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Abstract: We prove that the Greatest Common Divisor (gcd) of two integers of
less than n bits, can be computed in O(log2 n) time with a polynomial number of
processors. As a consequence, integer coprimality and modular inversion problems
also belong to the NC class.
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1 Introduction

A considerable progress have been made in many area of parallel algorithms.
For many problems, NC algorithms have been found, among them matrix and
polynomials computations. Perhaps one of the first important result is given in
Csansky’s paper [6], where he described a fast determinant and polynomial char-
acteristic algorithms of a matrix over fields of characteristic zero. A generalization
of these results was given by Borodin et al. [2], where they show that computing
determinant and characteristic polynomial, over arbitrary fields are in NC2. Von
zur Gathen [18] gives NC2 algorithms for computing polynomial GCD (greatest
common divisor), LCM, squarefree decomposition over fields of charasteristic zero,
and computing the extended Euclidean scheme of two polynomials over arbitrary
field. On the other hand, for many other problems, proofs of P-completness have
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been obtained such as the circuit value problem [11] or linear programming [7] for
example. However, the situation is less satisfactory for some resistant problems.
While NC algorithms have been discovered for the basic arithmetic operations,
the parallel complexity of some fundamental problems as integer gcd, integer
coprimality and modular inversion has remained open, since first being raised
in a paper of Cook [5], more then 20 years ago. Many authors attempt to
design fast parallel integer gcd algorithms, among them, we mention the first
sublinear algorithm of Kannan-Miller-Rudolf [8] with O(n log log n/ log n) parallel
time with O(n2 log2 n) number of processors on PRAM models. In 1990, Chor
and Goldreich [4] improves this parallel performance with O(n/ log n)ε parallel
time with O(n1+ε) number of processors, for any ε > 0. Sorenson [16] and
the author [14] also suggest other parallel algorithms with the same parallel
performance. Since then, no major improvements have been made.

In this paper we discuss four basic problems: Integer gcd, Integer Copri-
mality, Extended Integer gcd and Modular Inversion. We prove that all
these problems are in the NC class.

Our approach is based on a very slow sequential algorithm, since it computes
the gcd of two integers in no less than O(n4), far from the fastest integer gcd
known of Knuth-Schonhage [13] with O(n log2 n log log n) time. Perhaps, our
O(n4) sequential algorithm is the slowest GCD algorithm presently known.
However, it is simpler than Stein’s binary algorithm [15], since only adds and
rightshifts are used, but its simplicity allow some mofications which lead to a
simple parallelization.

The main ideas used to achieve our NC parallel algorithm are the following:

1. The basic idea for the whole theory is the result by Valiant-Skyum-
Berkowitz-Rackoff [17]. It says that any sequential program computing a
polynomial of degree < d with C steps can be converted to a parallel program
with parallel time O( (log d) (log C + log d) ) using O( (Cd)β ) processors,
for an appropriate β.

2. A Fixed-point Loop Lemma which, under some conditions, avoids a while
loop and replaces it by a for loop.

Throuhough this paper, we represent the input integers as formal strings of
bits obtained from their binary expansions and ask for PRAM model [9] with bit
instructions solving the problem. The paper is organized as follows: In Section
2, we describe our sequential and parallel algorithms. Section 3 is devoted to a

2



parallel extended GCD algorithm and its applications. We conclude with some
remarks in Section 4.

2 The Greatest Common Divisor

2.1 The Fixed Point Lemma

Before describing our sequential gcd algorithm, we propose a lemma which is a
basic tool for avoiding conditional loop as While Condition(X) do, or Repeat
Instructions(X) Until Condition(X), where Condition(X) is a boolean condition
on the variable X.

Lemma: Let F be a discrete function defined on vectors (or a set of ordered list)
of n integers. We assume that, for a given such vector X of integers, F (X) is
computed by the following while loop (the repeat-until case is similar) :

X ← X0 ;
While Condition(X) do

X ← F (X) ;
EndWhile

Return X.

