
ParGRES: a middleware for executing OLAP queries in

parallel

Marta Mattoso
1
, Geraldo Zimbrão

1,3
, Alexandre A. B. Lima

1
, Fernanda Baião

1,2
,

Vanessa P. Braganholo
1
, Albino Aveleda

1
, Bernardo Miranda

1
,

Bruno Kinder Almentero
1
, Marcelo Nunes Costa

3

.

1
 COPPE, Federal University of Rio de Janeiro, Brazil

2
 Department of Applied Informatics, UNIRIO, Brazil

3
 DCC/IM, Federal University of Rio de Janeiro, Brazil

pargres@nacad.ufrj.br

http://forge.objectweb.org/projects/pargres

Technical Report ES-690

December, 2005

ABSTRACT

ParGRES is a middleware aimed to efficiently process heavy weight queries, typical of OLAP, on top of a database cluster.

ParGRES achieves query processing speed-up through intra- and inter-query parallelism in a PC cluster environment with

database replication and virtual partitioning. It accelerates both individual queries and system throughput. Our experimental

results show that ParGRES yields super-linear or near-linear speed-up. ParGRES middleware keeps application and database

autonomy. As a result, it offers a non-intrusive migration solution from sequential to a parallel environment. Currently,

ParGRES uses PostgreSQL, but it is not DBMS dependent, and has a Web administration tool. The main features of

ParGRES are: automatic parsing of SQL queries to allow for intra-query parallel execution; query processing with inter- and

intra-query parallelism; virtual dynamic partition definition; result composition; update processing; and dynamic load

balancing. The main contribution of ParGRES is to combine inter and intra-query parallelism with dynamic load balancing for

virtual partitions, all within an open source cost-effective solution.

1. INTRODUCTION

The performance of information systems is becoming critical in organizations, due to the increasing volume of data that must

be analyzed by applications, and to the complexity of the queries they submit to the database system (DBMS). The

performance in accessing stored data has great influence in OLAP (On-Line Analytical Processing) applications, which access

huge datasets through heavy-wight queries [3]. In this kind of application, the database is periodically (rather than online)

updated [14]. Database tuning is very difficult, since queries are ad-hoc.

Parallel processing has been successfully used to improve performance of heavy-weight queries, typically by replacing the

software and hardware platforms with higher computational capacity components (e.g. parallel servers and/or parallel

DBMSs). This approach requires adapting the database design and applications from the sequential to the parallel

environment. Migrating applications is complex (sometimes impossible), since it may require modifications to the source

code. In addition, often it requires the expansion of the computational environment and the application modification, which

can be very costly. A cheaper alternative is the use of PC clusters. However, the costs can still be high because some solutions

require specific software (DBMS) or hardware (e.g. SAN – Storage Area Network).

Another existing approach is called “database cluster” [11]. This approach uses a sequential DBMS at each cluster node.

These DBMS are used as black boxes, that is, they are ordinary sequential DBMS with no modification in their source code,

and no additional functionality to improve their use in clusters. It is all based on off-the-shelf hardware and software

components. In addition, this approach requires no changes in the database design or in the application source code, thus

greatly reducing the migration cost of applications and databases to the parallel environment.

ParGRES [6] is a database cluster acting as a middleware between the application and the DBMS. It is capable of

coordinating the access to data to obtain the desired parallelism using a standard PC cluster. ParGRES parallelism is devoted

to SQL queries that take a long time to be processed, e.g, typical OLAP queries. We propose a unique database cluster

solution that: combines inter- and intra-query parallel processing techniques; deals with updates; and performs load balancing

between the system nodes. Our experimental results show that ParGRES yields super-linear or near-linear speed-up. In this

implementation, we use the PostgreSQL [10] DBMS at each cluster node. However, our parallel strategy is based on SQL

only and it does not use any specific feature of PostgreSQL. Thus, organizations have more flexibility in choosing or keeping

their own DBMS platform.

This work is organized as follows. Section 2 describes ParGRES architecture. Section 3 details the computational

environment where ParGRES was developed, while Section 4 describes the aspects we will cover during the demonstration.

Section 4 shows our experimental results and section 6 analyzes related work. Finally, we conclude in Section 7.

2. PARGRES ARCHITECTURE

As in other database cluster solutions, ParGRES is a middleware that orchestrates the parallel execution of queries using

DBMS instances at the cluster nodes. ParGRES, has a distributed architecture (Figure 1): its components are distributed over

the cluster thus avoiding the overload of the coordinator node. This architecture is based on the algorithms proposed by Lima

[5].

