D1HT: A Distributed One Hop Hash Table

Extended Version *

Luiz R. Monnerat®* and Claudio L. Amorim*

*COPPE - Computer and Systems Engineering
Federal University of Rio de Janeiro

*TI/TI-E&P/STEP
PETROBRAS

{monnerat, amorim}@cos.ufrj.br

Technical Report ES-705/06, COPPE/UFRJ

Abstract

Distributed Hash Tables (DHTs) have
been used in a variety of applications, but
most DHTs so far have opted to solve lookups
with multiple hops, which sacrifices perfor-
mance in order to keep little routing infor-
mation and minimize maintenance traffic. In
this paper, we introduce DIHT, a novel sin-
gle hop DHT that is able to maximize per-
formance with reasonable maintenance traffic
overhead even for huge and dynamic peer-to-
peer (P2P) systems. We formally define the al-
gorithm we propose to detect and notify any
membership change in the system, prove its
correctness and performance properties, and
present a Quarantine-like mechanism to re-
duce the overhead caused by volatile peers.
Our analyses show that DIHT has reasonable
maintenance bandwidth requirements even for
very large systems, while presenting at least
twice less bandwidth overhead than previous
single hop DHT.

*This research was partially sponsored by Brazil-
ian CNPq and FINEP. A condensed version of this pa-
per appeared in the 20th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), April
2006.

1. Introduction

Distributed hash table systems (DHTs)
provide scalable and practical solutions to
store, locate, and retrieve information widely
dispersed in huge distributed environments.
For this reason, DHTs have already been pro-
posed as a base for a variety of distributed
and P2P applications, including grids [34, 40],
name resolution [6], distributed storage sys-
tems [17, 38], backup facilities [5], DDoS at-
tack protection [15], spam filtering [44], Inter-
net games [16], file sharing [27], and databases
[12], among others. This multitude of applica-
tions shows the large acceptance of DHTs as a
useful distributed software.

DHT systems implement a hash-table-like
lookup facility where the keys (information)
are distributed among the participant nodes. In
order to route a given lookup from its origin
to the node in charge of the target key, DHTs
implement overlay networks with routing in-
formation stored in each node (routing tables).
Unless each routing table is large enough to
hold the IP addresses of all participant nodes,
the routing of a single lookup is likely to re-
quire multiple hops, i.e., the lookup should
hop through a number of nodes before reach-

ing the target.

While big routing tables allow faster
lookups, they require higher communication
bandwidth in order to be kept up to date as
nodes join and leave the system, specially in
very dynamic systems (i.e., systems with a
high frequency of node joins and leaves). As
a result, DHTs tradeoff lower lookup’s latency
(number of hops) for less bandwidth over-
head (in order to maintain the routing tables)
[42]. In a society where speed and information
are critical while network bandwidth improves
over time, we think that this tradeoff should
favor latency rather than bandwidth. For this
reason, we believe in a steady increase in the
number of users willing to pay for an extra
few kbps of bandwidth in order to get the de-
sired information as fast as possible. In con-
trast, most DHT systems that have been pro-
posed so far solve the lookups with multiple
hops (e.g. [8, 13, 23, 24, 28, 31, 37,41, 43]) in
an attempt to minimize the maintenance traffic
(network traffic required to maintain the rout-
ing tables), as it was generally accepted that
single hop DHTs could lead to prohibitively
high maintenance traffic for dynamic systems.
However, recent results [19] have shown that
in some cases single-hop DHTs may generate
less traffic than multi-hop ones, even for dy-
namic systems. Those results corroborate pre-
vious work [35], which indicated that low-
overhead multi-hop DHTs are required only
for vast and very dynamic systems. Addition-
ally, the high latency imposed by the multi-hop
DHTs prevent their use by parallel high perfor-
mance programs, which is an important class
of distributed applications. On the other hand,
there is only one proposed DHT system that
ensures that most lookups are really solved
with only one hop [9], but this system imposes
high levels of load imbalance and bandwidth
overheads in order to maintain the routing ta-
bles up to date.

We consider that an effective single-hop

DHT must exhibit the following four main
properties: 1) to solve a large fraction of all
lookups with one single hop (e.g. 99%); 2) to
have low bandwidth overheads; 3) to provide
good load balance of the maintenance traffic
among the nodes; 4) to be able to adapt to
changes in the system dynamics. In this pa-
per, we present DIHT, a novel one-hop P2P
DHT system that is able to attend all four es-
sential characteristics with an efficient Event
Detection and Reporting Algorithm (EDRA).
We formally describe this algorithm and prove
its correctness, performance, and load balance
properties. Our analytical results show that
D1HT nodes have at least twice and up to one
order of magnitude less maintenance band-
width requirements than those of nodes in pre-
vious single-hop DHT [9]. Our results also
show that D1HT is able to support vast P2P
systems whose dynamics are similar to those
of widely deployed P2P applications, such as
Gnutella [39] and BitTorrent [3], with reason-
able maintenance bandwidth demands. For in-
stance, a huge one-million DIHT system, with
dynamics similar to BitTorrent, would require
only 3 kbps of duplex maintenance traffic to
assure that 99% of the lookups are solved
with just one hop, which is fairly acceptable
if we consider that back in 2004 the average
download speed of a BitTorrent peer was al-
ready 240 kbps[29]. For a 100K node D1HT
system, these requirements will drop to 0.4
kbps, which are negligible even for domestic
connections. We also presented a Quarantine
mechanism that is able to reduce the overhead
caused by volatile nodes, but requires that
lookups issued by recently connected nodes
take two hops to be solved.

The remainder of this paper is organized as
follows. Section 2 presents the D1HT design.
Section 3 describes EDRA and proves its cor-
rectness and performance properties. Section
4 shows how EDRA behaves in the presence
of message delays and other practical issues.

In Section 5, we analyze DIHT performance.
Section 6 discuss related work and Section 7
concludes the paper.

2. System Design

A DIHT system is composed of a set D
of n peers! and maps items (or keys) to peers
based on consistent hashing [14], where both
peers and keys are hashed to integer identifiers
(IDs) in the same ID space [0..N], N > n. Typ-
ically a key ID is the cryptographic hash SHA-
1 of the key value, a peer ID is based on the
SHA-1 hash of it’s IP address (or the SHA-
1 hash of the user name), and N = 2160 — [,
For simplicity, from now on we will refer to
the peers and keys IDs as the peers and keys
themselves.

As in Chord[41], D1HT uses a ring topol-
ogy where ID 0 succeeds ID N, and the succes-
sor and predecessor of an ID i are respectively
the first living peers clockwise and counter-
clockwise from i in the ring. Each key is as-
signed to the key’s successor and is replicated
on the following log,(n) peers clockwise in
the ring.

Each peer in a DIHT system maintains a
routing table with the IP addresses of all peers
in the system, and so any lookup is trivially
solved with just one hop, provided that the lo-
cal routing table is up to date. Note that if a
peer p does not acknowledge an event caused
by a membership change in the system, p may
route a lookup to a wrong peer or to a peer that
has already left the system. In the former case,
the peer that received the lookup will forward
it according to its own routing table. In the lat-
ter, a time out will occur and p will re-issue
the lookup to the successor of the original tar-
get. In both cases, the lookup should eventu-
ally succeed, but it will take longer than ini-

ISince D1HT uses a pure P2P architecture, where all
participant nodes perform identical functions, we will
refer to the D1HT nodes simply as peers.

tially expected. As one of the main goals of
one hop DHTs is performance, we should try
to keep those routing failures> to a minimum,
by means of an algorithm that allows fast dis-
semination of the events without high band-
width overheads and load imbalance. This al-
gorithm will be presented in Section 3.

