Generating all the Acyclic Orientations
of an Undirected Graph

Valmir C. Barbosa!l

Universidade Federal do Rio de Janeiro
COPPE - Programa Eng. Sistemas e Computacao
Caixa Postal 68511, 21945-970 Rio de Janeiro, RJ, Brasil

valmir@cos.ufrj.br

Jayme L. Szwarcfiter
Universidade Federal do Rio de Janeiro
Instituto de Matematica e NCE
Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brasil

jayme@nce.ufrj.br

KEY WORDS: acyclic orientations, algorithms, graphs

ABSTRACT

Let G be an undirected graph with n vertices, m edges and « acyclic orien-
tations. We describe an algorithm for finding all these orientations in overall
time O((n 4+ m)a) and delay complexity O(n(n 4+ m)). The space required is
O(n +m).

!Participated in this research while visiting the International Computer Science Insti-

tute, Berkeley, CA, USA

1 Introduction

(¢ denotes a finite undirected graph with no loops nor multiple edges. V(&)
and F((G) are its vertex and edge sets, respectively with n = |V(G)| and m =
|F(G)|. An orientation of G is a digraph obtained by directing the edges
of GG. The orientation is acyclic if it contains no directed cycles. Acyclic
orientations of a graph have been considered in [4, 5], where it has been shown
that their cardinality is closely related to the chromatic polynomial of the
graph. We consider the problem of generating all the acyclic orientations of
the undirected graph Gi. Let a be the total number of such orientations. We
describe an algorithm which finds all the « orientations in overall complexity
O((n + m)a) and delay complexity O(n(n + m)). The space required is
O(n + m).

The problem of generating all the acyclic orientations of a graph GG has been
motivated by a distributed scheduling mechanism with applications to re-
source sharing and to the parallel simulation of models of some complex
systems [1, 2]. In such applications, a vertex of G represents a process
that must from time to time compute on local information and on data
received from other vertices. The edges of G are such that processes that
must communicate with each other correspond to adjacent vertices. What
these applications have in common is that the processes corresponding to
any two adjacent vertices must not compute concurrently. In order to en-
force this constraint, a subset of processes is allowed to compute concurrently
only if their corresponding vertices are sinks in some orientation of G. The
distributed scheduling mechanism starts at any acyclic orientation of G, and
employs a very simple rule to generate another orientation, once the processes
that correspond to sinks in the current acyclic orientation have finished their
computation. The new orientation is guaranteed to be acyclic.

From the perspective of this scheduling mechanism, the acyclic orientations
of G are partially ordered by a measure of concurrency. However, no efficient
algorithm is likely to exist for the problem of optimizing concurrency, which
is a central issue when selecting the initial acyclic orientation. Generating all
the acyclic orientations of relatively small graphs is expected to yield insights
into heuristic strategies to this optimization problem.

The approach of using sinks of acyclic orientations of G has been shown to
be advantageous in relation to employing other possible independent subsets
of vertices of G [1].

Let GG be an undirected graph. By N(v) we represent the set of vertices
adjacent to v in GG. Let vy,..., v, be a sequence of the vertices of G. Denote
by G; the subgraph induced in G' by {vq,...,v;}, and for v; € V(G), Ni(v;) =
N(v]) N {vl, ..., v;}. An orientation of G is represented by G. For v,w E
V(G), if G contains a path from v to w then v is an ancestor of w in G.
A;(v;) denotes the set of ancestors of v; in Gi. Let S C V(G) A topological
orderlng of $in G is a sequence W of the vertices of 5, such that all edges
of G between pairs of vertices of S are from left to right in W. By G —

we mean the digraph obtained from G by removing v and all edges entermg
or leaving it. Similarly, G + v is the digraph which results by adding to G
the isolated vertex v. Finally, we use the same notation (v,w) € E(G) and
(v,w) € E(é), the meaning (and possible direction of the edge) being clear
from the context.

In Section 2 we describe the concepts and proofs in which the algorithm is
based. The algorithm itself is given in Section 3.

2 Correctness

Let v1,...,v, be an arbitrary sequence of the vertices of G, and Gi_1 an
acyclic orientation of G;_1, 1 < ¢ < n. A direction assignment for G,
is a function

di—l . NZ(UZ) — {0, 1}

If di—1(v,) = 0 for all v, € N;(v;) then d;_; is called null. Similarly, d;_; is
unit when d;_;(v,) = 1, for all v, € N;(v;). A direction assignment is legal
when

vp, Vg € Ni(v;) and v, € A;_1(v,) = if d;_1(v,) = 1 then d;_1(v,) = 1.

The extension of éi—l induced by d;_; is an orientation C_?)Z of G;, such
that

—

G = G; — v, and

(v, vi) € E(Gy), if disa(v,) =0
Ni(v; =
vy € Ni(v;) = { o) € B(C

)
(vi,vp) (G;), otherwise.

