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One of the main challenges of scientific applications is to allow scientists to 

share their scientific resources. Besides scientific data, scientific programs and models 

are also valuable resources to exchange. Usually, scientific programs are available for 

local installation, in compressed files with configuration scripts. Data input and output 

files are rarely organized and in silico essays are frequently lost. The database 

community has been working on data management for the last four decades. However, 

managing models, programs and workflows as well as data is a new issue and complex 

task. To facilitate the exchange, reuse and dissemination of information we propose a 

Web services based architecture for managing distributed scientific resources. The 

main contribution of this thesis is an architecture (SRMW) and an enhanced metadata 

(SPMW) support system for effective management of distributed scientific resources. 

The architecture and metamodel have been studied under two real scientific 

applications evidencing important and innovative decisions on the design of SRMW and 

SPMW, such as: (i) definition of three basic metamodel categories, i.e., model, program 

and data; (ii) characterization of experiments and essays; (iii) publication and 

navigation of scientific resources using Web services platform. 
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1. Introduction 

Scientific experiments have traditionally evolved in isolation, i.e., scientists 

from different disciplines used to work on their own experiments. However, as science 

complexity increased over time, scientific experiments now depend on the cooperation 

among scientists from different disciplines and organizations. 

Typically, scientists work with experiments based on scientific models, which 

are simplified representations of real phenomena. A scientific experiment can be viewed 

as a flow of data transformations that starts from raw data and finally produces data 

with added scientific value. Therefore, programs and data are some of the most valuable 

scientific resources at scientific laboratories. These labs usually have multiple versions 

of a single program, as well as multiple formats of a data set (images, flat files, 

databases, etc.). Also, multiple data sets may be used as input to those programs. 

Moreover, due to technology improvements, scientific data from different sources 

became largely available in digital media. Scientists can take advantage of such data 

availability by using them to enhance their experiments.  

All these versions, formats and experiments are not easy to manage. As the 

number of programs grows, scientists find it more and more difficult to manage such 

resources. One of the reasons is the complexity of new programs coming up in the 

scientific scenario. Another difficulty is the natural need for composing chains of 

programs by combining their output/input data. In addition, the use of script languages 

is very popular within scientific communities. However, it does not facilitate the 

cooperation among scientists. Since scripts are not remotely accessed and usually 

demand programs to be installed locally, scientists cannot share their experiments with 

other scientists. 

An experiment may begin when a scientist selects models and relevant input 

data for the problem to be studied, determining or developing an adequate flow of 

programs that can process the selected input data. Many of these programs are 

implemented for some specific platform, such as high performance and parallel 

machines. In this scenario, the main difficulties begin with trying to find the right 

program for each experiment and the interoperability with other scientific resources, 

such as programs and data. To find the right program means first to find the right model 
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and this may not be a simple task. Information about the applicability of a model can 

feedback its users with more accurate model pre-conditions. Furthermore, to fully 

understand a model, the scientist may need to investigate previous case studies that have 

successfully used that model.  

Usually, it is the scientist’s previous experience that guides the choice of a 

model for a new experiment. To take advantage of such knowledge, the scientist should 

be able to access documentation on previous experiments. This documentation is not 

always available and may not be described within a common framework. Specially 

when dealing with empirical models, the scientist has to analyze contextual details of 

such experiments, verifying similarities with the problem in hand.  

In summary, collaboration among scientists is based on the exchange of not only 

data but also scientific models, their implementations (programs), program 

compositions and experiment results.  Therefore, scientists need an environment that 

supports geographically distributed team collaboration, and that enables scientific 

resources exchange between different teams. Ideally, a distributed information 

management architecture should enable scientists to publish (that is, make publicly 

available) their scientific data, models and programs. Program providers should be able 

to make their programs available to other scientists, describing and guiding their remote 

use. In addition, data providers should be able to make their data sets available to other 

scientists by describing data structure and providing the necessary means to get them. 

On the other hand, scientists and decision-makers should be able to search, select and 

manipulate published data, models and programs that are relevant to their experiments 

and decisions.  

In order for distributed scientific resources to become part of a large information 

system on the Internet, they must be located, understood and efficiently accessed over 

the network. Sharing scientific data requires identifying not only data but also what 

model and model implementations (programs) are useful, where these programs are 

located and when (in which order) should programs be executed. It also requires 

enabling remote data access for execution at program locations. Moreover, based on this 

distributed approach, scientists should be able to configure their own combinations of 

programs provided by different teams.  

A step towards this direction includes providing program and model descriptions 

to facilitate the selection of the appropriate model and consequently the appropriate 
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program. However, this is not a simple task. First of all, model developers come from 

many different areas, dealing with different kinds of models and description standards. 

Also, each model description should include its use conditions, i.e., contextual and 

operational constraints, which are difficult to formalize. Now, suppose a user 

understands a model and selects it, finds the correspondent program and runs it. 

Feedback information on such model usage is valuable, as other users may need to 

investigate previous case studies involving that model to fully understand it. 

In the past, several technologies have been proposed to address these issues. 

Among the more important ones are Heterogeneous and Distributed Database Systems 

(HDDS) (SHETH, A. P.; LARSON, J. A., 1990), Model Management Systems (MMS) (GUARISO, G.; 

HITZ, M.; WERTHNER, H., 1996) (BANERJEE, S; BASU, A., 1993) (BENZ, J; HOCH, R., 1999) (BRAZ, M. H., MELO, R. 

N., 1989) and Scientific Workflow Management Systems (WESKE, M.; VOSSEN, G.; MEDEIROS, C., 

1996)  (AILAMAKI, A.; IOANNIDIS, Y.; LIVNY, M., 1998). These approaches are not sufficient to 

address all those issues simultaneously, however, their combination can be helpful.  

We present the combination of the desired functionality through an architecture 

and a metamodel using Web services (WS) technology. Data and programs can be 

published as Web services. Web services classes may be used to categorize and classify 

data and programs. These classes can be used in service composition, which can 

become a workflow. However, this is not a simple task. Aggregating equivalent 

programs and data means to overcome their heterogeneity. The Web services 

Description Language (WSDL) (WSDL, 2003) provides an abstract level for program and 

data resources descriptions. However, WSDL is not sufficient to address the 

heterogeneity problem, specially in the scientific environment, where programs are 

based on scientific models. Since WSDL was originally proposed for generic service 

description, it lacks application-related semantic descriptors. To aggregate scientific 

resources we had to extend WSDL to provide a better metadata support.  

The main goal of our approach is to provide a Web services environment, to 

deliver semantic information about these scientific resources. We propose the Scientific 

Resources Management (SRM) architecture where scientific users can remotely access 

and share programs and data, as well as scientific workflow definitions and 

experiments. To make these resources really useful, SRM embeds the Scientific 

Publishing Metamodel (SPM) to harmoniously describe them. SPM relates models, 

programs and data through specific categories and semantic relationships. SRM is then 
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implemented as an enhanced Web services architecture (SRMW) where SPM is 

represented as an extension of WSDL (SPMW). SRMW architecture provides seamless 

interoperability among published data and programs. In addition, equivalent programs 

can be described and grouped in one service.  

The main contribution of our work is to combine a metamodel-based 

architecture for managing scientific resources to a promissing and adequate technology, 

i.e., Web services. Through this combination, we successfully address what HDDS, 

MMS and WfMS approaches individually fail to address. In addition, our approach is an 

innovative contribution to the scientific area.  

We have exercised SPMW metamodel, applying it to scientific resources of two 

different research teams. The first one took place at the Petrobras Research Centre 

(CENPES), with the collaboration of the biocorrosion team of specialists. The second 

one took place at the Institute of Biophysics Carlos Chagas Filho (IBCCF), UFRJ, with 

the collaboration of dynamic molecular biology specialists. In both teams, scientists and 

specialists can browse metadata that describe scientific resources to find useful 

information for their research projects. Then, they can use these resources published as 

Web services to perform new experiments.  

We have shown that our metamodel-based approach has provided a crucial 

support to scientific applications development. In our approach, several conceptual 

levels are captured in SPMW metamodel specially designed to those applications, and 

scientific resources are described according to this metamodel. One of the main 

contributions is the distinction between models and their implementations. Also, like in 

traditional scientific laboratories, SPMW is able to register the ongoing experiments. 

This work is organized as follows. In section 2, we have briefly described some 

scientific applications. These applications have motivated our work on providing a 

scientific resources management solution. Then we discuss the main scientific 

resources, characterizing each one of them. Finally, we close the section with the 

identification of requirements for an adequate solution.  

In section 3, we have described some of the current main approaches that 

address scientific resources management. Some approaches include recent technologies, 

while others embed these technologies in relevant research projects. We organize them 

according to their focus, in three subsections: handling the distribution and 
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heterogeneity of scientific resources; describing scientific resources; managing 

scientific workflows and registering their usage. Finally, we close the section with an 

analysis of the solutions presented so far. 

In section 4, we describe our solution to scientific resources management. The 

functionality of the SRM architecture is described in modules. Each of SRM modules is 

described in detail. As SRM is a metamodel based architecture, its metamodel (SPM) is 

also presented in this section. SPM is represented as a UML diagram, which is 

explained in parts. Subdiagrams are extracted from the main diagram, and each of the 

concepts is defined and exemplified. Finally, we analyse SRM in the light of related 

work. 

In section 5, we introduce SRM as a Web services based architecture. We revisit 

SRM modules explaining how we have implemented them. To cope with the 

implemented architecture, SPM is expressed as an XML Schema (SPMW), which is 

also presented in this section. At the end, we explain how SPMW extends WSDL 

documents, by referring to its elements.  

In section 6, we have described how SRMW can be used. We have instantiated 

SPMW documents according to real scientific application resources. First we describe 

resources of a biocorrosion application and then, we describe resources of a structural 

genomic application.  

Finally, we conclude this work summarizing its contents and including some 

perspectives for future directions. Also, we have included an appendix with the 

complete SPMW XML schema. 
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2. Scientific Resources Management 

A scientific application can be defined as a computer application that addresses a 

specific science investigation, typically astronomy, biology, physics, engineering, 

geology among others. The main users of such applications are scientists, some playing 

the role of application developers, and others playing the role of final users. Usually, 

these applications are computer programs or systems developed within some research 

laboratory tools, such as pollution control systems, molecular dynamics simulators, 

astronomy image processing programs, weather forecast systems, etc. 

 Throughout the years, scientific applications evolved together with computer 

technology. Nowadays, scientific applications involve different resources, such as 

complex programs and large data sets. However, scientific groups have difficulties to 

organize their application resources. Some of these applications use many computer 

programs that may have different versions, which may derive from different 

abstractions, or models. It is also a hard task to manage data sets used as input and 

produced by those programs. In addition, combining sequences of programs is also a 

usual requirement. Therefore, the increasing complexity of scientific applications and 

the difficulty of dealing with the diversity and quantity of the scientific application 

resources have driven scientists to develop scientific resources management solutions.  

The objective of this section is to identify the requirements for scientific 

resources management through the analyses of typical scientific applications and the 

identification of the necessary resources. We have chosen two typical scientific 

applications examples: environmental and biophysical. Both applications make use of 

different scientific resources, which are identified and characterized.  

Sections 2.1 and 2.2 briefly describe environmental and biophysical 

applications, respectively, and include some illustrative examples, where some of the 

difficulties faced by these applications are identified. Particularly, we were able to 

examine closely a biocorrosion application, which was part of a research project called 

SIMBIO (MOURA, F.A., 2001), as well as a structural genomic application, which is now part 

of an ongoing research project called MHOLline (RÖSSLE, S., RIBEIRO, S., et al., 2002). Section 

2.3 identifies which resources are typically handled by scientists, and defines them. 
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Finally, section 2.4 identifies the requirements for providing a solution for scientific 

resources management.  

2.1 Environmental Applications 

Environmental applications are designed to represent environmental systems. 

Environmental systems involve elements of the Earth surface and their relationship, 

which means that spatiality, is an inherent characteristic. These systems focus on the 

structure, functionality and/or dynamics of the elements they involve. Considering the 

variety of elements involved and also the different ways they may relate to each other, it 

is easy to envision the complexity of such systems.  

Environmental systems may be divided into two broad categories: Ecosystems 

and Geosystems (CHRISTOFOLETTI, A., 1999). The former one concentrates on ecological 

issues related to biologic communities, their habitat and characteristics, while the latter 

concentrates on the geographic distribution of the elements. Ecosystems are defined as 

systems that cover a relatively homogeneous area of live organisms interacting with 

their environment (non- living elements). The living beings are the main elements of 

such systems. Among the relationships between the elements present in these systems 

are the energy exchange, the nutrients exchange, the productivity, the population 

dynamics, etc. For geosystems, also known as physical environmental systems, the 

geographic aspect is the most important. Whichever elements are present in these 

systems (climate, topography, rocks, water, vegetation, animals, soils, etc.); they are 

always related to some point in space.  

The understanding and solutions for environmental issues involve the design of 

applications that use many other techniques, such as numerical analysis, computing 

optimisations, econometric evaluations, etc. For instance, in order to solve some 

problems related to pollution, like oil spills or gas leaks, it is necessary to use wind or 

ocean stream numerical calculations to predict the oil/gas behaviour and calculate the 

affected areas. The term environmental applies whenever these techniques are used 

together with a major objective: the evaluation of human impacts. For example, the 

ocean stream analysis is a specific theme of oceanography. However, when applied to 

the study of oil spills and its effects over the ocean life, it gets an environmental 

perspective.  



   8

The inherent complexity of environmental systems is due to the many elements 

and processes involved, and it can be addressed by specific disciplines, such as, 

geomorphology, climatology, geology, biology, meteorology, physics, chemistry, etc. 

Therefore, it is difficult to find a single environmental specialist, because a person 

rarely gets skilled in that many disciplines. Usually, what happens is a natural 

separation of specialists, each one working on a slice of the same environmental 

problem. For instance, biologists work on biocorrosion of oil pipes and oceanographers 

work on ocean stream behaviour, but both may be involved on the same environmental 

problem: an oil spill from underwater pipes. They may be working at different agencies 

of the same company, or even in different companies, focusing on different aspects of 

the same problem. Therefore, environmental applications are usually a combination of 

programs developed by different specialists. Some typical environmental applications 

are described in the next sub-sections. 

2.1.1 Farm Field Damage Prevention 

Ailamaki et al. (AILAMAKI, A.; IOANNIDIS, Y.; LIVNY, M., 1998) present a typical example 

of the combination of programs and data from different disciplines. Atmosphere and 

soil specialists cooperate through the use of meteorological programs and data to build a 

scientific application to be used in the prevention of overnight frost damages in 

cranberry bogs, as Figure 1 shows. This application is used regularly to monitor 

temperatures. Initially, the Atmospheric Sciences Department uses an US forecast 

program to provide a twenty-four hour forecast of the atmosphere temperature based on 

satellite and ground information. Then, a second program (Bog Forecast extraction) 

uses this output to generate the temperature forecast for twenty-five meters above the 

vine locations. This output is then sent to the Soils Sciences Department that processes 

it using the CranEB program to derive a forecast for the canopy level. Later in the day, 

as new weather observations become available, the initial twenty-five meters forecast 

can be updated by a statistical analysis program, which compares CranEB output 

forecasts with new observed weather conditions, and provides corrections to the original 

twenty-five meters forecast. Then, CranEB is rerun to produce updated canopy- level 

forecast, which is fed into a visualization tool, which generates forecast graphs.  

In this application, scientists were able to cooperate with each in order to 

understand each others programs and combine them harmoniously. However, program 
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combination is a frequent issue in environmental applications and program combination 

must be addressed more effectively.  
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Figure 1: The Cranberry Application (AILAMAKI, A.; IOANNIDIS, Y.; LIVNY, M., 1998) 

2.1.2 Diagnosis and Prevention of Biocorrosion on 

Petroleum Production  

A research group working at the Petrobras Research Centre (CENPES), in Rio 

de Janeiro, is dedicated to monitor of biophenomena in the corrosion process of oil 

pipes. These scientists' activities are organized in case studies. Each case study involves 

the investigation of the affected region, some laboratory and computational analyses. 

Either the observation of a possible sign of biocorrosion, a prevention study or even a 

simple investigation may start a new case study. First, scientists collect water, soil or 

pipe samples from the region under investigation. There are regions where sampling 

data is provided by special field sensors. Alternatively, laboratory analyses provide 

numerical data sets from manually collected samples, such as chemical components' 

indexes. These data sets are then interpreted or analysed by means of scientific formulas 

in order to derive new data, or some useful conclusion, such as "there is evidence of a 

certain type of bacteria", "there is no evidence of a certain type of bacteria, some other 

type should be checked" or "re-sampling is needed".  

Biocorrosion scientists (e.g. biologists or chemical engineers) are usually guided 

by the investigation of previous archived case studies, where they keep documented the 

use of formulas, programs and data. In addition, data collected from field sensors 

eventually need some computational treatment. Although distributed sensors may 
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continuously obtain data, this is not always true for all case studies. Raw data should be 

invariably treated by data cleaning programs, which are derived for example from 

interpolation techniques. The combination of resources such as biocorrosion analytical 

programs and statistical programs typically characterize biocorrosion applications, as 

Figure 2 shows.  
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Figure 2: Biocorrosion Application  

In biocorrosion case studies, to find the right formula for each case is the main 

difficulty, and program understanding is secondary. Therefore, for this kind of 

application, it is important to have a detailed description of models and access to 

previous case studies.  

2.1.3  Air Pollution Forecast  

At the National Institute of Research in Informatics and Automation (INRIA), in 

Paris, researchers had worked on a project called DECAIR (PROJECT DECAIR, 1999-2002). The 

aim of this project was to provide companies in charge of forecasting urban air pollution 

with good quality data derived from Earth Observation (EO) devices, in order to 

improve the results of existing air quality forecast results. The idea of the project was to 

provide support for the definition of scientific applications, combining satellite images 

treatment programs and air quality forecast programs. The development of such 

applications requires the collaboration of two kinds of scientists: those specialized in air 

quality forecasting and those specialized in satellite image analysis. In a typical air 

pollution control application, satellite data are delivered to a pre-processing program for 

image treatment, feeding two regional air quality programs, running in Berlin and 

Madrid, with EO-derived input data, as Figure 3 shows.  
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In this kind of application, the combination of programs is also an issue. It is 

required to understand programs and their constraints, such as which geographic area 

they were built for. 
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Figure 3: Pollution Control Application  

2.2 Biophysical Applications 

In the last decades, biochemical laboratories have been developing scientific 

applications. Programs and data are some of the most valuable scientific resources in 

these labs. They usually run exhaustively a single program with different data sets. This 

single program can be available at different sites, in different versions or formats. The 

data sets can also vary in versions, as well as multiple formats (images, flat files, 

databases, etc.). Typically, each program is stud ied and installed by one or two 

scientists. Other scientists, who are not familiar with these programs, usually request 

specialists to configure and run these programs, using their skill. As these program 

executions increase, the number of data sets used as input and produced by those 

programs also increases. Besides, each of these input data sets has a particular format 

and has been prepared by one specific scientist.  

As the number of programs increases, scientists find it more and more difficult 

to manage such resources. All these programs, data versions and formats are not easy to 

manage. Even under rigid lab rules it is very difficult to keep track of these resources. 

Usually, scientists count on the file directory structure to organize data inputs and 

outputs, labelling them according to the research project, program or scientist. However, 

this was proved not to be sufficient as many of these labs have been hiring or consulting 

database specialists to provide solutions for their resources management problems.   

More importantly, there is a natural need for composing chains of programs 

through the combination of their output/input data. Multiple possible combinations 

make biophysical applications even more complex. Structural genomic applications are 
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a typical example of bioinformatics program composition that is described in the next 

sub-section.  

The Institute of Biophysics Carlos Chagas Filho (IBCCF) of the Federal 

University of Rio de Janeiro is one of the few research centres that are developing 

structural genomic projects. These projects are producing a vast amount of protein 

sequences as data resources, emerging the need for using high throughput methods to 

predict structures and assign functions to these proteins. However, the analysis of 

several genome sequences indicates that the function of proteins cannot be inferred from 

a significant fraction of the gene products. In fact, isolate sequence homology searches 

do not always provide all the answers, since some proteins may not keep sequence 

homology throughout evolution. On the contrary, the molecular (biochemical and 

biophysical) function of a protein is tightly coupled to its three-dimensional structure.  

A good approach that contributes to the prediction of three-dimensional protein 

structures is comparative modelling, which predicts a reliable structure for a sequence 

using related protein structures as templates. This approach consists of the following 

steps: finding known structures related to the sequence to be modelled; selecting related 

sequences as templates; aligning the sequence with the templates; building a model, and 

finally, validating the protein structure, as illustrated in Figure 4. There are several 

programs addressing each of these steps. To enable large-scale modelling the IBCCF is 

developing an application called MHOLline (RÖSSLE, S., RIBEIRO, S., et al., 2002), which 

assembles these steps in an automated program sequence, using a set of strategically 

chosen programs. 
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Figure 4: Structural Genomic Application 

In this kind of application, again it is clear the need for understanding programs, 

their constraints, and their background, such as the algorithm that originated it. Without 
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this knowledge it is hard to provide support for program combination, as it seems to be 

the case of most scientific applications. 

2.3 Defining Scientific Resources 

The resources used in the scientific applications described in sections 2.1 and 2.2 

are mainly programs and data. It is worth noting that these applications involve chained 

programs, which means several programs are executed in an organized way. These 

program chains are called scientific workflows. Once defined, these workflows can be 

reused by other applications, what turns them into valuable scientific resources. 

It is important to note also, that most of the programs used in these applications, 

due to their scientific foundation, were developed based on a previous 

conceptualization. In the examples described before, some programs were implemented 

based on model representations such as: a formula, an interpolation technique, a forecast 

equation, an algorithm, etc. Within the scientific community, these are scientific model 

representations. Scientific models are even more valuable than the programs that 

implement them, and should also be considered as scientific resources.    

Another important characteristic of the scientific community is the fact that their 

work is usually based on previous works and experiences. Daily, scientists deal with 

scientific models and programs, building or capturing input data sets and producing new 

ones, comparing results, tuning programs, repeating program executions, etc. All this 

activity requires documentation. In organized labs, scientists prepare written reports on 

a daily basis, registering models, programs and data used. These reports, that we refer 

here as scientific experiments, are also considered valuable scientific resources. 

According to the scientific scenario described here we have identified five main 

scientific resources, which are: models, programs, data sets, workflows and 

experiments. The scientific applications described earlier are examples where these 

resources are exchanged among scientists within a research project. However, it may 

sometimes happen across projects. In this work, we are particularly interested in 

providing support for cooperation intra and inter-projects. To make these resources 

really useful for the scientific community it is necessary to fully describe them. Next 

sub-sections characterize each of these resources, based on the scientific community 
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literature. Beginning with models, programs and data, we try to identify characteristics 

that would be useful to describe them.  

2.3.1 Scientific Models 

According to (HAGGET, P.; CHORLEY, R. J., 1967. as quoted by CHRISTOFOLETTI, A., 1999) a 

model is defined as a simplified abstraction of the reality and presents, in a generic way, 

characteristics or important relations between elements of such reality. Although models 

are highly subjective approximations of reality, since they do not include all the 

associated observations and measurements, they are considered valuable because, by 

hiding some details, they represent fundamental aspects of reality.  

The term “model” is a constant source of confusion as it is used in many 

different contexts. Therefore, as our focus is on the scientist perspective, it is helpful to 

clearly define what we mean by “scientific model”. Scientists are dedicated to the 

development of an understanding of how the natural world works, which is achieved 

through the conceptualization of models of various natural processes. Thus, a scientific 

model can be defined as a set of ideas that describe a natural process (CARTIER, J., RUDOLPH, 

J., STEWART, J., 2001). It is also important to stress that a ‘scientific model’ is distinct from 

its representation. Physical replicas of systems (e.g. solar system), formulas, equations, 

algorithms (e.g. image processing algorithms), graphics, and maps are examples of 

scientific model representations. In this work we are especially interested in those 

scientific model representations that might be implemented as programs and might be 

executed throughout the Internet. From now on, we will use the term model meaning 

scientific models that can be implemented as programs.  

To provide for scientific resources exchange means that each resource needs to 

be described and this is also true for scientific models. The process of building a model, 

also known as modelling process, is a good starting point. Through the modelling 

process it is possible to identify the elements that best describe a model. Some guides 

for building models can be found in the literature (RICHARDSON, G. P. AND PUGH III, A. L., 1999) 

(GOLDBARG, M., LUNA, H., 2000) (SPRIET, J. A., VANSTEENKISTE, G. C., 1982) (HAEFNER, J. W., 1996) (GRANT, 

W. E., 1986), where the modelling process includes three main steps: problem 

identification, formulation and validation. Problem identification includes the awareness 

of a problem and an unambiguous definition of it, by describing the context, listing 

symptoms and stating model purpose. Formulation means to delimitate the system to be 
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modelled, by identifying the elements to be focused, establishing the system boundary, 

raising hypotheses and representing them. The validation step involves the 

implementation of the hypothesis (e.g., in some programming environment), testing and 

validating it for correctness. The validation step is used to check model results with real 

data.  If any inconsistency is found in this step, one should go back to the second step, 

reformulate hypotheses, etc. In the last decade, some techniques have been used to 

implement models, such as programs, fractals, expert systems, fuzzy logic, neural 

networks, etc. Feuvrier (FEUVRIER, C. V., 1971) states that a model substitutes the reality it 

simplifies. It is important to have in mind though, that no matter how precise it is the 

technique used to build a model, it is never a substitute to reality.  

Some of the main elements for describing scientific models identified are: input 

and output variables, application area, scope, purpose, constraints, precision, hypothesis, 

parameters, classification, and bibliography. Some models can be derived or calibrated 

based on other models. The information about the relationship between models is also 

important to describe. Therefore, model derivation and calibration are also elements to 

consider in model description. All these elements are described in more detail along this 

section. 

While formulating a model the scientist defines which variables are relevant to 

the problem at hand. These variables take part on the structure of the model, both as 

input and output. When formulating a model, the scientist first deals with the model 

conceptualization. At this point, model input and output are not committed to any form 

of implementation yet. Instead, model data input and output can be described in terms of 

the quantities to be cons idered, such as length, time, mass, temperature, pressure, 

energy, moment of inertia, force, etc. For instance, the temperature quantifies 

(measures) the intensity of the heat, i.e. the hotness or coldness of an object, such as a 

water sample. After figuring out which quantities to consider, the scientist starts 

implementing and testing the model, by taking sample objects and measuring them. The 

numbers used to express the model quantities are magnitudes, which are usually 

expressed as a multiple of a standard unit.  For instance, a magnitude may represent the 

temperature expressed in degrees Celsius.  

A variable of a scientific model may be not quantifiable. In this case, it may be 

described in terms of its classification. The values assumed by the corresponding 

implemented variable are expressed according to the formats that are used to express 
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such class of objects. For instance, an image treatment algorithm may deal with the 

class of raster images. A raster image can be defined as an abstraction of a real world 

image where spatial data is expressed as a matrix of cells or pixels, with spatial position 

implicit in the ordering of the pixels. The implemented variable that corresponds to the 

model variable may assume values on a specific raster format, which may be, for 

instance, the bitmap format (.bmp). 

A scientific model is usually associated to an application area. Some examples 

of model application areas are: industrial, economic, social, political, environmental, 

etc. More specifically, a model is conceived to address a specific target within its 

application area. The target or scope of a model corresponds to the natural world 

system/process it represents. For instance, a model scope may be a specific 

hydrographic basin, a geographic region, or an enterprise.  

Each model has a specific purpose, for which it is designed. In general, every 

model purpose is to understand some slice of reality. In their work, Richardson et al. 

(RICHARDSON, G. P. AND PUGH III, A. L., 1999) state that the model formulation is guided by its 

purpose and present many examples of purpose statements. A statement of a specific 

production/distribution model says “… examination of possible fluctuating or unstable 

behaviour arising from the principal organizationa l relationships and management 

policies at the factory, distributor, and retailer. …”. 

A model is not exactly true or false, its value is judged according to the 

contribution it brings to explain the system it represents (FEUVRIER, C. V., 1971). Precision is 

the measure that expresses how much a model is faithful to the system it represents. The 

greater is the model fidelity level the better it represents the system, and higher is its 

precision. For simplification purposes, a model is built considering some reduction 

factors. These factors are also known as model constraints. For example a 

“transportation model” may not consider traffic jam or a possible mechanic problem. 

Another example of model constraint can be found in a simple model of the moon’s 

orbit around Earth, where geology details of both space bodies are not considered, but 

just their masses and the distance between them (GLEISER, M., 2002). Although a model is 

built based on restrictions, the qua lity and volume of the experimental data used in its 

construction may determine its precision. In summary, a model that has a solid 

empirical base guarantees better precision (FEUVRIER, C. V., 1971).  



   17

Every model is initially a hypothesis. Building a model represents the expression 

of a scientific hypothesis that needs to be validated (CHRISTOFOLETTI, A., 1999). There are 

two basic approaches for model validation used in scientific research: the deductive and 

the inductive. The deductive approach usually starts with a model, assuming some 

hypothesis, while in the inductive approach it is assumed that any pre-conceived idea or 

hypothesis would ruin the necessary impartiality of a scientific investigation. The 

inductive approach involves the study of collected data and derivation of many 

generalizations. Then, if any generalization is validated, it becomes a law. In the 

deductive approach, if the initially stated hypothesis is validated, it becomes a law. 

Otherwise, there might be a reformulation of the model or a new model is created.  

Considering that systems evolve with time, models that represent them may get 

old. Therefore, models loose precision as they age. It is a usual procedure to update 

models or to adapt them to new targets. This procedure is known as model derivation. 

Scientists derive new models based on studies over some existing model. A study might 

consider, for instance, the influence of a new variable such as temperature.  

Another important concept with respect to a scientific model is called 

calibration. To calibrate a model means to “tune” it precisely for a particular situation. 

Calibration is in a sense customizing a generic model. A generic model is conceived to 

address a generic system. However, it includes variables that assume values according 

to particular systems. These variables are referred to as parameters, to differentiate them 

from the other model input variables. Usually, a default value is provided. The 

calibration process usually involves multiple executions of the model with normal input 

for which the output is known, to provide the parameter estimation. The model output is 

then compared to real data and a correction factor is found. This value is then used as 

the parameter value. Sometimes these values are also called model constants as they 

become invariable for a particular situation. Frequently, the calibration of a model 

involves a lot of time and effort.  Therefore, a calibrated model may be as useful as its 

generic version.  

Traditionally, when selecting a model to use, scientists refer to its scientific 

publications and related explanatory material. In special, the scientific publication plays 

an important role on the model credibility. Therefore, a scientific model descrip tion 

should include or point to its bibliographic information.  
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Another helpful criterion for describing a model is its classification. There are 

many different proposals for classifying scientific models. Feuvrier (FEUVRIER, C. V., 1971) 

classifies them mainly according to logic and mathematic categories. Algorithmic, 

simulation, deductive, and probabilistic models are examples of model subcategories. 

Other aspects are also considered to provide more specific classifications, such as time 

dependence (dynamic and static models), stability (stable and unstable models), 

openness (open/closed models), durability (change-prone/long- lasting models), etc. The 

model classification presented by Banerjee and Basu (BANERJEE, S; BASU, A., 1993) groups 

models according to their goal, while other authors (ECOBAS) classify them according to 

their application domain area. Christofoletti (CHRISTOFOLETTI, A., 1999) presents various 

model classifications adopted by different domain areas: geomorphology, hydrology, 

climatology, etc. Possibly, there are many other classifications proposed. We consider it 

is important to use some classification standard to describe scientific models. However, 

due to the difficulty of achieving a consensus on model classification, we do not 

propose the use of a specific one.  

2.3.2 Scientific Programs 

The implementation of a model is part of the validation step of the modelling 

process. Scientific programs can be defined as scientific model computational 

implementations. As scientific programs are valuable and exchangeable scientific 

resources, they need to be described. A conventional program description is usually 

based on its interface, i.e., its input and output variables. A scientific program can also 

start to be described likewise. However, the scientific program description is associated 

to the correspondent model description. For each model variable, there is a 

corresponding program variable. The variables described in terms of quantities and 

classifications at the formulation step, are now program variables that are described in 

terms of units, type and format.  This is also true for model parameters.  

A programming language usually supports a variety of data types. Each program 

variable is associated to a data type that will assume numeric or non-numeric values. 

Numeric values are magnitudes used to represent model quantities, expressing them as 

multiples of a standard unit.  For instance, a magnitude may represent the temperature 

expressed in degrees Celsius. In the case of non-numeric variables, the model variable is 

described through its classification, and the correspondent program variable assumes 
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values on a specific format, which is processed by the program. Raster images, for 

instance, may assume different images such as windows bitmap image file (.bmp) and 

graphic image file (.gif). Therefore, a variable unit and format are also useful 

information to describe program variables. This information is usually hidden inside the 

program code as comments, and if not informed it may generate bad output data.  