DIHT adds small memory overhead to
each peer by exploiting the fact that the ID
space is sparsely occupied so that each peer
can store its routing table as a local hash ta-
ble. The table index is based on the first bits
of the peer IDs, avoiding the need to store the
IDs themselves. In this way, D1HT routing ta-
bles will require approximately 4n bytes, plus
some extra space to allow D1HT peers to treat
the eventual collisions.

To join a D1HT system a peer should first
be able to locate just one peer pgyy already in
the system. The joining peer then hashes its
IP address (or the local user name) to get its
ID p, and asks pg,y to issue a lookup for p,
which will return the IP address of p’s succes-
SOT Psuce- The joining peer p will then contact
its successor pg,.. in order to be inserted in
the ring and to get the information about the
keys it will be responsible for. To feed its rout-
ing table, p will ask pg,.. for the addresses of
a number of peers in the system. Peer p will
then ping each one of those peers and choose
the nearest ones to ask for the routing table>.
In Section 4.3 we will present an alternative
joining method aiming to reduce the overhead
caused by volatile peers. To track peer crash-
ing, each peer is in charge of detecting if its
predecessor has left the system.

In this paper, we will not address issues re-

2As the lookup will eventually succeed, we do con-
sider it as routing failure instead of lookup failure.

3This is just a brief description of a joining protocol.
The implementation of the joining mechanism should
deal with a number of well known problems (e.g. con-
current joins) in order to assure that any new peer is cor-
rectly inserted in the ring and has an up to date routing
table.

lated to malicious nodes and network attacks,
although it is clear that, due to their high out
degree, one hop DHTs are naturally less vul-
nerable to those kinds of menaces than low-
degree multi-hop DHTs.

Before proceeding to the next sections, we
will introduce a few functions to make the pre-
sentation clearer. For any i € N and p € D,
the i, successor of p is given by the function
succ(p,i), where succ(p,0) = p and succ(p,i)
is the successor of succ(p,i— 1)) for i > 0.
Note that for i > n, succ(p,i) = succ(p,i —n).
In the same way, the i;;, predecessor of a peer
p is given by the function pred(p,i), where
pred(p,0) = p and pred(p,i) is the predeces-
sor of pred(p,i—1)), for i > 0. As in [23], for
any p € D and k € N, stretch(p,k) = {Vp; €
D | pi = succ(p,i) N 0 <i<k}. Note that
stretch(p,n—1) =D for any p € D.

3. Routing Table Maintenance

As each peer in a DIHT system should
know the IP address of every other peer, any
event (from now on we will refer to peer joins
and leaves simply as events) should be ac-
knowledged* by all peers in the system in a
timely fashion in order to avoid stale entries
in routing tables. On the other hand, as we ad-
dress large and dynamic systems, we should
avoid fast but naive ways to disseminate in-
formation about the events (e.g., broadcast),
as they can easily overload the network and
create hot spots. In that way, the detection
and propagation of events impose three impor-
tant challenges to D1HT: minimize bandwidth
consumption, provide fair load balance, and
assure an upper bound on the fraction of stale
entries in routing tables. To accomplish these
requirements, we propose the Event Detection
and Report Algorithm (EDRA for short) that

“We define that a peer acknowledges an event when
either it detects the join (or leave) of its predecessor or
when it receives a message notifying an event.

is able to notify an event to the whole sys-
tem in logarithmic time and yet to have good
load-balance properties coupled with very low
bandwidth overhead. Additionally, EDRA is
able to dynamically adapt to changes in system
behavior to continuously satisfy a pre-defined
upper bound on the fraction of routing failures.

In this section, we will define EDRA by
means of a number of rules, and prove its
correctness and optimal behavior in terms of
bandwidth use and incoming traffic load bal-
ance. We will also show that EDRA has good
outgoing traffic load balance for dynamic sys-
tems when the events are evenly spread along
the ring.

3.1. Event Dissemination

We will begin this section with a brief de-
scription of EDRA, and we will then formally
define it. To disseminate the information about
the events, each peer p sends up to p propa-
gation messages at each ® secs time interval,
where p = [log,(n)] and O is based on the
system dynamics (as it will be seen in Section
4.2). Each message M(Il) will have a Time-
To-Live (TTL) counter / in the range [0..p),
and will be addressed to succ(p,2'). Besides,
p will include in each message M(I) all events
brought to p by any message M(j),j > I, re-
ceived in the last ® secs. To initiate an event
report, the successor of the peer suffering the
event will include it in all messages sent at the
end of the current ® interval. Figure 1, which
will be further described in Section 3.2, illus-
trates how EDRA disseminates an event in a
DI1HT system with 11 peers.

The rules below formally define the EDRA
algorithm we described above:

Rule 1: Every peer will send at least one and
up to p messages at the end of each
® secs interval (O interval), where p =

[logy (n)].

Rule 2: Each message will have a Time To

Live counter (TTL) in the range O to
p — 1, and carry a number of events. All
events brought by a message with TTL =
[will be acknowledged with TTL = [by
the receiving peer.

Rule 3: A message will only contain events
acknowledged during the ending © inter-
val. An event acknowledged with TTL =
[, I > 0, will be included in all mes-
sages with TTL < [sent at the end of the
current ® interval. Events acknowledged
with 7T L = 0 will not be included in any
message.

Rule 4: The message with TTL = 0 will be
sent even if there is no event to report.
Messages with 77T L > 0 will only be sent
if there are events to be reported.

Rule 5: If a peer does not receive any mes-
sage from its predecessor for 7.0 S€cs,
it assumes that the predecessor has left
the system.

Rule 6: When a peer detects an event in its
predecessor (it has joined or left the sys-
tem), this event is considered to have
been acknowledged with TTL = p, and
so is reported through p messages ac-
cording to rule 3.

Rule 7: A peer p will send all messages with
TTL =1 to succ(p,2').

Rule 8: Before sending a message to
succ(p,k), p will discharge all events
related to any peer in stretch(p, k).

Note that a peer in a DIHT system does
not immediately forward the events received,
in order to consolidate all events acknowl-
edged in a ® interval in up to p messages. This
mechanism allows the reduction of the num-
ber of messages sent, but the ® value should
be carefully chosen as we will show in Sec-
tion 4.2. Note also that EDRA uses the TTL
counters in a way different than the usual, as

an event acknowledged with TTL = [will be
forward through [messages, each one with a
TTL in the range [0..1).

3.2. EDRA Correctness

The above rules ensure that EDRA will de-
liver any event to all peers in a DIHT sys-
tem in logarithmic time, as we will show in
Theorem 3.1 shortly. For that theorem we will
ignore message delays and we will consider
that all peers have synchronous intervals, i.e.,
the ® intervals of all peers start at exactly the
same time. In Section 4.1 we will take into ac-
count those effects. The absence of message
delays means that any message will arrive im-
mediately at its destination, and since we are
also considering synchronous ® intervals, any
message sent at the end of a ® interval will ar-
rive at its destination at the beginning of the
subsequent O interval (as represented in Fig-
ure 2, Section 4.1).

