
Autonomic Business Processes Scalable Architecture

José A. Rodrigues Nt.1, Pedro C.L. Monteiro Jr.1, Jonice de O. Sampaio1,

Jano M. de Souza1,2, Geraldo Zimbrão1

1 COPPE/UFRJ, Graduate School of Engineering

2DCC-IM Dept. of Computer Science, Institute of Mathematics

Federal University of Rio de Janeiro, Brazil

PO Box 68.511 – Zip code: 21945-970 - Rio de Janeiro - Brazil

{rneto, calisto, jonice, jano, zimbrao}@cos.ufrj.br

Abstract. Organizations have to face new challenges, hold new

opportunities, conquer and maintain important customers and get a better

strategic position as faster as possible. The principles used in Autonomic

Computing can be adapted to help them survive in this dynamic business

scenario. Thus, organizations should count on processes that can be able to self-

configure, self-heal, self-optimize and self-protect, i.e., self-manage and self-

adapt to better answer market and organization’s changes and new challenges –

Autonomic Business Processes. This work proposes a multi-agent rule-based

scalable architecture to provide business processes with autonomic properties,

reducing the need for human intervention, and improving overall organization’s

response time. Keywords: Autonomic Computing, Business Process, Workflow.

1. Introduction

The world is confronted with the new knowledge-driven economy, and

enterprises have to face new challenges, hold new opportunities, conquer and

maintain important clients and always find a better strategic position. Processes’

- 1 -

dynamics are high and their impact on management unavoidable. Such a scenario

calls for a systematic and dynamic approach to maintain an organization competitive.

The management suffers the impact of constant environmental changes and,

subsequently, its own processes changes. Systems that can reduce the burden of

constant transformations and response-time are needed. New approaches to support

management ought to be developed in order to help organizations to survive.

Analyzing the Information Technology (IT) scenario, where the number and

complexity of systems has grown tremendously in the past decades, it can be found

valuable lessons to cope with such challenges. The Autonomic Computing approach,

which appeared due to the increasing complexity of current computational solutions

and, consequently, their increasing management complexity, is a good example.

Making an analogy between the new economy and new systems, firms need to

have autonomic characteristics to survive in this complex and agile economy. The

principles used in Autonomic Computing can be adapted to help firms survive in this

new business scenario. Thus, organizations should count on processes that can be able

to self-configure, self-heal, self-optimize and self-protect, i.e., self-manage and self-

adapt to new challenges and market changes – Autonomic Business Processes.

A successful enterprise – to ensure an effective monitoring of progress and to have

a more coherent strategic direction – should design and implement not only

autonomic-computational systems, but also autonomic-business processes,

autonomic-management approaches and systems to support them. Therefore, the

marriage of business management needs with autonomic principles opens new

opportunities.

This work proposes a multi-agent rule-based architecture to provide business

processes with autonomic properties, reducing the need for human intervention, and

improving overall organization’s response time.

- 2 -

The rule-based approach, supported with multi-level blackboards, considers expert

knowledge and also considers business processes under the Complex Adaptive

Systems paradigm [1], in the sense that the many variables involved in processes

executions and their relationships demand systems capable of presenting emergent

behaviors. It promotes flexibility by adaption, as classified in [2]. Additionally, the

multi-level architecture provides a flexible solution that can be scaled up to work with

higher level abstractions, closer to or at an organization’s strategic level, through the

composition of lower level autonomic processes.

This paper is organized as follows: section 2 presents a brief summary of related

work and section 3 concepts involved in the propose solution. The Autonomic

Business Process Architecture is presented on section 4, an example of its use in

section 5 and conclusion and future work in section 6.

2. Related Works

Most work found on autonomic business process, or autonomic workflow,

focus on predictable workflows, in the sense that a baseline execution path can be

defined and all alternates paths mapped; flexible but a priori defined workflow

instances; or software or system oriented workflows, like in grid applications.

While the work of Savarimuthu, Purvis and Fleurke [3] deals with business process

execution in a multi-agent workflow system, it neither describes how agents actually

handles flexibility, nor it worries with autonomic properties.

Work done on medical workflows [4] [5] concentrate on treating exceptions and

related mechanisms. While they provide a good basis for the self-healing dimension,

they have no provision for self-optimization and, in minor scale, to self-configuration

and self-protection. This is also the case of AgentWork [6], that concentrates on

failure prediction and reaction, despite the extensiveness of the research.

