An Interpretation-like Technique for
Monitoring x86 Code on an x86 Host Machine
(Revised Version)

Fabiano Ramos, Valmir C Barbosa, and Edil S T Fernandes
PESC — COPPE
Federal University of Rio de Janeiro
ramosf, valmir, edil@cos.ufrj.br
Relatorio Técnico ES-702/06

January 9, 2006

Abstract

Cache memories, out-of-order and speculative execution are remarkable
features incorporated to modern high performance microprocessors. How-
ever, these features prevent us from accompanying the activities that are oc-
curring inside the processor at each instant (i.e., it is very hard to guarantee
what is going on within the processor).

In this paper we describe our efforts to regain the control which was lost
in between the start and the end of application programs. We have developed
an interpretation-like technique that reproduces the execution environment
of binary code on x86 machines. This technique looks like an interpretation
process because it accompanies the execution of application programs —in an
interpretative fashion— investigating either general or specific peculiarities of
the binary code being monitored, and it leaves to the underlying hardware
the actual execution of the binary code.

Our technique is reliable and can be used for several purposes, as for
instance, to detect program bugs and self-modifying code. Besides describ-
ing the interpretation technique, the paper presents some algorithms to help
programmers to validate, assess, and debug their binary code. A study eval-
uating the efficiency of the technique during the characterization of integer
programs of the SPEC2000 suite is presented.

1 Introduction

The difference between processor and memory speeds, known as Memory Gap
Problem, has been increasing continuously (processor speed improves 60% per
year while memory speed increases no more than 10%). As mentioned by Wilkes
in [13], the “memory gap makes itself felt when a cache miss and the missing word
can be supplied from memory.” The memory gap problem becomes more visible
in current processors: “on a MIPS R10000, an L2 cache miss satisfied from the
main memory requires from 75 to 2,000 cycles while a TLB miss requiring the
virtual page to be loaded from the backing store, needs Hundreds of millions of
cycles” (see [1]).

Binary Interpretation has been used in the implementation of recent proces-
sors. Through “Binary Translation and Interpretation,” INTEL and AMD imple-
ment the x86 repertoire in their new processors. Transmeta on the other hand,
uses a software layer to achieve the compatibility between its VLIW architecture
and x86 processors [3, 5].

With the advent of superscalar processors and their scheme of out-of-order
and speculative execution, the identification and elimination of hardware/software
malfunctions are a very hard task.

From the software viewpoint on the other hand, despite all the innovations
introduced in the design of recent processors, there is a lack of corresponding tools
to debug the related application programs, and for this reason, “the debugging
scandal” described in [7] still holds today: as mentioned by P. Zhou et al. in a
recent work [4], the cost of software bugs is very high.

In addition to the implementation of processors, Binary Interpretation has also
been used in debugging. The Valgrind [11] is a remarkable example: it is an em-
ulator that reproduces the activities of an x86 processor. It helps to find memory-
management bugs, provides a report of the cache accesses, and so on. The author
of this tool, Julian Seward, was one of the winners of the “Open Source Awards
2004.” According to the author, a Valgrind’s shortcoming refers to the report of
the cache. It assumes that machine resources are not shared by other processes
and the kernel functions. In other words, the cache misses figures exhibited in the
report are approximated. Using Valgrind, N. Nethercote has finished finished his
Ph.D. thesis on dynamic binary analysis and instrumentation [8].

In this work we are concerned with the interaction between the Computer Ar-
chitecture and the application program. There are several architecture topics to
be investigated in this area, but industrial/commercial interests prevent the makers
to disclose important details of how their p—architecture works. For example, it

would be useful to know precisely how many speculative instructions were exe-
cuted and discarded because they belong to the wrong path. In other words, what
is the percentage of useless instructions which were executed? Is it worthwhile to
pay that price? Or would be better to have a more selective branch predictor to
decide whether the speculation mechanism should be activated?

In order to surmount this lack of information, a team at University of Illi-
nois developed the rePLay framework [9] which reproduces the behavior of In-
tel and AMD p—architectures (like the Pentium and Athlon). Using this frame-
work, the team conducted experiments with optimization of micro-operations and
found that a significant number of redundant micro-operations are executed by the
pu—machine because the x86 decoder ignores the current contents of the ISA x86
registers [12].