Although widely accepted for model implementation, computers may impose 

severe restrictions to the model performance and credibility. The well known problem 

on designing scientific programs is the natural difficulty of representing “real” numbers 

in a computer. No matter what programming language the scientist chooses, this 

problem will be present. Each programming language offers some limitation on the 

representation of real numbers, providing different levels of precision. They usually 

provide a data type that may store numbers with a limited storage capacity. In C 

programming language, for instance, it is possible to manipulate real numbers using one 

of two keywords to declare a variable: float and double. A float or floating point number 

takes four bytes to store and has about seven digits of precision, while a double, or 

double precision, number takes eight bytes to store and has about 15 digits of precision 

(MS C/C++). These representation limitations may result in a small imprecision. However, 

when a small error is repeated many times, it may incur in a big one.  

To overcome such limitations, programmers usually make use of more computer 

memory and processing time. Therefore, scientific programs typically add parameters 

for controlling the use of computer resources, allowing the user to choose between 

precision and resource consumption. 

The software engineering area has brought into the programming community 

several tools, such as maintenance and development tools, that typically support the 

programming activity. Especially in large development project teams, to manage 

program versions and their compilations demand a considerable effort. This is also true 

for the scientific community. Besides its interface, scientific programs may also be 

described by information such as author, programming language, version, compiled 

code, host operational system, hardware configuration, etc. For the scientific 

community, to learn about the computer resources where an executable code is hosted is 

very useful. Multiprocessing capabilities, for instance, may determine how to better tune 

a program precision parameter to get more accurate results.  
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More than one scientific program may be implemented based on the same 

scientific model. We may say that a model description works as scientific programs 

classification. As a consequence, program variables are classified by model variables. 

This mapping is especially useful when searching for similar programs, while allowing 

for a richer program description.  

2.3.3 Scientific Data 

Typically, scientific data are usually measured data. High technology 

mechanisms allow for the collection of a vast amount of scientific data. Satellites are 

constantly monitoring the earth and the stars, while sensors and detectors are spread all 

over the Earth continents and oceans, both collecting large quantities of raw data 

everyday.  In addition, as computers become more powerful, and sophisticated data 

transformation models are implemented, more data are generated. Summed to the 

conventional data, all these data are becoming more and more unmanageable. Some 

data management issues have been recently discussed in the Workshop of Data 

Derivation and Provenance (WDDP) (BUNEMAN, P., FOSTER, I., 2002). One of the position 

papers at the workshop (LESK, M., 2002) defines the term “data curation” to be the collection 

and maintenance in a useful form of large amounts of scientific data, and the software 

needed to facilitate the usage of this data by others. Data curators should be able to 

provide information about data provenance, such as data version, generation mechanism 

and date. The generation mechanism may correspond to a code execution. Through this 

information it might be possible to trace back data derivation, identifying related data 

sets, which were used to derive those data, up to the raw data that started the 

transformation process. 

Data derivation information, also known as data lineage, is not always sufficient 

for its complete understanding. As a transformation model is a simplification of reality, 

it is important to be aware of the reduction factors, when using it, and therefore, provide 

a careful interpretation of its results. 

Besides data provenance, data structure is other important information for 

describing scientific data. In general, most database management systems provide 

structural information in the form of a data schema. This information is highly useful, 

however, to provide richer semantic information about data demands more than the data 

schema. Especially with respect to scientific data, there is the need for providing 
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information about the units and formats used to represent those data. As we have seen 

before, scientific programs descriptions include variables specific units and formats. To 

turn data sets into exchangeable scientific resources within the scientific community, 

data descriptions should be similar to program variable descriptions. Thus, it becomes 

possible to compare scientific program and data descriptions, and verify if they match. 

In WDDP we also presented a position paper that addressed these metadata issues 

(CAVALCANTI, M., CAMPOS, M. L.; MATTOSO, M., 2002). 

2.3.4 Scientific Workflows 

According to the Workflow Management Coalition (WfMC), a workflow is the 

automation of a business process, in whole or part, during which documents, 

information or tasks are passed from one participant to another for action, according to a 

set of procedural rules (WfMC-a, 1999). The workflow definition consists of a network 

of activities and their relationships, some criteria to indicate the start and termination of 

the process, and some information about individual activities, such as participants, 

associated applications and data, etc (WfMC-a, 1999). A large number of Workflow 

Management Systems (WfMS) are commercially available, each one providing different 

workflow definition languages (VAN DER AALST, W. et al., 2000). These systems are able to 

interpret these definitions and execute the workflow, generating what is known as a 

workflow instance.  

Typically, scientific applications rely mainly on program use expertise, where 

scientists combine different programs with the objective of solving application 

problems. Environmental and biophysical applications are examples where these 

combinations are frequent. Environmental applications are typically multidisciplinary 

demanding the combination of expertise from different disciplines, while in biophysical 

applications, biologists depend on the combined use of bioinformatics expertise.  

In order to reuse them, scientific programs compositions can be documented as 

exchangeable scientific resources. A workflow definition language can be used to define 

these scientific workflows. Each scientific program corresponds to a step or task of a 

workflow specification, which defines a certain procedural logic (step precedence, 

loops, conditions and parallelism). In particular, the empirical nature of some 

experiments demands some sort of tight control. Often, certain steps are not successful 

and have to be re-executed, leading to unexpected loops in the process.  
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Scientific workflows are different from business workflows (LEYMANN, F., 

ALTERHUBER, W., 1994). Some of the main characteristics that make clear this difference have 

already been identified (MEDEIROS, C., VOSSEN, G.; WESKE, M.; 1995). First, scientific problems 

are usually complex and not known in advance, and hence tasks are frequently not 

predictable, which means that ad hoc workflows are a common practice. Indeed, 

workflows are typically built on demand by final users (i.e., scientists) in contrast to 

previously planned business workflows, which are built by specialists or system 

administrators.  

Another important characteristic is that scientific workflows are highly 

changeable while business workflows are usually invariant. Since scientific processes in 

general are not fully specified before they start, scientific workflows should have 

flexible definitions, enabling a scientist to modify some of its steps. This change may 

simply consist of choosing an alternative program to perform a given step of the 

workflow. For example, various image analysis techniques can be used for a given 

image depending on its accuracy and the context in which the image was taken (e.g., 

meteorological conditions, and date). The choice of a given program usually depends on 

program constraints directly associated with its input (e.g., meteorological condition, 

cloud-cover maximum). These constraints can be verified for already existing data sets. 

However, this is not possible for those data sets that have to be computed on-demand, 

which are computed by the execution of previous steps of the workflow. Thus, the 

choice of program has to be done incrementally, backward or forward, along the 

execution of the workflow.  

Finally, a third particularly significant characteristic of scientific workflows is 

the user need for workflow instances reuse, differently from users of business 

workflows. The scientific process is strongly based on experimental investigation, 

evidence accumulation and result assimilation. Therefore, successful and unsuccessful 

workflow instances are interesting scientific resources. 

2.3.5 Scientific Experiments 

Scientific results should be disseminated and reused. Typically, scientists keep 

track of all the performed experiments, even if they have failed. This is because 

scientists learn from their past experiences, even if they ended up erroneously.  
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In this work, our focus is on what is called in silico experiments. This expression 

has become particularly popular within the life sciences area. It is an analogy to the 

Latin expression in vitro, which means “in glass”, and relates to experiments performed 

in an artificial environment outside the living body, such as a test tube or culture dish. In 

silico means in silicon, and relates to experiments performed with the help of computer 

chips.  

Although we have been focusing on in silico experiments, we can refer to a 

traditional definition of experiment (RUDIO, F. V., 1978) that states “The experiment is a 

situation, created in laboratory, which aims to observe, under control, the relationship 

between phenomena. The word control is used to indicate that there were efforts to 

eliminate, or at least reduce, as much as possible, the occasional mistakes during an 

observation. These efforts are materialized as procedures … rigorous techniques, which 

aim at the control of variables that will be observed… The experiment is used to verify 

hypotheses.” 

Based on this experiment definition we can argue that an experiment is 

associated to a set of controlled actions. These actions are usually similar to each other, 

and their results are commonly compared to each other to verify or not the experiment 

hypothesis. Scientists have well evolved in performing in silico experiments, building 

scientific applications where experiments usually involve the execution of scientific 

workflows. These workflow executions are analogous to the controlled actions of 

traditional experiments. Thus, within the scope of this work, we can define a scientific 

experiment as an in silico experiment that is associated to a set of scientific workflows.  

A scientific experiment should keep track of the whole in silico experiment. To 

do this, scientific experiments should be able to document all instances related to the 

associated scientific workflows. This registry should include all scientific models, 

programs and data resources used in each workflow instance.  

Finally, we may conclude that scientific experiments are also valuable scientific 

resources to be exchanged. Besides its association to a set of scientific workflows, and 

their correspondent instances, a scientific experiment should be described by other 

important information, such as the hypothesis the scientist is aiming to prove, the 

research project the experiment belongs to, as well as the scientist report containing the 

experiment annotations and conclusions.  
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2.4 Requirements for Scientific Resources 

Management 

Inferring models from observations and studying their properties is really what 

science is about. (LJUNG, L., 1987). There is a vast amount of scientific models in the 

literature of many domain areas. Nowadays, scientists make use of different multimedia 

digital scientific resources. Especially after the emergence of computers, scientific 

models have become easier to infer, which increased the scientific production 

considerably. As a consequence, scientific data have become easier to generate. With 

the advances of computer technology, the scientific community has become more and 

more dependent on the use of models and programs as tools for understanding real 

phenomena. This dependency has determined the rapid growth of the quantity and 

variety of the scientific resources available. For instance, it is now possible to collect 

large amounts of data every hour from satellite sources, and these data can be 

transformed by computer models into new data. Even within a specific domain area it 

has become difficult to manage the amount of scientific models available and all the 

related resources that come with them, such as programs, data, experiment reports, etc. 

In addition, research project teams are frequently international or inter- institution, 

making scientific resources management even harder.  

Scientists need an environment with several facilities such as: to support 

geographically distributed team collaboration, and to enable scientific resources 

exchange between different teams. Program providers should then be able to make their 

programs available to other scientists, describing and guiding their remote usage. 

Moreover, based on this distributed approach, scientists should be able to configure 

their own scientific workflows by combining programs provided by different teams. On 

the other hand, data providers should also be able to make their data sets available to 

other scientists by describing their correspondent data structure and providing the 

necessary means to get them.  

There are many computer systems developed to deal with scientific resources. 

Systems like Simile (MUETZELFELDT, R. AND TAYLOR, J., 2001), Stella (RICHMOND, B., 1994), and 

many others (GEOFFRION, A. M., 1987) were designed to address the modelling process. In 

this work we focus on management systems, where models are already developed and 

implemented, and need to be exchanged.  
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Scientific resources are quite heterogeneous with respect to their storage models, 

schemas, semantic meanings, and processing environments. First of all, data sources can 

be provided according to different storage models: relational or object-oriented 

databases; files; spreadsheets; Web sites; etc. Consequently, access to data is also 

diversified, ranging from standard languages like SQL or OQL to specific protocols and 

APIs. Second, syntax and semantic conflicts may arise, because similar data may be 

stored according to different schemas, and similar schemas may represent data with 

different meanings. Third, model-based programs are available in a variety of 

processing environments: different versions, different software and hardware platforms. 

Managing the use of these programs means to support their remote execution, using data 

from elsewhere and generating new data that should also be available for access. The 

management of such distributed and heterogeneous scenario may face some hard 

obstacles, such as to host programs that are not remotely accessible, to host the results 

of program executions, to adapt data into programs input format, to filter data according 

to program constraints, among others. Therefore, in a multidisciplinary and distributed 

scientific environment, scientists and specialists need a scientific management system 

able to provide interoperability between heterogeneous and distributed programs and 

data resources.  

More than to provide support for accessing different platform data and program 

resources, scientists need to understand how to use them. Furthermore, semantic 

integration is also required. To provide support for semantic description of scientific 

heterogeneous resources, several domain specific description standards have been 

proposed. However, a universally accepted standard has not yet been proposed. Indeed, 

it is hard to identify a complete and sufficient set of descriptors that may encompass the 

range of heterogeneous resources handled by the scientific community. Moreover, 

besides this set of descriptors, each scientific subarea may have its own set of specific 

resource descriptors. Future initiatives for scientific resources description should 

provide extensibility mechanisms. This extensibility guarantees that any special aspect 

of resources from different areas could also be included in its description. Therefore, 

scientific management systems need a generic and extensible description mechanism to 

address scientific resources description. 

Typically, scientific applications usually require combining multiple 

mathematical and algorithmic model-based programs. Specially when addressing 
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environmental problems, required models are usually composed by linked sub-models 

(SCOTT, E. M., 1996), originally from different disciplines. Also, in bioinformatics 

laboratories, scientists need to combine various different scientific programs. Scientific 

program and model combinations were defined as scientific workflows. However, to 

address the scientific community, and provide for scientific workflow management, 

traditional business WfMS are not sufficient. Scientific workflows require special 

facilities, such as to deal with incomplete workflow definitions, to allow for on the fly 

workflow definitions, and to register workflow instances.  

When performing scientific experiments, the choice of a scientific model is 

usually guided by the scientist’s previous experiences. Based on these experiences, the 

scientist can compare the use of different models to solve similar problems, find 

equivalent programs that implement the same model, choose the best program to the 

problem at hand, and more importantly, use the adequate parameter values. However, 

previous experiences are hard to reuse. The experience from a successful (or not) 

program execution is not always registered, and if registered, it is usually available only 

in paper reports. Consequently, scientists have difficulties in taking advantage from a 

large number of previous experiences. Therefore, scientific experiment registry is a 

fundamental requirement to scientific resources management systems. 

In summary, to address scientific resources management, we have outlined four 

main requirements that these systems should provide support: scientific resources 

heterogeneity and distribution, scientific resources description, scientific workflow 

management, and scientific experiments registry. 

In the next section we present the available technology and initiatives addressing 

each of these four issues. Scientific resources heterogeneity and distribution in section 

3.1, scientific resources description in section 3.2, and both scientific workflow 

management and scientific experiments registry in section 3.3. We also comment on the 

main research projects that relate to each of these issues. In section 3.4 we discuss why 

these projects fail while addressing scientific resources management issues as a whole. 
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3. Scientific Resources Management 

Systems 

Historically, the database community has initially addressed the scientific 

community. The first initiatives emerged around the 80’s, when Model Management 

Systems (MMS) were proposed. These systems were specially developed for dealing 

with local scientific resources by providing functions, such as model description, model 

selection and model design. Borrowing ideas from the DBMS, MMS architectures 

maintain a model base (DOLK, D., KONSYNSKI, B. R., 1984). Basically, these architectures offer 

three modules: model design, model manipulation and model control, which interact 

with the model base. Model design supports the modelling process, which means 

building models. Model manipulation includes standard functionality of storage (insert, 

update, delete, display, etc.). Model control involves issues of access authorization, 

security and privacy, integrity, etc. Then, because of the diversity of models and 

problems to solve, model selection activity has emerged as a new module in the 

architecture, and the model manipulation restricted its functionality to model description 

(BANERJEE, S; BASU, A., 1993). Also, the importance of keeping track of previous experiments 

in an experiment base (GUARISO, G.; HITZ, M.; WERTHNER, H., 1996) increased the importance of 

the model control module, including experiment registry as one of its functions.  

MMS alone does not address properly the scientific community. Frameworks 

such as distributed architectures, me tadata management and workflow management 

systems should be combined, embracing MMS functionality, to address this community. 

In addition, technologies such as Web services and Grid computing should be the 

foundation of these frameworks. Scientific resource management systems need to 

provide solutions to four main problems: (i) how to handle the distribution and 

heterogeneity of scientific resources; (ii) how to describe scientific resources; (iii) how 

to manage scientific workflows; and (iv) register their usage. Next sub-sections discuss 

these four problems. Some of these approaches include recent technologies, while 

others embed them in relevant research projects. These discussions include presenting 

the most relevant technological foundations and representative research projects on each 

of the four problems. Some projects, such as MyGrid and GriPhyN address three issues, 

while others concentrate on one or two. Thus we separate the projects along the four 
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problems. Problems (i) and (ii) are discussed in section 3.1 and 3.2, while problems (iii) 

and (iv) are discussed in section 3.3. On the last section we discuss the existent 

approaches and relate them to our work. 

3.1 Handling Distribution and Heterogeneity of 

Scientific Resources 

There are several technologies that have been proposed in the area of databases, 

information systems, and cooperative information systems that can be useful to address 

heterogeneity and distribution problems. The concept of information mediation, initially 

presented by Wiederhold (WIEDERHOLD, G., 1992), is one of the most important contributions 

to HDDS. It consists of defining an intermediate layer between information sources and 

applications. This intermediate layer provides an integrated view of information for 

queries without having to physically integrate data sources. So far, several mediator-

based HDDS have been successful: Disco (TOMASIC, A.; RACHID, L.; VALDURIEZ, P., 1998), 

Tsimmis (GARCIA-MOLINA, H.; PAPAKONSTANTINOU, Y.; QuASS, D. Et al., 1997), Garlic (CAREY, M. J.; ET 

AL, 1995) and Himpar (PIRES, P., 1997).  

However, most HDDS usually focus on heterogeneous but structured data and 

do not address other scientific resources, such as programs. To deal with scientific 

resources, HDDS should be able to address also heterogeneous and distributed 

programs. In 1998, the Asilomar Report on database research (BERNSTEIN, P. et al., 1998), the 

database community has proposed to focus on the problem of handling programs, 

besides data. A few years later, Le Select (LESELECT) was the first HDDS initiative to 

address directly programs distribution and heterogeneity. In the next sub-sections we 

present some recent initiatives on this direction. Le Select is discussed in section 3.1.1, 

followed by Web services and Grid (sections 3.1.2 and 3.1.3 respectively), which are 

more recent available supporting technologies for handling distribution and 

heterogeneity of data and programs.  

3.1.1 Le Select  

Developed at INRIA, Le Select (LESELECT ) acts as a mediator-based HDDS. 

However, differently from traditional HDDS, Le Select was specially developed to 

support environmental applications, offering unique features to share both data and 
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programs, while maintaining the general principles of mediator/wrapper architectures. 

Le Select implements a framework that facilitates the publication of distributed and 

heterogeneous data and programs, and provides common facilities to query published 

data and to invoke published programs (XHUMARI, F. et al., 2000). Users publish data in their 

original format and location. There is no need for transformation or replication of these 

data. Similarly, programs remain installed in their original configuration and computer 

platform. Therefore, scientists may run their experiments, by feeding these programs 

with remotely published data, and by using programs from multiple disciplines, which 

are served in sites over the Internet.  

Figure 5 presents the Le Select architecture. The intermediate layer, between 

information sources and applications, integrates information from multiple data sources 

without having to physically integrate them. In Le Select, data from each data source are 

wrapped into a common relational model of data. This is done via a piece of code called 

a data wrapper, i.e., publishing information of a given type (e.g., HTML file, C program 

or database) requires creating a specific wrapper for it. Each data wrapper interfaces 

with a local mediator called Le Select server, to form a publishing site, which is 

accessible from applications. When an application needs to access data from multiple 

data sources, it can connect itself to a Le Select client, which provides a JDBC interface 

to access multiple publishing sites (Le Select Servers) in a single SQL query. Facilities 

offered by mediators and wrappers enable the sharing of data without forcing each 

application to redundantly encode data transformation and data processing parts.  
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Figure 5: Le Select Architecture (XHUMARI, F. et al., 2000) 

Le Select also enables sharing services, which are available in a specific source, 

via a particular kind of wrapper, which interfaces with a Le Select server within a 

publishing site. A publishing site can be interfaced simultaneously with both data and 

service wrappers. On the other extreme of the architecture, a client application can 

invoke a given service that uses data from multiple publishing sites via a Le Select 

Client.  

Wrappers manage metadata by providing a uniform representation of data, 

functions and programs with an extended relational model, and manage the execution of 

queries on local sources. The publishing mediator (Le Select Server) maps global 

queries into local queries, each for a different wrapper, and a composition query for 

producing the final result. It also has a runtime system to integrate the results of local 

queries. Global queries are expressed in an SQL-like language, that is, an SQL subset 

with specific extensions, which allows invoking functions or programs on data sources.  

Publication sites can be organized as a hierarchy. Thus, a publication site can 

include a wrapper to a virtual database schema whose query-based specification can 

refer to information published by other publication sites. In this case, the schema 

corresponds to an integrated view of information published by other sites. The major 
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advantage of this architecture is that the process of information publishing is completely 

decentralized via the publication sites.  

Le Select’s approach contrasts with previous information mediation systems 

such as Garlic, Disco, Himpar and Tsimmis, with respect to the integration policy. In 

these systems, publishing data at some site requires that a set of view definitions should 

be provided in some mediator located at another site. Their goal is to provide data 

transparency, which means hiding integration transformation details. When there are 

new data to be published, sometimes it is a difficult task for the publisher to reflect the 

changes into view definitions. Le Select does not automatically provide full 

transparency of data distribution because when building distributed SQL queries, a Le 

Select client references tables by their identifier, which contains the address of the 

publication site where the corresponding data have been published. However, the view 

definition service provided by Le Select enables the publication of virtual derived data, 

i.e., views. Hence, queries over the views hide the physical distribution of the 

underlying data from which the views are defined.  

As a pioneer initiative on addressing data and programs heterogeneity and 

distribution management, Le Select did not adopt new coming standards like Web 

services and Grid computing. Instead, it relies on well-established open standards for 

interoperability. Network communication between Le Select components is assured via 

a CORBA protocol, although other means of communication are also possible. That is, 

JDBC statements between Le Select components (clients or servers) are embedded into 

CORBA/IIOP messages. However, Le Select is an isolated and proprietary initiative, 

which difficult its adoption by others.  

3.1.2 Web Services  

Web services are a new tendency that is going through a standardization process. 

The main concept behind Web services is the notion of publishing services over the 

Web, to be used by other programs. Web services relies on a service oriented 

architecture (SOA) (WS Architecture, 2002). SOA counts on the Web client/server 

infrastructure and uses a simpler and yet higher level protocol (Simple Object Access 

Protocol - SOAP). The idea is to allow different software applications, running on a 

variety of platforms to communicate. Through SOAP protocol, an application can have 

access to other applications’ method invocation across the Internet, i.e., a method can be 
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invoked remotely, and have its results delivered to the application that invoked it. 

Indeed, this feature addresses directly the problem of handling distributed program 

resources.  

To become a Web service provider, there are two basic requirements: the ability 

to build and/or parse SOAP messages, and the ability to communicate over the network. 

Typically, a SOAP server (SOAP router) running together with a Web application 

server performs these functions. For instance, a Java class can have its methods 

“deployed” as services using the Apache AXIS engine (AXIS), which sends and 

processes SOAP messages. Alternatively, a programming language-specific runtime 

library can be used to provide them. In addition, each Web service provider publishes its 

interface as an XML document, using the Web Service Description Language (WSDL) 

(WSDL, 2003). This document specifies the service interface so that client applications can 

automatically bind to the Web service. After getting the binding information, the Web 

service requestor interacts with the provider by exchanging SOAP messages. Based on 

the WSDL document information, the requestor builds a SOAP message and sends it to 

the provider. Then, the provider receives the message, unwraps it, processes it, builds a 

SOAP message with the response, and sends it back to the requestor. Service provider 

and service requestor roles are logical constructs and a service may exhibit 

characteristics of both. 

Legacy programs can also be encapsulated as Web services, but a Web service 

adapter has to be developed for each program to enable them as a service. Similarly to 

Le Select, to publish a legacy program as a Web service means to provide a wrapper for 

that legacy. In the case of the Web service architecture, the wrapper is a Web service 

adapter that is served by a Web service provider as shown in Figure 6.  
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Figure 6: Web services Requestor/Provider Architecture 
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3.1.3 Grid Computing based Systems  

Grid computing systems (GRID COMPUTING INFO CENTRE) focus on scaling up the 

computational power to process and access multi-Petabyte data. Typically, Grid 

computing based systems use the Globus infrastructure (GLOBUS) to distribute the 

execution of scientific programs. In Grid architectures, geographically distributed, 

heterogeneous collections of computing resources are accessed through a single point of 

contact. The Globus infrastructure has been proposed in the form of a toolkit 

(CZAJKOWSKI, K., FOSTER, I., et al., 1998) (FOSTER, I., KESSELMAN, C., 1999), which includes basic 

services to address Grid computing issues. The job execution service controls the 

submission and execution of jobs on remote machines. In the Globus toolkit, this 

service is called Globus Resource Allocation Management (GRAM).  

GRAM service provides functionality that can be viewed as a three-tier 

architecture as shown in Figure 7. The client tier submits jobs to a remote resource. 

Each job is identified by a job ID that can be used to check on its status. Also it is 

possible to get a job status through event notification sent by the GRAM Server tier 

(middle tier). The middle tier consists of two basic elements: gatekeeper and job 

manager. The gatekeeper is responsible for the client authentication based on a 

previously defined security policy. Once the job request is approved, the GRAM server 

starts up a job manager for that request.  From that moment on, the job manager will 

interact with the GRAM client. Finally, the backend tier is where the job actually runs.  
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Figure 7: GRAM Architecture (adapted from FOSTER, I., KESSELMAN, C., et al., 2002) 

Many projects within Grid computing community are concerned with data 

retrieval (GRID DATAFARM PROJECT ) (DATAGRID)  (ALLCOCK, B., FOSTER, I., ET AL., 2001). These 

projects focus on managing access to multi-Petabyte distributed data. Chervenak et al. 

(CHERVENAK, A., FOSTER, I., ET AL., 2001) propose a two-layer Data Grid architecture. The first 

layer includes two basic services: storage systems and metadata management. The 
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second layer includes higher- level services: replica management, replica selection and 

data filtering. The idea of having replicas is useful because some storage locations may 

offer better performance or availability for accesses to or from particular locations. For 

instance, the selection service may consider starting parallel connections to replicas, 

accessing complementary subsets of data. Particularly to scientific applications, most 

data resources requests are for read-only access, in which case, replica management 

becomes simpler. However, because the focus is on improving performance of data 

resources access, that is, offering more computational power, Grid based projects end 

up not addressing the data heterogeneity problem.  

3.2 Describing scientific resources 

Scientific resources management is not possible without describing them. 

Traditionally, the database community has contributed significantly to resources 

description, providing metadata solutions. Some definitions of metadata would simply 

define it as data that describes data (INMON, B., 1996). However, the increasing complexity 

of information systems requires a more sophisticated definition. Within the scientific 

community, where there is a high degree of resources heterogeneity and distribution, 

users need metadata not only for describing data but also for describing programs, 

models, workflows and experiments. A better definition is given by the Meta Data 

Coalition (MDC): “descriptive information about the structure and meaning of data and 

of the applications and processes that manipulate data” (MDC, 1999).  

Large metadata needs management. Metadata management has gained increased 

importance especially because of the demand for integration of distributed and 

heterogeneous systems. There are two main approaches to address metadata 

management: metamodelling and ontology. The fundamental difference between these 

two approaches is on the attachment to the application. While metamodels are 

specifically built to support a metadata application, ontologies consist of relatively 

generic knowledge that can be reused by different kinds of applications (SPYNS, P, 

MEERSMAN, R., JARRAR, M., 2002). 

Metadata models have been created within specific domains aiming to help 

interoperability. UDK model (GUENTHER, O.; VOISARD, A., 1997), for instance, is an agreed 

metadata model for describing data from environmental applications. These models 
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have been helpful, but the inherent heterogeneity of scientific applications can not 

prevent new data models to emerge independently.  

In a first initiative to establish standard data models, Microsoft and other 

partners have developed the Open Information Model (OIM), which was accepted as a 

standard by the MDC. Another initiative on the same direction emerged from IBM and 

other companies. They have developed the Common Warehouse Metadata (CWM), 

which was adopted by the Object Management Group (OMG) (OMG, 2000). The purpose 

of OIM and CWM initiatives was to support tool interoperability across technologies 

and companies via shared metadata, by providing a formal description of domain-

specific metamodels. However, tools whose metamodels were not members of the set of 

domain-specific submodels could not interoperate.  

To support the coexistence of different metamodels and facilitate the 

interoperability between applications that hold them, OMG has proposed the Meta-

Object Facility (MOF, 1997). The MOF model corresponds to the most fundamental layer 

in a traditional 4- layer metamodelling architecture. This is a proven architecture for 

defining the precise semantics required by complex models that need to be reliably 

stored, shared, manipulated, and exchanged across tools. As it is used for defining 

metamodels, the MOF model is considered to be a meta-metamodel. A meta-metamodel 

can define multiple metamodels. To each metamodel there is at least one meta-

metamodel associated (implicitly or explicitly), and then, a metamodel can be viewed as 

an instance of a meta-metamodel. Metamodels primary goal is to define a language for 

specifying models. A set of models that are instances of the same metamodel can easily 

share their metadata.  

OMG officially adopted the Unified Modelling Language (UML) (UML REVISION 

TASK FORCE, 1999) as its object modelling standard (KOBRYN, C., 1999). UML is specified via a 

metamodel, derived from the meta-metamodel layer of the 4-layer architecture. In 

particular, the UML model is an instance of the MOF meta-metamodel.  

Ontologies have been used as second approach, to address the metadata 

management problem. Analogously to the meta-metamodel (MOF) approach, domain 

ontologies are conceived to address a set of applications that need to interoperate on the 

metadata level. A domain ontology expresses a community’s consensus knowledge 

within a given domain. A computer ontology is defined as an “agreement about a 

shared, formal, explicit and partial account of a conceptualization” (GUARINO, N., GIARETTA, 
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P., 1995) (USHOLD, M., KING, M., 1995). Each domain ontology contains the vocabulary of terms 

and the definition of concepts and their relationships for that domain. In many ontology 

based applications, the instances (domain resources) are included in the ontology (SPYNS, 

P, MEERSMAN, R., JARRAR, M., 2002), together with the concepts and their relationships.  

Some domain-specific ontologies, such as the Gene Ontology (ASHBURNER M., 

LEWIS S., 2002), have been proposed. However, neither a standard metamodel has yet been 

universally accepted, nor a generic scientific resources ontology has yet been proposed. 

Without such representation formalism, independent initiatives have been developed to 

address scientific resources management. Although none of these approaches are 

definitive, they contribute for a future efficient metadata management of scientific 

resources.  We have selected some of the most relevant contributions to scientific 

resources metamodelling, which are discussed in the next sub-sections.  

In section 2.3 we have evidenced programs and models as distinct resources. 

This distinction is particularly important because it allows scientists to retrieve and 

consider similar programs as alternatives to solve the same problem.  Some of the 

approaches described here provide ways for finding program resources and learning 

how to use them correctly. Initially, we present Web services’ (section 3.2.1) and Grid’s  

(section 3.2.2) support for describing the program resources they publish. Then, on the 

following sections we present the most representative projects that focus on metadata 

issues for scientific resources. A final discussion is left to the last section, where we 

point out that most of them do not consider programs and models as distinct resources, 

and consequently find difficulties in their management. 

3.2.1 WSA 

More than to address communication between program components, the Web 

services architecture (WSA) (WS Architecture, 2002) also addresses program description and 

program search. As shown in Figure 8, the complete Web service architecture comprises 

three roles: requestor, provider and registry. The third role acts as a service discovery 

agency, where the service provider publishes (step 1) its service description. Then, the 

service requestor uses a find (step 2) operation available at the service discovery agency 

to retrieve the desired service. Then the service requestor uses the service description to 

bind (step 3) with the service provider and invokes (step 4) the Web service 

implementation.  
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A Web service may be published at multiple service registries. Each service 

provider has its own registry service, thus allowing for direct bindings with the service 

requestors. Direct binding usually occurs between two business partners that have 

previously agreed on terms of doing e-business over the Web. Typically, a requestor 

does not know where to find available services. Therefore, independent services registry 

servers are needed. There may be several types of registries, which are characterized 

according to their restrictions to specific domain communities, such as, the internal 

enterprise departments, the set of external partners of a company (company portal 

registry), the business public (generic registry), among others. The Universal 

Description, Discovery and Integration (UDDI) (UDDI) specification for Web service 

registry was proposed by an industry consortium lead by IBM, Microsoft and Ariba. 

Another registry specification is the ebXML Registry (EBXML), which has been proposed 

by OASIS. Both propose a data model for registering, storing and finding Web services 

description documents (WSDL documents).  
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Figure 8: Web services Architecture 

While program search is provided through the Web service registry, program 

description is provided through WSDL documents. A WSDL document contains a set of 

inter-related specifications to describe services, such as messages, ports, port 

types, and bindings, presented in Figure 9. These specifications can be classified 

as abstract and concrete. The abstract specifications describe the program abstract 

interface (port type), and its input and output messages. The concrete 

specifications actually extend the abstract descriptions to describe how to access the real 

code (service instance). The concrete protocol and data format specification for a 

particular port type defines a reusable binding. Associating a network address to 

an existing binding specifies a port. Finally, a service is defined as a collection 
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of network endpoints or ports. This separation of abstract and concrete definitions 

allows abstract definitions to be reused, i.e., the same program can be served at different 

network locations, while sharing the same abstract description.  

A WSDL document begins with a root tag called definitions. Figure 9 shows a 

simplified view of the WSDL schema, where the main elements are defined under the 

definitions element. The portType element is described by a set of operation 

elements. Each portType operation has exactly one input and one output 

relationship. Each one of these relationships refers to one message element instance. 

A message element is described by a set of part elements, and each part element 

must refer to a type description. WSDL does not introduce a new type definition 

language. Instead, it supports XML Schema (XML Schema) as its type system. Thus, each 

part element refers to a basic XML Schema data type or to an XML Schema element 

or complex type previous ly defined under the types element. Nevertheless, the use of 

XML Schema type system is not obligatory, as WSDL allows the use of other type 

definition languages, through its extensibility mechanism.  