Theorem 3.1. An event € that is acknowl-
edged by a peer p with TTL =1, and by
no other peers in D, will be forwarded by
p through | messages in a way that € will
be acknowledged exactly once by all peers in
stretch(p,2! — 1) and by no other peer in the
system. The average time Ty, for a peer in
stretch(p,2! — 1) to acknowledge € will be at
most - ®/2 secs after p had acknowledged €.

Proof: By strong induction in [. For [= 1
the rules imply that p will only forward €
through a message with TTL = 0 addressed
to succ(p,1). As this message should be sent
at the end of the current @ interval, succ(p,1)
will acknowledge € at most ® secs after p
had acknowledged it, making the average time
for peers in stretch(p,1) = {p,succ(p,1)} to
be Tiyne = (©+0)/2 = ©/2 (at most). So the
claim holds for / = 1.

For [> 1, the rules imply that p will
forward € through / messages at the end of
the current ® interval, each one with a TTL

. XCrash!
P P

Figure 1: This figure shows a DIHT system with 11 peers (p = 4), where peer P, crashes and this event is
detected and reported by its successor P. The peers are represented in a line instead of a ring to facilitate the
presentation. In the figure, peers P; are such that P, = succ(P,i),1 <i <9. The figure also shows the TTL of

each message sent.

in the range 0 to /[— 1. In that way, after
® secs (at most) each peer p; = succ(p,2¥),
0 < k < I, will have acknowledged € with
TTL = k. Applying the induction hypothesis
to each of those / acknowledgements, we have
that each acknowledgment made by a peer py
will imply that all peers in stretch(py,2F —1)
will acknowledge € exactly once through a
message with TTL = k. Accounting for all
[— 1 acknowledgments made by the peers
Pk, and remembering that rule 8 will prevent
€ to be acknowledged twice by any peer in
stretch(p,2P — n), we will have that € will
be acknowledged exactly once by all peers in
stretch(p,2! —1). As, according to the induc-
tion hypothesis, none of those peers will for-
ward € to a peer outside this range, € will not
be acknowledged by any other peers in the sys-
tem. The also assures that the average time
for the peers in each stretch(py,2F — 1) to ac-
knowledge € will be k- ®/2 secs (at most) af-
ter the respective peer p; had acknowledged it,
which will lead to Ty, =1- 0O /2 (at most) for
peers in stretch(p,2! —1). [

Applying Theorem 3.1 and the EDRA
rules to a peer join (or leave) that was ac-
knowledged by its successor p, we will have
that this event will be further acknowledged
exactly once by all peers in stretch(p,n —

1)) = D. Besides, the average acknowledge
time will be p - ®/2 secs (at most). We can
also show that the last peer to acknowledge the
event will be succ(p,n—1), p - © secs after p
had acknowledged the event.

Figure 1 shows how EDRA disseminates
information about events and illustrates the
properties that Theorem 3.1 has proved. The
figure presents a DIHT system with 11 peers
(p = 4), where peer P, crashes and this event
€ 1s detected and reported by its successor
P. The peers are shown in a line instead of
a ring to facilitate the presentation. Note that
P acknowledges € after Ty....; secs (rule 5)
with TTL = p (rule 6). According to rules
3 and 7, P will then forward € with p =
4 messages addressed to P, = succ(P,2°),
P, = succ(P,2"), Py = succ(P,2%), and Py =
succ(P,2%), as represented by the solid arrows
in the figure. Peers P, P4, and P will ac-
knowledge € with TTL > 0O (rule 2) and so
those peers will forward € with messages ad-
dressed to Py = succ(P»,2°), Ps = succ(Py,2°),
Ps = succ(Py,2"), and Py = succ(Ps,2°) repre-
sented by the dashed arrows in the figure. As
Ps will acknowledge € with TTL = 1, it will
further forward it to Py = succ(Ps,2°) (doted
arrow). Note that rule 8 prevents P to for-
ward € to succ(Py,2") and succ(Ps,2%), which
in fact are P and P, avoiding these two peers

to acknowledge € twice.

3.3. Load Balance and Performance

Theorem 3.1 not only proves that all
peers will receive the necessary information
to maintain their routing tables in logarithmic
time, but also assures that no peer will receive
redundant information. These results confirm
that EDRA makes good use of the available
bandwidth and provide perfect load balance in
terms of incoming traffic.

As no peer will exchange maintenance
messages with any other peer outside D, we
may assert that the average outgoing and in-
coming bandwidth requirements are the same,
as well as the total number of messages sent
and received. On the other hand, at first glance
EDRA seems not to provide good balance
in terms of outgoing traffic. For instance, an
event € with a peer p will be reported by its
successor pg through p messages, while pg’s
successor will not even send a single message
reporting €. It is easy to show that in rela-
tion to the outgoing traffic to report one event,
the maximum load will be on the successor of
the peer that the event occurred, and it will
be O(log(n)) greater than the average load.
However, this punctual load imbalance is not
a main concern, as our target is large and dy-
namic systems, in which several events hap-
pen at every second, so that we should not be
too concerned with the particular load that is
generated by a single event. Nevertheless, we
must guarantee good balance in respect to the
aggregate traffic that is necessary to dissemi-
nate information about all the events as they
happen.

In a DIHT system the load balance in
terms of number of messages and outgoing
bandwidth will rely on the random distribution
properties of the hashing function it uses. The
chosen hash function is expected to randomly
distribute the peers IDs along the ring, which

can be accomplished by using a cryptographic
hash function such as SHA-1[26]. Then, as in
many other studies (e.g. [7, 9, 16, 18, 19, 21,
23, 33, 41]), we will assume that the events are
oblivious to the peers IDs, leading to a ran-
domly distributed rate of r events per second
in the system, and so the average amounts of
incoming and outgoing traffic per peer will be
(including message acknowledgments):

(2-Npggs - v+r-m-0)/O bits/secs (3.1)

where Ny5g5 1s the average number of mes-
sages a peer sends (and receives) per ® inter-
val, m is the average number of bits necessary
to describe an event, and v is the bit overhead
per message.

We should point out that Equation 3.1 does
not require r to be fixed. In fact, r will vary
even in our simplest approach, since we will
assume that the dynamics of a given DIHT
system can be represented by its average ses-
sion length S, as in [9]. Here we refer to ses-
sion length as the amount of time a peer is con-
tinuously connected to the DI1HT system, i.e.,
the amount of time between a peer join and
its subsequent leave. As each peer will gener-
ate two events per session (one join and one
leave), the event rate can be calculated as fol-

lows:
r=2-n/Suyg (3.2)

Since the average session lengths of a
number of different P2P systems have already
been measured [3, 39], the equation above al-
lows us to calculate event rates that are repre-
sentative of widely deployed P2P applications.

According to Equation 3.2, r is directly
proportional to the system size. A more realis-
tic assumption would consider that the average
session length itself varies with time, in order
to address dynamics where, for example, the
average session length during the day is differ-
ent from that observed at night. In Section 4.2,
we will show that EDRA can adapt to varia-
tions in r in order to ensure a maximum frac-

tion of routing failures, even when the system
dynamics change over time, and in Section 5,
we will study the D1HT overheads for differ-
ent values of .