If the final value X∗ is a fixed point of F , i.e.: F (X∗) = X∗, after no more
than Nmax = nO(1) iterations, then the computation of X∗ can be done in a free
conditional loop way (N is any integer such that N ≥ Nmax):

X ← X0 ;
For i = 1 to N ≥ Nmax do

X ← F (X) ;
EndFor

Return X.

Proof: If the while loop terminates with the value X∗ after N1 iterations with
N1 ≤ Nmax, so is in the for loop. The for loop continues and gives, in the next
iteration N1 + 1, the value F (X∗) = X∗, since X∗ is a fixed point of F , and so on
until iteration N , hence the result.

Now, let us consider the following algorithm:
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Input: x, y > 0 odds ;
Output: gcd(x, y) ;(

u
v

)
←

(
x
y

)
;

While ( u 6= v )(
u
v

)
←

(
v

(u + v)/2t

)
; such that (u + v)/2t is odd.

EndWhile
Return u.

Fig. 1. The While-GCD Algorithm

Example: Let (x, y) = (35, 19) we obtain in turn:(
35
19

)
→

(
19
27

)
→

(
27
23

)
→

(
23
25

)
→

(
25
3

)

→
(

3
7

)
→

(
7
5

)
→

(
5
3

)
→

(
3
1

)
→

(
1
1

)
.

Proposition: Let x, y ≥ 1 be two odd integers. The transformation
(u, v) → (v, (u + v)/2t), with (u + v)/2t odd, preserves the gcd, i.e.:
gcd(v, (u + v)/2t) = gcd(u, v).

Proof: Since u and v are both odd, we have gcd(v, (u + v)/2t) = gcd(v, u + v) =
gcd(u, v).

Theorem: Let u, v ≥ 1 be two odd integers such that |u − v| = r2t > 1, with
r ≥ 1 odd, and t ≥ 1. Let (uk, vk) be the sequence of consecutive values of u and
v, obtained in the While-GCD algorithm. Then

i) max{ut+1, vt+1} < (3/4) max{u, v} .
ii) The algorithm terminates after at most O(n2) iterations and returns gcd(x, y).

Proof: First, note that if u = v, then the algorithm terminates and return
gcd(u, v) = u. Now we assume that u 6= v and (u, v) = (v0 + r2t, v0), the case
(u, v) = (u0, u0 + r2t) is similar. We have(

u0 = v0 + r2t

v0

)
→

(
v0

v0 + r2t−1

)
→

(
v0 + r2t−1

v0 + r2t−2

)
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→
(

v0 + r2t−2

v0 + r2t−2 + r2t−3

)
→ · · · →

(
v0 + r2t−2 + . . . + 2r
1/2m{v0 + r2t−2 + r2t−3 + . . . r}

)
After t iterations, the integer 2mvt = v0 + r2t−2 + r2t−3 + . . . r is even. So vt <
(1/2)u0 and ut < u0. Then, after t + 1 iterations, we have ut+1 = vk < (1/2)u0

and vt+1 ≤ (1/2)(ut + vt) < (3/4)u0. The case (u0, u0 + r2t) is similar and
gives the same upper bound. So, after t + 1 iterations, we have max{ut, vt} <
(3/4) max{u, v}. Similarly, if ut+1 = vt+1, we stops and return the result: ut+1 =
gcd(u, v). Otherwise |ut+1 − vt+1| = r22t2 > 1, then we repeat the same process
to the pair (ut+1, vt+1), and obtain: after t2 + 1 more iterations

max{ut2 , vt2} < (3/4) max{ut, vt} < (3/4)2 max{u, v},

and so on until we reach a pair (um, vm), with um = vm. Moreover, we observe
that t = t1 < n, t2 < n and so on: t = t1 < n, · · · , ti < n, · · · , tp < n, for p ≥ 1.
So, (t1 + 1) + (t2 + 1) + · · · , (tp + 1) ≤ pn, and after pn iterations we have

1 ≤ max{upn, vpn} < (3/4)p max{u, v} < (3/4)p2n.