There are global and local components. Global components execute tasks that involve several cluster nodes, while local ones

execute tasks in a single node. The global components are the Mediator and the Cluster Query Processor (CQP). The local

components are the Node Query Processor (NQP) and the DBMS.

The most important component is the CQP, which acts as the coordinator of all remaining components. Since most PC

clusters have a single node that is accessible to external applications (the entry node), the Mediator component is allocated in

this node (it must communicate with the applications). The Mediator acts just like a proxy, receiving requests from the

applications, passing them to the CQP and passing back CQP responses to the applications. The allocation of the Mediator in

the entry node gives us total flexibility when physically allocating the CQP, which improves the overall environment

availability. If the node where the CQP is allocated fails, it can simply be re-instantiated in another node. NQP locally

coordinates query execution at the DBMS and helps CQP during load balancing.

ParGRES executes four types of tasks: (i) SQL query parsing, to enable parallel execution, (ii) query processing with

inter/intra-query parallelism, (iii) result composition and (iv) update processing, detailed as follows.

SQL query parsing. CQP has a Translator that contains a syntactic analyzer to parse SQL commands from the client

application. It uses a context-free grammar for SQL-99. Commands not parsed by this grammar are sent directly to the

DBMS. The information generated by the Translator includes: (i) a set of relations and attribute names referenced by the

query that may be used in the intra-query parallelism; (ii) information needed by the CQP to perform result composition; (iii)

a set of attributes used in aggregation operations. Once the Translator identifies relations and attribute names, CQP decides

which parallel strategy to use.

Query processing with inter/intra-query parallelism. CQP is responsible for analyzing the queries and deciding the type of

parallelism and the subset of nodes that will be used for processing each query. To do so, it uses information from the

Catalog. This Catalog is very simple and only stores information needed to implement the adaptive virtual partitioning as a

non intrusive technique. The catalog does not need specific information of the DBMS, and maintains the philosophy of using

the DBMS as a “black-box” component.

The intra-query (intra-q) parallel strategy decomposes complex queries into sub-queries that will be executed in parallel.

Each sub-query runs over a different data fragment. Since each sub-query is sent to a different node, it can be executed in

parallel. In the inter-query (inter-q) parallel strategy, distinct queries are executed concurrently in the DB cluster, one at each

cluster node.

Inter-q parallelism implementation is almost straightforward. CQP sends the query to the NQP of the node with the smallest

number of pending tasks. NQP then passes the query to the DBMS. The result follows the inverse path to the client

application. In the case of an update operation, CQP blocks the execution of queries, and sends the update to the NQP of each

node, to guarantee consistency. After all NQPs confirm the execution of the update, CQP allows the execution of new queries.

To provide high performance in heavy-weight queries, ParGRES implements intra-q parallelism using the adaptive virtual

partitioning (AVP), proposed by Lima et al. [4], with full database replication. AVP depends on the existence of a clustered

index over the relations involved in the query. This kind of information is in the Catalog. It stores the names and cardinalities

of the relations that have clustered indexes, attributes which have a clustered index, and the range of values of each of such

attributes. Since each relation can have a single clustered index, the amount of information stored in the Catalog is not large.

CQP decides which attribute will be used in the virtual partition of the intra-q strategy. Then the original query is re-written in

sub-queries by the Translator. Those sub-queries are a version of the original query containing a predicate that determines the

ranges of the virtual partitioning. Then, CQP chooses an NQP to globally coordinate the execution of the query. The chosen

NQP receives the sub-queries from CQP and interacts with the other NQPs, called participating NQPs, to execute them. Each

participating NQP receives its sub-queries and adaptively fine tune the virtual partitions locally. Each new query processed

with the intra-q strategy may have a different NQP as a coordinator thus allowing the CQP to globally balance the load over

the cluster.

Due to the value distribution of attributes used by a query, the initial workload of all nodes may be non-uniform. In addition,

results of intermediary operators of a query may also lead to skew. Our non-intrusive approach that treats the DBMS as a

black-box component makes it difficult to prevent skew. Thus, the ParGRES dynamic load balancing addresses skew during

intra-q execution. The NQPs help this balancing by exchanging messages among themselves to redefine virtual partitions. It is

implemented using a distributed technique proposed by Lima [5]. The results presented in [5] show that this is a very efficient

technique, especially for cases of extreme skew.

