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Abstract. Efficient evaluation of spatial queries is an important issue in 
spatial database. Among spatial operations, spatial join is very useful, and 
intersection is the most common predicate. However, the exact intersection 
test of two spatial objects is the most time-consuming and I/O-consuming step 
in processing spatial joins. On the other hand, the use of approximations can 
reduce the need for examining the exact geometry of spatial objects in order to 
find the intersecting ones. This work proposes a new raster approximation 
(Three-Colors Raster Signature - 3CRS) for representing different data types 
(polygons, polilynes and points) and to be used as filter in the second step of 
Multi-Step Query Processor. We have also executed experimental tests over 
real datasets, and the results demonstrated the effectiveness of our approach. 

1. Introduction 
The increase of storage capacity and the decrease of hardware costs have made 

possible for applications to deal with large amount of data, involving Gigabytes, 

Terabytes and even Petabytes of information. This characteristic is common in Spatial 

Databases where data usually have high complexity and are available in huge amounts. 

Spatial data consists of spatial objects made up of points, lines, regions, 

rectangles, surfaces, volumes, and even data of higher dimension which includes time 

(Samet, 1990). Examples of spatial data include cities, rivers, roads, counties, states, 

crop coverage, mountain ranges etc. It is often desirable to attach spatial with non-

spatial attribute information. Examples of non-spatial data are road names, addresses, 

telephone numbers, city names, etc. Since spatial and non-spatial data are so intimately 
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connected, it is not surprising that many of the issues that need to be addressed are in 

fact database issues. 

There are numerous applications in spatial database systems area, such as: traffic 

supervision, flight control, weather forecast, urban planning, route optimization, 

cartography, agriculture, natural resources administration, coastal monitoring, fire and 

epidemics control, precision agriculture and intelligent highways (Aronoff, 1989; Tao et 

al., 2003; Gordon et al., 1994). Each type of application deals with different features, 

scales and spatiotemporal properties. 

Efficient evaluation of spatial queries is an important issue in spatial database. 

Among spatial operations, spatial join is very useful. Intersection is the most common 

join predicate. Many works point the exact geometry test as the most time consuming 

operation regarding both I/O and CPU. Brinkhoff (1994) shows experimental results 

confirming that the exact geometry test, usually plane-sweep (Boissonnat, 1997; 

Freiseisen, 1998) is responsible for most of the CPU cost. The I/O cost associated with 

the exact geometry test is due to the access to the real representation of the spatial 

objects, which can be very large. Spatial joins have been well studied in the literature, 

and there are many approaches to processing spatial join operations. Considering points, 

polylines and polygons as the three data types most common in spatial databases, there 

are nine classes of different spatial joins. For its usefulness and complexity, the polygon 

join has been the most investigated, while the point join has been the less investigated 

because of it’s similarity with the relational join (Samet, 1990), while there are some 

proposals for processing polylines and polygon × polyline joins. In order to improve the 

efficiency, organization and study of indices and filters for spatial data, Brinkhoff et al. 

(1994) proposed a three-step architecture for spatial join processing, named as Multi-

Step Query Processor. The main target of this architecture is to accelerate the most 

costly step by reducing the number of spatial objects left to be compared. Such a 

reduction is done by applying filters in previous steps. 

This work proposes a new raster approximation suitable to performing spatial 

joins as a filter in the second step of Multi-Step Query Processor, involving these three 

common data types (polygon, polyline and point) and the classes of different spatial 

joins involving them. We propose a raster signature named as Three Color Raster 
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Signature (3CRS), based on the Four Color Raster Signature (4CRS) proposed by 

Zimbrao and Souza (1998). The 3CRS signature has the advantages of faster generation 

time and that can be used for representing polygons, polylines and points (without any 

specific characteristic). Besides, the same algorithm can be used to evaluate the join 

predicate involving these three data types. Also, the fast generation time allows 

generating the signature on the fly. For instance, instead of storing the signature, it can 

be generated only when it is needed, saving storage space. In order to evaluate the 

effectiveness of our proposal, we execute spatial joins using 3CRS against the 

processing without using signatures and the processing using 4CRS. The experimental 

tests were executed over real data and the results demonstrated the effectiveness of the 

approach.  

