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Abstract

We introduce the b-knot as a structure whose existence in a wait-for graph is necessary and
sufficient for the existence of a deadlock under the AND-OR model. Unlike the case of other, more
restricted deadlock models, for the AND-OR model no such graph structure has heretofore been
explicitly identified and characterized. We also show that a well-known asynchronous algorithm
for distributed knot detection can be adapted to yield an asynchronous distributed algorithm on
the wait-for graph for a node to detect whether it is in a b-knot.
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1. Introduction

Let N denote a set of processes in a distributed computation. Informally, a deadlock is said to
exist in this computation if a subset S ⊆ N can be identified whose members are all blocked for
the occurrence of some condition that can only be relieved by members of the same subset S. A
useful abstraction to analyze deadlock situations is the wait-for graph G = (N,E), where E is a
set of directed edges. For ni, nj ∈ N , an edge exists in E directed away from ni towards nj if
ni is blocked for some condition that nj may relieve. G changes dynamically as the computation
progresses, so whenever we refer to G we mean the wait-for graph that corresponds to a “snapshot”
of the distributed computation in the usual sense of a consistent global state [1, 4].

In general, a necessary condition for the existence of a deadlock in the distributed computation
is the existence of a directed cycle in G. In order to discuss more specific necessary conditions and
sufficient conditions, we must first introduce additional concepts and notation. For ni ∈ N , let Di

denote the set of descendants of ni in G (nodes that are reachable from ni, including itself) and
Ai denote the set of ancestors of ni in G (nodes from which ni is reachable, including itself). Let
Oi ⊆ Di be the set of immediate descendants of ni in G (descendants that are one edge away from
ni) and Ii ⊆ Ai its set of immediate ancestors in G (ancestors that are one edge away from ni).
Nodes in Di \ Ai are called subordinates of ni in G.1

A deadlock model for the distributed computation that underlies G is a collection W 1

i , . . . ,W
pi

i

of subsets of Oi for all ni ∈ N , such that:

1 \ denotes set difference.
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• W 1

i ∪ · · · ∪ W
pi

i = Oi;

• No two nonempty sets in W 1

i , . . . ,W
pi

i are such that one is a subset of the other;

• In order to exit its blocked state and proceed with its local computation, a node ni for
which Oi 6= ∅ must receive a signal from all nodes in at least one of the nonempty sets in
W 1

i , . . . ,W
pi

i .

At this level of generality, the deadlock model is known as the AND-OR model, reflecting the
need for ni to be signaled by all members of W 1

i (if nonempty), or all members of W 2

i (if nonempty),
and so on. If at most one of W 1

i , . . . ,W
pi

i is nonempty for all ni ∈ N , then the deadlock model is
the AND model. Similarly, if all nonempty sets in W 1

i , . . . ,W
pi

i are singletons for all ni ∈ N , then
the deadlock model is known as the OR model.2

A sufficient condition for the existence of a deadlock in the AND model is the same as the
general necessary condition mentioned earlier, that is, that a directed cycle exist in G. For the
OR model, a necessary and sufficient condition is the existence of a knot in G. A knot is a subset
K ⊆ N with |K| > 1 having the property that, for all ni ∈ K, Di = K. For details on these
conditions and related material, the reader is referred to [6, 10] and the references therein.

In spite of the existence of several approaches to the detection of deadlocks in distributed
computations under the AND-OR model (the approaches in [3, 7, 9] are representative recent
examples), no graph structure appears to have been identified that accounts for those deadlocks as
a necessary and sufficient condition. In this paper, we describe such a structure in Section 2, and
in Section 3 give an asynchronous distributed algorithm for a node to detect whether it is in such
a structure in G. This algorithm employs the algorithm of [8] for knot detection as a first phase.
Concluding remarks follow in Section 4.