At the concrete level, a binding to specific message encodings and protocols are 

assigned to the abstract definitions. The binding element refers to a specific 

portType element, through its type attribute. The binding element is described by 

a set of bindingOperation elements. For each bindingOperation element 

there is a correspondent portType operation element. The service element is 

described by a set of port elements, and each port element refers to a specific 

binding element. In addition to its vocabulary, WSDL also allows the use of specific 

binding extensions to support the specification of protocols and message encodings. 

Therefore, other vocabulary tags are used inside the binding element definition, to 

define, for instance, the style and transport protocol used during the message exchange 

(e.g. RPC style, SOAP protocol).  
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Figure 9: WSDL schema (simplified) 

Figure 10 shows a simplified fraction of the WSDL XML schema (WSDL Schema) 

where the main elements appear under the group named 

anyTopLevelOptionalElement. The any tag is a special XML element that 

allows for the insertion of literally any element into the XML document instance. 

According to this schema, any extensibility element is allowed under the definitions 

element. Therefore, we can create other description elements that may be included in a 

WSDL document through the import element. 

<element name =”definitions” type=”wsdl:tDefinitions” /> 
<complexType name=”tDefinitions”> 
 <complexContent> 
  <extension base=”wsdl:tExtensibleDocumented”> 
   <sequence> 
   <group ref=”wsdl:anyTopLevelOptionalElement” minOccurs=”0”  
                               maxOccurs=”unbounded”/> 
   </sequence> 
   <attribute name=”targetNamespace”  type=”anyURI”  use=”optional”/> 
   <attribute name=”name” type=”NCName” use=”optional”/> 
  </extension> 
 </complexContent> 
</complexType> 
<complexType name=”tExtensibleDocumented” abstract=”true”> 
 <complexContent> 
  <extension base=”wsdl:tDocumented”> 
   <sequence> 
   <any namespace=”##other” minOccurs=”0” maxOccurs=”unbounded”/> 
   </sequence> 
  </extension> 
 </complexContent> 
</complexType> 
<group name=”anyTopLevelOptionalElement”> 
 <choice> 
  <element name =”import” type=”wsdl:tImport”/> 
  <element name =”types” type=”wsdl:tTypes”/> 
  <element name =”message” type=”wsdl:tMessage” /> 
  <element name =”portType” type=”wsdl:tPortType”/> 
  <element name =”binding” type=”wsdl:tBinding”/> 
  <element name =”service” type=”wsdl:tService”/> 
 </choice> 
</group> 
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Figure 10: Some WSDL schema global elements (simplified)  

Web services are on the right track to add semantic to Web resources. Although 

they are now limited to program description, they can be extended to provide higher-

level descriptions, such as model descriptions. Web services registries data models 

intend to provide solutions towards this, acting as a WSDL complement, and adding 

higher- level description elements to the ones presented in Figure 9. However, WSDL 

alone will not solve semantic interoperability issues. They provide a uniform access to a 

metamodel management, but ontologies and metadata on a specific domain are still 

needed.  

3.2.2 OGSA  

A recent work (FOSTER, I.; KESSELMAN, C.; NICK, J. M.; TUECKE, S., 

2002) from Globus Project is bringing Grid and Web services technologies together 

through the Open Grid Services Architecture (OGSA). This is a workgroup proposition 

still under discussion within the Global Grid Forum (GGF), which has draft updates 

coming up frequently (almost monthly). The Open Grid Service Infrastructure (OGSI) 

document (OGSI-WG, 2003) presents a draft with a full specification of the behaviours and 

WSDL interfaces that define a Grid service. A just released API implementation is also 

available for use, the Globus Toolkit 3.0 (GT3). 

OGSA proposes to represent every Grid service as a Web service that conforms 

to a set of conventions and supports standard interfaces. These conventions and 

interfaces are useful for building higher- level service descriptions. Grid service 

interfaces correspond to portTypes in WSDL, as shown in Figure 11. According to 

OGSA, all but one of these interfaces are optional. The required one is the 

GridService portType, which is responsible for the user control over the service 

state. There are other optional portTypes that may be optionally available, such as the 

Factory, responsible for the service creation, the Registry, responsible for the 

service registration, and the Notification-sink and Notification-source, 

to provide notification facilities.  
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Figure 11: OGSI WSDL extension 

The main idea is to capture service semantic with respect to the service 

instance’s state information to service requestors for query and change notification. The 

term used is ServiceData, whose elements are accessible through operations defined 

at the GridService porttype. The GridService portType includes three basic 

operations: FindServiceData, Destroy and SetTerminationType. The first 

one returns information about a service’s state, execution environment and additional 

semantic details. The destroy operation allows an authorized client to kill the 

executing instance of a service. Finally, the SetTerminationTime operation 

extends the lifetime of a service, as it is usually associated to an expiration date.   

An OGSI extended WSDL document includes new portType elements that 

are extensions of the WSDL portType element. Basically, the extension involves the 

inclusion of a new portType child element named serviceData, used to define 

serviceData elements, associated with that portType. Optionally, initial values for 

those serviceData elements (marked as “static” serviceData elements) may be 

specified using the staticServiceDataValues element within portType. The 

example in Figure 12 shows a GridService portType, which is not the original WSDL 

portType element, as it is under the gwsdl namespace, which includes 

serviceData elements. 
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Through available WSDL documents (including the standard portTypes 

mentioned), Grid clients are able to access Grid service descriptions and dynamically 

discover, register and compose Grid services. However, although Grid service 

descriptions are not limited to what Web services can provide, so far the Grid 

community focus has been on service execution information, and not on higher- level 

service information, such as information about the service business area. 

3.2.3 MyGrid Project  

MyGrid (MYGRID PROJECT ) is a research project that is based on the Grid 

framework, focusing on bioinformatics applications. A recent work (WROE, C. et al., 2003) 

describes in more detail the Grid system under development, highlighting that it 

provides a variety of supplementary services to OGSA-based systems.  

MyGrid architecture is shown in Figure 13. The client framework provides user 

access to MyGrid server functionality, through a Web portal, which includes repository, 

workflow and ontology clients. The server includes workflow management facilities, 

which have access to Bioinformatics programs. The workflow repository stores 

workflow specifications, and the enactment engine is responsible for workflow 

instantiations and actual executions. MyGrid assumes that Bioinformatics programs are 

encapsulated as Web Services. Scientists can then run those programs through Web 

services requests. The personal repository acts like a laboratory electronic log, where 

<wsdl:definitions xmlns:tns=”xxx” targetNamespace=”xxx”> 
  <types > 
     <xsd:schema …> 
          <xsd:complexType name=”someComplexType”> 
                .... 
     </xsd:schema > 
   </types> 
    … 
    <gwsdl:portType name=”GridService”>  
       <wsdl:operation name =”NCName”>  
       … 
     <sd:serviceData name=”sd1” type=”xsd:String” mutability=”static”/> 
     <sd:serviceData name=”sd2” type=”tns:someComplexType” /> 
     <sd:serviceData name=”factoryHandle” type=”ogsi:HandleType”  
                            minOccurs=”1” mutability =”constant” nillable=”true”/> 
     <sd:serviceData name=”gridServiceHandle” type=”ogsi:HandleType”  
                            minOccurs=”0” maxOccurs=”unbounded” mutability=”extendable”/> 
   … 
     <sd:staticServiceDataValues> 
         <tns:sd1>initValue</tns:sd1>  … 
     </sd:staticServiceDataValues> 
     … 
   </gwsdl:portType>  
</wsdl:definitions> 

Figure 12: Extending WSDL with OGSI elements example (adapted from OGSI-WG, 2003) 
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scientists’ personal data and provenance information is stored. Each Web service 

execution is logged into the personal repository.  

The description and classification of bioinformatics resources (services, data and 

workflows) are provided through metadata services and directories. MyGrid classifies 

metadata into two broad categories: domain and business metadata. Domain metadata 

refer to service classification and abstract service input/output data types (e.g., BLASTn 

is a tool for computing sequence homology that uses the BLAST algorithm over 

nucleotides). Business metadata refer to specific serviced code resource, its location, 

reliability, and version (e.g., BLASTn service offered by EBI is 80% reliable), as well 

as information about its usage (e.g., date, time, particular parameter values when a 

BLASTn was actually enacted). In fact, they organize these metadata into four layers: 

class of service, abstract service, instance service and invoked instance service. This 

four layer description helps in finding alternative services, i.e., instance services can be 

considered to be valid candidates when they belong to the same service class or abstract 

description. The workflow instantiation module can benefit from this layered service 

descriptions as it processes abstract workflow specifications. Available candidate 

instance services are provided by the service type directory.  

MyGrid uses an ontology-based approach, providing a suite of ontologies 

expressed in DAML+OIL (HORROCKS, I., 2002). This suite comprises a set of inter-related 

ontologies, where each ontology provides a vocabulary of terms or concepts, and their 

inter-relationships to form resource descriptions of a specific domain. DAML+OIL 

describes each domain in terms of classes and properties, and its formal approach 

provides reasoning facilities. This reasoning is particularly useful to support the suite of 

ontologies management and to support resource description. For example, after 

describing BLASTn and BLASTp code resources, and associating them to the 

bioinformatics ontology concepts, the DAML+OIL reasoner automatically generates a 

classification hierarchy of these resources. Then, the user can access the ontology client 

to browse the layers of metadata available (of the bioinformatics ontology) and find a 

list of the equivalent available resources (service instances). 
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Figure 13: MyGrid Architecture (WROE, C. et al., 2003) 

MyGrid adopts a four-tiered model to describe services: class of service; abstract 

service; instance service; and invoked instance. According to this classification, MyGrid 

description does not consider the description of service implementations of a given 

abstract service. The instance service description corresponds to the available 

compilation, ready to be executed, while the abstract service description corresponds to 

the program abstraction, e.g., its algorithm. However, between these two concepts we 

believe there should be an extra layer to represent the service implementation. 

As MyGrid is based on an ontology approach, there is no metamodel or 

conceptual diagram to analyze. Instead, they organize concepts and instances as a suite 

of ontologies presented in Figure 14. The Web services ontology uses some of the 

concepts included in DAML-S ontology (ANKOLEKAR, A. et al., 2001) and extends it with 

some specific concepts to address the bioinformatics domain. One of the main concepts 

in DAML-S is the service profile, which describes a service using properties like name, 

purpose, function, etc. MyGrid proposes extensions that include the addition of the 

uses_method property, to describe to which method or algorithm a service should be 

associated. This concept is used to connect service descriptions to the bioinformatics 

ontology. For instance, service Blast-p_service uses_method Blast_algorithm. 

Although this concept allows associating a program (Blast-p) to its algorithm (Blast), it 

works as a simple classification. The idea of describing the algorithm itself as a 

scientific model with its own characteristics is not considered. Therefore, we may say 

that MyGrid approach does not explicitly represent and manage scientific models as an 

independent concept. Also the relationship between programs, data and models are 
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rather clumsy, since they are not explicitly represented. These concepts and their 

instances are all mixed inside the same ontology. Finally, MyGrid suite of ontologies 

was specially created to attend bioinformatics applications, but its organization does not 

seem to be easy to generalize. It would be useful to have a suite of ontologies designed 

to address other specific domain applications, in such a way that it would be necessary 

just to have one or two ontologies substituted.   
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Figure 14: MyGrid suite of ontologies (WROE, C. et al., 2003) 

MyGrid works hard on attending many requirements of bioinformatics 

applications. Although it uses an ontology-based approach, it actually uses the Web 

services ontology as its metamodel for describing bioinformatics services. A Web 

application was developed over this metamodel, and its user interface guides the user on 

describing services, counting on the associated ontologies to build specific drop-down 

value lists. However, when trying to address other domains, MyGrid approach is not 

very flexible. Specific-domain ontologies should be built, and in the absence of practical 

methods to build ontologies, this is not an easy task. Also, there are not many available 

ontologies that are accepted by scientific communities.  

One of the main purposes of an ontology is to provide a generic and common 

terminology classification on a specific domain. However domain specialists find it hard 

to agree on this common framework. An example is the Gene Ontology initiative 

(ASHBURNER M., LEWIS S., 2002). Despite its efforts on being freely available and using 

portable technology such as XML, it is not widely accepted and MyGrid choose to use 
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build its own ontology. Therefore, to count on existing ontologies is the main weakness 

of MyGrid approach.  

3.2.4 GriPhyN Project 

The GriPhyN Project, another important project on data lineage, has developed 

the Chimera System (FOSTER, I.; VOECKLER, J.; WILDE, M.; ZHAO, Y., 2002). The architecture 

presented for Chimera is based on the metamodel approach and presents the Chimera 

Virtual Data Schema, which provides a representation of the computational procedures 

used to derive data. It defines a set of concepts and relationships that are used to capture 

and formalize descriptions of how a program can be invoked, and to record its potential 

and/or actual invocations. 

As shown in Figure 15, a Chimera Client interacts with Chimera through a 

Virtual Data Language (VDL), for both data definition and data retrieval statements. 

The VDL Interpreter is responsible for translating VDL commands into SQL 

commands, which are issued to the Virtual Data Catalog (VDC). The VDC database 

implements the Chimera Virtual Data Schema, and actually stores information about 

data derivation. The Virtual Data Browser and Planner are examples of Chimera clients, 

which use the VDL to explore VDC contents and to develop plans for computations, 

respectively.  

Chimera

VDL Interpreter

Virtual Data Catalog

Data Grid Resources

VDL

SQL

Chimera Clients

Virtual Data Browser Virtual Data Planner

 

Figure 15: Chimera System Architecture (adapted from FOSTER, I., VOECKLER, J., WILDE, M., ZHAO, Y., 

2003) 

According to (FOSTER, I., VOECKLER, J., WILDE, M., ZHAO, Y., 2003), VDC information may 

be distributed across multiple locations, and hyperlinked. The idea is to identify each 

resource by a URL, allowing inter-catalog references. 
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Another interesting aspect of Chimera is its possible integration with Data Grids. 

Some Chimera clients were deve loped to provide such integration. A Chimera client 

can, for example, provide for Grid execution planning, based on VDC´s transformation 

instances. It receives an abstract workflow description from Chimera, produces a 

concrete workflow, and submits it to meta-scheduler for execution. 

The Chimera Virtual Data Schema defines the concepts and relationships of the 

Chimera metamodel, which are presented in Figure 16. The dataset and replica 

concepts describe data resources, while the transformation concept describes the 

programs that transform data. Each dataset has a type, which specifies the various 

characteristics of the data set, including its storage structure or representation, data 

server information and what kind of data it contains. A dataset may have multiple 

replicas at different locations.  

A transformation is a program interface that may take datasets of a 

given type, by reference. Such association occurs when the user starts a 

derivation that specifies which datasets will match which transformation 

input type. The invocation concept completes the execution information by 

describing the physical environment and time of the real execution (e.g., date, time, 

processor, operational system, etc.). Note that an invocation may be associated to a 

replica of the dataset associated to the derivation. The replica concept is 

important especially to data Grid environments, where performance for data processing 

is achieved through multiple parallel invocations of a derivation.  

Foster et al. (FOSTER, I.; VOECKLER, J.; WILDE, M.; ZHAO, Y., 2002) highlight the possibility 

of a Chimera client to develop plans for computations, i.e., workflow specifications. A 

more recent work (FOSTER, I., VOECKLER, J., WILDE, M., ZHAO, Y., 2003) states that there are 

compound and simple transformations. A compound transformation is 

composed by one or more transformations in a direct acyclic graph (DAG). However, so 

far, this concept has not been explicitly reflected in their schema.  

Analysing the Chimera Virtual Schema more carefully, we identify some points 

of discussion. The type concept is representing two distinct concepts: the 

transformation input/output data type and the dataset type. Consider, for 

instance that a transformation may have two data inputs of the same type. It would be 

necessary to instantiate two equal types, to represent both data inputs. More than 
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having this redundant description, it may cause some conflicts. When describing a 

dataset that would fit both types, which dataset would be a better choice? Yet, 

when describing a derivation, which datasets will be associated to which 

transformation input type? Do their types have to match? Separating dataset 

and transformation input/output types, as two different concepts, may solve such 

problem. The last one, should make a reference to the first one, i.e., a 

transformation input/output type should refer to a dataset type.  

In the first version of their schema there was a clear separation of logical and 

physical transformation concepts. We took the liberty of connecting the schemas 

presented in both works to discuss them a little further. Please refer to those works to 

see the original schema figures. The physical transformation corresponds to 

the code resource that fits into a logical transformation description. A 

physical transformation is related to exactly one logical 

transformation, while a logical transformation may have many 

physical transformations. Even though the relationship is not present in the 

Chimera initial schema, we consider that an invocation should refer to exactly one 

physical transformation (dashed line in Figure 16), describing which physical 

transformation was used at the time of the execution. This relationship is particularly 

important to address provenance in an environment where code resources can be 

replicated, such as Grid computing environments. Finally, it is important to notice that 

the logical transformation concept is not representing the model or algorithm associated 

to a source code. 
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Figure 16: Chimera Virtual Data Schema 
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This project is on the right track with respect to scientific resources description, 

however, its metamodel needs some further developments to properly address more 

abstract concepts such as scientific models.  

3.2.5 ESSW Project  

The Earth System Science Workbench project (ESSW PROJECT ) proposes a data 

management infrastructure for researchers who desire to publish large data sets derived 

from environmental models executions and global satellite imagery. They provide a 

framework for defining and collecting metadata for Earth science and environmental 

models. ESSW takes a metamodel-based approach, where the main concept is the 

science object, which is used for defining and collecting metadata for those models.  

Essentially, a science object is an entity that represents real world scientific resources 

such as models, their inputs and outputs, experiments (model executions) and 

experiment steps.  

As shown in Figure 17, ESSW architecture consists of two main components: 

The Lab Notebook (LN) and the Labware. The Lab Notebook is the digital analogy to 

the handwritten laboratory notes of a scientist. It is a client/server application that logs 

metadata and lineage for scientific experiments and their related science objects as 

XML documents stored in a relational database. These metadata assists researchers or 

others with identifying particular data products, as well as tracking the steps leading to 

creation of a product, or the data lineage. 
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Figure 17: ESSW Architecture (adapted from FREW, J.; BOSE, R., 2001) 

The LN client sends metadata as XML documents that are parsed, manipulated 

and validated by the LN server.  These documents are stored in the LN database. The 

LN DB API is responsible for transforming XML documents into table tuples, and for 
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translating XML queries into SQL queries. The console provides an interface for 

submitting XML DTDs to the lab Notebook, and creating metadata templates for 

science objects. The LN database contains DTD libraries and templates, and science 

objects. There are LN client tools to search, order and manage the LN database. A set of 

graph drawing tools generate directed graphs of experiment workflows. The LN lineage 

tool can display the metadata for any science object shown by clicking on it. 

Labware is the digital analogy to the collection of equipment and instruments in 

a scientist’s laboratory. It includes No Duplicate-Write Once Read Many (ND-WORM) 

services, which provide robust file archiving. The ND-WORM is a client/server 

application that maintains metadata about system files. It acts as a data resource 

catalogue. The process of cataloguing files involves assigning each file a unique id, 

which is calculated when the file is copied into the disk storage area. Metadata 

information about these files also includes the original location of the files, file 

hierarchies, and keywords. ND-WORM can provide search tools for retrieving files or 

sets of files catalogued under the same keywords or hierarchies. Experiment data 

outputs are also catalogued through ND-WORM facilities. 

The science object is at the core of the ESSW metamodel. Essentially, 

science objects represent real world scientific items such as files and data processing 

routines. Other important concepts are associated to the science object, such as 

experiment and model.  An experiment is defined as the execution of some 

model. Each experiment consists of one or more experiment steps, which 

represents a computational process with inputs and outputs.  However, each 

experiment is related to only one model, meaning these steps correspond to 

different executions of the same model. The relationship between two science objects is 

represented by the ScienceObjectLink table. This relationship allows for the 

registry of the lineage for an experiment, linking two subsequent executions.  

The ESSW metamodel is extensible to represent user defined science objects. 

When metadata templates that define new science objects (inputs/outputs) for a model 

are needed, a new table is created for the new type of science object. The scientist is 

free to provide his own metadata templates in the form of XML DTD’s. The new table 

is named after the DTD root. The new table structure includes some attributes inherited 
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from the science object table, and some attributes reflecting the DTD structure (XML 

tags).  

Since the ESSW metamodel is focused on tracking experiment lineage, in its 

metamodel, a model publication occurs in the context of documenting an 

experiment. Actually, the model concept represents an executable code. As we 

pointed out before, in the scientific community domain, there are three concepts that 

should be explicitly represented: the model itself, its implementation (the program) and 

the code that is actually executed (compilation). In the ESSW metamodel, these three 

concepts are represented in one concept. This concept overload does not help the 

management of scientific resources.  

Another point of discussion is how ESSW registers scientific experiments. The 

scientific community needs tools for annotating multiple models or programs 

experiments. The ESSW metamodel is now limited to register single model executions 

and how they are linked to each other, being able to retrieve workflow instances. 

However, since the experiment concept is associated to a single model execution, there 

is not an explicit concept to represent experiments that involve a set of model 

executions. Moreover, although workflow instances are implicitly registered, it is worth 

mentioning that the workflow specification is not covered by the ESSW metamodel.  
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Figure 18: LN Database Schema (FREW, J.; BOSE, R., 2001) 
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Despite being extensible, the ESSW metamodel needs further enhancements to 

address scientific resources descriptions. Particularly, it lacks adequate abstract 

definitions for scientific programs and models, which would provide a richer scientific 

resources description and enable workflow definitions.  

3.2.6 ESP2Net Project 

Similar to ESSW, the Earth Science Partners’ Private Network project (ESP2NET 

PROJECT ) focus is on interchanging scientific datasets and publishing the experiments that 

generated them. They propose an active semi-structured information sharing system 

architecture (ASSISS) that combines several complementary means of sharing the 

experiences from scientific experiments: browsing, searching, and active dissemination. 

Within this architecture, they adopt a metamodel-based approach. Although we could 

not find an explicit presentation of their metamodel, in the work (KAESTLE, G., SHEK, E.C., 

DAO, S. K., 1999) the authors propose its representation as a Scientific Experiment Markup 

Language (SEML) based on XML to capture scientific experiments.  

ASSISS interfaces with distributed scientific information repositories and 

services for transparent distributed access and processing of large scientific datasets. As 

experiments are being conducted, SEML documents capturing the experiments can be 

proactively disseminated by means of reliable multicast to groups of users interested in 

some aspect of the activity, as shown in Figure 19. 

Browsing is achieved by extended Internet browsers with the ability to display 

SEML documents. All SEML documents are stored as BLOBs into a relational DBMS, 

and descriptive attributes are extracted for indexing and faster query. ASSISS also 

provides a harvester that harvests SEML repositories and their documents, and builds a 

master index that allows scientists to manage experiments locally, but to search for 

experiments nationally. SEML provides a Web-based interface to browse, search and 

mine a SEML repository. 
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Figure 19: ASSISS Architecture (ESP2NET PROJECT) 

SEML is implemented as a Document Type Definition (DTD). SEML DTD is 

said to be under continuous evolution to fit the changing needs of the scientific 

community. However, a more recent version of it could not be found. SEML attempts to 

explicitly capture the experiment process where datasets are involved. A collection of 

SEML documents can be viewed as an electronic experiment log, which can be useful 

for future reuse or tuning.  

According to the SEML DTD, a SEML document may be divided into three 

parts: identification, documentation and experiment, as shown in Figure 20. The 

identification part includes information about the people and organizations involved in 

the experiment, for further contact. The documentation part contains information about 

the experiment as a whole, as well as specific information, embedded in a particular 

element. Finally, the experiment part includes information about all the processes 

involved in the experiment, as well as their inputs and outputs. Each input, 

output or process may be associated to elements at the documentation part, such as 

an annotation or a resource element. The resource element contains a link to 

a resource over the network. A process element may be simply a document 

describing what was done to transform a certain input into a certain output; or a 

distributed computing service that is actually invoked to transform a certain input into 

output results. To allow references between SEML document elements, the 

referenced items must have unique identifiers. 
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SEML documents were designed to document past experiments, however they 

can be viewed as templates to further similar experiments. Although the whole 

experiment may be reused, SEML DTD does not provide reusability for the internal 

elements. All the concepts representing scientific resources are defined within an 

experiment. In the scientific community, resources like processes and data are used 

independently for the composition of different types of experiments. As SEML 

documents do not provide support for reusing these resources, their descriptions have to 

be replicated in every document that needs to include them.  

Another point of discussion is related to the process concept. This concept 

represents an executable code. Its description may exist implicitly, as an annotation 

within the document that uses it. Therefore, SEML structure does not include elements 

to explicitly describe models and/or programs related to it. Analogously, data input and 

output are also concepts related to real data resources, meaning their description is also 

implicitly and optionally available within annotation elements.  
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Figure 20: SEML Structure (KAESTLE, G., SHEK, E.C., DAO, S. K., 1999) 

ESP2Net language needs further enhancements to address scientific resources 

descriptions, and a metamodel design would help. Similarly to ESSW metamodel 

enhancement suggestions, it would be useful to provide abstract definitions for scientific 

programs and models, providing a richer scientific resources description and enabling 

workflow definitions.  
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3.2.7 ECOBAS-MIF Project 

The ECOBAS Model Interchange Format (ECOBAS_MIF) (BENZ, J; HOCH, R., 1999) 

(GABELE, T.; BENZ, J.; HOCH, R., 1999) is a project of the International Society for Ecological 

Modelling (ISEM-Europe). It was developed to support the exchange of models 

between various System Dynamics simulators. In the MIF format, for a complete 

documentation of a model, the characterization of the ecological environment for which 

the mathematical model has been created and validated is provided. Although MIF 

format is presented in the form of a structured list of descriptors, the ECOBAS-MIF can 

be viewed as a metamodel-based approach. 

In an attempt to solve the problem of model documentation and retrieval, Benz 

et al. (BENZ, J.; HOCH, R.; GABELE, T., 1997), produced the REM-ECOBAS system. It organizes 

model documentation in two levels of information. REM, the Register of Ecological 

Models, is in charge of the first level, which includes metainformation about models, 

such as a contact address of the author(s), abstract, references, Internet based links 

(URL’s) to sources of information and comments by model developers or users. 

ECOBAS is in charge of the second level, which provides detailed and complete 

descrip tions of the mathematics of each model.  
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Figure 21: REM-ECOBAS Systems Architecture 

An overview of ECOBAS architecture is given in Figure 21. In REM and 

ECOBAS systems, a search engine is available at the Web, to find model 

documentation. A documentation interface is also available at the Web, where users can 

describe their models. The ECOBAS documentation interface generates an ECOBAS-
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MIF format file, which is stored in the database. An important aspect of ECOBAS 

system is the coupling of documentation and source code. Once some model 

documentation is completed, it can be used to generate text documents linked with the 

source code of the corresponding simulation model. For that purpose, a text processor 

that translates an ECOBAS-MIF file into a TEX file format has been implemented. 

Other file conversion options are under development, which includes a model generator, 

a graphical model editor and converters to integrated simulation system environments.  

REM database currently stores 647 models (REM). For each model a so called 

info-sheet is created and stored in the REM database, according to the structure shown 

in Figure 22. 

Section field/category referring to other (more  
detailed) information 

1. General Model Information     
  Name   
  Acronym   
  Main medium   
  Main subject   
  Organization level   
  Type of model   
  Keywords   
  Contact + 
  Author(s)   
  Abstract   
II. Technical Information     
II.1 Executables   + 
II.2 Source-code   + 
II.3 Manuals    + 
II.4 Data   + 
III. Mathematical Information   + (ECOBAS) 
III.1 Mathematics     
III.2 Quantities     
III.2.1 Input     
III.2.2 Output     
IV. References   + 
V. Further information in the World-
Wide-Web 

  + 

VI. Additional remarks     

Figure 22: REM database structure (REM) 

The ECOBAS-MIF consists of a set of elements that describes a model. These 

elements are organized in three main sections: Type, Specification and Domain sections 

as shown in Figure 23. The Type section is responsible for information about model 

abstract structure, e.g., its components, procedures and functions. The 
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Specification section contains more specific information about the model, such as 

parameter values and ranges. The Domain section includes information about the 

application area to which the model is used for.  

Type Specification Domain
General

Information

Variables

Module 
connections

References

Constraints Description

Tech. Inform.

Quantities

Classification
of Domain

Figures

General
Information

Procedures
and Functions

References

Description

Tech. Inform.

Figures

Description

 

Figure 23: ECOBAS_MIF Structure 

The General information section contains information about model 

identification, e.g., model name, authors, reviewers, keywords and application domain. 

The process simulation type is also declared in this section. It provides an overall model 

classification according to time dependency (event, static, discrete, continuous and 

aggregate). The Variables element is used to declare a list of: constants, state 

variables, time variables, dependent variables, input variables and space variables. It is 

important to notice that the type section includes information about model internal 

procedures and functions, characterizing a white box description approach. 

Components must be declared in the Module connection section when the 

simulation process type is an aggregate. The Description section is used to explain 

the purpose of the model, hypotheses and equations in free text form. The 

References section is used to include bibliographic references, and the Technical 

information section is used to declare  

The Specification section includes a Quantities subsection, which is 

used to declare numerical default values and allowed ranges for the variables declared 

in the Type section. 
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Finally, the Domain section is considered to be an extra section that includes 

model classifications from different application areas. In order to contribute to efficient 

retrieval of similar models, ECOBAS_MIF uses international standards. For instance, 

the FAO-classification (DRIESSEN, P. J., DUDAL, R., 1991) for soil type was previously 

registered by the system, so that when specifying a model, the user can choose the most 

appropriate one from a classification list. There are classification lists also for soil 

texture, climate type, ecosystem, and biological taxonomy available. 

Both REM and ECOBAS-MIF structures include descriptors that contribute to a 

rich scientific model description. However, these structures do not explicitly represent 

relationships between models and their implementations, which difficult their 

Type Section 
GENERAL INFORMATION: 
NAME: nitrification-in-water; 
AUTHOR: J. Benz; benz@wiz.uni-kassel.de;    
MODEL: CERES-WHEAT; 
KEYWORDS: nitrification; ammonium; nitrate  
REVIEW: N. Nobody; nnobody@wiz.uni-kassel.de; 
SIMTYPE: event 
CONSTANT: 
  F[n]: probability of fertility 
  P[n]: probability for survival 
INPUT: 
  POP_0[n]: initial distribution of number of individuals 
  n: number of age classes; type= IM   
  MN: mineral nitrogen content of soil; 
  XC[3,4]: substrate carbon;  
COMPONENTS: 
  component[1]=soillayer_0; 
  component[2-9]=soillayer_1; 
PROCEDURE: 
  step(A,B->C,D); 
  C=A+B 
  D=A-B?A>B);A*B   
FUNCTION: 
  funci(x,y,z); 
  funci=x+y^2-z 
CONSTRAINTS: a<b  
CONDITION: x==25  
START: t==0 
REF: L99; 
AUTHOR= Schwinning S.; 
AUTHOR= Parsons A.J.; 
TITLE_ART= Analysis of the coexistence mechanisms for 
grasses and legumes in grazing systems; 
Specification section 
QUANTITIES: 
CONSTANT:  
  NH_4: g*m-2; water; value=0.3 
INPUT:  
  XC0: g*m-2; water 
STATE:  
  XC: g*m-2; water  
TIME:  
  t: s; time    
SPACE:  
  z: km; space 

Figure 24: ECOBAS_MIF examples (BENZ, J; HOCH, R., 1999) 
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management. Again, a metamodel design would help on representing all relationships 

explicitly. Moreover, scientific data, workflows and model use are not considered in 

ECOBAS-MIF as useful associated descriptions.  

3.3 Managing Scientific Workflows and 

Registering their Use 

Workflow Management Systems (WfMS) define, manage and execute 

workflows through the execution of software whose order of execution is driven by a 

computer representation of workflow logic (WFMC, 1999). WfMS basic functionality 

includes workflow definition, workflow instantiation and execution. The workflow 

logic is the result of the workflow definition. It corresponds to the specification of all 

necessary information about the process to guide the workflow instantiation and 

execution. To instantiate a workflow the WfMS interprets the workflow definition and 

occasionally asks the user for complementary data/information. As the instantiation 

proceeds the WfMS starts the workflow execution, invoking software programs when 

necessary.  

To address the scientific community though, WfMS basic functionality is not 

enough. Interoperability, integration, abstract workflow definition, dynamic definition, 

and workflow auditing are some of the required extra functions. Interoperability may be 

provided through the association with a middleware layer responsible for invoking 

remote applications and data, as well as the communication ability with other WfMS. 

When dealing with multi-domain and multi-platform applications, as it is the case 

within the scientific community, the WfMS must provide some metadata support for 

resolving heterogeneity conflicts and to allow the integration of such systems.  

Another important feature with respect to scientific workflow management is the 

possibility of defining abstract workflows. A workflow can be defined in terms of task 

classes or their abstract description. Alternative task instances can be considered to be 

equivalent when they belong to the same task class or abstract description. The 

workflow instantiation and execution module can benefit from these layered service 

descriptions, as it can choose from a list of available candidate tasks provided by the 

task class directory. This late binding allows the instantiation module to use alternative 

instance tasks when some are not available. Moreover, scientific workflows are usually 
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not fully specified before it starts being instantiated. Some definitions are left for the 

instantiation moment. Thus, WfMS need to support workflow dynamic definition, i.e., 

allow workflow definitions to be modified, as they are instantiated, demanding a tight 

evolution control. 