- 3 -

Mangan and Sadiq [7], when providing flexible processes, do not focus on treating

healing and protection issues and do not dedicate enough attention to real-time

monitoring and reaction. Nevertheless, their analysis of processes definition and

handling approaches helps on understanding the need for a non-deterministic

component in our solution.

A dynamic workflow for grid environment is described in [8]. We can mention as

autonomic properties dynamic configuration and reconfiguration of workflows,

optimization of some behaviors to achieve a goal, recovering from failures, and

optimized use of resources. However, it is important to mention that this solution just

works with workflows in grids, for job execution, not business processes.

In [9], the authors propose a continuous and optimized computing environment,

which updates itself according to high-level business objectives. While it considers

business objectives as the driving force to process optimization, it focus the

optimization efforts towards IT assets utilization.

FEEDBACKFLOW is an adaptive workflow generator for system’s management

[10]. This framework implements a general control loop of planning and re-planning,

and generates workflows of system management actions in an adaptive manner.

Another related work is the view of a multi-agent workflow enactment as an

Adaptive Workflow [11]. Although the focus of the work is workflow definition

languages, it touches some important aspects closely related to our solution, as the use

of multi-agent systems for coordination and the use of containers to preserve the

workflow state of execution.

Web services oriented workflows are also subject of other studies. Autonomic Web

Services (AWP) are web processes that support the autonomic computing properties

[12]. In AWP, the processes are configured according to business policies. Failures

are quickly responded and the workflow can be reconfigured due to environment

changes. The work of Pautasso, Heinis and Alonso [13] about web services

composition evaluates policies for composition configuration, not touching other

- 4 -

autonomic dimensions. On the same grounds, Pankatrius and Stucky [14] establish a

formal foundation for workflow composition, instrumental to provide reconfiguration

capabilities to workflow applications.

In [15] the design and performance evaluation of a dynamic workflow execution

engine is presented. The system has a component to determine if the current

configuration is optimal and, in the case of non-optimal configuration, it proposes an

alternate execution plan. This is the closest approach to our autonomic workflow. The

system contains a self-healing component to ensure that the workflow engine remains

in a consistent state.

It is important to note though, that our work evolves from several aspects presented

on these previously cited works and relies on some of their mechanisms for proper

implementation, e.g. the formalisms proposed in [14] and [16].

3. Concepts

3.1 Autonomic Computing

The term autonomic computing originates in the human autonomic nervous

system, which is responsible for managing of digestion, cardiac beating and other

functions that humans do automatically, i.e. without reasoning and giving

instructions. The autonomic computing paradigm aims at mimicking the human

nervous system, providing systems with self-management capabilities, reducing

human intervention.

Systems being developed [17] are increasingly more complex and tend to be

increasingly harder to manage. This complexity can be found in architectures,

networks, programming languages and applications. Autonomic computing is

specially useful for this kind of systems, since, due to their complexity, the cost with

human resources to keep them working can render a project impracticable.

- 5 -

A system need to know and understand itself to really be considered autonomic.

The system have to know all its components, their current status, its operation

environment, its capacity, the possible connections with others systems and the

resources that it can borrow, buy or lend. The 4 basics aspects of autonomic

computing are [17]:

- Self-configuring: refers to installation and activation of the system in an

automated way. It makes possible the system’s automatic adaptation to environment

changes;

- Self-healing: the ability to discover, diagnosis and correct potential problems to

ensure that the system runs smoothly;

- Self-optimizing: it treats resource monitoring and allocation to ensure that the

system will be working in an optimal way; and

- Self-protecting: identification, detection and protection against numerous threats.

3.2 Agents

Agent is anything that has sensors to perceive the environment and act on it.

Software agents have their perceptions and actions provided by encoded bit strings

[18]. Agents can interact with other agents forming a multi-agent system.

Agents present, at least, the following properties [19]: reactive to the environment,

autonomous, goal-driven and continuous execution. Agents can be classified as

stationary, those that stay in a single host, or mobile agents, which can migrate and

execute in multiple hosts. They move not only their codes, but also carry their

context, variables, execution pointers, stack and other state variables, which are

restored in the new host. The main difference between mobile agent systems and

process migration is that, in the first one agents can decide when to change host, while

in the second one, the system decides when process changes [19].

