may be used

not only to validate XML document instances but also for building the user interface.

The publication process involves two main scenarios. In the first scenario, the
publisher is usually a scientist that has been publishing theoretic model resources within

a scientific community. The publisher starts publishing models and their inputs and

75

outputs, by filling up the correspondent forms. In this scenario, the publication is a top-
down process, i.e, it starts with the more abstract description. In the second scenario,
the publisher is either a data provider or a code provider. In this scenario, the processis
bottom- up, and the publisher describes each code or data by publishing programs and
the correspondent inputs and outputs. The association between models and programs
happens in the bottomup scenario, after having the program and model already
published.

According to the bottom-up publication scenario, the Publication module first
requires the resource operation address. Based on metadata about the resources
available at the RO module, the Resource Selector provides a list of the served
code/data resources, where the publisher selects and publishes it in the RD module.
However, a code/data publication means to describe them as valuable scientific
resources, i.e., program and model publications are also required. These descriptions are
captured by the SPM Schema, therefore, the Schema Processor asks the RD module for
the correspondent XML schema subset and prepares it for the Interface Builder. Based
on the schema key reference element definitions, the Schema Processor transforms the
abstract relationship between resources into an enumeration type with references to
identifiers of document instances. After prepared, the schema is delivered to the
Interface Builder which transforms it into an HTML page, where a publication form is
ready to be filled up. Finally, when the user submits a form to the Form Handler facility,
the submitted data are trand ated into an XML document and sent to the XML Validator
facility to be validated against the Schema.

WF resource

inti resource operation address
resource description p description
Publication
Module

HTML | Publication Form WF Definition
’m’ Interface ml Interface '\
Interface Form IN?Vri?ation
Builder Handler nieriace
selections
XML Schema XML
Edited Document
| Schema Resource XML WEF Definition
Processor selector Validator Validator
XML Code/data Valid XML WE def.
Schema resource al Documents
metadata Documents

XML
Documents

Resource Operation Module

Resource Description Module =

Figure 31: Publication module

76

When guiding the user through the top-down scenario, the Publication module
jumps directly to the interaction with the Schema Processor, which asks the RD module

for the correspondent XML schema subset and prepares it for the Interface Builder.

The workflow publication starts at the navigation process. While navigating, the
user selects which programs/models are needed. The Workflow Definition Interface
facility captures the navigation selections and interacts with the user for the workflow
definition. Then, to guarantee that the workflow definition combines compatible
programg/models, the WF Definition Validator facility requests for program/model
descriptiors stored in the RD module. Finally, after validated, the workflow is published
in the RD module.

4.1.4 Navigation Module

A quick glance at the most usual queries suggests that the scientific user
searches for different data characteristics, such as substance names (e.g. Calcium),
guantities (e.g. concentration) and units (e.g. mg/l). The Resource Description module
usually answers these queries. However, due to the diversity of scientific users, there is
not a pre-defined way to present such queries. Therefore, the need for a keyword-based
search facility is clearly identified. Also, a guided navigation is required; based or not
on the results of a keyword search request. Dynamically configured interface pages

should guide the user through selected available resources.

The Navigation module is responsible for handling user queries and navigation
over/through scientific resources. Therefore, the Navigation module includes facilities
for querying XML documents stored by the Resource Description module and for
handling query results to be presented to the user (Figure 32). Depending on the request
of the user, the Query Interface facility may submit it either to the Keyword Search

Handler or to the Query Handler.

The Resource Description module takes advantage from the built-in indexes
(Xix) to retrieve a set of possible XML document references, which are processed and
built by the XML Processor and Interface Builder facilities, respectively, and then sent

back to the user.

77

query selection
Navigation
Module

Query Navigation
Interface Interface
Query [HTML Document
contents
Interface
Builder
IXML Document
Keyword search L Query XML
Handler Handler Processor
I XML Schema/

l XML Documents

Resource Description Module

Figure 32: Navigation module

The Navigation module also provides some pages through which the user can
navigate and ask for more specific information on available resources. These user
requests are passed to the Query Handler facility and then submitted to the RD module.
The result of such requests may either be a set of references or asingle XML document.
Both are returned to the XML processor, which adds links to other documents based on
the XML Schema relationship information.

4.1.5 Experimentation Module

An experiment begins with its description, which is provided using the
Publication module. After describing the purpose, hypothesis and workflows associated
to an experiment, the user may then start it. The Experimentation module is responsible
for the experiment management, and it counts with the facilities shown in Figure 33.
The user starts an experiment through the Experiment Initiation Interface facility by

choosing which workflow, associated to the experiment, is going to be instantiated.

The next step is the definition of a concrete workflow. The workflow published
so far is an abstract workflow, and a corresponding concrete workflow is needed to be
available for execution. The Concrete WF Definition Interface facility (Figure 33)
supports the concrete workflow definition, which involves choosing data and code
resources to be used according to the abstract definition. If the abstract definition is at
the moddl level, then there must be two choice levels. The first level will choose which
program is best for a model, and the second level will choose which code resource is

best for that program. Data resources are chosen according to the input data categories

78

and constraints associated to the programs chosen, i.e., the user navigates through a list
of data resources that are compatible to the input data categories of the workflow
programs. With respect to the choice for code resources, the code/data definition facility
may either provide a list for wer navigation and choice, or count on the definition of
some selection criteria. Differently from data resources, code resources are all
equivalent in terms of functionality, as they are compilations of the same program.
Therefore, instead of a direct choice, specific criteria, such as cost or availability, could
be defined for a further automatic choice of which would be the best code resource.
Finally, parameter values are also defined at this point, either by user direct input, or by

choosing a data resource.

When ready, the concrete workflow definition is passed to the Workflow Engine
facility. First, the facility publishes this definition in the RD module as a registry of the
on going essay, and then starts processing it. If code resource criteria ae defined, the
engine should be able to “resolve” that by, for instance, computing costs or finding out
the code availability. For each data and code resource specified in the workflow
definition, a corresponding code/data requestor is called, which interacts directly with
the corresponding RO module. The data requestor should be able to select data
according to program input constraints. Code requestors should be able to send the
selected data to the corresponding RO module. After finishing each code execution, data
results are temporarily published as data resources, and when it is the case, passed to the
next step in the workflow execution, i.e., another code requestor. Each finished code

execution is registered in the RD module, composing an essay publication.

Code/Data

Experiment/workflow Parameter
selection values Resoqrces
selection
Experimentation

Experiment Concrete WF Module
Initiation Definition
Interface Interface
Concrete WF
WF Definition
Engine

I
l l

Execution Code/Data
Registry Requestor

XML *

Documents

L Resource Operation Module

= Resource Description Module

Figure 33: Experimentation module

79

4.2 Scientific Publication Metamodel

The Scientific Publication Metamodel (SPM) addresses most of the description
facilities presented in section 3.4. As SRM architecture follows a metamodel-based
approach we have concentrated on the development of SPM to support this architecture.
In a metamodel-based approach sveral concepts are captured in a metamodel, and

resources are described according to this metamodel.

In this section, we define a set of concepts that form the SPM. Considering that
scientific users and publishers basically deal with programsand data, we start with a
generic approach, where we define two concepts (Figure 34) that can express not only
what the user needs, but also what the publisher provides. Data category is the first
concept that may be used by the publisher to describe his data and that may be used by
the user to define the type of data he needs. Then, there is Transformation category that
may be used by the publisher to describe what the functionality of his program is, and
may be used by the user to define which kind of scientific solution he needs. Finaly, the
publisher may publish data as a data category and may publish program as a
transformation category. Thus, users can improve their access, understanding and reuse
of published resources, through these categories. In order to enhance readability, let us

refer to Transformation category simply as transformation.

Y Implements

'S
transformation)

|_equrer L_category

category prod

1
Y]
/)
’a
L
i
I
1
]
{]
|
r
1
]
1
I
1
1
\
\

publi#hed as publisked as

publisher

Figure 34: SPM Generic Concepts

The explicit definition of high level concepts like data category and
transformation category is one of the main advantages of a metamodel-based approach.
These concepts provide a common view of different but similar objects that are

manipulated by different user roles, facilitating the interaction among them.

80

The following subsections present the SPM model in more details. Each SPM
concept is expressed as a UML (UML REVISION TASK FORCE, 1999) class. SPM classes are
related to each other within a class diagram. To facilitate SPM explanation, the
complete SPM diagram was broken into subsets of related concepts. To see the
complete diagram, please refer to the Appendix (section 9.1).

4.2.1 SPM concepts

To describe scientific data and programs, first it is necessary to “identify” them
as a resource, which has a Web address and is described by a certain “type’. In
particular, as shown in Figure 35, a data resource is described by a data category
(ProgramDC), while a code resource is described by exactly one program interface
(or smply, program). A code resource represents one code that executes in a specific
operationa system and hardware, while a data resource represents one data set that was
generated by some kind of mechanism, such as a satellite or a sensor, or even a code
execution. To allow for data traceability, data provenance should be explicitly captured,
determining the specific satellite or sensor identification, as well as the code execution
that actually generated them.

Resource
title
creator
creationDate
webReference

A
A\
|
|
l

o +describedBy CodeResource DataResource +describedBy ————— |
1 o.n operationalSystem| provenance 0.n 1.n | ProgramDC |
hardwarelnfo creationTechniquef — L———__ | I
<<instante of>> <<instante of>>
publishedAs publishedAs

Code Data

Figure 35: SPM operational resources related concepts

Usually, a scientific program is the implementation of a theoretic model. Both
model and program concepts have many characteristics in common, athough they
belong to different usage levels. The program is actually executable, while the model is
descriptive. To take advantage of such similarity, both model and program can be

81

viewed as a transformation, as shown in Figure 36. A transformation is a description
of a data transformation process that produces some output data and requires input data.
Therefore, a transformation should be associated to at least one input and one output,
and each one of such I/O data refers to a data category. An 1/O data may be
specialized as input or output data. Finally, a transformation is associated to a set of
parameters and to a set of operational constraints, which express conditions on 1/0O

data attributes and on transformation parameters.

Through the transformation abstraction it is possible to represent associations to
I/O data, Parameters and Constraints for both concepts (models and programs). On the
other hand, the differentiation between these concepts is important because it allows the
representation of another important concept, which is theimplements relationship. This
representation allows the user navigation through models and programs, searching for
similar programs that are based on the same model. In addition, models and programs
are characterized differently. Models are described by a set of attributes that capture
information that are typical of its level of abstraction, such as area, scope, purpose and
hypothesis, while programs are described by implementation related attributes, such as
the programming language and the program version. Also, programs are usualy
associated to more parameters than the model it is based on. These additional
parameters are related to implementation issues such as performance and precision.
Finaly, the program is used to describe code resources, which reside in different hosts.
When a user publishes a code as a code resource, he/she establishes an association of
the code resource to a specific transformation, i.e., a program interface. This association

will help the user to access, understand and use such code.

82

+refersTo
|0..n 1

Parameter Transformation
- >t DataCategory
title tite 7 p—_———— title
- —<slcreator Vobata | efersTo
I- creationDate < ————Title creator
- | A K o.n 1/creationDate
_Constramt I A £
title | | |
description | I
expression I
|
Model Resource
area title
scope +implements Program creator
classification ImplementationLanguage creationDate
purpose 0.1 0.n [version webReference
h}/pgthesis 1 N
bibliogReference| q
webReference |

0..n

+describedBy I
|
|

CodeResource

operationalSystem
hardwarelnfo

<<instanice of>>
publishedAs

Code

Figure 36: SPM transformation related concepts

Furthermore, SPM focus is on the description of the program and the theory
behind it, the model. However, the focus is not to represent the model itself, such as a
formula or an algorithm, but to describe it with adequate semantic to facilitate the
decision of its adequacy to the problem in hands. Therefore, SPM represents
relationships between models, such as derivation and calibration, shown in Figure 37,
which alows for the tracing of a model lineage. The study of a family of related models
facilitates the user on the evaluation of which one is the most adequate.

Scientists derive new models based on studies over some existing model. A
study may consider, for instance, the influence of the temperature in the Kuznetsova
model kuzNeTsova, v. A, 1960). Then, the new model includes some extra data input to

accommodate temperature values.

A model calibrates another model when it is specifically conceived aiming at a
particular situation, such as a specific geographic area. Usually, to calibrate a model
means to have values assigned to some of its parameters. The result is still a model, but
calibrated to a specific situation. Both models, generic and specific, may be described
and aso implemented. Let us consider the “straight line€” example. The straight line

equation takes the form ax+ by + ¢ = 0. Theequation 5x —y + 2 = O represents a

83

specific straight line. In this example, the straight line is calibrated when parameters a, b
and c assume values 5, -1 and 2, respectively.

The ModelParmMatch concept represents the relationship between the
calibration and the calibrated model parameters. A simple type value may be assigned to
each model parameter. Usually these values correspond to constant values, and can be
represented by the ModelParmMatch attribute. As models are represented here as a

descriptive concept, the idea is to document its calibration process and not to automate
it.

Parameter Transformation
title title
A creator
l-r\ creationDate
| A
| T
| |
| |
ModelParam I
|
1.n
|
ModelParmMatch L
Valie Model
calibrates alesy derives from
+matches lg scope
Calibration 0.1 (¢|assification 0.1 Derivation
description [PUITPESD description
hypothesis
0..1 |bibliogReference| 0..n
webReference

Figure 37: SPM model derivation and calibration concepts

Another important model descriptive attribute is its classification. There are
many classification possibilities, described in section 2.3.1. When describing a scientific
model it is not wise to choose one of them. On the other hand, a possible unification of
all these classifications would be out of the scope of this work. Therefore, it seems more

appropriate to allow the user to choose as many classifications as necessary to describe
amodel instance.

Figure 38 presents the data category and its related concepts. A data category
describes scientific data that have some common characteristics. A set of attributesis
used to describe each property of a data category. Some of these attributes are
mandatory others are optional. A data category can be associated to a model, in this case
it is called a model data category (modelDC); or it can be associated to a program,
when it is called a program data category (programDC). The difference between these
transformations becomes clear when we describe attributes of each data category

associated to them. When describing data categories associated to the modd, it is

84

necessary to describe the quantity and/or classification of each attribute, while
describing a program data category, each of its attributes needs a basic data type (e.g.,
integer), a unit (e.g., mg/l) and a format (e.g. GIF) specification. When publishing data
as a data resource, the user associates it to a program data category. As red data is
already committed to data units and formats, it does not make sense to describe it using
directly a model data category.

The advantage of using model data categories at such abstract level of
description facilitates the discovery of equivalent models. It is possible to find different
purpose models, which use the same scalar quantities.

Attribute

title Resource
LY
\

7 A title
T _I'\ creator
] | creationDate

I
| ! webReference|

ProgAtt Y
+implements [tvne A
yp 1

ModelAtt
quantity

unit
classificationl 0-1 0.n I
i format_ i
| | |
{ l |
delDC i v i :
Mode +implements | programbDC +describedBy DataResource
T 0.1 0.n 1.n 0.n |provenance
I ! genMechanism
1 A
_1 JI. <<instancé of>>
YAYS

publishedAs
DataCategory

title
creator
creationDate

Data

Figure 38: SPM data category related concepts

When a program implements a model, this relationship is extended to the
associated data categories. Therefore, a mapping function should exist between a
program and a model, meaning that for each 1/O data associated to the model, there
must be a related I/O data associated to the program. A valid implementation
relationship should map each and al I/O data associated to the model to one unique
correspondent 1/O data associated to the program, i.e., the mapping function between
data categories associated to both model and program should be an injective function.

Analogously, we may say that a program data category implements a model data
category, by establishing a mapping function between both data categories. This
mapping means that each attribute of the model data category must be related to one

85

attribute of the program data category. A valid implementation should relate each and
al attributes of the model data category to one unique attribute of the program data
category, i.e., the mapping function between attributes from the model to the program
data categories should be an injective function.

A parameter is a concept that can represent: (i) a model parameter which is
used to “tune”’ the model for a specific objective (e.g., one may say that in the formula
“y=ax+b” that represents a “straight line”, a and b are constant parameters which
determine the intersection points between the line and the axes); (ii) a processing
parameter which is used to determine some “performance” and “accuracy” aspects
(e.g., a program requiring a minimum set of data, or even, a program using alternative
precision options, according to user needs); (iii) acondition parameter which is created
only to express a value required by some program use constraint (e.g., a program that

should be used only for a certain data value interval).

DataCategory
+refersTo o
ProcessParam 1 |[creator
Q] 0..n creationDate
Parameter 1
ModelParam ——>{ o <A Transformation
+refersTo | 0.n

title
0..n creator . 1/0 Data
creationDate title
T 0..n

ConditionParam

0.n - 0..n
Constraint
+refersToltitle +refersTo
description

expression

Figure 39: SPM parameter and constraint concepts

As Figure 39 shows, a parameter refers to a data category that might be at the
program or model level. The user can either define a data category for each parameter,
or define a set of parameters under the same data category, asits attributes. However, it
is important to notice that the user should have in mind which data is redly a

transformation data input, and which is clearly defined as a parameter.

Constraints describe conditions for the adequate use of a transformation. When
describing a model or program it is important to express its limitations, i.e., which
constraints it should be conformed to, in order to be used correctly. A program isitself a

computational model of a theoretic model. Precision and performance are some of the

86

issues that constrain a program. Examples of some common transformation constraints
are: (i) amodel developed for a specific geographic location, should be constrained to
data from that location (e.g., an image segmentation model that has been designed only
for images from a specific region); (ii) a program developed to run over some data input
cardinality lower-bound (e.g., a data simulation program that would run based on a
minimum historic data interval); (iii) a model developed to run specificaly over some
data value interval (e.g., a biocorroson model that would fit only to water samples

whose chloride concentration is below a given value).

As shown in Figure 39, a constraint might be associated to 1/0O data and/or to
parameters, depending on the data involved in the constraint. Each constraint is
characterized by description and expression attributes, which represent informal and
formal constraint expressions, respectively. In the case of formal descriptions, it is

recommended to use some formal language.

In summary, all concepts discussed here are represented in the SPM metamodel.
Figure 40 presents a smplified overview of the SPM metamodel, which shows those

concepts and their relationships.

87

ConditionParam
ModelParmMatch

| -
ModelParam |
==
Ly A
refersTo I I ! H 1
Constraint -1
r 0n | | I |
| +refersToy | JI_ 1 _!_
[onl | VARVARV .
A e +refersTo ModelAtt +implements |— ProgAtt
|
0.n 7 ' <L <1
l,x 4X ‘f | +implements
Calibration [i | ModelDC ProgramDC
I I | I 0.1 0.n
ror l 1
calib;ates | | I L | | Ln
. [I 0.n 1.1
Jl I L VARV,

1

i I] 1o Data | +refersTo

jr— be—— = rtDataCalegory
01! od] I] o '

Model ____ +implements Program

o.n
0.1 1
0.1 0.n

derivfasfrom
TARVAN
o I | trdescribedBy

+describedBy | |

CodeResource

| DataResource

<<insti~,\n(,Js of>> .
<<instance of>>

publighedAs publispedAs

Code Data

Figure 40: SPM Schema overview

4.2.2 SPM Advanced Concepts

Other advanced concepts must be identified to provide for the resource usage
registry. Figure 41 presents these advanced concepts and their relationships to the other

original concepts.

The transformation concept is used to describe a transformation resource, such
as models and programs. However, to make a transformation available for experiments,
we use another concept: workflow. Therefore, a transformation that needs to be
available for experiments should be declared as part of a workflow. A workflow is
related to a set of transformations and is described by a workflow specification
attribute, which should contain a formal workflow description language like in
BPEL4WS (CURBERA, F., GOLAND, Y, et al.,, 2002). Such workflow specification describes how

the related transformations are to be processed, i.e., which transformation should be

88

data corresponds to other transformation input data, etc.

performed first, which others may be performed in parallel, which transformation output

k 1
O Jl_
Transformation Parameter I
+refersTo I
DataCategory !
1 0..n
A
1 I\
o
L
|
+refersTo |g.n !
ProgramDC
Program 1/0 Data g
1 1..n
DataMatch
Resource 1
+particifjates ParmMatch
+desdribedBy 4 [F
+descibedBy S ren
o.n | o.n +participates
CodeResource DataResource
1
1..n 1..n
o.n Execution
date
time
1n 'Experlment
1 title
Essay . creator
date ‘+composedBy creationDate
time 1 project
duration o.n +performs [PUrpose
hypothesis
L& Workflow 1.n) report
wiSpecification +inAccordanceTo Sierns
0..n

Figure 41: SPM advanced concepts (experiment and workflow)

In the case of our in silico laboratory environment the definition of experiment
presented in section 2.3.5 fits well. Each in silico experiment has its own hypothesis
and purpose. The control is established through the association to a set of related
workflows, i.e., an experiment has a fixed set of workflows over which actions are
taken. Each action begins with a workflow instantiation, and ends when the workflow
execution is complete. To use a common lab word, each workflow instantiation is what
is caled an essay. An essay involves a set of code executions. These executions
correspond to an instantiation of a specific workflow, which is composed of a set of

programs.

89

A code execution describes each use of a program by keeping arecord of which
resources (code and data) the scientist used during an essay, i.e., the code execution
registers for each program parameter, which value was used (par mM atch) and for each
program 1/O data, which data resource was used (dataMatch). A data match is the
assignment of a data resource to a data 1/0 that belongs to a program interface. The
assignment process should verify the compatibility among the data categories referred
by both data resource and program input data. The data input assignment happens
during the workflow instantiation, while the data output assignment happens at runtime.
In summary, the code execution registers the use and generation of data resources as

data 1/O of acode resource, during an in silico essay.

4.3 Analysing SRM in the light of the

requirements

Figure 42 shows that SRM architecture provides most of the facilities listed in
the table of Figure 26. In the first group of facilities, SRM does not attend a complete
execution control. However, we believe it is not difficult to add this facility, especialy
if SRM is used in combination with OGSA web services. Differently from the other
initiatives (MyGrid, GryPhin, ESSW, ESP2Net, etc.), SRM strongly concentrates on the
description facilities, attending most of them. In special, we have seenthe importance of
the differentiation between models and programs in almost all applications we analysed
in section 2, particularly, in the biocorrosion application (SIMBIO project). The only
work that considers this difference (ECOBAS-MIF) does not adopt a metamodel
approach. Besides, ECOBAS-MIF does not include important scientific concepts such
as essay and experiment that represent the use of models and programs. We were able to
verify the use of these concepts in a structural genomic application (MHOLline project),
analysed in section 2. Although SPM metamodel is more expressive than its related
works, it did not include the concept of data replica. However, we believe SPM can be
easily extended to add this concept. Thus, SPM metamodel contributes by providing
rich modelling concepts that impact on amost all activities of the e-scientist, including

concepts that were not considered in other related works so far.

The workflow dynamic definition facility is not yet attended. To attend this
facility, the SPM metamodel should include workflow versioning control, which is out

90

of the scope of this work. However, we believe it would be an interesting future work
direction.