Our interpretation-like technique is an effort to provide a more suitable tool
to assess the effects provoked by code optimizers and hardware features on the
performance of computing systems. Our technique is non-intrusive and it accom-
panies the execution of a statically linked x86 binary, being unnecessary to re-
compile or relink the executable program. By deciding in favor of a non-intrusive
approach, we prevent the insertion of instrumenting instructions into the binary
code to be monitored, and for this reason, we are sure that its original behavior on
the host machine will be the same on our interpretative environment.

This interpretative environment handles x86-Linux executables programs and
is based on the pt r ace function of the Linux. We were benefited from the help
provided by the Linux-kernel team that introduced a patch fixing a problem we
had with the pt r ace function.

Interpreter

[\
{ o
I

x86 Code

Figure 1: Interpretation-like Diagram

The ptrace syscall allows a parent process to control the execution of another
process, watching and changing its core image and registers. In our implemen-
tation, the parent is the interpreter process and the child is the x86 code being
monitored. Figure 1 shows a diagram of our binary interpretation strategy.

As illustrated in Figure 1, our interpretation process uses the Linux kernel (via
the pt r ace function) to control the progress of the x86 code. In this way, we
explore the ptrace facility to switch the machine control between the interpreter
and the x86 code being monitored.

The paper is organized as follows. Section 2 provides an overview of the tech-
niques used in the work. Section 3 presents our interpretation-like method, and the
following section discusses some variations of the method. Section 5 describes
how the integer programs of the SPEC2000 were interpreted and characterized.
Section 6 concludes.

2 Overview

Before transferring the control to the code being monitored, the interpreter must
specify how long the child process should take the processor control each time it
is activated. This code portion of the monitored process can be: a single instruc-
tion; one basic block; the whole binary program; until the next control transfer
instruction; after the execution of a particular type of instruction; and so on. It is
up to the user to decide where the execution should be interrupted. Consequently,
our interpretation-like technique can also be used to detect software bugs.

In order to select the point in the original code where the control should be
transferred back to the interpreter, we must replace the op-code in that point by a
trap. Whenever the control flow reaches this trap, occurs a context switch to the
interpreter.

We will start by presenting the topics that are essential for our approach. Ba-
sically, they are related with the data structure that guides the interpretation; the
disassembly of the binary code (see [2, 10]), including the main obstacles present
in the x86 repertoire; and the more updated pt r ace function of the Linux used
in our implementation.

2.1 Code Description Structure

This structure is an array, and can be considered as an interpretation guider. It is
examined in order to find where the breakpoint (i.e., the trap op-code) should be

injected in the code. The structure describes the instructions of the x86 program,

and contains the following fields: for each byte of the t ext section there is an
entry on the array. Each entry has a copy of the corresponding byte of the instruc-

tion and other fields specifying if that byte of the executable is: the first, the last or
an intermediate byte of the instruction; idem for a basic block; and bookkeeping

fields (e.g., how many times the corresponding instruction was executed so far;
how many bytes the instruction has; how many instructions form the basic block,

and so on).

We decided to keep in the structure a copy of the t ext section because in
some cases we need to check the presence of self-modifying code. In this way,
whenever a new interpretation cycle starts, the instruction pointed by the program
counter (the “eip” register) is compared with the corresponding bytes in the struc-
ture.

An x86 instruction starts in any byte of the t ext and it can be formed from
one up to sixteen bytes. For this reason, the structure has fields telling what is the
position of the byte within the instruction (i.e., fields indicating start, intermediate,
and last byte of the instruction). The same applies for the fields related to a basic
block of the program.

2.2 x86 Code Disassembly

Before the interpretation, the fields within the description structure are fulfilled by
a disassembler. Most of the instructions and basic blocks can have their bounds
found by this static disassembler. However, there are instructions and basic blocks
that are impossible to disassemble statically. In these cases we leave to the inter-
preter this task. It is worthwhile to mention that disassembling a binary for CISC
machines is a very complex task: jump tables and other data may be mixed-up
with the instructions, confusing the disassembler and “silent errors” can be gener-
ated along the process [10].

