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Abstract

In this paper we present a Lagrangian based heuristic for the Degree
Constrained Minimum Spanning Tree Problem (DSTP). We show how
to solve a DSTP instance using only a subset of the original set of
edges, thus enabling to tackle problems with thousands of vertices
in complete graphs. Local Search integrates the heuristic algorithm,
which is an adaptation of the Kruskal’s algorithm to deal with vertex
degree constraints. Finally, we propose a new classification for DSTP
instances, to which we report computational results.
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1 Introduction

Let G = (V, E) be a connected undirected graph with a set V of vertices
and a set E of edges. Costs {ce ∈ R : e ∈ E} are associated with the edges
of G while degrees {di ∈ N : i ∈ V } are associated with its vertices.

A spanning tree T = (V, E′) of G is said to be degree constrained if no
more than di tree edges are incident on every vertex i ∈ V . The Degree
Constrained Minimum Spanning Tree Problem (DSTP) is to find a least
cost degree constrained spanning tree of G. The decision version of DSTP
is known to be NP-complete (see Garey & Johnson [6]) and so it is unlikely
that a polynomial time algorithm exists for the problem.

Practical applications of DSTP involve, among others, the design of com-
puter, telecommunication and transport networks (see [7], [9],[11],[13],[18]
and [19] for details).

The very first exact and and nonexact solution algorithms for DSTP
were proposed by Gavish [7] and Volgenant [18] and are based on Lagrangian
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Relaxation. Zhou and Gen [19] suggested a Genetic Algorithm for the prob-
lem. Narula and Ho [14] proposed a greedy heuristic and an exact solution
algorithm based, yet again, on Lagrangian Relaxation. Savelsbergh and
Volgenant [16] have also proposed a Lagrangian based exact solution al-
gorithm for DSTP. Craig, Krishnamoorthy and Palaniswami [5] proposed
several heuristics for the problem, including one based on the use of neural
networks. Souza and Ribeiro [17] proposed a GRASP [15] based heuris-
tic which uses Variable Neighborhood Descent. Finally, Caccetta and Hill
[4] suggested a Branch and Cut algorithm where Subtour Elimination Con-
straints (SECs) are introduced (as they become violated) as cutting planes.

In this paper, a Lagrangian Relaxation of a standard DSTP formulation
is used to guide a greedy generation of degree constrained spanning trees.
Each one of the trees thus obtained is then subjected to local improvements.
Local Search is implemented here for a neighborhood consisting of all fea-
sible spanning trees that differ from the one in hand by exactly one edge.
Experiments which restrict candidate spanning tree edges, at the greedy
phase of the algorithm, to a low cardinality subset of E have also been con-
ducted. This conveniently chosen subset of edges has shown, for the test bed
used in this study, to have a high probability of containing optimal DSTP
solutions.

Results obtained from extensive computational testing indicate that the
proposed heuristic is competitive with the best in the literature. Further-
more, optimality could be proven for many of the test instances considered
since Lagrangian dual bounds matched heuristic primal ones.

This paper is organized as follows. In Section 2 the DSTP formulation
used in this study is presented. A Lagrangian Relaxation of that formulation
is described is Section 3. In Section 4 a Restricted DSTP, used to obtain
initial DSTP solutions, is introduced. The proposed Lagrangian heuristic,
consisting of a greedy construction phase followed by Local Improvement,
is detailed in Section 5. In Section 6 a classification of DSTP instances is
suggested. Computational experiments for our algorithm are reported in
Section 7. Finally, the paper is closed in Section 8 with some conclusions
and suggestions for future work.

2 Problem Formulation

The closely related problem of finding a Minimum Spanning Tree (MST)
Problem of G will be briefly reviewed before a formulation of DSTP is pre-
sented. In order to do so, associate variables x ∈ R

|E| with the edges of G.
Variable xe, e ∈ E, is set to one if edge e is in the chosen spanning tree.
Otherwise, xe is set to zero.