Distribution and Heter ogeneity facilities

Data Distribution

Data Heterogeneity
Program Distribution
Program Heterogeneity
Prog. remote execution
me Execution control
Description facilities

BRI (&R

e

Model description
Program description
Program 10 description
Data Type description
Code description

Data description
Datareplicadescription
Description Extensibility
W and registry facilities
Wf definitions

Abstract wf definitions
Wf dynamic definition
Wf execution

WI partial execution
Code execution registry
Wf instance registry
Experiment registry

BRI RR SRR

BRSSO (R (R

Figure 42: Requirements review for SRM

Finally, it is worth to mention that SRM adopted Web services as the technology
for handling distribution and heterogeneity of scientific resources. The next section
describes SRM implementation, and evidences how Web services are a promising and

suitable technology.

91

5. Web Services based SRM architecture

Implementation

Web services are the standard technology to address interoperability issues, thus
SRM architecture benefits from its infrastructure, summing its functionality atop Web
Services. In 2001, after specifying SRM we developed prototypes using Le Select as a
middleware system, which uses CORBA for interoperability. At that time, we proposed
SRM as an extension of Le Select (cAVALCANTI, M. etal., 2002), and extended the ODBMS
GOA (MATTOSO, M., CAVALCANTI, M., etal, 2002) t0 manage XML documents. In paralel, we
were able to study SIMBIO project application and identify SRM contributions to this
context (ECOBASE, 2001) (CAVALCANTI, M. et al, 2002 ¢. However, in 2002, Web services
emerged as a promising standard technology. Despite the advantages of Le Select, in
general, the scientific community is very standard oriented and (especially in the case of
biologists) rely only on freeware, shareware or openware software, which is not the case
with Le Select. For that reason, SRM architecture is currently proposed as a Web

services based architecture (CAVALCANTI, M., MATTOSO, M., CAMPOS, M. L., 2003 a).

In this section we present the Web services based Scientific Management
Architecture (SRMW). Section 5.1 details each SRM module with respect to
implementation issues. In addition, we aso present the SPMW metamodel expressed in
XML Schema and how it extends WSDL.

5.1 SRMW Architecture Implementation

SRMW modules are presented in Figure 43. The Web services provider
corresponds to the Resource Operation module of the SRM architecture. A Web
services provider can serve both data and code as services. To facilitate the search for
these services, the publisher registers (step 1) his/her services through the Publication
module, extending the correspondent WSDL documents with SPMW description
elements. These documents are stored and managed by a Web services registry facility,
adapted to scientific requirements, which corresponds to the SRM Resource Description

module.

92

2:find

Navigation

Scientific 4: initiate experiment

User [
5: instantiate wf SAERE Web Service
6: execute Registry

7: bind, 8:call

Publication
Web Service -
Provider 1: publish Scientific
3: define wf Publisher
4 1: publish |

Figure 43: SRM Architecture based on Web services (SRMW)

SRMW navigation module helps to find a service (step 2) by guiding the user
through a collection of WSDL extended documents. As the user finds what it seems to
be appropriate, the Publication module helps on planning an orchestrated execution
(step 3) through a workflow definition. Then, this workflow definition is associated to a
scientific experiment which must be registered through the Publication module (step 1).
This experiment is then initiated (step 4), and the user is now able to start the
instantiation of the defined workflow (step 5) and its subsequent execution (step 6). The
Experimentation module acts like a Web services requestor (steps 7 and 8) connecting
to the required Web services providers, which will actually access data sources and

execute the service codes.

5.1.1 Resource Operation Module

Data and code publishers are responsible for building a Web services provider
for their resources, so that they can become available for Web users. For each legacy
code the user should build a Web services adapter (code wrapper). The generic
invocation protocol adopted by the Web services provider may be SOAP, which would
be processed by a SOAP router. In this case, the code requestor of the Experimentation
module would send SOAP messages to the Web services provider, as service client
requestor. Analogoudly, for each data set there must be a Web services adapter (data
wrapper).

93

Building code and data Web services, for the scientific community, is not an
easy task. Thisis an open issue in Web services based architectures like SPMW, and out
of the scope of this work. So far, only generic data access Web services have already
been proposed. The OGSA Data Access and Integration (csa-DAl, 2003) IS one of the
main initiatives in this direction. A master’s dissertation to facilitate the generation of
scientific data resources Web services is under development (TEIXEIRA, F., 2003) at COPPE

Sistemas.

In addition, the investigation of the difficulties on building a biological
workflow using Web services is the focus of another master's dissertation work
(TARGINO, R, 2003) a COPPE Sistemas. In this context, we have published Web services
for some bioinformatics legacy codes (CAVALCANTI, M. etal.,, 2003 b), uSing Apache Tomcat
4.0.4 (tomcaT) powered by the AXIS engine (axis)

5.1.2 Resource Description Module

The Resource Description module corresponds to an adapted Web services
Registry. It registers descriptions according to the SPMW metamodel. To accommodate
all metadata captured by this metamodel, we use a database server as RD main
component. As a metadata repository manager, it stores resource descriptions expressed
in XML. XML-enabled RDBMS and native XML databases are both alternatives for
XML storage. We have investigated two aternatives, building the RD module on top of
GOA and MySQL Systems.

Initially, due to the similarity between the object oriented model and the XML
model, we have chosen to sore XML documents in an ODBMS. We have XML
enabled the GOA System (coa system), an ODBMS prototype developed at COPPE
Sistemas. We have embedded not just a GOA Client, but also the GOA XML enabler
(Goaxe API) facility (MATTOSO, M., CAVALCANTI, M., etal, 2002). With Goaxe, the GOA System
is able to understand and store XML documents. Goaxe manipulates XML documents
by creating a GOA XML Schemathat reflects the W3C DOM API classes. Goaxe takes
an XML document instance, reads it and breaks it down into DOM class instances.
Then, each of these instances is trandated into a GOA XML Schema instance.
Therefore, the GOA Server can be viewed as a generic XML repository. In addition,
through XVerter (VIEIRA, H., RUBERG, G., MATTOSO, M., 2002) XQuery commands can be issued
to GOA stored XML documents.

94

However, due to the wide use of MySQL on the Web, as well as on some
scientific communities, we have changed the implementation of metadata repository to
the RDBMS MySQL (wIDENIUS, M., AXMARK, D., 2002). Any repository can be used, as long
as it can offer an XML facility. To provide XML access to MySQL, we have extended
an XML open source APl (NiEmMCzZYK, B., 2002) and associated it to a MySQL client API.
The XML API breaks any XML document into four relations, also acting as a generic
XML repository.

The Indexer module was not yet implemented. In the case of a native XML
DBMS, this module may aready exist.

The metadata repository stores also WSDL documents, extending the original
ones with imports pointing to the SPMW extensions. Other Web applications may
benefit from these extended WSDL documents by connecting directly to the Resource

Description module.

5.1.3 Web Access Layer Implementation Issues

The Publication module is currently under implementation using Java Servlets,
interfacing with any Web browser through HTML pages and forms. These servlets
connect to MySQL server through a PHP client API. The XML API used was also
written in PHP. Each Java Servlet manipulates XML documents using the Apache
Project DOM API (erces), which was implemented based on the W3C DOM AP
specification. The idea is to deliver an XML valid document to the Resource
Description module, ready to be stored by the DBMS.

The Schema Processor facility is a Java Servlet that is called for each scientific
element publication. It queries the RD module to get a subset of the schema according
to the type of scientific element under publication. The schema subset includes
enumeration elements derived from the XML documents to be referenced, eg.,
programs should reference model descriptions. The Interface Builder automatically
transforms the edited schema into a publication interface. The Interface Builder was
implemented in XML Stylesheet Language &s.) as a final under-graduation course
project (LEAL, LN, 2003). The generated interface includes validation routines according to
the domain constraints defined in the original schema, such as pattern and interval
validations.

95

The Navigation module is under development. It also comprises a set of Java
Servlets. So far, we have implemented the Navigation interface, which allows the user
to browse XML documents according to its category in SPMW model. The keyword
search facility is not yet implemented. The Schema Processor facility is under
development, and the Interface Builder is being developed as part of a final under-

graduation course project.

The Publication and Experimentation modules count on IBM BPWS4J 101
(BPws4)) to define and process workflow specifications, written in BPEL4AWS (CURBERA, F.,
GOLAND, Y, etal.,, 2002). A tool for the Experimentation module is being devel oped as part of
amaster’s dissertation (TARGINO, R., 2003), based on a prototype evaluated with MHOL line
(CAVALCANTI, M. et al,, 2003 B. Integration between this tool and SRMW is planned. For
example, BPWSAJ edition facilities could benefit from the selection of programs during
the user navigation through scientific resources. Then, the generated workflow
definition documents might be returned to the WF Definition Validation facility to be
validated and, subsequently, stored in the metadata repository.

The Experimentation module is also under development. A set of Java Servlets
will be interacting with the user and the RD module to start a new essay. The
instantiation of the workflow is then started, and the definition of code/data selection
criteria defines the complete workflow instance, which isfinally available for execution.
Then, the WF Engine facility resolves any pending choice according to the user defined
criteria and processes the workflow instance, which is composed by a set of Code and
Data Web services requests. For each request, the requestor module builds on the fly
SOAP messages.

As part of a master’'s dissertation work {ArciNO, R, 2003), a static scientific
workflow has been implemented (cAVALCANTI, M. etal., 2003 b), using Web services
technology. We have published legacy code using WSDL based on SPMW and used
BPWSAJ as the workflow engine, and data results are being stored locally, as XML

pages. SRMW Experimentation module is now under integration with this work.

5.2 SPMW Implementation

To take advantage of the Web services technology we have implemented our

metamodel as an extension to WSDL. Considering that services and programs are

96

equivalent concepts, both metamodels (SPMW and WSDL) share the same objective.
Therefore, it is natural to find some intersection between them. Such intersection
involves mainly program description elements. In fact, SPMW complements WSDL
providing more descriptive elements and relationships. In order to be standard
compliant we have chosen to extend WSDL metamodel with SPMW semantic elements,

asillustrates Figure 44.

definitions ScientificResourceDefinitions |

AL

types
+refersTo

¢

1.1

o] [

Q

Parametﬂ

message

portType

| Transformation |<>

_I 1/0 Data | 9-n

..n

1

1|_DataCategury

frfefersT

7]

1.1

[

I

|0

operation

Model 0.1
Program

+impleme...

0..n

part

| ModelDC L—rl ProgramDC|_
.1 0.

+implements <>

RegResOperation

+hasOutput

ProgAtt

ModelAtt

0.1 0..n
+implements

Figure 44: WSDL and SPMW mapping (abstract part). SPMW elements are painted.

Analogously to WSDL, we have created a new element that is composed by
SPMW definitions, caled Sci enti fi cResourceDefi nitions. Each scientific
resource, ie., program, model, program data categories, etc., must be declared under
this element. The program element extends the ReqResOperation. As a
consequence, each Dat al O and Par m related to program should refer to the
correspondent part of the ReqResOper ati on, and each Progr anDC (and its
attributes— Pr ogAt t) referred by Dat al Oand Par melements should refer toa Ty pe
declared within the t ypes element. These relationships are represented in the SPMW
XML Schema (presented in the next section), as extra attributes whose values should

point to WSDL element instances.

Another mapping happens between WSDL and SPMW at the concrete level.
Code and data the

ScientificResourceDefinitions. Both elements provide information about

resources are aso SPMW dements defined under

97

code and data hosts, complementing the access and encoding information provided by

each binding aa a WSDL document. In Figure 45, the diagram shows that
CodeResource and DataResource dements ae connected to the

bi ndi ngOper ati on eement.

definitions P ScientificResourceDefinitions
portType binding
? service Resource
[
operation Zﬁ Zﬁ
Zﬁ CodeResource DataResource
port
ReqResOperation bindingOperation +refersTo
[
+refersTo

Figure 45: WSDL and SPMW mapping (concrete part). SPMW elements are painted.

5.2.1 SPMW XML Schema

SPMW XML Schema has as its root the
ScientificResourceDefinitions element. According to this schema, an
SPMW document may include any number greater than zero of scientific resources

elements under this element, in any order, asillustrated in Figure 46.

l1|spm:Ml:lnl:ll]lZ:

ASPMiProgDC
aspm:Mudel

spm:Program

A
ScientificResourcelefinitions [%]—(spm:gResource [l =

—Lspm:l]ataﬂesuurce

1.0

—Lspm:CudeResuun:e

l1|sapm:'|.l'|.i'|:|rk‘ﬂi:i'm.l'

—L'spm:Experiment

Figure 46: SPMW main elements

98

These eight elements are detailed in the next sub-sections. Hierarchic diagrams
are used to present each of these elements in separate, while the whole XML Schemais
available in the Appendix. Some elements are optional, and appear in dotted boxes.
Some elements are extersions of abstract elements, taking advantage of the inheritance
mechanism available in XML Schema design. The inherited elements appear first as a
separate group of elements. Each of the main elements includes an extensibility element
(any eement), allowing new sub-elements to be included in instance documents.

Elements that have a complex structure are indicated by the plus (+) sign.

Key definitions are used to provide unique identifications to instances of SPMW
elements. Keyr ef definitions are used to establish the relationships between elements
within SPMW, and consequently, to provide referential integrity among the

correspondent instances. In the case of references between SPMW and WSDL elements,
key and keyref definitions are not used. The reason of choosing a less tight

relationship between these schemas is to provide more independence to SPMW,

enabling it to be associated to other schemas.

SPMW XML Schema current version is not fully addressing the SPMW
conceptual model. Some aspects were left out and will be developed along with
application projects, while SPMW evolves.

5.2.1.1 Model - spm:Model

The model element inherits some attributes from the abstract type
t Transf or mat i on, which are included in the first group of elementsin Figure 47.
Title, creation and creati onDat e are sdf-explanatory elements. | nput ,
par mand out put are elements that may occur many times. All three of them have a
similar complex structure that includesat i t | e and ar ef er ence to adata category.
Theconst rai nt element aso has acomplex structure. However, this one is different
and includes three elements: atitl e,adescri pti on, used to describe it in natural

language, and an expr essi on, used to describe it in aformal language.

99

[==] i

~expression

Figure 47: Model XML Schema diagram

In the second group of elements there are model specific descriptive elements:

?? Area: A model is usualy associated to an area of application, e.g.

industrial, economic, social, political, environmental, etc.

?? Scope: The target or scope of a model is the system it represents, e.g.

Itajai hydrographic basin, a geographic region, or an enterprise.

?? G assification: There are many different ways of classifying a
model, eg. mathematic, logic, deductive, empiric, probabilistic,
algorithmic, ssimulation, etc.

?? Pur pose: Each mode has a specific purpose, for which it is valid.

100

?? Hypot hesi s: Every modd is initialy a hypothesis. Building a model
represents the expression of a scientific hypothesis that needs to be
validated.

?? Bi bl i ographi cRef: A modd is usualy associated to scientific
publications.

?? WebRef er ence: It would be useful to register the Web address of the
model reference material, if it exists.

Asshownin Figure 48, the nodel eement has a unique attribute that represents
its key (kModel). I nput, parm and out put eements include the eement
r ef er sTo, which is committed to Mod DC element, through akeyr ef definition.

<xsd:element name ="Model” type="spm:tModel">
<xsd:key name="kModel">
<xsd:selector xpath="."/>
<xsd:field xpath="@idTF"/>
</xsd:key>
<xsd:keyref name="reflInputModDC” refer="spm:kModDC">
<xsd:selector xpath="input"/>
<xsd:field xpath="refersTo"/>
</xsd:keyref>
<xsd:keyref name="refOutputModDC" refer="spm:kModDC" >
<xsd:selector xpath="output"/>
<xsd:field xpath="refersTo"/>
</xsd:keyref>
<xsd:keyref name="refModParm” refer="spm:kModDC">
<xsd:selector xpath="parm”/>
<xsd:field xpath="refersTo"/>
</xsd:keyref>
</xsd:element>

Figure 48: Model Key and Keyref definitions

5.2.1.2 Model Data Category — spm:ModDC

The ModDC eement represents the Model Data Category concept. It inherits
from t Dat aCat egory abstract type some descriptive self-explanatory elements:
title, creator and creationbDate, which are included in the first group of
elements in Figure 49. ModDC aso includes another group of elements which may
contain multiple occurrences of MDCAt tri but e element. Each occurrence of this
element isdescribed by itst i t | e and arelated quant i ty. A previously prepared list

of quantities may be available.

As shown in Figure 50, ModDCand MDCAt t ri but e elements have a unique
attribute that represents their key (kModDC and kMbdAt t ri but e).

101

spm:tModDC

\\ ________________ __’F le
ModDC [0.0

Figure 49: Model Data Category XML Schema diagram

<xsd:element name ="ModDC" type="spm:tModDC">
<xsd:key name="kModDC">
<xsd:field xpath="@idDC"/>
</xsd:key>
</xsd:element>
<xsd:element name =" ModAttribute” type ="spm:tMDCAttribute” >
<xsd:key name="kModAttribute”>
<xsd:selector xpath="."/>
<xsd:field xpath ="@idAttribute”/>
</xsd:key>
</xsd:element>

Figure 50: Model Data Category Key definition
5.2.1.3 Program - spm:Program

The program element inherits some attributes from the abstract type
t Transf or mat i on, which are included in the first group of elementsin Figure 51.
These elements were aready discussed in section 5.2.1.1. The constrai nt
expr essi on element is used to describe a program constraint in a formal language,
possibly using BPEL4WS.

In the second group of elements there are program specific descriptive elements.
| mpl enmrent at i onLanguage is the programming language with which the program
was implemented. It might be important to specify the version of this language. The
Version eement is used to specify the version/release of the program under
description. Finally, the wsdl El enent Ref represents the correspondence to a port
type operation of a WSDL document.

As shown in Figure 52, the pr ogr am element has a unique attribute that
represents its key KProgram). | nput, par mand out put eements include the

element r ef er sTo, which is a reference to ProgDC element instances, through

102

keyr ef definitions

r ef Qut put ProgDC). Another keyr ef

(ref I nput ProgDC,

r ef Par nPr ogDC,

definition involves the i npl enent s

element, which is used to make reference to the model implemented by a program

(r ef Model).

|
|
|
|
|
|
| 1.m
|
|
|
|
|
|

i
--= constraint -] =
Program [e

= wadIElementRef

|
|
|
| Eim|:lIn=.-ment:ativl:mLanguang:
|
|
|

~expression

Figure 51: Program XML Schema

<xsd:key name="kPrograni'>
<xsd:selector xpath="."/>
<xsd:field xpath="@idTF'/>
</xsd:key>

<xsd:keyref name="refModel” refer="spm:kModel">

<xsd:selector xpath="."/>
<xsd:field xpath="implements"/>
</xsd:keyref>

<xsd:keyref name="reflnputProgDC” refer="spm:kProgDC">

<xsd:selector xpath="input"/>
<xsd:field xpath="refersTo"/>
</xsd:keyref>

<xsd:keyref name="refOutputProgDC" refer="spm:kProgDC">

<xsd:selector xpath="output"/>
<xsd:field xpath="refersTo"/>
</xsd:keyref>

<xsd:keyref name="refProgParni refer="spm:kProgDC">

<xsd:selector xpath="parni/>
<xsd:field xpath="refersTo"/>
</xsd:keyref>
</xsd:element>

103

Figure 52: Program Key and Keyrefs definitions

5.2.1.4 Program Data Category- spm:ProgDC

The Pr ogDC element represents the Program Data Category concept. It inherits
from t Dat aCat egory abstract type some descriptive self-explanatory elements:
title, creator and creati onbDate. These elements are included in the first
group of elements in Figure 53. In a second group of elements Pr ogDC aso includes
some specific elements. The PDCAt t r i but e element may have multiple occurrences,
and each occurrence is described by itstitl e and a related uni t. A previousy
prepared list of units may be available. The wsdl El enent Ref eement, which
appears within Pr ogDC and PDCAt t ri but e elements, makes reference to a part
andt ype inaWSDL document, respectively.

Asshown in Figure 54 , Pr ogDC and PDCAt t r i but e elements have a unique
atribute that represents their key (kProgDC and kProgAttri bute). The
i npl enent s element, which also appears within ProgDC and PDCAttri bute
elements, is used to make reference to model level elements instances (VodDC and
MDCAt t ri but e), through keyr ef definitions (r ef ModDC and
ref ModAt t ri but e).

“- L any #dother |
e m e 'R'r o

Figure 53: Program Data Category XML Schema diagram

<xsd:element name ="ProgDC” type="spm:tProgDC">
<xsd:key name="kProgDC">

"oy

<xsd:field xpath="@idDC"/>

104

</xsd:key>
<xsd:keyref name="refModDC" refer="spm:kModDC">
<xsd:selector xpath="."/>
<xsd:field xpath="implements"/>
</xsd:keyref>
</xsd:element>
<xsd:element name =" ProgAttribute” type ="spm:tPDCAttribute” >
<xsd:key name="kProgAttribute”>
<xsd:field xpath="@idAttribute”/>
</xsd:key>
<xsd:keyref name="refModAttribute” refer="spm:kModAttribute”>
<xsd:selector xpath="."/>
<xsd:field xpath="implements”/>
</xsd:keyref>
</xsd:element>

Figure 54: Program Data Category Key and Keyrefs definitions

5.2.1.5 Code Resource- spm:CodeResource

The CodeResour ce element represents a code, wrapped by a Web Service,
hosted by a particular computer in a ecific address. As shown in Figure 55, it inherits
a group of descriptive self-explanatory elements from the t Resour ce abstract type:
title,creator and creati onDate. The descri bedBy eement in the same
group associates the code esource to its program interface description. Finally, the
wsdl El ement Ref is used to make reference to a port operation in a WSDL

document.

Another group of elements describes specific characteristics to a code resource:
har dwar el nf o and oper at i onal Syst em When about to decide which remote
code to execute, the hardware and operationa system are useful information to consider

as selection criteria, among others that eventually will be added.

As shown in Figure 56, thecodeResour ce element has a unique attribute that
represents its key (kCodeResource). The descri bedBy eement is used to
reference program element instances, through a keyref definition
(ref Descri bedByPr ogr am.

105

spmiCodeResource _l

describedBy

!
i

—F wsdIElementRef |

________________ -\\-f S

Er|:||.'|£=rﬂtin|::ni||5‘.-3|.r‘s;1£=m |

I
CodeResource EH— L fony #other y

Figure 55: Code Resource XML Schema diagram

<xsd:element name =" CodeResource” type="spm:tCodeResource”>
<xsd:key name="kCodeResource">
<xsd:field xpath="@idCR"/>
</xsd:key>
<xsd:keyref name="refDescribedByProgram’ refer="spm:kProgram’>
<xsd:selector xpath="."/>
<xsd:field xpath="spm:describedBy"/>
</xsd:keyref>
</xsd:element>

Figure 56: Code Resource Key and Keyrefs definitions

5.2.1.6 Data Resource- spm:DataResource

The Dat aResour ce element represents a data set, wrapped by a Web Service,
hosted by a particular computer in a specific address. As shown in Figure 57, it inherits
a group of descriptive self-explanatory elements from the t Resour ce abstract type:
title,creator and creati onDate. The descri bedBy eement in the same
group associates the data resource to its program data category description. Finally, the
wsdl El ement Ref is used to make reference to a port operation in a WSDL

document.