This paper is divided in sections, as follows. Section One is this introduction. 

Section Two surveys the related literature. In Section Three, we present our raster 

approximation and its implementation as the second step of the MSQP architecture. 

Section Four shows the experimental results. Finally, in Section Five we present our 

conclusions.  

2. Related Work 
Brinkhoff et al. (1994) define spatial join as a subset of the Cartesian product of 

two sets, A and B, not necessarily distinct, containing, respectively, m and n elements. 

This resulting subset is composed of elements that meet a given spatial predicate. The 

overlap of spatial objects is of special interest in practical applications.  

Spatial joins may be more efficiently evaluated by means of indexes previously 

built on each data set and simultaneously traverse these indexes, searching for object 

intersections. This approach corresponds to a sort-merge approach in relational 

databases, and it is pointed in (Brinkhoff et al., 1993b) as being quite efficient, 

especially when the indexes already exist. Typically, an index is composed of two parts: 

the index structure, that only stores the data keys; and the data structure, that stores the 

data itself. Thus, a spatial index should store the objects in a spatial structure according 

to a geometric key (Brinkhoff et al., 1994). Due to its simplicity, MBR (minimum 

bounding rectangle) is the most popular geometric key. When we use MBRs, the 

complexity of a spatial object is reduced to four parameters which retain the most 
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important characteristics of the object: position and extension. Nonetheless, as pointed 

in (Brinkhoff et al., 1994) and (Zimbrao and Souza, 1998), objects of the real world are 

very poorly represented by MBRs. 

2.1. Architectures for Processing Spatial Joins 
There are many approaches to processing spatial join operations. Zhu et al. 

(2000) emphasize that traditional approaches perform the spatial join processing in two 

steps (Orenstein, 1986; Kothuri and Ravada, 2001). They propose efficient algorithms 

to be used in the second step. In the two steps approach, presented in Figure 1a, the first 

step employs a Spatial Access Method (SAM) in order to reduce the search space. The 

Minimum Bounding Rectangle (MBR) is usually used by SAM methods. This step does 

not have as output the result of the join operation. Instead, it provides a set of candidate 

pairs that correspond to a super-set of the solution, and that is sent to the second step. 

The second step is a refinement step where the pairs resulting from the first step are 

read from disk and have their geometries processed. This is the most costly step, 

requiring I/O time to seek and read the spatial objects from disk, and CPU time to 

compute the exact answer.  

Brinkhoff et al. (1994) propose a three-step architecture for processing of spatial 

join named as Multi-Step Query Processor (MSQP), presented in Figure 1.b. In this 

architecture, another step is included between the first (SAM) and the second (Exact 

geometry processor) steps. The proposed step consists in comparing the candidate pairs 

resulted from the first step using a geometric filter. The geometric filter uses a compact 

and approximated representation of object trying to retain its main characteristics. 

Examples of such proposals of object representations are: 4CRS (Zimbrao and Souza, 

1998), Convex Hull, 5C, RMBR and others found in Brinkhoff et al. (1993). As the 

result of this step we have three possibilities: pairs that belongs to the solution (hit); 

pairs that do not belong to the solution (false hit); and, pairs that it is not possible to 

have a conclusive answer (inconclusive comparisons). The later are sent to the third 

step, the refinement step, where the pairs of objects are read from disk and have their 

geometries processed.  
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Figure 1. a) Two steps architecture for processing of spatial join; b) Three-step 

architecture (Brinkhoff et al., 1994). 

There are two main advantages in introducing the filter step. First, the 

approximation size is only a fraction of the spatial object size; therefore it can be stored 

in the index, together with the object MBR. Second, testing two approximations 

requires less CPU time than testing two objects. The pair of objects that have a 

conclusive test (hit or false hit) are not sent to the third step. 