2.3 Dynamic Disassembly

Static disassemblers cannot detect the target address of all branch instructions be-
cause some of them depend on the results produced at run time. It is essential
to find these target addresses because new basic blocks may be hidden, and dis-
closing their existence will make the guider structure much more precise. The
interpretation-like technique allows to fulfill some empty fields of those instruc-
tions (and basic blocks) that have been executed at least once by the x86 code.

5

In other words, our interpretation-like technique can play the role of a dynamic
disassembler as well.

3 Thelnterpretation-like Technique

As mentioned before, Linux provides a system call that allows a process to trace
the execution of another (i.e., the child process) leaving to the kernel the task
of activating/deactivating the child. We have specified two interpretation modes:
single-step and leap interpretation modes.

3.1 Interpretation Modes

Whenever the interpreter calls pt r ace() , the Linux sets the trap bit of ef | ags
register of the child and makes it runnable. After the child executes its next in-
struction, a debug trap is generated and the Linux, as specified by the debug han-
dler, stops the child, clears the debug bit and notify the interpreter. The child will
only be made runnable again when its parent makes a new call to ptrace() .
These actions characterize our single-step interpretation mode.

For example, if our technique is acting as a dynamic disassembler, the single-
step mode is used. In this case, at the end of each instruction of the child, the inter-
preter examines the structure and checks the new contents of the program counter.
Eventually, a new target address of a branch can be detected and some fields of the
interpretation structure updated. Also, the interpreter can verify whether the con-
tents of the structure fields, which were fulfilled before by the static disassembler,
must be modified or not (e.g., to increment the instruction counter of the binary
code being monitored).

Detection of self-modifying code, can be done in a similar way: the inter-
preter receives the control after the execution of each instruction of the child, and
compares the instruction to be executed (pointed to by the program counter of the
child) with the instruction in the structure.

3.2 Single-step Algorithm

Next, we outline one use of the single-step algorithm:
1. InstrCount =0
2: while (program does not finish) do
3. single-step through next instruction

4. InstrCount = InstrCount + 1

5. if (PC is within the text segment) then

6: | = instruction at PC

7: if (PC is inside text section) then

8: LAST = last instruction executed

o: if ((PC is not the address that follows LAST) and (PC is not a target

of LAST)) then

10: PC starts a new basic block
11: end if
12: if (1 is a branch instruction) then
13: Mark both targets as new basic blocks
14: end if

15: end if

16: end if

17: end while

Besides the evaluation of the number of instructions executed by the child, this
algorithm may detect new basic blocks.

3.3 Cost of Single-step Mode

Before the interpretation of an instruction, some context switches are required.
First, the interpreter executes a syscall to ptrace(), causing a switch to kernel
mode. The Linux sets a trap bit in the x86 code and resumes its execution, caus-
ing another switch. After the interpretation of the x86 instruction, there is another
context switch (from user to kernel mode), and finally another one to the inter-
preter. Consequently, interpretation cost in single-step is very high (and it is a
cause of major concern for many people): for each second of interpretation time
we need five and half hours of interpretation. For instance, the following Linux
commands on a Pentium 4 HT, 3.0 GHz:

time ./gzip input.combined 2 > input.combined.out 2 > input.combined.err
required 1.047 second.

By interpreting the same program in the single-step mode:

time ./int-like gzip input.combined 2 > input.combined.out 2 > input.combined.err
we have obtained 335m 51.091 seconds for the interpretation time.

In both cases, 2.343 billions of instructions were executed / interpreted, and
the reduced set was used as input (input.combined).

During the interpretation in leap mode, the interpretation time has less impact
because we only need to switch the context at those instructions specified as the
end of a leap and the instructions outside the text segment.

3.4 Leap Mode Interpretation

In the leap interpretation mode, we have a variable number of child instructions
being obeyed before the interpreter takes the control again. This interpretation
mode reduces the overhead provoked by the huge number of context switches
which occurs with the single-step mode, and for this reason, the interpretation
process is faster.