Another group of elements describe specific characteristics to a data resource:
provenance, genMechani smand WebRef er ence. When about to decide which
remote data set to access, the data generation mechanism (e.g. if they were produced by
a satellite, sensor, program, etc.) and data provenance (i.e. the identification of the
source that had generated it) are useful information to consider as selection criteria. The
WebRef er ence element is used as an alternative for accessing data sets which are
aready available in XML format.

106

As shown in Figure 58, thedat aResour ce element has a unique attribute that
represents its key (kDat aResour ce). The descri bedBy element is used to make
reference to ProgDC eement instances, through a keyref definition

(r ef Descri bedByPr ogr am.

|
|
|
[farmemom
I

DataResource [%]— L= aEny #other !

' |
.
| | eessesees
|

~webReference

Figure 57: Data Resource XML Schema diagram

<xsd:element name="DataResource” type="spm:tDataResource">

<xsd:key name="kDataResource’>
<xsd:selector xpath="."/>
<xsd:field xpath="@idDR"/>

</xsd:key>

<xsd:keyref name="refdescribedByProgDC" refer="spm:kProgDC" >
<xsd:selector xpath="."/>
<xsd:field xpath="spm:describedBy"/>

</xsd:keyref>

</xsd:element>

Figure 58: Data Resource Key and Keyrefs definitions

5.2.1.7 Workflow- spm:Workflow

The wor kf | ow element represents the execution plans to be used by
experiments. As shown in Figure 59, a workflow is described by a set of self-
explanatory descriptive elements (title, creator and creationDate). In
addition, a multiple occurrence of the wf St ep element determines the workflow
composition, which is based on pr ogr amelement instances. Finally, the specification
of how these steps are logicaly organized is described in the specification

element.

107

As shown in Figure 60, the wor kf | ow element has a unique attribute that
represents its key kWor kf | ow). The wf St ep element is used to make reference to

Pr ogr amelement instances, through akeyr ef definition (r ef W St ep).

Figure 59: Workflow XML Schema diagram

<xsd:element name ="Workflow " type="spm:tWorkflow ">
<xsd:key name="kWorkflow ">
<xsd:field xpath="@idWF"/>
</xsd:key>
<xsd:keyref name="refWfStep” refer="spm:kPrograni’>
<xsd:selector xpath="."/>
<xsd:field xpath="spm:wfStep”/>
</xsd:keyref>
</xsd:element>

Figure 60: Workflow Key and Keyrefs definitions

It is worth to mention that SPMW is in its first verson, and the workflow
description should evolve. For instance, we aim to address abstract workflow definitions
in terms of models (instead of just programs), by proposing extensions to the workflow
definition language.

5.2.1.8 Experiment- spm:Experiment

The experi ment element represents the use of scientific resources. As shown
in Figure 61, it is composed by elements that identify, describe the context of the
experiment and capture the history of essays. Ti t| e, creat or and cr eat i onDat e
are the identification elements. Then, a set of elements contextualize the experiment.
The pr oj ect element associates it to a research project. The experiment hypothesis
and purpose are stated in the correspondent elements. The st at us eement indicates
the experiment status, e.qg., if it is active, finished, archived, etc. The r eport element

is used to capture the scientist final report about the experiment. Finaly, the workflow

108

element has multiple occurrences. Each experiment may have one or more workflows

associated to it. These workflows are used during the experiment essays.

The many essays of an experiment capture the history of code executions. Each
essay eement is described by the moment it starts (creati onDate and
creationTi ne) and the workflow it is instantiated from (i nst anceOf). The
comment element captures scientist comments about each essay. The dur ati on
element is updated as all the executions finish. As the essay is an instance of a
workflow, it comprises a set of code executions. Each executi on eement is
described by associations to code and data resource elements instances. For each data
IO and parameter associated to the code corresponding program interface, a specific
data resource is associated. This relationshipis mapped through dat aMat ch and
par mvat ch elements, respectively.

| spmtExperiment

"~ creator

=creationDate

hypothesis

i” 11| 'U”

8 5

z =
o @ 2
: o
8 <I

" creationTime

______ E oo

|

|

|

|

| i

e

t-{ essay B L

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
i
|
i
|
|
|
|
|
|
|
|
|

: —]
L. parmMateh £ =
---------------------- e L

Figure 61: Experiment XML Schema diagram

As shown in Figure 62, the exper i nent element has a unique attribute that
represents its key (kExper i nment). The wor kf | owand the i nst anceOf elements
are used to make reference to wor kf | ow element instances, through keyr ef

definitions (refWorkflow axd reflnstanceOf, respectively). The

109

codeResour ce and the dat aResour ce dements are used to make reference to
code and data resource element instances, through keyref definitions

(r ef CodeResour ce ad ref Dat aResour ce, respectively).

<xsd:element name =" Experiment” type ="spm:tExperiment”>

<xsd:key name="KExperiment”>
<xsd:field xpath="@idEx"/>

</xsd:key>

<xsd:keyref name="refWorkflow " refer="spm:kWorkflow ">
<xsd:selector xpath="."/>
<xsd:field xpath="spm:workflow "/>

</xsd:keyref>

<xsd:keyref name="refInstanceOf” refer="spm:kWorkflow ">
<xsd:selector xpath="spm:essay”"/>
<xsd:field xpath="spm:instanceOf"/>

</xsd:keyref>

<xsd:keyref name="refCodeResource” refer="spm:kCodeResource’>
<xsd:selector xpath="spm:essay/spm:execution”/>
<xsd:field xpath="spm:codeResource’/>

</xsd:keyref>

<xsd:keyref name="refDataResource” refer="spm:kDataResource”>
<xsd:selector xpath="spm:essay/spm:execution/spm:dataMatch”/>
<xsd:field xpath="spm:dataResource"/>

</xsd:keyref>

</xsd:element>

Figure 62: Experiment Key and Keyrefs definitions

5.2.2 Extending a WSDL document

Taking advantage of the WSDL extensibility element @defi ni ti ons), the
new dement may be declared just under it. To illustrate how we extend WSDL with
SPMW elements let us take the SPMW program element. In WSDL such element is
represented as a port type operation. In SPMW, we have designed a pr ogr amelement
which is associated to aWSDL port Type oper at i on element instance through the

wsdl El enent Ref dement.

Also, the pr ogr am element makes reference to other SPMW elements, such as
data input and output types. Thus, each pr ogr am element has a set of |OData sub-
elements (nput, parmand out put). Each of these sub-elements should refer to
SPMW program data category element instances (Pr ogDC instances) through the
r ef er sTo sub-element, establishing the connection between a program and its inputs
and outputs. To associate SPMW Pr ogDC instances to WSDL types, each ProgDC
eement refers to the WSDL nessage part type attribute, through the
nmessagePart Type sub-element, while the SPMW program 10Data and parameter

ub-elements refer to the WSDL nessage part nane attribute.

110

The WSDL file is duplicated by SRMW and altered to have an extrai npor t
definition inside it. Through this definition SRMW couples metadata of scientific
resources to WSDL elements. Consequently, other applications may have access to all
metadata rel ated to some scientific resource published in SRMW as an extended WSDL
document. For instance, when queried about a specific program, SRMW would provide

an extended WSDL including contents of all related SPMW documents.

111

6. Using SRMW with Scientific Applications

Among the vast amount of scientific applications, we have had the opportunity
to study closely two noteworthy ones. a biocorrosion application and a structural
genomic application. A special team in the Research Centre - CENPES-Petrobras deals
with the investigation of biocorrosion phenomena. Some of the team specialists worked
with us on a joint research project, which allowed us to study a real biocorrosion
application. Another group of scientists, working at the Institute of Biophysics Carlos
Chagas Filho (IBCCF) deds with structural genomic applications. IBCCF scientists
take part on a research project whose main objective is to define a scientific workflow
based on bioinformatics programs to build molecular tri-dimensiona models. These
programs are based on algorithmic models that may generate different and useful
implementations. Some IBCCF researchers are working with us on a joint research
project where we aim at providing support for scientific workflows and data derivation
and provenance. The strong interaction with the scientific specialists has put us close to

real problems and requirements.

The main goa of usng SRMW with these applications is to analyse the
adequacy of SRMW components with respect to supporting the requirements of the
applications. The three gerera requirements are: (i) to handle distribution and
heterogeneity, (ii) to describe scientific resources and (iii) to manage scientific
workflows and register their use. Those two applications confirm these three
requirements. However, they have specific needs and different “weights’ on the

importance of the three requirements.

In biocorrosion teams, (i) is a basic necessity since the team is highly
heterogeneous, that is, the scientists come from different application domains, and work
with specific models in sub-teams physically distributed (not necessarily through the
Web, but through some Intranet). Usually, they exchange data analysis, but they do not
share programs or models between sub-teams. However, sharing programs and models
would increase the productivity among scientists from different sub-teams. Their main
problem relates to finding the right model for each case, and correctly executing the
correspondent program. Therefore, describing programs and grouping models (item (ii))

are a crucial requirement in biocorrosion teams. Since models are often reused, once

112

they are published in SRMW, browsing model’s descriptions and model’s usage
facilitates biocorrosion scientists. This means browsing abstract workflows and
experiments. Finally, building scientific workflows is not a strong requirement among
biocorrosion scientists. Thus, item (iii) is necessary but not vital as the other items.
However, we believe that with SRMW support, scientific workflows will naturally
become a requirement, even to biocorrosion scientists. In summary, through
biocorrosion teams we were able to analyse metamodel issues with respect to scientific

models and programs, as well as tools to navigate through published resources.

In biophysics teams, (i) is aso a basic necessity but for different reasons.
Biophysics are usualy part of homogeneous teams. However, they are usually
organized in sub-teams involved in developing or using a specific program. These sub-
teams are physically distributed and exchange their programs throughout the Web.
Typically these programs are available at Web sites for online usage, where associated
user guides help the user in filling up parameters and program inputs. In this case, item
(i) is important but not critical. Describing programs is useful, but grouping programs
according to their models is not as important as it is the case of biocorrosion teams.
Finally, item (iii) is crucia to biophysics teams. Their main difficulty relates to the
combination of a program output with another program nput, meaning they need to
execute scientific workflows, composed by heterogeneous and distributed programs.
Web services are a right solution as provides dynamic interaction between these
programs, facilitating their combination and execution as workflows. Besides,
monitoring these executions is even more important, as biophysics, as well as many
other scientists, need to keep track of data provenance. Once published in SRMW,
biophysics workflows are easily monitored and experiments are registered into its
metadata repository. In summary, through biophysics teams we were able to analyse
metamodel issues with respect scientific workflows and experiments, as well as tools to

support workflow definition, instantiation and execution.

In SRMW the scientific resources that are useful to an application should be
available at first. For example, scientific models should be available to compose
workflows, upon which an experiment is published. In this direction, this section
describes how scientists have published some of their resources and how thisis useful to

perform new experiments.

113

The next sub-sections show SRMW being used within a souring application
(section 6.1) and a structura genomic application (section 6.2), presenting their
publications through the SRMW Publication module and the SPMW metamodel
elements.

6.1 Souring Application

Corrosion monitoring on oil platforms over the Brazilian coastal zone is one of
the main concerns of scientists from CENPES-Petrobras. The production of oil in deep
water reservoirs benefits from the injection of sea water into the reservoir. The process
of water injection increases the pressure inside the reservoir, facilitating the ail
exploitation. Before being injected, the sea water is treated with chloride, filtrated and
deoxygenated.

A typica biocorrosion application is the investigation of the causes of oil pipe
obstructions. There are different hypotheses to consider. The obstruction may be caused
by micro-organism activity (souring), by sand accumulation or by corrosion products

accumulation. For each hypothesis a new experiment is initiated.

Souring is one of the main problems that may occur during an oil reservoir
lifetime. This problem is believed to be caused by sulfate-reducing bacteria (SRB),
present in the reservoir. These bacteria are strict anaerobic micro-organisms that
accumulate themselves like biofilms on oil reservoir porous walls, and reduce sulfate
that come with the water to hydrogen sulfite. The problem becomes worse when the sea
water is not treated adequately before injection. In these cases, solids characterized by
bacteria colonies besides inorganic compounds can be carried into the oil reservair.
Therefore, the quality of the water introduced in the pipes and the quality of the
reservoir internal cover are both factors that may bring souring problems to the oil

extraction process.

To illustrate the use of the SPMW metamodel we have published some of the
useful resources to a specific souring application called Cabiunas case study. The
Cabiunas case study has started based on the identification of the appearance of the
deadly hydrogen sulphide gas (H2S) in an oil-water separation storage area in the city of
Cabiunas, RJ.

114

We start by publishing the Kuznetsova model, and the corresponding data
categories (section 6.1.1), then we publish the Kuznetsova program and its data
categories (section 6.1.2). In section 6.1.3 we publish an available code resource for the
Kuznetsova program, while in section 6.1.5, we publish an available data resource for
the Cabiunas case study. In section 6.1.4 we publish the Kuznetsova workflow and
associate it to the experiment published in section 6.1.7. Findly, in 6.1.6 we show the
user browsing resources to perform a new experiment, which is illustrated in section
6.1.8.

6.1.1 Publishing Kuznetsova model

We have started by publishing a very simple mathematical model known as
Kuznetsova model (kuzneTsova, V. A, 190). TO publish the Kuznetsova model, the
publisher should first publishthe model data categories used as input and output for that
model. The input model data category for the Kuznetsova model involves information
extracted from the chemical analysis of a water sample. The Kuznetsova model needs
the concentration values of four chemical elements (also known as basic cations), which
may be described as a composite of model attributes: Calcium, Magnesium, Potassium,
and Sodium. Figure 63 shows how the scientist uses the SRMW Publication module
interface to describe the Model Data Category for the Basic Cations input. This module
is responsible for trandating the information into the XML document shown in Figure
64, which is valid according to the SPMW XML Schema.

The Kuznetsova model is based on a formula that relates the concentration
values of these four chemical elements, and generates a non-dimensional number. Based
on this result and on the Chloride concentration value, the Kuznetsova model informs if
there is the ideal cordition for sulfate-reduction bacteria growth, and if so, it returns a
graphic curve of the hydrogen sulfide gas (H»S) production tendency, observed in time.
Thus, this output may be described as an output model data category for the Kuznetsova
model, with model attributes representing the graphic axes (X, y) information. One
attribute corresponds to time (x-axis), and the other attribute corresponds to hydrogen

sulfide production (y-axis).

There are different curves to consider according to the Chloride concentration

value, while the storage time determines in which point of the curve is the bacteria

115

activity at the moment. Chloride concentration and storage time may be described as

model parameters to the Kuznetsova model, as these values guide the plotting of the

right gas production graphic.

[- [OIX]

Address @ http: filocalhost: 8081 prototipo/serviet/Publish3ciR esource?XML=ModDn | Go
tifodDC [
ModDC
spr:tilodDC
tDataCategory

spm: tDataC ategory .
| GDC) [aet |

‘ title ilElasic Cations ”

i creator ||N1auric:io ||

creationDate | 11-02-2003 l

MMD CAttribute
A FormularioC - Microsoft Internet Explorer

File Edit ‘Wiew Favorites Tools Help

B=1E3

w

| MDC Attribute
thDC Attribute
attItem
spm: t[D C Attribute
téttribute
spm:tiAttribute

(idAttribute) [at1 I

I attTitle ||Ca|cium _||

tQuantity

| . I i
| cquartity || ms:concentration V”
J|

-T.'SIEH HEEG s o =6 -

Figure 63: Model Data Category Basic Cations Publication

E

<ScientificResourceDefinitions >
<ModDC idDC="dc1">
<titte>Basic Cations</title>
<creator>Mauricio</creator>
<creationDate >2003-02-11</creationDate>
<MDCAttribute>
<attltem idAttribute="at1">
<attTitle>Calcium</attTitle >
<quantity >ms:concentration </quantity >
</attltem>
</MDCAttribute>
<MDCAttribute>
<attltem idAttribute="at2">
<attTitle>Magnesium</att Title>
<quantity >ms:concentration </quantity >
</attltem>
</MDCAttribute>
<MDCAttribute>

116

<attltem idAttribute="at3">
<attTitle>Potassium</attTitle>
<quantity >ms:concentration </quantity >
</attltem>
</MDCAttribute>
<MDCAttribute>
<attltem idAttribute ="at4">
<attTitle>Sodium</attTitle>
<quantity >ms:concentration </quantity >
</attltem>
</MDCAttribute>
</ModDC>
</ScientificResourceDefinitions >

Figure 64: Model Data Category Basic Cations XML document

After publishing the related data categories, the publisher may describe the
Kuznetsova model, and relate it to two 1/O data and one parm, which refer to input,
output and parm model data categories, already published. The Model description
involves information about its scope, area, purpose, hypothesis, etc. Figure 65 and
Figure 66 show how the publisher can describe the Kuznetsova model using the
Publication module interface.

The Kuznetsova model gplies only to environments where there might be
bacteria activity. Thus, a constraint should be defined over the Chloride parameter,
meaning it should assume positive values below 140.000 ppm, as Figure 66 shows. The

whole model description generates the XML document presented in Figure 67.

117

‘3 Formulario - Micresoft Internet Explorer

File: Edit Fav

Wig

thlodel
Model

spm: thIodel
tTransformation

spm:tIransformation

i (idTF) [tft |
|

title || Kuznetsova |

name of the creator of the transformation (not the
person who describes it)

| creator || Kuznetsova, . A, |

date of the creation {conception) of the transformation.
Tt should reflect the model age. -

| creationDate |1960-01-01 |

input .
2 FormularioC - Microsoft Internet Explorer

File Edit iew Fawvorites Tools Help

parm -
input
— | tDatalC
output mputltem
spm:tDatalO

‘ title ||Kuznetsova] | |
eModDC l L=

| refersToi Basic Cations ‘

constraint

Figure 65: Model Publication for Kuznetsova Model (part I)

118

Aomade] iz oally associated o an area of sppdicaton. Ex:
wrdusnal, economie, secual, poltacal, esanrorenental, ete

anea | bo-comrasion

The target oo scope af a model 15 the systemot represents. Ex
Itajai byrdrographic basin, a gecgraphic regica, or an enterpnse

scope waters inside dewonian oil

Thete are many diferent wrame of clasaifymg o mexdel. Ex.
mathemate, lagic, deductive, etnpinc, probabiiste, algonthomic,
aimrlaticn, etr.

clasaificatan | amvgaitc
Each rnadel has » specific parpose, far which it 15 wahbd

purpose Ao idenlify bactena sclivty

Evety raadel ie inibally a bypothesie. Buildmg a mmedel
repaesenis the expresescn oF a soienhific bypothesie that needs
te b wabdated

boypathesiz the comalation amang bas nrioC - Microsndt Intermet Explorer
Fi= Ed: Yiem Favomes Took Help
ser=nhfic pubbeabons and relab=d =uplanabocy materal B e

tlographicEef (Occurenca of subiate-rads constramt
wieh address of the madel reference marerial, i emetz s
congrltemy

webBeference spm: 80 oo fraimdt

tale | maximum Chioide |
descrpbon in nabaral languages of
the constraint

eseripion Chioride shoud rol exces

Figure 66: Model Publication for Kuznetsova Model (part II)

<ScientificResourceDefinitions>
<Model idTF="tf1">
<title>Kuznetsova</title>
<creator>Kuznetsova, V. A</creator>
<creationDate>1960-01-01</creationDate>
<input>
<inputltem>
<titte>Kuznetsova Input</title ><refersTo >dc1</refersTo >
</inputltem>
<finput>
<parm>
<parmltem>
<title>Kuznetsova configuration </title><refersTo >dc2</refersTo >
<finputltem>
</parm>
<output>
<outputltem>
<title>Kuznetsova Output</title><refersTo >dc3</refersTo >
</outputltem>
</output>
<area>bio-corrosion</area>
<scope>waters inside devonian oil reservoirs</scope >
<classification>empiric </classification>
<purpose>to identify bacteria activity in oil reservoirs</purpose>
<hypothesis>The correlation among basic cations indicates
a proper environment for bacteria activity </hypothesis>
<bibliographicRef>Ocurrence of sulfate-reducing organisms in oil-bearing
formations of Kuibyshev region with reference to salt composition of layer
waters. Mikrobiologiya, 29 pp. 408-414, 1960. </bibliographicRef>
</Model>
</ScientificResourceDefinitions>

Figure 67: Model XML document

119

6.1.2 Publishing Kuznetsova Program

Now, let us consider that a scientist has mplemented a program based on the
Kuznetsova model and wants to make it available for the team. First of all, a Web
service for that program should be built. Then, while publishing the Kuznetsova
program in SRMW, the WSDL file location is informed and extended through SPMW
elements. Figure 68 shows the WSDL file for the Kuznetsova program. Based on some
information in this file, the SRMW Publication module builds its publication interface

to capture the extended program description.

<definitions>
<types>
<xsd:schema ... >
<xsd:complexType name ="ConfigurationType”>
<xsd:sequence>
<xsd:element name ="chloride” type="xsd:float"/>
<xsd:element name ="storageTime” type="xsd:integer"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="cMaxChloride">
<xsd:restriction>
<xsd:maxExclusive value="140000"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name ="BasicCationsType” >
<xsd:sequence>
<xsd:element name =" Ca” type="xsd:float"/>
<xsd:element name ="Mg" type="xsd:float"/>
<xsd:element name ="K” type="xsd:float"/>
<xsd:element name ="Na" type="xsd:float"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name ="H2SproductionType”>
<xsd:sequence>
<xsd:element name ="time” type ="xsd:float"/>
<xsd:element name ="H2Sproduction” type ="xsd:float"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema >
</types>
<message name="codelnputmsg’>
<part name="configurationPart” type="ConfigurationType”"/>
<part name="BasicCationsPart” type="BasicCationsType"/>
</message>
<message name="codeOutputmsg’>
<part name="H2SproductionPart” type="H2SproductionType"/>
</message>
<portType name="kuznetsovaPortType">
<operation name ="kuznetsovaOperation”>
<input message ="tns:codelnputmsg’/>
<output message="tns:codeOutputmsg’/>
</operation>
</portType>

</definitions >

Figure 68: WSDL document for Kuznetsova Program (abstract part)

120

Similarly to the model publication, the scientist should first describe the related
program data categories. The program input data category for “basic cations” includes
a program attribute for each of the four elements described as model attributes. In the
case of the Kuznetsova program input data category, each program attribute describes
the model attribute described to be a concentration value, as a “float” type containing
valuesin “mg/l” unit. WSDL aready describes these attributes and their primitive types,
while SPMW is in charge of describing the unit used and associating it to its
correspondent quantity. Figure 69 shows the publication of Kuznetsova program and

how its description refers to WSDL elements, seen in Figure 68.