The lemma below relates acyclic orientations of (¢; to those of G;_;.

Lemma 1: There exists a one-to-one correspondence between acyclic ori-
entations G; of G; and pairs (G;_1,d;—1), where d;_; is a legal direction
assignment for the acyclic orientation G;_1 of G;_1.

—

Proof: Define a function f from the set of all pairs (Gi_1,d;—1) to that of
all acyclic orientations Gi;, as follows: f[(G;-1,d;—1)] = G;, where G, is the
extension of éi—l induced by d;_;.

First, we need to prove that f[(éi_l, d;_1)] is acyclic. By hypothesis, Gy is
acyclic and d;_; is a legal assignment for C_ji—l- Suppose the assertion false.
Then éi_l contains a cycle C'. Because C_?)Z'_l is an induced subdigraph of
(_ji, it follows that €' must contain v;. Since every edge of G; is assigned
to exactly one direction in C_ji, (' has at least 3 vertices. Hence C' contains
distinct vertices v,, v, € N;(v;), entering and leaving v; in C, respectively.
That is, d;—1(v,) = 0 and d;_1(v,) = 1. Also, C' — v; is a path from v, to v,
n éi_l, ie. v, € A;i_1(v,). Consequently, d;_; is not legal, a contradiction.

Hence f[(éi_l,di_l)] is acyclic.
Conversely, let G; be an acyclic orientation of (G;. We prove that there exists

an acyclic orientation éi—l and a legal assignment d;_; for it, such that

Gi = f[((_ji_l, d;—1)]. Define Gi_1 = G; —v; and d;_; to be as follows.

vy € Nifv:) = di_(v,) = {

We have to show that d;_; is legal. Suppose it is not. Then there exist
vy, vy € N;(v;) such that d;—1(v,) =0, d;—1(v,) = 1 and v, € A;_1(v,). The

latter implies v, € A;(v,). In this case, a path from v, to v, in G; together
with the edges (vp,v;), (vi,v,) € E(é) forms a cycle in éz, a contradiction.
Hence d;_ 1 is a legal assignment for the acyclic orientation GZ 1 of GZ 1.
That is, G, is precisely the extension of G_1 induced by d;_1, meaning G, =

JI(Gie 1,dl 1)]-

Last, we prove that f is injective. Let éi_l, C_ﬁ;_l be acyclic orientations of
Gi_1. Also let dZ 1,d§_1 be legal assignments for C_?)Z 1, é; 1, respectively. Let
Gi = [[(Gierydimy)] and Gt = [I(GL_;, di,)]. By hypothesis, (Gioy, di_y) #

—

(Gl_,,di_y). If Gioy # C_j’ . then G; # G, because (3; is an extension of

—

Gi_1, and é; an extension of Gi_l, implying the assertion. The second case

to examine is d;_; # d._,. It means that there is v, € N;(v;), such that
di—1(v,) # di_ l(vp) Hence the edge (v,,v;) of G; is assigned to opposite
directions in G; and G;. That is, G # ég, completing the proof. O

Denote by Gi_y an acyclic orientation of G;_1. Let wq,...,we, £ = |N;(v;)],
be a sequence W of the vertices of N;(v;). Denote by d;_1,d._; two direction
assignments for éi—l- Call d;_; lexicographically smaller than d._; rela-
tive to W, when there exists an index j such that d;_1(w,) = d;_;(w,),
1 < p < j, while di_1(w;) < di_;(w;). When d,_; # unit, denote by
(di—1 + 1)w the direction assignment which follows d;_; in the increasing
lexicographical ordering relative to W, of all direction assignments for Gy
Finally, denote by closure(d;_1) the direction assignment obtained from d;_4
by setting to 1 all values d;_1(v,) such that v, € A;,_1(v,) and d;_1(v,) = 1,
for all v,,v, € N;(v;). It follows that closure(d;_;) is necessarily legal, for
any assignment d;_;.

The next lemma describes the legal direction assignments for a given orien-
tation, in increasing lexicographical ordering.

Lemma2: Let é¢_1 be an acyclic orientation of GG;_;. Let W be a topological
ordering of N;(v;) in C_ji_l, and d;_y # unit a legal direction assignment
for Gi_y. In the increasing lexicographical ordering of all legal assignments
for C_ﬁi_l relative to W, the assignment which immediatly follows d;_; is

closure[(d;—1 + 1)w].