2. B-knots

In this section we introduce the notion of a b-knot as a structure in G that can be used to char-
acterize deadlocks under the AND-OR model. Unlike the case of directed cycles and knots, the
definition of a b-knot requires G to be considered in explicit conjunction with the deadlock model.
As will become apparent shortly, the “b” in b-knot is an allusion to the fact that, for the definition
of this structure, edges directed away from a node ni must be considered in “bundles” that relate
closely to the sets W 1

i , . . . ,W
pi

i .
The definition of a b-knot is based on the definition of a b-subgraph of G given the deadlock

model. If G′ = (N ′, E′) is a subgraph of G, then we say that it is a b-subgraph of G if every ni ∈ N ′

has at most as many immediate descendants in G′ as there are nonempty sets in W 1

i , . . . ,W
pi

i , and
furthermore each of W 1

i , . . . ,W
pi

i , if nonempty, includes at least one of those immediate descen-
dants. Given the deadlock model, a subset K ⊆ N is said to be a b-knot if K is a knot in some
b-subgraph of G whose node set contains K. Henceforth, we let the deadlock model be implicitly
assumed whenever a b-subgraph or a b-knot of G is mentioned.

If G′ is a b-subgraph of G and ni is a node of G′, then, for 1 ≤ k ≤ pi, let W ′k
i be the set of

nodes contained in W k
i that by definition appear in G′ as immediate descendants of ni (if W k

i is
nonempty), or W ′k

i = ∅ (otherwise). It follows that W ′1
i , . . . ,W

′pi

i is an OR model for G′, so long
as no two nonempty sets in W ′1

i , . . . ,W
′pi

i are identical.
Illustrations of this notion of a b-knot are given in Figures 1 and 2. In both figures, part (a)

depicts G with the sets W 1

i , . . . ,W
pi

i , whenever nonempty, shown as circular arcs around ni joining

2 Another deadlock model of interest is the so-called k-out-of-n model, which is more general
than both the AND model and the OR model, while being generalized by the AND-OR model. A
generalization of the k-out-of-n model is the disjunctive k-out-of-n model, this one equivalent to
the AND-OR model (see [3], for example, and the references therein, for details).
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groups of edges that lead to ni’s immediate descendants. In the case of Figure 1(a), for example,
we have W 1

6
= {n1, n2} and W 2

6
= {n2, n5}. The graph of Figure 1(a) has no b-knots, which by

definition means that none of its b-subgraphs has knots. Two of these b-subgraphs are shown in
Figures 1(b) and 1(c). In the graph of Figure 2(a), on the other hand, the set {n1, n2, n6} is a
b-knot. This same set appears as a knot in the b-subgraph of Figure 2(b), while the b-subgraph
of Figure 2(c) has no knots.

• • • • • • • •

• • • • • • •

n1 n2 n3 n1 n2 n3 n1 n2

n6 n5 n4 n6 n5 n4 n6

(a) (b) (c)
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Figure 1. G with no b-knots and two b-subgraphs

• • • • • • •

• • • • • • • •

n1 n2 n3 n1 n2 n2 n3
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Figure 2. G with a b-knot and two b-subgraphs

Now suppose that node ni is a sink in G (i.e., ni has no descendants in G). It follows that
ni is not blocked in G, and it makes sense to consider the subgraph H of G that results from
the signaling by ni that all its immediate ancestors in G need no longer be blocked as far as it is
concerned. In H, ni is isolated (has no ancestors or descendants), and it may happen that one or
more of its immediate ancestors in G, say node nj , has now become a sink (this happens if, for
some k such that 1 ≤ k ≤ pj , W k

j = {ni}). If in H no wait is “superfluous,” in a sense that will
become clear shortly, then we say that H is signal-reduced from G by ni.

In order to define this signal-reduction from G by ni precisely, let nj be an immediate ancestor
of ni in G, and let W̄ 1

j , . . . , W̄
pj

j be the sets that represents nj ’s wait condition in H (that is, these

sets are part of the deadlock model for H). For 1 ≤ k ≤ pj , the following is how the set W̄ k
j is

obtained in the process of signal-reduction from G by ni. If there exists k′ such that 1 ≤ k′ ≤ pj

and k′ 6= k, and furthermore W k′

j \ {ni} ⊆ W k
j \ {ni}, then W̄ k

j = ∅. Otherwise, W̄ k
j = W k

j \ {ni}.
In addition to being in consonance with the definition of a deadlock model, this reflects the fact
that, in H, it only makes sense for nj to keep on waiting for signals from nodes in W k

j \ {ni} if no

other W k′

j \ {ni} exists that already indicates such a wait.
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Note that the absence of a b-knot in G implies, by the definition of a b-knot, that G has at
least one sink, and therefore there exists a graph that is signal-reduced from G by each of G’s sinks.
Note also that, in the OR model, the process of signal-reduction preserves all knots existing in the
original graph while creating no new knots. This is what happens, then, when that original graph
is a b-subgraph of G and its deadlock model is derived from that of G as we discussed earlier.