A program output data category should correspond to the model output data
category “H,S production graphic” . The xaxis corresponds to a program attribute that
implements the model attribute for time, and its unit may be, for instance, “day”. The y-
axis corresponds to another program attribute, which implements the model attribute
for “hydrogen sulfide gas production”, having its unit as “mg/I”.

"
tDataCat=pory “
spm (ThataCategory
fdD [aes
fitls | Blagic Catiors Type
creater Mdauncio
crearonlabe | 2005-05-20
ekdodles

wnplemnents | Basic Cabons = |
Each ProgD T corresponds o a type in a wwsdl decument.
wedEleenentE el BasicCations Ty
FDCAtribase 2 FormularioG - Microaoft Imernet Fxplorer

Fib= Edt ‘i Fawarkes Tocks Help Lirk=

spmm: bAttrrhube

OdAtnbute] | at11

aHTile | Ca

it

wet | ms:milligram_per_lidar i

:I-&.:-EDC'
mplements Caleium bt
Each FDNZ At corespands b a fpe o aowed

dipuenent
widEleenedatPef | Ca

Figure 69: Kuznetsova Program Publication

121

After publishing both program data categories, the publisher may describe the
Kuznetsova program, and associate it to two 1/0O data and one parm, which refer to the
input, output and parm program data categories, previously published. Also, a
constraint on the Chloride parameter is described based on the XML schema restriction
element defined in the WSDL document. Finally, the publisher may associate the
program to the model it implements. The XML document for the Basic Cations

Program Data Category and the Kuznetsova Program are presented in Figure 70.

<ScientificResourceDefinitions >
<ProgDC idDC="dc11">
<title>Basic Cations Type</title>
<creator>Mauricio</creator>
<creationDate >2003-03-20</creationDate>
<wsdIElementRef>BasicCationsType</wsdIElementRef>
<PDCAttribute>
<attltem idAttribute ="">
<attTitle>Ca</attTitle>
<unit>ms:milligram_per_liter</unit>
<wsdlElementRef>Ca</wsdIElementRef>
</attltem>
</PDCAttribute >
</ProgDC>
</ScientificResourceDefinitions >
<ScientificResourceDefinitions>
<Program idTF="tf2">
<title>Kuznetsova</title>
<creator>Mauricio</creator>
<creationDate >2003-03-20</creationDate>
<input>
<inputltem>
<title>Kuznetsova input</title>
<refersTo>dcl1</refersTo>
<finputltem>
</input>
<parm>
<parmltem>
<title>Kuznetsova Configuration</title >
<refersTo>dcl12</refersTo >
</parmltem>
</parm>
<output>
<outputltem>
<title>Kuznetsova output</title >
<refersTo>dc13</refersTo>
</outputltem>
</output>
<constraint>
<constltem>
<title>cMaxChloride </title>
<description>Chloride should not exceed 140.000 ppm</description>
<expression>maxExclusive value="140000"</expression>
</constltem>
</constraint>
<implementationLanguage >C++</implementationLanguage >
<version>1.0</version>
<implements>tf1</implements>
<wsdIElementRef>KuznetsovaOperation</wsdlElementRef>
</Program>
</ScientificResourceDefinitions >

Figure 70: Program and ProgDC XML document for Kuznetsova Program

122

6.1.3 Publishing Kuznetsova Code Resource

After publishing the Kuznetsova program interface it is now possible to publish
arelated code resource. This compiled code is available for execution as a Web service,
and its concrete description is presented in Figure 71. Similarly to the Program
publication, SPMW provides description elements for extending the WSDL contents.
The SRMW Publication module interface, presented in Figure 72, shows how to
associate the code resource to its correspordent WSDL Port Type Operation and SPMW

Program elements.

<definitions>

<binding name="kuznetsovaBinding” type="tns:kuznetsovaPortType">
<soap:binding style="rpc” transport="http://schemas.xmlsoap.org/soap/http”/>
<operation name ="kuznetsovaOperation”>
<soap:operation
soapAction="capeconnect:kuznetsova:kuznetsovaPortType#kuznetsovaOperation”/>
<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://www.your-company.com/kuznetsova/binding” use="encoded"/>
<finput>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://www.your-company.com/kuznetsova/binding” use="encoded”/>
</output>
</operation>
</binding>
<service name="kuznetsova’'>
<port binding="tns:kuznetsovaBinding” name ="kuznetsovaPort">
<soap:address location="http://localhost:9000/ccx/kuznetsova’/>
</port>
</service>
</definitions>

Figure 71: WSDL document for Kuznetsova Program (concrete part)

123

spm:tCodeResource
tEesource

spm:tResource

(dBesource) I

title |Kuznetsova at CENPES

if'the creator is a prograr, it should be identified by a un, a program name, or a
code execution 1d

creator [hauricio
creationDate |2003-02-28

eProgram

describedBy | Kuznetsova

Each codefdata resource cortesponds to a port operation in a wadl document.

wsdlElementRef | kuznetsovaCperation

operational System Windows 2000

hardwareInfo | Pentium (Il 900 tMHz

Figure 72: Kuznetsova Code Resource Publication

6.1.4 Publishing the Kuznetsova Workflow

To make the Kuznetsova program available to experiments, we need to declare it
as part of aworkflow. For our example, a one step workflow is sufficient. A Workflow
edition tool helps on the specification of the Kuznetsova workflow, which is then
informed to the Publication module, as shown in Figure 73. Then the Publication model

stores the workflow description as the XML document presented in Figure 74.

124

Workflow
spm: tWorlkflow

(dWE) |wil
title | kuznetsova
creator |Paulo

creattonDate | 2003-03-20
address of the worldflow spectfication using BPELAW

specification | http:fwwnw. myvifDefs. can

wistep

Figure 73: Kuznetsova Workflow Publication

eProgram

<ScientificResourceDefinitions >
<Workflow idWF="wf1">
<title >Kuznetsova</title>
<creator>Paulo</creator>
<creationDate>2003-03-21</creationDate>
<specification >http://www.myWfDefs.br/kuznetsova.bpel</specification>
</Workflow >
</ScientificResourceDefinitions >

Figure 74: Kuznetsova Workflow XML document

6.1.5 Publishing Cabiunas Data

During Cabiunas case study, a field team had manually collected some samples
of the water inside Cabiunas tanks. To have these data available as a scientific resource
in SRMW, the scientist needs to publish them as a Web service. Also, while publishing
these data, to use them as input to the Kuznetsova program requires that their type
definition be compatible to the type definition referred by the Kuznetsova program
input, i.e., the Basic Cations data category. Figure 75 shows how the Cabiunas data
resource is described, and how it is associated to its correspondent Program data

category and WSDL Port Type Operation elements.

125

spm:tEesource
(idEesource) (12
title |Cabiunas Data

if the creator 15 a program, it should be identified by a urt, a program name, or a
code execution 1d

creator |Maoricio

creatonDate | 2003-03-20
eProgDC
describedBy | Basic Cations Type v
Each codefdata resource corresponds to a port operation m a wsdl document.

widlElementE.ef CahiunasGetDataOperatiu:

identification of data provenance. Ex name of the satellite, sensor identification
prowenance | Cabiunas field peam

generation mechanism that was used to generate data. Ex: satellite, sensor, code execution
tGentdechanism

gentdechanism | manual ¥

Figure 75: Cabiunas Data Resource Publication

6.1.6 Navigating through Biocorrosion Resources

Let us suppose, we had aso published the Kuibyshev experiment, which was
reported in the Kuznetsova model paper. Figure 76 shows how the SRMW Navigation
module helps a scientist on finding the scientific resources that could help a new case
study. After browsing through the published experiments, the scientist has access to the
details of Kuibyshev experiment. The scientist realizes this experiment used the
Kuznetsova model, which applies to oil reservoirs (scope). However, when analysing
model inputs and parameters, the speciadist concludes the model could aso be useful to
oil tanks. Therefore, the specialist chooses to run the Kuznetsova program on Cabiunas

sample data.

126

A http:#/localhosi: 8081 /prototipo/index. html - Microsoft Internet Explorer,

© File Edit View Favorites Tools Help

| Adress | €] hitpifccahost 8081 jprototipofindex.

gg@'&ﬁm Publication - Publish a new Scientific Resource
Sl N N
Tlaragatant Mavigation - Browse Scientific Resources Descriptions

Execution - 2erform Laboratory Essays

Navigation » Cabiunas
s Kuibyshey 5 =

e Data) Experiment - Microsoft Internet Explorer E][E]Fz]
« Codes - Fle Edt ¥iew Favorites Tools Help ,','
« Program

Data title Euibysher

Categories
s Programs creator Kuznetsova
& Mode] creationDate 1967-01-01

Data .

Categories project fone
¥ Madels purpose prove Kuznetsova model
o Workflows : : ; , ,
e Experimarts hypothesis basic cations relation determine SEE presence

Expermerts
e Essays report none

status archived

Figure 76: Navigating through Experiments

It is worth to notice the importance of having a metamodel that represents
explicitly models and programs. The analysis of models used in previous experiments

allowed the scientist to choose the Kuznetsova program.

6.1.7 Publishing the Cabiunas Experiment

To start a new experiment in SRMW the scientist first publishes it. Figure 77
shows how to describe the Cabiunas experiment, and how to associate it to the
workflows it is supposed to be using during essays. Both Workflow and Experiment
XML documents are presented in Figure 78. Note that the experiment document does

not show any essays, meaning it has not started yet.

127

Experiment
spm:tExperiment

(idEx) [ex1
title | Cabiunas
creator |Faulo
creationDate | 2003-03-21
project (?allf!.il_!_r?als
purpose |investigate bacteria activit.j-

hypothesis | Cabiunas pipes are develo|

report |
tStats
status .nntStarted b
e W orldflow
[Kuznetsova
wothflow

Figure 77: Cabiunas Experiment Publication

<ScientificResourceDefinitions>
<Experiment idEx ="ex1">
<title>Cabiunas<ftitle >
<creator>Paulo</creator>
<creationDate>2003-03-21</creationDate>
<project>Cabiunas</project>
<purpose>Investigate bacteria activity on oilwater storage separation
tanks </purpose>
<hypothesis>Cabiunas pipes are developing bacteria activity </hypothesis>
<report></report>
<status>notStarted</status>
<workflow >wfl<tvorkflow >
</Experiment>
</ScientificResourceDefinitions>

Figure 78: Cabiunas Experiment XML document

6.1.8 Executing the Cabiunas Experiment

After publishing an experiment, the specialist may then start it, by providing all
program input data and parameter values. Considering that parameter values, in
Cabiunas case study, were not previously published as a data resource, SRMW helps the
user on filling it up on the fly, as shown in Figure 79. The constraint defined on the

128

Chloride parameter allows a dynamic validation, guiding the user on filling up valid

values.

In addition, the Experimentation module helps the user on choosing the adequate
input data, considering only those data resources that are described by the same
Kuznetsova program input data category. In this case, the Cabiunas sample data will be

an option. Finally, the scientist is now able to “execute” the experiment.

Once the experiment results confirm the presence of the sulfate-reduction
bacteria, the specidist decides to finish the Cabiunas experiment. During the
experiment, the Experimentation module automatically updates the Cabiunas
experiment document, registering all the related essays. Then, the user may choose to
finish the experiment, and completes the diagnosis report on Cabiunas experiment. The
Cabiunas experiment will now be available for other scientists, who will find it through

the Navigation module.

ConfigurationType
chloride | 130000

storageTime 4

H Microsoft Internet Explorer, g]
l'*j Yalid!!!
L

Figure 79: Kuznetsova parameter input

129

6.2 Structural Genomic Application

In the last decades, biochemical laboratories started to perform in silico
scientific experiments, along with the traditional in vitro. Structural genomic
applications are typically used to perform in silico experiments. As introduced in
section 2.2, an IBCCF application called MHOLIine (ROSSLE, S, RIBEIRO, S, et al., 2002), USES
the comparative modelling approach for the prediction of protein three-dimensional
structures. Nowadays, IBCCF coordinates the Rio de Janeiro Bioinformatics Laboratory
and thus receives many requests of structural prediction, which use to be handled one at
a time by selected bioinformatics specialists. The MHOLIine idea is to enable large-
scale modelling by assembling programs on an automated workflow. This would allow
biologists to reach structural prediction without depending upon bioinformatics

specidists.

MHOLIine combines a specific set of programs for the comparative modelling
approach (presented in Figure 4). For template structure identification it uses the
BLAST agorithm searches (NcBl, 2002). A refinemert in the template search step was
implemented by a program called BATS (Blast Automatic Targeting for Structures)
(ROSSLE, s, RIBEIRO, S, et al., 2002), Where template target sequences are selected from the
BLAST output file depending on the given scores for expectation values, identity and
sequence coverage. Automated alignment and model building is carried out by a third
program, MODELLER (saLl, A, 2001), and models are evaluated using PROCHECK

(LASKOWSKI, R. A, MACARTHUR, M. W., MOSS, D. S, THORNTON, J. M., 1993) program SCOres.

To illustrate the use of the SPMW metamodel we have published useful
resources to build and execute the MHOLIline workflow. In the next subsections we

describe the publication of some of these resources.

We start by publishing the BLAST agorithm, and the corresponding data
categories (section 6.2.1), then we publish the BLASTP program and its data categories
(section 6.2.2). In section 6.2.3 we publish an available code resource for the BLASTP
program, while in section 6.2.5, we publish an available data resource for the Genoma
experiment. In section 6.2.4 we publish the MHOL line workflow and associate it to the
experiment published in section 6.2.6. Finaly, in 6.2.7 we show the user browsing

resources to perform a new experiment, which isillustrated in section 6.2.8.

130

6.2.1 Publishing BLAST algorithm

We begin by publishing the BLAST algorithm, as an algorithmic model. The
BLAST algorithm @LTSCHUL, SF., GISH, W., MILLER, W., MYERS, EW., LIPMAN, D.J, 1990) IS &
dynamic programming algorithm for pairwise sequence alignment. It is simple and
robust and it can be implemented in a number of ways and applied to a variety of

contexts including DNA and protein sequence database searches.

The idea behind algorithms of sequence alignment is to count on the empirical
knowledge in molecular biology, i.e., when two molecules share similar sequences, they
are also likely to share similar 3D structures and biological functiors. Therefore, the
similarity search usually counts on a database of sequences, against which it compares a

target sequence (KANEHISA, M., 2000).

There is only one input for the BLAST model: a target sequence. Then, this
input may be described as an input model data category composed of just one model
attribute sequence itself. In this case, there is no quantity involved but an object that
must be represented when implemented. However, at the model level, representation
details are not yet required. Instead, the essential is to establish the nature of the objects
that are to be transformed or manipulated by the model. Considering BLAST algorithm
was created to deal with molecular sequences, then, we have named a model data
category “target sequences’ which is composed of just one attribute called target
sequence. As this attribute is not a quantifiable attribute, there is no quantity associated
to it, and its classification is described as a “molecular sequence”. Figure 80 shows how
the scientist uses the SRMW Publication module interface to describe the Model Data
Category for the target sequences input. This module is responsible for trandating the
information into the XML document shown in Figure 81, which is valid according to
the SPMW XML Schema.

BLAST results correspond to a set of reference sequences, their alignments and
scores. This output may be described as an output model data category for the BLAST
model, with model attributes describing the reference sequence itself, and its
corresponding alignment and score. These attributes are not associated to a quantity but
al three are described according to their classification: the reference sequence is

classified as a “molecule sequence’; the alignment of this reference sequence with the

131

target sequence is classified as a “weight sequence”; and the score of this alignment is
classified as a“similarity index”.

The BLAST algorithm is based on a systematic search of conserved words
(kANEHISA, M., 2000). A word W is a sequence of letters of a limited size (e.g., 3 for amino
acids and 11 for nucleotides). The user should determine the word size to guide the
BLAST algorithm on the decomposition of the query sequence in words of that size.
The resulting list of words is added with similar words, which are collected from &l
other combinations of word according to a given threshold T of similarity with the
original word. Both W and T may be considered as parameters for the BLAST model,

and therefore, we can publish them as part of a configuration model data category.

thlodDC
IModDC

spm:tilodDC
tDataCategory
spm:tDataCategory

| (dDC) | de31 |

title |target Sequences |

creator ;{_Shaila |

creationDate | 2003-01-01 |

MDCAttribute & RE G

£ MD{CAttribute

D C Attribute
attItem

spm: tMD C Attribute
thttribute

spm:tAttribute
(dAttribute) |att311

| atfTitle -itarget sequence

tOmantity
quantiy | - no quantity —

|classification |molecular sequence

Figure 80: BLAST Algorithm Input Model Data Category Publication

<ScientificResourceDefinitions >
<ModDC idDC="dc31">
<title>Target Sequences</title>
<creator>Shaila</creator>
<creationDate>2003-01-01</creationDate>
<MDCAttribute>

132

<attltem idAttribute ="att311" >
<attTitle>Target Sequence</attTitle>
<quantity>no quantity </quantity >
<classification>molecular sequence</classification>
</attltem>
</MDCAttribute>
</ModDC>
<ModDC idDC="dc32">
<title>Configuration</title>
<creator>Shaila</creator>
<creationDate>2003-01-01</creationDate>
<MDCAttribute>
<attltem idAttribute ="att321" >
<attTitle>Word</attTitle >
<quantity >length</quantity >
<classification>molecular sequence window </classification>
</attltem>
</MDCAttribute>
<MDCAttribute>
<attltem idAttribute ="att322" >
<attTitle>Threshold</attTitle>
<quantity>no quantity </quantity >
<classification>similarity index</classification>
</attltem>
</MDCAttribute>
</ModDC>
<ModDC idDC="dc33">
<title>Reference Sequences </title>
<creator>Shaila</creator>
<creationDate>2003-01-01</creationDate>
<MDCAttribute>
<attltem idAttribute ="att331" >
<attTitle>Reference Sequence</attTitle>
<quantity >no quantity </quantity >
<classification>molecular sequence</classification>
</attltem>
</MDCAttribute>
<MDCAttribute>
<attltem idAttribute ="att332" >
<attTitle>Alignment</attTitle >
<quantity>no quantity </quantity >
<classification>weight sequence</classification>
</attltem>
</MDCAttribute>
<MDCAttribute>
<attltem idAttribute ="att333" >
<attTitle>Score </attTitle>
<quantity >no quantity </quantity >
<classification>similarity index</classification>
</attltem>
</MDCAttribute>
</ModDC>
</ScientificResourceDefinitions>

Figure 81: Model Data Categories XML document for BLAST Algorithm

After publishing all needed data categories, the publisher may describe the
BLAST model, and relate it to two /O data and one parameter, which refer to the
input, output and configuration model data categories, respectively, aready published.
Model description involves information about its scope, area, purpose, etc. Figure 82
shows how the scientist uses the SRMW Publication module interface to describe the

BLAST Modd, and the corresponding XML document is shown in Figure 83.

133

D Formubarks - diceosoll bitersel Exploiee

svames [odic b . -

A mede] 5 vswally associabed to an area of applivaton. Ex - mdusial,
eoonomie, social, polineal, envropmental, oo

arza | Malacular Biology

The target ar scope of & mode] 18 the gystern it represents. By Ttajad
brdrographac basn, a geographic region, or an enterpriss.

scope binlogic sequances

There are many different ways of classifying 8 modsl Ex mathemahc,
lagic, deductve, enpdric, probabilistic, algeritanic, smoulation, ete.

clazsification | algonthrmic

E_B.ch m{-éﬁ haE & specdic parpess, fer which it @ rahd

pwpese find raferance sequencas

Every madel iz inhaly a hypothesis. Building a8 model repaeaents the

expression of a seientific hypothesis that neecs b Be validatec 8 — =1l
bogpothetia | local alignments provide b | Fla Edt Wew Favodbes Took Tl
soesntfic pubboanons and related emplanatory materal i)
Biblis grayhicRef Mol Binl, (1950) 215, 40 1;::;0
web address of the model refevence matenal, £ ests gt lterm
webBeference hHp: dhwaev. idealibrary . coir m:mi.“lﬂ
title | query sequences|
eldodDn
cefecsls |[HHamgel sequances
W
LAl x>

Figure 82: BLAST Algorithm Publication

<ScientificResourceDefinitions >
<Model idTF="tf3">
<title>BLAST Algorithm</title >
<creator>Altschul, S. F. et al.</creator>
<creationDate>1990-01-01</creationDate>
<input>
<inputltem>
<title>BLAST Input</title><refersTo >dc31</refersTo >
<finputltem>
<finput>
<parm>
<parmltem>

<title>BLAST configuration </titte><refersTo>dc32</refersTo >

<finputltem>
</parm>
<output>
<outputltem>
<title>BLAST Output</title><refersTo>dc33</refersTo >
</outputltem>
</output>
<area>Molecular Biology</area>
<scope>Biologic Sequences </scope>
<classification>algorithmic </classification>
<purpose>to find reference sequences similar to a target
sequence</purpose>
<hypothesis>local alignments provide better similarity results
</hypothesis >

<bibliographicRef>Altschul, S. F. et al. “Basic Local Alignment Search

Tool” J.Mol.Biol. (1990) 215, 403-410</bibliographicRef>
<webReference>http://www.idealibrary.com</ webReference>
</Model>
</ScientificResourceDefinitions>

Figure 83: Model XML document for BLAST Algorithm

134

6.2.2 Publishing BLASTP program

BLASTP is an implementation of the BLAST algorithm, specifically created to
deal with protein molecular sequences. One of its implementations is available at NCBI
(Ncel, 2002). Now, let us consider that the project team needs to publish the BLASTP
program within the SRMW architecture. First of dl, a Web service for that program
should be built. Then, while publishing the BLASTP program in SRMW, the WSDL
file location is informed and extended through SPMW elements. Figure 84 shows the
WSDL file for the BLAST program. Based on some information in this file, the SRMW
Publication module builds its publication interface to capture the extended program

description.