Hence, p < n
log2(4/3) ∼ (2.169) n and the While-GCD algorithm terminates after

at most pn < (2.17) n2 iterations.

We prove in the next algorithm that we can avoid the while loop tests:

Input: x, y > 0 odds, max(x, y) < 2n.
Output: gcd(x, y) ;

(
u
v

)
←

(
x
y

)
;

For i = 1 to 3n2 Do(
u
v

)
←

(
v

(u + v)/2t

)
; such that (u + v)/2t is odd.

EndFor
Return u.

Fig. 2. The For-GCD Algorithm

Theorem: The For-GCD algorithm terminates after the 3n2 iterations and
returns gcd(x, y). Therefore, its worst-case bit complexity is O(n3).
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Proof: Straightforward from the fixed point Lemma. However, we prefer to give
the proof in details for lazy readers. The algorithms For-GCD and While-GCD give
the same pair (ui, vi) until we reach a pair (uk, vk) such that uk = vk, with k ≤
bn2/(2− log2 3)c. At this point, the While-GCD algorithm terminates and returns
uk, and the For-GCD algorithm loops with the same consecutive pair (uk, vk), until
the (3n2)th iteration, i.e.:

∀i, 0 ≤ i ≤ 3n2 − k (uk+i, vk+i) = (uk, vk) = (uk, uk).

Hence the result.

We prove, in the following, how to compute rightshifts without division and
branching.

First, we assume that the constant t ≥ 1 is known. From now on, we consider
integers as ordered lists of bits, obtained from their binary expansion. Let A be
an integer formally represented by its ordered list of n bits. We can easily do the
t rightshifts: A→ A/2t odd, as follows:

Input: t ≥ 1, an ordered list of n bits A = (an, an−1, · · · , a1).
Output: A list B = (bn, bn−1, · · · , b1) obtained by t rightshift the list A ;

For i = 1 to (n− t) Do bi = ai+t ;
For i = n− t + 1 to n Do bi = 0 ;
Return B.

The Rightshift(A,n, t) procedure.

Since it might not always be clear how to pick the constants t required for this shift,
the conversion may become non-uniform. However, rather than computing t, we
find easier and helpful to compute 2t−1 without division and branching, as follows:

Input: An ordered list of n bits A = (an, an−1, · · · , a1), s.t.: A = 2tr, with r odd.
Output: A ordered list B = (bn, bn−1, · · · , b1), of n bits s.t.: B = 2t − 1.

b1 = 1− a1 ;
For i = 1 to n− 1 Do

bi+1 = (1− ai) . bi ;
EndFor
Return B.
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The Modulo2(A) procedure.

The basic idea is that starting from the first rightmost ai = 1, all the values of bi

become 0, i.e.: if i ≤ j ≤ n, we have bj = 0.

Example If A = 100, then A = (1, 1, 0, 0, 1, 0, 0)2 and we obtain
B = (0, 0, 0, 0, 0, 1, 1)2. The successive values of ai and bi are given in Ta-
ble 1.

i ai bi

1 0 1
2 0 1
3 1 0
4 0 0
5 0 0
6 1 0
7 1 0

Table 1: Successive values of ai and bi.

Combining the previous ideas, rightshifts can be straightforward computed in the
following Makeodd(A) procedure:

Input: An integer A ≥ 1, with A = (an, an−1, · · · , a1)2.
Output: An odd integer C ≥ 1, with C = (cn+1, cn, cn−1, · · · , c1)2

such that, as integers, C = A/2t is odd.

B ← Modulo2(A) ; cn+1 = 0 ;
For k = 1 to n Do

For i = 1 to (n− bk) Do ci = bk . ai+1 + (1− bk).ai;
For i = (n− bk + 1) to n + 1 Do ci = 0 ;

EndFor
Return C = (cn+1, cn, cn−1, · · · , c1)2.

The Makeodd(A) procedure.
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Observations:

1) In order to make valid the instruction ”For i = n− bk + 1 to n + 1 Do
ci = 0 ” in case bk = 0, we have added an extra bit cn+1 = 0. This does not
affect the final value of integer C.