An illustration is provided in Figure 3 of this process of signal-reduction from a sink. The
graph shown in Figure 3(a) is signal-reduced from the one of Figure 1(a) by n1. Note that not
only does n1 become isolated, but also the edge directed from n6 to n5 need no longer exist (once
an unblocking signal is received by n6 from n1, the only further signal that it needs is from n2,
as a signal from n5 is irrelevant to its wait condition). The remaining graphs in Figure 3, those
in parts (b) and (c), are both b-subgraphs of the graph of Figure 3(a). The one in Figure 3(b) is
signal-reduced from the graph in Figure 1(c) by n1 (this one a b-subgraph of the graph in Figure
1(a)), while the one in Figure 3(c) is not. However, all it takes for the graph of Figure 3(c) to be
signal-reduced from that same graph by n1 is the addition of the isolated n1 to it.

• • • • • •

• • • • •
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Figure 3. Signal-reduction by n1

We now demonstrate, after stating and proving a supporting lemma, that the existence of a
b-knot in G is closely related to the existence of a deadlock in the AND-OR model.

Lemma 1. If G has no b-knots and H is signal-reduced from G by one of G’s sinks, then H has

no b-knots.

Proof: Let ni be the sink in G such that H is signal-reduced from G by ni, and let H ′ be a
b-subgraph of H. If H ′ is also a b-subgraph of G, then by hypothesis H ′ has no knots. If H ′ is
not a b-subgraph of G, then H ′ includes an immediate ancestor nj of ni in G for which W k

j 6= ∅

and W̄ k
j = ∅, where 1 ≤ k ≤ pj . In other words, the nonempty W k

j in G became an empty W̄ k
j

in H through the signal-reduction by ni. In order for this to have happened, there has to exist k′

such that 1 ≤ k′ ≤ pj , k′ 6= k, and W k′

j ⊇ {ni} such that W k′

j \ {ni} ⊆ W k
j \ {ni}. Now consider a

b-subgraph G′ of G that includes ni and nj , and in addition includes an edge directed from nj to

ni and another directed from nj to any member of W k
j \ W k′

j (this set is nonempty, by definition
of a deadlock model). If ni is a node of H ′, then there exists such a G′ from which H ′ is obtained
via a signal-reduction by ni. If ni is not a node of H ′, then the result of this signal-reduction is
H ′ enlarged by the isolated ni. In either case, any knots in H ′ must also be knots in G′. These,
however, are ruled out by hypothesis, so in this case too H ′ has no knots. It follows that H has
no b-knots.

Theorem 2. There exists a deadlock in the AND-OR model if and only if G has a b-knot.

Proof: If G has a b-knot, then let G′ be a b-subgraph of G in which a knot exists. A node in this
knot is blocked for the receipt of a signal from at least one of its immediate descendants in G′, but
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the existence of the knot means that such a signal will never be sent. As a consequence, that node
is permanently deprived of any progress in the distributed computation, that is, a deadlock exists.

Conversely, suppose that G does not have a b-knot. In order to prove that in this case no
deadlock exists, we must show that, if G can only evolve by the removal of edges as signals are
sent to unblock waiting nodes, then eventually all waits are eliminated and G stabilizes as a graph
with no edges. But this is guaranteed directly by Lemma 1, thence the theorem.

If at most one of W 1

i , . . . ,W
pi

i is nonempty for all ni ∈ N (this is the AND model), then
in every b-subgraph of G every node has at most one immediate descendant. A knot in such a
subgraph is a directed cycle, so the condition that Theorem 2 asserts for the AND-OR model
becomes the known condition for the existence of a deadlock in the AND model. Similarly, if
all nonempty sets in W 1

i , . . . ,W
pi

i are singletons for all ni ∈ N (the OR model), then in every
b-subgraph node ni has as many immediate descendants as it has in G. A knot in such a subgraph
is then a knot in G as well, and the condition for the AND-OR model given by Theorem 2 is
reduced to the condition for the existence of a deadlock in the OR model.