<definitions>
<types>
<xsd:schema>
<xsd:complexType name ="QuerySequenceArrayType" >
<xsd:complexContent>
<xsd:restriction base="soapenc:Array">
<xsd:attribute arrayType="xsd:QuerySequenceType[]"
ref="soapenc:arrayType"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="QuerySequenceType">
<xsd:sequence>
<xsd:element name ="querySequenceld" type="xsd:string"/>
<xsd:element name ="querySequence" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name ="ConfigurationType”>
<xsd:sequence>
<xsd:element name ="wordsize” type="xsd:integer”’/>
<xsd:element name ="threshold” type="xsd:float"/>
<xsd:element name ="db" type="xsd:string"/>
<xsd:element name ="expect' type ="xsd:float"/>
<xsd:element name ="matrix" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name ="HitArrayType">
<xsd:complexContent>
<xsd:restriction base="soapenc:Array">
<xsd:attribute arrayType="xsd:HitType[]"
ref="soapenc:arrayType"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="HitType">
<xsd:sequence>
<xsd:element name ="hitSequenceld" type="xsd:string"/>
<xsd:element name ="querySequence" type="xsd:string"/>
<xsd:element name ="hitSequence" type="xsd:string"/>
<xsd:element name ="score" type ="xsd:integer"/>
<xsd:element name ="e-value" type="xsd:float"/>
<xsd:element name ="identities" type ="xsd:float"/>
<xsd:element name ="positives" type="xsd:float'/>
<xsd:element name ="gaps" type ="xsd:float"/>
<xsd:element name ="alignSequence" type="xsd:string"/>
<xsd:element name ="alignSize" type="xsd:integer"/>
<xsd:element name ="querySeqOffset" type="xsd:integer"/>
<xsd:element name ="hitSeqOffset" type="xsd:integer"/>

135

</xsd:sequence>
</xsd:complexType>
</xsd:schema>
</types>
<message name="codelnputmsg">
<part name="configurationPart" type="ConfigurationType"/>
<part name="dataPart" type="QuerySequenceArrayType"/>
</message>
<message name="codeOutputmsg">
<part name="datatPart" type="HitArrayType"/>
</message>
<portType name="blastpPortType">
<operation name ="blastpOperation">
<input message ="tns:codelnputmsd'/>
<output message="tns:codeOutputmsg"/>
</operation>
</portType>

</definitions >

Figure 84: WSDL document for BLASTP Program (abstract part)

Similarly to the model publication, the scientist should first describe the related
BLASTP program input/output data categories that correspond to the BLAST model
data categories, as shown in Figure 85. The BLAST model input data category target
sequences corresponds to the BLASTP program input data category protein target
sequences, which is composed of two program attributes. The protein target sequence
program attribute, which corresponds to the target sequence model attribute, describes
the target sequence as a string type written in the “FASTA aphabet” format. The other
program attribute is added to carry the identity of the target sequence (orotein target
sequence id). It is described as a string type written in the PDB database identification
format. The WSDL document, shown in Figure 84, already describes these attributes in
terms of their primitive types, while the SPMW document, in Figure 87, is in charge of
describing attribute formats and units, and also its association to the correspondent
model attribute and WSDL description element. For instance, the program attribute
protein target sequence is associated to the model attribute target sequence, and the
WSDL element querySequence.

The BLASTP program output data category protein reference sequences,
corresponds to the BLAST model output data category reference sequences which is
composed by three program attributes. The hit sequence program attribute corresponds
to the reference sequence model attribute, and describes the reference sequence as a
string type written in the “FASTA aphabet” format. The align sequence program
attribute corresponds to the weight sequence model attribute, and describes the weight
sequence as a string type written in a “similarity alphabet” format. The score program

attribute corresponds to the score model attribute, and describes the score as an integer

136

type expressed in “bits’ unit. The BLASTP program output data category adds some
other extra attributes, which give some useful information. For instance, the expect
value (e-value) describes the number of hits one can “expect” to see just by chance
when searching a database of a particular size. Other attributes, such as identities,
positives and gaps, inform the percentage of character identity, similarity and gaps,

respectively, between the query and hit sequences.

Also, the publisher should describe BLASTP parameters. A configuration
program data category is also published, to correspond to the configuration model data
category. Besides the attributes that correspond to the attributes at the model level,
BLASTP configuration data category includes some extra attributes, such as the
reference database. Therefore, with this implementation of the BLAST algorithm it
becomes possible to choose the database against which to compare target sequences.

?@W&b G R e Ee EE \E ’
4 . : -
= y
tProghC ~
ProgDC = . -
spm:tProgD(A FormularioC - Microsoft Internet Explorer Q@g|
tDataCategory File Edit View Favorites Toals Help Links | i
spm:tDataCategory -
[@dDC) == PDCAttFlhute
. : tPDC Attribute
title |protein target sequences | attItem
e : spm:tPDC Attribute
creator | Shaila tAttribute
creationDate | 20030101 _f pentterbote

(1dAttribute) | att321
eldodDC

; F i attTitle | proteir| target seguence
implements | target sequences ¥ | 2 s = =

Each ProgDC corresponds to atype in a tUnit
wadl document. T ——- |
wsdlElementRef | QuaryS ArrayType :
e =t R EnL Bo ey R format |FASTA v]
FDC Attribute
ePDiC Attr
implements ;_iarget sequence V

Each PDIC Aty corresponds to a type
i a wedl docutmett.

wadlElementEef qu erySequence

Figure 85: BLASTP Program Input Data Category Publication

After publishing program data categories, the publisher may describe the
BLASTP program, and relate it to its 1/O data and parameters, which relate to the

137

program data categories previousy published, as shown in Figure 86. Finaly, the
publisher may relate BLASTP program to the model it implements, the BLAST model.

title | Blast-P
name of the creator of the transformation (not the person whoe describes it)
creator NCEH

date of the creation (conception) of the transformation. It should reflect the model

age.
<N FormularioC - Microsoft Internet Explorer E“EJEJ
. File Edit “iew Faworites Tools Help Links .';'
mput
P
input
p tD_ataIO
inputltem
spr:tDatal
output title ﬁarutein query seguences| |
eProgDC
constraint refersTo :_prutein target sequences ¥ | 1
W
< b

Programming language with which the program was implemented. It right be important to
specify the version of the language.

inplementationlanguage C
version'release of the program.
wersion 224

ehodel
implements BIastAIgnrlthm V
Each Program corresponds to a port type operation m a wsdl document.

wadlElementFef j_-hlastpOperation

Figure 86: BLASTP Program Publication

<ScientificResourceDefinitions>
<ProgDC idDC="dc32">
<title >protein target sequences </title >
<creator>Shaila</creator>
<creationDate>2003-01-01</creationDate>
<wsdlElementRef>QuerySequenceArrayType </wsdlElementRef>
<PDCAttribute>
<attltem idAttribute ="att321" >
<attTitle>protein target sequence id </attTitle >
<unit>no unit</unit>
<format>PDB identification</format>
<wsdIElementRef>querySequenceld </wsdIElementRef>
</attltem>
</PDCAttribute>
<PDCAttribute>
<attltem idAttribute ="att322" >
<attTitle>protein target sequence</attTitle >
<unit>no unit</unit>
<format>FASTA alphabet</format>
<wsdIElementRef>querySequence</wsdlElementRef>
</attltem>
</PDCAttribute >

138

</ProgDC>
</ScientificResourceDefinitions>
<ScientificResourceDefinitions>
<Program idTF="tf4">
<title>Blast- P</title>
<creator>NCBI</creator>
<creationDate>2002-01-01</creationDate>
<input>
<inputltem>
<title >protein query sequencestitle>
<refersTo>dc32</refersTo >
</inputltem>
</input>
<parm>
<parmltem>
<title>Blast-P Configuration</title>
<refersTo>dc33</refersTo >
</parmltem>
</parm>
<output>
<outputltem>
<title>hit sequences</title>
<refersTo>dc34</refersTo>
</outputltem>
</output>
<implementationLanguage >C</implementationLanguage >
<version>2.2.4</version>
<implements>tf3</implements >
<wsdlElementRef>BlastpOperation</wsdlElementRef>
</Program>
</ScientificResourceDefinitions >

Figure 87: Program and ProgDC XML document for BLASTP program

6.2.3 Publishing MHOL-BLASTP code resource

After publishing the BLASTP program interface it is now possible to publish a
related code resource. This compiled code is available for execution as a Web service,
and its concrete description is presented in Figure 88. Similarly to the Program
publication, SPMW provides description elements for extending the WSDL contents.
The SRMW Publication module interface, presented in Figure 89, shows how to
associate the code resource to its correspondent WSDL Port Type Operation and SPMW

Program elements.

<definitions>

<binding name="blastpBinding" type="tns:blastpPortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name ="blastpOperation">
<soap:operation soapAction="capeconnect::blastpPortType#NewOperation"/>
<input>
<soap:body encodingStyle ="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.your-company.com/blastp/binding"
use="encoded"/>
<finput>
<output>
<soap:body encodingStyle ="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.your-company.com/blastp/binding"
use="encoded"/>
</output>
</operation>
</binding>

139

<service name="blastp">
<port binding="tns:blastpBinding" name ="blastpPort">
<soap:address location="http://localhost:8000/ccx/blastp"/>
</port>
</service>
</definitions>

Figure 88: WSDL document for BLASTP Program (concrete part)

tCodeResource
CodeResource

spm:tCodeResource
tResource

spm:tHesource

(1dResource) [rd

title 'Mhul-.hlastpl

if'the creator iz a program, it should be identified by a uri, a program name, or a
code execution id

creator |Rafael
creationDate | 2003-01-01

eProgram

describedBy | Blast-P w

Each codeldata resource corresponds to a port operation in a wsdl document.

widlElementRef |blastpOperation

operationalSystem |Windows XP

hardwareInfo Penti!;lm 12

Figure 89: MHOL-blastp Code Resource Publication

6.2.4 Publishing MHOLIine Workflow

As we dready explained, BLASTP and other programs are part of a specific
Workflow called MHOLLine. To make the MHOLIine workflow available for
experiments, we need to publish it. A Workflow edition tool helps on the specification
of the MHOLIline workflow, which is then informed to the Publication module, as
shown in Figure 90. Then the Publication model stores the workflow description as the

XML document presented in Figure 91.

140

tWorkflow
r Workdflow

~spm:tWorkflow

(i dWE) |fwi2

title |MHOLline

| creator ||Shai|a

creationDate [2003-01-01

address of the workflow specification using BEELAWS.

| specification ||http:;’fwww. biof ufrj. brAwdsd

eProgram

wiStep Crunch
Modeller B

Figure 90: MHOLIline Workflow Publication

<ScientificResourceDefinitions>
<Workflow idWF="wf2">
<titte>MHOLIline </title>
<creator>Shaila</creator>
<creationDate>2003-01-01</creationDate>
<specification >http://www.myWfDefs.br/mholline.bpel</specification >
</Workflow >
</ScientificResourceDefinitions >

Figure 91: MHOLIline Workflow XML document

6.2.5 Publishing Genoma data resources

In fact, MHOLIline workflow is till under evaluation. Therefore, to prove its
efficiency, a set of Genoma sequences is used to test it. To have these data available as a
scientific resource in SRMW, the scientist needs to publish them as a Web service.
Also, while publishing these data, to use them as input to the MHOLIine workflow
requires that their type definition be compatible to the type definition referred by the
BLASTP program input, i.e., the protein target sequences data category. Figure 92
shows how the Cabiunas data resource is described, and how it is associated to its

correspondent program data category and WSDL Port Type Operation elements.

141

tDataResource
DataResource

spm:tDataResource
tResource

spm:tResource
(idBescurce) (5
title | Genoma sequences

if'the creator iz a program, it should be identified by a uri, a program name, of a code
execution 1d

creator | Shaila

creationDate | 2003-01-01
eProghC

describedBy | protein target sequences v

Each codefdata resource corresponds to a port operation in a wsdl document.

wadlElementEef

identification of data provenance. Ex: name of the satellite, sensor identification
provenance | Genoma project

generation tnechandsn that was used to generate data. Ex.: satellite, senzor, code execution
tGentvechanism

genllechanism | sensor v
Ifthere 15 a web address that directly points to the Data Resource, as an XML page

webReference http:ﬂwww.hinf.ufrj.bn"genc.

Figure 92: Genoma Data Resource Publication

6.2.6 Publishing the Genoma Experiment

To start a new experiment in SRMW the scientist first publishes it. Figure 93
shows how to describe the Genoma experiment, and how to associate it to the
workflows it is supposed to be using during essays. The Experiment XML document is
presented in Figure 94. Note that the experiment document does not show any essays,

meaning it has not started yet.

142

tExperiment
~Experiment-
spm:tExperiment

(1dEx) |ex2

ftle |Gzr1|:ums 1

creator |Shai|a

project |TESE Shaila

purpose |check Genoma models

hypothesis [MHOLIine is able to provid

|
|
|
‘ creationDate [2003-01-01
|
|
|
|

report |

status |notStarted - 1

Kuznetsova
workflow

Figure 93: Publishing Experiments using the MHOLIline workflow

<ScientificResourceDefinitions>

<Experiment idEx ="ex2">
<titte>Genoma 1</title>
<creator>Shaila</creator>
<creationDate>2003-01-01</creationDate>
<project>Tese Shaila</project>
<purpose>check Genoma models</purpose>
<hypothesis>MHOLIine is able to provide good quality 3D models</hypothesis>
<report></report>
<status>notStarted</status>
<workflow >wf2<mvorkflow >

</Experiment>

</ScientificResourceDefinitions >

Figure 94: Genoma Experiment XML document

6.2.7 Navigating through Structural Genomic Resources

Frequently, a structural genomic project team receives requests to generate 3D
models for a set of molecule sequences. Let us consider a structural genomic workflow
could have been defined in terms of scientific models (a model-based workflow),
having MHOLIine workflow as a programbased workflow that implements it.
Considering MHOLIine workflow may not be adequate to a specific request, a new
workflow should be built. Suppose, for instance, BATS program, which is a step of
MHOLIline workflow, is not suitable for this specific request. Having access to the

model-based workflow description, the scientist would be able to browse the programs

143

that implement each step (model) of this workflow. Selecting the BLAST filter step at
the model-based workflow description, the scientist realizes an alternative to BATS
would be to use MSPCrunch program. Then, through browsing the available programs
(Figure 95), and their corresponding data categories, the scientist can build an adequate

program-based workflow for the new experiment.

23 http:#flocalhost: 2081 /prototipofindex. html - Microsoft Internet Explorer

. Fle Edit “iew Favorites Tools Help

. Address @3 http:) flocalhost: G081 pratotipojindes:. bl

g;j@gﬁﬁc Publication - Publish 3 new Scientific Resource
nre

Tamagetient Mavigation - Browse Scientific Resources Descriptions
Execution - Perform Laboratory Essays

Eurnetsova
Blast-P
Modeller
Procheclk
BATS

MEF Crunch

Navigation

L]
)
)
0
o
un
* & & & 8 @

Categories
s Programs
e« Model
Data

Categories
Models

Workflows
Experiments
Essays

Figure 95: Navigating through Programs

6.2.8 Executing the Genoma Experiment

After publishing an experiment, the specialist may then start it, by providing all
program input data and parameter values. Considering BLASTP has parameter values to
be set, and which were not previously published as a data resource, SRMW helps the
user on setting them up on the fly, as shown in Figure 96.

144

A Formularjo - Microsoft Internet Explorer E@@
File Edit “iew Favorites Tools Help f‘

Address :@'I http:/flocalhost: 8081/ prototipofform. jsprcampo=24ML=confighblast- % 9 Ga
A

ConfigurationType
| db [pob]
filter Lowr -C.umpll-exil:y v
expect 1]
wordsize |3

gapCosts :lE).(.iS.tEnCEI -9“I.E.:-.:.tensi”0n:é v

&]) \-3 T

Figure 96: BLASTP program parameter input Interface

In addition, the Experimentation module helps the user on choosing the adequate
input data, considering only those data resources that are described by the same
BLASTP program input data category. In this case, the Genoma data will be an option.

Finally, the scientist is now able to “execute”’ the experiment.

Once the experiment results confirm the experiment hypothesis, i.e., that
MHOLIline provides good quality 3D models;, the specidist decides to finish the
Genoma experiment. During the experiment, the Experimentation module automatically
updates the Genoma experiment document, registering al the related essays. Then, the
user may choose to finish the experiment, and completes the diagnosis report for that
experiment. The Genoma experiment will now be available for other scientists, who will

find it through the Navigation module.

6.3 Final Considerations

In SRMW, users have to include a large amount of scientific information before
starting to benefit from them. Despite this, after a while, the scientific activity is
facilitated, and users have just to fill-up parameters and provide data resources. As a
consequence, scientific resources get documented, integrated, inter-related and

consistent.

145

Those two applications have helped us to confirm some modelling concepts such
as models and programs, and more importantly, helped us to extend the semantic levels

of resources including essays and experiments.

The main benefit of this approach is on the organization of scientific resources
to enable their management. Those two applications have evidenced SRMW facilities

such as:

?? Code resources can be browsed according to the associated model or
program.

?? Users can see clearly parameter and input distinction, becoming

conscious of how to “tune”’ the program in use.

?? Model and program distinction reflects the different levels of abstraction,

allowing for amore selective browsing.

?? Identification of constraints at the model level, allowing users to discard

inadequate models when searching for one.

?? The explicit representation of constraints at the program level enables the
verification of data or parameter input before actualy accessing and

executing the code.

?? ldentification of scientific experiments, and their organisation as a set of
essays.
?? Browsing documented model usage.

?? Explicit representation of program 10 so it becomes easier to combine

programs in a scientific workflow.

146

7. Conclusion

In this thesis we have focused on scientific resource management. We have
deeply analysed several scientific applications trying to understand their current
problems with respect to database technology issues.

We have first tried to organise scientific data through high level metadata, which
has been the focus of database community for the last decades. However, our first
understanding of the problem reveded that in the scientific area, data is not the only
resource to be represented and managed through DBMS technologies. In fact, it does
not work if handled separately, in the same way as business systems are being
developed today. As a matter of fact, the 1998 Asilomar report (BERNSTEIN, P. etal., 1998) has
defined the management of programs and data as one of the challenges that the database
research community had to face for the ten years to follow that report. As a result from
the detailed analysis of applications described in Chapter 2, we defined not only

programs and data, but aso, models, workflows and experiments.

To help on the definition of the main problems related to scientific resources
management we specified three main requirements common to most scientific
applications, i.e., () how to handle their heterogeneity and distribution, (ii) how to
describe them, (iii) how to combine them and register their use. To facilitate the
resource exchange among scientists, a support environment should organize, manage

and monitor these resources, providing interoperability, reusability and flexibility.

To address those requirements we designed SRM architecture, defined SPM
metamodel and implemented a prototype taking advantage of the recent Web services
technology. SRM ams to address the maragement problems currently faced by the
scientific community. The main goal of SRM is to provide metadata support for
managing distributed scientific resources. Its main component is the Scientific
Publishing Metamodel (SPM) specialy designed to describe scientific resources.
Considering Web services as a platform independent infra-structure, which provides
tools that facilitate the operation of an in silico laboratory, we have implemented a
prototype of the SRM architecture based on Web services (SRMW). M we have
implemented as a XML Schema (SPMW) to be instantiated as an extension of WSDL

147

documents. Finaly, we have shown the adequacy of SPMW in the context of two

different scientific research teams.

7.1 Contributions

The development of SRM, SPM, SRMW prototype and its experimentation has
led to severa contributions. The first and main contribution of this thesis is the SPM
metamodel. SPM innovates by providing several different semantic levels of scientific
resources representation, while integrated to a scientific resources management system.
Similarly to our work, metamodel based architectures have also been proposed to
address the scientific community oSTER, 1., VOECKLER, J., WILDE, M., ZHAO, Y., 2003), (ESP2NET
PROXECT), (ESSw PROECT), (BENZ, J; HOCH, R; GABELE, T., 1997). HOowever, their metamodels lack
important scientific description support, particularly with respect to model and program
distinction. Other interesting metadata support approaches try to establish domain
standards through the proposal of domain ontologies, specifically in the genetic area
(WROE, C. e al., 2003) (CRITCHLOW, T.; MUSICK, R; SLEZAK, T., 2001). HOwever, we believe that a
generic scientific approach such as ours is more suitable when one cannot count on
available domain ontologies for each scientific area. In addition, we believe that explicit
representation of metadata as occurs in metamodel approach improves comprehension.
A recent work (sPyns, P, MEERSMAN, R, JARRAR, M. 2002) identifies advantages in both

metamodel and ontology approaches and proposes to combine them.

The second contribution of this work is the set of SPM concepts specially
designed to represent scientific resources, enabling their management. First of all SPM
includes an explicit semantic representation of scientific models, providing their
representation at both theoretic and operationa levels. Codes, programs and models are
represented by different concepts, each one at a different level of abstraction.
Analogously, the same occurs to data category concepts. Data input and parameters are
also separated concepts, as each one plays a different role at the program or model they
are associated to. Finally, SPM includes concepts to represent scientific workflows,
essays and experiments, allowing for the registry of the use of scientific resources. All
these concepts were analysed in the light of two real applications, with the collaboration
of scientists from the Petrobras Research Centre (CENPES), and from the UFRJ
Biophysics Institute (IBCCF).

148

A third contribution of this work is the SRM architecture, which alows
scientific users to browse, publish and execute scientific programs and workflows. In
addition, SRM also provides the automatic registry of these executions, as part of essays
and experiments, which can be analysed along those several levels of semantic

abstractions. Thisis an important step towards data provenance and derivation.

Another contribution can be derived through the use of Web services for
scientific applications. We believe that the use of Web services is a first and
fundamental step in the direction of a full featured in silico laboratory as they provide
the required interoperability to support in silico experiments. They alow scientists to
dynamically publish, discover, and aggregate scientific resources through the Internet.
Scientific and business communities are just beginning to use this new technology. If
compared to other approaches, the Web services approach is superior with regard to
interoperability, reusability and flexibility issues. It overcomes platform
incompatibilities among software tools ard databases, and orchestrates their interaction.
For instance, MHOL line workflow presented in section 6.2 includes Web services that
interface with legacy programs written in different languages (e.g., Fortran ad C). In
addition, the Web services workflow definition language provides more flexibility than
scripts as it allows e-scientists to build ad hoc service compositions. Also, since these
compositions run through Web services, additional registering and documentation can
be included on the fly, helping data provenance and automatic execution
documentation. Reusability is facilitated by Web services because of their modular
characteristic. Web services workflows are also published as Web services, and this
enables other scientists to use them as part of new service compositions. Furthermore,
Web services are an open standard already adopted by the industry, and therefore their
approach is not tied to any proprietary solution.

A fifth contribution of this work is the publication of scientific metadata through
Web services, using the SPMW schema. Web services architecture is not enough to
provide a full-featured in silico laboratory. We have reviewed similar approaches that
address distribution and heterogeneity of data and programs (FOSTER, I., KESSELMAN, C,, et al.,
2002) (LEseLECT), but these initiatives are also not sufficient if not associated to an efficient
metadata support. In the case of Web services, since its description language (WSDL)
was originally proposed for generic service description, it lacks applicationrelated

semantic descriptors. SPMW uses the WSDL extensibility mechanisms to add higher

149

level descriptors specificaly related to scientific resources. For instance, SPMW
documents provide dynamic molecular scientists with information about an in silico
experiment, where a FASTA format molecular sequence was used as input to a
BLASTP program based on the BLAST algorithm. WSDL extensibility enforces the
adequacy of Web services to provide metamodel based solutions.