WfMS workflow auditing facility involves tracing workflow instantiations. In 

silico experiments are directly associated to workflow instantiations. To register 

scientific workflows use means to document a scientific experiment. Specific code 

executions, with specific input and output data resources, and specific parameter values 

are all part of a scientific experiment. In the case of scientific workflows, WfMS should 

report all scientific resources involved in each workflow instance associated to a 

scient ific experiment. 

Most of the time, WfMS adopt a task-centric approach that is reflected by their 

architecture, in which a Database Management System (DBMS) is used to store task 

descriptions, and which includes all workflow functionality in modules that run on top 

of the DBMS. However, in scientific workflows data set descriptions are as important as 

the description of tasks that processes them because the quality of an input data set often 

impacts the quality of the output of the program that has processed it. Furthermore, the 

quality of data used and generated along an experiment influences the workflow 

instantiation associated to that experiment. Therefore, to address scientific workflows a 

WfMS should combine task and data-centric approaches. 

Web services are already heading to workflow management, however, as a 

generic purpose technology it needs additional facilities to fully address scientific 

workflows management. On the other hand, some research projects were specifically 

conceived to address scientific workflows and scientific resources use. Although these 

initiatives do not address all the problems raised here, they represent relevant 

contributions.   

In the next sub-sections (3.3.1, 3.3.2, 3.3.3 and 3.3.4) we revisit some of the 

projects discussed so far, with respect to their support for workflow management and 

registry. Le Select and ECOBAS-MIF do not address these issues, and are not discussed 

here. Other three initiatives that especially address scientific workflow management are 

briefly discussed: ZOO (section 3.3.5), WASA (section 3.3.6) and AGROMET (section 

3.3.7).  
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3.3.1 WSA and OGSA 

Web services architecture also provides the necessary mechanisms to define 

workflow processes through the composition of Web services. Such compositions are 

defined through XML-based languages expressing the data should be processed across a 

collection of Web services, just like traditional workflow specification languages. 

Therefore, through the use of Web services technologies, an e-scientist can define 

scientific workflows based on the specification of standard and reusable Web services.  

A number of proposals for such Web services composition language came from 

the major industry players. However, recently, some of them came to an agreement 

(IBM, Microsoft and BEA) and released BPEL4WS – Business Process Execution 

Language for Web services (CURBERA, F., GOLAND, Y, et al., 2002). BPEL4WS is a XML-based 

language for coordinating business process over the Web, which relies on Web services 

technology. Since BPEL4WS is the first joint industrial effort to define a specification 

for Web services composition, it is a strong candidate to become the standard language 

for specifying Web services compositions. BPEL4WS provides a language to formally 

specify a business processes and business interaction protocols. It extends the 

interaction model of WSDL to define a process that provides and consumes multiple 

Web services interfaces.  

With respect to scientific workflow management, interoperability and 

integration are already provided by Web services. As a WSDL document may consist of 

abstract definitions of services, we may say then that BPEL4WS is able to describe 

abstract workflows. However, abstract workflow instantiation, workflow dynamic 

definition and auditing are up to the workflow processing engines. 

Finally, as OGSA is based on Web services architecture, it can also benefit from 

the facilities provided by WSA described here. 

3.3.2 MyGrid Project 

MyGrid (WROE, C. et al., 2003) recognizes that bioinformatics scientists need to tie 

code resources together into scientific workflows. According to MyGrid architecture 

(Figure 13) the workflow modules provide the basic WfMS functionality, and adds to it 

abstract workflow definition, instantiation and execution. So far, MyGrid project uses 

the workflow language WSFL (WSFL) for workflow definitions. MyGrid allows for 
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workflow reuse, taking a user definition and comparing it to previously authored 

definitions. Some of these workflows may have fixed instance services (pre-set 

binding), others profit from the late binding feature (abstract workflow definition). Once 

the user has selected the appropriate workflow definition and data, MyGrid counts on 

existing WSFL processing engines to execute them. Finally, the workflow results are 

stored and available for future processing. As MyGrid plans to count on the Web 

services infrastructure, interoperability and integration of data and programs are 

provided.   

In their work (WROE, C. et al., 2003), the authors claim to track experiments and to 

document them so they can be re-executed and data provenance can be available 

(workflow auditing). MyGrid registers invoked instance service descriptions, which 

include information about the execution of a particular code resource, on a particular 

date, using particular parameter values. However, it is not clear how these executions 

are registered in the scientist personal repository, that is, if there is a metamodel 

supporting the registry. Moreover, it is also unclear if the registered resources can be 

exchanged with other scientists.   

3.3.3 GriPhyN Project 

The GriPhyN Project has a special interest in registering scientific resources use. 

The Chimera System Data Schema (FOSTER, I., VOECKLER, J., WILDE, M., ZHAO, Y., 2003) includes 

concepts that are specially focused on data lineage: invocation and derivation concepts. 

These concepts are responsible for keeping data lineage information on a metadata 

repository. Through them it is possible to document which dataset matched which 

program input. Also, it is possible to keep track of which program has generated a 

specific dataset. However, it does not provide workflow management facilities.  

3.3.4 ESSW and ESP2Net Projects 

Although no workflow management facilities are provided, ESSW was specially 

conceived to collect metadata about scientific experiments involving program 

executions. The LN database shown in Figure 17 captures metadata about science 

objects such as executable models (program codes) and data types. These metadata is 

then used to register program executions. There is no support for workflow definitions, 
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but workflow instances are implicitly registered as the execution of a sequence of 

programs.  

ESSW provides visualization tools to map these workflow instances in terms of 

each science object and their connections, as a directed acyclic graph (DAG) showing 

the linked steps, as example in Figure 25 shows. Each step is described based on 

previously described science objects, e.g. models (rectangles), and their inputs and 

outputs (circles). 

model A

model B

Inputs/outputs

Output

inputs
Experiment

 

Figure 25: ESSW Experiment  

Similar to ESSW, the ESP2Net project focus is on interchanging scientific 

datasets, by publishing the experiments that generated them. However, it also does not 

provide workflow management facilities. 

3.3.5 ZOO System 

The ZOO system (IOANNIDIS, Y.; LIVNY, M.; GUPTA, S.; PONNEKANTI, N., 1996) is a desktop 

experiment management environment. It supports domain-specific teams of scientists, 

although the development has taken a generic approach. At the core of ZOO system, the 

workflow is viewed as a Web of data objects interconnected with active links that carry 

process description. In Ailamaki et al. (AILAMAKI, A.; IOANNIDIS, Y.; LIVNY, M., 1998), the DBMS 

incorporates the WfMS functionality, representing workflows as schemas. Workflow 

dynamic definition and auditing are more easily provided. Although ZOO´s centralized 

approach provides benefits, such as a unique access language and point of control, it 

does not address distributed and heterogeneous environments, which is the case of 

scientific applications. Also, abstract workflow definitions are not supported.  
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3.3.6 WASA  

Another interesting work that considers scientific WfMSs (WESKE, M.; VOSSEN, G.; 

MEDEIROS, C., 1996) describes the WASA architecture, whose goal is to provide a supportive 

environment for data- intensive scientific applications. WASA’s main contributions are 

the support for dynamic execution of tasks (workflow dynamic definition), by 

combining active and temporal database facilities, and the support for experiment re-

usability (auditing) and reproducibility, by means of the documentation and versioning 

facilities. Although WASA can be seen as a generic architecture for scientific 

workflows, it was not developed for distributed and heterogeneous scientific programs, 

lacking interoperability facilities. Also, it is not clear whether WASA is able to deal 

with abstract workflows.  

3.3.7 AGROMET 

AGROMET system (PINTO et al., 2002) supports scientific work in a cooperative 

way, involving document, knowledge and workflow management. AGROMET provides 

a data integration middleware to support interoperability between autonomous 

distributed and heterogeneous data repositories. The workflow management module 

supports the definition of abstract workflows and provides experiment reuse, stored in 

an experiment base (workflow auditing). In addition, AGROMET includes a 

cooperative work support module on top of all the other modules, to help on 

collaborative analysis in scientific projects. However, scientific applications demand 

support for distributed and heterogeneous programs, which is not addressed by 

AGROMET.  

3.4 Discussion  

Scientific resources management systems presented here aim to address 

scientific applications by handling distribution and heterogeneity of scientific resources, 

describing these resources, managing scientific workflows and registering their use. 

Most of these technological and project approaches bring relevant contributions to 

scientific applications. These efforts adopt different strategies to deal with scientific 

resources management. In some cases, the  emphasis is on distribution and 

heterogeneity, without taking into account higher level description facilities such as 
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models and experiments. In other cases, the focus is on workflow, without providing 

program distribution and heterogeneity. Also, a lack of workflow instances and 

experiments registry facilities are frequently found, making it hard to rerun previous 

experiments or obtain data provenance. Figure 26 presents a table that summarizes all 

the systems described in the last sections, indicating the facilities they provide (?) or 

not (?), or yet whether it is not reported (?), according to those three issues.  

With respect to the handling distribution and heterogeneity issue, we first define 

which Client/Server technology is used. Grid and Web services (WS), as well as JDBC 

and CORBA, are some of the technologies used. Some projects/initiatives use a 

proprietary technology solution or none at all. Then we describe each system facilities 

with respect to data and program distribution handling, and data and program 

heterogeneity handling. We also describe their ability for remote execution and 

execution control. Remote execution means the code may be executed on another host 

machine, and that the system will be able to handle data transfer. Execution control 

means to be able to monitor a service execution, asking about its status while it runs. A 

high level of control would enable to cancel an execution.  

The description facilities include the ability of each project or system to 

represent scientific resources. There two main approaches adopted by these projects to 

address these facilities: the metamodel-based (MM) approach and the ontology-based 

(Ont) approach. As a first desired facility, we have identified the need to represent  

scientific models, and distinguish them from their implementations (programs) and 

available compilations (codes). So, codes should be related to a program description, 

which should relate to its input/output, classified under data types. Analogously, 

scientific data sets should also be described independently of programs, and related to 

data types. Another desirable description facility is to define data replicas, monitoring 

the use of alternative equivalent datasets. Finally, description extensibility means to be 

able to provide description extensions, according to some specific-domain users.  

To provide workflow facilities means to be able to manage scientific workflows, 

which includes: workflow definition, abstract workflow definition, workflow execution, 

dynamic workflow definition, and workflow partial execution. To provide registry 

facilities means to be able to provide data provenance, i.e., when a code execution has 

started, which data input/output was used, etc. A code execution registry means to 

register every single code execution individually, while the workflow instance registry 
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means to have it registered as set of linked executions. Finally, an experiment registry 

means to have a set of workflow instance registries as belonging to a specific 

experiment. 
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Distribution and Heterogeneity facilities 

C/S Technology  JDBC/ 
CORBA 

WS WS 
Grid 

WS 
Grid 

Grid JDBC CORBA 
JRMI 

-- -- Prop Prop 

Data Distribution ? ? ? ? ? × ? × × ? ? 
Data 
Heterogeneity 

? ? ? ? ? × × × × ? ? 

Program 
Distribution 

? ? ? ? ? × ? × × × × 

Program 
Heterogeneity 

? ? ? ? ? × × × × × × 

Prog. remote 
execution 

? ? ? ? ? × ? × × × × 

Execution control ? × ? ? ? × ? × Some Some ? 

Description facilities 
Approach -- -- -- Ont MM MM MM -- MM MM MM 
Model 
description 

× × × × × × × ? × × × 

Program 
description 

× ? ? ? ? × × ? ? ? ? 

Program IO 
description 

× ? ? ? × × × ? ? ? ? 

Data Type 
description 

× ? ? ? ? × × ? ? ? ? 

Code description ? ? ? ? ? ? ? ? ? ? ? 
Data description ? ? ? ? ? ? ? × ? ? ? 
Data replica 
description 

× × × × ? × × × × × × 

Description 
Extensibility 

× ? ? ? ? ? × × × × × 

Workflow and Registry facilities 
Wf definition × ? ? ? ? Scripts × × ? ? ? 
Abstract wf 
definition 

× ? ? ? ? × × × ? × ? 

Wf dynamic 
definition 

× × × × × × × × ? ? × 

Wf execution × × × ? × Run 
scripts 

× × ? ? ? 

Wf partial 
execution 

× × × × × × × × ? ? ? 

Code exec. 
Registry 

× × × ? ? ? ? × ? ? ? 

Wf instance 
registry 

× × × × × ? ? × ? ? ? 

Experiment 
registry 

× × × × × × ? × × × × 

Figure 26: Comparative Analysis of Related Work 
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With respect to the distribution and heterogeneity technology, Le Select and 

Web services architecture have taken distinct paths, but they ended up sharing the same 

objective: to provide a cross-platform approach to component-based development. Even 

though Le Select came first, Le Select is not a technological middleware such as Web 

services. Le Select adds software layers for database management. It also proposes a Le 

Select closed community, similarly to the Grid community, whereas Web services is a 

Web open architecture proposed by W3C (WS), and therefore more easily adopted by the 

market, and particularly by the scientific community. 

Furthermore, Web services architecture goes further than Le Select, providing a 

service catalog provider (discussed in section 3.2), which allows service requesters to 

find the service they need. Grid computing, currently merging to Web services through 

OGSA, is also sharing these benefits. Some of the main Component-based Development 

Environments in the market, such as BEA WebLogic and IBM WebSphere for Sun 

J2EE platform, and the Microsoft .NET platform, are already considering Web Services. 

The idea is to open their environments to provide, alternatively, Web services compliant 

components, i.e., a component that could also interoperate with components from any 

other client/platform. However, none of them alone can provide all the semantic 

description that scientific resources need.  

While WSA, OGSA, MyGrid and GryPhiN are close to what scientific resources 

need in terms of description, they do not describe scientific models nor do they cover 

experiment registry completely. ECOBAS-MIF fails completely in terms of experiment 

registry, while it is the only one that recognizes scientific models as important resources 

to describe. On the other hand, projects like ESSW and ESP2Net fail in terms of 

description, but concentrate on experiment registry. Finally, with respect to which 

description facilities ZOO, WASA and AGROMET provide, it is important to mention 

that, as their corresponding metamodels were not explicitly published (to the best of our 

knowledge), most of the table cells in this section carry some degree of uncertainty. 

Other interesting scientific resources description proposals can be found in the 

literature (HOUSTIS, C.; LALIS, S., 2001) (CRITCHLOW, T.; MUSICK, R.; SLEZAK, T., 2001). However, they 

also fail on presenting a complete metamodel or functionality to address scientific 

resources facility.  

There are basically two approaches for describing scientific resources: 

metamodel and ontology-based. We believe that a metamodel-based approach is best 
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suited to describe scientific resources, however, none of the proposals found so far have 

completely addressed the requirements for this kind of application. The metamodel-

based approach is particularly good because its focus is on the development of 

management applications. In this approach, several conceptual levels are captured in a 

metamodel, and resources are described according to this metamodel. In the ontology 

approach, concepts and resources are equally represented in specific-domain ontologies. 

In this approach, there is not a clear distinction between the resource and description 

levels. In contrast with ontology flexibility, the metamodel approach counts on a pre-

defined structure, which guarantees that each resource is described according to it. This 

is evidenced in MyGrid project where several “independent” ontologies, one for each 

“context”, are built and later a different ontology has to be built to allow navigation 

from one context to another. For instance, the extended DAML-S ontology is used to 

allow navigation from services to bioinformatics ontologies. This navigation is an 

inherent concept of the metamodel approach.  

Metamodel and ontology approaches are not conflicting; in fact they are 

complementary (SPYNS, P, MEERSMAN, R., JARRAR, M., 2002). We believe that it is possible to 

combine both approaches, to get the best each one can offer. While the metamodel 

provides the basis for navigation through scientific resources, ontologies helps on the 

search and classification of each resource described by the metamodel. However, it is 

worth to mention that building ontologies requires a hard and specialized effort that 

should be done for each different scientific application domain. Moreover, there is not 

an established methodology to support ontology building, which compromises the 

quality of the existing ontologies. Therefore, we believe that scientific management will 

benefit from the metamodel approach, in a short term. These initiatives could later on be 

improved as the ontology expertise and supporting methodologies evolve. 

The next section presents our metamodel-based solution to address scientific 

resources management. In our proposal we have concentrated on the metamodel 

development, and combined it with the most recent middleware technology to provide 

the required functionality. 
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4. Specification of a Scientific Resources 

Management Infrastructure 

A scientific resources management infrastructure should be provided to address 

scientific applications. In section 3 we specified three main requirements that a 

scientific resources management architecture should provide: (i) handling distribution 

and heterogeneity, (ii) describing scientific resources, (iii) managing scientific 

workflows and registering its use. Among these three, we consider resource description 

requirement the fundamental issue that impacts all the others. Despite many recent 

initiatives in attending these requirements, so far we have not found any architecture 

that offers support for all three with a strong emphasis in metadata issues. Therefore, we 

present here an architecture with focus on a metamodel, to manage scientific resources 

available throughout the Web, where scientists are able to publish models for direct real 

case usage.  

We have proposed the Scientific Resources Management (SRM) architecture 

(CAVALCANTI, M. et al., 2002 b) where some of these mechanisms are provided. Here, we 

extend SRM to encompass scientific workflows and experiments support.  

SRM is based on a metamodel approach. The Scientific Publishing Metamodel 

(SPM) (CAVALCANTI, M. et al., 2002 a) is a fundamental feature to provide support to the SRM 

architecture. In section 4.1 we present the SRM architecture. Section 4.2 presents the 

SPM metamodel that offers the foundation for SRM architecture, describing each of the 

concepts it represents.  

4.1 SRM Architecture  

The Scientific Resources Management architecture addresses most of the 

problems raised in section 2.4 and 3 by the combination of five modules: Navigation, 

Publication, Experimentation, Resource Operation, and Resource Description modules. 

Referring to the three main requirements listed previously, the Resource Operation 

module addresses item (i), while the Publication and Resource Description modules 

address item (ii). Finally, the Experimentation and Publication modules address item 

(iii).  
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Figure 27 shows SRM has two layers: one for enabling Web access services and 

the other for scientific resources management. There are two main modules to manage 

scientific resources: the Resource Operation module and the Resource Description 

module. The Resource Operation module (RO) deals with data and programs. The 

Resource Description module (RD) is a metadata repository manager, dealing with data 

and program descriptions, and also with model, experiment and workflow descriptions.  

The Web Access layer (WAL) is composed of three other modules: Publication, 

Experimentation and Navigation. The Navigation module allows scientists to browse 

scientific resources and their correspondent descriptions. The Experimentation module 

allows the user to perform in silico experiments. Within an experiment, the user is able 

to choose, instantiate and execute workflows specifications, which may be composed of 

programs or models. The Experimentation module interacts with the user, he lping 

him/her on the workflow instantiation process. Then, if the workflow is completely 

defined, the Experimentation module interacts with the Resource Operation module by 

issuing remote execution messages with the specified input data. After this, the 

Experimentation module keeps track of the ongoing experiments, by publishing each 

essay. In summary, the Experimentation module guides the user on the correct use of 

the available models, providing an on-the-fly interface for executing them. Finally, the 

Publication module is responsible for publishing scientific resources. When a publisher 

enters some resource descriptions, the module checks these inputs by interacting with 

both the Resource Operation and Resource Description modules. Once validated, the 

Resource Description module stores these inputs.  
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Figure 27: SRM Architecture 

SRM is a distributed architecture (Figure 28). The Web Access layer (WAL: 

Navigation, Publication and Execution) corresponds to the client side of SRM, and 

provides access to the other two modules, the Resource Description (RD) and Resource 
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Operation (RO) modules, which act as servers. An SRM client is able to connect to one 

or more Resource Description and Resource Operation modules. Each RD server may 

store descriptions about resources served in more than one RO servers. The idea is to 

organize RD servers of related resources. In this scenario, the SRM client connects itself 

to one or more RD servers to access resources descriptions. According to the user 

choices, the SRM client then connects to one or more RO servers. 
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Figure 28: SRM Architecture, a distributed View.  

4.1.1 Resource Operation Module 

In SRM architecture there are two main roles: the publisher and the user. The 

user basically navigates through described resources, trying to find some useful 

resource, and then actually accesses it. On the other hand, the publisher is basically a 

resource provider. Therefore, the publisher role is in charge of providing a Resource 

Operation (RO) module, which actually accesses data and executes code. In general, 

each RO module may be serving a set of data/code resources, grouped according to their 

location or platform. Each RO module works like a wrapper that allows the code or data 

to have a uniform interface in accordance with the distributed environment standard.  

The Experimentation module receives requests for data retrieval and for code 

execution. As shown in Figure 29, it provides resources requestors that establish 

connections with RO modules. The idea of the SRM architecture is to work on top of 

the Web infra-structure. Therefore, the RO module should embed a Web server, which 

interacts with the Execution module through Web protocols. At the other end of the RO 



   73

server is the legacy code and its invocation is specific. However, the RO module aims to 

be a generic way of enabling the invocation of any code. To address this goal, the RO 

module provides an extra layer of interaction between the code requestor and the legacy 

code itself. Within this extra layer, a generic invocation protocol is used to invoke the 

legacy code. Besides the Web server, other two facilities are necessary to provide this 

generic invocation: a message router and a code wrapper. The message router is used to 

process the generic invocation protocol and to invoke the code wrapper. The code 

wrapper is what has to be built to deal with the legacy code specificity, i.e., it knows 

how to invoke the legacy code and how to deal with its results, sending them back to the 

message router using the same generic protocol.  

Data access is similar to code invocation. Each data set is stored according to a 

data model, which either may be associated to a specific query language, or provide a 

specific query interface application to manipulate its content. In this case, a data 

wrapper is also necessary to deal with data sources heterogeneity. The SRM architecture 

assumes a standard data model as the generic interface between the data requestor and 

the data repository. The message router is used to process the generic data invocation 

protocol and to invoke the data wrapper. The data wrapper knows how to access the 

data repository, and how to transform them into the standard data model expected by the 

caller.  

Despite the different data models available, data sources are not as 

heterogeneous as legacy code. There are many data sources that use the same data 

model (e.g., the relational model). In this case, standard data wrappers can be built to 

help the publisher in providing an RO server for a data resource. Within the scientific 

scenario though, scientists commonly use structured text files. In this case, specific data 

wrappers are needed.  
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Figure 29: Resource Operation module 
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4.1.2 Resource Description Module 

To allow SRM users to access data or code resources provided by RO modules, 

each resource must be described in the Resource Description (RD) module. The 

publisher may either provide an RD module or use an existing one. It is natural to have 

a group of related distributed data/code resources described in one RD server.  

The RD module manages metadata of scientific resources. The Scientific 

Publication Model (SPM) is the metamodel (schema) behind the Resource Description 

module, and is described in more detail in Section 4.2. Each resource description is 

stored in accordance with the SPM. Considering some of the requirements raised before, 

XML seems to be the most adequate language to express scientific resources 

descriptions. Therefore, the SPM is expressed as an XML Schema. The idea of having a 

metadata repository manager came from the need to store semi-structured descriptions 

expressed in XML.  

The RD module (Figure 30) includes a DBMS server. XML-enabled DBMS and 

native XML DBMS are both alternatives for XML storage. In the case of XML-enabled 

database systems, to guarantee that XML documents will be properly stored in that 

database, it is necessary to use or extend existing XML APIs. Therefore, the RD module 

embeds not only a DBMS server, but also a client application that includes an XML 

API.  

In the RD module, the DBMS server maintains three main collections: XML, 

XSD, and Xix. The XML database stores all XML documents with metadata about any 

scientific resources area, e.g. Biology, Oceanography, etc. The XSD database stores 

XML Schemas used for XML documents validation. In this architecture, XSD contains 

the SPM XML Schema, which specifies how scientific resources such as data category, 

transformation, data, code and experiment should be described. Finally, the Xix 

database stores an index over the XML documents to provide direct access to these 

documents, facilitating keyword searches. The Indexer facility is responsible for 

building the Xix database by indexing XML documents stored in the DBMS.  
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Figure 30: Resource Description module 

Each module of the Web Access layer (WAL) interacts with the RD module 

through Web-based protocols. The Publication module (Section 4.1.3) feeds the RD 

module with XML documents, while the Navigation module (section 4.1.4) interacts 

with it by issuing queries and retrieving XML documents for navigation. Finally, the 

Experimentation module (Section 4.1.5) issues queries to the RD module for validating 

code executions, and then feeds it with experiment descriptions. The XML API is 

responsible for retrieving and returning XML documents that satisfy the issued queries.   

4.1.3 Publication Module 

The Publication module is responsible for scientific resource description capture. 

According to the SPM metamodel, each scientific resource has specific metadata that 

describes it. Therefore, the Publication module (Figure 31) provides a different entry 

form for each of them, through the Resource Publication Interface facility. These forms 

are built based on the SPM, which is expressed as an XML Schema. In fact, considering 

the evolutionary nature of metamodels, especially in the scientific scenario, we have 

designed the Publication module to be adaptable to different (versions of) metamodels. 

As we chose to have the metamodel stored in the metadata repository, it may be used 

not only to validate XML document instances but also for building the user interface.  

The publication process involves two main scenarios. In the first scenario, the 

publisher is usually a scientist that has been publishing theoretic model resources within 

a scientific community. The publisher starts publishing models and their inputs and 
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outputs, by filling up the correspondent forms. In this scenario, the publication is a top-

down process, i.e., it starts with the more abstract description. In the second scenario, 

the publisher is either a data provider or a code provider. In this scenario, the process is 

bottom-up, and the publisher describes each code or data by publishing programs and 

the correspondent inputs and outputs. The association between models and programs 

happens in the bottom-up scenario, after having the program and model already 

published. 

According to the bottom-up publication scenario, the Publication module first 

requires the resource operation address. Based on metadata about the resources 

available at the RO module, the Resource Selector provides a list of the served 

code/data resources, where the publisher selects and publishes it in the RD module. 

However, a code/data publication means to describe them as valuable scientific 

resources, i.e., program and model publications are also required. These descriptions are 

captured by the SPM Schema, therefore, the Schema Processor asks the RD module for 

the correspondent XML schema subset and prepares it for the Interface Builder. Based 

on the schema key reference element definitions, the Schema Processor transforms the 

abstract relationship between resources into an enumeration type with references to 

identifiers of document instances. After prepared, the schema is delivered to the 

Interface Builder which transforms it into an HTML page, where a publication form is 

ready to be filled up. Finally, when the user submits a form to the Form Handler facility, 

the submitted data are translated into an XML document and sent to the XML Validator 

facility to be validated against the Schema. 
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Figure 31: Publication module 
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When guiding the user through the top-down scenario, the Publication module 

jumps directly to the interaction with the Schema Processor, which asks the RD module 

for the correspondent XML schema subset and prepares it for the Interface Builder.   

The workflow publication starts at the navigation process. While navigating, the 

user selects which programs/models are needed. The Workflow Definition Interface 

facility captures the navigation selections and interacts with the user for the workflow 

definition. Then, to guarantee that the workflow definition combines compatible 

programs/models, the WF Definition Validator facility requests for program/model 

descriptions stored in the RD module. Finally, after validated, the workflow is published 

in the RD module. 

4.1.4 Navigation Module 

A quick glance at the most usual queries suggests that the scientific user 

searches for different data characteristics, such as substance names (e.g. Calcium), 

quantities (e.g. concentration) and units (e.g. mg/l). The Resource Description module 

usually answers these queries. However, due to the diversity of scientific users, there is 

not a pre-defined way to present such queries. Therefore, the need for a keyword-based 

search facility is clearly identified. Also, a guided navigation is required; based or not 

on the results of a keyword search request. Dynamically configured interface pages 

should guide the user through selected available resources.   

The Navigation module is responsible for handling user queries and navigation 

over/through scientific resources. Therefore, the Navigation module includes facilities 

for querying XML documents stored by the Resource Description module and for 

handling query results to be presented to the user (Figure 32). Depending on the request 

of the user, the Query Interface facility may submit it either to the Keyword Search 

Handler or to the Query Handler. 

The Resource Description module takes advantage from the built- in indexes 

(Xix) to retrieve a set of possible XML document references, which are processed and 

built by the XML Processor and Interface Builder facilities, respectively, and then sent 

back to the user.  
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Figure 32: Navigation module 

The Navigation module also provides some pages through which the user can 

navigate and ask for more specific information on available resources. These user 

requests are passed to the Query Handler facility and then submitted to the RD module. 

The result of such requests may either be a set of references or a single XML document. 

Both are returned to the XML processor, which adds links to other documents based on 

the XML Schema relationship information. 

4.1.5 Experimentation Module 

An experiment begins with its description, which is provided using the 

Publication module. After describing the purpose, hypothesis and workflows associated 

to an experiment, the user may then start it. The Experimentation module is responsible 

for the experiment management, and it counts with the facilities shown in Figure 33. 

The user starts an experiment through the Experiment Initiation Interface facility by 

choosing which workflow, associated to the experiment, is going to be instantiated.  

The next step is the definition of a concrete workflow. The workflow published 

so far is an abstract workflow, and a corresponding concrete workflow is needed to be 

available for execution. The Concrete WF Definition Interface facility (Figure 33) 

supports the concrete workflow definition, which involves choosing data and code 

resources to be used according to the abstract definition. If the abstract definition is at 

the model level, then there must be two choice levels. The first level will choose which 

program is best for a model, and the second level will choose which code resource is 

best for that program. Data resources are chosen according to the input data categories 
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and constraints associated to the programs chosen, i.e., the user navigates through a list 

of data resources that are compatible to the input data categories of the workflow 

programs. With respect to the choice for code resources, the code/data definition facility 

may either provide a list for user navigation and choice, or count on the definition of 

some selection criteria. Differently from data resources, code resources are all 

equivalent in terms of functionality, as they are compilations of the same program. 

Therefore, instead of a direct cho ice, specific criteria, such as cost or availability, could 

be defined for a further automatic choice of which would be the best code resource. 

Finally, parameter values are also defined at this point, either by user direct input, or by 

choosing a data resource.    

When ready, the concrete workflow definition is passed to the Workflow Engine 

facility. First, the facility publishes this definition in the RD module as a registry of the 

on going essay, and then starts processing it. If code resource criteria are defined, the 

engine should be able to “resolve” that by, for instance, computing costs or finding out 

the code availability. For each data and code resource specified in the workflow 

definition, a corresponding code/data requestor is called, which interacts directly with 

the corresponding RO module. The data requestor should be able to select data 

according to program input constraints. Code requestors should be able to send the 

selected data to the corresponding RO module. After finishing each code execution, data 

results are temporarily published as data resources, and when it is the case, passed to the 

next step in the workflow execution, i.e., another code requestor. Each finished code 

execution is registered in the RD module, composing an essay publication. 
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Figure 33: Experimentation module 
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4.2 Scientific Publication Metamodel 

The Scientific Publication Metamodel (SPM) addresses most of the description 

facilities presented in section 3.4. As SRM architecture follows a metamodel-based 

approach we have concentrated on the development of SPM to support this architecture. 

In a metamodel-based approach several concepts are captured in a metamodel, and 

resources are described according to this metamodel.   

In this section, we define a set of concepts that form the SPM. Considering that 

scientific users and publishers basically deal with programs and data, we start with a 

generic approach, where we define two concepts (Figure 34) that can express not only 

what the user needs, but also what the publisher provides. Data category is the first 

concept that may be used by the publisher to describe his data and that may be used by 

the user to define the type of data he needs. Then, there is Transformation category that 

may be used by the publisher to describe what the functionality of his program is, and 

may be used by the user to define which kind of scientific solution he needs. Finally, the 

publisher may publish data as a data category and may publish program as a 

transformation category. Thus, users can improve their access, understanding and reuse 

of published resources, through these categories. In order to enhance readability, let us 

refer to Transformation category simply as transformation.  
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Figure 34: SPM Generic Concepts 

The explicit definition of high level concepts like data category and 

transformation category is one of the main advantages of a metamodel-based approach. 

These concepts provide a common view of different but similar objects that are 

manipulated by different user roles, facilitating the interaction among them.  
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The following subsections present the SPM model in more details. Each SPM 

concept is expressed as a UML (UML REVISION TASK FORCE, 1999) class. SPM classes are 

related to each other within a class diagram. To facilitate SPM explanation, the 

complete SPM diagram was broken into subsets of related concepts. To see the 

complete diagram, please refer to the Appendix (section 9.1).  

4.2.1 SPM concepts 

To describe scientific data and programs, first it is necessary to “identify” them 

as a resource, which has a Web address and is described by a certain “type”. In 

particular, as shown in Figure 35, a data resource is described by a data category 

(ProgramDC), while a code resource is described by exactly one program interface 

(or simply, program). A code resource represents one code  that executes in a specific 

operational system and hardware, while a data resource represents one data set that was 

generated by some kind of mechanism, such as a satellite or a sensor, or even a code 

execution. To allow for data traceability, data provenance should be explicitly captured, 

determining the specific satellite or sensor identification, as well as the code execution 

that actually generated them.  
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Figure 35: SPM operational resources related concepts 

Usually, a scientific program is the implementation of a theoretic model. Both 

model and program concepts have many characteristics in common, although they 

belong to different usage levels. The program is actually executable, while the model is 

descriptive. To take advantage of such similarity, both model and program can be 
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viewed as a transformation, as shown in Figure 36. A transformation is a description 

of a data transformation process that produces some output data and requires input data. 