In the intra-q parallelism, the coordinator NQP allocates the participating NQPs and sends a local query execution plan to

each of them. Each participating NQP process its plan and generates a partial result, which is sent to the coordinator. After

receiving the partial results from all participating NQPs, the coordinator finishes the result composition and sends it to CQP

that forwards it to the client application.

Since several queries can be processed at the same time in the cluster (and in the same node), the inter-q parallelism is used

with the intra-q parallelism. One of the advantages of this combination is that some queries may be of low-cost, which is not

adequate for intra-q parallelism. In this case, inter-q parallelism is chosen to improve the system throughput.

Figure 1: ParGRES architecture

Result composition. ParGRES does result composition by adapting the two-phase aggregation algorithm proposed by Shatdal

and Naughton [12]. Our algorithm uses parallel processing in this composition, minimizing the communication between

nodes. In the first phase, the nodes aggregate the groups returned by the local sub-queries. In the second phase, the groups are

distributed to their respective nodes through a hash function. Finally, each node sends its subset of the global result to the

coordinator node, which executes their union. When the query involves the “order by” clause, an additional ordering phase is

needed, which is also executed in parallel at the cluster nodes.

Metadata Results Query

Application Application

Node 1

Mediator

CQP

Catalog

DBMS

NQP

DBMS

NQP

DBMS

NQP

Node 2 Node n

MetadataMetadata ResultsResults QueryQuery

Application Application

Node 1

Mediator

CQP

Catalog

DBMS

NQP

DBMS

NQP

DBMS

NQP

DBMS

NQP

DBMS

NQP

DBMS

NQP

Node 2 Node n

Update processing. Although ParGRES mainly focuses on read-only query processing, typical of OLAP, updates may also be

sent by the client application. The parallel execution of updates and queries with the intra-q parallelism in an environment

with total data replication has to be carefully conducted to avoid inconsistent results. Since updates in OLAP environments

are usually are fast and executed at pre-determined times, ParGRES adopts a strong consistency policy: it does not allow the

concurrent execution of updates and queries. To implement this policy, ParGRES has a scheduler that orders queries and

updates. While updates are processed, all the remaining queries coming from the application are blocked. When there are just

read-only queries, CQP allows them to execute in parallel.

3. COMPUTATIONAL ENVIRONMENT

The use of ParGRES assumes a computational environment of three layers: the application layer (an OLAP tool), the

ParGRES layer, and the database layer (with DBMSs installed in the nodes of a PC cluster. Each DBMS accesses its local

database, in which the data cubes have already been generated and are ready to be queried). We assume the OLAP tool

acquires data with SQL.

The communication of ParGRES and the OLAP tool is simple. It is only necessary to redirect the configuration of the

database server accessed by the OLAP tool to the cluster in which ParGRES is being executed. OLAP queries are intercepted

by taking advantage of a JDBC driver in a transparent way. The Translator was written using the BYacc/J tool, the traditional

Yacc adapted to generate Java code.

ParGRES was developed in Java, and tests were executed in a PC cluster following a shared-nothing architecture. ParGRES

does not need any specific cluster hardware such as SAN or high-speed network adapters. In the current implementation,

ParGRES is using version 8.0 of PostGRESQL as the DBMS at each cluster node. The communication between ParGRES

and each DBMS is done through JDBC. Besides, the communication between each internal module of ParGRES is done

through RMI.

Figure 2: A screenshot of Pargres administration tool.

4. DEMONSTRATION

A web-based administration tool was developed in Java/JSP for ParGRES (Figure 2). It allows for the user to remotely

interact with the middleware to perform on-line query submissions and administration tasks. It is possible, for example, to

dynamically add and remove NQPs to/from a running ParGRES instance. If new tables are available for virtual partitioning, it

is possible to dynamically update ParGRES Catalog to use intra-q parallelism to process queries based on such tables from

that moment on.

During our demonstration session, we intend to use the administration tool for showing all these features. We will dynamically

change ParGRES configuration in many ways. Also, we will demonstrate its query processing capabilities by showing how

ParGRES parallel techniques effectively improve query processing performance. We will compare the performance of parallel

and sequential executions of the same query.

5. EXPERIMENTAL EVALUATION

In this section, we evaluate ParGRES performance while processing OLAP queries in different cluster configurations. Our

tests were based on the TPC-H benchmark [14], specific for ad-hoc OLAP applications. We generated the database according

to TPC-H specifications using a scale factor of 5, which gave us a database of approximately 11 GB (including all indexes).

Clustered indexes based on the first attribute of the primary key were generated for each fact table (Orders and LineItem).