Finaly, the SRMW prototype is another contribution of this work. Portability,
interoperability and flexibility are some of the main benefits when managing distributed
scientific resources through SRMW. As XML has become an international accepted
standard to describe data resources, we have chosen to have our metadata expressed as
XML documents based on the SPMW XML Schema. To attend specific scientific
domain needs, SPMW was designed to be extensible, and extensibility elements are
included in the schema. Moreover, SRMW has been designed to be flexible when new
extensions to SPMW are included. To store SPMW documents, SRMW includes a
metadata repository. We have developed interfaces to store these documents in the
RDBMS MySQL, due to its wide use in Web applications. Finaly, SRMW has been
implemented using Java servlets, and includes IBM BPWS4J 1.0.1 (Brws4)) to define and
process workflow specifications, written in BPELAWS (CURBERA, F., GOLAND, Y, et al., 2002).
Other applications may interact with it by issuing XML queries and handling XML

documents resulting from such queries.

Other application areas, such as business-to-business (B2B) integration, can aso
benefit from this approach to enhance metadata semantics. For nstance, the SPMW
metamodel could be adapted to address B2B applications, including new descriptors. In
this context, some descriptors could make use of existing vocabulary standards like the
ones used in RosettaNet RoseTTAaNET), tOo address higher information interoperability

issues of terminology and data meaning.

7.2 Current and Future Work

The present work was motivated by two research projects in the environmental
area. a CT-Petro project called SIMBIO (Moura, FA., 2001) and an INRIA-CNPg
collaboration project called ECOBASE €cosase, 2001). Both projects allowed us to

interact with researchers seeking solutions to similar environmental problems.

150

In the context of the ECOBASE project, we have used Le Select (LeseLecT) as the
infrastructure for dealing with distribution and heterogeneity of scientific programs and
data. However, once Le Select focus was not on metadata support, we have proposed
SRM as a Le Select extension, providing mechanisms to capture model descriptions and
to monitor the actual distributed usage of models, programs and data. Then, we have
decided to redesign our SRM architecture by using Web services, so we could take
advantage of W3C well-accepted standards, which would facilitate the use of workflow
web engines based on these standards. Projects like ECOBASE bring a significant
contribution to our research team, and we are already applying for a new similar project

with focus on Web services composition.

In the context of SIMBIO project, we have studied models and experiments
from the Cabiunas case study developed at CENPES, which has helped us to identify
the concepts behind the scientific modelling context. Modellers and model users deal
with models in a very subjective way. Indeed, in the Cabiunas case study, we could
witness CENPES researchers successfully applied the Kuznetsova model out of its
original scope. Having previous experiments documented and scientific model usage
described, allowed researchers to apply a reservoir phenomena model to a surface
phenomena, despite the completely different physic-chemical conditions. Future
cooperation projects with CENPES are planned to develop SRMW experiments and
SPMW refinements.

Recently, we have started a new informal project in the molecular biology area
in collaboration with the UFRJ Biophysics Institute, particularly with Paulo Bisch, the
head of Rio de Janeiro’s Bioinformatics Virtual Institute, and Shaila Rossle, a research
assistant. We are currently analysing an application on the dynamic molecular biology
domain, called MHOLIine. This application has been particularly useful to help us on
the identification of experiment and essay concepts. We have identified the need for

workflow management and the need for keeping a record of intermediary results.

The work with Paulo Bisch's team is being developed in association to other
dissertations and thesis & COPPE Sistemas. The investigation of the difficulties on
building a biological workflow using Web services is the focus of a master's
dissertation work (TARGINO, R, 2003). Another dissertation work (TEIXEIRA, F., 2003) iS
concentrating on the development of facilities to support the generation of scientific

dataresources as Web services. Finaly, athird dissertation work (GoNcALVES, F, 2003) has

151

been developing an integration tool to support the publication of datasets associated to
different data categories, allowing them to be integrated to different scientific programs,

and take part on different workflows and experiments.

The SRM architecture can be applied not only to biocorrosion and molecular
biology areas, but it also can be applied to many other scientific areas. Publishing
models and experiments from scientists of different scientific areas has been helping us
to identify the concepts behind the scientific modelling context. However, to build a
scientific metamodel is not an easy task. Therefore SPM metamodel should be
incrementally refined. Constraints, data replica, and workflow versions are some of the
concepts that need to be included or developed in SPM.

Although we can not consider the examples presented in sections 6.1 and 6.2 as
software evaluation studies, we could say that they are a first step on that direction.
According to the classification used by the software engineering community
(KITCHENHAM, B., PICKARD, L., PFLEEGER S, 1995) We have started a blocked subject-project
study, by examining SRMW across a set of teams and a set of projects. However, we
plan to focus on replicated-project studies, observing what is happening on different
teams of one typica project. More specifically, our first case study is aready in course
at the Biophysics Institute.

As a result of our first publications on this work, we had made some initial
contacts with international projects, while attending the Workshop on Data Derivation
and Provenance BUNEMAN, P, FOSTER, I, 2002), such as GriPhyN, at the University of
Chicago, USA, and MyGirid, at the University of Edinburgh, Scotland, both working on
metadata issues for the scientific community. It is our intention to further enlarge these

contacts in order to continue our work.

MyGrid project (WRroE, c. et al., 2003) has been developing an interesting work on the
use of domain-ontologies to support scientific applications in the genetic area. From our
point of view, to build domain-ontologies for scientific applications is not an easy task.
Most works (BozsAk, E. et .al,, 2002) (NOY, N.F.; FERGERSON, R. W.; MUSEN, M. A., 2000) concentrate on
building tools and representation frameworks for ontologies. However, there is a yet not
very explored field on how to support the conceptualization process. A doctor’s thesis
(cARrciA, s, 2003) a DCC/IM/NCE - UFRJ is currently developing studies on this
direction. In addition, as a complement to SRM architecture, it is our intention to

include the use of domain ontologies, to help scientists on searching for adequate

152

resources, browsing their descriptions, while keeping our metamodel as the basis to

register and query experiments.

Grid computing systems usualy involve machine clusters and paralé
processing. Metadata to support these systems should include information about the
facilities they provide. GriPhyN project is aready working in this direction, proposing a
metamodel that provides support for the data replica management. SRM can also be
extended to address Grid systems. In order to do this, we are investigating the use of
Grid systems at IBCCF, as part of a doctor’s thesis study (MEYER, L. A., 2003) at COPPE
Sistemas.

As discussed in section 3.4, the support for workflow dynamic definition is a
scientific workflow management needed facility. SRMW is not yet supporting this
facility, but it is our intention to work on this issue also. In this direction, the SPM
metamodel should provide support for workflow versioning control, such as the one

provided in WASA system (WESKE, M.; VOSSEN, G.; MEDEIROS, C, 1996).

Despite the many advantages of the Web services technology, we believe it is
important to consider it as a new and evolving technology. Therefore, another
interesting research direction is to work on higher level abstractions for specifying
scientific workflows. The goa of such abstractions is the decoupling of the workflow
specification (and knowledge) from any specific technology. In this direction, it is our
intention to work on issues such as quality evaluation techniques to support choosing
equivalent workflow steps while executing it (CARDOSO, L. F., SOUZA, J. M., MARQUES, C., 2002)

(AzEVEDO, V., PIRES, P, MATTOSO, M., 2003) and scientific model based workflow definitions.

153

8. References

AGUIRRE, L. A., 2000, Introducéo a I dentificacdo de Sistemas: Técnicas Lineares e Ndo-Lineares
Aplicadas a Sistemas Reais. UFMG, Belo Horizonte, Brazil (in portuguese).

AILAMAKI, A., IOANNIDIS, Y., LIVNY, M., 1998, “ Scientific Workflow Management by Database
Management”. In: Proceedings of 10" International Conference on Scientific and Statistical
Database M anagement, pp. 190-199, Capri, Italy, July.

ALLCOCK, B., FOSTER, |I., NEFEDOVA, V., CHERVENAK, A., DEELMAN, E., KESSELMAN, C.
LEE, J, SIM, A., SHOSHANI, A., DRACH, B. WILLIAMS, D., 2001, “High-Performance
Remote Access To Climate Simulation Data: A Challenge Problem for Data Grid Technologies”.
In Proceedings of Super Computing 2001, Denver, USA, November.

ALTSCHUL, S.F.,, GISH, W., MILLER, W., MYERS, EW., LIPMAN, D.J., 1990, “Basic local
alignment search tool”, Journal of Molecular Biology, v.215, pp. 403-410.

ALUR, R, HENZINGER, T. A., MANG, F., QADEER, S., RAJAMANI, S,, TASIRAN, S., 1998,
“MOCHA: Modularity in Model Checking”. InProceedings of CAV 1998, pp. 521-525.

ANKOLEKAR, A., BURSTEIN, M., HOBBS, J.,, LASSILA, O., MARTIN, D., MCILRAITH, S,
NARAYANAN, S., PAOLUCCI, M., PAYNE, T., SYCARA, K., ZENG, H., 2001, “DAML-S:
Semantic Markup for Web Services’. In Proceedings of the I nter national Semantic Web
Working Symposium (SWWS), July-August.

ASHBURNER M., LEWIS S., 2002, “On Ontologies for Biologists: the Gene Ontology - uncoupling the
web”. In: In Silico Biology, Novartis Found Symposium, v.247, pp.66-83.

APACHE, AXIS Engine. Available from <http://xml.apache.org/axis/>

AZEVEDO, V., PIRES, P., MATTOSO, 2003, “Handling Dissimilarities of Autonomous and Equivalent
Web Services”. To appear in Proceedings of the Workshop on E-business and Semantic Web,
Austria, June.

BANERJEE, S., BASU, A., 1993, “Model Type Selection in an integrated DSS environment”, Decision
Support Systems, vol. 9, pp.75-89.

BENZ, j., HOCH, R., LEGOVIC, T., 2001, “ECOBAS — modelling and documentation”, Ecological
Modelling, v.138, pp. 3 - 15.

BENZ, J., HOCH, R., GABELE, T., 1997, “Documentation of Mathematical Models in Ecology — An
Unpopular Task?’. InECOMOD Newsletter, ISEM, December. Available from
<http://ecomod.tamu.edu/ecomod/isem.html>

BENZ, J.,, HOCH, R., 1999, “ECOBAS— Model Interchange Format Reference Manual” —
ECOBAS MIF version 3.0.
Available from <http://dino.wiz.uni-kassel .de/ecobas/syntax_mif/syntax2_mif.ps> or from
<ECOBAS_MIF version 3.1, http://eco.wiz.uni-kassel .de/ecobas/ecobas_mif.html>

BERNSTEIN, P.,, BRODIE, M., CERI, S,, DEWITT, D., FRANKLIN, M., GARCIA-MOLINA, H.,
GRAY, J.,HELD, J., HELLERSTEIN, J., JAVADISH, H., LESK, M., MAIER, D., NAUGHTON,
J. PIRAHESH, H., STONEBRAKER, M., ULLMAN, J. , 1998, “The Asilomar Report on
Database Research”, SIGM OD Record, vol. 27, no. 4.

BOSE, R., 2002, “A Conceptual Framework for Composing and Managing Scientific Data Lineage”. In:
Proceedings of International Conference on Scientific and Statistical Database M anagement,
Edinburgh, Scotland, pp.15-19, July.

BOZSAK, E. et al., 2002, “KAON — Towards a Large Scale Semantic Web”. In Proceedings of
Database and Expert Systems Applications (DEXA), Aix en Provence, France, September.

IBM BPWS4J. Available from: http://www.al phaworks.ibm.com/tech/bpws4;.

BRAGA, R., WERNER, C., MATTOSO, M., 1999, “Odyssey: A Reuse Environment based on Domain
Models”. In: 2" |EEE Symposium on Application-Specific Systems and Softwar e Engineering
Technology (ASSET’99), Richardson, USA, March.

154

BRAZ, M. H., MELO, R. N., 1989, “Modelagem e Geréncia de Model os em Sistemas de Apoio a a
Decisdo”. InProceedings of XXI1 National Congress of Informatics, pp. 197-202, S&o Paulo,
SP, Brazil, September (in portuguese).

BUNEMAN, P.,, FOSTER, I., 2002, Workshop on Data Provenance and Derivation, Chicago, IL,
USA, October.
Available from <http://peopl e.cs.uchicago.edu/~yongzh/position_papers.html>

CARDOSO, L. F., SOUZA, J. M., MARQUES, C., 2002, "A Collaborative Approach to the Reuse of
Scientific Experiments in the Bill of Experiments Tool". In: The Seventh International
Conference on Computer Supported Cooperative Work in Design, pp. 296-301, Rio de
Janeiro, Brazil, September.

CAREY, M. J.,, et al., 1995, Towards Heter ogeneous Multimedia I nformation Systems: The Garlic
Approach, Technical Report, IBM Almaden Research Center, USA.

CARNEIRO, F. L., 1996, Analise Dimensional e Teoria da Semelhanca e dos M odelos Fisicos. Ed.
UFRJ, 2nd edition, Rio de Janeiro (in portuguese).

CARTIER, J., RUDOLPH, J., STEWART, J., 2001, The Nature and Structure of Scientific Models,
Working Paper of NCISLA, Wisconsin Center for Education Research, University of Winconsin.

CAVALCANTI, M., MATTOSO, M., CAMPOS, M, LLIRBAT, F., SIMON, E., 2002, “Sharing
Scientific Models in Environment Applications”. In: Proceedings of ACM Symposium on
Applied Computing, pp. 453-457, Madrid, Spain, March.

CAVALCANTI, M., MATTOSO, M., CAMPOS, M. L., SIMON, E., LLIRBAT, F., 2002, “An
Architecture for Managing Distributed Scientific Resources’. In: Proceedings of |EEE
International Conference on Scientific and Statistical Database M anagement, Edinburgh,
Scotland, pp.47-55, July.

CAVALCANTI, M., CAMPOS, M., MATTOSO, M., SANTOS, M., BARRETO, P., 2002, “Managing
Scientific Models in Bio-phenomena Interpretation.”. In Proceedings of World Petroleum
Congress (WPC), Rio de Janeiro, Brazil, September.

CAVALCANTI, M., BAIAO, F., ROSSLE, S., BISCH, P. M., TARGINO, R., PIRES, P. F., CAMPOS,
M. L., MATTOSO, M., 2003, “ Structural Genomic Workflows Supported by Web Services”. To
appear in Proceedings of Workshop on Biological Data Management, CAiSE 03, Prague,
September.

CAVALCANTI, M., CAMPOS, M. L., MATTOSO, M., 2002, “Managing Scientific Modelsin
Structural Genomic Projects’. Position Paper at Workshop on Data Provenance and Derivation,
Chicago, IL, USA, October.

Available from <http://peopl e.cs.uchicago.edu/~yongzh/position_papers.html>

CAVALCANTI, M., MATTOSO, M., CAMPOS, M. L., 2003, “Managing Scientific Resources with
Web Services’. To appear in Proceedings of the Workshop on E-businessand Semantic Web,
Austria, June.

CHANG, A.,HOLSAPPLE, C., WHINSTON A., 1993, “Model Management Issues and Directions”,
Decision Support Systems, vol.9, pp.19-37.

CHERVENAK, A., FOSTER, |., KESSELMAN, C., SALISBURY, C., TUECKE, S., 2001, “The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific
Datasets’, Journal of Network and Computer Applications, 23, pp.187-200.

CHRISTOFOLETTI, A., 1999, “ M odelagem de Sistemas Ambientais”. Ed. Edgard Blucher (in
portuguese).

CHRISTOPHIDES, V., HOUSTIS, C,, LALIS, S, TSALAPATA, H., 1999, “Ontology-driven
Integration of Scientific Repositories’. In: Proceedings of the 4™ wor kshop on Next Generation
Information Technology and Systems(NGITS' 99), Zikhron-Y aakov, Israel, July.

CRITCHLOW, T., MUSICK, R., SLEZAK, T., 2001, “ Experiences Applying Meta-Data to
Bioinformatics’, Information Sciences, v.139 (1-2), Elsevier Science Inc., November.

CURBERA, F., GOLAND, Y, et a., 2002, Business Process Execution Language for Web Services
V1.0, Microsoft, BEA and IBM.

155

CZAJKOWSKI, K., FOSTER, I|., KARONIS, N., KESSELMAN, C., MARTIN, S., SMITH, W.,
TUECKE, S,, 1998, “A Resource Management Architecture for Metacomputing Systems”. In:
4thWor kshop on Job Scheduling Strategiesfor Parallel Processing, Springer-Verlag, pp. 62-
82.

DATAGRID PROJECT - Available from <http://www.gridcomputing.com/>.
DAVIS, JB., 1967, Petroleum Microbiology, Elsevier Publishing Company, eds.Amsterdam, pp. 604.

DOLK, D., 1986, “A Generalized Model Management System for Mathematical Programming”, ACM
Transactions on Mathematical Software, vol. 12, No.2, pp. 92-126, June.

DOLK, D., KONSYNSKI, B. R., 1984, “Knowledge Representation for Model Management Systems”,
|EEE Transactions on Software Engineering, vol. SE-10(6), November.

DOMENIG, R., DITTRICH, K.R., 1999, “An Overview and Classification of Mediated Query Systems”,
SIGM OD Record, September.

DRIESSEN, P. J., DUDAL, R., 1991, “The major soils of the world”, Agricultural University
Wageningen.
DU, W., SHAN, M., 1996, 1996, “Query Processing in Pegasus’. In: Bukhres, O., EImagarmid, A. (eds),

Object-Oriented Multidatabase Systems: A Solution for Advanced Applications, pp. 449-471,
Prentice Hall.

EbXML registry.
Available from <http://www.ebxml.org/>

ECOBAS PROJECT
Available from <http://dino.wiz.uni-kassel .de/ecobas.html>

ECOBA SE members, 2001, The Ecobase Project: Database and Web Technologies for Environmental
Information Systems, ACM Sigmod Recor d, v.30 (3), pp.70-75, September.

ESP2Net Project — Available from <http://dml.cs.ucla.edu/projects/dml_esip>.
ESSW Project — Available from <http://essw.bren.ucsb.edu/>.
FEUVRIER, C. V., 1971, “ La Simulation des Systémes”, Dunod, Paris.

FOSTER, I. AND KESSELMAN, C., 1999, “Globus: A Toolkit-based Grid Architecture”. In: Foster, 1.,
Kesselman, C. (eds), The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kauffman, pp. 259-278.

FOSTER I., KESSELMAN C, NICK J, TUECKE, S,, 2002, “ The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration”, Working paper, January.
Available from <http://www.globus.org/research/papers/ogsa.pdf>

FOSTER, I., VOECKLER, J., WILDE, M., ZHAQ, Y., 2003, “The Virtual Data Grid: A New Model and
Architecture for Data-Intensive Collaboration”. In: Conference of | nnovative Data Resear ch —
CIDR, Asilomar, CA, USA, January.

FOSTER, |., KESSELMAN, C., 2001, “A Data Grid Reference Architecture”, Technical Report,
GriPhyN-2001-12.

FOSTER, I., KESSELMAN, C., NICK, J. M., TUECKE, S., 2002, “Grid Services for Distributed
Systems Integration”, IEEE Computer, pp.37-46, June.

FOSTER, I., VOECKLER, J.,, WILDE, M., ZHAOQ, Y., 2002, “Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation”. In I nter national Conference on
Scientific and Statistical Database M anagement, Edinburgh, Scotland, pp.37-46, July.

FREW, J., BOSE, R., 2001, “Earth System Science Workbench: A Data Management Infrastructure for
Earth Science Products”. In Proceedings of I nternational Conference Scientific Statistical DB
M anagement, Fairfax, VA, USA, pp.180-189, July.

GABELE, T., BENZ, J., HOCH, R., 1999, “ Standardization of model documentation: Usage of ECOBAS
model documentation system — a short introductory manual”, ECOMOD Newsletter, ISEM, June.
Available from <http://ecomod.tamu.edu/ecomod/isem.html>.

156

GALHARDAS, H., SIMON, E., TOMASIC, A., 1998, “A Framework for Classifying Scientific
Metadata”, In Proceedings of AAAI’98.

GANNON, D., CHIU, K., et al., 2002, Analysis of the Open Grid Services Architecture, Working
paper,Department of Computer Science, Indiana University, Bloomington, IN, USA.
Available from <http://www.extreme.indiana.edu/~gannon/OGSAanalysis3.html>

GARCIA, S,, 2003, “Towards the Support of Domain-Ontology Construction”, Doctor’s thesis
Qualifying Exam, DCC/IM/NCE — UFRJ, to be presented.

GARCIA-MOLINA, H., PAPAKONSTANTINOU, Y., QUASS, D, etal., 1997, The TSIMMIS
Approach to Mediation: DataModels and Languages, Journal of Intelligent Information
Systems.

Available from <http://www-db.stanford.edu/tsimmis/publications.html>.

GARDARIN, G., GANNOUNI, S., FINANCE, B., 1996, “IRO-DB: A Distributed System Federating
Object and Relational Databases”. In: (eds.) O. Bukhres and A. EImagarmid, Object-Oriented
M ultidatabase Systems: A Solution for Advanced Applications”, pp. 684-712, Prentice Hall.

GEOFFRION, A. M., 1987, “An Introduction to Structured Modelling”, M anagement Science, vol.33,
no.5, pp. 547-588, May.

GEORGAKOPOULOS, D., HORNICK, M., SHETH, A., 1995, “An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure”, Distributed and
Parallel Databases, Val. 3, pp. 119-153

GILLMANN, M., WEISSENFELS, J., WEIKUM, G., KRAISS, A., 2000, “Performance and Availability
Assessment of the Configuration of Distributed Workflow Management Systems”. In:
Proceedings of 7" International Conference on Extending Database Technology, EDBT’ 2000,
Konstanz, Germany, March.

GLEISER, M., 2002, “O ‘porqué eo ‘como’”, Folha de S&o Paulo Newspaper, S&o Paulo, June (in
portuguese).

GLOBUS - Available from <http://www.globus.org>.
GOA SYSTEM - Available from <http://www.cos.ufrj.br/~goa>.

GOLDBARG, M., LUNA, H., 2000, Otimiza¢do Combinatéria e Programagdo Linear: Modelos e
Algoritmos, Ed. Campus.

GONCALVES, F., 2003, “Supporting Data Integration in Mediation Architectures”, M.Sc.
Dissertation, COPPE Sistemas, UFRJ, to be presented.

GRANT, W. E., 1986, Systems Analysis and Simulation in Wildlife and Fisheries Sciences, New
Y ork, John Wiley & Sons.

GRAY, J., 2002, “Mining the Sky — The World Wide Telescope’, Invited talk at the Workshop on
Distributed Dataand Structures— WDA S-2002, University Paris 9, March.
Available from <http://www.research.microsoft.com/~Gray/talks>.