3. Three-Color Raster Signature 
In this section we will present the characteristics of 3CRS. Section 3.1 presents 

3CRS main characteristics. Section 3.2 proposes an algorithm to generate 3CRS. A 

simple algorithm for changing the resolution of 3CRS is proposed in Section 3.3, and 

the algorithm to evaluate if two objects overlap using their 3CRS is presented in Section 

3.4. 

3.1 3CRS Characteristics 
The 3CRS is based on 4CRS (Zimbrao and Souza, 1998). 3CRS is a compact 

and approximated raster representation of objects upon a grid of cells that uses few 

colors. Each color represents an intersection type between the object and the cell (Table 

a) 
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1). Figure 2 presents an example of a 3CRS representation of a polygon. Actually, 

3CRS is a 4CRS where the Weak and Strong cell types are replaced by an Inconclusive 

type. The Weak 4CRS cell type represents that the polygon has an intersection equal or 

less than 50% with the cell, and the Strong type represents an intersection greater than 

50% and less than 100%. The 3CRS Inconclusive cell type replaces these two types, and 

it represents that there is a portion of the object within cell, which does not overlap the 

whole cell. This characteristic allows 3CRS to represent polylines and points in the 

same way it represents polygons.  

Table 1. 3CRS cell types 

Cell type Description 

Empty The cell is not intersected by the object. 

Inconclusive There is a portion of the object within cell, and it does not fulfill the cell. 

Full The cell is fully occupied by the object. This type of cell only exists when 
representing polygons. 

 
Figure 2. Example of 3CRS representation of a polygon. 

When computing a 3CRS it is not required to compute the exact area of polygon 

within cell, as is done when computing 4CRS signature. In other words, when 

generating the signature, we do not need to clip the polygon against the cell, and to 

compute the area of the clipping region, which is very costly. Instead, it is required only 

to evaluate if the cell is crossed by the object. As result, each cell type is computed fast, 

and objects that do not have area within cell, such as points and polylines, can be 

represented using 3CRS. In the case of points, the 3CRS signature is composed by only 

one inconclusive cell, while regards to polylines, the 3CRS contains Empty cells (cells 

that are not intersected by the polyline) and Inconclusive cells (cells that are crossed by 

the polyline). 
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3.2 Algorithm to generate 3CRS 
The algorithm to generate 3CRS can be divided into three steps:  

1. Compute the MBR-2n that encloses the object; 

2. Follow the object segments, setting as Inconclusive the type of the cells they 

intersect;  

3. If the object is a polygon, scan the signature cells, adjusting the type of 

unmarked cells as Empty or Full according to if the cell is outside the polygon or 

inside it, respectively. 

In the first step, the MBR-2n of the polygon is computed according to the 

algorithm presented in Zimbrao and Souza (1998), and a grid of empty cells is 

computed from this MBR.  

In the second step, the algorithm scans the object’s segments. For each segment 

s, it goes from the first cell (where an ending point of s is within) to the last cell (where 

the other ending point of s is within) marking the type of these cells as Inconclusive. 

The algorithm goes from one cell to another according the edge of the cell that is 

intersected by s (left, right, bottom or top edge). The cell’s edge that is intersected by 

the segment s is identified using the Sutherland-Cohen line clipping algorithm 

(Newman and Sproull, 1979). The cell adjacent to the current cell’s edge is marked as 

Inconclusive and becomes the current cell. The process is repeated until the current cell 

is equal to the last cell. 

It is important to emphasize some aspects about this step: 

• There is no specific order to evaluate polygon segments; 

• It is possible to get a cell that is indexed in the signature array in a 

constant time using a mod operation. Hence one can compute the cell for 

a point in constant time; 

• Given the line equation, one can go along the line and mark intersected 

cells in a constant time per cell. Hence for a line segment, the time 

required will be linear in the number of marked cells; 
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• Usually a line segment is short and will mark only a constant number of 

cells, hence requiring O(1) time per line segment; 

• Finally, this step compute all partial cells (Inconclusive cells), and it 

needs O(n) time if all segments are sufficiently short. 