They are necessary for the adaptive virtual partitioning, implemented by ParGRES. Indexes were also generated for all other

primary and foreign keys. No other indexes were created, as determined by TPC-H.

We chose a subset that we think it is quite representative for OLAP applications: queries Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q12,

Q14 and Q19. Those are the queries that can be processed with the intra-q strategy. Q1 has a very low selective predicate that

is satisfied by almost all tuples of the largest fact table (LineItem). Besides, it performs a lot of aggregation operations. Q3

joins the two fact tables and a dimension. It generates a high-cardinality result. Although TPC-H specifies only the first 10

tuples must be returned, we used the entire result in our tests in order to stress ParGRES. Q4 is based on the Orders fact table

and performs a sub-query on the LineItem table. Q5 joins both fact tables and 4 dimensions. As Q1, Q6 is based only on

LineItem table. However, it has a high-selective predicate and only one aggregation function, without a “group by” clause. Q7

and Q8 have a sub-query in the “from” clause. In both cases, the two fact tables are used but Q8 use more dimensions than

Q7. Q12 performs a join between the fact tables only. Q14 performs a join between the LineItem table and a relatively large

dimension. Q19 is similar to Q14 but presents disjunctive clauses in its predicate.

Our tests were performed on top of a 32-node shared-nothing cluster gently provided by the Paris Team at INRIA [9]. Each

node is configured with two 2.2 GHz Opteron processors, 2 GB RAM and 30 GB HD. Nodes are interconnected through a

Gigabit Ethernet network. During our experiments, each node ran an instance of the PostgreSQL 8.

We show here the results obtained during our speedup experiments. Our goal is to evaluate the speedup achieved by ParGRES

while processing isolated queries with different number of nodes (from 1 to 32). Each query was run ten times for each cluster

configuration. Then, we took the average time of the last nine runs to make our analysis (the first one was not considered).

Results are shown on Figure 3. Execution times in Figure 3 are normalized. Each value was produced by taking the average

execution time obtained for the query and dividing it by the largest average execution time obtained for the same query.

Figure 3 also shows the reference linear speedup.

The results present excellent speedup. Only Q5 presents sub-linear performance. Q5 performs a join between many

dimensions and the fact tables, which makes it both CPU and IO bound. Unlike the other queries, Q5 tuple access is very

intensive and random and does not take advantage on the increase of memory space through additional processors. For all

other queries from 8 nodes on, the virtual partitions of both fact tables accessed by each node start to fit in main memory,

reducing the number of disk accesses. This explains the good speedup obtained.

With 32 nodes, execution times obtained for Q1 and Q3 are respectively only 0.78% and 0.13% higher than the times that

would be obtained if linear speedup was achieved. The worst case was for Q5, for which a sub-linear speedup was obtained,

for the same reasons explained above. Even in such case, the execution time was only 1.95% above the time expected with

linear speedup. For all other queries, super-linear speedup was obtained.

Figure 3: Speedup experiments – query execution times

6. RELATED WORK

There are several solutions to improve performance in database query processing through intra-q or inter-q parallelism, but

not both. Inter-q parallelism is the focus of C-JDBC [1] and MySQL Cluster [8]. Solutions for intra-q parallelism are

proposed by Oracle, DB2 and Teradata [13], but are all proprietary and DBMS and/or hardware specific.

C-JDBC [1] is an open-source database cluster based on inter-q parallelism only. This kind of parallelism accelerates the

processing of several small concurrent transactions, which typically appear in OLTP environments. Thus it improves DBMS

throughput. However, heavy-weight queries, typical of OLAP environments, take a long time to process, usually minutes or

hours. For this kind of query, very well represented by the TPC-H benchmark [14], inter-q parallelism cannot reduce the

individual query processing time and intra-q parallelism is the adequate solution.

MySQL Cluster [8] is a Free Software solution that supports only inter-query parallelism. Furthermore, it presents a strong

limitation: the database is required to fit in the available amount of memory of the cluster (the sum of the main memory

available in each cluster node). This is because MySQL Cluster explores in-memory processing and log writes to accelerate

query processing.

Teradata [13] is a proprietary DBMS that employs massive parallelism for query processing. It provides for both intra- and

inter-query parallelism and there are results showing excellent performance when processing queries on huge-sized databases.

The main drawback is, besides being proprietary software, Teradata also requires expensive proprietary hardware to run.