3. Checking membership distributedly

In this section we describe an asynchronous distributed algorithm for a node, say n1 ∈ N , to detect
whether it is in a b-knot in G. The algorithm we give employs a simplified version of the algorithm
of [8] as an initial phase. That algorithm has been given for the detection by n1 of whether it
belongs to a knot in G. We discuss that algorithm first.

3.1. Knot detection

The algorithm of [8] (and hence the one we give in this section) is described for the following model
of computation. A node in G is identified with a process that can only compute reactively to the
reception of messages from other nodes. Upon receiving a message, a node may compute and send
messages to any other nodes that are directly connected to it in G, regardless of the directions of
the edges. Only node n1 can compute (and possibly send messages) without being triggered by the
arrival of a message, but it must do so only once and behave reactively like the others thereafter.
Such a distributed computation is referred to as a diffusing computation initiated by n1. As in
the standard model for asynchronous distributed computations [1], every node has an independent
time basis, and messages are guaranteed to be delivered with finite (though unpredictable) delays.
Finally, we note that the algorithms discussed in this section adopt the same view of [2] for the
distributed detection of stable properties, that is, the view that G stands for the (unchanging)
wait-for graph at some consistent global state of the underlying distributed computation.

The departing point of the algorithm in [8] is that n1 is in a knot in G if and only if D1\A1 = ∅.
What the algorithm does is to compute the cardinality of D1\A1. In order to achieve this, messages
of three types, called desc, anc, and ack, are employed, along with the following suite of variables
for node ni.

descendant i: Boolean variable indicating whether ni ∈ D1 (initially set to true if i = 1, false

otherwise);
ancestor i: Boolean variable indicating whether ni ∈ A1 (initially set to true if i = 1, false

otherwise);
subordinatei: Integer variable having value 1 if ni ∈ D1 \ A1, 0 otherwise (initially set to 0);
csi: Integer variable containing the sum of subordinatek over some nodes nk ∈ N (initially set

to 0).

The algorithm seeks to establish

cs1 =
∑

ni∈N

subordinatei (1)

5



= |D1 \ A1|

at global termination. Towards this goal, it proceeds as follows. Node n1 starts by sending desc

to its immediate descendants and anc to its immediate ancestors, and replies at once with an ack

upon receiving any messages of these types. Another node ni forwards the first desc it receives
to its immediate descendants and the first anc it receives to its immediate ancestors. The ack

that corresponds to a desc or anc received when ni does not expect to receive any ack’s itself is
withheld and only sent when ni once again comes to expect no further ack’s. All other desc’s or
anc’s received by ni are replied to with an ack immediately. The first desc and anc that ni receives
cause descendant i and ancestor i, respectively, to be set to true.

As one readily recognizes, this algorithm is an instance of the algorithm of [5] (see also [1] for
another description) for n1 to detect the global termination of diffusing computations initiated by
itself. This occurs when n1 has received ack’s from all of its immediate descendants and ancestors.
In order to guarantee that (1) holds at this moment, the algorithm of [8] employs the following
additional rules.

(a) Upon receiving a desc or an anc, node ni 6= n1 does

csi := csi − subordinatei +

{

1, if descendant i and not ancestor i;
0, otherwise;

subordinatei :=

{

1, if descendant i and not ancestor i;
0, otherwise;

(b) Every ack that node n1 sends is sent as ack(0);

(c) Every ack that node ni 6= n1 sends is sent as ack(csi), and then csi is reset to 0;

(d) Upon receiving an ack(c), node ni does csi := csi + c.

Now consider a consistent global state of the diffusing computation initiated by n1, and let
C be the sum, over all ack(c)’s that are in transit in that global state, of the parameters c. The
following is an easy consequence of (a) through (d). At all consistent global states of the diffusing
computation initiated by n1,

∑

ni∈N

csi + C =
∑

ni∈N

subordinate i. (2)

In particular, at all consistent global states at which global termination holds, we have C = 0 and,
by (c), csi = 0 for all nodes ni 6= n1. By (2), it follows that the equality of (1) is achieved by n1

upon detecting global termination.