3.4. Number of Messages

Equation 3.1 requires us to know the av-
erage number of messages a peer sends and
receives, which is exactly the purpose of the
following theorem we will demonstrate.

Theorem 3.2. The set of peers S for which

a generic peer p acknowledges events with
TTL > 1 is such that |S| = 2P~L.

Proof: By induction on j, where j = p —[.
For j = 0, rule 2 assures that there is no mes-
sage with TTL > | = p. Then the only events
that p acknowledges with TTL > p are those
related to its predecessor (rule 6), and so S =
{pred(p,1)} which leads to || =1 =2° =
2P,

For j > 0,l=p —j<p.AsSis the set of
peers for which p acknowledges events with
TTL > [, we can say that § = §1US2, where
S1 and S2 are the sets of peers for which p ac-
knowledges events with TTL=1and TTL >]
respectively. From the induction hypothesis,
we have that [$2| = 2°~(+1)_ A5 [< p, S1
will not include the p predecessor (rule 6) and,
as rule 7 assures that p only receives message
with TTL = [from a peer k, k = pred(p,2!),
we have that S1 will be the set of peers for
which k forward events through messages with
TTL = [. From rule 3, we then have that S1
is the set of peers for which k acknowledges
events with 7TL > [and, as the induction hy-
pothesis also applies to the peer k, we have that
51| = 2°~(+1)_ From Theorem 3.1 we know
that any peer p acknowledges each event only
once, assuring that S1 and S2 are disjoints and
50 |S] = |S1| 4 |S2| = 2P~ (U+1) 4 2p=(H1) —
2P,]

Rules 3 and 4 assure that a peer p will only

send a message with TTL =1 > 0 if it ac-
knowledges at least one event with TTL > [+
1. Based on Theorem 3.2 we can then say that
p will only send a message with TTL=1>0
if at least one in a set of 2°~/~! peers suffers
an event. As the probability of a generic peer
to suffer an event in a @ interval is @ - r/n,
with the help of Equation 3.2 we can assure
that the probability P(I) of a generic peer to
send a message with TTL = [> 0 at the end
of each O interval is:

P(l) =1 — (1 —20/Suyg)", where k =2°P~~!
3.3)
As the message with T7TL = 0 will be sent in
every O interval, we will then have that the av-
erage number of messages sent (and received)
by each peer per © interval is:

p
Niggs =1+) P(I) (3.4)
=2
Equations 3.1, 3.3, and 3.4 allow us to calcu-
late the average amount of maintenance traffic
per peer based on the rate of events r, the sys-
tem size n, and the duration of the ® interval.

4. Practical Aspects

In this section, we will show how EDRA
performs in the presence of message delays
and asynchronous intervals, and how it can be
tuned to adapt to changes in the network dy-
namics. We will also present the Quarantine
mechanism to minimize the DIHT system’s
overheads caused by volatile peers.

4.1. Message Delays and Asynchronous Inter-
vals

In Theorem 3.1, we did not consider the
effects of message delays and asynchronous ®
intervals, so we will turn to them in this sec-
tion.

Figures 2 and 3 show timelines represent-
ing the propagation of an event € in ideal cir-

Pa ©® interval © interval | © interval |
HE
4
Po | O interval O interval | © interval |
HE
A
Pe ® interval ® interval © interval |
time
0 (€] 20 30

Figure 2: Propagation of an event € with syn-
chronous @ intervals and in the absence of message
delays.

Pa O interval | © interval | © interval |
%
h |
Po | ® interval | ® interval | ©® interval |
.‘.’g
4
Pe | O interval | © interval | © interval |
time‘
0 o 20 30

Figure 3: Propagation of an event € with asyn-
chronous O intervals and message delays.

cumstances and in the presence of message
delays and asynchronous © intervals. Each of
those two figures illustrates three © intervals
for each peer. Figure 2 shows the ideal situa-
tion where there is no message delay and the
O interval of all peers starts simultaneously,
and the dotted arrows indicate the messages
reporting €. In this hypothetical situation, each
peer will add exactly ® secs on the propaga-
tion time for &, leading to Ty, = p - ©/2 secs,
as shown in Theorem 3.1.

Figure 3 illustrates a typical situation
where the various © intervals are not syn-
chronized and each message suffers a delay.
We will consider an average message delay
Ouvg for the whole system (which includes the
average time spent with retransmissions). In
this case, on average each message will take
Ouvg secs to reach the target peer and will ar-
rive at the middle of the ® interval. So, each

peer in the event dissemination path will add
Ouvg + ®/2 secs on average to the event prop-
agation time, leading to the adjusted value
Tusyne = P - (2 8avg + @) /4 secs. Note that
Tisyne has not yet considered the time to detect
the event. As a peer will take up to Tj.ecr SECS
to detect an event in its predecessor, the aver-
age acknowledge time will be Tyerecr + Tusyne
secs after the event had happened.

(From now on, we will consider that
Tietec: = 20, which reflects the case where af-
ter one missing message with 7TL = 0, a peer
p will probe its predecessor p, and, once it
has confirmed that the p, had left the system,
p will report p,, failure at the end of the next
® interval. So we can calculate the expected
average acknowledge time for any event:

Tig=2-0+p - (O+2-04)/4secs (4.1)

Equation 4.1 is conservative since it only con-
siders the worst case of peer failures, while
Tyetec: = 0 for joins and voluntary leaves.

4.2. Tuning EDRA

By following the results as presented in
[9], in this section we will show how to tune
the event detection and reporting algorithm
used by DIHT (EDRA) in order to assure that
a high fraction of lookups (e.g. 99%) will be
solved in the first attempt. In other words, our
goal will be to assure that the fraction of the
routing failures is below an acceptable maxi-
mum f as defined by the user (e.g. f = 1%).

As the lookups are solved with just one
hop, to achieve f it is enough to assure that the
hops will fail with probability f at most. As-
suming that the lookup targets are randomly
spread along the ring (as in many other stud-
ies, e.g. [7,9, 18, 19, 22, 25, 33, 41]), the av-
erage fraction of routing failures will be a di-
rect result of the number of stale routing ta-
bles’ entries. In that manner, to satisfy a pre-
defined average fraction of routing failures f,

it suffices® to assure that the average fraction
of stale routing table entries is kept below f
[9].

As the average acknowledge time is Ty,
the average number of stale entries in the rout-
ing tables will be given by the numbers of
events occurred in the last 7;,, seconds, i.e.,
Tayg - 1, where once again r is the event rate
(events per seconds). This implies that to ac-
complish a given f we should satisfy the in-
equality Ty, - 7/n < f. In order to minimize
the bandwidth overheads we should maximize
® (according to Equation 3.1), and, with the
inequality above and Equations 3.2 and 4.1,
we have that the maximum value of ® to sat-
isfy a given f will be:

2 f Sug—2P " Sang

)
8+p

secs 4.2)

where both S,,, and 8,,; should be expressed
in seconds.

As we have already pointed out in Sec-
tion 3.3, it is not reasonable to expect r to be
constant, and Equation 4.2 provides a way for
EDRA to adapt to changes in the system dy-
namics, as it allows each peer to dynamically
calculate ® based on the rate of events that is
observed locally. Note that, based on the re-
sults presented in Section 3, we should expect
that any change in the system dynamics will
take up to p - ® seconds to be observed by all
peers, which may lead to some peers to use
different values for ® for this short period of
time.