PowerDB [11] was one of the first projects to present the concept of a “database cluster” and to propose algorithms to process

queries in parallel. However, the project was discontinued and it is proprietary. Besides, the intra-q algorithm of PowerDB is

not robust, since the speed-up in intra-q processing depends on the DBMS being used. In ParGRES, we have extended and

improved PowerDB’s techniques following the open-source ideas. In particular, we have improved the intra-q data partition

of PowerDB, and added dynamic load balancing.

ParGRES innovates by combining both intra-q and inter-q parallelism, based on the parallelization algorithms proposed by

Lima [5]. Additionally, ParGRES includes some interesting features to these algorithms: (i) automatic SQL query translation;

(ii) support of update operations; (iii) open-source components, among others. These features facilitate the migration of

sequential applications to our parallel solution in PC clusters.

In the Free Software field, Mondrian [7] is a system focused on OLAP analysis. Mondrian can benefit from ParGRES

parallelism by including the middleware between the OLAP application and the DBMS that processes its queries. As so, it is

complimentary to our approach. Still in the OLAP processing area, the Panda project [2], among others, addresses the parallel

generation of the data cubes in parallel environments. ParGRES is not specific to OLAP queries. Besides, our tool aims at

accelerating the performance of in production applications. Thus, the database and the cube constructions are out of the scope

of our work.

7. REMARKS AND FUTURE WORK

ParGRES is an open-source software that provides parallelism to efficiently execute heavy-weight queries over database

clusters. ParGRES implements intra-q and inter-q parallelism and uses the adaptive virtual partitioning with full database

replication. ParGRES is a low cost solution to the performance problem of applications that access large volumes of data

through complex queries, because it uses black-box DBMS, it avoids the need to redo the physical design of the database

when migrating to the parallel environment, and it does not require any specific hardware. The communication between

ParGRES and the DBMS uses the SQL standard, so any SQL DBMS implementation can be adopted.

The need for full replication of the database may be pointed as a weak point of our approach. However, it is important to

notice that the cost of non-volatile storage has been dropping drastically in the past years. In addition, maintaining consistency

of applications with controlled updates does not invalidate full replication. This makes our approach economically attractive

even for large databases. Besides, full replication increases the system availability and fault tolerance.

There are other solutions based on database clusters. However, the differential of ParGRES is that it provides efficient intra-q

parallelism in a transparent way, thus reducing the response time of each high-cost query sent by the application.

8. REFERENCES

[1] Cecchet, E., Marguerite, J., and Zwaenepoel, W. (2004), “C-JDBC: Flexible Database Clustering Middleware”, In:

Freenix 2004: USENIX Annual Technical Conference, Boston, USA, pp. 9-18.

[2] Chen, Y., Dehne, F., Eavis, T., Rau-Chaplin, A. (2004), "Parallel ROLAP Datacube Construction on Shared Nothing
Multi-Processors", Journal of Parallel and Distributed Databases, 15 (3), pp. 219-236.

[3] Gorla, N. (2003), “Features to Consider in a Data Warehousing System”, Comm ACM,46(11),pp. 111-115.

[4] Lima, A. A. B., Mattoso, M. and Valduriez, P. (2004), “Adaptive Virtual Partitioning for OLAP Query Processing in a

Database Cluster”, In: Proc 19th SBBD, Brasília, Brazil, pp. 92-105.

[5] Lima, A. A. B. (2004), “Intra-Query parallelism in database clusters”, DSc Thesis, COPPE/UFRJ, Brazil (in portuguese).

[6] Mattoso, M., Zimbrao, G., Lima, A. A. B., Baião, F., Braganholo, V., Aveleda, A., Miranda, B., Almentero, B., Costa, M.

(2005), “The ParGRES Project”, url: http://forge.objectweb.org/projects/pargres.

[7] Mondrian (2005), “Mondrian OLAP Server”, url: http://mondrian.sourceforge.net/.

[8] MySQL Cluster (2005), url: www.mysql.com/products/cluster

[9] Paris Project., url: www.irisa.fr/paris/General/cluster.htm.

[10] PostgreSQL v.8.0. (2005), url: http://www.postgresql.org/download/.

[11] Röhm, U., Böhm, K., Schek, H.-J., et al. (2002), FAS - A Freshness-Sensitive Coordination Middleware for a Cluster of

OLAP Components, VLDB, Hong Kong, pp. 754-765.

[12] Shatdal, A., Naughton, J. (1995), “Adaptive Parallel Aggregation Algorithms”, SIGMOD, pp.104-114.

[13] Teradata (2005), url: www.teradata.com.

[14] TPC (2003), “TPC BenchmarkTM H – Revision 2.1.0”, url: www.tpc.org.