Therefore, a transformation should be associated to at least one input and one output, 

and each one of such I/O data refers to a data category. An I/O data may be 

specialized as input or output data. Finally, a transformation is associated to a set of 

parameters  and to a set of operational constraints,  which express conditions on I/O 

data attributes and on transformation parameters.  

Through the transformation abstraction it is possible to represent associations to 

I/O data, Parameters and Constraints for both concepts (models and programs). On the 

other hand, the differentiation between these concepts is important because it allows the 

representation of another important concept, which is the implements relationship. This 

representation allows the user navigation through models and programs, searching for 

similar programs that are based on the same model. In addition, models and programs 

are characterized differently. Models are described by a set of attributes that capture 

information that are typical of its level of abstraction, such as area, scope, purpose and 

hypothesis, while programs are described by implementation related attributes, such as 

the programming language and the program version. Also, programs are usually 

associated to more parameters than the model it is based on. These additional 

parameters are related to implementation issues such as performance and precision. 

Finally, the program is used to describe code resources, which reside in different hosts. 

When a user publishes a code as a code resource, he/she establishes an association of 

the code resource to a specific transformation, i.e., a program interface. This association 

will help the user to access, understand and use such code. 
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Figure 36: SPM transformation related concepts 

Furthermore, SPM focus is on the description of the program and the theory 

behind it, the model. However, the focus is not to represent the model itself, such as a 

formula or an algorithm, but to describe it with adequate semantic to facilitate the 

decision of its adequacy to the problem in hands. Therefore, SPM represents 

relationships between models, such as derivation and calibration, shown in Figure 37, 

which allows for the tracing of a model lineage. The study of a family of related models 

facilitates the user on the evaluation of which one is the most adequate.  

Scientists derive new models based on studies over some existing model. A 

study may consider, for instance, the influence of the temperature in the Kuznetsova 

model (KUZNETSOVA, V. A., 1960). Then, the new model includes some extra data input to 

accommodate temperature values.  

A model calibrates another model when it is specifically conceived aiming at a 

particular situation, such as a specific geographic area. Usually, to calibrate a model 

means to have values assigned to some of its parameters. The result is still a model, but 

calibrated to a specific situation. Both models, generic and specific, may be described 

and also implemented. Let us consider the “straight line” example. The straight line 

equation takes the form ax+ by + c = 0.  The equation 5x – y + 2 = 0 represents a 



   84

specific straight line. In this example, the straight line is calibrated when parameters a, b 

and c assume values 5, -1 and 2, respectively.  

The ModelParmMatch concept represents the relationship between the 

calibration and the calibrated model parameters. A simple type value may be assigned to 

each model parameter. Usually these values correspond to constant values, and can be 

represented by the ModelParmMatch attribute. As models are represented here as a 

descriptive concept, the idea is to document its calibration process and not to automate 

it.  
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Figure 37: SPM model derivation and calibration concepts 

Another important model descriptive attribute is its classification. There are 

many classification possibilities, described in section 2.3.1. When describing a scientific 

model it is not wise to choose one of them. On the other hand, a possible unification of 

all these classifications would be out of the scope of this work. Therefore, it seems more 

appropriate to allow the user to choose as many classifications as necessary to describe 

a model instance. 

Figure 38 presents the data category and its related concepts. A data category  

describes scientific data that have some common characteristics. A set of attributes is 

used to describe each property of a data category. Some of these attributes are 

mandatory others are optional. A data category can be associated to a model, in this case 

it is called a model data category (modelDC); or it can be associated to a program, 

when it is called a program data category (programDC). The difference between these 

transformations becomes clear when we describe attributes of each data category 

associated to them. When describing data categories associated to the model, it is 
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necessary to describe the quantity and/or classification of each attribute, while 

describing a program data category, each of its attributes needs a basic data type (e.g., 

integer), a unit (e.g., mg/l) and a format (e.g. GIF) specification. When publishing data 

as a data resource, the user associates it to a program data category. As real data is 

already committed to data units and formats, it does not make sense to describe it using 

directly a model data category. 

The advantage of using model data categories at such abstract level of 

description facilitates the discovery of equivalent models. It is possible to find different 

purpose models, which use the same scalar quantities.  

Resource
title
creator
creationDate
webReference

Data

DataCategory
title
creator
creationDate

DataResource

provenance
genMechanism

publishedAs

<<instance of>>

ModelDC
ProgramDC

1..n 0..n1..n

+describedBy

0..n0..1 0..n0..1

+implements

0..n

ModelAtt
quantity
classification

ProgAtt
type
unit
format

0..1 0..n0..1

+implements

0..n

Attribute

title

 

Figure 38: SPM data category related concepts 

When a program implements a model, this relationship is extended to the 

associated data categories. Therefore, a mapping function should exist between a 

program and a model, meaning that for each I/O data associated to the model, there 

must be a related I/O data associated to the program. A valid implementation 

relationship should map each and all I/O data associated to the model to one unique 

correspondent I/O data associated to the program, i.e., the mapping function between 

data categories associated to both model and program should be an injective function. 

Analogously, we may say that a program data category implements a model data 

category, by establishing a mapping function between both data categories. This 

mapping means that each attribute of the model data category must be related to one 
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attribute of the program data category. A valid implementation should relate each and 

all attributes of the model data category to one unique attribute of the program data 

category, i.e., the mapping function between attributes from the model to the program 

data categories should be an injective function.  

A parameter is a concept that can represent: (i) a model parameter which is 

used to “tune” the model for a specific objective (e.g., one may say that in the formula 

“y=ax+b” that represents a “straight line”, a and b are constant parameters which 

determine the intersection points between the line and the axes); (ii) a processing 

parameter which is used to determine some “performance” and “accuracy” aspects 

(e.g., a program requiring a minimum set of data, or even, a program using alternative 

precision options, according to user needs); (iii) a condition parameter which is created 

only to express a value required by some program use constraint (e.g., a program that 

should be used only for a certain data value interval). 
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Figure 39: SPM parameter and constraint concepts 

As Figure 39 shows, a parameter refers to a data category that might be at the 

program or model level. The user can either define a data category for each parameter, 

or define a set of parameters under the same data category, as it s attributes. However, it 

is important to notice that the user should have in mind which data is really a 

transformation data input, and which is clearly defined as a parameter. 

Constraints describe conditions for the adequate use of a transformation. When 

describing a model or program it is important to express its limitations, i.e., which 

constraints it should be conformed to, in order to be used correctly. A program is itself a 

computational model of a theoretic model. Precision and performance are some of the 
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issues that constrain a program. Examples of some common transformation constraints 

are: (i) a model developed for a specific geographic location, should be constrained to 

data from that location (e.g., an image segmentation model that has been designed only 

for images from a specific region); (ii) a program developed to run over some data input 

cardinality lower-bound (e.g., a data simulation program that would run based on a 

minimum historic data interval); (iii) a model developed to run specifically over some 

data value interval (e.g., a biocorrosion model that would fit only to water samples 

whose chloride concentration is below a given value).  

As shown in Figure 39, a constraint might be associated to I/O data and/or to 

parameters, depending on the data involved in the constraint. Each constraint is 

characterized by description and expression attributes, which represent informal and 

formal constraint expressions, respectively. In the case of formal descriptions, it is 

recommended to use some formal language. 

In summary, all concepts discussed here are represented in the SPM metamodel. 

Figure 40 presents a simplified overview of the SPM metamodel, which shows those 

concepts and their relationships.  
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Figure 40: SPM Schema overview 

4.2.2 SPM Advanced Concepts  

Other advanced concepts must be identified to provide for the resource usage 

registry. Figure 41 presents these advanced concepts and their relationships to the other 

original concepts.  

The transformation concept is used to describe a transformation resource, such 

as models and programs. However, to make a transformation available for experiments, 

we use another concept: workflow. Therefore, a transformation that needs to be 

available for experiments should be declared as part of a workflow. A workflow is 

related to a set of transformations and is described by a workflow specification 

attribute, which should contain a formal workflow description language like in 

BPEL4WS (CURBERA, F., GOLAND, Y, et al., 2002). Such workflow specification describes how 

the related transformations are to be processed, i.e., which transformation should be 
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performed first, which others may be performed in parallel, which transformation output 

data corresponds to other transformation input data, etc.  
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Figure 41: SPM advanced concepts (experiment and workflow) 

In the case of our in silico laboratory environment the definition of experiment 

presented in section 2.3.5 fits well. Each in silico experiment has its own hypothesis 

and purpose. The control is established through the association to a set of related 

workflows, i.e., an experiment has a fixed set of workflows over which actions are 

taken. Each action begins with a workflow instantiation, and ends when the workflow 

execution is complete. To use a common lab word, each workflow instantiation is what 

is called an essay. An essay involves a set of code executions. These executions 

correspond to an instantiation of a specific workflow, which is composed of a set of 

programs.  
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A code execution describes each use of a program by keeping a record of which 

resources (code and data) the scientist used dur ing an essay, i.e., the code execution 

registers for each program parameter, which value was used (parmMatch) and for each 

program I/O data, which data resource was used (dataMatch). A data match is the 

assignment of a data resource to a data I/O that belongs to a program interface. The 

assignment process should verify the compatibility among the data categories referred 

by both data resource and program input data. The data input assignment happens 

during the workflow instantiation, while the data output assignment happens at runtime. 

In summary, the code execution registers the use and generation of data resources as 

data I/O of a code resource, during an in silico essay.  

4.3 Analysing SRM in the light of the 

requirements 

Figure 42 shows that SRM architecture provides most of the facilities listed in 

the table of Figure 26. In the first group of facilities, SRM does not attend a complete 

execution control. However, we believe it is not difficult to add this facility, especially 

if SRM is used in combination with OGSA web services. Differently from the other 

initiatives (MyGrid, GryPhin, ESSW, ESP2Net, etc.), SRM strongly concentrates on the 

description facilities, attending most of them. In special, we have seen the importance of 

the differentiation between models and programs in almost all applications we analysed 

in section 2, particularly, in the biocorrosion application (SIMBIO project). The only 

work that considers this difference (ECOBAS-MIF) does not adopt a metamodel 

approach. Besides, ECOBAS-MIF does not include important scientific concepts such 

as essay and experiment that represent the use of models and programs. We were able to 

verify the use of these concepts in a structural genomic application (MHOLline project), 

analysed in section 2. Although SPM metamodel is more expressive than its related 

works, it did not include the concept of data replica. However, we believe SPM can be 

easily extended to add this concept. Thus, SPM metamodel contributes by providing 

rich modelling concepts that impact on almost all activities of the e-scientist, including 

concepts that were not considered in other related works so far.  

The workflow dynamic definition facility is not yet attended. To attend this 

facility, the SPM metamodel should include workflow versioning control, which is out 
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of the scope of this work. However, we believe it would be an interesting future work 

direction. 

 

 

 

Finally, it is worth to mention that SRM adopted Web services as the technology 

for handling distribution and heterogeneity of scientific resources. The next section 

describes SRM implementation, and evidences how Web services are a promising and 

suitable technology.  

 Distribution and Heterogeneity facilities  

? Data Distribution 

? Data Heterogeneity 

? Program Distribution 

? Program Heterogeneity 

? Prog. remote execution 
Some Execution control 

 Description facilities  

? Model description 
? Program description 

? Program IO description 

? Data Type description 

? Code description 

? Data description 

? Data replica description 

? Description Extensibility 

 Wf and registry facilities  

? Wf definitions 

? Abstract wf definitions 

? Wf dynamic definition 

? Wf execution 

? Wf partial execution 

? Code execution registry 

? Wf instance registry 

? Experiment registry 

Figure 42: Requirements review for SRM 
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5. Web Services based SRM architecture 

Implementation 

Web services are the standard technology to address interoperability issues, thus 

SRM architecture benefits from its infrastructure, summing its functionality atop Web 

Services. In 2001, after specifying SRM we developed prototypes using Le Select as a 

middleware system, which uses CORBA for interoperability. At that time, we proposed 

SRM as an extension of Le Select (CAVALCANTI, M. et al., 2002), and extended the ODBMS 

GOA (MATTOSO, M., CAVALCANTI, M., et al., 2002) to manage XML documents. In parallel, we 

were able to study SIMBIO project application and identify SRM contributions to this 

context (ECOBASE, 2001)  (CAVALCANTI, M. et al., 2002 c). However, in 2002, Web services 

emerged as a promising standard technology. Despite the advantages of Le Select, in 

general, the scientific community is very standard oriented and (especially in the case of 

biologists) rely only on freeware, shareware or openware software, which is not the case 

with Le Select. For that reason, SRM architecture is currently proposed as a Web 

services based architecture (CAVALCANTI, M., MATTOSO, M., CAMPOS, M. L., 2003 a). 

In this section we present the Web services based Scientific Management 

Architecture (SRMW). Section 5.1 details each SRM module with respect to 

implementation issues. In addition, we also present the SPMW metamodel expressed in 

XML Schema and how it extends WSDL. 

5.1 SRMW Architecture Implementation 

SRMW modules are presented in Figure 43. The Web services provider 

corresponds to the Resource Operation module of the SRM architecture. A Web 

services provider can serve both data and code as services. To facilitate the search for 

these services, the publisher registers (step 1) his/her services through the Publication 

module, extending the correspondent WSDL documents with SPMW description 

elements. These documents are stored and managed by a Web services registry facility, 

adapted to scientific requirements, which corresponds to the SRM Resource Description 

module. 
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Figure 43: SRM Architecture based on Web services (SRMW) 

SRMW navigation module helps to find a service (step 2) by guiding the user 

through a collection of WSDL extended documents. As the user finds what it seems to 

be appropriate, the Publication module helps on planning an orchestrated execution 

(step 3) through a workflow definition. Then, this workflow definition is associated to a 

scientific experiment which must be registered through the Publication module (step 1). 

This experiment is then initiated (step 4), and the user is now able to start the 

instantiation of the defined workflow (step 5) and its subsequent execution (step 6). The 

Experimentation module acts like a Web services requestor (steps 7 and 8) connecting 

to the required Web services providers, which will actually access data sources and 

execute the service codes.  

5.1.1 Resource Operation Module 

Data and code publishers are responsible for building a Web services provider 

for their resources, so that they can become available for Web users. For each legacy 

code the user should build a Web services adapter (code wrapper). The generic 

invocation protocol adopted by the Web services provider may be SOAP, which would 

be processed by a SOAP router. In this case, the code requestor of the Experimentation 

module would send SOAP messages to the Web services provider, as service client 

requestor. Analogously, for each data set there must be a Web services adapter (data 

wrapper). 
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Building code and data Web services, for the scientific community, is not an 

easy task. This is an open issue in Web services based architectures like SPMW, and out 

of the scope of this work. So far, only generic data access Web services have already 

been proposed. The OGSA Data Access and Integration (OGSA-DAI, 2003) is one of the 

main initiatives in this direction. A master’s dissertation to facilitate the generation of 

scientific data resources Web services is under development (TEIXEIRA, F., 2003) at COPPE 

Sistemas. 

In addition, the investigation of the difficulties on building a biological 

workflow using Web services is the focus of another master’s dissertation work 

(TARGINO, R., 2003) at COPPE Sistemas. In this context, we have published Web services 

for some bioinformatics legacy codes (CAVALCANTI, M. et al., 2003 b), using Apache Tomcat 

4.0.4 (TOMCAT ) powered by the AXIS engine (AXIS) 

5.1.2 Resource Description Module 

The Resource Description module corresponds to an adapted Web services 

Registry. It registers descriptions according to the SPMW metamodel. To accommodate 

all metadata captured by this metamodel, we use a database server as RD main 

component. As a metadata repository manager, it stores resource descriptions expressed 

in XML. XML-enabled RDBMS and native XML databases are both alternatives for 

XML storage. We have investigated two alternatives, building the RD module on top of 

GOA and MySQL Systems.  

Initially, due to the similarity between the object oriented model and the XML 

model, we have chosen to store XML documents in an ODBMS. We have XML 

enabled the GOA System (GOA SYSTEM), an ODBMS prototype developed at COPPE 

Sistemas. We have embedded not just a GOA Client, but also the GOA XML enabler 

(Goaxe API) facility (MATTOSO, M., CAVALCANTI, M., et al., 2002). With Goaxe, the GOA System 

is able to understand and store XML documents. Goaxe manipulates XML documents 

by creating a GOA XML Schema that reflects the W3C DOM API classes. Goaxe takes 

an XML document instance, reads it and breaks it down into DOM class instances. 

Then, each of these instances is translated into a GOA XML Schema instance. 

Therefore, the GOA Server can be viewed as a generic XML repository. In addition, 

through XVerter (VIEIRA, H., RUBERG, G., MATTOSO, M., 2002) XQuery commands can be issued 

to GOA stored XML documents. 



   95

However, due to the wide use of MySQL on the Web, as well as on some 

scientific communities, we have changed the implementation of metadata repository to 

the RDBMS MySQL (WIDENIUS, M., AXMARK, D., 2002). Any repository can be used, as long 

as it can offer an XML facility. To provide XML access to MySQL, we have extended 

an XML open source API (NIEMCZYK, B., 2002) and associated it to a MySQL client API. 

The XML API breaks any XML document into four relations, also acting as a generic 

XML repository. 

The Indexer module was not yet implemented. In the case of a native XML 

DBMS, this module may already exist.  

The metadata repository stores also WSDL documents, extending the original 

ones with imports pointing to the SPMW extensions. Other Web applications may 

benefit from these extended WSDL documents by connecting directly to the Resource 

Description module.  

5.1.3 Web Access Layer Implementation Issues 

The Publication module is currently under implementation using Java Servlets, 

interfacing with any Web browser through HTML pages and forms. These servlets 

connect to MySQL server through a PHP client API. The XML API used was also 

written in PHP. Each Java Servlet manipulates XML documents using the Apache 

Project DOM API (XERCES), which was implemented based on the W3C DOM API 

specification. The idea is to deliver an XML valid document to the Resource 

Description module, ready to be stored by the DBMS.  

The Schema Processor facility is a Java Servlet that is called for each scientific 

element publication. It queries the RD module to get a subset of the schema according 

to the type of scientific element under publication. The schema subset includes 

enumeration elements derived from the XML documents to be referenced, e.g., 

programs should reference model descriptions. The Interface Builder automatically 

transforms the edited schema into a publication interface. The Interface Builder was 

implemented in XML Stylesheet Language (XSL) as a final under-graduation course 

project (LEAL, L.N., 2003). The generated interface includes validation routines according to 

the domain constraints defined in the original schema, such as pattern and interval 

validations.  
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The Navigation module is under development. It also comprises a set of Java 

Servlets. So far, we have implemented the Navigation interface, which allows the user 

to browse XML documents according to its category in SPMW model. The keyword 

search facility is not yet implemented. The Schema Processor facility is under 

development, and the Interface Builder is being developed as part of a final under-

graduation course project. 

The Publication and Experimentation modules count on IBM BPWS4J 1.0.1 

(BPWS4J) to define and process workflow specifications, written in BPEL4WS (CURBERA, F., 

GOLAND, Y, et al., 2002). A tool for the Experimentation module is being developed as part of 

a master’s dissertation (TARGINO, R., 2003), based on a prototype evaluated with MHOLline 

(CAVALCANTI, M. et al., 2003 b). Integration between this tool and SRMW is planned. For 

example, BPWS4J edition facilities could benefit from the selection of programs during 

the user navigation through scientific resources. Then, the generated workflow 

definition documents might be returned to the WF Definition Validation facility to be 

validated and, subsequently, stored in the metadata repository.  

The Experimentation module is also under development. A set of Java Servlets 

will be interacting with the user and the RD module to start a new essay. The 

instantiation of the workflow is then started, and the definition of code/data selection 

criteria defines the complete workflow instance, which is finally available for execution. 

Then, the WF Engine facility resolves any pending choice according to the user defined 

criteria and processes the workflow instance, which is composed by a set of Code and 

Data Web services requests. For each request, the requestor module builds on the fly 

SOAP messages.  

As part of a master’s dissertation work (TARGINO, R., 2003), a static scientific 

workflow has been implemented (CAVALCANTI, M. et al., 2003 b), using Web services 

technology. We have published legacy code using WSDL based on SPMW and used 

BPWS4J as the workflow engine, and data results are being stored locally, as XML 

pages. SRMW Experimentation module is now under integration with this work.  

5.2 SPMW Implementation 

To take advantage of the Web services technology we have implemented our 

metamodel as an extension to WSDL. Considering that services and programs are 
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equivalent concepts, both metamodels (SPMW and WSDL) share the same objective. 

Therefore, it is natural to find some intersection between them. Such intersection 

involves mainly program description elements. In fact, SPMW complements WSDL 

providing more descriptive elements and relationships. In order to be standard 

compliant we have chosen to extend WSDL metamodel with SPMW semantic elements, 

as illustrates Figure 44. 

operation

Program
Model 0..10..n 0..1

+impleme...

0..n

portType

types

ModelAtt

ModelDC

ScientificResourceDefinitions

ReqResOperation

definitions

Schema

ProgAtt
0..1 0..n0..1

+implements
0..n

ProgramDC
0..1 0..n0..1

+implements
0..n

Constraint

message

1..1

1..1

+hasInput

1..1

1..1

1..1

+hasOutput

1..1

I/O Data

Type

Transformation DataCategory0..n 1

+refersTo
0..n 1

part

Parameter
0..n

1

+refersTo

0..n

1

 

Figure 44: WSDL and SPMW mapping (abstract part). SPMW elements are painted. 

Analogously to WSDL, we have created a new element that is composed by 

SPMW definitions, called ScientificResourceDefinitions. Each scientific 

resource, i.e., program, model, program data categories, etc., must be declared under 

this element. The program element extends the ReqResOperation. As a 

consequence, each DataIO and Parm related to program should refer to the 

correspondent part of the ReqResOperation, and each ProgramDC (and its 

attributes – ProgAtt) referred by DataIO and Parm elements should refer to a Type 

declared within the types element. These relationships are represented in the SPMW 

XML Schema (presented in the next section), as extra attributes whose values should 

point to WSDL element instances. 

Another mapping happens between WSDL and SPMW at the concrete level. 

Code and data resources are also SPMW elements defined under the 

ScientificResourceDefinitions. Both elements provide information about 
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code and data hosts, complementing the access and encoding information provided by 

each binding at a WSDL document. In Figure 45, the diagram shows that 

CodeResource and DataResource elements are connected to the 

bindingOperation element. 

Resource

operation

ScientificResourceDefinitions

portType

ReqResOperation

CodeResource DataResource

service

definitions

bindingOperation

+refersTo

port

binding

+refersTo

 

Figure 45: WSDL and SPMW mapping (concrete part). SPMW elements are painted. 

5.2.1 SPMW XML Schema 

SPMW XML Schema has as its root the 

ScientificResourceDefinitions element. According to this schema, an 

SPMW document may include any number greater than zero of scientific resources 

elements under this element, in any order, as illustrated in Figure 46. 

 

Figure 46: SPMW main elements 
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These eight elements are detailed in the next sub-sections. Hierarchic diagrams 

are used to present each of these elements in separate, while the whole XML Schema is 

available in the Appendix. Some elements are optional, and appear in dotted boxes. 

Some elements are extensions of abstract elements, taking advantage of the inheritance 

mechanism available in XML Schema design. The inherited elements appear first as a 

separate group of elements. Each of the main elements includes an extensibility element 

(any element), allowing new sub-elements to be included in instance documents. 

Elements that have a complex structure are indicated by the plus (+) sign. 

Key definitions are used to provide unique identifications to instances of SPMW 

elements. Keyref definitions are used to establish the relationships between elements 

within SPMW, and consequently, to provide referential integrity among the 

correspondent instances. In the case of references between SPMW and WSDL elements, 

key and keyref definitions are not used. The reason of choosing a less tight 

relationship between these schemas is to provide more independence to SPMW, 

enabling it to be associated to other schemas.  

SPMW XML Schema current version is not fully addressing the SPMW 

conceptual model. Some aspects were left out and will be developed along with 

application projects, while SPMW evolves.  

5.2.1.1 Model – spm:Model 

The model element inherits some attributes from the abstract type 

tTransformation, which are included in the first group of elements in Figure 47. 

Title, creation and creationDate are self-explanatory elements. Input, 

parm and output are elements that may occur many times. All three of them have a 

similar complex structure that includes a title and a reference to a data category. 

The constraint element also has a complex structure. However, this one is different 

and includes three elements: a title, a description, used to describe it in natural 

language, and an expression, used to describe it in a formal language.  
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Figure 47: Model XML Schema diagram 

In the second group of elements there are model specific descriptive elements: 

??  Area: A model is usually associated to an area of application, e.g. 

industrial, economic, social, political, environmental, etc.  

?? Scope: The target or scope of a model is the system it represents, e.g. 

Itajaí hydrographic basin, a geographic region, or an enterprise.  

?? Classification: There are many different ways of classifying a 

model, e.g. mathematic, logic, deductive, empiric, probabilistic, 

algorithmic, simulation, etc.  

?? Purpose: Each model has a specific purpose, for which it is valid.  
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?? Hypothesis: Every model is initially a hypothesis. Building a model 

represents the expression of a scientific hypothesis that needs to be 

validated.  

?? BibliographicRef: A model is usually associated to scientific 

publications.  

?? WebReference: It would be useful to register the Web address of the 

model reference material, if it exists. 

As shown in Figure 48, the model element has a unique attribute that represents 

its key (kModel). Input, parm and output elements include the element 

refersTo, which is committed to ModDC element, through a keyref definition. 

 

 <xsd:element name =”Model” type=”spm:tModel”> 
  <xsd:key name=”kModel”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idTF”/> 
  </xsd:key> 
  <xsd:keyref name=”refInputModDC” refer=”spm:kModDC”> 
   <xsd:selector xpath=”input”/> 
   <xsd:field xpath=”refersTo”/> 
  </xsd:keyref>  
  <xsd:keyref name=”refOutputModDC” refer=”spm:kModDC” > 
   <xsd:selector xpath=”output”/> 
   <xsd:field xpath=”refersTo”/> 
  </xsd:keyref> 
  <xsd:keyref name=”refModParm”  refer=”spm:kModDC”> 
   <xsd:selector xpath=”parm”/> 
   <xsd:field xpath=”refersTo”/> 
  </xsd:keyref> 
 </xsd:element> 

Figure 48: Model Key and Keyref definitions 

5.2.1.2 Model Data Category – spm:ModDC 

The ModDC element represents the Model Data Category concept. It inherits 

from tDataCategory abstract type some descriptive self-explanatory elements: 

title, creator and creationDate, which are included in the first group of 

elements in Figure 49. ModDC also includes another group of elements which may 

contain multiple occurrences of MDCAttribute element. Each occurrence of this 

element is described by its title and a related quantity. A previously prepared list 

of quantities may be available.  

As shown in Figure 50, ModDC and MDCAttribute elements have a unique 

attribute that represents their key (kModDC and kModAttribute). 
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Figure 49: Model Data Category XML Schema diagram 

 <xsd:element name =”ModDC” type=”spm:tModDC”> 
  <xsd:key name=”kModDC”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idDC”/> 
  </xsd:key> 
 </xsd:element> 
 <xsd:element name =”ModAttribute” type=”spm:tMDCAttribute”> 
  <xsd:key name=”kModAttribute”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idAttribute”/> 
  </xsd:key> 
 </xsd:element> 

Figure 50: Model Data Category Key definition 

5.2.1.3 Program – spm:Program 

The program element inherits some attributes from the abstract type 

tTransformation, which are included in the first group of elements in Figure 51. 

These elements were already discussed in section 5.2.1.1. The constraint 

expression element is used to describe a program constraint in a formal language, 

possibly using BPEL4WS.  

In the second group of elements there are program specific descriptive elements. 

ImplementationLanguage is the programming language with which the program 

was implemented. It might be important to specify the version of this language. The 

Version element is used to specify the version/release of the program under 

description. Finally, the wsdlElementRef represents the correspondence to a port 

type operation of a WSDL document. 

As shown in Figure 52, the program element has a unique attribute that 

represents its key (kProgram). Input, parm and output elements include the 

element refersTo, which is a reference to ProgDC element instances, through 
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keyref definitions (refInputProgDC, refParmProgDC, 

refOutputProgDC). Another keyref definition involves the implements 

element, which is used to make reference to the model implemented by a program 

(refModel).  

 

Figure 51: Program XML Schema 

  <xsd:key name=”kProgram”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idTF”/> 
  </xsd:key> 
  <xsd:keyref name=”refModel” refer=”spm:kModel”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”implements”/> 
  </xsd:keyref> 
  <xsd:keyref name=”refInputProgDC” refer=”spm:kProgDC”> 
   <xsd:selector xpath=”input”/> 
   <xsd:field xpath=”refersTo”/> 
  </xsd:keyref> 
  <xsd:keyref name=”refOutputProgDC” refer=”spm:kProgDC”> 
   <xsd:selector xpath=”output”/> 
   <xsd:f ield xpath=”refersTo”/> 
  </xsd:keyref>  
  <xsd:keyref name=”refProgParm” refer=”spm:kProgDC”> 
   <xsd:selector xpath=”parm”/> 
   <xsd:field xpath=”refersTo”/> 
  </xsd:keyref> 
 </xsd:element> 
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Figure 52: Program Key and Keyrefs definitions 

5.2.1.4 Program Data Category– spm:ProgDC 

The ProgDC element represents the Program Data Category concept. It inherits 

from tDataCategory abstract type some descriptive self-explanatory elements: 

title, creator and creationDate. These elements are included in the first 

group of elements in Figure 53. In a second group of elements ProgDC also includes 

some specific elements. The PDCAttribute element may have multiple occurrences, 

and each occurrence is described by its title and a related unit. A previously 

prepared list of units may be available. The wsdlElementRef element, which 

appears within ProgDC and PDCAttribute elements, makes reference to a part 

and type in a WSDL document, respectively.  

As shown in Figure 54 , ProgDC and PDCAttribute elements have a unique 

attribute that represents their key (kProgDC and kProgAttribute). The 

implements element, which also appears within ProgDC and PDCAttribute 

elements, is used to make reference to model level elements instances (ModDC and 

MDCAttribute), through keyref definitions (refModDC and 

refModAttribute). 

 

Figure 53: Program Data Category XML Schema diagram 

 <xsd:element name =”ProgDC” type=”spm:tProgDC”> 
  <xsd:key name=”kProgDC”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idDC”/> 
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  </xsd:key> 
  <xsd:keyref name=”refModDC” refer=”spm:kModDC”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”implements”/> 
  </xsd:keyref> 
 </xsd:element> 
 <xsd:element name =”ProgAttribute” type=”spm:tPDCAttribute”> 
  <xsd:key name=”kProgAttribute”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idAttribute”/> 
  </xsd:key> 
  <xsd:keyref name=”refModAttribute” refer=”spm:kModAttribute”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”implements”/> 
  </xsd:keyref> 
 </xsd:element> 

Figure 54: Program Data Category Key and Keyrefs definitions 

5.2.1.5 Code Resource– spm:CodeResource 

The CodeResource element represents a code, wrapped by a Web Service, 

hosted by a particular computer in a specific address. As shown in Figure 55, it inherits 

a group of descriptive self-explanatory elements from the tResource abstract type: 

title, creator and creationDate. The describedBy element in the same 

group associates the code resource to its program interface description. Finally, the 

wsdlElementRef is used to make reference to a port operation in a WSDL 

document.  

Another group of elements describes specific characteristics to a code resource: 

hardwareInfo and operationalSystem. When about to decide which remote 

code to execute, the hardware and operational system are useful information to consider 

as selection criteria, among others that eventually will be added. 

As shown in Figure 56, the codeResource element has a unique attribute that 

represents its key (kCodeResource). The describedBy element is used to 

reference program element instances, through a keyref definition 

(refDescribedByProgram). 
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Figure 55: Code Resource XML Schema diagram 

 <xsd:element name =”CodeResource” type=”spm:tCodeResource”> 
  <xsd:key name=”kCodeResource”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idCR”/> 
  </xsd:key> 
  <xsd:keyref name=”refDescribedByProgram” refer=”spm:kProgram”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”spm:describedBy”/> 
  </xsd:keyref> 
 </xsd:element> 

Figure 56: Code Resource Key and Keyrefs definitions 

5.2.1.6 Data Resource– spm:DataResource 

The DataResource element represents a data set, wrapped by a Web Service, 

hosted by a particular computer in a specific address. As shown in Figure 57, it inherits 

a group of descriptive self-explanatory elements from the tResource abstract type: 

title, creator and creationDate. The describedBy element in the same 

group associates the data resource to its program data category description. Finally, the 

wsdlElementRef is used to make reference to a port operation in a WSDL 

document.  

Another group of elements describe specific characteristics to a data resource: 

provenance, genMechanism and WebReference. When about to decide which 

remote data set to access, the data generation mechanism (e.g. if they were produced by 

a satellite, sensor, program, etc.) and data provenance (i.e. the identification of the 

source that had generated it) are useful information to consider as selection criteria. The 

WebReference element is used as an alternative for accessing data sets which are 

already available in XML format.   
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As shown in Figure 58, the dataResource element has a unique attribute that 

represents its key (kDataResource). The describedBy element is used to make 

reference to ProgDC element instances, through a keyref definition 

(refDescribedByProgram). 