4.3. Quarantine

In any DHT system, peer joins are costly
as the joining peer has to collect information

3In fact it is another conservative assumption. Since
each key is replicated along p consecutive peers, the
lookup will probably succeed in the first attempt even if
the peer issuing the lookup is not aware of the joining
of up to p — 1 consecutive peers.

10

about its keys as well as the necessary IP ad-
dresses to fill in its routing table, and this
joining overhead may be useless if the peer
quickly departs from the system. This prob-
lem is aggravated in the case of single hop
DHTs, as any join or leave should be acknowl-
edged by the whole system. On the other hand,
P2P measurement studies [4, 39] have shown
that the statistical distributions of peer session
lengths are usually heavy tailed, which means
that peers that are connected to the system for
a long time are likely to remain alive longer
than newly arrived peers. To address those is-
sues we proposed a Quarantine mechanism,
where a joining peer will not be granted to
immediately take part of the DIHT overlay
network, though it will be allowed to perform
lookups at any moment.

In the basic DIHT joining mechanism, a
joining peer p retrieves the keys and IP ad-
dresses not only from its successor but also
from a number of nearby peers (as described
in Section 2). With Quarantine, these nearby
peers will simply wait for a quarantine period
T, (which can be fixed or dynamically tuned)
before sending the keys and IP addresses to
P, postponing its insertion in the DIHT over-
lay network. While p does not receive its keys
and the necessary IP addresses, its join will not
be reported and it will not be responsible for
any key, but p will already be able to perform
lookups by forwarding them to one of those
nearby peers.

With the Quarantine mechanism just de-
scribed, we avoid the join (an leave) overhead
for peers with session lengths smaller than
T, but newly incoming peers will have their
lookups solved with two hops while they are in
quarantine. We believe this extra hop penalty
should be acceptable for several reasons. First,
because the additional hop should have low la-
tency, as it will be addressed to a nearby peer.
Second, because this extra overhead will only
be necessary during a short period (e.g. 5%

of the average session length). Third, because
even the volatile peers will benefit from Quar-
antine, as they will not incur in the overhead of
transferring the keys and routing table. Fourth,
we expect Quarantine to significantly reduce
DIHT maintenance overheads (as it will be
shown in Section 5.4), which will benefit all
peers in a system.

The overhead reductions brought by Quar-
antine can be analytically quantified based on
the the Quarantine period and session lengths
statistical distributions for the system. Note
that in a system with n peers, only the g peers
with session lengths longer than 7, will ef-
fectively take part of the overlay network and
have their events reported. We can quantify
this overhead reduction in a D1HT system by
replacing n by ¢ in Equation 3.2, leading to:

r=2-q/Say

As the results from all other equations
presented do not depend on n, they remain
valid with Quarantine. We should point out
that, while Quarantine can be used with other
DHTs, the analysis here presented is only valid
for D1HT.

Besides the maintenance overhead reduc-
tions, the Quarantine mechanism can be used
for other purposes. For instance, we can im-
prove the system robustness against malicious
attacks if we allow 7, to be dynamically
tuned in a way that suspicious peers will take
longer to be fully accepted in the system, and
each peer behavior can be monitored during
its quarantine. We can also use Quarantine
to minimize sudden overheads due to flash
crowds, as we can trivially increase 7; when-
ever the event rate reaches a limit that can be
comfortably handled by the system.

(4.3)

4.4. Implementation Issues

There are several practical situations re-
lated to the interplay of message delivery with
either peer failures or admission of new peers,

11

which can stale routing table entries and lead
peers to miss events. Although the DHIT sys-
tem will eventually update the routing table
entries, such situations may degrade perfor-
mance of DHIT lookups. In this section, we
address DHIT implementation issues that one
needs to take care in order to reduce stale rout-
ing table entries.

A typical situation occurs when a peer
p fails after receiving and acknowledging a
maintenance message from another peer p,,
and this failure happens before p had for-
warded the events received. Once p, will re-
ceive a message acknowledgment from p, it
will not try to retransmit this message, and as
p will fail before forwarding the events, the
propagation chain for these events will be par-
tially broken, and they will not reach some
peers of the system. This issue can be ad-
dressed by the implementation of the algo-
rithm in several ways. For example, for mes-
sages with TTL > 0, p could postpone the
message acknowledgment to p, in order to
only send it after forwarding the events re-
ceived from p,. But this approach will not
cover all situations, and a more complete solu-
tion would require any peer to send two mes-
sage acknowledgments for any maintenance
message with TTL > 0, one just after receiv-
ing the message, and the other after forward-
ing its events. In this case, we should mod-
ify the bandwidth overheads given by Equa-
tions 3.1 and 3.4 in order to compute those ex-
tra acknowledgments. It is important to note
that this same problem may happen with many
other DHTs. For example, failures of unit and
slice leaders in OneHop may lead to the loss
of several events, but this overhead is not com-
puted in its published analytical results [9].

Another situation may occur whenever the
system admits new peers. Take for example
the system shown in Figure 1. It is easy to
see that if a peer Py, joins this system in be-
tween P; and Pg just after P had forwarded &,

this event will not reach P;,. But this problem
can be solved by the implementation with min-
imum overhead in a number of ways. For ex-
ample, if each peer pgy,y includes in the header
of the messages with TTL = [the address of
succ(Pany,271), 0 <1 < p. In that way, the re-
ceiving peer (succ(pany, 2')) will be able to re-
alize that it should forward the events received
through this message to all peers in the range
[succ(pany,2' +1) .. succ(pany,2!™1)), and
adjust the number and TTLs of the messages
to send. In the example mentioned, P; would
then be able® to realize that & should be for-
warded to Py,,.

To better understand these and other prac-
tical problems that may happen, we plan to de-
velop a full implementation of D1HT, which
will allow us to quantify the overheads in-
volved and study several implementation al-
ternatives to deal with them. Anyway, there
are a number of different situations that can
lead to stale routing table entries, and we will
not be able to completely remedy all of them.
Because of that, as in many other systems
(e.g. [9, 10, 20, 24]), any D1IHT implemen-
tation should be done in a way to allow the
peers to learn from the lookups and mainte-
nance messages in order to perform additional
routing table maintenance without extra over-
heads. For example, a message received from
an unknown peer should imply in its insertion
in the routing table. In the same way, routing
failures will provide information about peers
that had left or joined the system.

5. Analysis

In this section, we will quantify the
amount of bandwidth required to maintain the
routing tables in D1HT, and compare those
numbers with the one hop DHT (OneHop) re-

6P, and Pg should be the first peers to know about
Py, joining, in order to allow for its correct insertion in
the ring.

12

sults as presented in [9]. We will briefly de-
scribe the OneHop system in Section 5.1 and
present the methodology in Section 5.2. In
Section 5.3 we will compare OneHop against
DIHT and in Section 5.4 we will present an
extended D1HT analysis.