3.2. B-knot detection

Let us now turn to the detection by node n1 of whether it is in a b-knot in G. By definition,
what n1 must detect is whether it participates in a knot in some b-subgraph of G. For ni ∈ N , let
S1

i , . . . , S
qi

i be the subsets of Oi having at least one node from each nonempty set in W 1

i , . . . ,W
pi

i

and at most as many nodes as there are nonempty sets in W 1

i , . . . ,W
pi

i . For one of the q1 subsets
S1

1 , . . . , S
q1

1
, an equivalent condition for n1 to detect is whether there exists a b-subgraph of G that

includes n1 and that subset, but no subordinate of n1. Node n1 must be in a b-knot if and only if
this condition holds for at least one of S1

1 , . . . , S
q1

1
.

Our algorithm comprises two phases. The first phase is a simplification of the algorithm of
[8] that removes most of the actions described under (a) through (d). What the simplified version
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achieves, upon global termination, is the correct computation of subordinatei for all ni ∈ N . This
first phase employs the same messages and variables we have considered so far, except for the
parameters carried by the ack’s and the cs variables.

The second phase is also initiated by node n1 and comprises two sub-phases, one “nested” into
the other. It employs messages desc, ack d, anc, and ack a, in addition to the following variable
(among others, to be introduced later) for node ni.

si: Array [1 . . qi] of Booleans, each indicating whether all b-subgraphs of G that include ni

and the corresponding set in S1

i , . . . , S
qi

i also include a subordinate of n1 (initially set to
false).

The goal of the second phase of our algorithm is to compute s1[k] for all k such that 1 ≤ k ≤ q1.
Clearly, if this is achieved at global termination, then n1 is in a b-knot if and only if

∧

1≤k≤q1

s1[k] = false. (3)

We start by providing an informal description of the second phase.
Node n1 initiates the second phase by sending desc to all its immediate descendants. It then

replies immediately with an ack d to any desc it receives. When n1 has received an ack d for every
desc it sent, global termination of the second phase has occurred. A node ni 6= n1, upon receiving
the first desc, withholds the corresponding ack d and then checks whether it is a subordinate of
n1. If it is not, then it forwards desc to all its immediate descendants and waits for no ack d’s to
be any longer expected in order to send the ack d it withheld. If it is a subordinate of n1 and has
never received an anc message, then it initiates another diffusing computation, whose termination
will signal that it may send the ack d it withheld. Upon initiating this diffusing computation, ni

sets si[k] to true for all k such that 1 ≤ k ≤ qi. Every further desc received by ni is replied to
with an ack d immediately.

The diffusing computation that a subordinate ni of n1 initiates proceeds as follows. First ni

sends anc to all of its immediate ancestors that are also descendants of n1 (this can be recorded lo-
cally at ni during the propagation of desc messages in the first phase). Node ni replies immediately
with an ack a to any anc that it receives, and detects global termination of the diffusing compu-
tation it initiated when it receives as many ack a’s as it sent anc’s. Upon receiving anc from an
immediate descendant nℓ, a node nj 6= ni sets sj [k] to true for all k such that nℓ ∈ Sk

j , and sends
anc to all of its immediate ancestors that are also descendants of n1 if sj [1] = · · · = sj [qj ] = true.
The ack a that corresponds to the anc it received is withheld in the affirmative case, otherwise it
is sent at once. If withheld, it is sent when nj no longer expects to receive any ack a’s.

A more detailed description of the second phase is given next as Algorithm Compute(s), in
which the following additional variables are used at node ni.

descendantk
i : Boolean variable indicating whether nk ∈ D1 for nk ∈ Ii (this variable is assumed

to have been set during the first phase as desc messages are received);
subordinatei: Integer variable having value 1 if ni is a subordinate of n1, 0 otherwise (this

variable is assumed to have been set during the first phase);
reached d i: Boolean variable indicating whether ni has received at least one desc (initially set

to true if i = 1, false otherwise);
expected d i: Integer variable containing the number of ack d’s ni expects to receive (initially

set to 0);
parent d i: Variable used to point to a special immediate ancestor of ni (initially set to nil);
initiator i: Boolean variable indicating whether ni is one of the nodes that initiate the sending

of anc’s (initially set to false);
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expected ai: Integer variable containing the number of ack a’s ni expects to receive (initially
set to 0);

parent ai: Variable used to point to a special immediate descendant of ni (initially set to nil).