Denote by E(S) ⊆ E, where S ⊆ V , the set of edges with both end
vertices in S. Accordingly, denote by δ(i) ⊆ E, where i ∈ V , the set of
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edges having i as an end vertex. A description of the convex hull of incidence
vectors of spanning trees of G, denoted here by R0, is

∑

e∈E

xe = |V | − 1, (1)

∑

e∈E(S)

xe ≤ |S| − 1, S ⊂ V, (2)

xe ≥ 0, ∀ e ∈ E. (3)

Constraint (1) states that exactly |V | − 1 edges of G must be implied by
x (very much as one would expect from a spanning tree of G). Subtour
Elimination Constraints (2) guarantee that no cycle is induced by the edges
being selected. The problem of finding a MST of G is thus formulated as

min {
∑

e∈E

cexe : x ∈ R0}. (4)

Classical references for solving (4) are the O(|V |2) algorithm of Prim and
the O(|E|log|E|) algorithm of Kruskal.

Degree constraints on spanning tree vertices can be enforced with in-
equalities

∑

e∈δ(i)

xe ≤ di, ∀ i ∈ V. (5)

Consequently, if one denotes by R1 the polyhedral region defined by con-
straints (1)–(3) and (5), a formulation of DSTP is

min {
∑

e∈E

cexe : x ∈ R1 ∩ Z
|E|}. (6)

Formulation (6) has been used in virtually every single DSTP paper in the
literature. Likewise, most of the exact solution algorithms for DSTP use the
Lagrangian Relaxation of (6) that follows.

3 A Lagrangian Relaxation of the DSTP

Assume that one attaches nonnegative multipliers λ ∈ R
|V |
+ to inequalities

(5) and dualize them in a Lagrangian fashion. A Lagrangian subproblem of
(6), namely

min {
∑

e=(i,j)∈E

(ce + λi + λj)xe −
∑

i∈V

λidi : x ∈ R0}, (7)

would result. Since
∑

i∈V λidi is a constant for a given λ, problem (7) is
to find a MST of G under edge costs {(ce − λi − λj) : e ∈ E}. From the
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Lagrangian duality theory, it is straightforward to establish that an optimal
solution value z(λ) for (7) gives a lower bound on the optimal solution value
z of (6).

The best possible (i.e. largest) DSTP lower bound capable of being
attained from (7), say z(λ∗), is associated with multipliers λ∗ and has a
value

maxλ≥0{
∑

e=(i,j)∈E

(ce − λi − λj)xe −
∑

i∈V

λidi : x ∈ R0}, (8)

Lower bound z(λ∗) on z can be obtained through the use of Subgradient
Optimization methods. Typically, these methods operate by generating a
sequence of multipliers λ0, λ1, . . ., which converges to λ∗.

In this paper the Subgradient Method (SM) of Held, Wolfe and Crow-
der [10] is used in an attempt to obtain z(λ∗). The SM is adapted here,
as suggested in Beasley [2], for dealing with a large number of dualized
inequalities.

3.1 Updating the Lagrangian Multipliers

Let zub be a known upper bound on z and denote by λp ∈ R
|V |
+ the La-

grangian multipliers being used at iteration p of SM. Accordingly, let xp be
an optimal solution to (7) under multipliers λp. After computing subgradi-
ents {sp

i =
∑

e∈δ(i) x
p
e − di : i ∈ V } for dualized inequalities (4), multipliers

have been updated, in our computational experiments, as

λ
p+1
i = max {0, λ

p
i + tps

p
i }, ∀ i ∈ V, (9)

where tp = αp
((1+β)zub−z(λp)

||sp||2
, αp ∈ (0, 2], and 0.01 ≤ β ≤ 0.03. Empirical

values for αp and β are determined accordingly [1].