5.1. The OneHop DHT

The OneHop system[9] was the first pro-
posed DHT to assure that a high fraction of
the lookups are solved with only one hop. As
in D1HT, the lookups in OneHop take just one
hop, as every node has the IP addresses of ev-
ery other node in the system. In contrast to the
pure P2P D1HT approach, the dissemination
of the events in OneHop is based on a hier-
archy, where the nodes’ are grouped in units,
which in turn are grouped in slices. As each
unit and slice has a leader, the imposed hier-
archy divides the nodes in three levels: slice
leaders, unit leaders, and ordinary nodes.

Each unit leader is in charge of collect-
ing information about all events in its unit
and forwarding them periodically to its slice
leader. The slice leader groups the events from
its various units and periodically sends mes-
sages to the other slices leaders reporting the
events that happened in its own slice. Each
slice leader will then acknowledge the events
that happened in every other slice, and will pe-
riodically send one message to each of its unit
leaders reporting those events. Finally, each
unit leader propagates the information it re-
ceived to the nodes in its own unit. More de-
tails about the OneHop DHT can be found in

[9].

5.2. Methodology

The evaluations of both D1HT and One-
Hop presented here are based on analytical
results. The DIHT results are derived from

7 As it imposes a hierarchy among the nodes, we will
avoid the term peer for OneHop.

Parameter | OneHop DI1HT Description
n [10°,10%] | [10°,10°], [10%,107] | Number of nodes in the system.
Savg 174 60, 174, 300, 780 | Average session duration in minutes.
v 160 160 Overhead per message (headers, etc.), in bits.
m 80 80 Number of bits necessary to describe an event.
f 1% 1%, 5%, 10% Maximum acceptable fraction of routing failures.
Ouvg - 0.280 Average message delay in seconds.

Table 1: Parameters we used in our analysis. The underlined values were used only in Section 5.4.

Equations 3.1, 3.2, 3.3, 3.4 and 4.2. For One-
Hop we will present the analytical results re-
ported in [9], which do not consider messages
delays nor the overheads caused by slice and
group leaders failures. In contrast, the DIHT
results presented are based on proven proper-
ties and do consider messages delays and fail-
ures of any type of node. The results from both
systems assume that the events and lookup tar-
gets are randomly distributed along the ring.

The results were obtained with the param-
eters listed in Table 1 (the D1HT’s underlined
values will only be used in Section 5.4). For
simplicity we will express the S,,, values in
minutes or hours instead of seconds. To assure
fairness, the parameters used in Section 5.3 for
both systems were taken from [9], where the
average session duration was based on a study
of Gnutella behavior[39]. The only exception
is Ouvg, as the OneHop results do not consider
message delays. For DIHT we used 0.280 secs
for 0,4, (Which already incorporates the aver-
age overhead due to message retransmissions),
which is quite conservative in relation to the
results presented in [39], where 80% of the
measured Gnutella latencies were below 280
ms. As in [9], the event rates were based on
the average session length S,,,, according to
Equation 3.2. Except for the bandwidth re-
quirements plotted in Figure 9, all DIHT re-
sults presented in our analysis were obtained
without the Quarantine mechanism.

We should point out that while results
based on simulations or real implementations
are usually the preferred choice for systems

13

evaluation, we argue that in our case the an-
alytical results have special value, as they al-
low the study of very large systems. Note that
it is not feasible to implement or even sim-
ulate a system with millions of peers just to
evaluate a new proposal. In fact, so far most
DHT evaluations based on real implementa-
tions used a hundred physical nodes at most
(e.g. [7, 12, 32, 33, 43]), while the DHT sim-
ulations presented are usually restricted to a
maximum of 20K nodes (e.g. [7, 9, 10, 12,
18, 19, 20, 25, 30, 38, 41, 43]), and so they
are not representative of popular P2P systems,
which are able to support up to millions of
users [1]. On the other hand, we believe that
to be accepted as good estimates of real im-
plementations, the analytical results should be
based on proven properties and consider the
most common and important real world prob-
lems, such as messages delays and retransmis-
sions, which is the case with the D1HT results
presented in this paper.

5.3. Comparative Analysis

In this section, we will study the outgoing
maintenance bandwidth demands of DIHT
and OneHop analytically. We will compare the
demands of a DIHT peer without Quarantine
against those of the best (ordinary nodes) and
worst (slice leaders) OneHop cases.

We limited our comparison to system sizes
in the range [105, 106], since it was the inter-
val with analytical results as reported in [9].
The OneHop analytical outgoing bandwidth

1000

6neHop slice leader ——
— OneHop ordinary node ---©-- «
a D1HT peer —® KK
k) ¥
£ 100 *
=
E ¥ O,,VO o0 Q
3 o0 .
2 10 . : o
] . Ney - L |
2 e]
£ o
3 n

]

100 1000

Number of nodes (thousands)

Figure 4: Outgoing bandwidth demands for One-
Hop (ordinary node and slice leader) and a D1IHT
peer.

requirements reported for ordinary nodes and
slice leaders were respectively 3.84 kbps and
35 kbps for n = 10°, raising linearly up to 38
kbps and 350 kbps for n = 10° [9]. Those re-
sults are plotted in Figure 4 (both axes are log-
arithmic), as well as the requirements for a
DI1HT peer.

Figure 4 shows that the outgoing band-
width requirements for an OneHop ordinary
node and a slice leader are at least twice and
one order of magnitude higher, respectively,
than those from a DIHT peer, even without
Quarantine. For example, for n = 10° the de-
mands for a DIHT peer, a OneHop ordinary
node, and a slice leader are 1.8 kbps, 3.8 kbps,
and 35 kbps respectively, growing to 16 kbps,
38 kbps and 350 kbps, in that order for n =
10.

5.4. Extended Analysis

In this section, we will study the DIHT
sensitivity to variations in some analysis pa-
rameters according to the underlined values
in Table 1. We will also study the Quarantine
mechanism presented in Section 4.3, and ex-
tend the range of system sizes to [10% 107,
which are representative of current popular
P2P systems like Gnutella, FastTrack, Overnet
and eDonkey [1].

In the previous section, we showed both

14

1000

Savg= 60mM —x—
—~ SoveEL74m - *
2 Save=300m = 7
g Savg=780m - o
£ 100 _ o
kel P
E e
c e ',,«A
< P
o - o
g 1 ———w
& s .
3 .
5] X
.
1 w n

10 100 1000 10000

Number of peers (thousands)

Figure 5: DIHT peer bandwidth demands for f = 1%
and different S, values.

DIHT and OneHop requirements for systems
with 2.9 hours of average session duration,
as it was the value used in [9] based on the
Gnutella behavior. However, recent measure-
ments [2, 3] have shown that other systems
have much less dynamics, as the measured
average session length for BitTorrent was 13
hours [3]. On the other hand, we believe that
a DHT system should also be prepared to face
systems with smaller session lengths as well.
To analyze those issues we studied the main-
tenance bandwidth requirements for a D1IHT
peer in systems with average sessions of 60,
174, 300, and 780 minutes. Besides being rep-
resentative of widely deployed P2P applica-
tions such as Gnutella and BitTorrent, that
range of values is more comprehensive than
the ones used in most published DHT eval-
uations (e.g. [9, 18, 19, 20, 25]). Figure 5
plots those bandwidth requirements, omitting
the results below 1 kbps as the axes are loga-
rithmic. The figure shows that DIHT’s band-
width requirements are roughly linearly de-
pendent on both the system size and the in-
verse of average session length. For example,
the requirements for a DIHT peer in systems
with n = 10° and average sessions of 60, 174,
300, and 780 minutes are respectively 5 kbps,
1.8 kbps, 1.1 kbps, and 0.4 kbps, growing to
45 kbps, 16 kbps, 9 kbps, and 3.5 kbps in that
order for n = 10°%. Considering that back in

1000

100

messages/minute

10

10 100 1000
Number of peers (thousands)

Figure 6: Average number of messages sent by a
D1HT peer for f = 1% and different S,,, values.