Grid Computing Info Centre — Available from <http://www.gridcomputing.com/>.
Grid Datafarm Project — Available from <http://datafarm.apgrid.org/overview.en.html>.
GriPhyN Project — Available from <http://www.griphyn.org>

GUARINO, N., GIARETTA, P., 1995, “Ontologies and Knowledge Bases. Towards a Terminological
Clarification”. In: N. Mars (ed), Torwards Very Large Knowledge Bases: Knowledge Building
a Knowledge Sharing, |OS Press, Amsterdam, pp.25-32.

GUARISO, G., HITZ, M., WERTHNER, H., 1996, “An Integrated Simulation And Optimization
Modelling Environment For Decision Support”, Decision Support Systems, Vol.16, pp. 103-117.

GUENTHER, O., VOISARD, A., 1997, “Metadata in Geographic and Envrionmental Data
Management”. In: W. Klasand A. Sheth, editors, Managing Multimedia Data: Using M etadata
to Integrate and Apply Digital DataMcGraw Hill.

GUPTA, P, LIN, E. T., 1994, “DataJoiner: A Practical Approach to Multi-Database Access’. In:
Proceedings of PDIS 1994, pp. 264.

157

HAEFNER, J. W., 1996, “ M odeling Biological Systems: Principles and Applications”, London,
Chapman & Hall.

HAGGET, P., CHORLEY, R. J, 1967, “Models, Paradigms and New Geography”, in Modelsin
Geography, London, Methuen & Co. Apud CHRISTOFOLETTI, A., 1999

HOLLINGSWORTH, D., 1995, “ The Workflow Reference M odel”, Workflow Management Coalition,
Document TC00-1003, Issue 1.1, January.

HORROCKS 1., 2002, “DAML+OIL: areason-able Web ontology language”. In Proceedings of EDBT
2002, March.

HOUSTIS, C., LALIS, S., 2001, “ARION: A Scalable Architecture for aDigital Library of Scientific
Collections’. In: 8" Panhellenic Conference on Infor mation, November.

HOUSTIS, C., LALIS, S., CHRISTOPHIDES, V., PLEXOUSAKIS, D., VAVALIS, M., PITIKAKIS,
M., KRITIKOS, K., SMARDAS, A., GIKAS, X., 2002, “A Service Infrastructure for e-Science:
the case of the ARION system”. InWorkshop on Web Services, e-business, and the Semantic
W eb, Toronto, Ontario, Canada, May.

HOUSTIS, C., NIKOLAQU, C., LALIS S., KAPIDAKIS, S., CHRISTOPHIDES, V., SIMON, E.,
TOMASIC, A., 1999, “Towards a Next Generation of Open Scientific Data Repositories and
Services’, CWI Quarterly, Vol. 12, No.12, Special Issue on Digital Libraries, Amsterdam, June.

HSU, M., KLEISSNER, C., 1996, “ ObjectFlow: Towards a Process Management Infrastructure”, In
Distributed and Parallel Databases, vol. 4, pp. 169-194.

HULL, R., LLIRBAT, F, SIMON, E., SU, J, DONG, G., KUMAR, B., ZHOU, G., 1999, “Declarative
Workflows that Support Easy Modification and Dynamic Browsing”. In: Proceedings of ACM
International Joint Conference on Work Activities Coordination, WACC’ 99, February, San
Francisco, CA, USA, pp.69-78.

INMON, B., 1996, Building the Data War ehouse, John Wiley & Sons, Inc.

IOANNIDIS, Y., LIVNY, M., GUPTA, S, PONNEKANTI, N., 1996, “ZOO: A Desktop Experiment
Management Environment”. In: Proceedings of the 22" VL DB Conference, pp. 274-285,
Bombay, India.

IVERSON, L., PRASAD, A., SCHWARTZ, M., 1999, “Modeling potential futureindividual tree-species
distributions in the eastern United States under a climate change scenario: a case study with Pinus
virginiana’, Ecological Modeling, No. 115, pp. 77-93.

KAESTLE, G., SHEK, E.C. AND DAO, S. K., 1999, “ Sharing Experiences from Scientific
Experiments”. In: Proceedings Int. Conf. On Statistical and Scientific Database M anagement,
pp.168-177, duly.

KANEHISA, M., 2000, Post-Genome I nformatics, Oxford University Press.

KIM, W., CHOI, I., GALA, S., SCHEEVEL, M ., 1993, “On Resolving Schematic Heterogeneity”,
International Journal of Parallel Distributed Databases”, vol. 1, pp. 251-279.

KITCHENHAM, B., PICKARD, L., PFLEEGER, S, 1995, “Case Studies for Method and Tool
Evaluation”, | EEE Softwar e, pp.52-62, July.

KOBRYN, C., 1999, “UML 2001: A Standardization Odyssey”, ACM Communications, Vol. 42, No.
10, Octaber.

KUZNETSOVA, V.A., 1960, “Occurrence of sulfate-reducing organismsin oil-bearing formations of
Kuibyshev region with reference to salt composition of layer waters’, Mikr obiologiya, 29, pp. 408-414.

LASKOWSKI, R. A., MACARTHUR, M. W., MOSS, D. S., THORNTON, J. M., 1993, “PROCHECK:
aprogram to check the stereochemical quality of protein structures’, Journal of Appl. Cryst., 26,
pp. 283-291.

LEAL, L. N., 2003, “Gerador de AplicacGes para Repositérios de M etadados baseado em XSL e XML
Schema”, Final Project Monography, Dept.Computer Science, DCC-IM, UFRJ, March.

LEE, B., SNAPP, R.,, MUSICK, R., CRITCHLOW, T., 2001, “Ad hoc Query Support for Very Large
Simulation Mesh Data: the Metadata Approach” . In: Proceedings of Brazilian Symposium on

158

Databases, pp.199-212, Rio de Janeiro, Brazil, October.

LENARD, M. L., 1993, “An Object-oriented approach to model management”, Decision Support Systems,
vol. 9, pp. 67-73.

LE SELECT System, Caravel Project, INRIA, France.
Available from <http://www-caravel.inria.fr/LeSelect/>.

LESK, M., 2002, “Data Provenance and Derivation”, Position paper at Wor kshop on Data Provenance
and Derivation, Chicago, IL, USA, October.
Available from <http://people.cs.uchicago.edu/~yongzh/position_papers.html>

LEYMANN, F. AND ALTERHUBER, W., 1994, “Managing Business Processes as an Information
Resource”, IBM Systems Journal, 33, pp. 346-347.

LIE, H. W., SAARELA, J., 1999, “Multipurpose Web Publishing: Using HTML, XML, and CSS”,
Communications of the ACM, Vol. 42, No. 10, October.

LIU, L., PU, C., LEE Y., 1996, “An adaptive approach to query mediation across heterogeneous
databases’. In: Proceedings of the Int. Conf. Cooperative Information Systems, |EEE Press,
pp.144-156, June.

LIU, L., PU, C, LEE,Y., 1995, “ The DIOM approach to L arge-scale I nter operable Database
Systems”, Technichal Report TR95-16, Department of Computing Science, University of Alberta,
March.

LJUNG, L., 1987, “System Identification Theory for the User”, Englewood Cliffs, New Jersey Prentice
Hall.

LONG, D., MANTEY, P, WITTENBRINK, C., HAINING, T., MONTAGUE B., 1995, “REINAS: the
Real-Time Environmental Information Network and Analysis System”. In: Proceedings of
Technologies for the Information Highway, COMPCON' 1995, pp. 482-487, San Francisco, CA,
USA.

MATTOSO, M., CAVALCANTI, M. C., PINHEIRO, R., VIEIRA, H., AZEVEDO, L., MARQUES, C.,
MONTEIRO, R., GONCALVES, F., WERNER, C. 2002, “ Geréncia de Documentos XML no
GOA”. In: Brazilian Symposium of Software Engineering, Tools Section, Gramado, RS, Brazil,
October.

MAYER, M. K., 1998, “Future trendsin model management systems: parallel and distributed
extensions’, Decision Support Systems, Vol 22, pp. 325-335.

MDC (Metadata Coalition), 1999, Open Information Model, version 1.1, August.

MEDEIROS, C., VOSSEN, G., WESKE, M., 1995, “WASA: A Workflow-Based Architecture to Support
Scientific Database Applications’. In: I nternational Workshop and Conference on Database
and Expert Systems Applications (DEXA), pp. 574-583 London, U.K., September.

MEYER, L. A., 2003, “Grid Systems Support to Biologic Workflows’, D.Sc. Thesis Qualifying Exam,
COPPE Sistemas— UFRJ, to be presented.

Object Management Group, 1997, “ M eta-Object Facility”, OMG TC document cf/97-01-01, Linnasaus
Project, DSTC, January.
Available from <http://www.omg.org>

MOURA, F.A., 2001, "Suporte a Deciséo em Interpretacdo de Fendmenos', M.Sc. Thesis, DCC/NCE -
UFRJ, March.

Microsoft C/C++ Language Reference. Available from <http://msdn.microsoft.com>

MUETZELFELDT, R. AND TAYLOR, J., 2001, “Developing forest models in the Simile visual
modelling environment”. In: IUFRO 4.11 Conference on Forest biometry, modelling, and
information science, Greenwich (UK), June.

MyGrid Project. Available from <http://www.mygrid.org.uk>.
NCBI BLAST — Available from <http://www.ncbi.nim.nih.gov/blast/Blast.cgi>.

NIEMCZYK, B., 2002, MySQL-XML Library v1.2.
Available from <www.sourceforge.com>

159

NOY, N.F., FERGERSON, R. W., MUSEN, M. A., 2000,” The knowledge model of Protege-2000:
Combining interoperability and flexibility”, In: 2nd I nter national Conference on Knowledge
Engineering and Knowledge M anagement (EK AW'2000), Juan-les-Pins, France.

OGSA-DAI project.
Available from <http://www.ogsadai.org.uk>.

OGSI Workgroup, 2003, “Open Grid Service Infrastructure”, Draft document, Global Grid Forum,
February.

Available from <http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-23_2003-02-
17.pdf>

Object Management Group, 1991, The Common Object Request Broker: Architecturesand
Specification, Framingham, Massachusetts.

Object Management Group —“Common Warehouse M etamodel” — OMG specification document of
CWM, v1.0
Available from http://www.omg.org/technol ogy/cwm/

PATRIKALAKIS, N., ABRAMS, S, BELLINGHAM, J., CHO, W., MIHANETZIS, K., ROBINSON,
A., SCHMIDT, H., WARIYAPOLA, P., 2000, “The Digital Ocean”. Invited paper in Proceedings
of Computer Graphics International, GCI’ 2000, pp. 45-53, Geneva, Switzerland, IEEE
Computer Society Press. Los Alamitos, CA, June.

PINTO, G. R B., STRAUCH, J. C. M., CARDOSO, L. F,, et al., 2002, "A Framework to Support
Scientific Knowledge Management: a Case Study in Agro-meteorology". In: The Seventh
International Conference on CSCW in Design, pp. 320-324, Rio de Janeiro, Brasil, September.

PIRES, P., 1997, “HIMPAR, Uma Arquitetura para | nter oper abilidade de objetos Distribuidos”,
M.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.

DECAIR Project, EC research project, 1999-2002.
Available from http://www-rocq.inria.fr/air/decair/

Registry of Ecological Models (REM) — Available from http://dino.wiz.uni-kassel .de/ecobas.html.

RICHARDSON, G. P., PUGH 111, A. L., 1999, “Introduction to Systems Dynamics Modeling”, Systems
Dynamics Series, PEGASUS Communications, Inc., Waltham, MA, USA.

RICHMOND, B., 1984, “ System Dynamics/Systems Thinking: Let’s Just Get On With It”. In:
International Systems Dynamics Conference, Sterling, Scotland.

RIZZOLI, A. E.,, DAVIS, J. R., ABEL, D. J., 1998, “Model and dataintegration and re-use in
environmental decision support systems’, Decision Support Systems, Vol. 24, pp. 127-144.

RODRIGUEZ, M., ROUSSOPOULOS, N., 2000, “Automatic Deployment of Application-Specific
Metadata and Codein MOCHA", to appear in Proceedings of EDBT 2000.

ROSETTANET. Available from <http://www.rosettanet.org>

ROSSLE, S., RIBEIRO, S., et al., 2002, “ A Computational Environment Development for the
Application of Homology M odeling Methods in Structural Genomic Projects”, Project Poster,
IBCCF, UFRJ, Brazil (in portuguese).

RUDIO, F. V., 1978, Introducéo ao Projeto de Pesquisa Cientificg 29" edition, Editora Vozes,
Petrdpolis, RJ, Brazil (in portuguese).

SALI, A., 2001, MODELLER: A Program for Protein Structure Modeling Release 6, Rockefeller
University.

SCHOPP, W., AMANN, M., COFALA, J., HEYES, C., KLIMONT, Z., 1999, “Integrated assessment of
European aire pollution emission control strategies’, Environmental Modelling & Software, No.
14, pp. 1-9.

SCOTT, E. M., 1996, “Uncertainty and Sensitivity Studies of Models of Environmental Systems”. In:
Proceedings of Winter Simulation Conference, (eds.) J. Charnes, D. Morrice, D. Brunner and J.
Swain, San Diego, CA, USA, December.

SHETH, A. P, LARSON, J. A., 1990, “ Federated Database System for Managing Distributed,

160

Heterogeneous, and Autonomous Databases’. In: ACM Computing Surveys, v. 22(3), September.

SHETH, A., GEORGAKOPOULOQOS, D., JOOSTEN, S., RUSINKIEWICZ, M., SCACCHI, J., WOLF,
A., 1996, “ Report from the NSF Workshop on Workflow and Process Automation in
Information Systems”, Technical Report, Large-Scale Distributed Information Systems Lab,
University of Georgia, GA, USA, October.

SINGH, M.P., VOUK, M.A., 1996, “ Scientific workflows: scientific computing meets transactional
workflows”. In: Proceedings of the NSF Wor kshop on Workflow and Process Automation in
Information Systems: State-of-the-Art and Future Directions, Univ. Georgia, Athens, GA,
USA, pp. 28-34.

SINGH, V. P., 1995, Computer Models of Watershed Hydrology, Boulder, Water Resources
Publications.

SPRIET, J. A., VANSTEENKI STE, G. C., 1982, Computer-aided modelling and simulation, Dept. of
Applied Mathematics and Biometrics, University of Ghent, Belgium, Academic Press, Inc..

SPYNS, P, MEERSMAN, R., JARRAR, M., 2002, “Data Modelling versus Ontology Engineering”,
SIGMOD Recor d 31(4), pp.12-17.

TARGINO, R., 2003, “Workflows Cientificos apoiados por Web services’, M.Sc. Dissertation, to be
presented, COPPE Sistemas, UFRJ, Brazil.

TEIXEIRA, F., 2003 “Fabrica de Web services para Dados Cientificos’, M.Sc. Dissertation, to be
presented, COPPE Sistemas, UFRJ, Brazil.

TEMPLETON, M. et al., 1987, “Mermaid— A Front End to Distributed Heterogeneous Databases’. In:
Proceedings of |1EEE, vol.75, no. 75, pp. 695-708, May.

TOMASIC, A., RACHID, L., VALDURIEZ, P., 1998, “A Data Model and Query Processing Techniques
for Scaling Access to distributed Heterogeneous Databasesin Disco”. In: | EEE Transactions on
Knowledge and Data Engineering, v.10 (4), July.

TOMASIC, A., SIMON, E., 1998, “Improving Access to Environmental Data using Context
Information”, SIGM OD Record, January.

APACHE, TOMCAT. Available from http://jakarta.apache.org.

UCHOA, E. M. A., MELO, R. N., 1999, “Integracdo de Sistemas de Bancos de Dados Heterogéneos
Usando Frameworks”. In Proceedings of 14™ Database Brazilian Symposium (SBBD’ 99),
pp.381-393, Floriandpolis, SC, Brazil.

UCHOA, E.M.A., LIFSCHITZ, S., MELO, R.N., 1998, “HEROS: a Heterogeneous Object Oriented
Database System”. In 9™ International Conference and Workshop on Database and Expert
Systems Applications (DEXA'’98).

UDDI Executive White Paper. Available from <http://www.uddi.org/>

UML Revision Task Force, 1999, OM G Unified Modeling L anguage Specification, v.1.3, document
ad//990608, Object Management Group, June.

UNSPSC. Available from <http://www.unspsc.org>

USHOLD, M., KING, M., 1995, “Towards a Methodology for Building Ontologies”. In Proceedings of
the Workshop on Basic Ontological Issuesin Knowledge Sharing (UCAI95).

VAN DER AALST, W., BARROS, A., HOFSTEDE, A., KIEPUSZEWSKI, B., 2000, “Advanced
Workflow Patterns’. In: Conference on Cooper ative I nformation Systems, pp. 18-29.

VASUDEVAN, V., 1999, Notes on ontologies, Technical Note, Object Services and Consulting, Inc.,
February.
Available from <http://www.objs.com/agility/tech-reports/9902-ontol ogy.html>

VENKATARAMAN, A., ZHANG, T., 1998, “Heterogeneous Database Query Optimization in DB2
Universal DataJoiner”. In: Proceedings of VL DB 1998, pp. 685-689.

VIEIRA, H. RUBERG, G. MATTOSO, M., 2002, “ Xverter: Armazenamento e Consultade Dados XML
em SGBDs’. In: Proceedings of the Brazilian Symposium on Databases (SBBD), Gramado, RS,
Brazil, October.

161

WEINSTEIN, P., 1998, “ Ontology-Based Metadata: Transforming the MARC Legacy”. In: Proceedings
of the 3" ACM International Conference on Digital Libraries, Pittsburgh, PA USA, pp. 254-
263, June.

WESKE, M., VOSSEN, G., MEDEIROS, C., 1996, Scientific Workflow Management: WASA
Architecture and Applications, Schriften zur Angewandten Mathematik und Informatik 03/96-I,
Universitét Munster.

WFfMC Work Group |, 1999, Interface | : Process Definition I nterchange Process M odel, WfMC TC-
1016-P, Version 1.1, October.

WEMC, 1999, WfMC Terminology and Glossary, WfMC TG-1011, Issue 3.0, February.
WIDENIUS, M., AXMARK, D., 2002, “MySQL Reference Manual”, O'Reilly and Associates, June.

WIEDERHOLD, G., 1992, “Mediatorsin the architecture of futureinformation systems’. InlEEE Computer,
v.25, pp. 38-49.

WIEDERHOLD, G., 1994, “An Ontology Algebra’. In: Proceedings of the M onterey Workshop on
Formal Methods, Luqgi (ed.), U.S. Naval Post Graduate School, September.

WIEDERHOLD, G., 1994, “Interoperation, Mediators and Ontologies’ In: Proceedings | nter national
Symposium on Fifth Generation Computer Systems (FGCSOB94), Workshop on
Heterogeneous Cooperative Knowledge-Bases, Vol .W3, pp. 33-48, ICOT, Tokyo, Japan,
December.

WOLDENBERG, M. J., 1985, Models in Geomor phology, London, Allen & Unwin.

WROE, C,, STEVENS, R, GOBLE, C., ROBERTS, A., GREENWOOD, M., 2003, “A suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data’. In I nternational
Journal of Cooperative Information Systems, in press.

W3C Web Services— Available from <http://www.w3c.org/Webservices>.

Web Services Architecture, W3C Working Draft, November, 2002.
Available from <http://www.w3.0rg/TR/2002/WD-ws-arch-20021114/>

WSDL Schema— Available from <http://schemas.xmlsoap.org/wsdl/>

W3C Web Service Description Language Working Draft, version 1.2., January, 2003.
Available from <http://www.w3.org/TR/wsdl12/>

WSFL v 1.0, Web Services Flow Language, IBM.
Available from <http://www-3.ibm.com/software/sol utions/webservices/pdf /W SFL .pdf >

XERCES, DOM API implementation, Apache Project.
Available from <http://jakarta.apache.org>

XHUMARI, F. et al., 2000, “Le Select User Manual”, INRIA.
Available from <http://www-caravel.inria.fr/~lesel ect/doc/UserManual .rtf.gz>

XML Query — Available from <http://www.w3.org/ XM L/Query>.
XML Schema-— Available from <http://www.w3.org/XML/Schema>.
XSL — Available from <http://www.w3.0rg/Style/X SL/>.