4 The Reduced DSTP Problem

The Reduced DSTP is a degree constrained minimum spanning tree prob-
lem restricted to a subset of the set of edges of the original problem. We
order the set of edges E in increasing edge costs, and the idea is to work
with an ordered subset E′ ⊆ E, expected to present |E′| << |E|. This
subset includes at least the edges needed to obtain a corresponding MST,
once relaxed the degree constraints. We decide how many ordered edges to
add to that subset, which is an empirical task that depends on the class of
DSTP instance being considered. For instance, we observed that to solve
Hamiltonian path problems, we needed an ordered subset E′ with a larger
percentage of the edges in E than for all other classes of DSTP instances.
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This approach allowed to achieve a considerable reduction on the compu-
tational time and to determine upper bounds of good quality with a small
effort.

The idea is as follows. Consider that the set of edges E is ordered
by increasing values of the edge costs. Suppose that we explored k or-
dered edges, from the set E = {e1, e2, · · · , ek, ek+1, · · · , e|E|}, to deter-
mine the corresponding MST. We obtain the reduced set E′ by deter-
mining empirically an ordered set of p ≤ |E| − k + 1 edges, and setting
E′ = {e1, e2, · · · , ek} ∪ {ek+1, · · · , ep}, with E′ ⊆ E. Let R2 := R1 ∩ {xe =
0 : e ∈ E \ E′}. The reduced problem is

min{
∑

e∈E′

cexe : x ∈ R2 ∩ Z
|E|}. (10)

5 A Lagrangian Based DSTP Heuristic

The basic idea behind a Lagrangian heuristic is to attempt to drive dual
solutions into primal feasibility. We somewhat generalize this concept by
bringing stand alone primal heuristics into the picture. In the proposed
framework, Lagrangian Relaxation solutions are repeatedly used to modify
input costs for primal heuristics. An alternative approach which uses Linear
Programming Relaxation solutions (instead of Lagrangian Relaxation ones)
is proposed in [13] for the Steiner Problem in Graphs. In either case one
uses dual information to guide the construction of primal feasible solutions.

The very first ingredient in our Lagrangian heuristic is a Kruskal’s style
greedy procedure. This is used to generate initial DSTP solutions. Typically,
the procedure is called for the different dual solutions obtained along the
application of the Subgradient Method. For every call, edge costs {ce : e ∈
E} are modified so that the edges used in the dual solution in hand are
made more attractive to be chosen in the primal procedure. Feasible DSTP
solutions thus obtained are then submitted to Local Search. Each of the
basic ingredients outlined above are described in detail next.

5.1 Greedy heuristic

A greedy heuristic which follows directly from the MST algorithm of Kruskal
is used here to obtain initial feasible solutions for DSTP. In this respect,
the procedure is initiated with the |V | isolated components formed by the
vertices of G. Edges {ce : e ∈ E} are ordered in increasing value of their
costs and the resulting (ordered) list of edges scanned.

More precisely, a relaxed problem of the reduced problem (10) is used
to obtain feasible solutions for the problem (6). The Lagrangian heuristic
is composed of a Kruskal [12] algorithm, used to determine MST solutions
for the relaxed problem; and a heuristic algorithm (HA) used to determine
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feasible solutions for (6); and a local search procedure, which tries to improve
feasible solutions. The relaxed problem (7), defined for the complete set of
edges, is used mainly to obtain lower bounds on (6).

The heuristic algorithm used to determine feasible solutions is an adap-
tation of the Kruskal algorithm, where we incorporated procedures to deal
with the vertex constraints (5). The way we define the edge costs to be used
with the heuristic algorithm, distinguishes the Lagrangian heuristic [1]. In-
deed, if we use Lagrangian costs c̄ij = cij +λi +λj , as input for the heuristic
algorithm, we have the basic Lagrangian heuristic algorithm. Instead, if we
define complementary costs c̄e = ce(1 − x̄e), where x̄e = 1 if edge e is in
the Lagrangian solution, and x̄e = 0, otherwise; we have the Lagrangian
complementary heuristic algorithm. See Andrade [1] for other approaches.
Feasible solution values are given by the original edge costs. A feasible so-
lution can be improved by a local search procedure, which is incorporated
in the heuristic algorithm below.