2) Note that if bk = 0, then ci = ai, for i = 1, 2, · · · , n, and cn+1 = 0 i.e.:
C = A. Moreover, if bk = 1, then C is obtained by one rightshift A, i.e.:
ci = ai+1, for i = 1, 2, · · · , n− 1 and cn = cn+1 = 0. So, as far as bk = 1, we
rightshift A and finally obtain, step by step, the expected C = A/2t. For
the previous example, C = A/22.

3) The Makeodd(A) procedure returns A if A is odd since B = 0.

4) The Makeodd(A) procedure is division and branching free.

5) It is worth to note that Makeodd(A) procedure is computed with O(n2)
time in bit-complexity, slower than the O(n) time for the Rightshift(A, n, t)
procedure. However, Rightshift(A, n, t) procedure needs the knowledge of
the parameter t, in advance, i.e.:, how many rightshifts we must do, at each
iteration, so parity tests are needed. By contrast, no such tests are needed in
Makeodd(A) procedure, thus, this allow uniform computations and justifies
its extra amount of time.

Now the For-GCD algorithm becomes:

Input: x, y > 0 odds, max(x, y) < 2n.
Output: gcd(x, y) ;(

u
v

)
←

(
x
y

)
;

For i = 1 to 3n2 Do(
u
v

)
←

(
v

makeodd(u + v)

)
;

endFor

return u.
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Fig. 3. The Add-and-Shift-GCD Algorithm

2.2 How to add integers

Although obvious, we describe here how to add two non-negative integers
u = (un, · · · , u1) and v = (vn, · · · , v1). Let w = (wn+1, · · · , w1) such that
w = u + v. Then w can be obtained as follows:

wn+1 ← 0 ;
For i = 1 to n Do(

wi

wn+1

)
← FA(ui, vi, wn+1) ;

EndFor

Return w = (wn+1, · · · , w1).

Where FA is the well known Full Adder cell. If (x, y, Carry1) are
3 bits inputs, then the FA outputs are 2 bits (w, Carry2) such that
w = (x + y + Carry1) (mod 2) and Carry2 = (x + y + Carry1) div 2, or
x + y + Carry1 = 2 Carry2 + w.

The following Lemma shows how Full adders FA can be computed:

Lemma 2.1 Let x, y, z, c1, c2 ∈ {0, 1} such that x + y + c1 = 2c2 + z. Let
F = F (x, y) = (1− x)y + (1− y)x and let G = G(x, y) = xy, then

z = c1(1− F ) + (1− c1)F and c2 = (1− c1)G + c1(F + G).

Moreover, given 3 bits x, y, c1, then the bits c2 and z can be computed with
at most 25 basic operations +(a, b), −(a, b) and ×(a, b), for a, b ∈ {0, 1}.

Proof: We observe that F and G are two bits satisfying x + y = 2G + F .
Denoting basic operations +(a, b), −(a, b) and ×(a, b) by unit cost. The bits
F and G can be computed with respectively 5 and 1 units, so that and z
and c2 costs respectively 14 and 11 units. Hence the result. Note that −a
can be simulated by ×(−1, a).

Theorem: The Add-and-Shift-GCD algorithm can be converted to a
parallel algorithm computing the GCD of two integers, in O(log2 n) time
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with a polynomial numbers of processors. Therfore, the Integer Gcd
problem is NC.

Proof: The Add-and-Shift-GCD algorithm returns the gcd(x, y) after
in O(n4) time in bit-complexity. During the whole Add-and-Shift-GCD

algorithm, only bits of integers inputs are formally manipulated with only
+,− and × as basic bit operations. Thus our algorithm can be considered
as a program, in the sens defined by Valiant-Skyum-Berkowitz-Rackoff [17],
computing the gcd of two n bits integers u and v in O(n4) steps. Therefore,
we can now apply the parallelization method of Valiant-Skyum-Berkowitz-
Rackoff [17]. The Add-and-Shift-GCD algorithm can be converted to a
parallel algorithm for computing the GCD of two integers, in O(log2 n) time
and a polynomial number of processors. Neither division nor branching
occurs.