18

Theta interval duration (secs)

100 1000
Number of peers (thousands)

10

Figure 8: Duration of the ® interval in seconds for f =
1% and different S, values.

2004 the average peer download speed of pop-
ular P2P systems like BitTorrent was already
240kbps[29], we believe those results show
that with the technology available today, the
DI1HT maintenance overheads are acceptable
for systems with S, as low as 60 minutes and
up to 100 thousand peers, while only systems
with S, larger than 300 minutes can support
the D1HT requirements for one million peers.

In Figure 6 we plot the average number
of messages sent per minute by a DI1HT peer,
according to the system size and the average
session length. The figure shows that the num-
ber of messages sent is linearly proportional to
both n and S,,,. For most combinations stud-
ied a DI1HT peer sends less than one message
per second, which is quite reasonable.

Figure 7 shows DIHT’s bandwidth re-
quirements for different values of f. The val-
ues for n = 10* are less than 1 kbps and are

15

1000

f= 1% ——
f= 5% @
f=10% -

100

10

Outgoing bandwidth (kbps)

1000 10000

Number of peers (thousands)

100

Figure 7: DIHT peer bandwidth demands in kbits/sec
for S4vy = 2.9 hours and different values of f.

1000

with Quarantine —x—
without Quarantine -

¥o

100

10

Outgoing bandwidth (kbps)

1000 10000

Number of peers (thousands)

100

Figure 9: Bandwidth requirements for DIHT systems
with and without Quarantine (7, = 10 min).

not shown in the graph as the axis is logarith-
mic. We notice small variations in bandwidth
demands for different values of f in the inter-
val of system sizes studied. For instance, with
n=10° the requirements for f = 1%, 5%, and
10% are 16 kbps, 15 kbps, and 15 kbps, re-
spectively. Those results indicate that it is not
the case to increase f in order to reduce the
bandwidth requirements.

We will now analyze the values of O that
are required for DIHT to comply with f = 1%,
as ® should be bigger than the average mes-
sage delay in order to allow a peer to correctly
detect its predecessor failure. Figure 8 shows
the O values that are necessary to achieve f =
1% for some values of S,,,. We see that val-
ues of @ well above 1 sec are enough to sat-
isfy f = 1%, even for systems with 10 million
peers and one hour average session length.

The analysis of the Quarantine mechanism

will be based on the Gnutella measurements
presented in [4]. Those results are coherent
with those reported in [39] and show that 31%
of the Gnutella sessions last less than 10 min-
utes, which is a convenient value for the Quar-
antine period 7;. Figure 9 plots the mainte-
nance bandwidth requirements for DIHT sys-
tems with dynamics similar to Gnutella with
and without Quarantine, according to Equa-
tions 4.3 and 3.2 respectively, where T, = 10
min and g = 0.69 - n. The other parameters are
the same as used in Section 5.3. As we ex-
pected, the maintenance overhead reductions
are close to 31%, showing the effectiveness of
our Quarantine mechanism.

6. Related Work

Rodrigues et al[36] proposed a single hop
DHT in a complete different context from
ours, as their system was based on dedicated
servers arranged on a two level hierarchy,
while DIHT uses a pure P2P approach and
targets common client peers. Their main goal
was to obtain robustness against malicious net-
work attacks, and the option for a single hop
system was in fact a consequence of the ex-
pected low event rate, which in turn was due to
the use of dedicated servers. Besides, their sys-
tem was not able to guarantee an upper bound
on the number of routing failures, the events
were reported using a gossip method, and no
performance analysis or evaluation was pre-
sented. In contrast, DIHT aims to provide a
pure P2P single hop DHT that could be built
from non dedicated and volatile client peers
and yet be able to support single hop lookups
in very dynamic environments.

DI1HT assures that a large fraction of the
lookups takes just one hop even for very large
and dynamic systems. In contrast, a number
of systems[10, 22, 25, 30] solve the lookups
with a constant number of multiple hops and
are not able to ensure an upper bound on the

16

number of routing failures. In addition, those
systems differ from D1HT in other important
aspects. Kelips[10] maintains routing tables
with O(y/n) IP addresses to solve the lookups
with two hops and uses a gossip mecha-
nism to disseminate the information about the
events. In contrast to DIHT pure P2P archi-
tecture, LH*[22] divides the nodes in clients
and servers, and solves the lookups with up
to three hops. Structured Superpeers[25] im-
plements a hierarchical topology with intrinsic
load balance issues to solve lookups with three
hops, while D1HT uses a well balanced pure
P2P approach. Beehive[30] is not a DHT by
itself, but a replication framework that can be
applied to DHTs in order to reduce the number
of hops for popular keys.

There is a number of systems, including
Chord[41] and SkipNet[11], where each peer
uses pointers to nodes (fingers) with 2/ dis-
tances (usually 0 < i < log(N)), but those
pointers are used only to route the lookups
in O(log(n)) hops. In contrast, DIHT uses
its 2/ pointers solely for event reporting. Be-
sides, those systems were not able to assure
an upper bound in the number of routing fail-
ures and solve the lookups with multiple hops,
while DIHT assures that a high fraction of the
lookups takes just one hop. To the best of our
knowledge, there is no DHT system proposed
so far that uses an event reporting algorithm
similar to EDRA.

Accordion[20] also addresses the trade-
off between lookup latency and bandwidth re-
quirements, but its approach is quite different
from ours. Accordion implements some very
clever adaptation techniques that aim to speed
up the lookup performance under pre-defined
bandwidth restrictions, but it is not able to en-
force a maximum fraction of the routing fail-
ures. DIHT aims to provide the best lookup
performance, but it seeks to minimize band-
width overhead and adapts to the system dy-
namics in order to comply with a pre-defined

upper bound on the number of routing fail-
ures. Besides, DIHT has proven correctness
and load balance properties.

Although using a hierarchical approach -
in contrast to DIHT pure P2P architecture -
the OneHop system [9] is the most similar to
ours, as it was the first DHT that was able
to assure that a large fraction of the lookups
takes only one hop, even in dynamic systems.
In this paper, we compared this system against
D1HT, and showed that D1HT is able to pro-
vide superior maintenance load balance and
has bandwidth requirements up to one order
of magnitude smaller.

7. Conclusion

In this paper, we introduced D1HT, a novel
single-hop distributed hash table that is able to
1) assure that a large fraction of the lookups
are solved with one hop (e.g. 99%); 2) de-
mand low bandwidth overheads; 3) provide
good balance of the maintenance traffic among
the peers; and 4) adapt to changes in the sys-
tem dynamics. We proposed and formally de-
scribed the Event Detection and Dissemina-
tion Algorithm (EDRA) used by D1HT, and
proved its correctness and performance prop-
erties.