LOCAL SEARCH PROCEDURE (Input: a DSTP T , set Tm := T )
for all e ∈ T do

Step 1: Remove e from T , obtaining two components S1 and S2.
Step 2: Let ē ∈ E \E(T ) be the edge with minimum cost cē connecting
S1 to S2 with the exclusion of e, respecting the degree constraints, thus
obtaining a new DSTP T̄ , with E(T̄ ) = E(S1) ∪ E(S2) ∪ {ē}.
Step 3: if (cē − ce < 0) and (

∑
e∈T̄

ce <
∑

e∈Tm
ce) then Tm := T̄ .

Step 4: Restore T .

Output: return Tm.

End

LAGRANGIAN HEURISTIC PROCEDURE (Input: problem (P))
PART 1: REDUCED PROBLEM (RP) SOLUTION

Step 1: Define the set of edges of RP;
Step 2: Define the type of edge costs to be used in the HA;
Step 3: BestLB := −∞; i := 0; λi := 0;
Step 4: Determine a feasible solution T by the HA;
Step 5: BestUB := UB(T );
Step 6: while (BestUB - LB ≥ 1 and i < MAXITER1) do

Step i.1: LB := Kruskal(λ);
Step i.2: if(BestUB - LB ≥ 1 and LB ≥ BestLB) then

Step i.2.1: BestLB := LB;
Step i.2.2: Actualize the edge costs of the RP;
Step i.2.3: Determine a new feasible solution T by the HA;
Step i.2.4: T̄ := LocalSearchProcedure(T );
Step i.2.5: BestUB := min{UB(T̄ ),BestUB};

Step i.3: Determine a new set of multipliers λi+1; i + +;

PART 2: ORIGINAL PROBLEM SOLUTION
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Step 7: Restore the original set of edges;
Step 8: BestLB := −∞; k := 0;
Step 9: while (BestUB - LB ≥ 1 and k < MAXITER2) do

Step k.1: LB := Kruskal(λ), with associated MST T ;
Step k.2: if(BestUB - LB ≥ 1 and LB ≥ BestLB) then

Step k.2.1: BestLB := LB;
Step k.2.2: if T is feasible then BestUB := min{UB(T ),BestUB};

Step k.3: Determine a new set of multipliers λk+1; k + +;

End

In the first part of the Lagrangian algorithm above, the solution of the

reduced problem, we define the set of edges of the reduced problem, as well as
the type of edge costs to be considered in the heuristic algorithm (HA). The
HA determines the first heuristic solution T for the problem, considering the
modified edges costs. The original cost of a feasible solution T is given by
UB(T ). We iterate Step 6 until to obtain an optimal solution (i.e. BestUB -
LB < 1, once the edge costs are integer), or to reach the maximum number
of subgradient iterations for the reduced problem. From Steps i.2.1 to i.2.5,
for each set of Lagrangian multipliers λi leading to an improvement on LB,
we determine a new feasible solution by the HA. Applying local search to
that solution, we can obtain a new upper bound on the optimal solution.

In the second part, we determine a lower bound on the optimal solution
of the original problem. We restore the original set of edges; and we solve
the relaxed problem as in the first part. Upper bounds are obtained only at
feasible solutions.

The heuristic algorithm and the local search procedure constitute the
kernel of the Lagrangian heuristic procedure. For small instances, we can
apply it at every iteration in step i.2 of the algorithm without to penalize
the execution time, instead of applying them only when LB ≥ BestLB.