- 6 -

Scientific workflow management systems may hide the integration details among

distributed environment resources, allowing scientists to prototype experiments with

computational tools using a high level abstraction. Agents approach provides

techniques to decompose the control intelligence of flow execution and to encapsulate

distributed resources [20].

3.3 Blackboards

Blackboard is a repository style architecture where loosely coupled entities

share a common knowledge space [21]. In [22], the blackboard system is divided in 3

components: the blackboard, a global data structure presenting an application

dependent organization that usually holds system’s state information; knowledge

sources, independent entities that handle knowledge and can interact using the

blackboard; and a control component, driven by the blackboard state indication and

proper knowledge sources reaction.

4. Autonomic Business Process

4.1 Attribute, Fact, Condition, Action, Rule and Priority

First we describe some concepts that are central to understand the

architecture: attribute, attribute value, fact, condition, action, rule and priority.

In this proposed architecture, Attribute is a process’s characteristic which is of

interest, i.e., can affect its execution. Value is the attribute’s measurement, in other

words, is the result of monitoring an attribute and can be of Date, Numeric, Text or

Boolean type. A Fact is an observed attribute with a specific value.

In the scope of this work, attributes are organized in time, human, input, output,

tool, knowledge and cost resources. However the proposed architecture supports the

creation of new kinds of resources.

- 7 -

The table 1 shows examples of several attributes, organized by defined resources.

Table 1. Attributes by Resource Types

Resources Attributes

Time

 Expected initial date

 Expected final date

 Actual initial date

 Actual final date

 Expected duration

 Execution time

Human
 Executor availability

 Amount of available executors

Input
 Required artifact present, e.g. Purchase

Order arrival

Output Generated artifact, e.g. Repair Budget
delivery

Tool Available necessary tool, e.g. Video
Conference Equipment availability

Knowledge Engineering knowledge availability

Cost Process estimated cost

 Process current cost

An Attribute can be associated to a value through the operators equal to (=),

different from (<>), greater than (>), less than (<), greater or equal to (>=) and less

than or equal to (<=) forming a condition. As attributes have values, an atomic

condition is a relation of the attribute itself with its domain through an operator. The

concept of composed condition is also used and it means the union of several atomic

conditions. This union is done through the use of conjunctions AND and OR. A

- 8 -

composed condition example is: Executor in use = false AND Time in execution = 0

AND Foreseen initial date > Current date.

Action is an intervention on a process, that can be direct, e.g. allocation of others

resources to the process, or indirect, i.e. notification of an occurrence to a different

handling instance, e.g. the assertion of new facts to a blackboard or a message

delivered to another system or user.

A Rule is constructed using conditions and actions and it has the form: if set of

conditions then execute actions. For each rule a priority is defined, thus, allowing for

the proper processing order, when more than one rule should be executed.

We haven’t explicitly used ECA [16] nomenclature because the working

characteristics of monitoring agents/expert systems lead us to think that a fact, instead

of event, treatment is more appropriate, since the event itself that can affect workflow

execution is usually a composition of many facts asserted by agents. This way, rule

triggering will occur based on rules’ priorities, composition and temporal relations.

At the same time, considering that comparing to events, facts are lower level

constructs, we believe this approach is more suitable to model expert’s knowledge,

since it allows for a more detailed understanding of process execution and the

implication of its several aspects on desired results.

4.2 System Architecture

This work proposes a system’s architecture to autonomically manage an

organization’s business process execution, reducing the need for human intervention,

and improving overall organization’s response time.

The proposed architecture is shown in figure 1. Each defined activity of the target

process has associated monitor agents, a local blackboard and actuator agents. The

set of such schema over all the process’ activities defines the lower level of the

architecture, i.e. the level closer to the activities.

- 9 -

Fig. 1. System Architecture

Monitor agents, identified by the letter M inside them in figure 1, have the function

of sensing the activity and writing results, as facts, onto the local blackboard. Each of

these agents is responsible for monitoring only one resource, like the ones presented

in table 1. Section 4.3 explains how user defines such agents.

Local blackboard then receives facts related to all resources defined for the

activity.