During the segment evaluation, if the object from which the signature is being 

computed is a polygon, a matrix of border intersection is used to store a value for each 

cell, representing a type of intersection between the segment and the left and right 

borders of the cell. This value is based on the InsideAbove flag of the segment. The 

InsideAbove flag of a segment is true when the area inside the polygon lies above the 

segment; or, if the segment is a vertical line, it indicates that the area inside the polygon 

is on the left of the segment. The value of 1 is added to the cell value if the InsideAbove 

attribute of the segment is true. Otherwise, 1 is deducted from the cell value. Figure 3 3 

shows an example of matrix values. The inconclusive cells of the signature are 

represented as dark gray cells. 

                                                                                  
Figure 3. (a) Matrix of border intersection (b) example of the third step 

execution 

The third step (only used when computing 3CRS from polygons) is responsible 

for marking the cells that are inside the polygon as Full cells. The algorithm goes from 

bottom to top, following each column of the matrix, summing the value of the matrix of 

border intersection corresponding to each cell. A variable named counter is used to 

store this sum. For each cell which type was not already set Inconclusive, we evaluate 

the current value of counter variable. Since the maximum number of cells of the grid is 

a fixed value K, then this step requires O(K) time. Figure 3.b shows an example of the 

third step execution for the column pointed by the arrow. This example uses the matrix 

a) b)
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presented in Figure 3.a. The inconclusive cells are already marked (they are represented 

as the gray cells). On the left of the grid, the numbers correspond to the values of the 

counter, as the algorithm goes through each row. The counter starts with zero. In the 

first row (from bottom to top), the polygon do not intersects the sides of the cell, so the 

value of counter stays zero. The cell is not marked as Inconclusive, so it stays as Empty, 

because counter is equal to zero. On the second row, the correspondent cell of the 

matrix has the value 1 (as calculated on the previous step of the algorithm, because one 

segment of the polygon intersects the right side of the cell and the InsideAbove flag of 

that segment is true), so we increase in one the value of counter. The cell was marked 

before as Inconclusive, so its type does not change. The same occurs in the third row. 

On the fourth row, the value of counter is two, and the cell is not Inconclusive. Hence 

the cell is marked as Full. The algorithm continues to the end of the column (and lines), 

until all the cells are marked. 

3.3 Intersection test using 3CRS 
When evaluating two 3CRS signatures of polygons, it is essential that both of 

them have the same cell size. If it does not apply, it is imperative to perform a change of 

scale. Whenever a change of scale is necessary, it is accomplished through the grouping 

of 2m cells, having in mind that the coordinates of the beginning of each cell are 

proportional to the length of its side. An algorithm for scale change is presented in 

Zimbrao and Souza (1998). 

After performing the scale changes (if it is required), the cells of two 3CRS that 

overlap each other are evaluated. Only the cells that are inside the intersection MBR of 

the signatures are processed. The result of the comparison between two cells is 

presented in Table 2. Note that there is only one Inconclusive result, and it occurs when 

comparing two Inconclusive cells.  

Table 2. Possible results when comparing two cells. 

 Empty Inconclusive Full 

Empty No No No 

Inconclusive No Perhaps Yes 

Full No Yes Yes  
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Figure 4 presents a proposal of algorithm for 3CRS comparison based on the 

comparison results of pair of cells presented Table 22. If all cell comparisons result in 

“No”, then there is no intersection between the polygons. On the other hand, if a “YES” 

result is found, it means that the polygons intersect, and the comparison can stop. 