Algorithm Compute(s) comprises actions (4) through (8), respectively for initiation by node
n1 and for ni ∈ N to respond to the reception of a desc, an ack d, an anc, and an ack a.

Algorithm Compute(s):

⊲ Initial action by n1: (4)

Send desc to all nk ∈ Oi;
Set expected d i accordingly.

⊲ Action upon receipt by ni of desc from nj ∈ Ii: (5)

if reached d i then

Send ack d to nj (5.1)
else

begin

reached d i := true;
parent d i := nj ;
if subordinatei = 0 then

begin (5.2)
Send desc to all nk ∈ Oi;
Set expected d i accordingly;
if expected d i = 0 then

Send ack d to parent d i

end

else

if si[1] = · · · = si[qi] = false then

begin (5.3)
initiator i := true;
si[k] := true for all k such that 1 ≤ k ≤ qi;
Send anc to all nk ∈ Ii such that descendantk

i ;
Set expected ai accordingly

end

end.

⊲ Action upon receipt by ni of ack d from nj ∈ Oi: (6)

expected d i := expected d i − 1;
if expected d i = 0 then

if i = 1 then

Global termination has occurred (6.1)
else

Send ack d to parent d i. (6.2)
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⊲ Action upon receipt by ni of anc from nj ∈ Oi: (7)

if initiator i then

Send ack a to nj (7.1)
else

begin

si[k] := true for all k such that nj ∈ Sk
i ; (7.2)

if si[1] ∧ · · · ∧ si[qi] then

begin (7.3)
parent ai := nj ;

Send anc to all nk ∈ Ii such that descendantk
i ;

Set expected ai accordingly;
if expected ai = 0 then

Send ack a to parent ai

end

else

Send ack a to nj (7.4)
end.

⊲ Action upon receipt by ni of ack a from nj ∈ Ii: (8)

expected ai := expected ai − 1;
if expected ai = 0 then

if initiator i then

Send ack d to parent d i (8.1)
else

Send ack a to parent ai. (8.2)

3.3. Correctness and complexity

In this section we first concentrate on establishing the correctness of Algorithm Compute(s) and
after that analyze the complexity of the overall algorithm, comprising Algorithm Compute(s) and
the first phase that precedes it. Throughout this section, we let node ni be called an initiator if,
during the execution of Algorithm Compute(s), ni ever executes (5.3), thereby setting initiator i

to true.
Note that, if ni is an initiator, then there exists in G a directed path starting at n1 on which

ni is the first subordinate of n1 to appear. This is so because the absence of such a path would
require ni to be reached by a desc message through another subordinate of n1 first, which, by (5.3),
never happens.

Algorithm Compute(s) is a combination of several diffusing computations, each including the
termination-detection mechanism of [5]. The first diffusing computation occurs as a single instance
and is initiated by n1. It uses desc and ack d messages, and proceeds according to (4) and (5.2)
for the sending of desc’s, and according to (5.1), (5.2), (6.2), and (8.1) to send ack d’s.

Each of the other diffusing computations is initiated by an initiator, and employs anc messages
(sent according to (5.3) and (7.3)) and ack a messages (sent according to (7.1), (7.3), (7.4), and
(8.2)).

The following is how the various diffusing computations are combined. At an initiator, by
(5.3) the computation initiated by n1 is suspended and a new computation, based on anc and
ack a messages, is initiated. Upon termination of this computation, the computation initiated
by n1 is resumed by (8.1). It is an immediate consequence of the results in [5] that all these
computations do indeed terminate correctly, that is, the detection of global termination by n1
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in (6.1) is correct. We then concentrate on arguing that, upon global termination of Algorithm
Compute(s), s1 has been computed correctly for use in checking whether (3) holds.

Theorem 3. Let k be such that 1 ≤ k ≤ q1. Upon global termination of Algorithm Compute(s),
s1[k] = true if and only if all b-subgraphs of G that include n1 and Sk

1 also include a subordinate

of n1.