6 Classes of DSTP

In [5, 16] we find some classes of DSTP instances. They are classified as
Euclidian and non Euclidian instances. Euclidian instances were proved to
be of easy solution. Non Euclidian instances, as the shrd ones [5], showed to
be more complicated. Nevertheless, they proved easy for our algorithm. The
classification used in the literature depends on the difficulties of proposed
algorithms in solving them. In this sense, according to the experiments
performed here, we propose that this which makes an instance hard or not
to deal with, are exclusively the vertex degree constraints. Based on the
results of our experiments, we made the following observations about the
difficulties in solving DSTP instances.
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1. Easy instances are those where the set of vertices has degree con-
straints di ≤ M , with 4 ≤ M ≤ |V | − 1. Observe that we do not
impose all di’s to be equal and leaves (vertices with di = 1) may arise;

2. Medium instances are those where all vertices have degree constraints
di ∈ {1, 2, 3}.

3. Hard instances are those where the set of vertices has degree con-
straints di ≤ 2,∀ i ∈ V . In this case, we have the Hamiltonian paths
and there may be at most two leaves.

7 Computational Results

The algorithms were implemented in C++ and tested on random instances
[1] and on the shrd instances [11]. We report results using the Lagrangian
heuristic with complementary costs. The random instances were carried
out on a SUN Ultra1 workstation. The shrd instances were carried out on
a workstation HP 900-735 (HP-UX 10.20). We refer to Andrade [1] for a
more detailed set of experiments with other classes of instances and using
different solution frameworks for the Lagrangian heuristic.

In next tables, we distinguish the results of the reduced problem from
those of the original problem. The legend is as follows. N is the number of
vertices, Krus is the value of the first feasible solution for the problem; LB

and UB are, respectively, a lower bound and an upper bound on the optimal
solution. Iter is the number of iterations used to solve each problem. The
maximum number of subgradient iterations for the reduced problem solution
was 300, and 500 iterations for the original problem relaxation; CPU is the
execution time in (minutes : seconds); Gap = 100(UB−LB)

LB
is the difference,

in percentage, between LB and UB (optm means optimum values).
In tables 1, 2 and 3 we present results for medium instances. Instances

up to 300 vertices have medium gap of 0.005%, with 63% of them being
solved to optimality. Instances of 400 and 2000 vertices have, respectively,
an average gap of 0.17% and 0.52%. In table 5 we report the mean gap
for the remainder medium instances reported in [1], grouped by the same
number of vertices. The instances with 2000 vertices presented the largest
gaps. The global gap was, in average, 0.188%. For instances up to 400
vertices, the small gaps indicate, in practice, that the proposed solutions
must differ from the optimal one in few edges. Thus it is possible to apply a
branch and bound algorithm trying to improve these solutions to optimality.
We applied the hard procedures (HP), composed of the heuristic algorithm
and of the local search procedure, every iteration of the Lagrangian heuristic.
Concerning the gaps of both reduced and original problems, they were closed
each other; and generally the optimal solution of the reduced problem was
the global one.
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Table 1: Medium instances (up to 400 vertices) - HP applied every iteration.