During the comparison, if there is a “PERHAPS” result and no “YES” result, then it is 

not possible to ensure that the polygons intersect or that they do not has intersection. In 

this case, it is needed to execute the refinement step, seeking and reading the polygons’ 

exact representations from disk and executing the exact test. 
algorithm hasIntersection(signat3CRS1, signat3CRS2) 
  interMBR = intersectionMBR(signat3CRS1, signat3CRS2); 
  if (signat3CRS1.lengthOfCellSide <    
      signat3CRS2.lengthOfCellSide)  
    s3CRS = changeScale(signat3CRS1, signat3CRS2.lengthOfCellSide); 
    b3CRS = signat3CRS2; 
  else  
    if (signat3CRS1.lengthOfCellSide >    
        signat3CRS2.lengthOfCellSide)  
      b3CRS = signat3CRS1; 
      s3CRS = changeScale(signat3CRS2,signat3CRS1.lengthOfCellSide); 
    else 
      s3CRS = signat3CRS1; 
      b3CRS = signat3CRS2; 
  result = NO; 
  for each b3CRS cell b that is inside interMBR do 
     for each s3CRS cell s that intersects cell b do 
       if b.type == EMPTY or s.type == EMPTY 
          continue; 
       if b.type == INCONCLUSIVE or s.type == INCONCLUSIVE 
          result = PERHAPS; 
       if ( (b.type == FULL) and  
            (s.type == FULL or s.type == INCONCLUSIVE) ) or  
          ( (s.type == FULL) and  
            (b.type == FULL or b.type == INCONCLUSIVE) )  
          return YES; 
  return result; 

Figure 4. Algorithm for 3CRS comparison. 

4. Experimental Tests 
This section is dedicated to presenting the experimental results concerning to the 

evaluation of use of 3CRS signature in query processing. We evaluated the use of 3CRS 

as a filter in the second step of MSQP (Brinkhoff et al., 1994) against the use of 4CRS, 

and against the processing without a filter step, the architecture of two steps (Orenstein, 

1986; Kothuri and Ravada, 2001). We evaluated the intersection join of set of polygons. 

4.1. Experimental Data Sets   
The polygon real datasets used in the experiments consist of township 

boundaries, census block-group, geologic map and hydrographic map from Iowa 
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(USA), available online at “http://www.igsb.uiowa.edu/nrgis/gishome.htm”, and 

Brazilian municipalities (IBGE, 1996). In order to simulate large datasets, the Iowa 

datasets were replicated six times, in the same way as suggested by Brinkhoff et al. 

(1994). The original polygons were shifted by random displacements of x and y 

coordinates. In the case of Brazilian municipalities, we performed one replication 

(named Brazilian municipalities’), so that we could execute the test of Brazilian 

municipalities against Brazilian municipalities’. Data characteristics are presented in 

Table3.  

Table 3. Test datasets 

Datasets Size 
(KB) # pol. # 

segments
Avg. # 

segments  
Census block 
group 38,824 17,844 1,764,588 98

Topography 61,748 20,070 3,780,552 188
Hydrologic map 6,904 2,544 475,434 186
Township 
boundaries 25,288 12,216 1,059,438 86

Iowa 

Geologic maps 21,856 9,984 640,428 64
Municipalities 9,840 4,645 399,002 85

Brazil Municipalities’ 9,840 4,645 399,002 85
Average 24,757 10,278 1,216,921 118

4.2. Test Environment and R*-tree characteristics 
Tests were executed on a PC Athlon XP 1600+ 1.4 GHz with 256 MB of RAM. 

A page size of 2,048 bytes for I/O operations was defined. 

The R*-tree (Beckmann et al., 1990) was chosen as a spatial access method in 

order to reduce the search space. In other words, the R*-Tree was used to take account 

only the objects that have at least MBR intersection and not all of them. That choice 

was due to the wide use of R*-Tree, as well as, to the successful results found in the 

literature. The access methods traditionally used employ the object’s Minimum 

Bounding Rectangle (MBR), and the access methods execution returns what is called a 

set of candidates, since it contains all pairs of polygons that belong to the answer plus 

other pairs that have only MBR intersection. In the same way as Brinkhoff et al. (1994) 

and Zimbrao and Souza (1998) do, for our tests we generated R*-Trees that store the 

4CRS signatures as part of the polygons’ keys. This means that they were stored in the 

leaf nodes of the R*-Tree index.  
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The tests (Table 3) can be described according to the concepts presented in Sub-

Section 2.1 (Architectures for Processing Spatial Joins). The experimental tests using 

3CRS and 4CRS were executed according to the MSQP (architecture of three steps), 

while the test without using a filter step can be described as the architecture of two 

steps. 