Actuator agents are responsible for fact interpretation and action taking. This is

done by rule execution. They contain rules defined by the user and work like any

expert system. Actually, the main idea is to have agents implementing behaviors as

processes’ specialists. They monitor the blackboard looking for a set of facts that

match a set of conditions that is valid for one of their rules. When a rule is triggered

by such matching, they execute the prescribed action.

Each blackboard works with four actuator agents and each one will be responsible

for one autonomic computing dimension. In figure 1, they are represented with a C,

for the self-configuration element, with an H, for self-healing, with an O, for self-

- 10 -

optimization and a P, for self-protection. Further details on how to define actuators

are provided in section 4.3.

The next level of the architecture has a general blackboard that serves the whole

process. This general blackboard receives information (facts) from the lower level

actuators, i.e., the actuators at the activity level work as monitors for process level.

The information then is treated the same way as it is at the lower level – an actuator

agent for each autonomic dimension.

Having defined the architecture as a whole, we can now briefly describe how it

works. The user defines the process, i.e. the workflow, and for each activity defined,

specifies the attributes, facts, condition and rules that shall be applied. When the

process is started, the monitors keep sensing the activities, registering facts (attributes

and respective values they are responsible for) in the blackboard. The actuators read

the blackboard and, when a set of conditions matches a rule, the actuator with the

matched rule executes the indicated actions. Usually, one of the prescribed actions is

to assert a fact onto the upper level blackboard, to promote coordination, i.e. to allow

for the implementation of the autonomic behaviors for the process as a whole. The

same behavior explained for the lower level is then manifested at the upper level.

4.3 Templates

Templates are complimentary to the architecture. They provide the means for

the user to define activities/processes initial configuration, i.e. which attributes, facts,

condition and rules will be used.

On templates we define an initial set of attributes, organized by resource types. The

user chooses the wanted attributes and defines their domains. Another set of templates

is now used to define the rules associated with each autonomic dimension (CHOP).

User defines rules based on the attributes chosen, specifying their relations with

their domains, defining the actions to be taken and the associated priority.

- 11 -

We show an example of these templates use in section 5.2.

5. Case Study

This section presents a fictitious case study to demonstrate how the

architecture works. The example used in this work is adapted from an organization

that provides Information Technology services to customers.

5.1 Process’ definition

Whenever a customer demands a system support, a request arrives at the

department. The department assistant handles the request, collecting the needed data

and generating a Support Report. Based on this report, the assistant creates a work

order and defines the technician that will execute the service, with the assistance of

the HR System. This technician, that should possess knowledge in the required

support, generates the budget within a two-hour limit, performs the jobs under $100

and delivers the invoice to the customer. At the end of the process, the assistant

verifies customer’s satisfaction regarding the service provided.

As explained in section 4.2, the first step is the workflow definition. In this

example, the definition is presented in figure 2, as an UML activity diagram [23].

- 12 -

Fig. 2. Process Support Customer definition

5.2 Execution Definition

The second step is to define the parameters required for autonomic process

execution, i.e. definition of facts and rules to be used. Using the templates explained

on section 4.3 the following tables are defined. Table 2 shows for each resource

which attribute (with its respective types) and with which frequency the monitor agent

should update its blackboard. It is important to note that, although table 2 shows

attributes organized by resource type, they are defined with a per activity analysis.

Table 3 shows which rules will be considered for each process. For each set of

conditions the user defined the actions to be taken, including the assertion of new

facts.

Table 2. Attributes from activities of Process Support Customer

Resources Attributes Type Frequency

Expected duration Number Every 1 hour
Time

Execution Time Number Every 1 hour

Assistant assigned Boolean Once in start Human
Technician assigned Boolean Once in start