In order to specify the end of a leap, the interpreter injects a trap instruction
(opcode 0xCC) into the program, causing the interpreter to be invoked when the
child reaches this breakpoint. For example, if we are interested to execute a se-
guence of instructions between two control transfer instructions, then at the start
of the code portion, we search for the next control transfer instruction in the struc-
ture. When such instruction is detected, a trap instruction is injected into the
original code and the child program execution is resumed.

The interpreter will receive the control again after the execution of the trap in-
struction. The original code is then restored (and the program counter of the child
as well), the original branch is executed in single-step mode, and the procedure is
repeated.

We must be careful with instructions preceded by repetition prefixes, such as
r epz. These prefixes forces the corresponding instruction to be executed several
times. Since these instructions are not branches, then at the end of the interpre-
tation, the instruction count can have a wrong value. To solve this inconsistency,
we consider any instruction preceded by these prefixes as a conditional branch
instruction, whose target address points to itself. A simplified description of the
leap-mode algorithm follows.

1: while (program does not finish) do

2. single-step until next breakpoint

3. if (PC is within the text segment) then

4 | = instruction at PC

5 if (PC is within the text section) then

6 LAST = last instruction executed

7 if ((PC is not the address that follows LAST) and (PC is not a target

of LAST)) then
PC starts a new basic block

: end if
10: if (1 is a branch instruction) then
11: Mark its targets as new basic blocks
12: else
13: TEMP = instruction that follows I
14: while (TEMP is not a branch instruction) do
15: TEMP = instruction that follows TEMP
16: end while
17: replace TEMP with 0xCC
18: restart child and waits for notification
19: restore TEMP
20: end if
21: end if
22: endif

23: end while

3.5 Interpretation Hazards

A traditional tool used to find program errors is the GDB. In our case, there are two
disadvantages with that debugger. First, it is only helpful if the source code exists.
Second, the addition of extra commands into the object code is not acceptable be-
cause it alters the actual behavior of the program being investigated. For example,
the addition of a new instruction can interfere in the instruction cache perfor-
mance, perhaps hiding cache collisions because some instructions were moved to
another cache line, and so on.

Other interpretation hazards that we found were the repeat prefixes and that
minor problem with the pt r ace function which was fixed by the Linux kernel
staff.

4 Interpreting x86 code

4.1 Platform

The results presented in this paper refer to the Intel x86 architecture, running the
Linux Operating System. Our experiments were carried out on a 3.0 GHz Pentium
IV-HT, with Slackware Linux 9.1, kernel version 2.6.6 (with the ptrace patch). All
test programs were compiled with GCC 3.2.3 and binutils 2.14.90 library.

The integer programs from the SPEC2000 suite were used in the experiments
with the reduced input (large set) [6]. Vortex program was executed with the
original test input set (provided by the SPEC) because there isn’t the little endian
format in the reduced input set for this benchmark.

Percentages
0 5 10 15 20 25 30 35 40
Lev v v v by by e b by b g |
gzip —— Basic Blocks ——
VP — Instructions N

Mol ——
crafty I —— T——
ParseT —————

O ——————

perlbmk —

22D —————————————
O X | ———————————
bzip? [—

twolf I —— ————

Figure 2: Useful Basic Blocks and Instructions

5 Experiments

Currently, we are collecting many characteristics of the SPEC2000 integer pro-
grams with our interpretation-like framework. For example, the percentages of
Figure 2 were obtained through the single-step mode (the useful instruction val-
ues) and the leap mode (the useful basic blocks).

The empty bars in Figure 2 represent the percentages of basic blocks which
were executed at least once, and the dark bars refer to the instructions. Examin-

10

ing these percentages, one can see that less than 40% of instructions (and basic
blocks) were useful for the execution of the programs. The remaining, and more
significant, portion of each program never has been executed. Actually, we have
observed the same behavior for RISC machines (e.g., SimpleScalar). In general,
the percentages of useful instructions were larger than the corresponding basic
blocks which were executed once. The eon was the unique exception.

In order to investigate the reasons leading to the predominance of useful in-
structions over the basic blocks, we conducted several experiments. In the first, we
found the number of basic blocks and instructions of each program. The static and
dynamic disassemblers (together with the interpretation-like modes) were used in
these experiments. Table 1 gives the static characteristics of the programs.