Proof : Denote by d’ the assignment (d;,_; + 1)w and d"” = closure(d’). Let
J be the rightmost index in W such that d;,_1(w;) = 0. Then d'(w,) =
dici(wy), 1 <p<y,d(w;) =1and d'(w,) =0, j < q <L Also, because
d;—1 is legal and W a topological ordering it follows that d"(w,) = d'(w,),
1 < p < 7. Suppose the lemma not to be true. Then there exists a legal
assignment d* for éi_l, such that d;_; < d* < d". Consequently, there is
an index ¢t > j satisfying d"(w,) = d*(w,), 1 < p < t, d"(w;) = 1 and
d*(w;) = 0. However, d'(w;) = 0. Thus, applying the definition of closure we
conclude that there exists w, € A;_1(w;), such that d'(w,) = 1. Since W is
a topologocal ordering, it follows ¢ < t. Hence d*(w,) = 1, meaning that d*
is not legal, a contradiction. O

3 The Algorithm

The algorithm is based upon Lemmas 1 and 2, by an inductive argument.
Suppose the method correctly enumerates all acyclic orientations Gii of
G;—1. By Lemma 1, each acyclic orientation G; is an extension of some
Gy 1, iInduced by a convenient legal assignment d;_;, and conversely The
algorithm proceeds as follows. For each acyclic orientation GZ 1 of GZ 1 and
for each legal assignment d;_; for GZ 1 construct the extension G of GZ 1
induced by d;_;. The orientations so obtained form exactly the set of all
acyclic orientations of ;.

The problem that remains is to generate all legal assignments d;_; for an
orientation ;_;. This problem is equivalent to that of finding all distinct
ways of labelling the vertices of an acyclic digraph, using the labels 0 and 1,
so that no descendant of a vertex labelled 1 has label 0. A solution of it is
given by Lemma 2. Let W be a topological ordering of N;(v;) in C_ji_l. We
obtain the legal assignments in increasing lexicographical ordering relative
to W. If N;(v;) = 0 there are no assignments. Otherwise, the first and
last assignments are the null and unit, respectively. Let d;_; # unit be a
legal assignment for Gi_1. The legal assignment which follows d;_; in the
lexicographical ordering is closure[(d;—1 + 1)w].

The recursive formulation below describes the process. The current legal

assignment is represented by d, while vy, ..., v, is an arbitrary sequence of the

vertices of G. By convention, Go = 0. The external call is ACYCLIC(1,0).

—

proc ACYCLIC(v,Gi_q)
if 7 > n then enumerate acyclic orientation Gy
else if N;(v;) = () then ACYCLIC(i +1,Gi_y + v;)
else W := topological ordering of N;(v;) in Gia
d := null; last := false
repeat C_jz := extension of C_?)Z'_l induced by d
ACYCLIC(i+1,G)
if d = unit then last := true
else d := closure[(d + 1)w]

until last = true

The computation of a topological ordering requires O(n + m) steps [3], while
finding an extension of a given orientation can be done in O(n) steps. For
an assignment d, closure[(d 4+ 1)w] can be easily obtained also in O(n + m)
steps. The work performed within each iteration of the repeat block is
charged to the recursive call which occurs in this iteration. Consequently,
the complexity per call of the procedure is O(n+m) and the delay complexity
of the algorithm is O(n(n + m)).

However, the average complexity of the algorithm is better. The recursion
describes a tree T' in which all the leaves are at the same level n. Fach
leaf corresponds to an acyclic orientation of (G. The total number of steps
performed by the algorithm can be obtained by adding the work done at
the leaves of T' with that corresponding to the internal nodes. The total
computation at the leaves requires O((n + m)a) steps. There are two kinds
of internal nodes. The set [; of nodes with exactly one child each, and
those with more than one child, forming set I,. Each internal node of I3
corresponds to a computation of ACYCLIC(z, éi_l) in which N;(v;) = 0.
In this situation, the procedure is computed in a constant number of steps.
Also, we know that |[1] < na. That is, the total computation at the internal
nodes of [is O(na). On the other hand, |I3] < a. In addition, the number
of steps needed at each node of 15 is O(n + m). Therefore the total number
of steps to enumerate all o acyclic orientations of G'is O((n + m)a).

References

[1] V. C. Barbosa and E. Gafni, Concurrency in heavily loaded
neighborhood-constrained systems, ACM Transactions on Programming
Languages and Systems 11 (1989), 562-584.

[2] V. C. Barbosa, Massively Parallel Models of Computation, Ellis Hor-
wood, Chichester, UK, 1993.

. E. Knuth, e Art of Compuler Programming 1: Fundamenla -
3] D. E. Knuth, The A C P ng 1: Fund [Al
gorithms, Addison-Wesley, Reading, Ma., 1969 (second edition 1973).

[4] R.P. Stanley, Acyclic orientations of graphs, Discrete Mathematics 5
(1973), 171-178.

[5] K.-P Vo, Graph colourings and acyclic orientations, Linear and Mulli-
linear Algebra 22 (1987), 161-170.