We presented performance analyses show-
ing that DIHT has at least twice and up to one
order of magnitude less maintenance band-
width requirements than those of nodes in
previous single-hop DHT. Our analysis also
showed that D1HT has reasonable bandwidth
demands even for huge systems with dynam-
ics similar to those of popular P2P applica-
tions. More specifically, our results showed
that DIHT requires only 3 kbps of mainte-
nance overhead in huge systems with one mil-
lion peers and dynamics similar to that of Bit-
Torrent, a widely deployed P2P application
with an average download speed of 240 kbps.
We also presented a Quarantine mechanism

17

that reduces the overhead caused by volatile
peers and may help to prevent malicious at-
tacks to the system.

Acknowledgements

The authors would like to thank Ricardo
Bianchini for his helpful comments.

References

[1] www.slyck.com/stats.php, Oct 2005.

[2] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and
M. Ripeanu. Influences on cooperation in BitTorrent
communities. In Proc. of the 3rd SIGCOMM Workshop
on Economics of P2P Systems, Aug 2005.

A. Bellissimo, P. Shenoy, and B. Levine. Exploring the
use of BitTorrent as the basis for a large trace reposi-
tory. Technical Report 04-41, Department of Computer
Science, U. of Massachusetts, Jun 2004.

J. Chu, K. Labonte, and B. Levine. Availability and
locality measurements of peer-to-peer file systems. In
Proc. of SPIE, Jul 2002.

L. Cox and B. Noble. Pastiche: Making backup cheap
and easy. In Proc. of OSDI, Dec 2002.

R. Cox, A. Muthitacharoen, and R. Morris. Serving
DNS using Chord. In Proc. of IPTPS, Mar 2002.

F. Dabek, M. Kaashoek, D. Karger, R. Morris, and
L. Stoica. Wide-Area cooperative storage with CFS. In
Proc. of SOSP, Oct 2001.

P. Fraigniaud and P. Gauron. The content-addressable
network D2B. Technical Report LRI-1349, Universie
de Paris Sud, Jan 2003.

A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing
for peer-to-peer overlays. In Proc. of NSDI, Mar 2004.

I. Gupta, K. Birman, P. Linga, A. Demers, and R. van
Renesse. Kelips: Building an efficient and stable P2P
DHT through increased memory and background over-
head. In Proc. of IPTPS, Feb 2003.

N. Harvey, M. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with
practical locality properties. In In Proc. of the 4th
USITS, Mar 2003.

R. Huebsch, J. Hellerstein, N. Boon, T. Loo, S. Shenker,
and I. Stoica. Querying the internet with PIER. In /In-
ternational Conference on Very Large Databases, Sep
2003.

M. Kaashoek and D. Karger. Koorde: A simple degree-
optimal distributed hash table. In Proc. of IPTPS, Feb
2003.

D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for reliev-
ing hot spots on the world wide web. In Proc. of the
Symposium on Theory of Computing, May 1997.

A. Keromytis, V. Misra, and D. Rubenstein. SOS: An
architecture for mitigating DDoS attacks. Journal on
Selected Areas in Communications, Jan 2004.

B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-

(3]

(4]

(3]
(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]
(35]

(36]

Peer support for massively multiplayer games. In Proc.
of INFOCOM, Mar 2004.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture
for global-scale persistent storage. In Proc. of ASPLOS,
Nov 2000.

J. Li, J. Stribling, T. Gil, R. Morris, and F. Kaashoek.
Comparing the performance of distributed hash tables
under churn. In Proc. of IPTPS, 2004.

J. Li, J. Stribling, R. Morris, and M. Frans. A perfor-
mance vs. cost framework for evaluating DHT design
tradeoffs. In Proc. of INFOCOM, Mar 2005.

J. Li, J. Stribling, R. Morris, and M. Kaashoek.
Bandwidth-efficient management of DHT routing ta-
bles. In Proc. of NSDI, May 2005.

D. Liben-Nowell, H. Balakrishnan, and D. Karger.
Analysis of the evolution of peer-to-peer systems. In
Proc. of the 21st PODC, Jul 2002.

W. Litwin, M. Neimat, and Schneider D. LH* - a scal-
able, distributed data structure. ACM Transactions on
Database Systems, 21(4):480-525, 1996.

D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scal-

able and dynamic emulation of the butterfly. In Proc. of

the 21st PODC, Jul 2002.

P. Maymounkov and D. Mazieres. Kademlia: A peer-
to-peer information system based on the xor metric. In
Proc. of IPTPS, Mar 2002.

A. Mizrak, Y. Cheng, V. Kumar, and S. Savage. Struc-
tured Superpeers: Leveraging heterogeneity to provide
constant-time lookup. In Proc. of the 3rd Workshop on
Internet Applications, Jun 2003.

NIST. Secure Hash Standard (SHS). FIPS Publication
180-1, Apr 1995.

Overnet. www.edonkey2000.com.

C. Plaxton, R. Rajaraman, and A. Richa. Accessing
nearby copies of replicated objects in a distributed en-
vironment. In Proc. of SPAA, Jun 1997.

J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
Bittorrent P2P File-sharing System: Measurements and
Analysis. In Proc. of IPTPS, Feb 2005.

V. Ramasubramanian and E. Sirer. Beehive: O(1)
lookup performance for power-law query distributions
in peer-to-peer overlays. In Proc. of NSDI, Mar 2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In
Proc. of SIGCOMM, 2001.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: The Oceanstore prototype.
In Proc. of FAST, Mar 2003.

S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Han-
dling Churn in a DHT. In Proc. of the 2004 USENIX
Technical Conference, Jun 2004.

C. Riley and C. Scheideler. A distributed hash table for
computational grids. In Proc. of IPDPS, 2004.

R. Rodrigues and C. Blake. When multi-hop peer-to-
peer routing matters. In Proc. of IPTPS, Feb 2004.

R. Rodrigues, B. Liskov, and L. Shrira. The design of
a robust peer-to-peer system. In Proc. of the 10th ACM
SIGOPS European Workshop, Sep 2002.

18

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Rowstron and P. Druschel. Pastry: scalable, decen-
traized object location and routing for large-scale peer-
to-peer systems. In Proc. of Middleware, Nov 2001.

A. Rowstron and P. Druschel. Storage management and
caching in PAST, A large-scale, persistent peer-to-peer
storage utility. In Proc. of SOSP, Oct 2001.

S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of
SPIE/ACM MMCN, Jan 2002.

F. Schintke, T. Schutt, and A. Reinefeld. A framework
for self-optimizing Grids using P2P components. In
Proc. of the 14th IEEE DEXA, 2003.

I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. Frans Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: a scalable peer-to-peer lookup protocol for Inter-
net applications. IEEE/ACM Transactions on Network-
ing, Feb 2003.

J. Xu. On the fundamental tradeoffs between routing ta-
ble size and network diameter in peer-to-peer networks.
In Proc. of INFOCOM, Mar 2003.

B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and
J. Kubiatowicz. Tapestry: A global-scale overlay for
rapid service deployment. Journal on Selected Areas
in Communications, Jan 2004.

F. Zhou, L. Zhuang, B. Zhao, L. Huang, A. Joseph, and
J. Kubiatowicz. Approximate object location and spam
filtering on peer-to-peer systems. In Proc. of Middle-
ware, Jun 2003.