 

Figure 57: Data Resource XML Schema diagram 

     <xsd:element name=”DataResource” type=”spm:tDataResource”> 
  <xsd:key name=”kDataResource”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idDR”/> 
  </xsd:key> 
  <xsd:keyref name=”refdescribedByProgDC” refer=”spm:kProgDC”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”spm:describedBy”/> 
  </xsd:keyref> 
 </xsd:element> 

Figure 58: Data Resource Key and Keyrefs definitions 

 

5.2.1.7 Workflow– spm:Workflow 

The workflow element represents the execution plans to be used by 

experiments. As shown in Figure 59, a workflow is described by a set of self-

explanatory descriptive elements (title, creator and creationDate). In 

addition, a multiple occurrence of the wfStep element determines the workflow 

composition, which is based on program element instances. Finally, the specification 

of how these steps are logically organized is described in the specification 

element.  
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As shown in Figure 60, the workflow element has a unique attribute that 

represents its key (kWorkflow). The wfStep element is used to make reference to 

Program element instances, through a keyref definition (refWfStep). 

 

Figure 59: Workflow XML Schema diagram 

 <xsd:element name =”Workflow ” type=”spm:tWorkflow ”> 
  <xsd:key name=”kWorkflow ”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idWF”/> 
  </xsd:key> 
  <xsd:keyref name=”refWfStep” refer=”spm:kProgram”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”spm:wfStep”/> 
  </xsd:keyref> 
 </xsd:element> 

Figure 60: Workflow Key and Keyrefs definitions 

It is worth to mention that SPMW is in its first version, and the workflow 

description should evolve. For instance, we aim to address abstract workflow definitions 

in terms of models (instead of just programs), by proposing extensions to the workflow 

definition language.     

5.2.1.8 Experiment– spm:Experiment 

The experiment element represents the use of scientific resources. As shown 

in Figure 61, it is composed by elements that identify, describe the context of the 

experiment and capture the history of essays. Title, creator and creationDate 

are the identification elements. Then, a set of elements contextualize the experiment. 

The project element associates it to a research project. The experiment hypothesis 

and purpose are stated in the correspondent elements. The status element indicates 

the experiment status, e.g., if it is active, finished, archived, etc. The report element 

is used to capture the scientist final report about the experiment. Finally, the workflow 
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element has multiple occurrences. Each experiment may have one or more workflows 

associated to it. These workflows are used during the experiment essays.  

The many essays of an experiment capture the history of code executions. Each 

essay element is described by the moment it starts (creationDate and 

creationTime) and the workflow it is instantiated from (instanceOf). The 

comment element captures scientist comments about each essay. The duration 

element is updated as all the executions finish. As the essay is an instance of a 

workflow, it comprises a set of code executions. Each execution element is 

described by associations to code and data resource elements instances. For each data 

IO and parameter associated to the code corresponding program interface, a specific 

data resource is associated. This relationshipis mapped through dataMatch and 

parmMatch elements, respectively. 

 

Figure 61: Experiment XML Schema diagram 

As shown in Figure 62, the experiment element has a unique attribute that 

represents its key (kExperiment). The workflow and the instanceOf elements 

are used to make reference to workflow element instances, through keyref 

definitions (refWorkflow and refInstanceOf, respectively). The 
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codeResource and the dataResource elements are used to make reference to 

code and data resource element instances, through keyref definitions 

(refCodeResource and refDataResource, respectively). 

 <xsd:element name =”Experiment” type=”spm:tExperiment”> 
  <xsd:key name=”kExperiment”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”@idEx ”/> 
  </xsd:key> 
  <xsd:keyref name=”refWorkflow ” refer=”spm:kWorkflow ”> 
   <xsd:selector xpath=”.”/> 
   <xsd:field xpath=”spm:workflow ”/> 
  </xsd:keyref> 
  <xsd:keyref name=”refInstanceOf” refer=”spm:kWorkflow ”> 
   <xsd:selector xpath=”spm:essay”/> 
   <xsd:field xpath=”spm:instanceOf”/> 
  </xsd:keyref> 
  <xsd:keyref name=”refCodeResource” refer=”spm:kCodeResource”> 
   <xsd:selector xpath=”spm:essay/spm:execution”/> 
   <xsd:field xpath=”spm:codeResource”/> 
  </xsd:keyref> 
  <xsd:keyref name=”refDataResource” refer=”spm:kDataResource”> 
   <xsd:selector xpath=”spm:essay/spm:execution/spm:dataMatch”/> 
   <xsd:field xpath=”spm:dataResource”/> 
  </xsd:keyref> 
 </xsd:element> 

Figure 62: Experiment Key and Keyrefs definitions 

5.2.2 Extending a WSDL document 

Taking advantage of the WSDL extensibility element (definitions), the 

new element may be declared just under it. To illustrate how we extend WSDL with 

SPMW elements let us take the SPMW program element. In WSDL such element is 

represented as a port type operation. In SPMW, we have designed a program element 

which is associated to a WSDL portType operation element instance through the 

wsdlElementRef element. 

Also, the program element makes reference to other SPMW elements, such as 

data input and output types. Thus, each program element has a set of IOData sub-

elements (input, parm and output). Each of these sub-elements should refer to 

SPMW program data category element instances (ProgDC instances) through the 

refersTo sub-element, establishing the connection between a program and its inputs 

and outputs. To associate SPMW ProgDC instances to WSDL types, each ProgDC 

element refers to the WSDL message part type attribute, through the 

messagePartType sub-element, while the SPMW program IOData and parameter 

sub-elements refer to the WSDL message part name attribute.  
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The WSDL file is dup licated by SRMW and altered to have an extra import 

definition inside it. Through this definition SRMW couples metadata of scientific 

resources to WSDL elements. Consequently, other applications may have access to all 

metadata related to some scientific resource published in SRMW as an extended WSDL 

document. For instance, when queried about a specific program, SRMW would provide 

an extended WSDL including contents of all related SPMW documents. 
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6. Using SRMW with Scientific Applications 

Among the vast amount of scientific applications, we have had the opportunity 

to study closely two noteworthy ones: a biocorrosion application and a structural 

genomic application. A special team in the Research Centre - CENPES-Petrobras deals 

with the investigation of biocorrosion phenomena. Some of the team specialists worked 

with us on a joint research project, which allowed us to study a real biocorrosion 

application. Another group of scientists, working at the Institute of Biophysics Carlos 

Chagas Filho (IBCCF) deals with structural genomic applications. IBCCF scientists 

take part on a research project whose main objective is to define a scientific workflow 

based on bioinformatics programs to build molecular tri-dimensional models. These 

programs are based on algorithmic models that may generate different and useful 

implementations. Some IBCCF researchers are working with us on a joint research 

project where we aim at providing support for scientific workflows and data derivation 

and provenance. The strong interaction with the scientific specialists has put us close to 

real problems and requirements.  

The main goal of using SRMW with these applications is to analyse the 

adequacy of SRMW components with respect to supporting the requirements of the 

applications. The three general requirements are: (i) to handle distribution and 

heterogeneity, (ii) to describe scientific resources and (iii) to manage scientific 

workflows and register their use. Those two applications confirm these three 

requirements. However, they have specific needs and different “weights” on the 

importance of the three requirements. 

In biocorrosion teams, (i) is a basic necessity since the team is highly 

heterogeneous, that is, the scientists come from different application domains, and work 

with specific models in sub-teams physically distributed (not necessarily through the 

Web, but through some Intranet). Usually, they exchange data analysis, but they do not 

share programs or models between sub-teams. However, sharing programs and models 

would increase the productivity among scientists from different sub-teams. Their main 

problem relates to finding the right model for each case, and correctly executing the 

correspondent program. Therefore, describing programs and grouping models (item (ii)) 

are a crucial requirement in biocorrosion teams. Since models are often reused, once 
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they are published in SRMW, browsing model’s descriptions and model’s usage 

facilitates biocorrosion scientists. This means browsing abstract workflows and 

experiments. Finally, building scientific workflows is not a strong requirement among 

biocorrosion scientists. Thus, item (iii) is necessary but not vital as the other items. 

However, we believe that with SRMW support, scientific workflows will naturally 

become a requirement, even to biocorrosion scientists. In summary, through 

biocorrosion teams we were able to analyse metamodel issues with respect to scientific 

models and programs, as well as tools to navigate through published resources.  

In biophysics teams, (i) is also a basic necessity but for different reasons. 

Biophysics are usually part of homogeneous teams. However, they are usually 

organized in sub-teams involved in developing or using a specific program. These sub-

teams are physically distributed and exchange their programs throughout the Web. 

Typically these programs are available at Web sites for online usage, where associated 

user guides help the user in filling up parameters and program inputs. In this case, item 

(ii) is important but not critical. Describing programs is useful, but grouping programs 

according to their models is not as important as it is the case of biocorrosion teams. 

Finally, item (iii) is crucial to biophysics teams. Their main difficulty relates to the 

combination of a program output with another program input, meaning they need to 

execute scientific workflows, composed by heterogeneous and distributed programs. 

Web services are a right solution as provides dynamic interaction between these 

programs, facilitating their combination and execution as workflows. Besides, 

monitoring these executions is even more important, as biophysics, as well as many 

other scientists, need to keep track of data provenance. Once published in SRMW, 

biophysics workflows are easily monitored and experiments are registered into its 

metadata repository. In summary, through biophysics teams we were able to analyse 

metamodel issues with respect scientific workflows and experiments, as well as tools to 

support workflow definition, instantiation and execution. 

In SRMW the scientific resources that are useful to an application should be 

available at first. For example, scientific models should be available to compose 

workflows, upon which an experiment is published. In this direction, this section 

describes how scientists have published some of their resources and how this is useful to 

perform new experiments.  
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The next sub-sections show SRMW being used within a souring application 

(section 6.1) and a structural genomic application (section 6.2), presenting their 

publications through the SRMW Publication module and the SPMW metamodel 

elements.  

6.1 Souring Application 

Corrosion monitoring on oil platforms over the Brazilian coastal zone is one of 

the main concerns of scientists from CENPES-Petrobrás. The production of oil in deep 

water reservoirs benefits from the injection of sea water into the reservoir. The process 

of water injection increases the pressure inside the reservoir, facilitating the oil 

exploitation. Before being injected, the  sea water is treated with chloride, filtrated and 

deoxygenated.  

A typical biocorrosion application is the investigation of the causes of oil pipe 

obstructions. There are different hypotheses to consider. The obstruction may be caused 

by micro-organism activity (souring), by sand accumulation or by corrosion products 

accumulation. For each hypothesis a new experiment is initiated.  

Souring is one of the main problems that may occur during an oil reservoir 

lifetime. This problem is believed to be caused by sulfate-reducing bacteria (SRB), 

present in the reservoir. These bacteria are strict anaerobic micro-organisms that 

accumulate themselves like biofilms on oil reservoir porous walls, and reduce sulfate 

that come with the water to hydrogen sulfite. The problem becomes worse when the sea 

water is not treated adequately before injection. In these cases, solids characterized by 

bacteria colonies besides inorganic compounds can be carried into the oil reservoir. 

Therefore, the quality of the water introduced in the pipes and the quality of the 

reservoir internal cover are both factors that may bring souring problems to the oil 

extraction process.  

To illustrate the use of the SPMW metamodel we have published some of the 

useful resources to a specific souring application called Cabiunas case study. The 

Cabiunas case study has started based on the identification of the appearance of the 

deadly hydrogen sulphide gas (H2S) in an oil-water separation storage area in the city of 

Cabiunas, RJ. 
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We start by publishing the Kuznetsova model, and the corresponding data 

categories (section 6.1.1), then we publish the Kuznetsova program and its data 

categories (section 6.1.2). In section 6.1.3 we publish an available code resource for the 

Kuznetsova program, while in section 6.1.5, we publish an available data resource for 

the Cabiunas case study. In section 6.1.4 we publish the Kuznetsova workflow and 

associate it to the experiment published in section 6.1.7. Finally, in 6.1.6 we show the 

user browsing resources to perform a new experiment, which is illustrated in section 

6.1.8. 

6.1.1 Publishing Kuznetsova model 

We have started by publishing a very simple mathematical model known as 

Kuznetsova model (KUZNETSOVA, V. A., 1960). To publish the Kuznetsova model, the 

publisher should first publish the model data categories used as input and output for that 

model. The input model data category for the Kuznetsova model involves information 

extracted from the chemical analysis of a water sample. The Kuznetsova model needs 

the concentration values of four chemical elements (also known as basic cations), which 

may be described as a composite of model attributes: Calcium, Magnesium, Potassium, 

and Sodium. Figure 63 shows how the scientist uses the SRMW Publication module 

interface to describe the Model Data Category for the Basic Cations input. This module 

is responsible for translating the information into the XML document shown in Figure 

64, which is valid according to the SPMW XML Schema.  

The Kuznetsova model is based on a formula that relates the concentration 

values of these four chemical elements, and generates a non-dimensional number. Based 

on this result and on the Chloride concentration value, the Kuznetsova model informs if 

there is the ideal condition for sulfate-reduction bacteria growth, and if so, it returns a 

graphic curve of the hydrogen sulfide gas (H2S) production tendency, observed in time. 

Thus, this output may be described as an output model data category for the Kuznetsova 

model, with model attributes representing the graphic axes (x, y) information. One 

attribute corresponds to time (x-axis), and the other attribute corresponds to hydrogen 

sulfide production (y-axis).  

There are different curves to consider according to the Chloride concentration 

value, while the storage time determines in which point of the curve is the bacteria 



   116

activity at the moment. Chloride concentration and storage time may be described as 

model parameters to the Kuznetsova model, as these values guide the plotting of the 

right gas production graphic.  

 

Figure 63:  Model Data Category Basic Cations Publication  

<ScientificResourceDefinitions> 
 <ModDC idDC=”dc1”> 
  <title>Basic Cations</title> 
  <creator>Mauricio</creator> 
  <creationDate>2003-02-11</creationDate> 
  <MDCAttribute> 
   <attItem idAttribute=”at1”> 
    <attTitle>Calcium</attTitle> 
    <quantity>ms:concentration</quantity> 
   </attItem> 
  </MDCAttribute> 
  <MDCAttribute> 
   <attItem idAttribute=”at2”> 
    <attTitle>Magnesium</attTitle> 
    <quantity>ms:concentration</quantity> 
   </attItem> 
  </MDCAttribute> 
  <MDCAttribute> 
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   <attItem idAttribute=”at3”> 
    <attTitle>Potassium</attTitle> 
    <quantity>ms:concentration</quantity> 
   </attItem> 
  </MDCAttribute> 
  <MDCAttribute> 
   <attItem idAttribute=”at4”> 
    <attTitle>Sodium</attTitle> 
    <quantity>ms:concentration</quantity> 
   </attItem> 
  </MDCAttribute> 
 </ModDC> 
</ScientificResourceDefinitions> 

Figure 64: Model Data Category Basic Cations XML document 

After publishing the related data categories, the publisher may describe the 

Kuznetsova model, and relate it to two I/O data and one parm, which refer to input, 

output and parm model data categories, already published. The Model description 

involves information about its scope, area, purpose, hypothesis, etc. Figure 65 and 

Figure 66 show how the publisher can describe the Kuznetsova model using the 

Publication module interface.  

The Kuznetsova model applies only to environments where there might be 

bacteria activity. Thus, a constraint should be defined over the Chloride parameter, 

meaning it should assume positive values below 140.000 ppm, as Figure 66 shows. The 

whole model description generates the XML document presented in Figure 67. 
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Figure 65: Model Publication for Kuznetsova Model (part I) 
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Figure 66: Model Publication for Kuznetsova Model (part II) 

<ScientificResourceDefinitions> 
 <Model idTF=”tf1”> 
  <title>Kuznetsova</title> 
  <creator>Kuznetsova, V. A.</creator> 
  <creationDate>1960-01-01</creationDate> 
  <input> 
   <inputItem> 
                     <title>Kuznetsova Input</title><refersTo >dc1</refersTo > 
   </inputItem> 
  </input> 
  <parm> 
   <parmItem> 
    <title>Kuznetsova configuration</title><refersTo >dc2</refersTo > 
   </inputItem> 
  </parm> 
  <output> 
   <outputItem> 
    <title>Kuznetsova Output</title><refersTo >dc3</refersTo > 
   </outputItem> 
  </output> 
  <area>bio-corrosion</area> 
  <scope>waters inside devonian oil reservoirs</scope> 
  <classification>empiric </classification> 
  <purpose>to identify bacteria activity in oil reservoirs</purpose> 
  <hypothesis>The correlation among basic cations indicates  
                a proper environment for bacteria activity</hypothesis> 
  <bibliographicRef>Ocurrence of sulfate-reducing organisms in oil-bearing 
                formations of Kuibyshev region with reference to salt composition of layer 
                waters. Mikrobiologiya, 29 pp. 408-414, 1960. </bibliographicRef> 
 </Model> 
</ScientificResourceDefinitions> 

Figure 67: Model XML document 
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6.1.2 Publishing Kuznetsova Program 

Now, let us consider that a scientist has implemented a program based on the 

Kuznetsova model and wants to make it available for the team. First of all, a Web 

service for that program should be built. Then, while publishing the Kuznetsova 

program in SRMW, the WSDL file location is informed and extended through SPMW 

elements. Figure 68 shows the WSDL file for the Kuznetsova program. Based on some 

information in this file, the SRMW Publication module builds its publication interface 

to capture the extended program description. 

<definitions> 
 <types> 
  <xsd:schema … > 
   <xsd:complexType name =”ConfigurationType”> 
    <xsd:sequence> 
     <xsd:element name =”chloride” type=”xsd:float”/> 
     <xsd:element name =”storageTime” type=”xsd:integer”/> 
    </xsd:sequence> 
   </xsd:complexType> 
   <xsd:simpleType name=”cMaxChloride”> 
    <xsd:restriction> 
     <xsd:maxExclusive value=”140000”/> 
    </xsd:restriction> 
   </xsd:simpleType> 
         <xsd:complexType name =”BasicCationsType”> 
    <xsd:sequence> 
     <xsd:element name =”Ca” type=”xsd:float”/> 
     <xsd:element name =”Mg” type=”xsd:float”/> 
     <xsd:element name =”K” type=”xsd:float”/> 
     <xsd:element name =”Na” type=”xsd:float”/> 
    </xsd:sequence> 
   </xsd:complexType> 
   <xsd:complexType name =”H2SproductionType”> 
    <xsd:sequence> 
     <xsd:element name =”time” type=”xsd:float”/> 
     <xsd:element name =”H2Sproduction” type=”xsd:float”/> 
    </xsd:sequence> 
   </xsd:complexType> 
  </xsd:schema > 
 </types> 
 <message name=”codeInputmsg”> 
  <part name=”configurationPart” type=”ConfigurationType”/> 
  <part name=”BasicCationsPart” type=”BasicCationsType”/> 
 </message> 
 <message name=”codeOutputmsg”> 
  <part name=”H2SproductionPart” type=”H2SproductionType”/> 
 </message> 
 <portType name=”kuznetsovaPortType”> 
  <operation name =”kuznetsovaOperation”> 
   <input message=”tns:codeInputmsg”/> 
   <output message=”tns:codeOutputmsg”/> 
  </operation> 
 </portType> 
… 
</definitions> 

Figure 68: WSDL document for Kuznetsova Program (abstract part) 
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Similarly to the model publication, the scientist should first describe the related 

program data categories. The program input data category for “basic cations” includes 

a program attribute for each of the four elements described as model attributes. In the 

case of the Kuznetsova program input data category, each program attribute describes 

the model attribute, described to be a concentration value, as a “float” type containing 

values in “mg/l” unit. WSDL already describes these attributes and their primitive types, 

while SPMW is in charge of describing the unit used and associating it to its 

correspondent quantity. Figure 69 shows the publication of Kuznetsova program and 

how its description refers to WSDL elements, seen in Figure 68.  

A program output data category should correspond to the model output data 

category “H2S production graphic”. The x-axis corresponds to a program attribute that 

implements the model attribute for time, and its unit may be, for instance, “day”. The y-

axis corresponds to another program attribute, which implements the model attribute 

for “hydrogen sulfide gas production”, having its unit as “mg/l”.  

 

Figure 69: Kuznetsova Program Publication 
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After publishing both program data categories, the publisher may describe the 

Kuznetsova program, and associate it to two I/O data and one parm, which refer to the 

input, output and parm program data categories, previously published. Also, a 

constraint on the Chloride parameter is described based on the XML schema restriction 

element defined in the WSDL document. Finally, the publisher may associate the 

program to the model it implements. The XML document for the Basic Cations 

Program Data Category and the Kuznetsova Program are presented in Figure 70. 

<ScientificResourceDefinitions> 
 <ProgDC idDC=”dc11”> 
  <title>Basic Cations Type</title> 
  <creator>Mauricio</creator> 
  <creationDate>2003-03-20</creationDate> 
  <wsdlElementRef>BasicCationsType</wsdlElementRef> 
  <PDCAttribute> 
   <attItem idAttribute=””> 
    <attTitle>Ca</attTitle> 
    <unit>ms:milligram_per_liter</unit> 
    <wsdlElementRef>Ca</wsdlElementRef> 
   </attItem> 
  </PDCAttribute> 
 </ProgDC> 
</ScientificResourceDefinitions> 
<ScientificResourceDefinitions> 
 <Program idTF=”tf2”> 
  <title>Kuznetsova</title> 
  <creator>Mauricio</creator> 
  <creationDate>2003-03-20</creationDate> 
  <input> 
   <inputItem> 
    <title>Kuznetsova input</title> 
    <refersTo>dc11</refersTo > 
   </inputItem> 
  </input> 
  <parm> 
   <parmItem> 
    <title>Kuznetsova Configuration</title> 
    <refersTo>dc12</refersTo > 
   </parmItem> 
  </parm> 
  <output> 
   <outputItem> 
    <title>Kuznetsova output</title> 
    <refersTo>dc13</refersTo > 
   </outputItem> 
  </output> 
  <constraint> 
   <constItem> 
    <title>cMaxChloride</title> 
    <description>Chloride should not exceed 140.000 ppm</description> 
    <expression>maxExclusive value=”140000”</expression> 
   </constItem> 
  </constraint> 
  <implementationLanguage>C++</implementationLanguage> 
  <version>1.0</version> 
  <implements>tf1</ implements> 
  <wsdlElementRef>KuznetsovaOperation</wsdlElementRef> 
 </Program> 
</ScientificResourceDefinitions> 

Figure 70: Program and ProgDC XML document for Kuznetsova Program 
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6.1.3 Publishing Kuznetsova Code Resource 

After publishing the Kuznetsova program interface it is now possible to publish 

a related code resource. This compiled code is available for execution as a Web service, 

and its concrete description is presented in Figure 71. Similarly to the Program 

publication, SPMW provides description elements for extending the WSDL contents. 

The SRMW Publication module interface, presented in Figure 72, shows how to 

associate the code resource to its correspondent WSDL Port Type Operation and SPMW 

Program elements.  
<definitions> 
… 
 <binding name=”kuznetsovaBinding” type=”tns:kuznetsovaPortType”> 
  <soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http”/> 
  <operation name =”kuznetsovaOperation”> 
   <soap:operation 
soapAction=”capeconnect:kuznetsova:kuznetsovaPortType#kuznetsovaOperation”/> 
   <input> 
    <soap:body encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” 
namespace=”http://www.your-company.com/kuznetsova/binding” use=”encoded”/> 
   </input> 
   <output> 
    <soap:body encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” 
namespace=”http://www.your-company.com/kuznetsova/binding” use=”encoded”/> 
   </output> 
  </operation> 
 </binding> 
 <service name=”kuznetsova”> 
  <port binding=”tns:kuznetsovaBinding” name=”kuznetsovaPort”> 
   <soap:address location=”http://localhost:9000/ccx/kuznetsova”/> 
  </port> 
 </service> 
</definitions> 

Figure 71: WSDL document for Kuznetsova Program (concrete part) 
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Figure 72:  Kuznetsova Code Resource Publication 

6.1.4 Publishing the Kuznetsova Workflow 

To make the Kuznetsova program available to experiments, we need to declare it 

as part of a workflow. For our example, a one step workflow is sufficient. A Workflow 

edition tool helps on the specification of the Kuznetsova workflow, which is then 

informed to the Publication module, as shown in Figure 73. Then the Publication model 

stores the workflow description as the XML document presented in Figure 74.  
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Figure 73: Kuznetsova Workflow Publication 

<ScientificResourceDefinitions> 
<Workflow  idWF=”wf1”> 
 <title>Kuznetsova</title> 
 <creator>Paulo</creator> 
 <creationDate>2003-03-21</creationDate> 
 <specification>http://www.myWfDefs.br/kuznetsova.bpel</specification> 
</Workflow > 
</ScientificResourceDefinitions> 

Figure 74: Kuznetsova Workflow XML document 

6.1.5 Publishing Cabiunas Data 

During Cabiunas case study, a field team had manually collected some samples 

of the water inside Cabiunas tanks. To have these data available as a scientific resource 

in SRMW, the scientist needs to publish them as a Web service. Also, while publishing 

these data, to use them as input to the Kuznetsova program requires that their type 

definition be compatible to the type definition referred by the Kuznetsova program 

input, i.e., the Basic Cations data category. Figure 75 shows how the Cabiunas data 

resource is described, and how it is associated to its correspondent Program data 

category and WSDL Port Type Operation elements.  
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Figure 75: Cabiunas Data Resource Publication 

6.1.6 Navigating through Biocorrosion Resources 

Let us suppose, we had also published the Kuibyshev experiment, which was 

reported in the Kuznetsova model paper. Figure 76 shows how the SRMW Navigation 

module helps a scientist on finding the scientific resources that could help a new case 

study. After browsing through the published experiments, the scientist has access to the 

details of Kuibyshev experiment. The scientist realizes this experiment used the 

Kuznetsova model, which applies to oil reservoirs (scope). However, when analysing 

model inputs and parameters, the specialist concludes the model could also be useful to 

oil tanks. Therefore, the specialist chooses to run the Kuznetsova program on Cabiunas 

sample data. 
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Figure 76: Navigating through Experiments 

It is worth to notice the importance of having a metamodel that represents 

explicitly models and programs. The analysis of models used in previous experiments 

allowed the scientist to choose the Kuznetsova program.  

6.1.7 Publishing the Cabiunas Experiment 

To start a new experiment in SRMW the scientist first publishes it. Figure 77 

shows how to describe the Cabiunas experiment, and how to associate it to the 

workflows it is supposed to be using during essays. Both Workflow and Experiment 

XML documents are presented in Figure 78. Note that the experiment document does 

not show any essays, meaning it has not started yet.  
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Figure 77: Cabiunas Experiment Publication 

<ScientificResourceDefinitions> 
<Experiment idEx =”ex1”> 
 <title>Cabiunas</title> 
 <creator>Paulo</creator> 
 <creationDate>2003-03-21</creationDate> 
 <project>Cabiunas</project> 
 <purpose>Investigate bacteria activity on oil-water storage separation 
tanks </purpose> 
 <hypothesis>Cabiunas pipes are developing bacteria activity</hypothesis> 
 <report></report> 
 <status>notStarted</status> 
 <workflow >wf1</workflow > 
</Experiment> 
</ScientificResourceDefinitions> 

Figure 78: Cabiunas Experiment XML document 

6.1.8 Executing the Cabiunas Experiment 

After publishing an experiment, the specialist may then start it, by providing all 

program input data and parameter values. Considering that parameter values, in 

Cabiunas case study, were not previously published as a data resource, SRMW helps the  

user on filling it up on the fly, as shown in Figure 79. The constraint defined on the 
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Chloride parameter allows a dynamic validation, guiding the user on filling up valid 

values.  

In addition, the Experimentation module helps the user on choosing the adequate 

input data, considering only those data resources that are described by the same 

Kuznetsova program input data category. In this case, the Cabiunas sample data will be 

an option. Finally, the scientist is now able to “execute” the experiment.  

Once the experiment results confirm the presence of the sulfate-reduction 

bacteria, the specialist decides to finish the Cabiunas experiment. During the 

experiment, the Experimentation module automatically updates the Cabiunas 

experiment document, registering all the related essays. Then, the user may choose to 

finish the experiment, and completes the diagnosis report on Cabiunas experiment. The 

Cabiunas experiment will now be available for other scientists, who will find it through 

the Navigation module.  

 

Figure 79: Kuznetsova parameter input 
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6.2 Structural Genomic Application 

In the last decades, biochemical laboratories started to perform in silico 

scientific experiments, along with the traditional in vitro. Structural genomic 

applications are typically used to perform in silico experiments. As introduced in 

section 2.2, an IBCCF application called MHOLline (RÖSSLE, S., RIBEIRO, S., et al., 2002), uses 

the comparative modelling approach for the prediction of protein three-dimensional 

structures. Nowadays, IBCCF coordinates the Rio de Janeiro Bioinformatics Laboratory 

and thus receives many requests of structural prediction, which use to be handled one at 

a time by selected bioinformatics specialists. The MHOLline idea is to enable large-

scale modelling by assembling programs on an automated workflow. This would allow 

biologists to reach structural prediction without depending upon bioinformatics 

specialists.   

MHOLline combines a specific set of programs for the comparative modelling 

approach (presented in Figure 4). For template structure identification it uses the 

BLAST algorithm searches (NCBI, 2002). A refinement in the template search step was 

implemented by a program called BATS (Blast Automatic Targeting for Structures) 

(RÖSSLE, S., RIBEIRO, S., et al., 2002), where template target sequences are selected from the 

BLAST output file depending on the given scores for expectation values, identity and 

sequence coverage. Automated alignment and model building is carried out by a third 

program, MODELLER (SALI, A., 2001), and models are evaluated using PROCHECK 

(LASKOWSKI, R. A., MACARTHUR, M. W., MOSS, D. S., THORNTON, J. M., 1993) program scores.  

To illustrate the use of the SPMW metamodel we have published useful 

resources to build and execute the MHOLline workflow. In the next subsections we 

describe the publication of some of these resources. 

We start by publishing the BLAST algorithm, and the corresponding data 

categories (section 6.2.1), then we publish the BLASTP program and its data categories 

(section 6.2.2). In section 6.2.3 we publish an available code resource for the BLASTP 

program, while in section 6.2.5, we publish an available data resource for the Genoma 

experiment. In section 6.2.4 we publish the MHOLline workflow and associate it to the 

experiment published in section 6.2.6. Finally, in 6.2.7 we show the user browsing 

resources to perform a new experiment, which is illustrated in section 6.2.8. 
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6.2.1 Publishing BLAST algorithm  

We begin by publishing the BLAST algorithm, as an algorithmic model. The 

BLAST algorithm (ALTSCHUL, S.F., GISH, W., MILLER, W., MYERS, E.W., LIPMAN, D.J., 1990) is a 

dynamic programming algorithm for pairwise sequence alignment. It is simple and 

robust and it can be implemented in a number of ways and applied to a variety of 

contexts including DNA and protein sequence database searches.  

The idea behind algorithms of sequence alignment is to count on the empirical 

knowledge in molecular biology, i.e., when two molecules share similar sequences, they 

are also likely to share similar 3D structures and biological functions. Therefore, the 

similarity search usually counts on a database of sequences, against which it compares a 

target sequence (KANEHISA, M., 2000).  

There is only one input for the BLAST model: a target sequence. Then, this 

input may be described as an input model data category composed of just one model 

attribute: sequence itself. In this case, there is no quantity involved but an object that 

must be represented when implemented. However, at the model level, representation 

details are not yet required. Instead, the essential is to establish the nature of the objects 

that are to be transformed or manipulated by the model. Considering BLAST algorithm 

was created to deal with molecular sequences, then, we have named a model data 

category “target sequences” which is composed of just one attribute called target 

sequence. As this attribute is not a quantifiable attribute, there is no quantity associated 

to it, and its classification is described as a “molecular sequence”. Figure 80 shows how 

the scientist uses the SRMW Publication module interface to describe the Model Data 

Category for the target sequences input. This module is responsible for translating the 

information into the XML document shown in Figure 81, which is valid according to 

the SPMW XML Schema. 

BLAST results correspond to a set of reference sequences, their alignments and 

scores. This output may be described as an output model data category for the BLAST 

model, with model attributes describing the reference sequence itself, and its 

corresponding alignment and score. These attributes are not associated to a quantity but 

all three are described according to their classification: the reference sequence is 

classified as a “molecule sequence”; the alignment of this reference sequence with the 
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target sequence is classified as a “weight sequence”; and the score of this alignment is 

classified as a “similarity index”.   

The BLAST algorithm is based on a systematic search of conserved words 

(KANEHISA, M., 2000). A word W is a sequence of letters of a limited size (e.g., 3 for amino 

acids and 11 for nucleotides). The user should determine the word size to guide the 

BLAST algorithm on the decomposition of the query sequence in words of that size. 

The resulting list of words is added with similar words, which are collected from all 

other combinations of word according to a given threshold T of similarity with the 

original word. Both W and T may be considered as parameters for the BLAST model, 

and therefore, we can publish them as part of a configuration model data category. 