Table 3. Joins executed to test the algorithm that computes the approximate 
area of polygon x polygon intersection 

Labels Dataset 1 Dataset 2 
Join-1 Geological map Township boundaries 
Join-2 Geological map Census block 
Join-3 Township boundaries Census block 
Join-4 Brazilian municipalities Brazilian municipalities‘ 

In the filter step, in the case of 4CRS we use the algorithm proposed by Zimbrao 

and Souza (1998). For evaluating the overlapping of two 3CRS signatures, we 

employed the algorithm presented in Sub-section 3.3. 

In the third step, we used a variant of plane sweep (Preparata, 1998) for 

detecting intersection of polygon’s contours, and a test implemented by us for verifying 

if the polygon contains the other polygon. 

4.3. Experimental Results 
In order to generate the raster signatures, we have to choose the maximum 

number of grid cells (Zimbrao and Souza, 1998). Intuitively, the larger the number of 

cells, the closer is the approximation to the original polygon. However, processing 

raster signatures that have large sizes could produce high I/O and CPU costs. To 

evaluate the effects of different choices, we executed experimental tests using different 

maximum numbers of cells, such as: 250, 500, 1000 and 1500. We executed the 

following evaluations: storage requirements; number of pair identified in the second 

step which represent hits (pairs of objects that intersect each other) and false hits (pairs 

of objects that do not have intersection), and those are identified without executing the 

refinement step; CPU costs; and, I/O costs.  

Despite of the 3CRS be based on the 4CRS, it presents some performance 

differences compared to 4CRS, in terms of store requirements, generation time, 

execution time and number of inconclusive hits.  
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Related to storage requirements, first, it is important to emphasize that 

signatures with 3 or 4 colors (3CRS or 4CRS) have same storage requirements, since it 

is required 2 bits to store the color of each cell. Therefore, both of them spend the same 

space to be stored. The experiments demonstrated that signatures with maximum 

number of cells equal to 250 have smaller storage requirements. Figure 5.a presents the 

size of the signature in comparison with the size of the original dataset. Signatures of 

maximum number of cells equal to 1500 have more storage requirements. 

 
Figure 5. a) Size of the signatures (3CRS and 4CRS) related to the real data. b) 

Generation time for 3CRS and 4CRS 

Related to generation time, 3CRS can be generated faster than 4CRS signatures, 

as presented in Figure 5.b.  As it is expected, when the maximum number of cells 

increases, the time to generate the signatures also increases. 

Table 4 presents the 4CRS and 3CRS signatures characteristics for the 

maximum number of cells equals to 500. To store 4CRS or 3CRS signatures of 

maximum number of cells equal to 500 it is only needed, on average, 2.85% of the 

space needed to store the real datasets. 3CRS can be generated in approximated 70% of 

the time needed for generating 4CRS, as presented in Table 4.  
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Table 4.  Raster signatures’ characteristics with maximum number of cells 
equal to 500 

Datasets 

Data 
size 

(KB) 

4CRS 
size 

(KB) 

4CRS 
/ data 
(%) 

Gener
. time 
3CRS 
(sec.) 

Gener
. time 
4CRS 
(sec.) 

3CRS 
/ 

4CRS 
(%) 

Census 
block group 38,824 1163 3.00 14.83 20.47 71.40

Hydrologic 
map 6,904 169 2.45 2.70 3.97 68.02

Topograph
y map 61,748 1455 2.36 33.71 50.67 66.54

Township 
boundaries 

25,288 838 3.31 10.18 14.53 70.09

Iowa  

Geologic 
maps 21,856 676 3.09 8.43 11.93 70.64

Average 29.050 827 2.85 13.97 20.37 69.34

Signatures of 250 maximum number of cells are processed faster, since there is 

less cells to process, while signatures of 1500 maximum cells are processed slower, 

since there are more cells to evaluate. Figure 6 shows the average time to execute the 

first two steps of the architecture, using 3CRS and 4CRS. In both cases, the bigger is 

the maximum number of cells, the bigger is the processing time. 