REDUCED PROBLEM ORIGINAL PROBLEM
N Krus LB UB Iter CPU Gap% LB UB Iter CPU Gap%

100 3815 3789.709 3790 15 0:03 optm 3789.709 3790 1 0:06 optm
100 3858 3829.000 3829 21 0:04 optm 3829.000 3829 1 0:08 optm
100 3983 3915.118 3916 143 0:42 optm 3915.118 3916 1 0:42 optm
100 3913 3879.000 3879 142 0:44 optm 3879.000 3879 1 0:44 optm
100 3836 3836.000 3836 1 0:00 optm 3836.000 3836 1 0:00 optm
100 3872 3839.958 3844 300 3:20 0.104 3839.956 3844 500 3:58 0.104
100 4280 4139.141 4145 300 2:58 0.121 4138.694 4145 500 4:04 0.145
100 3822 3700.804 3709 80 0:05 0.216 3708.024 3709 116 0:14 optm
100 4258 4193.402 4194 169 1:30 optm 4193.402 4194 1 1:30 optm
200 5373 5316.000 5316 18 0:31 optm 5315.830 5316 17 0:48 optm
200 5765 5645.826 5647 300 11:56 0.018 5639.991 5647 500 21:28 0.124
200 5754 5697.289 5698 209 11:34 optm 5697.289 5698 1 11:37 optm
200 5615 5528.786 5531 300 9:32 0.036 5527.198 5531 500 12:53 0.054
200 5609 5491.452 5494 300 11:53 0.036 5490.699 5494 500 15:12 0.055
200 5457 5405.104 5406 300 7:58 optm 5405.104 5406 1 8:00 optm
200 5510 5466.000 5466 45 0:46 optm 5465.212 5466 57 1:11 optm
200 5369 5332.072 5333 53 0:19 optm 5332.046 5333 96 0:46 optm
200 5719 5675.000 5676 174 7:03 optm 5675.000 5676 1 7:05 optm
300 6498 6473.615 6477 300 20:30 0.046 6474.982 6477 500 25:25 0.031
300 6894 6802.476 6829 300 27:10 0.382 6802.463 6829 500 31:05 0.382
300 6454 6427.146 6431 300 16:24 0.047 6429.865 6431 500 22:03 0.016
300 6435 6364.126 6365 189 9:44 optm 6364.126 6365 1 9:49 optm
300 6705 6605.835 6610 300 22:52 0.061 6605.811 6610 500 32:53 0.061
300 6728 6616.262 6617 212 19:19 optm 6616.448 6617 1 27:21 optm
300 6437 6368.602 6369 189 18:28 optm 6368.602 6369 1 18:34 optm
300 6799 6733.301 6734 195 14:49 optm 6733.489 6734 1 33:08 optm
300 6928 6786.879 6821 300 19:33 0.501 6801.437 6821 500 24:12 0.279
400 7459 7413.458 7416 300 40:21 0.027 7413.968 7416 500 49:18 0.027
400 7870 7774.779 7797 300 89:10 0.283 7774.779 7797 500 98:19 0.283
400 7706 7601.189 7609 300 56:34 0.092 7600.809 7609 500 68:30 0.105
400 7641 7534.694 7545 300 44:41 0.133 7534.637 7545 500 54:50 0.133
400 7813 7676.031 7697 300 135:14 0.261 7681.446 7697 500 143:51 0.195
400 7816 7725.502 7758 300 37:36 0.414 7725.281 7758 500 45:31 0.414
400 7879 7711.649 7626 300 38:20 0.182 7711.649 7726 500 49:25 0.182
400 7703 7551.423 7557 300 62:23 0.066 7551.310 7557 500 70:55 0.066
400 7763 7656.812 7666 300 53:31 0.118 7655.914 7666 500 81:32 0.131
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Table 2: Medium instances (up to 800 vertices) - HP applied every iteration.