Proof: If s1[k] = true when Algorithm Compute(s) terminates globally, then by (7.2) n1 must
have received an anc from an immediate descendant in Sk

1
. Let n1 and the immediate descendants

from which n1 received an anc be marked, and proceed with the marking of other nodes as follows.
If node ni is marked and is not an initiator, then mark the nodes from which ni received an
anc. By (5.3) and (7.3), at least one node in each of the sets S1

i , . . . , S
pi

i gets marked, and the
marking process halts at initiators or at nodes already marked. Now consider any subgraph of G

that includes n1, Sk
1
, and for every ni that is included, one of the sets S1

i , . . . , S
pi

i (unless ni is
not marked or is an initiator, such a set includes a marked node). It follows that this subgraph
necessarily includes an initiator, and is therefore a b-subgraph of G that includes n1, Sk

1
, and a

subordinate of n1.
If s1[k] = false upon global termination of Algorithm Compute(s), then by (7.2) no anc ever

arrived at n1 from an immediate descendant in Sk
1
. We do the marking process again, starting

at n1 and all nodes in Sk
1
. For a marked ni, we mark every node from which ni received no anc.

Once again by (5.3) and (7.3), all nodes in at least one of the sets S1

i , . . . , S
pi

i get marked, and
the marking stops at nodes already marked without ever reaching an initiator. Now consider any
subgraph of G that includes n1, Sk

1 , and for every ni that is included, one of the sets S1

i , . . . , S
pi

i

whose nodes are all marked. Clearly, this subgraph is a b-subgraph of G that includes n1 and Sk
1
,

but no subordinate of n1.

We now turn to an analysis of the complexity of our algorithm to detect membership of n1 in a
b-knot in G. To this end, we employ the standard measures of time and communication complexity
for asynchronous distributed algorithms [1]. Also, we let Ea

1
be the set of edges that lie on paths

directed towards n1 in G, and Ed
1

the set of edges lying on paths directed away from n1 in G.
Note, initially, by the results in [8], that the time required by the first phase of our algorithm

is no larger than 2
(

|A1 ∪D1|
)

. In addition, the first phase requires exactly 2
(

|Ea
1 |+ |Ed

1 |
)

messages
to be sent. Of these, exactly one desc and one ack are sent on each member of Ed

1
, and exactly

one anc and one ack on each member of Ea
1 .

To analyze the complexity of the second phase (Algorithm Compute(s)), note, by (4), (5.2),
(5.3), and (7.3), that messages are only sent on edges that connect two descendants of n1. So the
time taken by Algorithm Compute(s) is at most 4|D1|. In order to assess the number of messages
involved in the algorithm, note that a descendant of n1 only receives a desc message, and therefore
starts participating in the computation, if a path exists directed from n1 to it with no intermediate
subordinates of n1. As a consequence, the number of messages sent by Algorithm Compute(s) is
at most 4|Ed

1
|. Of these, at most one desc/ack d pair flows on each member of Ed

1
, and likewise at

most one anc/ack a pair.

4. Concluding remarks

In this paper we have identified b-knots as graph structures that account for deadlocks in the AND-
OR model as a necessary and sufficient condition. Unlike cycles and knots, b-knots are defined in
explicit conjunction with the deadlock model.

We have also given an asynchronous distributed algorithm for node n1 to check whether it is
in a b-knot in G. This algorithm extends the algorithm of [8], which is essentially a procedure to
count the subordinates of n1. Our algorithm employs a simplification of this procedure as a first
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phase (it simply identifies the subordinates of n1), and then a second phase in which each node
that is a descendant of n1, and from which a subordinate of n1 is reachable, can detect whether a
subordinate of n1 is reachable from it in all b-subgraphs of G in which it participates. Detection
of whether n1 is in a b-knot follows easily.

Ongoing work includes investigating how existing algorithms to detect AND-OR deadlocks
(those in [3, 7, 9], for example) relate to the presence of a b-knot in the wait-for graph, and
how they can be improved, if at all, by explicitly considering the b-knot whose presence we have
demonstrated to be necessary and sufficient for an AND-OR deadlock to exist. We also point
out that the algorithm of Section 3 has been given as an extension of a well-known algorithm for
knot detection only. The question of how to exploit the definition of a b-knot more closely in
order to improve that algorithm (and then carry out an all-encompassing comparative study of the
algorithms that detect AND-OR deadlocks) is subject of ongoing research as well.
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