Table 1: Static Characteristics
Program Instructions Basic Blocks

gzip 104,225 26,894
vpr 125,803 30,964
gcc 449,320 120,492
mcf 95,036 24,673
crafty 137,325 33,009
parser 127,046 33,162
eon 359,719 75,907
perlbmk 234,273 62,347
gap 220,449 56,058
vortex 226,662 53,220
bzip2 102,823 26,519
twolf 141,953 34,520

Next, the experiments were performed again to find the average number of in-
structions within each basic block. Figure 3 gives the numbers of instructions per
basic block. The dark bars in Figure 3 represent the average numbers of instruc-
tions within the basic blocks, and they were obtained from the static code. The
empty bars on the other hand, are the averages found at execution time.

According to the values in Figure 3, the averages numbers of instructions
which were evaluated dynamically overcome the corresponding ones in the static
code. This happens because there are many blocks in the static code formed by
one, two and three instructions. However, the execution frequencies of larger
blocks contribute for the higher average numbers. Also, it should be mentioned

11

that the average numbers of instructions per basic block range from 3.77 up to
7.03 for the dynamic evaluation.

Averages
0 1 2 3 4 5 6 7 8 9 10

27D ———— dynamically ————
VP ——— static code EG—

Figure 3: Average Numbers of Instructions per Basic Block

An x86 instruction has from one up to sixteen bytes. Consequently, the aver-
ages numbers provided in Figure 3 are not enough to have an idea of the space in
the various memory levels occupied by a basic block. To provide an insight of this
space, we performed experiments to evaluate the average sizes (in bytes) of basic
blocks, both in the static code and dynamically. Figure 4 shows these averages for
each benchmark obtained from the static code and at execution time.

Average Sizes

0 5 10 15 20 25 30

T T T I T T I IO N M IO N B AR N I TN N N RN TR B R B |
gZiD —————————— dynamic ==
T | ——————— static code mm-

O —————————————

mef I ———————
crafty ———————————————
Parser —————————————

O ———

perlbmk i —— ———

e ——————
vorteX —————————
bzip? ——— ——
twolf —— ——

Figure 4: Average Sizes of Basic Blocks in Bytes

12

In Figure 4, the average sizes evaluated dynamically overcome the correspond-
ing ones for eight benchmarks. Like as in the previous experiment (average num-
ber of instructions per block), the cr af t y program presented the higher average
number of bytes (26.21 bytes).

Tables 3, 4 and 5 in the Appendix provide the whole values obtained by the
experiments and partially presented in this section.

6 Conclusonsand Future Work

In this work we have shown a Binary Interpretation-like technique for x86 ma-
chines with the Linux Operating System. Our technique is oriented for binary
code, and for this reason the source program is unnecessary. This Interpretation
process is reliable because we use the underlying hardware to perform the last
stage of the interpretation (i.e., the execution) of each x86 instruction. Conse-
quently, the interpreter is exempted from those errors that may be found within a
software layer responsible for the interpretation process.

The overhead imposed by the great number of context switches makes such
interpretation process very slow. However, the technique became viable with the
advent of recent processors which operates at very high frequency rates. We are
using hyper-thread processors (the Pentium-4 HT model from Intel) and tech-
niques to distribute the interpreter and the x86 code being monitored in separate
threads are already being investigated.

Our interpretation mode using a variable number of instructions as the stan-
dard unit of switching is a very efficient alternative for reducing the overhead of
the technique when the single-step mode is used.

Many research topics in Computer Architecture can be carried out with the
Interpretation technique presented here. Identifying the execution frequencies of
instructions and basic blocks, the percentages of untouched instructions of a pro-
gram, and how may time a particular memory load instruction transfers the same
value, are examples of features provided by our interpretation-like framework.

13

References

[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable
programming interface for performance evaluation on modern processors.
International Journal of High Performance Computing Applications, Vol.
14(3):189-204, 2000.

[2] C. Cifuentes and K. J. Gough. Decompilation of binary programs. Software:
Practice & Experiece, 25(7):811-829, 1995.

[3] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber,
and J. Mattson. The transmeta code morphing” software: using specula-
tion, recovery, and adaptive retranslation to address real-life challenges. In
Proceedings of the international symposium on Code generation and opti-
mization, pages 15—24. IEEE Computer Society, 2003.