REDUCED PROBLEM ORIGINAL PROBLEM
N Krus LB UB Iter CPU Gap% LB UB Iter CPU Gap%

500 8290 8269.777 8279 300 91:22 0.109 8269.777 8279 500 100:56 0.109
500 8433 8391.328 8397 300 71:41 0.060 8391.039 8397 500 85:39 0.060
500 8639 8501.562 8502 261 61:07 optm 8501.562 8502 1 61:21 optm
500 8801 8685.362 8715 300 38:21 0.034 8685.545 8715 500 51:31 0.334
500 8707 8589.855 8604 300 93:23 0.163 8589.855 8604 500 118:48 0.163
500 8477 8350.762 8354 300 108:53 0.036 8350.052 8354 500 172:57 0.036
500 8381 8297.015 8343 300 61:31 0.542 8296.384 8343 500 73:03 0.554
500 8558 8427.810 8436 300 75:54 0.095 8427.602 8436 500 86:19 0.095
500 8433 8270.887 8278 300 60:14 0.085 8268.081 8278 500 81:18 0.109
600 9065 9032.571 9038 300 84:18 0.044 9035.000 9038 500 110:07 0.033
600 9407 9309.266 9337 300 22:46 0.290 9308.518 9337 500 38:40 0.301
600 9479 9327.270 9351 300 118:24 0.247 9326.415 9351 500 135:10 0.257
600 9288 9166.877 9192 300 75:36 0.273 9166.586 9192 500 95:56 0.273
600 9459 9362.787 9382 300 80:32 0.203 9362.144 9382 500 105:06 0.203
600 9212 9038.883 9080 300 174:28 0.454 9038.554 9080 500 192:15 0.454
600 9288 9199.385 9203 300 178:28 0.033 9198.622 9203 500 204:41 0.043
600 9432 9276.281 9296 300 121:36 0.205 9276.278 9296 500 150:01 0.205
600 9589 9466.964 9474 300 81:31 0.074 9466.716 9474 500 98:35 0.074
700 9814 9774.235 9787 300 128:52 0.123 9752.602 9787 500 149:27 0.349
700 10240 10108.275 10128 300 146:47 0.188 10105.169 10128 500 169:48 0.218
700 10210 10084.817 10100 300 100:13 0.149 10084.564 10100 500 123:46 0.149
700 10125 9984.396 9992 300 90:49 0.070 9880.210 9992 500 125:33 0.110
700 9981 9906.320 9918 300 183:44 0.111 9606.271 9918 500 210:50 0.111
700 10182 10006.037 10038 300 157:50 0.310 10006.037 10038 500 184:38 0.310
700 10071 9909.907 9922 300 175:24 0.121 9909.908 9922 500 197:02 0.121
700 10039 9924.268 9934 300 177:11 0.091 9924.132 9934 500 199:53 0.091
700 10011 9872.149 9878 300 206:26 0.051 9870.920 9878 500 269:06 0.071
800 10366 10331.113 10341 300 193:36 0.087 10323.527 10341 500 215:46 0.165
800 10529 10324.815 10335 300 270:11 0.097 10324.845 10335 500 310:34 0.097
800 10673 10532.718 10561 300 275:09 0.266 10532.617 10561 500 302:55 0.266
800 10944 10783.407 10785 300 311:59 0.009 10783.248 10785 500 311:59 0.009
800 10557 10431.943 10441 300 309:45 0.086 10431.887 10441 500 345:53 0.086
800 11030 10849.935 10863 300 170:23 0.120 10849.955 10863 500 206:19 0.120
800 10772 10590.755 10609 300 193:49 0.170 10590.334 10609 500 237:55 0.170
800 10909 10737.268 10767 300 233:06 0.270 10337.180 10767 500 267:42 0.270
800 10915 10753.212 10818 300 315:33 0.595 10748.479 10818 500 348:49 0.642
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Table 3: Medium instances (up to 2000 vertices) - HP applied every iteration.

REDUCED PROBLEM ORIGINAL PROBLEM
N Krus LB UB Iter CPU Gap% LB UB Iter CPU Gap%

900 10938 10916.661 10923 300 327:59 0.055 10917.991 10923 500 358:21 0.046
900 11443 11247.338 11248 231 333:06 optm 11247.338 11248 1 333:58 optm
900 11345 11147.713 11181 300 133:42 0.296 11142.109 11181 500 165:44 0.341
900 11222 11104.286 11121 300 230:32 0.144 11104.182 11121 500 279:30 0.144
900 11363 11227.781 11249 300 168:44 0.187 11226.833 11249 500 220:52 0.196
900 11628 11449.773 11478 300 278:22 0.245 11449.671 11478 500 329:06 0.245
900 11462 11345.238 11383 300 205:06 0.326 11345.240 11383 500 241:09 0.326
900 11351 11224.871 11241 300 194:20 0.143 11224.847 11241 500 238:28 0.143
900 11442 11286.264 11330 300 424:45 0.381 11286.299 11330 500 459:37 0.381