 

Figure 6. Average time to execute the first two steps of the signature, using 
3CRS and 4CRS 

The number of inconclusive pairs that goes from the second step to the third step 

is bigger when 250 is chosen as the maximum number of cells, as demonstrated in 

Figure 7. In other words, signatures with maximum number of cells equal to 250 

identify less hits and false hits. On the other hand, when the maximum number of cells 

is 1500, the number of inconclusive pairs is the smallest. The 3CRS and the 4CRS have 
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almost the same results. 3CRS generates only a few more inconclusive pairs to the third 

step. 

  
Figure 7. Inconclusive pairs (%) for the 3CRS and 4CRS signatures 

Despite of the differences between 3CRS and 4CRS, both presents significant 

gain over the 2-step architecture, in terms of total execution time and disk access. 

The total execution time is presented in Figure 8. Notice that both 3CRS and 

4CRS use much less time than the 2-step architecture (more than 50% of reduction). 

The time used in 3CRS is slightly bigger than 4CRS, because the 3CRS test generates 

more inconclusive pairs, which leads to more exact and slower tests. 

 
Figure 8. Comparison of the total execution time (secs.) between 3CRS, 4CRS 

and 2-step architecture 

Figure 9 shows the relation between the disk accesses using 3-step architecture 

(3CRS and 4CRS) and 2-step architecture. It shows the ration in percentage: number of 

disk accesses used by the 3-step architecture divided by number of disk accesses used 

by the 2-step architecture. Notice that the 4CRS uses slightly less disk accesses than the 

3CRS. Again, it is because the 3CRS generates more inconclusive pairs, which leads to 

more exact test (the refinement step). Therefore, the algorithm needs to access the disk 

more often, to seek and read objects from disk and execute the exact test. However, it is 
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important to emphasize that the difference between the number of disk accesses using 

3CRS and 4CRS is too small. 

 
Figure 9. Comparison of the number of disk accesses (average) of the 3-step 

join over the 2-step join 

5. Conclusion 
Spatial operations are very costly. The literature presents different approaches 

for processing spatial operations. This work proposed a new raster signature, the 3CRS, 

based on the 4CRS (Zimbrao and Souza, 1998), that can be used as a second filter step 

in the Multi-Step Query Processor of Brinkhoff et al. (1994). 3CRS has the good 

performance of the 4CRS when compared against the 2-step processing. Moreover, 

3CRS has faster generation time than 4CRS and it is also more flexible, since it can be 

used to represent different spatial data types, such as polygons, polylines and points. 

Due to its faster generation time, 3CRS can also be calculated on-the-fly, for example 

when the optimizer decides to use it. Another advantage is that the 3CRS can be 

computed based on others 3CRS signatures, as a result of a previous operation, like a 

join.  

The experiments that we executed to evaluate the new signature demonstrated 

the effectiveness of 3CRS. It only needs, on average, 2.85% of the storage of the real 

datasets to store 3CRS signature. It has a significant reduction of the generation time 

(30% of reduction, in average) related to 4CRS. The time and number of disk accesses 

to process the queries where much smaller then the time to execute the queries without 

signature. Related to 4CRS, the processing using 3CRS produces a small growth of the 

inconclusive answer. In other words, the increasing of total processing time/number of 

disk accesses is too small, and motivates the use of 3CRS in processing spatial joins. 
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As future works, we intend to develop a different storage mechanism to reduce 

the storage requirements. We also plan to evaluate the use of 3CRS to representing 

polylines and points. Another future work is to implement this signature in SECONDO 

(Güting et al., 2005). 
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