- 13 -

Process without executor Boolean Once in start

Input Required Support Report present Boolean Every 1 hour

Output Generate Support Report Boolean Once in end

Tool HR System Available Boolean Every 1 hour

Knowledge Required Support Knowledge present Boolean Once in start

Process expected cost Number Once in start
Cost

Process current cost Number Every 1 hour

Table 3. Example of process rules

Process Conditions Actions Facts Generated Pr

Receive

Request
Assistant assigned = false

Allocate available
assistant

Receive Request
without assistant

1

Assistant assigned = false -
Collect data

without assistant
1

Collect

Data Generate Support Report
= false

Execute activity
again

Generate Support
Report = false 1

Assistant assigned = false -
Create Work

Order without
assistant

1
Create

Work Order
Required Support Report

present = false
-

Required
Support Report
present = false

1

Assistant assigned = false
Allocate available

assistant

Choose
technician

without assistant
1

Choose

Technician
HR System Available =

false
Execute activity

without HR System
HR System

Available = false 2

Prepare Technician assigned = Allocate available
Prepare budge

without
1

- 14 -

Process Conditions Actions Facts Generated Pr

Budget false technician technician

Technician assigned =
false

Allocate available
technician

Perform
requested

support without
technician

1

Expected duration

<=

Execution Time

Continue executing
process

Perform
requested
support’s
expected
duration

<=

Perform
requested
support’s

execution time

2

Perform requested
support expected cost

<

Perform requested
support current cost

-

Perform
requested
support’s

expected cost

<

Perform
requested

support’s current
cost

1

Perform
Requested
Support

Required Support
Knowledge present =

false
-

Required
Support

Knowledge
present = false

2

Generate

Invoice

Technician assigned =
false

-
Generate Invoice

without
technician

1

Check

Customer’s

Satisfaction

Assistant assigned = false
Allocate available

assistant

Check
Customer’s
Satisfaction

without assistant

3

- 15 -

Process Conditions Actions Facts Generated Pr

Receive request without
assistant

Place request in
queue

- 1

Collect data without
assistant

Execute all workflow
again

- 1

Create work order
without assistant

Place request in
queue

- 1

Choose technician
without assistant

Place request in
queue

- 1

Check Customer’s
Satisfaction without

assistant
Cancel Check - 3

Prepare budget without
technician

Execute workflow
again from activity
Choose technician

- 1

Perform request support
without technician

Execute workflow
again from activity
Choose technician

- 1

Generate Invoice without
technician

Execute Choose
technician and

execute Generate
Invoice

- 1

Generate Support Report
= false

Execute all workflow
again

- 1

Required Support Report
present = false

Cancel Request - 1

HR System Available =
false

Inform user failure in
HR System

- 2

Process

Perform Requested
Support’s expected

duration

<=

Perform Requested
Support’s execution time

Inform user the delay - 2

- 16 -

Process Conditions Actions Facts Generated Pr

Perform Requested
Support’s expected cost

<

Perform Requested
Support’s current cost

Inform user the
excessive cost

- 1

Required Support
Knowledge present =

false

Inform user training
necessity

- 2

6. Conclusions and Future Works

The objective of our research is to provide organizations with autonomic

systems for process execution. The architecture presented here is one of the steps on

this direction.

We believe the proposed architecture is simple, yet powerful. The approach

combining agents and rule-based systems allows for the use of this architecture with

modern software technology, e.g. SOA, and bringing the systems closer to the

organization, since it is also based on business expert’s knowledge.

It is important to note that although presented here in two levels only, the proposed

architecture can easily be scaled up to work with many levels. This possibility goes

towards our goal of providing autonomic properties to high levels of an organization.

We believe, and we are also researching, the assembly of such architecture in multiple

levels, where processes can report to a superior “super-process” blackboard, and so

on, until a higher level, close to the organization upper management level can be

reached. In the highest level though, in a process-oriented organization, we expect to

deliver what we call the Autonomic Balanced Scorecard.

- 17 -

References

1. Tan, J. Wen, H. Awad, N. Health Care and Services Delivery Systems as Complex Adaptive

Systems. Communications of the ACM, vol. 48, issue 5. ACM Press, 2005.

2. Heinl, P. 1998. Exceptions during workflow execution. In Proceedings of the Sixth

International Conference on Extending Database Technology (Valencia, Spain, Mar.), H. -J.

Schek, F. Saltor, I. Ramos, and G. Alonso, Eds.

3. Savarimuthu, B. T., Purvis, M., and Fleurke, M. 2004. Monitoring and controlling of a multi-

agent based workflow system. In Proceedings of the Second Workshop on Australasian

Information Security, Data Mining and Web intelligence, and Software Internationalisation -

Volume 32 (Dunedin, New Zealand). J. Hogan, P. Montague, M. Purvis, and C. Steketee,

Eds. ACM International Conference Proceeding Series, vol. 54. Australian Computer

Society, Darlinghurst, Australia, 127-132.