162

9. Appendix

9.1 SPMW XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://www.nce.ufrj.br/yoko/spm"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmIns:spm="http://www.nce.ufrj.br/yoko/spm"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:annotation>
<xsd:documentation>
Scientific Resources Description MetaSchema
</xsd:documentation>
</xsd:annotation>
<xsd:element name ="ScientificResourceDefinitions">
<xsd:complexType>
<xsd:group ref="spm:gResource" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<k- At least one of the elements below should be published, and there is no forced order -->
<xsd:group name="gResource">
<xsd:choice>
<xsd:element ref="spm:ModDC"/>
<xsd:element ref="spm:ProgDC"/>
<xsd:element ref="spm:Model"/>
<xsd:element ref="spm:Program"/>
<xsd:element ref="spm:DataResource"/>
<xsd:element ref="spm:CodeResource"/>
<xsd:element ref="spm:Workflow "/>
<xsd:element ref="spm:Experiment"/>
</xsd:choice>
</xsd:group>
<k- Declaracao dos elementos principais e suas chaves primarias e estrangeiras -->
<xsd:element name ="ModDC" type="spm:tModDC">
<xsd:key name="kModDC">
<xsd:selector xpath="."/>
<xsd:field xpath="@idDC"/>
</xsd:key>
</xsd:element>
<xsd:element name ="ProgDC" type="spm:tProgDC">
<xsd:key name="kProgDC">
<xsd:selector xpath="."/>
<xsd:field xpath="@idDC"/>
</xsd:key>
<xsd:keyref name="refModDC" refer="spm:kModDC">
<xsd:selector xpath="."/>
<xsd:field xpath="implements"/>
</xsd:keyref>
</xsd:element>
<xsd:element name ="ModAttribute" type="spm:tMDCAttribute">
<xsd:key name="kModAttribute">
<xsd:selector xpath="."/>
<xsd:field xpath="@idAttribute"/>
</xsd:key>
</xsd:element>
<xsd:element name ="ProgAttribute" type="spm:tPDCAttribute" >
<xsd:key name="kProgAttribute">
<xsd:selector xpath="."/>
<xsd:field xpath ="@idAttribute"/>
</xsd:key>
<xsd:keyref name="refModAttribute" refer="spm:kModAttrbute">
<xsd:selector xpath="."/>
<xsd:field xpath="implements"/>
</xsd:keyref>
</xsd:element>
<xsd:element name ="Model" type="spm:tModel">

163

<xsd:key name="kModel">
<xsd:selector xpath="."/>
<xsd:field xpath="@idTF"/>

</xsd:key>

<xsd:keyref name="reflnputModDC" refer="spm:kModDC" >
<xsd:selector xpath="input"/>
<xsd:field xpath="refersTo"/>

</xsd:keyref>

<xsd:keyref name="refOutputModDC" refer="spm:kModDC">
<xsd:selector xpath="output"/>
<xsd:field xpath="refersTo"/>

</xsd:keyref>

<xsd:keyref name="refModParni refer="spm:kModDC">
<xsd:selector xpath="parm"/>
<xsd:field xpath="refersTo"/>

</xsd:keyref>

</xsd:element>
<xsd:element name ="Progrant' type="spm:tProgram">

<xsd:key name="kPrograni'>
<xsd:selector xpath="."/>
<xsd:field xpath="@idTF"/>

</xsd:key>

<xsd:keyref name="refModel" refer="spm:kModel">
<xsd:selector xpath="."/>
<xsd:field xpath="implements"/>

</xsd:keyref>

<xsd:keyref name="reflnputProgDC" refer="spm:kProgDC">
<xsd:selector xpath="input"/>
<xsd:field xpath ="refersTo"/>

</xsd:keyref>

<xsd:keyref name="refOutputProgDC" refer="spm:kProgDC">
<xsd:selector xpath="output"/>
<xsd:field xpath ="refersTo"/>

</xsd:keyref>

<xsd:keyref name="refProgParni refer="spm:kProgDC">
<xsd:selector xpath="parm'/>
<xsd:field xpath="refersTo"/>

</xsd:keyref>

</xsd:element>
<xsd:element name ="DataResource" type="spm:tDataResource">

<xsd:key name="kDataResource">
<xsd:selector xpath="."/>
<xsd:field xpath="@idDR"/>
</xsd:key>
<xsd:keyref name="refDescribedByProgDC" refer="spm:kProgDC">
<xsd:selector xpath="."/>
<xsd:field xpath="spm:describedBy"/>
</xsd:keyref>

</xsd:element>
<xsd:element name =" CodeResource" type="spm:tCodeResource">

<xsd:key name="kCodeResource">
<xsd:selector xpath="."/>
<xsd:field xpath="@idCR"/>
</xsd:key>
<xsd:keyref name="refDescribedByProgram' refer="spm:kProgram'>
<xsd:selector xpath="."/>
<xsd:field xpath="spm:describedBy"/>
</xsd:keyref>

</xsd:element>
<xsd:element name ="Workflow " type="spm:tWorkflow ">

<xsd:key name="kWorkflow ">
<xsd:selector xpath="."/>
<xsd:field xpath="@idWF"/>
<I/xsd:key>
<xsd:keyref name="refWfStep" refer="spm:kProgram">
<xsd:selector xpath="."/>
<xsd:field xpath="spm:w fStep"/>
</xsd:keyref>

</xsd:element>
<xsd:element name ="Experiment" type="spm:tExperiment'>

<xsd:key name="kExperiment">

164

<xsd:selector xpath="."/>
<xsd:field xpath="@idEx"/>
</xsd:key>
<xsd:keyref name="refWorkflow " refer="spm:kWorkflow ">
<xsd:selector xpath="."/>
<xsd:field xpath="spm:workflow "/>
</xsd:keyref>
<xsd:keyref name="refInstanceOf" refer="spm:kWorkflow ">
<xsd:selector xpath="spm:essay"/>
<xsd:field xpath ="spm:instanceOf"/>
</xsd:keyref>
<xsd:keyref name="refCodeResource" refer="spm:kCodeResource">
<xsd:selector xpath="spm:essay/spm:execution"/>
<xsd:field xpath="spm:codeResource"/>
</xsd:keyref>
<xsd:keyref name="refDataResource" refer="spm:kDataResource">
<xsd:selector xpath="spm:essay/spm:execution/spm:dataMatch"/>
<xsd:field xpath="spm:dataResource"/>
</xsd:keyref>
</xsd:element>
<}- Declarando tipos complexos -->
<xsd:complexType name ="tDataCategory" abstract="true">
<xsd:sequence>
<xsd:element name ="title" type ="xsd:string"/>
<xsd:element name ="creator" type="xsd:string"/>
<xsd:element name ="creationDate" type="xsd:date"/>
<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>to support extensibility elements </xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="idDC" type="xsd:NCName" use="required"/>
</xsd:complexType>
<xsd:complexType name ="tModDC">
<xsd:complexContent>
<xsd:extension base="spm:tDataCategory">
<xsd:sequence>
<xsd:element name ="MDCAttribute" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="attltem" type ="spm:tMDCAttribute"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="tProgDC">
<xsd:complexContent>
<xsd:extension base="spm:tDataCategory">
<xsd:sequence>
<xsd:element name ="implements" type ="xsd:string" minOccurs="0"/>
<xsd:element name ="wsdlElementRef" type="xsd:string">
<xsd:annotation>
<xsd:documentation> Each ProgDC corresponds to a type in a wsdl
document. </xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="PDCAttribute" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="attltem" type ="spm:tPDCAttribute"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

165

<xsd:complexType name ="tAttribute" abstract="true">
<xsd:sequence>
<xsd:element name ="attTitle" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="idAttribute" type="xsd:NCName" use="required"/>
</xsd:complexType>
<xsd:complexType name ="tMDCAttribute" >
<xsd:complexContent>
<xsd:extension base="spm:tAttribute">
<xsd:sequence>
<xsd:element name ="quantity" type ="spm:tQuantity"/>
<xsd:element name ="classification" type="xsd:string"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="tPDCAttribute" >
<xsd:complexContent>
<xsd:extension base="spm:tAttribute" >
<xsd:sequence>
<xsd:element name ="unit" type="spm:tUnit"/>
<xsd:element name ="format" type="xsd:string"/>
<xsd:element name ="implements" type ="xsd:string" minOccurs="0"/>
<xsd:element name ="wsdlElementRef" type="xsd:string">
<xsd:annotation>
<xsd:documentation> Each PDCAttr corresponds to a type in a wsdl
document. </xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="tTransformation" abstract="true">
<xsd:sequence>
<xsd:element name ="title" type ="xsd:string"/>
<xsd:element name ="creator" type="xsd:string">
<xsd:annotation>
<xsd:documentation>name of the creator of the transformation (not the person who
describes it)</xsd:documentation >
</xsd:annotation>
</xsd:element>
<xsd:element name ="creationDate" type="xsd:date" >
<xsd:annotation>
<xsd:documentation>date of the creation (conception) of the transformation. It should reflect
the model age. </xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="input" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="inputltem" type ="spm:tDatalO"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="parm' minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="parmltem" type="spm:tParni'/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name ="output" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="outputltem" type="spm:tDatalOQ"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name ="constraint" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

166

<xsd:sequence>
<xsd:element name ="constltem' type="spm:tConstraint"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>to support extensibility elements </xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="idTF" type="xsd:NCName" use="required"/>
</xsd:complexType>
<xsd:complexType name ="tModel" >
<xsd:complexContent>
<xsd:extension base="spm:tTransformation">
<xsd:sequence>
<xsd:element name ="area" type ="xsd:string" >
<xsd:annotation>
<xsd:documentation>A model is usually associated to an area of application. Ex.:
industrial, economic, social, political, environmental, etc</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="scope" type="xsd:string">
<xsd:annotation>
<xsd:documentation>The target or scope of a model is the system it represents. Ex.:
Itajai hydrographic basin, a geographic region, or an enterprise.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="classification" type="xsd:string">
<xsd:annotation>
<xsd:documentation>There are many different ways of classifying a model. Ex.
mathematic, logic, deductive, empiric, probabilistic, algorithmic, simulation, etc.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="purpose" type="xsd:string">
<xsd:annotation>
<xsd:documentation>Each model has a specific purpose, for which it is
valid. </xsd:documentation >
</xsd:annotation>
</xsd:element>
<xsd:element name ="hypothesis" type="xsd:string" >
<xsd:annotation>
<xsd:documentation>Every model is initially a hypothesis. Building a model
represents the expression of a scientific hypothesis that needs to be validated </xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="bibliographicRef" type="xsd:string" >
<xsd:annotation>
<xsd:documentation> scientific publications and related explanatory
material</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="webReference" type="xsd:string" minOccurs="0">
<xsd:annotation>
<xsd:documentation>web address of the model reference material, if
exists</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="tProgram">
<xsd:complexContent>
<xsd:extension base="spm:tTransformation">
<xsd:sequence>
<xsd:element name ="implementationLanguage" type="xsd:string">
<xsd:annotation>
<xsd:documentation>Programming language with which the program was
implemented. It might be important to specify the version of the language.</xsd:documentation>

167

</xsd:annotation>
</xsd:element>
<xsd:element name ="version" type ="xsd:string" >
<xsd:annotation>
<xsd:documentation>version/release of the program. </xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="implements" type ="xsd:string" minOccurs="0"/>
<xsd:element name ="wsdlElementRef" type="xsd:string">
<xsd:annotation>
<xsd:documentation> Each Program corresponds to a port type operation in a wsdl
document. </xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="tDatalO">
<xsd:sequence>
<xsd:element name ="title" type ="xsd:string"/>
<xsd:element name ="refersTo" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name ="tParni'>
<xsd:sequence>
<xsd:element name ="title" type ="xsd:string"/>
<xsd:element name ="refersTo" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name ="tConstraint">
<xsd:sequence>
<xsd:element name ="title" type ="xsd:string"/>
<xsd:element name ="description" type ="xsd:string">
<xsd:annotation>
<xsd:documentation>description in natural language of the constraint</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="expression" type ="xsd:string">
<xsd:annotation>
<xsd:documentation>description in a formal language of the constraint (possibly
BPEL4WS)</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name ="tResource" abstract="true">
<xsd:sequence>
<xsd:eleme nt name ="title" type ="xsd:string"/>
<xsd:element name ="creator" type="xsd:string" >
<xsd:annotation>
<xsd:documentation>if the creator is a program, it should be identified by a uri, a program
name, or a code execution id</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="creationDate" type="xsd:date"/>
<xsd:element name ="describedBy" type ="xsd:string"/>
<xsd:element name ="wsdlElementRef" type="xsd:string">
<xsd:annotation>
<xsd:documentation> Each code/data resource corresponds to a port operation in a wsdl
document. </xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>to support extensibility elements </xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="idResource" type="xsd:string" use="required"/>
</xsd:complexType>

168

<xsd:complexType name ="tDataResource">
<xsd:complexContent>
<xsd:extension base="spm:tResource">
<xsd:sequence>

<xsd:element name ="provenance" type="xsd:string" >

<xsd:annotation>
<xsd:documentation>identification of data provenance. Ex.: name of the satellite,
sensor identification </xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name ="genMechanisn!' type="spm:tGenMechanisni'>
<xsd:annotation>

<xsd:documentation>generation mechanism that was used to generate data. Ex.:

satellite, sensor, code execution</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="webReference" type="xsd:string" minOccurs="0">
<xsd:annotation>
<xsd:documentation> If there is a web address that directly points to the Data
Resource, as an XML page </xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="tCodeResource">
<xsd:complexContent>
<xsd:extension base="spm:tResource">
<xsd:sequence>
<xsd:element name ="operationalSysteni' type="xsd:string"/>
<xsd:element name ="hardwarelnfo" type="xsd:string"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name ="tWorkflow ">
<xsd:sequence>
<xsd:element name ="title" type ="xsd:string"/>
<xsd:element name ="creator" type="xsd:string"/>
<xsd:element name ="creationDate" type="xsd:string"/>
<xsd:element name ="wfDefinition" type ="xsd:string" >
<xsd:annotation>
<xsd:documentation>address of the workflow specification using
BPEL4WS.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name ="wfStep" type ="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>to support extensibility elements </xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="idWF" type="xsd:NCName" use="required"/>
</xsd:complexType>
<xsd:complexType name ="tExperiment'>
<xsd:sequence>
<xsd:element name ="title" type ="xsd:string"/>
<xsd:element name ="creator" type="xsd:string"/>
<xsd:element name ="creationDate" type="xsd:date"/>
<xsd:element name ="project' type="xsd:string"/>
<xsd:element name ="purpose" type="xsd:string"/>
<xsd:element name ="hypothesis" type="xsd:string"/>
<xsd:element name ="report" type="xsd:string"/>
<xsd:element name ="status" type="spm:tStatus"/>
<xsd:element name ="w orkflow " type="xsd:string" maxOccurs="unbounded"/>
<xsd:element name ="essay" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="creationDate" type="xsd:date"/>

169

<xsd:element name ="creationTime" type="xsd:time"/>
<xsd:element name ="comment" type ="xsd:time" minOccurs="0">
<xsd:annotation>
<xsd:documentation>Each essay may generate some comments added by the
scientist. </xsd:documentation>
</xsd:annotation>
</xsd:eleme nt>
<xsd:element name ="instanceOf" type="xsd:string"/>
<xsd:element name ="concreteWFdefinition" type="xsd:string"/>
<xsd:element name ="duration" type="xsd:float"/>
<xsd:element name ="execution" maxOccurs="unbounded" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="codeResource" type="xsd:string"/>
<xsd:element name ="dataMatch" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="datalO" type="xsd:string"/>
<xsd:element name ="dataResource" type ="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name ="parmMatch" minOccurs="0"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name ="parni' type ="xsd:string"/>
<xsd:element name ="dataResource" type ="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>to support extensibility elements </xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="idEx" type ="xsd:NCName" use="required"/>
</xsd:complexType>
<xsd:simpleType name="tGenMechanisni'>
<xsd:restriction base="xsd:string" >
<xsd:enumeration value="satellite"/>
<xsd:enumeration value="sensor"/>
<xsd:enumeration value="manual'/>
<xsd:enumeration value="code execution"/>
<xsd:enumeration value="other"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="tStatus">
<xsd:restriction base="xsd:string" >
<xsd:enumeration value="active"/>
<xsd:enumeration value="notStarted"/>
<xsd:enumeration value="interrupted"/>
<xsd:enumeration value="suspended"/>
<xsd:enumeration value="finished"/>
<xsd:enumeration value="archived"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="tUnit">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="--- no unit ---"/>
<xsd:enumeration value="ms:Shot"/>
<xsd:enumeration value="ms:CarMile"/>
<xsd:enumeration value="ms:FixedRate"/>
<xsd:enumeration value="ms:GramsperCubicCentimeter"/>

170

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration

value="ms:KilogramsperSquareMeter"/>

value="ms:Millivolts"/>
value="ms:Manmonth"/>
value="ms:SuperBulkBag"/>
value="ms:FiftyPoundBag"/>
value="ms:Milliamperes"/>
value="ms:Megabyte"/>
value="ms:PartsPerMillion"/>
value="ms:Ampere"/>
value="ms:Volt"/>

value="ms:KiloPoundsPerSquarelnch"/>

value="ms:FootPounds"/>
value="ms:Joules"/>

value="ms:TenKilogramDrum"/>

value="ms:Acre"/>
value="ms:Atmosphere"/>
value="ms:Billet"/>
value="ms:Bale"/>
value="ms:BaseBox"/>
value="ms:Bucket"/>
value="ms:Bundle"/>
value="ms:Beam'/>
value="ms:BoardFeet'/>
value="ms:Bag"/>
value="ms:Bar"/>
value="ms:Block'/>
value="ms:Bulk'/>
value="ms:Bottle"/>
value="ms:Barrel'/>
value="ms:Bushel"/>
value="ms:Box"/>
value="ms:MillionBTUs"/>
value="ms:Centipoise"/>
value="ms:Case"/>
value="ms:Carboy"/>
value="ms:CubicCentimeter"/>
value="ms:Carat"/>
value="ms:CubicFeet"/>
value="ms:Container"/>
value="ms:Cubiclnches"/>
value="ms:Cylinder"/>
value="ms:Centimeter"/>
value="ms:Can"/>
value="ms:Crate"/>
value="ms:Cartridge"/>
value="ms:CubicMeter"/>
value="ms:Cassette"/>
value="ms:Carton'/>
value="ms:Cup"/>
value="ms:HundredPounds"/>
value="ms:Coil"/>
value="ms:CubicYard"/>
value="ms:Days"/>
value="ms:Degree"/>
value="ms:Dram'/>
value="ms:Miles"/>
value="ms:Decimeter"/>
value="ms:Drum'/>
value="ms:Dozen"/>
value="ms:Each"/>
value="ms:Fahrenheit"/>
value="ms:TrackFoot"/>
value="ms:PoundsperSqgFt"/>
value="ms:FeetPerMinute"/>
value="ms:Foot"/>
value="ms:Gallon"/>
value="ms:PoundsperGallon"/>
value="ms:GramsperLiter"/>
value="ms:Gram'/>
value="ms:Gross"/>
value="ms:Grain"/>

171

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration

value="ms:GrossYard"/>
value="ms:Hectoliter"/>
value="ms:Hank"/>
value="ms:HundredFeet"/>
value="ms:HundredCubicFeet"/>
value="ms:Bale"/>
value="ms:BaseBox"/>
value="ms:Bucket"/>
value="ms:Bundle"/>
value="ms:Beam'/>
value="ms:BoardFeet'/>
value="ms:Bag"/>
value="ms:Bar"/>
value="ms:Block'/>
value="ms:Bulk'/>
value="ms:Bottle"/>
value="ms:Barrel'/>
value="ms:Bushel"/>
value="ms:Box"/>
value="ms:MillionBTUs"/>
value="ms:Centipoise"/>
value="ms:Case"/>
value="ms:Carboy"/>
value="ms:CubicCentimeter"/>
value="ms:Carat"/>
value="ms:CubicFeet"/>
value="ms:Container"/>
value="ms:Cubiclnches"/>
value="ms:Cylinder"/>
value="ms:Centimeter"/>
value="ms:Can"/>
value="ms:Crate"/>
value="ms:Cartridge"/>
value="ms:CubicMeter"/>
value="ms:Cassette"/>
value="ms:Carton"/>
value="ms:Cup"/>
value="ms:HundredPounds"/>
value="ms:Coil"/>
value="ms:CubicYard"/>
value="ms:Days"/>
value="ms:Degree"/>
value="ms:Dram'/>
value="ms:Miles"/>
value="ms:Decimeter"/>
value="ms:Drum'/>
value="ms:Dozen"/>
value="ms:Each"/>
value="ms:Fahrenheit"/>
value="ms:TrackFoot"/>
value="ms:PoundsperSqFt"/>
value="ms:FeetPerMinute"/>
value="ms:Foot"/>
value="ms:Gallon"/>
value="ms:PoundsperGallon"/>
value="ms:GramsperLiter"/>
value="ms:Gram'/>
value="ms:Gross"/>
value="ms:Grain"/>
value="ms:GrossYard"/>
value="ms:Hectoliter"/>
value="ms:Hank"/>
value="ms:HundredFeet"/>
value="ms:HundredCubicFeet"/>
value="ms:Horsepower"/>
value="ms:HundredTroyOunces"/>
value="ms:Hours"/>
value="ms :HundredWeight"/>
value="ms:HundredWeight"/>
value="ms:Hertz"/>
value="ms:InchPound"/>

172

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration

value="ms:Inch"/>
value="ms:Joint'/>
value="ms:Jar"/>
value="ms:Jug"/>
value="ms:Kilowatt"/>
value="ms:KilogramsperCubicMeter"/>
value="ms:Keg"/>
value="ms:Kilogram'/>
value="ms:KilowattHour"/>
value="ms:KilometersPerHour"/>
value="ms:Kilopascal"/>
value="ms:Kit"/>
value="ms:Kelvin'/>
value="ms:Pound"/>
value="ms:LinearFoot"/>
value="ms:LongTon"/>
value="ms:Length"/>
value="ms:Lot"/>
value="ms:LumpSum'/>
value="ms:Liter"/>
value="ms:Millibar"/>
value="ms:Milligrani'/>
value="ms:milligram_per_liter" id="mg/I"/>
value="ms:Metric"/>
value="ms:Minutes"/>
value="ms:Milliliter"/>
value="ms:Millimeter"/>
value="ms:Months"/>
value="ms:MetricTon"/>
value="ms:Meter"/>
value="ms:Barge"/>
value="ms:Load"/>
value="ms:ShortTon"/>
value="ms:OvertimeHours"/>
value="ms:Ounce-Av"/>
value="ms:Pages-Electronic"/>
value="ms:Percent"/>
value="ms:Pail"/>
value="ms:Piece"/>
value="ms:Pad"/>
value="ms:Pallet"/>
value="ms:Package"/>
value="ms:PalletUnitLoad"/>
value="ms:Pair"/>
value="ms:PoundsperSqlinch"/>
value="ms:Pint"/>
value="ms:Quart"/>
value="ms:RevolutionsPerMinute"/>
value="ms:Rod-5.5Yards"/>
value="ms:Reel'/>
value="ms:Roll"/>
value="ms:Ream"/>
value="ms:Run"/>
value="ms:Trimester"/>
value="ms:SquareMetersperSecond'/>
value="ms:SquareMile"/>
value="ms:SquareFoot"/>
value="ms:Sheet"/>
value="ms:Squarelnch"/>
value="ms:SacK'/>
value="ms:SquareMeter"/>
value="ms:Spool'/>
value="ms:Strip"/>
value="ms:Set"/>
value="ms:Skid"/>
value="ms:SquareYard"/>
value="ms:Tube"/>
value="ms:Truckload"/>
value="ms:Tote"/>
value="ms:GrossTon"/>
value="ms:Thousand"/>

173

<xsd:enumeration value="ms:Tank"/>
<xsd:enumeration value="ms:ThousandFeet"/>
<xsd:enumeration value="ms:NetTon"/>
<xsd:enumeration value="ms:TroyOunce"/>
<xsd:enumeration value="ms:ThousandFeet"/>
<xsd:enumeration value="ms:ThousandSquareFeet"/>
<xsd:enumeration value="ms:Unit"/>
<xsd:enumeration value="ms:Week'/>
<xsd:enumeration value="ms:Yard"/>
<xsd:enumeration value="ms:Years"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="tQuantity" >
<xsd:restriction base="xsd:string" >
<xsd:enumeration value="--- no quantity ---"/>
<xsd:enumeration value="ms:concentration"/>
<xsd:enumeration value="ms:temperature"/>
<xsd:enumeration value="ms:speed"/>
<xsd:enumeration value="ms:time"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name ="basicDataType">
<xsd:choice>

<xsd:element name ="primitiveDT" type="spm:tPrimitiveDataType"/>
<xsd:element name ="derivedDT" type="spm:tDerivedDataType"/>

</xsd:choice>
</xsd:complexType>
<xsd:simpleType name="tPrimitiveDataType" >
<xsd:restriction base="xsd:QName">
<xsd:enumeration value="xsd:string"/>

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration

value="xsd:boolean"/>
value="xsd:decimal"/>
value="xsd:float'/>
value="xsd:double"/>
value="xsd:duration"/>
value="xsd:dateTime"/>
value="xsd:time"/>
value="xsd:date"/>
value="xsd:hexBinary"/>
value="xsd:base64Binary"/>
value="xsd:anyURI"/>
value="xsd:QName"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="tDerivedDataType">
<xsd:restriction base="xsd:QName">

<xsd:enumeration value="xsd:integer"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema >

174