1000 11432 11406.127 11423 300 464:29 0.140 11405.920 11423 500 508:33 0.149
1000 11833 11638.829 11731 300 522:51 0.790 11636.939 11731 500 568:44 0.808
1000 11791 11643.912 11698 300 260:54 0.464 11643.860 11698 500 303:29 0.464
1000 11885 11727.745 11767 300 387:55 0.333 11726.565 11767 500 438:41 0.341
1000 12095 11908.857 11958 300 291:12 0.411 11908.738 11958 500 332:21 0.411
1000 11896 11763.414 11811 300 373:27 0.400 11761.809 11811 500 433:00 0.417
1000 12124 11985.336 12027 300 334:37 0.342 11985.336 12027 500 440:39 0.342
1000 11986 11796.509 11862 300 454:46 0.551 11796.249 11862 500 504:30 0.551
1000 11877 11739.316 11804 300 236:35 0.545 11739.271 11804 500 276:05 0.545
2000 15720 15663.389 15718 300 2771:16 0.345 15669.940 15718 500 3013:07 0.319
2000 16414 16238.792 16320 300 1640:18 0.499 16238.351 16320 500 1789:40 0.499
2000 16899 16666.885 16752 300 1064:50 0.510 16664.822 16752 500 1227:14 0.522
2000 16599 16367.061 16496 300 2141:50 0.782 16367.017 16496 500 2287:31 0.782
2000 16802 16519.270 16598 300 4619:01 0.472 16519.270 16598 500 4786:08 0.472

Table 4: Medium instances - HP applied some iterations.

REDUCED PROBLEM ORIGINAL PROBLEM
N Krus LB UB Iter CPU Gap% LB UB Iter CPU Gap%

2000 15720 15551.000 15720 300 7:10 1.080 15669.940 15720 500 156:27 0.319
2000 16414 16238.792 16325 300 171:13 0.530 16238.351 16325 500 326:15 0.530
2000 16899 16666.885 16762 300 112:16 0.570 16664.822 16762 500 277:45 0.582
2000 16599 16367.061 16515 300 233:17 0.898 16367.017 16515 500 389:29 0.898
2000 16802 16519.293 16596 300 437:54 0.460 16519.266 16596 500 621:36 0.460

Table 5: Mean gaps.

N Mean %

100 0.028
200 0.026
300 0.085
400 0.171
500 0.162
600 0.205
700 0.170
800 0.203
900 0.202

1000 0.448
2000 0.519
Aver. 0.188
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In table 4 we report other results for those instances with 2000 vertices
in table 3, but applying the hard procedures only in a global improvement
of the lower bound. We observed that, in general, the quality of the solution
decreased, but the saved execution time was considerable. In table 3 we
needed some days of execution time, while in table 4 we needed only few
hours of CPU time. Bear in mind that if we apply directly the algorithm
to the original problem, we could need months of CPU time. For instance,
a problem with 2000 vertices has 1.999.000 edges and the reduced problems
of our instances have, respectively, 8.988, 15.363, 12.669, 19.733 and 33.276
edges. This indicates why we achieved good solution quality in a reasonable
CPU time for those large instances.

Table 6 presents the results of the shrd instances [11]. We used the
same set of instances as in [17]. The best-known solutions in the literature
for these instances are reported in column BestLit [17]. We reported the
solution of the original problems using a single run of the algorithm for all
instances we tested. All instances were solved to optimality as showed in
table 6, even those with di = 2 that we introduced for evaluation purposes
of the difficulty in solving these instances as Hamiltonian paths problems.

Finally, we present the Hamiltonian paths results in table 7. They were
hard to deal with using our algorithm [1]. This class of DSTP instances
presented the greatest gaps. The average gap was 6.232%, which is huge
in comparison with those reported in the other tables. Comparing with
instances of same dimension in table 1 and 2, this class required larger CPU
times.

8 Conclusions

This paper presents computational results for the DSTP that improve on
those reported in the literature. A more detailed study is reported in An-
drade [1]. We introduced a new approach on how to solve large DSTP
instances in complete graphs using a reduced problem in a reasonable execu-
tion time. The Lagrangian heuristic showed to be very efficient in obtaining
optimal solutions for the shrd instances [11, 17]. An exact branch and bound
solution framework is being implemented to improve the solutions obtained
by the Lagrangian based heuristic algorithm.
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N Krus LB UB CPU Gap% LB UB CPU Gap%
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