4. Han, M., Thiery, T., and Song, X. 2006. Managing exceptions in the medical workflow

systems. In Proceeding of the 28th international Conference on Software Engineering

(Shanghai, China, May 20 - 28, 2006). ICSE '06. ACM Press, New York, NY.

5. Mourão, H. and Antunes, P. 2007. Supporting effective unexpected exceptions handling in

workflow management systems. In Proceedings of the 2007 ACM Symposium on Applied

Computing (Seoul, Korea, March 11 - 15, 2007). SAC '07. ACM Press, New York, NY,

1242-1249.

6. Mueller, R., Event-Oriented Dynamic Adaptation of Workflows: Model, Architecture and

Implementation. PhD thesis, University of Leipzig, 2002.

7. Mangan, P. and Sadiq, S. 2002. On building workflow models for flexible processes. In

Proceedings of the 13th Australasian Database Conference - Volume 5 (Melbourne,

Victoria, Australia). ACM International Conference Proceeding Series, vol. 18. Australian

Computer Society, Darlinghurst, Australia, 103-109.

8. Nichols, J., Dermikan, H., Goul, M.: Autonomic Workflow Execution in the Grid. In IEEE

Transactions on systems, man, and cybernetics, 2006

- 18 -

9. Aiber, S., Gilat, D. , Landau, A., Rainkov, N., Sela, A., Wasserkrug, S.: Autonomic self-

optimization according to business objectives. In Proceedings of the International

Conference on Autonomic Computing, 2004

10. Andrzejak, A., Herman, U., Sahai, A.: FEEDBACKFLOW - An Adaptive Workflow

Generator for System Management. In International Conference on Autonomic Computing,

2005

11. Buhler, p. A., Vidal, J. M., Verhagen, H.: Adaptive Workflow = Web Services + Agents. In

Proceedings. of the International Conference on Web Services, 2003

12. Verma, K., Sheth, A. P.: Autonomic Web Processes. In Proceedings of the Third

International Conference on Service Oriented Computing, 2005

13. Pautasso, C., Heinis, T., and Alonso, G.: Autonomic execution of Web Service

Compositions. In Proceedings of the IEEE International Conference on Web Services –

ICWS’05. pp. 435-442, 2005. IEEE Press. 2005.

14. Pankratius, V. and Stucky, W. (2005). A Formal Foundation for Workflow Composition,

Workflow View Definition, and Workflow Normalization based on Petri Nets. In Proc.

Second Asia-Pacific Conference on Conceptual Modelling (APCCM2005), Newcastle,

Australia. CRPIT, 43. Hartmann, S. and Stumptner, M., Eds., ACS. 79-88.

15. Heinis, T., Pautasso, C., Alonso, G.: Design and Evaluation of an Autonomic Workflow

Engine. In Proceedings of the Second International Conference on Autonomic Computing,

2005.

16. Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G. 1999. Specification and implementation of

exceptions in workflow management systems. ACM Trans. Database Syst. 24, 3 (Sep.

1999), 405-451.

17. Murch, R.: Autonomic Computing. Prentice Hall PTR, 2004

18. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, 1995

19. Oshima, M., Lange, D. B.: Programming and Deploying Java Mobile Agents with Aglets.

Second Printing, Addison Wesley, Boston, 1998

- 19 -

20. Zhao, Z., Belloum, A., Sloot, P;M;A., Hertzberger, L.O.: Agent Technology and Generic

Workflow Management in an e-Science Environment. In Hai Zhuge and G.C. Fox, editors,

Grid and Cooperative Computing - GCC 2005: 4th International Conference, Beijing, China,

in series Lecture Notes in Computer Science, vol. 3795, pp. 480-485. Springer, November

2005. ISBN 3-540-30510-6. (DOI: 10.1007/11590354_61)

21. Shaw, M. Garlan, D. Software Architecture – Perspectives on an Emerging Discipline.

Prentice Hall, 1996.

22. Corkill, D.D.: Blackboard Systems. AI Expert, 6(9):40-47, September, 1991

23. http://www.uml.org

- 20 -

http://www.uml.org/