 

Figure 80: BLAST Algorithm Input Model Data Category Publication 

<ScientificResourceDefinitions> 
 <ModDC idDC=”dc31”> 
  <title>Target Sequences</title> 
  <creator>Shaila</creator> 
  <creationDate>2003-01-01</creationDate> 
  <MDCAttribute> 
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   <attItem idAttribute=”att311”> 
    <attTitle>Target Sequence</attTitle> 
    <quantity>no quantity</quantity > 
    <classification>molecular sequence</classification> 
   </attItem> 
  </MDCAttribute> 
 </ModDC> 
 <ModDC idDC=”dc32”> 
  <title>Configuration</title> 
  <creator>Shaila</creator> 
  <creationDate>2003-01-01</creationDate> 
  <MDCAttribute> 
   <attItem idAttribute=”att321”> 
    <attTitle>Word</attTitle> 
    <quantity>length</quantity> 
    <classification>molecular sequence window </classification> 
   </attItem> 
  </MDCAttribute> 
  <MDCAttribute> 
   <attItem idAttribute=”att322”> 
    <attTitle>Threshold</attTitle> 
    <quantity>no quantity</quantity > 
    <classification>similarity index</classification> 
   </attItem> 
  </MDCAttribute> 
 </ModDC> 
 <ModDC idDC=”dc33”> 
  <title>Reference Sequences </title> 
  <creator>Shaila</creator> 
  <creationDate>2003-01-01</creationDate> 
  <MDCAttribute> 
   <attItem idAttribute=”att331”> 
    <attTitle>Reference Sequence</attTitle> 
    <quantity>no quantity</quantity > 
    <classification>molecular sequence</classification> 
   </attItem> 
  </MDCAttribute> 
  <MDCAttribute> 
   <attItem idAttribute=”att332”> 
    <attTitle>Alignment</attTitle> 
    <quantity>no quantity</quantity > 
    <classification>weight sequence</classification> 
   </attItem> 
  </MDCAttribute> 
  <MDCAttribute> 
   <attItem idAttribute=”att333”> 
    <attTitle>Score</attTitle> 
    <quantity>no quantity</quantity > 
    <classification>similarity index</classification> 
   </attItem> 
  </MDCAttribute> 
 </ModDC> 
</ScientificResourceDefinitions> 

Figure 81: Model Data Categories XML document for BLAST Algorithm 

After publishing all needed data categories, the publisher may describe the 

BLAST model, and relate it to two I/O data and one parameter, which refer to the 

input, output and configuration model data categories, respectively, already published. 

Model description involves information about its scope, area, purpose, etc. Figure 82 

shows how the scientist uses the SRMW Publication module interface to describe the 

BLAST Model, and the corresponding XML document is shown in Figure 83. 
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Figure 82: BLAST Algorithm Publication 

 <ScientificResourceDefinitions> 
 <Model idTF=”tf3”> 
  <title>BLAST Algorithm</title> 
  <creator>Altschul, S. F. et al.</creator> 
  <creationDate>1990-01-01</creationDate> 
  <input> 
   <inputItem> 
                     <title>BLAST Input</title><refersTo >dc31</refersTo > 
   </inputItem> 
  </input> 
  <parm> 
   <parmItem> 
    <title>BLAST configuration</title><refersTo>dc32</refersTo > 
   </inputItem> 
  </parm> 
  <output> 
   <outputItem> 
    <title>BLAST Output</title><refersTo>dc33</refersTo > 
   </outputItem> 
  </output> 
  <area>Molecular Biology</area> 
  <scope>Biologic Sequences </scope> 
  <classification>algorithmic</classification> 
  <purpose>to find reference sequences similar to a target 
sequence</purpose> 
  <hypothesis>local alignments provide better similarity results 
</hypothesis > 
  <bibliographicRef>Altschul, S. F. et al. “Basic Local Alignment Search 
Tool” J.Mol.Biol. (1990) 215, 403-410</bibliographicRef> 
  <webReference>http://www.idealibrary.com</ webReference> 
 </Model> 
</ScientificResourceDefinitions> 

Figure 83: Model XML document for BLAST Algorithm 
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6.2.2 Publishing BLASTP program 

BLASTP is an implementation of the BLAST algorithm, specifically created to 

deal with protein molecular sequences. One of its implementations is available at NCBI 

(NCBI, 2002). Now, let us consider that the project team needs to publish the BLASTP 

program within the SRMW architecture. First of all, a Web service for that program 

should be built. Then, while publishing the BLASTP program in SRMW, the WSDL 

file location is informed and extended through SPMW elements. Figure 84 shows the 

WSDL file for the BLAST program. Based on some information in this file, the SRMW 

Publication module builds its publication interface to capture the extended program 

description. 

<definitions> 
      <types> 
           <xsd:schema>  
       <xsd:complexType name ="QuerySequenceArrayType"> 
    <xsd:complexContent> 
     <xsd:restriction base="soapenc:Array"> 
      <xsd:attribute arrayType="xsd:QuerySequenceType[] "  
                                                            ref="soapenc:arrayType"/> 
     </xsd:restriction> 
    </xsd:complexContent> 
   </xsd:complexType> 
   <xsd:complexType name ="QuerySequenceType"> 
    <xsd:sequence> 
     <xsd:element name ="querySequenceId" type="xsd:string"/> 
     <xsd:element name ="querySequence" type="xsd:string"/> 
    </xsd:sequence> 
   </xsd:complexType> 
   <xsd:complexType name =”ConfigurationType”> 
    <xsd:sequence> 
     <xsd:element name =”wordsize” type=”xsd:integer”/> 
     <xsd:element name =”threshold” type=”xsd:float”/> 
     <xsd:element name ="db" type="xsd:string"/> 
     <xsd:element name ="expect" type="xsd:float"/> 
     <xsd:element name ="matrix" type="xsd:string"/> 
    </xsd:sequence> 
   </xsd:complexType> 
   <xsd:complexType name ="HitArrayType"> 
    <xsd:complexContent> 
     <xsd:restriction base="soapenc:Array"> 
      <xsd:attribute arrayType="xsd:HitType[]" 
                                                             ref="soapenc:arrayType"/> 
     </xsd:restriction> 
    </xsd:complexContent> 
   </xsd:complexType> 
   <xsd:complexType name ="HitType"> 
    <xsd:sequence> 
     <xsd:element name ="hitSequenceId" type="xsd:string"/> 
     <xsd:element name ="querySequence" type="xsd:string"/> 
     <xsd:element name ="hitSequence" type="xsd:string"/> 
     <xsd:element name ="score" type="xsd:integer"/> 
     <xsd:element name ="e-value" type="xsd:float"/> 
     <xsd:element name ="identities" type="xsd:float"/> 
     <xsd:element name ="positives" type="xsd:float"/> 
     <xsd:element name ="gaps" type="xsd:float"/> 
     <xsd:element name ="alignSequence" type="xsd:string"/> 
     <xsd:element name ="alignSize" type="xsd:integer"/> 
     <xsd:element name ="querySeqOffset" type="xsd:integer"/> 
     <xsd:element name ="hitSeqOffset" type="xsd:integer"/> 



   136

    </xsd:sequence> 
   </xsd:complexType> 
  </xsd:schema > 
 </types> 
 <message name="codeInputmsg"> 
  <part name="configurationPart" type="ConfigurationType"/> 
  <part name="dataPart" type="QuerySequenceArrayType"/> 
 </message> 
 <message name="codeOutputmsg"> 
  <part name="datatPart"  type="HitArrayType"/> 
 </message> 
 <portType name="blastpPortType"> 
  <operation name ="blastpOperation"> 
   <input message="tns:codeInputmsg"/> 
   <output message="tns:codeOutputmsg"/> 
  </operation> 
 </portType> 
… 
</definitions> 

Figure 84: WSDL document for BLASTP Program (abstract part) 

Similarly to the model publication, the scientist should first describe the related 

BLASTP program input/output data categories that correspond to the BLAST model 

data categories, as shown in Figure 85. The BLAST model input data category target 

sequences corresponds to the BLASTP program input data category protein target 

sequences, which is composed of two program attributes. The protein target sequence 

program attribute, which corresponds to the target sequence model attribute, describes 

the target sequence as a string type written in the “FASTA alphabet” format. The other 

program attribute is added to carry the identity of the target sequence (protein target 

sequence id). It is described as a string type written in the PDB database identification 

format. The WSDL document, shown in Figure 84, already describes these attributes in 

terms of their primitive types, while the SPMW document, in Figure 87, is in charge of 

describing attribute formats and units, and also its associa tion to the correspondent 

model attribute and WSDL description element. For instance, the program attribute 

protein target sequence is associated to the model attribute target sequence, and the 

WSDL element querySequence. 

The BLASTP program output data category protein reference sequences, 

corresponds to the BLAST model output data category reference sequences, which is 

composed by three program attributes. The hit sequence program attribute corresponds 

to the reference sequence model attribute, and describes the reference sequence as a 

string type written in the “FASTA alphabet” format. The align sequence program 

attribute corresponds to the weight sequence model attribute, and describes the weight 

sequence as a string type written in a “similarity alphabet” format. The score program 

attribute corresponds to the score model attribute, and describes the score as an integer 
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type expressed in “bits” unit. The BLASTP program output data category adds some 

other extra attributes, which give some useful information. For instance, the expect 

value (e-value) describes the number of hits one can “expect” to see just by chance 

when searching a database of a particular size. Other attributes, such as identities, 

positives and gaps, inform the percentage of character identity, similarity and gaps, 

respectively, between the query and hit sequences.   

Also, the publisher should describe BLASTP parameters. A configuration 

program data category is also published, to correspond to the configuration model data 

category. Besides the attributes that correspond to the attributes at the model level, 

BLASTP configuration data category includes some extra attributes, such as the 

reference database. Therefore, with this implementation of the BLAST algorithm it 

becomes possible to choose the database against which to compare target sequences. 

 

Figure 85: BLASTP Program Input Data Category Publication 

After publishing program data categories, the publisher may describe the 

BLASTP program, and relate it to its I/O data and parameters, which relate to the 
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program data categories previously published, as shown in Figure 86. Finally, the 

publisher may relate BLASTP program to the model it implements, the BLAST model. 

 

Figure 86: BLASTP Program Publication 

<ScientificResourceDefinitions> 
 <ProgDC idDC=”dc32”> 
  <title>protein target sequences</title> 
  <creator>Shaila</creator> 
  <creationDate>2003-01-01</creationDate> 
  <wsdlElementRef>QuerySequenceArrayType</wsdlElementRef> 
  <PDCAttribute> 
   <attItem idAttribute=”att321”> 
    <attTitle>protein target sequence id</attTitle> 
    <unit>no unit</unit> 
    <format>PDB identification</format> 
    <wsdlElementRef>querySequenceId </wsdlElementRef> 
   </attItem> 
  </PDCAttribute> 
  <PDCAttribute> 
   <attItem idAttribute=”att322”> 
    <attTitle>protein target sequence</attTitle> 
    <unit>no unit</unit> 
    <format>FASTA alphabet</format> 
    <wsdlElementRef>querySequence</wsdlElementRef> 
   </attItem> 
  </PDCAttribute> 
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 </ProgDC> 
</ScientificResourceDefinitions> 
<ScientificResourceDefinitions> 
 <Program idTF=”tf4”> 
  <title>Blast-P</title> 
  <creator>NCBI</creator> 
  <creationDate>2002-01-01</creationDate> 
  <input> 
   <inputItem> 
    <title>protein query sequencestitle> 
    <refersTo>dc32</refersTo > 
   </inputItem> 
  </input> 
  <parm> 
   <parmItem> 
    <title>Blast-P Configuration</title> 
    <refersTo>dc33</refersTo > 
   </parmItem> 
  </parm> 
  <output> 
   <outputItem> 
    <title>hit sequences</title> 
    <refersTo>dc34</refersTo> 
   </outputItem> 
  </output> 
  <implementationLanguage>C</implementationLanguage> 
  <version>2.2.4</version> 
  <implements>tf3</ implements> 
  <wsdlElementRef>BlastpOperation</wsdlElementRef> 
 </Program> 
</ScientificResourceDefinitions> 

Figure 87: Program and ProgDC XML document for BLASTP program 

6.2.3 Publishing MHOL-BLASTP code resource 

After publishing the BLASTP program interface it is now possible to publish a 

related code resource. This compiled code is available for execution as a Web service, 

and its concrete description is presented in Figure 88. Similarly to the Program 

publication, SPMW provides description elements for extending the WSDL contents. 

The SRMW Publication module interface, presented in Figure 89, shows how to 

associate the code resource to its correspondent WSDL Port Type Operation and SPMW 

Program elements.  

<definitions> 
… 
 <binding name="blastpBinding" type="tns:blastpPortType"> 
  <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/> 
  <operation name ="blastpOperation"> 
   <soap:operation soapAction="capeconnect::blastpPortType#NewOperation"/> 
   <input> 
    <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
    namespace="http://www.your-company.com/blastp/binding" 
use="encoded"/> 
   </input> 
   <output> 
    <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
    namespace="http://www.your-company.com/blastp/binding" 
use="encoded"/> 
   </output> 
  </operation> 
 </binding> 
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 <service name="blastp"> 
  <port binding="tns:blastpBinding" name ="blastpPort"> 
   <soap:address location="http://localhost:8000/ccx/blastp"/> 
  </port> 
 </service> 
</definitions> 

Figure 88: WSDL document for BLASTP Program (concrete part) 

 

Figure 89: MHOL-blastp Code Resource Publication 

6.2.4 Publishing MHOLline Workflow 

As we already explained, BLASTP and other programs are part of a specific 

Workflow called MHOLLine. To make the MHOLline workflow available for 

experiments, we need to publish it. A Workflow edition tool helps on the specification 

of the MHOLline workflow, which is then informed to the Publication module, as 

shown in Figure 90. Then the Publication model stores the workflow description as the 

XML document presented in Figure 91.  



   141

 

Figure 90: MHOLline Workflow Publication 

<ScientificResourceDefinitions> 
<Workflow  idWF=”wf2”> 
 <title>MHOLline </title> 
 <creator>Shaila</creator> 
 <creationDate>2003-01-01</creationDate> 
 <specification>http://www.myWfDefs.br/mholline.bpel</specification> 
</Workflow > 
</ScientificResourceDefinitions> 

Figure 91: MHOLline Workflow XML document 

6.2.5 Publishing Genoma data resources 

In fact, MHOLline workflow is still under evaluation. Therefore, to prove its 

efficiency, a set of Genoma sequences is used to test it. To have these data available as a 

scientific resource in SRMW, the scientist needs to publish them as a Web service. 

Also, while publishing these data, to use them as input to the MHOLline workflow 

requires that their type definition be compatible to the type definition referred by the 

BLASTP program input, i.e., the protein target sequences data category. Figure 92 

shows how the Cabiunas data resource is described, and how it is associated to its 

correspondent program data category and WSDL Port Type Operation elements.  
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Figure 92: Genoma Data Resource Publication 

6.2.6 Publishing the Genoma Experiment 

To start a new experiment in SRMW the scientist first publishes it. Figure 93 

shows how to describe the Genoma experiment, and how to associate it to the 

workflows it is supposed to be using during essays. The Experiment XML document is 

presented in Figure 94. Note that the experiment document does not show any essays, 

meaning it has not started yet.  
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Figure 93: Publishing Experiments using the MHOLline workflow 

<ScientificResourceDefinitions> 
<Experiment idEx =”ex2”> 
 <title>Genoma 1</title> 
 <creator>Shaila</creator> 
 <creationDate>2003-01-01</creationDate> 
 <project>Tese Shaila</project> 
 <purpose>check Genoma models</purpose> 
 <hypothesis>MHOLline is able to provide good quality 3D models</hypothesis> 
 <report></report> 
 <status>notStarted</status> 
 <workflow >wf2</workflow > 
</Experiment> 
</Scientif icResourceDefinitions> 

Figure 94: Genoma Experiment XML document 

6.2.7 Navigating through Structural Genomic Resources 

Frequently, a structural genomic project team receives requests to generate 3D 

models for a set of molecule sequences. Let us consider a structural genomic workflow 

could have been defined in terms of scientific models (a model-based workflow), 

having MHOLline workflow as a program-based workflow that implements it. 

Considering MHOLline workflow may not be adequate to a specific request, a new 

workflow should be built. Suppose, for instance, BATS program, which is a step of 

MHOLline workflow, is not suitable for this specific request. Having access to the 

model-based workflow description, the scientist would be able to browse the programs 
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that implement each step (model) of this workflow. Selecting the BLAST filter step at 

the model-based workflow description, the scientist realizes an alternative to BATS 

would be to use MSPCrunch program. Then, through browsing the available programs 

(Figure 95), and their corresponding data categories, the scientist can build an adequate 

program-based workflow for the new experiment.  

 

Figure 95: Navigating through Programs 

6.2.8 Executing the Genoma Experiment 

After publishing an experiment, the specialist may then start it, by providing all 

program input data and parameter values. Considering BLASTP has parameter values to 

be set, and which were not previously published as a data resource, SRMW helps the 

user on setting them up on the fly, as shown in Figure 96.  
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Figure 96: BLASTP program parameter input Interface 

In addition, the Experimentation module helps the user on choosing the adequate 

input data, considering only those data resources that are described by the same 

BLASTP program input data category. In this case, the Genoma data will be an option. 

Finally, the scientist is now able to “execute” the experiment.  

Once the experiment results confirm the experiment hypothesis, i.e., that 

MHOLline provides good quality 3D models; the specialist decides to finish the 

Genoma experiment. During the experiment, the Experimentation module automatically 

updates the Genoma experiment document, registering all the related essays. Then, the 

user may choose to finish the experiment, and completes the diagnosis report for that 

experiment. The Genoma experiment will now be available for other scientists, who will 

find it through the Navigation module. 

6.3 Final Considerations 

In SRMW, users have to include a large amount of scientific information before 

starting to benefit from them. Despite this, after a while, the scientific activity is 

facilitated, and users have just to fill-up parameters and provide data resources. As a 

consequence, scientific resources get documented, integrated, inter-related and 

consistent.  
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Those two applications have helped us to confirm some modelling concepts such 

as models and programs, and more importantly, helped us to extend the semantic levels 

of resources including essays and experiments.  

The main benefit of this approach is on the organization of scientific resources 

to enable their management. Those two applications have evidenced SRMW facilities 

such as: 

?? Code resources can be browsed according to the associated model or 

program. 

?? Users can see clearly parameter and input distinction, becoming 

conscious of how to “tune” the program in use. 

?? Model and program distinction reflects the different levels of abstraction, 

allowing for a more selective browsing. 

?? Identification of constraints at the model level, allowing users to discard 

inadequate models when searching for one. 

?? The explicit representation of constraints at the program level enables the 

verification of data or parameter input before actually accessing and 

executing the code.  

?? Identification of scientific experiments, and their organisation as a set of 

essays. 

?? Browsing documented model usage. 

?? Explicit representation of program IO so it becomes easier to combine 

programs in a scientific workflow. 
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7. Conclusion 

In this thesis we have focused on scientific resource management. We have 

deeply analysed several scientific applications trying to understand their current 

problems with respect to database technology issues.  

We have first tried to organise scientific data through high level metadata, which 

has been the focus of database community for the last decades. However, our first 

understanding of the problem revealed that in the scientific area, data is not the only 

resource to be represented and managed through DBMS technologies. In fact, it does 

not work if handled separately, in the same way as business systems are being 

developed today. As a matter of fact, the 1998 Asilomar report (BERNSTEIN, P. et al., 1998) has 

defined the management of programs and data as one of the challenges that the database 

research community had to face for the ten years to follow that report. As a result from 

the detailed analysis of applications described in Chapter 2, we defined not only 

programs and data, but also, models, workflows and experiments.  

To help on the definition of the main problems related to scientific resources 

management we specified three main requirements common to most scientific 

applications, i.e., (i) how to handle their heterogeneity and distribution, (ii) how to 

describe them, (iii) how to combine them and register their use. To facilitate the 

resource exchange among scientists, a support environment should organize, manage 

and monitor these resources, providing interoperability, reusability and flexibility.  

To address those requirements we designed SRM architecture, defined SPM 

metamodel and implemented a prototype taking advantage of the recent Web services 

technology. SRM aims to address the management problems currently faced by the 

scientific community. The main goal of SRM is to provide metadata support for 

managing distributed scientific resources. Its main component is the Scientific 

Publishing Metamodel (SPM) specially designed to describe scientific resources. 

Considering Web services as a platform independent infra-structure, which provides 

tools that facilitate the operation of an in silico laboratory, we have implemented a 

prototype of the SRM architecture based on Web services (SRMW). SPM we have 

implemented as a XML Schema (SPMW) to be instantiated as an extension of WSDL 
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documents. Finally, we have shown the adequacy of SPMW in the context of two 

different scientific research teams. 

7.1 Contributions 

The development of SRM, SPM, SRMW prototype and its experimentation has 

led to several contributions. The first and main contribution of this thesis is the SPM 

metamodel. SPM innovates by providing several different semantic levels of scientific 

resources representation, while integrated to a scientific resources management system. 

Similarly to our work, metamodel based architectures have also been proposed to 

address the scientific community (FOSTER, I., VOECKLER, J., WILDE, M., ZHAO, Y., 2003), (ESP2NET 

PROJECT ), (ESSW PROJECT ), (BENZ, J.; HOCH, R.; GABELE, T., 1997). However, their metamodels lack 

important scientific description support, particularly with respect to model and program 

distinction. Other interesting metadata support approaches try to establish domain 

standards through the proposal of domain ontologies, specifically in the genetic area 

(WROE, C. et al., 2003) (CRITCHLOW, T.; MUSICK, R.; SLEZAK, T., 2001). However, we believe that a 

generic scientific approach such as ours is more suitable when one cannot count on 

available domain ontologies for each scientific area. In addition, we believe that explicit 

representation of metadata as occurs in metamodel approach improves comprehension. 

A recent work (SPYNS, P, MEERSMAN, R., JARRAR, M., 2002) identifies advantages in both 

metamodel and ontology approaches and proposes to combine them.  

The second contribution of this work is the set of SPM concepts specially 

designed to represent scientific resources, enabling their management. First of all SPM 

includes an explicit semantic representation of scientific models, providing their 

representation at both theoretic and operational levels. Codes, programs and models are 

represented by different concepts, each one at a different level of abstraction. 

Analogously, the same occurs to data category concepts. Data input and parameters are 

also separated concepts, as each one plays a different role at the program or model they 

are associated to. Finally, SPM includes concepts to represent scientific workflows, 

essays and experiments, allowing for the registry of the use of scientific resources. All 

these concepts were analysed in the light of two real applications, with the collaboration 

of scientists from the Petrobras Research Centre (CENPES), and from the UFRJ 

Biophysics Institute (IBCCF). 
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A third contribution of this work is the SRM architecture, which allows 

scientific users to browse, publish and execute scientific programs and workflows. In 

addition, SRM also provides the automatic registry of these executions, as part of essays 

and experiments, which can be analysed along those several levels of semantic 

abstractions. This is an important step towards data provenance and derivation.  

Another contribution can be derived through the use of Web services for 

scientific applications. We believe that the use of Web services is a first and 

fundamental step in the direction of a full featured in silico laboratory as they provide 

the required interoperability to support in silico experiments. They allow scientists to 

dynamically publish, discover, and aggregate scientific resources through the Internet. 

Scientific and business communities are just beginning to use this new technology. If 

compared to other approaches, the Web services approach is superior with regard to 

interoperability, reusability and flexibility issues. It overcomes platform 

incompatibilities among software tools and databases, and orchestrates their interaction. 

For instance, MHOLline workflow presented in section 6.2 includes Web services that 

interface with legacy programs written in different languages (e.g., Fortran and C). In 

addition, the Web services workflow definition language provides more flexibility than 

scripts as it allows e-scientists to build ad hoc service compositions. Also, since these 

compositions run through Web services, additional registering and documentation can 

be included on the fly, helping data provenance and automatic execution 

documentation. Reusability is facilitated by Web services because of their modular 

characteristic. Web services workflows are also published as Web services, and this 

enables other scientists to use them as part of new service compositions. Furthermore, 

Web services are an open standard already adopted by the industry, and therefore their 

approach is not tied to any proprietary solution. 

A fifth contribution of this work is the publication of scientific metadata through 

Web services, using the SPMW schema. Web services architecture is not enough to 

provide a full- featured in silico laboratory. We have reviewed similar approaches that 

address distribution and heterogeneity of data and programs (FOSTER, I., KESSELMAN, C., et al., 

2002) (LESELECT), but these initiatives are also not sufficient if not associated to an efficient 

metadata support. In the case of Web services, since its description language (WSDL) 

was originally proposed for generic service description, it lacks application-related 

semantic descriptors. SPMW uses the WSDL extensibility mechanisms to add higher 
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level descriptors specifically related to scientific resources. For instance, SPMW 

documents provide dynamic molecular scientists with information about an in silico 

experiment, where a FASTA format molecular sequence was used as input to a 

BLASTP program based on the BLAST algorithm. WSDL extensibility enforces the 

adequacy of Web services to provide metamodel based solutions. 

Finally, the SRMW prototype is another contribution of this work. Portability, 

interoperability and flexibility are some of the main benefits when managing distributed 

scientific resources through SRMW. As XML has become an international accepted 

standard to describe data resources, we have chosen to have our metadata expressed as 

XML documents based on the SPMW XML Schema. To attend specific scientific 

domain needs, SPMW was designed to be extensible, and extensibility elements are 

included in the schema. Moreover, SRMW has been designed to be flexible when new 

extensions to SPMW are included. To store SPMW documents, SRMW includes a 

metadata repository. We have developed interfaces to store these documents in the 

RDBMS MySQL, due to its wide use in Web applications. Finally, SRMW has been 

implemented using Java servlets, and includes IBM BPWS4J 1.0.1 (BPWS4J) to define and 

process workflow specifications, written in BPEL4WS (CURBERA, F., GOLAND, Y, et al., 2002). 

Other applications may interact with it by issuing XML queries and handling XML 

documents resulting from such queries.  

Other application areas, such as business-to-business (B2B) integration, can also 

benefit from this approach to enhance metadata semantics. For instance, the SPMW 

metamodel could be adapted to address B2B applications, including new descriptors. In 

this context, some descriptors could make use of existing vocabulary standards like the 

ones used in RosettaNet (ROSETTANET ), to address higher information interoperability 

issues of terminology and data meaning.  

7.2 Current and Future Work 

The present work was motivated by two research projects in the environmental 

area: a CT-Petro project called SIMBIO (MOURA, F.A., 2001) and an INRIA-CNPq 

collaboration project called ECOBASE (ECOBASE, 2001). Both projects allowed us to 

interact with researchers seeking solutions to similar environmental problems.  
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In the context of the ECOBASE project, we have used Le Select (LESELECT) as the 

infrastructure for dealing with distribution and heterogeneity of scientific programs and 

data. However, once Le Select focus was not on metadata support, we have proposed 

SRM as a Le Select extension, providing mechanisms to capture model descriptions and 

to monitor the actual distributed usage of models, programs and data. Then, we have 

decided to redesign our SRM architecture by using Web services, so we could take 

advantage of W3C well-accepted standards, which would facilitate the use of workflow 

web engines based on these standards. Projects like ECOBASE bring a significant 

contribution to our research team, and we are already applying for a new similar project 

with focus on Web services composition.  

In the context of SIMBIO project, we have studied models and experiments 

from the Cabiunas case study developed at CENPES, which has helped us to identify 

the concepts behind the scientific modelling context. Modellers and model users deal 

with models in a very subjective way. Indeed, in the Cabiunas case study, we could 

witness CENPES researchers successfully applied the Kuznetsova model out of its 

original scope. Having previous experiments documented and scientific model usage 

described, allowed researchers to apply a reservoir phenomena model to a surface 

phenomena, despite the completely different physic-chemical conditions. Future 

cooperation projects with CENPES are planned to develop SRMW experiments and 

SPMW refinements. 

Recently, we have started a new informal project in the molecular biology area 

in collaboration with the UFRJ Biophysics Institute, particularly with Paulo Bisch, the 

head of Rio de Janeiro´s Bioinformatics Virtual Institute, and Shaila Rössle, a research 

assistant. We are currently analysing an application on the dynamic molecular biology 

domain, called MHOLline. This application has been particularly useful to help us on 

the identification of experiment and essay concepts. We have identified the need for 

workflow management and the need for keeping a record of intermediary results.  

The work with Paulo Bisch´s team is being developed in association to other 

dissertations and thesis at COPPE Sistemas. The investigation of the difficulties on 

building a biological workflow using Web services is the focus of a master’s 

dissertation work (TARGINO, R., 2003). Another dissertation work (TEIXEIRA, F., 2003) is 

concentrating on the development of facilities to support the generation of scientific 

data resources as Web services. Finally, a third dissertation work (GONÇALVES, F., 2003) has 
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been developing an integration tool to support the publication of datasets associated to 

different data categories, allowing them to be integrated to different scientific programs, 

and take part on different workflows and experiments.  

The SRM architecture can be applied not only to biocorrosion and molecular 

biology areas, but it also can be applied to many other scientific areas. Publishing 

models and experiments from scientists of different scientific areas has been helping us 

to identify the concepts behind the scientific modelling context. However, to build a 

scientific metamodel is not an easy task. Therefore SPM metamodel should be 

incrementally refined. Constraints, data replica, and workflow versions are some of the 

concepts that need to be included or developed in SPM.  

Although we can not consider the examples presented in sections 6.1 and 6.2 as 

software evaluation studies, we could say that they are a first step on that direction. 

According to the classification used by the software engineering community 

(KITCHENHAM, B., PICKARD, L., PFLEEGER S., 1995) we have started a blocked subject-project 

study, by examining SRMW across a set of teams and a set of projects. However, we 

plan to focus on replicated-project studies, observing what is happening on different 

teams of one typical project. More specifically, our first case study is already in course 

at the Biophysics Institute. 

As a result of our first publications on this work, we had made some initial 

contacts with international projects, while attending the Workshop on Data Derivation 

and Provenance (BUNEMAN, P., FOSTER, I., 2002), such as GriPhyN, at the University of 

Chicago, USA, and MyGrid, at the University of Edinburgh, Scotland, both working on 

metadata issues for the scientific community. It is our intention to further enlarge these 

contacts in order to continue our work.  

MyGrid project (WROE, C. et al., 2003) has been developing an interesting work on the 

use of domain-ontologies to support scientific applications in the genetic area. From our 

point of view, to build domain-ontologies for scientific applications is not an easy task. 

Most works (BOZSAK, E. et .al,, 2002) (NOY, N.F.; FERGERSON, R. W.; MUSEN, M. A., 2000) concentrate on 

building tools and representation frameworks for ontologies. However, there is a yet not 

very explored field on how to support the conceptualization process. A doctor’s thesis 

(GARCIA, S., 2003) at DCC/IM/NCE - UFRJ is currently developing studies on this 

direction. In addition, as a complement to SRM architecture, it is our intention to 

include the use of domain ontologies, to help scientists on searching for adequate 
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resources, browsing their descriptions, while keeping our metamodel as the basis to 

register and query experiments.  

Grid computing systems usually involve machine clusters and parallel 

processing. Metadata to support these systems should include information about the 

facilities they provide. GriPhyN project is already working in this direction, proposing a 

metamodel that provides support for the data replica management. SRM can also be 

extended to address Grid systems. In order to do this, we are investigating the use of 

Grid systems at IBCCF, as part of a doctor’s thesis study (MEYER, L. A., 2003) at COPPE 

Sistemas.  

As discussed in section 3.4, the support for workflow dynamic definition is a 

scientific workflow management needed facility. SRMW is not yet supporting this 

facility, but it is our intention to work on this issue also. In this direction, the SPM 

metamodel should provide support for workflow versioning control, such as the one 

provided in WASA system (WESKE, M.; VOSSEN, G.; MEDEIROS, C., 1996).  