Corollary: The Coprimality problem is NC.

3 Parallel Extended GCD

For given two n-bits integers u, v, the Extended Gcd problem is to find
integers a, b, and d, such that

au + bv = d,

where d = gcd(u, v). A important application is that, in case d = 1, we can
straightforward compute the inverse of u modulo v, since au ≡ 1 (mod v).

Theorem: Given two n-bits integers u and v, there exists a parallel ex-
tended gcd algorithm which compute the pair of integers (a, b) in O(log2 n)
time with a polynomial numbers of processors. Therfore, the Extended
Gcd problem is NC.

Proof: It is well know that Stein’s binary [15] and Brent-Kung’s Plus-
Minus algorithms [3] can be converted in extented gcd version. As for our
algorithm Add-and-Shift-GCD, both these algorithms are only based on
adds/subtractions and rights-schifts. However, it also deals with conditional

10



loops as while or repeat-until, and parity tests. Although we have seen that
rights-schifts is not actually an issue, we cannot straightforward follow these
methods without showing how to avoid conditional loops and parity tests.
We give below the main ideas to solve these issues.

Let

(
uk

vk

)
k≥0

be the sequence of consecutive values of (u, v)T obtained

in algorithm Add-and-Shift-GCD. So we have(
uk+1

vk+1

)
←M ×

(
uk

vk

)
,

where the matrix M is either A1 (adding) or A2 (shifting), with

A1 =

(
0 1
1 1

)
and A2 =

(
1 0
0 1/2

)
,

and, if ti is the number of right-shifts at each iteration i, then:

Mi = (A2)
tiA1.

However the coefficients of the matrix A2 are not integers, but we can replace
A2 by the following matrix N :

N =

(
1 0

v/2 (1− u)/2

)
.

The coefficients of N are integers and

N

(
u
v

)
= A2

(
u
v

)
,

and we can substitute, at each iteration i, Mi by Si = (N)tiA1. Finally, at
the end of the algorithm, we obtain

(
3n2∏
i=1

Si )

(
u
v

)
=

(
1
1

)
(1).

Moreover, the ti’s can be stored in an array T as follows:
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For i = 1 to 3n2 Do(
u
v

)
= A1

(
u
v

)
;

B ← Modulo2(v) ;
ti = 0 ;
For j = 1 to n Do ti = ti + bj ;
T [i] = ti ;
Makeodd(v) ;

EndFor

or by storing the matrices N with their respective multiplicity ti in an array
R, as follows (I is the 2× 2 identity matrix):

For i = 1 to 3n2 Do(
u
v

)
= A1

(
u
v

)
;

B ← Modulo2(v) ;
ti = 0 ;
For j = 1 to n Do

R[i; j] = biN + (1− bi)I ;
Makeodd(v) ;

EndFor

Therfore, there exists an O(n4) algorithm which computes all the required
matrices to obtain relation (1). Now we can apply the parallelization
method of Valiant-Skyum-Berkowitz-Rackoff [17]. Hence, there exists a
parallel algorithm for computing these matrices, in O(log2 n) time and a
polynomial number of processors. Neither division nor branching occurs.
Moreover their product can be achieved in a same time bound O(log2 n) and
O(n3 log n) processors, with a binary tree computations.

Corollary: The Modular Inversion problem is NC.
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4 Conclusion

Thanks to the parallelization method of Valiant-Skyum-Berkowitz-Rackoff,
we have proved that the Integer Gcd problem as well its extended
version are in NC class. Consequently, many others problems such as
Integer Coprimality, Modular Inversion are also in NC class. We
observe that most of gcd algorithms use preserving gcd transformations
until zero is reached, the other non-zero integer is the expected gcd.
However, because of the zero integer, the fixed point Lemma may not
be easily applied. Finally, we hope that the fixed point Lemma should
help to to provide division and branching free algorithms for others problems.
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