[4] P. Z. et al. iWatcher: Efficient architectural support for software debugging.
In Proceedings of the 31st annual international symposium on Computer
architecture, page 224. IEEE Computer Society, 2004.

[5] A. Klaiber. The technology behind the crusoe processors. In URL
http://www.transmeta.com/pdf/white_papers /paper_aklaiber_19jan00.pdf.
Transmeta Corporation, 2000.

[6] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research. Computer
Architecture Letters, 1, 2002.

[7] H. Lieberman. The debugging scandal and what to do about it. CACM,
40(4):26-29, 1997.

[8] N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD thesis,
UCAM-CJ-TR-606, University of Cambridge, Computer Laboratory, Cam-
bridge, UK, November 2004.

[9] S.J. Patel and S. S. Lumetta. rePLay: A hardware framework for dynamic
optimization. IEEE Transactions on Computers, 50(6):590—-608, 2001.

[10] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code
revisited. In Proceedings of the Ninth Working Conference on Reverse En-
gineering (WCRE’02), page 45. IEEE Computer Society, 2002.

14

[11]

[12]

[13]

J. Seward. Valgrind: an open-source memory debugger for x86-GNU/Linux.
In URL http://www.ukuug.org/events/ linux2002/papers/html/valgrind/,
2002.

B. Slechta, D. Crowe, B. Fahs, M. Fertig, G. Muthler, J. Quek, F. Spa-
dini, S. J. Patel, and S. S. Lumetta. Dynamic optimization of micro-
operations. In Proceedings of the The Ninth International Symposium
on High-Performance Computer Architecture (HPCA’03), page 165. IEEE
Computer Society, 2003.

M. V. Wilkes. The memory gap. In Keynote Address, Workshop on Solving
the Memory Wall Problem, in conjuction with the 27th International Sympo-
sium on Computer Architecture. IEEE Computer Society, 2000.

Appendix

Table 2: Program Characteristics

Program Instr. Count Instructions B.Bls
gzip 1,916,484,097 104,225 26,894
vpr 1,530,725,506 125,803 30,964
gce 3,236,426,097 449,320 120,492
mcf 596,748,718 95,036 24,673

crafty 949,969,122 137,325 33,009
parser 3,051,631,424 127,046 33,162

eon 5255,974,938 359,719 75,907
perlbmk 1,243,359,184 234,273 62,347
gap 563,477,156 220,449 56,058

vortex 8,189,657,958 226,662 53,220
bzip2 1,751,445,745 102,823 26,519
twolf 797,767,520 141,953 34,520

15

Table 3: Instructions

Program Instructions Exec Exec (%)
gzip 104,225 7,352 07.05
vpr 125,803 17,766 14.12
gcc 449,320 148,428 33.03
mcf 95,036 7,968 08.38
crafty 137,325 32,007 23.31
parser 127,046 24,399 19.20
eon 359,719 68,668 19.09
perlbmk 234,273 19,424 08.29
gap 220,449 34,924 15.84
vortex 226,662 69,656 30.73
bzip2 102,823 8,245 08.02
twolf 141,953 27,740 19.54

Table 4: Basic Block Execution
Program B.Bls Exec Exec (%)

9zip 26,894 1661 06.18
vpr 30,964 3,396 12.58
gee 120,492 38,566 32.01
mcf 24673 1837 07.45

crafty 33,009 5,643 17.10
parser 33,162 6,111 18.43

eon 75,907 16,093 21.20
perlomk 62,347 4,674 07.50
gap 56,058 8,156 14.55

vortex 53,220 13,753 25.84
bzip2 26,519 1,802 06.80
twolf 34,520 6,019 17.44

16

Table 5: Average Sizes of Basic Blocks in Bytes
Program Static Dynamic
gzip 13.374 15.980

vpr 13.758 17.672
gce 12.414 11.733
mcf 13.246 11.485

crafty 14.855 26.218
parser 12.920 13.640

eon 14.596 17.867
perlomk 12.680 14.739
gap 13.278 12.701

vortex 13.958 13.470
bzip2 13.422 18.617
twolf 14.344 15.457

17