Despite the many advantages of the Web services technology, we believe it is 

important to consider it as a new and evolving technology. Therefore, another 

interesting research direction is to work on higher level abstractions for specifying 

scientific workflows. The goal of such abstractions is the decoupling of the workflow 

specification (and knowledge) from any specific technology. In this direction, it is our 

intention to work on issues such as quality evaluation techniques to support choosing 

equivalent workflow steps while executing it (CARDOSO, L. F., SOUZA, J. M., MARQUES, C., 2002) 

(AZEVEDO, V., PIRES, P., MATTOSO, M., 2003) and scientific model based workflow definitions. 
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9. Appendix 

9.1 SPMW XML Schema 

<?xml version="1.0" encoding="UTF-8"?> 
<xsd:schema targetNamespace="http://www.nce.ufrj.br/yoko/spm" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:spm="http://www.nce.ufrj.br/yoko/spm" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 
 <xsd:annotation> 
  <xsd:documentation> 
         Scientific Resources Description  MetaSchema 
      </xsd:documentation> 
 </xsd:annotation> 
 <xsd:element name ="ScientificResourceDefinitions"> 
  <xsd:complexType> 
   <xsd:group ref="spm:gResource" maxOccurs="unbounded"/> 
  </xsd:complexType> 
 </xsd:element> 
 <!-- At least one of the elements below should be published, and there is no forced order --> 
 <xsd:group name="gResource"> 
  <xsd:choice> 
   <xsd:element ref="spm:ModDC"/> 
   <xsd:element ref="spm:ProgDC"/> 
   <xsd:element ref="spm:Model"/> 
   <xsd:element ref="spm:Program"/> 
   <xsd:element ref="spm:DataResource"/> 
   <xsd:element ref="spm:CodeResource"/> 
   <xsd:element ref="spm:Workflow "/> 
   <xsd:element ref="spm:Experiment"/> 
  </xsd:choice> 
 </xsd:group> 
 <!-- Declaração dos elementos principais e suas chaves primárias e estrangeiras --> 
 <xsd:element name ="ModDC" type="spm:tModDC"> 
  <xsd:key name="kModDC"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idDC"/> 
  </xsd:key> 
 </xsd:element> 
 <xsd:element name ="ProgDC" type="spm:tProgDC"> 
  <xsd:key name="kProgDC"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idDC"/> 
  </xsd:key> 
  <xsd:keyref name="refModDC" refer="spm:kModDC"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="implements"/> 
  </xsd:keyref> 
 </xsd:element> 
 <xsd:element name ="ModAttribute" type="spm:tMDCAttribute"> 
  <xsd:key name="kModAttribute"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idAttribute"/> 
  </xsd:key> 
 </xsd:element> 
 <xsd:element name ="ProgAttribute" type="spm:tPDCAttribute"> 
  <xsd:key name="kProgAttribute"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idAttribute"/> 
  </xsd:key> 
  <xsd:keyref name="refModAttribute" refer="spm:kModAttribute"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="implements"/> 
  </xsd:keyref> 
 </xsd:element> 
 <xsd:element name ="Model" type="spm:tModel"> 
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  <xsd:key name="kModel"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idTF"/> 
  </xsd:key> 
  <xsd:keyref  name="refInputModDC" refer="spm:kModDC"> 
   <xsd:selector xpath="input"/> 
   <xsd:field xpath="refersTo"/> 
  </xsd:keyref> 
  <xsd:keyref name="refOutputModDC" refer="spm:kModDC"> 
   <xsd:selector xpath="output"/> 
   <xsd:field xpath="refersTo"/> 
  </xsd:keyref> 
  <xsd:keyref name="refModParm" refer="spm:kModDC"> 
   <xsd:selector xpath="parm"/> 
   <xsd:field xpath="refersTo"/> 
  </xsd:keyref> 
 </xsd:element> 
 <xsd:element name ="Program" type="spm:tProgram"> 
  <xsd:key name="kProgram"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idTF"/> 
  </xsd:key> 
  <xsd:keyref name="refModel" refer="spm:kModel"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="implements"/> 
  </xsd:keyref> 
  <xsd:keyref name="refInputProgDC" refer="spm:kProgDC"> 
   <xsd:selector xpath="input"/> 
   <xsd:field xpath="refersTo"/> 
  </xsd:keyref> 
  <xsd:keyref name="refOutputProgDC" refer="spm:kProgDC"> 
   <xsd:selector xpath="output"/> 
   <xsd:field xpath="refersTo"/> 
  </xsd:keyref> 
  <xsd:keyref name="refProgParm" refer="spm:kProgDC"> 
   <xsd:selector xpath="parm"/> 
   <xsd:field xpath="refersTo"/> 
  </xsd:keyref> 
 </xsd:element> 
 <xsd:element name ="DataResource" type="spm:tDataResource"> 
  <xsd:key name="kDataResource"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idDR"/> 
  </xsd:key> 
  <xsd:keyref name="refDescribedByProgDC" refer="spm:kProgDC"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="spm:describedBy"/> 
  </xsd:keyref> 
 </xsd:element> 
 <xsd:element name ="CodeResource" type="spm:tCodeResource"> 
  <xsd:key name="kCodeResource"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idCR"/> 
  </xsd:key> 
  <xsd:keyref name="refDescribedByProgram" refer="spm:kProgram"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="spm:describedBy"/> 
  </xsd:keyref> 
 </xsd:element> 
 <xsd:element name ="Workflow " type="spm:tWorkflow "> 
  <xsd:key name="kWorkflow "> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idWF"/> 
  </xsd:key> 
  <xsd:keyref name="refWfStep" refer="spm:kProgram"> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="spm:w fStep"/> 
  </xsd:keyref> 
 </xsd:element> 
 <xsd:element name ="Experiment" type="spm:tExperiment"> 
  <xsd:key name="kExperiment"> 
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   <xsd:selector xpath="."/> 
   <xsd:field xpath="@idEx "/> 
  </xsd:key> 
  <xsd:keyref name="refWorkflow " refer="spm:kWorkflow "> 
   <xsd:selector xpath="."/> 
   <xsd:field xpath="spm:workflow "/> 
  </xsd:keyref> 
  <xsd:keyref name="refInstanceOf" refer="spm:kWorkflow "> 
   <xsd:selector xpath="spm:essay"/> 
   <xsd:field xpath="spm:instanceOf"/> 
  </xsd:keyref> 
  <xsd:keyref name="refCodeResource" refer="spm:kCodeResource"> 
   <xsd:selector xpath="spm:essay/spm:execution"/> 
   <xsd:field xpath="spm:codeResource"/> 
  </xsd:keyref> 
  <xsd:keyref name="refDataResource" refer="spm:kDataResource"> 
   <xsd:selector xpath="spm:essay/spm:execution/spm:dataMatch"/> 
   <xsd:field xpath="spm:dataResource"/> 
  </xsd:keyref> 
 </xsd:element> 
 <!-- Declarando tipos complexos --> 
 <xsd:complexType name ="tDataCategory" abstract="true"> 
  <xsd:sequence> 
   <xsd:element name ="title" type="xsd:string"/> 
   <xsd:element name ="creator" type="xsd:string"/> 
   <xsd:element name ="creationDate" type="xsd:date"/> 
   <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:annotation> 
     <xsd:documentation>to support extensibility elements </xsd:documentation> 
    </xsd:annotation> 
   </xsd:any> 
  </xsd:sequence> 
  <xsd:attribute name="idDC" type="xsd:NCName" use="required"/> 
 </xsd:complexType> 
 <xsd:complexType name ="tModDC"> 
  <xsd:complexContent> 
   <xsd:extension base="spm:tDataCategory"> 
    <xsd:sequence> 
     <xsd:element name ="MDCAttribute" maxOccurs="unbounded"> 
      <xsd:complexType> 
       <xsd:sequence> 
        <xsd:element name ="attItem" type="spm:tMDCAttribute"/> 
       </xsd:sequence> 
      </xsd:complexType> 
     </xsd:element> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name ="tProgDC"> 
  <xsd:complexContent> 
   <xsd:extension base="spm:tDataCategory"> 
    <xsd:sequence> 
     <xsd:element name ="implements" type="xsd:string" minOccurs="0"/> 
     <xsd:element name ="wsdlElementRef" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation> Each ProgDC corresponds to a type in a wsdl 
document.</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="PDCAttribute" maxOccurs="unbounded"> 
      <xsd:complexType> 
       <xsd:sequence> 
        <xsd:element name ="attItem" type="spm:tPDCAttribute"/> 
       </xsd:sequence> 
      </xsd:complexType> 
     </xsd:element> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
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 <xsd:complexType name ="tAttribute" abstract="true"> 
  <xsd:sequence> 
   <xsd:element name ="attTitle" type="xsd:string"/> 
  </xsd:sequence> 
  <xsd:attribute name="idAttribute" type="xsd:NCName" use="required"/> 
 </xsd:complexType> 
 <xsd:complexType name ="tMDCAttribute"> 
  <xsd:complexContent> 
   <xsd:extension base="spm:tAttribute"> 
    <xsd:sequence> 
     <xsd:element name ="quantity" type="spm:tQuantity"/> 
     <xsd:element name ="classification" type="xsd:string"/> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name ="tPDCAttribute"> 
  <xsd:complexContent> 
   <xsd:extension base="spm:tAttribute"> 
    <xsd:sequence> 
     <xsd:element name ="unit" type="spm:tUnit"/> 
     <xsd:element name ="format" type="xsd:string"/> 
     <xsd:element name ="implements" type="xsd:string" minOccurs="0"/> 
     <xsd:element name ="wsdlElementRef" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation> Each PDCAttr corresponds to a type in a wsdl 
document.</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name ="tTransformation" abstract="true"> 
  <xsd:sequence> 
   <xsd:element name ="title" type="xsd:string"/> 
   <xsd:element name ="creator" type="xsd:string"> 
    <xsd:annotation> 
     <xsd:documentation>name of the creator of the transformation (not the person who 
describes it)</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name ="creationDate" type="xsd:date"> 
    <xsd:annotation> 
     <xsd:documentation>date of the creation (conception) of the transformation. It should reflect 
the model age.</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name ="input" maxOccurs="unbounded"> 
    <xsd:complexType> 
     <xsd:sequence> 
      <xsd:element name ="inputItem" type="spm:tDataIO"/> 
     </xsd:sequence> 
    </xsd:complexType> 
   </xsd:element> 
   <xsd:element name="parm" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:complexType> 
     <xsd:sequence> 
      <xsd:element name ="parmItem" type="spm:tParm"/> 
     </xsd:sequence> 
    </xsd:complexType> 
   </xsd:element> 
   <xsd:element name ="output"  maxOccurs="unbounded"> 
    <xsd:complexType> 
     <xsd:sequence> 
      <xsd:element name ="outputItem" type="spm:tDataIO"/> 
     </xsd:sequence> 
    </xsd:complexType> 
   </xsd:element> 
   <xsd:element name ="constraint" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:complexType> 
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     <xsd:sequence> 
      <xsd:element name ="constItem" type="spm:tConstraint"/> 
     </xsd:sequence> 
    </xsd:complexType> 
   </xsd:element> 
   <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:annotation> 
     <xsd:documentation>to support extensibility elements </xsd:documentation> 
    </xsd:annotation> 
   </xsd:any> 
  </xsd:sequence> 
  <xsd:attribute name="idTF" type="xsd:NCName" use="required"/> 
 </xsd:complexType> 
 <xsd:complexType name ="tModel"> 
  <xsd:complexContent> 
   <xsd:extension base="spm:tTransformation"> 
    <xsd:sequence> 
     <xsd:element name ="area" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation>A model is usually associated to an area of application. Ex.:: 
industrial, economic, social, political, environmental, etc</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="scope" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation>The target or scope of a model is the system it represents. Ex.: 
Itajaí hydrographic basin, a geographic region, or an enterprise.</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="classification" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation>There are many different ways of classifying a model. Ex. 
mathematic, logic, deductive, empiric, probabilistic, algorithmic, simulation, etc.</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="purpose" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation>Each model has a specific purpose, for which it is 
valid.</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="hypothesis" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation>Every model is initially a hypothesis. Building a model 
represents the expression of a scientific hypothesis that needs to be validated </xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="bibliographicRef" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation> scientific publications and related explanatory 
material</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="webReference" type="xsd:string" minOccurs="0"> 
      <xsd:annotation> 
       <xsd:documentation>web address of the model reference material, if 
exists</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name ="tProgram"> 
  <xsd:complexContent> 
   <xsd:extension base="spm:tTransformation"> 
    <xsd:sequence> 
     <xsd:element name ="implementationLanguage" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation>Programming language with which the program was 
implemented. It might be important to specify the version of the language.</xsd:documentation> 
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      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="version" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation>version/release of the program. </xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="implements" type="xsd:string" minOccurs="0"/> 
     <xsd:element name ="wsdlElementRef" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation> Each Program corresponds to a port type operation in a wsdl 
document.</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name ="tDataIO"> 
  <xsd:sequence> 
   <xsd:element name ="title" type="xsd:string"/> 
   <xsd:element name ="refersTo" type="xsd:string"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:complexType name ="tParm"> 
  <xsd:sequence> 
   <xsd:element name ="title" type="xsd:string"/> 
   <xsd:element name ="refersTo" type="xsd:string"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:complexType name ="tConstraint"> 
  <xsd:sequence> 
   <xsd:element name ="title" type="xsd:string"/> 
   <xsd:element name ="description" type="xsd:string"> 
    <xsd:annotation> 
     <xsd:documentation>description in natural language of the constraint</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name ="expression" type="xsd:string"> 
    <xsd:annotation> 
     <xsd:documentation>description in a formal  language of the constraint (possibly 
BPEL4WS)</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:complexType name ="tResource" abstract="true"> 
  <xsd:sequence> 
   <xsd:eleme nt name ="title" type="xsd:string"/> 
   <xsd:element name ="creator" type="xsd:string"> 
    <xsd:annotation> 
     <xsd:documentation>if the creator is a program, it should be identified by a uri, a program 
name, or a code execution id</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name ="creationDate" type="xsd:date"/> 
   <xsd:element name ="describedBy" type="xsd:string"/> 
   <xsd:element name ="wsdlElementRef" type="xsd:string"> 
    <xsd:annotation> 
     <xsd:documentation> Each code/data resource corresponds to a port operation in a wsdl 
document.</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:annotation> 
     <xsd:documentation>to support extensibility elements </xsd:documentation> 
    </xsd:annotation> 
   </xsd:any> 
  </xsd:sequence> 
  <xsd:attribute name="idResource" type="xsd:string" use="required"/> 
 </xsd:complexType> 
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 <xsd:complexType name ="tDataResource"> 
  <xsd:complexContent> 
   <xsd:extension base="spm:tResource"> 
    <xsd:sequence> 
     <xsd:element name ="provenance" type="xsd:string"> 
      <xsd:annotation> 
       <xsd:documentation>identification of data provenance. Ex.: name of the satellite, 
sensor identification</xsd:documentat ion> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="genMechanism" type="spm:tGenMechanism"> 
      <xsd:annotation> 
       <xsd:documentation>generation mechanism that was used to  generate data. Ex.: 
satellite, sensor, code execution</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
     <xsd:element name ="webReference" type="xsd:string" minOccurs="0"> 
      <xsd:annotation> 
       <xsd:documentation> If there is a web address that directly points to the Data 
Resource, as an XML page</xsd:documentation> 
      </xsd:annotation> 
     </xsd:element> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name ="tCodeResource"> 
  <xsd:complexContent> 
   <xsd:extension base="spm:tResource"> 
    <xsd:sequence> 
     <xsd:element name ="operationalSystem" type="xsd:string"/> 
     <xsd:element name ="hardwareInfo" type="xsd:string"/> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name ="tWorkflow "> 
  <xsd:sequence> 
   <xsd:element name ="title" type="xsd:string"/> 
   <xsd:element name ="creator" type="xsd:string"/> 
   <xsd:element name ="creationDate" type="xsd:string"/> 
   <xsd:element name ="wfDefinition" type="xsd:string"> 
    <xsd:annotation> 
     <xsd:documentation>address of the workflow specification using 
BPEL4WS.</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name ="wfStep" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/> 
   <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:annotation> 
     <xsd:documentation>to support extensibility elements </xsd:documentation> 
    </xsd:annotation> 
   </xsd:any> 
  </xsd:sequence> 
  <xsd:attribute name="idWF" type="xsd:NCName" use="required"/> 
 </xsd:complexType> 
 <xsd:complexType name ="tExperiment"> 
  <xsd:sequence> 
   <xsd:element name ="title" type="xsd:string"/> 
   <xsd:element name ="creator" type="xsd:string"/> 
   <xsd:element name ="creationDate" type="xsd:date"/> 
   <xsd:element name ="project" type="xsd:string"/> 
   <xsd:element name ="purpose" type="xsd:string"/> 
   <xsd:element name ="hypothesis" type="xsd:string"/> 
   <xsd:element name ="report" type="xsd:string"/> 
   <xsd:element name ="status" type="spm:tStatus"/> 
   <xsd:element name ="w orkflow " type="xsd:string" maxOccurs="unbounded"/> 
   <xsd:element name ="essay" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:complexType> 
     <xsd:sequence> 
      <xsd:element name ="creationDate" type="xsd:date"/> 
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      <xsd:element name ="creationTime" type="xsd:time"/> 
      <xsd:element name ="comment" type="xsd:time" minOccurs="0"> 
       <xsd:annotation> 
        <xsd:documentation>Each essay may generate some comments added by the 
scientist.</xsd:documentation> 
       </xsd:annotation> 
      </xsd:eleme nt> 
      <xsd:element name ="instanceOf" type="xsd:string"/> 
      <xsd:element name ="concreteWFdefinition" type="xsd:string"/> 
      <xsd:element name ="duration" type="xsd:float"/> 
      <xsd:element name ="execution" maxOccurs="unbounded"> 
       <xsd:complexType> 
        <xsd:sequence> 
         <xsd:element name ="codeResource" type="xsd:string"/> 
         <xsd:element name ="dataMatch" maxOccurs="unbounded"> 
          <xsd:complexType> 
           <xsd:sequence> 
            <xsd:element name ="dataIO" type="xsd:string"/> 
            <xsd:element name ="dataResource" type="xsd:string"/> 
           </xsd:sequence> 
          </xsd:complexType> 
         </xsd:element> 
         <xsd:element name ="parmMatch" minOccurs="0" 
maxOccurs="unbounded"> 
          <xsd:complexType> 
           <xsd:sequence> 
            <xsd:element name ="parm" type="xsd:string"/> 
            <xsd:element name ="dataResource" type="xsd:string"/> 
           </xsd:sequence> 
          </xsd:complexType> 
         </xsd:element> 
        </xsd:sequence> 
       </xsd:complexType> 
      </xsd:element> 
     </xsd:sequence> 
    </xsd:complexType> 
   </xsd:element> 
   <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:annotation> 
     <xsd:documentation>to support extensibility elements </xsd:documentation> 
    </xsd:annotation> 
   </xsd:any> 
  </xsd:sequence> 
  <xsd:attribute name="idEx" type="xsd:NCName" use="required"/> 
 </xsd:complexType> 
 <xsd:simpleType name="tGenMechanism"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumerat ion value="satellite"/> 
   <xsd:enumeration value="sensor"/> 
   <xsd:enumeration value="manual"/> 
   <xsd:enumeration value="code execution"/> 
   <xsd:enumeration value="other"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="tStatus"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="active"/> 
   <xsd:enumeration value="notStarted"/> 
   <xsd:enumeration value=" interrupted"/> 
   <xsd:enumeration value="suspended"/> 
   <xsd:enumeration value="finished"/> 
   <xsd:enumeration value="archived"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="tUnit"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="--- no unit ---"/> 
   <xsd:enumeration value="ms:Shot"/> 
   <xsd:enumeration value="ms:CarMile"/> 
   <xsd:enumeration value="ms:FixedRate"/> 
   <xsd:enumeration value="ms:GramsperCubicCentimeter"/> 
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   <xsd:enumeration value="ms:KilogramsperSquareMeter"/> 
   <xsd:enumeration value="ms:Millivolts"/> 
   <xsd:enumeration value="ms:Manmonth"/> 
   <xsd:enumeration value="ms:SuperBulkBag"/> 
   <xsd:enumeration value="ms:FiftyPoundBag"/> 
   <xsd:enumeration value="ms:Milliamperes"/> 
   <xsd:enumeration value="ms:Megabyte"/> 
   <xsd:enumeration value="ms:PartsPerMillion"/> 
   <xsd:enumeration value="ms:Ampere"/> 
   <xsd:enumeration value="ms:Volt"/> 
   <xsd:enumeration value="ms:KiloPoundsPerSquareInch"/> 
   <xsd:enumeration value="ms:FootPounds"/> 
   <xsd:enumeration value="ms:Joules"/> 
   <xsd:enumeration value="ms:TenKilogramDrum"/> 
   <xsd:enumeration value="ms:Acre"/> 
   <xsd:enumeration value="ms:Atmosphere"/> 
   <xsd:enumeration value="ms:Billet"/> 
   <xsd:enumeration value="ms:Bale"/> 
   <xsd:enumeration value="ms:BaseBox"/> 
   <xsd:enumeration value="ms:Bucket"/> 
   <xsd:enumeration value="ms:Bundle"/> 
   <xsd:enumeration value="ms:Beam"/> 
   <xsd:enumeration value="ms:BoardFeet"/> 
   <xsd:enumeration value="ms:Bag"/> 
   <xsd:enumeration value="ms:Bar"/> 
   <xsd:enumeration value="ms:Block"/> 
   <xsd:enumeration value="ms:Bulk"/> 
   <xsd:enumeration value="ms:Bottle"/> 
   <xsd:enumeration value="ms:Barrel"/> 
   <xsd:enumeration value="ms:Bushel"/> 
   <xsd:enumeration value="ms:Box"/> 
   <xsd:enumeration value="ms:MillionBTUs"/> 
   <xsd:enumeration value="ms:Centipoise"/> 
   <xsd:enumeration value="ms:Case"/> 
   <xsd:enumeration value="ms:Carboy"/> 
   <xsd:enumeration value="ms:CubicCentimeter"/> 
   <xsd:enumeration value="ms:Carat"/> 
   <xsd:enumeration value="ms:CubicFeet"/> 
   <xsd:enumeration value="ms:Container"/> 
   <xsd:enumeration value="ms:CubicInches"/> 
   <xsd:enumeration value="ms:Cylinder"/> 
   <xsd:enumeration value="ms:Centimeter"/> 
   <xsd:enumeration value="ms:Can"/> 
   <xsd:enumeration value="ms:Crate"/> 
   <xsd:enumeration value="ms:Cartridge"/> 
   <xsd:enumeration value="ms:CubicMeter"/> 
   <xsd:enumeration value="ms:Cassette"/> 
   <xsd:enumeration value="ms:Carton"/> 
   <xsd:enumeration value="ms:Cup"/> 
   <xsd:enumeration value="ms:HundredPounds"/> 
   <xsd:enumeration value="ms:Coil"/> 
   <xsd:enumeration value="ms:CubicYard"/> 
   <xsd:enumeration value="ms:Days"/> 
   <xsd:enumeration value="ms:Degree"/> 
   <xsd:enumeration value="ms:Dram"/> 
   <xsd:enumeration value="ms:Miles"/> 
   <xsd:enumeration value="ms:Decimeter"/> 
   <xsd:enumeration value="ms:Drum"/> 
   <xsd:enumeration value="ms:Dozen"/> 
   <xsd:enumeration value="ms:Each"/> 
   <xsd:enumeration value="ms:Fahrenheit"/> 
   <xsd:enumeration value="ms:TrackFoot"/> 
   <xsd:enumeration value="ms:PoundsperSqFt"/> 
   <xsd:enumeration value="ms:FeetPerMinute"/> 
   <xsd:enumeration value="ms:Foot"/> 
   <xsd:enumeration value="ms:Gallon"/> 
   <xsd:enumeration value="ms:PoundsperGallon"/> 
   <xsd:enumeration value="ms:GramsperLiter"/> 
   <xsd:enumeration value="ms:Gram"/> 
   <xsd:enumeration value="ms:Gross"/> 
   <xsd:enumeration value="ms:Grain"/> 
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   <xsd:enumeration value="ms:GrossYard"/> 
   <xsd:enumeration value="ms:Hectoliter"/> 
   <xsd:enumeration value="ms:Hank"/> 
   <xsd:enumeration value="ms:HundredFeet"/> 
   <xsd:enumeration value="ms:HundredCubicFeet"/> 
   <xsd:enumeration value="ms:Bale"/> 
   <xsd:enumeration value="ms:BaseBox"/> 
   <xsd:enumeration value="ms:Bucket"/> 
   <xsd:enumeration value="ms:Bundle"/> 
   <xsd:enumeration value="ms:Beam"/> 
   <xsd:enumeration value="ms:BoardFeet"/> 
   <xsd:enumeration value="ms:Bag"/> 
   <xsd:enumerat ion value="ms:Bar"/> 
   <xsd:enumeration value="ms:Block"/> 
   <xsd:enumeration value="ms:Bulk"/> 
   <xsd:enumeration value="ms:Bottle"/> 
   <xsd:enumeration value="ms:Barrel"/> 
   <xsd:enumeration value="ms:Bushel"/> 
   <xsd:enumeration value="ms:Box"/> 
   <xsd:enumeration value="ms:MillionBTUs"/> 
   <xsd:enumeration value="ms:Centipoise"/> 
   <xsd:enumeration value="ms:Case"/> 
   <xsd:enumeration value="ms:Carboy"/> 
   <xsd:enumeration value="ms:CubicCentimeter"/> 
   <xsd:enumeration value="ms:Carat"/> 
   <xsd:enumeration value="ms:CubicFeet"/> 
   <xsd:enumeration value="ms:Container"/> 
   <xsd:enumeration value="ms:CubicInches"/> 
   <xsd:enumeration value="ms:Cylinder"/> 
   <xsd:enumeration value="ms:Centimeter"/> 
   <xsd:enumeration value="ms:Can"/> 
   <xsd:enumeration value="ms:Crate"/> 
   <xsd:enumeration value="ms:Cartridge"/> 
   <xsd:enumeration value="ms:CubicMeter"/> 
   <xsd:enumeration value="ms:Cassette"/> 
   <xsd:enumeration value="ms:Carton"/> 
   <xsd:enumeration value="ms:Cup"/> 
   <xsd:enumeration value="ms:HundredPounds"/> 
   <xsd:enumeration value="ms:Coil"/> 
   <xsd:enumeration value="ms:CubicYard"/> 
   <xsd:enumeration value="ms:Days"/> 
   <xsd:enumeration value="ms:Degree"/> 
   <xsd:enumeration value="ms:Dram"/> 
   <xsd:enumeration value="ms:Miles"/> 
   <xsd:enumeration value="ms:Decimeter"/> 
   <xsd:enumeration value="ms:Drum"/> 
   <xsd:enumeration value="ms:Dozen"/> 
   <xsd:enumeration value="ms:Each"/> 
   <xsd:enumeration value="ms:Fahrenheit"/> 
   <xsd:enumeration value="ms:TrackFoot"/> 
   <xsd:enumeration value="ms:PoundsperSqFt"/> 
   <xsd:enumeration value="ms:FeetPerMinute"/> 
   <xsd:enumeration value="ms:Foot"/> 
   <xsd:enumeration value="ms:Gallon"/> 
   <xsd:enumeration value="ms:PoundsperGallon"/> 
   <xsd:enumeration value="ms:GramsperLiter"/> 
   <xsd:enumeration value="ms:Gram"/> 
   <xsd:enumeration value="ms:Gross"/> 
   <xsd:enumeration value="ms:Grain"/> 
   <xsd:enumeration value="ms:GrossYard"/> 
   <xsd:enumeration value="ms:Hectoliter"/> 
   <xsd:enumeration value="ms:Hank"/> 
   <xsd:enumeration value="ms:HundredFeet"/> 
   <xsd:enumeration value="ms:HundredCubicFeet"/> 
   <xsd:enumeration value="ms:Horsepower"/> 
   <xsd:enumeration value="ms:HundredTroyOunces"/> 
   <xsd:enumeration value="ms:Hours"/> 
   <xsd:enumeration value="ms :HundredWeight"/> 
   <xsd:enumeration value="ms:HundredWeight"/> 
   <xsd:enumeration value="ms:Hertz"/> 
   <xsd:enumeration value="ms:InchPound"/> 
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   <xsd:enumeration value="ms:Inch"/> 
   <xsd:enumeration value="ms:Joint"/> 
   <xsd:enumeration value="ms:Jar"/> 
   <xsd:enumeration value="ms:Jug"/> 
   <xsd:enumeration value="ms:Kilowatt"/> 
   <xsd:enumeration value="ms:KilogramsperCubicMeter"/> 
   <xsd:enumeration value="ms:Keg"/> 
   <xsd:enumeration value="ms:Kilogram"/> 
   <xsd:enumeration value="ms:KilowattHour"/> 
   <xsd:enumeration value="ms:KilometersPerHour"/> 
   <xsd:enumeration value="ms:Kilopascal"/> 
   <xsd:enumeration value="ms:Kit"/> 
   <xsd:enumeration value="ms:Kelvin"/> 
   <xsd:enumeration value="ms:Pound"/> 
   <xsd:enumeration value="ms:LinearFoot"/> 
   <xsd:enumeration value="ms:LongTon"/> 
   <xsd:enumeration value="ms:Length"/> 
   <xsd:enumeration value="ms:Lot"/> 
   <xsd:enumeration value="ms:LumpSum"/> 
   <xsd:enumeration value="ms:Liter"/> 
   <xsd:enumeration value="ms:Millibar"/> 
   <xsd:enumeration value="ms:Milligram"/> 
   <xsd:enumeration value="ms:milligram_per_liter" id="mg/l"/> 
   <xsd:enumeration value="ms:Metric"/> 
   <xsd:enumeration value="ms:Minutes"/> 
   <xsd:enumeration value="ms:Milliliter"/> 
   <xsd:enumeration value="ms:Mil limeter"/> 
   <xsd:enumeration value="ms:Months"/> 
   <xsd:enumeration value="ms:MetricTon"/> 
   <xsd:enumeration value="ms:Meter"/> 
   <xsd:enumeration value="ms:Barge"/> 
   <xsd:enumeration value="ms:Load"/> 
   <xsd:enumeration value="ms:ShortTon"/> 
   <xsd:enumeration value="ms:OvertimeHours"/> 
   <xsd:enumeration value="ms:Ounce-Av"/> 
   <xsd:enumeration value="ms:Pages-Electronic"/> 
   <xsd:enumeration value="ms:Percent"/> 
   <xsd:enumeration value="ms:Pail"/> 
   <xsd:enumeration value="ms:Piece"/> 
   <xsd:enumeration value="ms:Pad"/> 
   <xsd:enumeration value="ms:Pallet"/> 
   <xsd:enumeration value="ms:Package"/> 
   <xsd:enumeration value="ms:PalletUnitLoad"/> 
   <xsd:enumeration value="ms:Pair"/> 
   <xsd:enumeration value="ms:PoundsperSqInch"/> 
   <xsd:enumeration value="ms:Pint"/> 
   <xsd:enumeration value="ms:Quart"/> 
   <xsd:enumeration value="ms:RevolutionsPerMinute"/> 
   <xsd:enumeration value="ms:Rod-5.5Yards"/> 
   <xsd:enumeration value="ms:Reel"/> 
   <xsd:enumeration value="ms:Roll"/> 
   <xsd:enumeration value="ms:Ream"/> 
   <xsd:enumeration value="ms:Run"/> 
   <xsd:enumeration value="ms:Trimester"/> 
   <xsd:enumeration value="ms:SquareMetersperSecond"/> 
   <xsd:enumeration value="ms:SquareMile"/> 
   <xsd:enumeration value="ms:SquareFoot"/> 
   <xsd:enumeration value="ms:Sheet"/> 
   <xsd:enumeration value="ms:SquareInch"/> 
   <xsd:enumeration value="ms:Sack"/> 
   <xsd:enumeration value="ms:SquareMeter"/> 
   <xsd:enumeration value="ms:Spool"/> 
   <xsd:enumeration value="ms:Strip"/> 
   <xsd:enumerat ion value="ms:Set"/> 
   <xsd:enumeration value="ms:Skid"/> 
   <xsd:enumeration value="ms:SquareYard"/> 
   <xsd:enumeration value="ms:Tube"/> 
   <xsd:enumeration value="ms:Truckload"/> 
   <xsd:enumeration value="ms:Tote"/> 
   <xsd:enumeration value="ms:GrossTon"/> 
   <xsd:enumeration value="ms:Thousand"/> 
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   <xsd:enumeration value="ms:Tank"/> 
   <xsd:enumeration value="ms:ThousandFeet"/> 
   <xsd:enumeration value="ms:NetTon"/> 
   <xsd:enumeration value="ms:TroyOunce"/> 
   <xsd:enumeration value="ms:ThousandFeet"/> 
   <xsd:enumeration value="ms:ThousandSquareFeet"/> 
   <xsd:enumeration value="ms:Unit"/> 
   <xsd:enumeration value="ms:Week"/> 
   <xsd:enumeration value="ms:Yard"/> 
   <xsd:enumeration value="ms:Years"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="tQuantity"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="--- no quantity ---"/> 
   <xsd:enumeration value="ms:concentration"/> 
   <xsd:enumeration value="ms:temperature"/> 
   <xsd:enumeration value="ms:speed"/> 
   <xsd:enumeration value="ms:time"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:complexType name ="basicDataType"> 
  <xsd:choice> 
   <xsd:element name ="primitiveDT" type="spm:tPrimitiveDataType"/> 
   <xsd:element name ="derivedDT" type="spm:tDerivedDataType"/> 
  </xsd:choice> 
 </xsd:complexType> 
 <xsd:simpleType name="tPrimitiveDataType"> 
  <xsd:restriction base="xsd:QName"> 
   <xsd:enumeration value="xsd:string"/> 
   <xsd:enumeration value="xsd:boolean"/> 
   <xsd:enumeration value="xsd:decimal"/> 
   <xsd:enumeration value="xsd:float"/> 
   <xsd:enumeration value="xsd:double"/> 
   <xsd:enumeration value="xsd:duration"/> 
   <xsd:enumeration value="xsd:dateTime"/> 
   <xsd:enumeration value="xsd:time"/> 
   <xsd:enumeration value="xsd:date"/> 
   <xsd:enumeration value="xsd:hexBinary"/> 
   <xsd:enumeration value="xsd:base64Binary"/> 
   <xsd:enumeration value="xsd:anyURI"/> 
   <xsd:enumeration value="xsd:QName"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="tDerivedDataType"> 
  <xsd:restriction base="xsd:QName"> 
   <xsd:enumeration value="xsd:integer"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
</xsd:schema > 
 

 

 

 

 


